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ABSTRACT

NEW OPTIMALITY THEORIES OF DYNAMIC VEGETAL RESPONSES TO CLIMATE

VARIABILITY: ECO-HYDROLOGIC AND WATER SUPPLY VULNERABILITY

IMPLICATIONS

A major challenge for water and land resource managers over the coming decades is understand-

ing how vegetation changes due to climate change will affect the water, energy and carbon budgets

in our biosphere. In this dissertation, we implement new optimality theories for stomatal control

and photosynthetic capacities in order to understand and describe dynamic vegetation responses

to climatic changes. The resulting optimal dynamic vegetation models are then applied to project

eco-hydrologic responses that incorporate explicitly the feedbacks between vegetation, hydrology,

and climate.

Plants adjust their stomatal openings in response to changes in environmental conditions. Op-

timal stomatal control theories are based on the assumption that plants adjust their stomatal

openings in such a way that carbon assimilation is maximized while minimizing transpiration.

Here, we formulate the optimal stomatal control theory fully, bringing to the forefront a rarely

discussed implication of current formulations, which is the implicit statement of a fixed volume of

transpiration over the period of analysis. We offer an alternative solution procedure using dynamic

programming that explicitly accounts for the constraint on the total transpiration volume, and elim-

inates the need of estimating the marginal water use efficiency, λ. In addition to the advantage of

a more realistic decreasing volume of water for transpiration, we posit that the proposed dynamic

programming solution offers other important advantages over solutions based on the calculus of

variations including, the replacement of λ with an actual transpiration volume, and the potential

to model stochastic behavior not possible with the calculus of variations solution. The new dynamic

programming approach may also be easily extended to more complicated eco-hydrologic and plant

physiologic questions.

The maximum rate of carboxylation, Vcmax, and the maximum rate of electron transport, Jmax,

describe leaf-level capacities of the photosynthetic system, and are critical in determining the net

fluxes of carbon dioxide and water vapor in the terrestrial biosphere. Both Vcmax and Jmax ex-
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hibit high spatial and temporal variability. However, many models of photosynthesis employed in

terrestrial biosphere models assume constant values for Vcmax and Jmax at a reference tempera-

ture ignoring intra-seasonal, inter-annual, and water stress-induced variations. Although general

patterns of variation of Vcmax and Jmax have been correlated with groups of species, climates, and

nitrogen concentrations, scant theoretical support has been provided to explain these variations.

We present a new approach to determine Vcmax and Jmax based on the assumption that a limited

amount of leaf nitrogen is allocated optimally among the various components of the photosynthetic

system in such a way that expected carbon assimilation is maximized. The optimal allocation

is constrained by available nitrogen, and responds dynamically to the near-term environmental

conditions of light and water supply. We then demonstrate that the resulting optimal allocations

of a finite supply of nitrogen replicate observed relationships in nature, including the commonly

referenced ratio of Jmax/Vcmax, the relationship of leaf nitrogen to Vcmax, and the changes in ni-

trogen allocation under varying water availability and light environments. This optimal allocation

approach provides a mechanism to describe the response of leaf-level photosynthetic capacity to

varying environmental and resource supply conditions that can be incorporated into terrestrial

biosphere models.

Vegetation is responding to our rapidly changing climate resulting in species compositional

shifts, changes to growing seasons, and changes in biomass amount and distribution. These changes

can be observed in the seasonal phenology of leaf area indices (LAI). Magnitudes of LAI are

indicative of the biomass and growing capacity of a system - regions with low precipitation or other

poor growing conditions (cold, low light, etc.) will exhibit low LAI values, whereas ideal climatic

growing conditions will show higher values of LAI. There is a clear connection between climate

and the magnitude and timing (i.e., phenology) of LAI, which we exploit in a harmonic regression

model based on a space-for-time substitution approach. Coefficients of a linear harmonic regression

model are fit to 30-years of bi-weekly observations (i.e. remotely sensed reanalysis) of LAI over a

large domain (the Colorado River Basin). Fitted harmonics, which are considered observations of

seasonal phenology, are then regressed against climate covariates; only natural vegetation points are

considered. As a result, harmonic coefficients describing seasonal phenology are directly related to

climate, allowing for the prediction of annual phenology in novel climates. The resulting models are

used to compare predicted LAI against observations over a historical period, in addition to a study
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of predicted phenology using projected GCM data. The former shows high skill in comparing the

reanalysis to observations, whereas the latter indicates the true power and significance of including

a dynamic model of annual LAI phenology in macro-scale modeling applications, with direct effects

on the surface water balance.

Individually, these components are extremely powerful and informative, but an application

framework is required to deploy these systems in practice. A new dynamic vegetation model uti-

lizing these optimality theories was developed (VIC-VEO), which allows testing of macro-scale

hydrologic responses across large spatial domains, and under a range of projected climate scenar-

ios. VIC-VEO utilizes an optimal stomatal model to estimate conductance and the associated

transpiration rates. Optimal stomatal conductance is directly linked to vapor pressure deficits,

CO2 concentrations, irradiance levels, ambient temperatures and soil moisture status. To assess

deployment of the optimal stomatal model in a macro-scale framework, canopy integrated evapo-

transpirative (ET) fluxes are compared to estimated fluxes using a traditional stomatal model, in

addition to observations of Fluxnet canopy ET. This comparison indicates improved skill. Impacts

to the hydrologic cycle, considering longer-term phenologic changes, are also tested over a projected

century. This process is compared to ’static’ phenologic responses for two diverse climates, helping

to highlight the range of potential vegetation changes, in addition to the magnitudes of partitioned

changes to the hydrologic cycle. Using the new macro-scale hydrologic framework, these com-

parisons are then completed for multiple sub-basins across the Colorado River Basin, indicating

the potential diverse responses of vegetation and yield - specifically, highlighting the conclusion

that disparate vegetation responses are possible across large regions with significant effects on the

hydrologic cycle and aggregated yields.

Finally, the VIC-VEO model is applied in a study of Water-Supply vulnerability across the

Colorado River Basin. A range of Global Circulation Models (GCMs) and Representative Concen-

tration Pathways (RCPs, CMIP5) are used to estimate projected yield to year 2100. VIC-VEO is

a spatially distributed hydrologic model, thus yield is routed and aggregated at 41 sub-catchments

across the basin. Monthly projected consumptive use demand data was supplied to year 2100 at

the HUC4 level. A water management and routing model (WEAP) was used to model yield, di-

versions, trans-basin diversions, minimum flows, storage reservoir routings, and the consumptive

use at the HUC4 level for each of the GCM and RCP scenarios. This procedure indicated gross
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changes to the projected yield under most GCM-RCP scenarios, with some scenarios indicating

extreme vulnerability of water supply in the coming decades. Accounting for dynamic vegetation

processes increased the potential aggregated yield compared to static vegetation responses, but still

estimates large potential future supply vulnerabilities.
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Chapter 1

Introduction

I like to define biology as the history of the earth and all its life – past, present, and
future. To understand biology is to understand that all life is linked to the earth from
which it came; it is to understand that the stream of life, flowing out of the dim past
into the uncertain future, is in reality a unified force, though composed of an infinite
number and variety of separate lives.

– Rachel Carson

The field of ecohydrology brings together the study of ecology, including vegetation growth,

response, and interaction with the environment, and hydrology, the interaction of water with the

biosphere. Vegetation, water and energy are inextricably linked in a continual system of feedbacks

and responses creating an extremely dynamic system at a wide range of spatial and temporal

scales. The dynamic nature of vegetation makes reliable prediction of system responses extremely

challenging, even without considering uncertain climatic variability on the future of vegetation and

its influence on the water cycle.

Single or multiple year droughts can result in large scale mortality of vulnerable vegetation

species changing both the ecological landscape and hydrologic response for decades. Less extreme

than mortality, vegetation can exhibit other responses such as leaf and branch senescence during

periods of stress, or even rapid growth during favorable periods. Further, vegetation acclimates

to climates and based on growing conditions potentially resulting in a wide range of potential

vegetation species compositions, growth states, biomass, and forms.

Developing an improved understanding of vegetation dynamics, especially given our rapidly

changing climate and changing supplies of water (e.g. precipitation patterns, evaporation, transpi-
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ration, etc.), is extremely important to scientists and engineers in estimating landscape vegetation

changes and the associated impact on hydrologic yield [20, 54,92].

At no point in contemporary history has the future supply of water been so uncertain and simul-

taneously critically important as we cross thresholds of decreasing supply and increasing demand.

To help model and develop future predictions of water supply, scientists and engineers use Global

Circulation Models (GCMs), which provide estimates of meteorologic data, with Terrestrial Bio-

sphere Models (TBMs), which estimate the respones of the land-surface to meteorologic forcings.

Although there is gross consensus in the direction of mean temperature changes among GCMs, the

magnitude, spatial, and temporal patterns of projected responses varies significantly across climate

models and Representative Concentration Pathways (RCPs). Further complicating the predictive

skill of TBMs in water supply forecasting is the uncertainty of modeling methods translating cli-

matic and meteorologic data into a hydrologic response, partly moderated by vegetation. With

a fixed vegetation system, this uncertainty would be minimized, although in reality vegetation is

highly dynamic at several spatial and temporal scales, even under ‘typical’ climates. Attempting to

predict vegetation responses under extreme and novel climates is a great challenge to contemporary

scientists.

Researchers have been attempting for decades to explain vegetation processes, find patterns, and

develop predictive frameworks, all with a range of success, but generalized mechanistic frameworks

sufficiently flexible and scalable for applications in long-term dynamic modeling still remain elusive.

Individual components for specific spatial and temporal scales may be explainable, or at least display

consistent patterns, but extrapolation to a range of species, climates, or temporal periods is made

with great uncertainty.

Regardless, engineers still require a comprehensive system that can be used for planning and

design, even when vegetation dynamics are not completely defined and explainable. As such,

approximations of system processes are made, such as assuming constant vegetation types, using

generalized plant functional types with fixed responses, or when responses are assumed to follow

constant rules over time.

The research community attempts to address these challenges with tools such as Dynamic

Global Vegetation Models (DGVMs) using a range of mechanistic and/or regression approaches.

These tools are currently considered the best available for estimation of vegetation responses for
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coupling GCMs and Terrestrial Biosphere Models (TBMs), but many processes are still founded

on gross simplifications, assume stationarity of certain processes, or assume similarity in temporal

responses, for example.

Let us use the ubiquitous Jarvis [62] approach for stomatal response as a specific example - this

model includes a series of response functions to determine how stomata adjust to the environment.

For a set of correctly parameterized response functions, this approach can work well in replicating

observed stomatal behavior, but is it appropriate to assume these response functions will remain

constant for a given species over a season, years, decades or centuries? We can make similar

statements regarding the more contemporary Leuning Model [78] for stomatal response, which uses

two empirical parameters - they can be fit to observations and used to reasonably replicate observed

stomatal behavior, but how should those empirical parameters adjust over shorter seasonal periods

or longer years or decades of time in relation to a changing climate? Similar statements can be

made regarding photosynthetic system parameterization, biomass production, leaf area phenologic

sequences, or any response of the vegetal system for that matter.

An alternative to fixed mechanistic processes or regression is to assume a system is responding

in an optimal manner maximizing or minimizing a given objective function. This is relevant here,

as assuming that a system is following an optimal state reduces the degrees of freedom and allows

unknown system parameters to become emergent outcomes [93]. This dissertation presents several

new approaches for considering optimal vegetation states at a range of spatial and temporal scales,

and also explores how they can be applied in a macro-scale TBM for use in long-term climate

projection modeling. Although studies of optimal vegetation response theories are not new, further

improvements in understanding optimal approaches are required [102]. Further, implementation

and testing of optimal theories within macro-scale TBMs for long-term simulations is limited.

The power and fitness of Terrestrial Biosphere Models has progressed greatly over recent

decades, but there still remains many unexplained or unaccounted for processes of vegetation re-

sponse. Modelers try to minimize the influence and error from commonly required assumptions

where insufficient knowledge or data prevail, but still require constant values where they should be

variable, aggregate parameters across multiple species or climates, or use fixed response relation-

ships. The field of ecohydrology has extensive room for growth, linking mechanistic responses with

longer term growth and allocation processes, coupled with the hydrologic cycle.
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Mechanistic processes are typically modeled using short-term and/or small-scale, and are com-

monly assumed to scale directly to longer-term or larger-scale processes [29, 45, 61]. Integrating

these mechanistic responses over a season, multiple decades, centuries, or millenia, can lead to

gross accumulated errors in estimated assimilation, net primary production, and transpiration.

For this dissertation, we attempt to address several critical aspects of vegetation dynamics,

over a range of temporal and spatial scales by proposing alternative and novel approaches using

optimality theories. Chapter 2 considers short-term leaf-level stomatal control using an optimality

theory. Although optimal stomatal control has been studied for well over 50-years, we solve this

problem using a novel approach: Dynamic Programming. This solution procedure opens several

new and unexplored pathways utilizing optimal control theory, including stochastic processes, to

characterize stomatal control. This new solution procedure to the classic optimal stomatal control

problem is also shown to use measurable quantities for constraining the problem that are more

easily incorporated into a soil-plant-atmospheric continuum modeling framework.

We then continue in Chapter 3 considering leaf-level photosynthetic capacity and evaluate the

resources required to develop and maintain such capacity. Plants have access to limited resources

that we postulate are utilized optimally to maximize the expected value of assimilation over a fixed

period of time. This approach allows the system to respond dynamically to a changing environment

as light, temperature or water deficits change. As such, we explain and replicate variable responses

of photosynthetic system capacity observed in nature, and develop a solution procedure that can

be used to parameterize photosynthetic capacity dynamically, rather than relying on biome-based

or literature averaged static values.

Chapter 4 considers longer-term responses of climatically-based canopy level leaf area phenology.

This approach utilizes a set of new space-for-time empirical climatic relationships that allow for

a dynamic leaf area phenology using a Fourier series. Commonly, leaf area phenology is either

prescribed based on a given vegetation type, or defined based on set rules (e.g. degree days). That

approach can work well for short-term (a few years) response, but may present significant predictive

errors for longer term simulations (decades to centuries). We explore climatic based relationships

of leaf area phenology, a re-analysis of observed leaf area phenology in a range of climates using

these relationships, and potential differences in hydrologic response for long-term prediction under

a changing climate.
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Bringing these elements together into a comprehensive macro-scale modeling framework called

VIC-VEO is discussed in Chapter 5. We explore the response of stomata through the canopy and

compare the integrated flux of water vapor against observations of canopy level evapotranspira-

tion. We evaluate the skill of this optimal stomatal model in macro-scale applications by also

comparing to a ubiquitous alternative stomatal model approach. Hydrologic responses from a long-

term dynamic vegetation model are then compared against a static vegetation model highlighting

potential changes in water partitioning. This comparison is completed at two different locations

with different climates, using a single global climate projection model, which show disparate veg-

etation responses. Finally, we integrate the hydrologic yield over multiple subcatchments across

the Colorado River Basin and evaluate long-term spatial and temporal changes. This is a critical

assessment highlighting the potential differences in projected yield when considering a dynamic

vegetatal response. Further, it reinforces an understanding that generalized comments regarding

‘global’ changes in projected yield should be made with extreme caution, if at all. For example,

an aggregated watershed level response may show a reduction in yield, but certain locations within

the watershed may actually still show an increase in yield.

Finally, in Chapter 6 we consider the utility of this new TBM, VIC-VEO, in a macro-scale

hydrologic modeling and operating network framework for assessment of long-term water supply

vulnerability using a range of climate projections. This approach shows the wide range of poten-

tial responses that are highly sensitive to climate data. Although we observe great variability in

water supply vulnerability among climate models, a macro-scale dynamic vegetation system allows

flexibility in potential vegetation responses affecting hydrology, directly related to the projected

climate, affecting the yield for any individual scenario.

Incorporation of vegetation responses into long-term simulation models is undergoing rapid

development and changes. Many different modeling approaches are available, but maintaining a

system with sufficient predictive power in our rapidly changing climate is of paramount importance.

Optimality theories are an efficient and flexible approach aiding in parameter reduction, and help

to explain the complex dynamics and interactions of vegetation in earth’s biosphere.
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Chapter 2

Solution of the Optimal Stomatal Con-

trol Calculus of Variations Problem us-

ing Dynamic Programming

Owing to this struggle for life, any variation, however slight, and from whatever cause
proceeding, if it be in any degree profitable to an individual of any species, in its infinitely
complex relations to other organic beings and to its physical conditions of life, will tend
to the preservation of that individual, and will generally be inherited by its offspring.

– Charles Darwin, Origin of Species

2.1 Introduction

Plant communities constantly compete for limited resources, including light, nutrients, and

water, by adjusting different strategies for growth, resource allocation and morphology. Many of

these adjustments may occur at times scales of months to years. However, on shorter timescales,

plants can control the rates of photosynthesis (conversion of atmospheric carbon into stored forms

of energy, also referred to as carbon assimilation) and transpiration (loss of water vapor into the

atmosphere) through regulation of stomatal aperture. Stomata adjust their aperture over time to

regulate the leaf internal CO2 concentration for carbon assimilation, and the rate of water loss –

in economic terms, these may be thought of as benefit and cost, respectively.
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Water is commonly a limiting resource in natural systems – it may be scarce because of a

combination of factors including low precipitation, high evaporation, high seepage, and competition

by other plants. Regardless of the reason, it is evolutionarily advantageous for plants to use limited

resources efficiently (e.g., maximize carbon assimilation per unit transpiration ) [52].

Here, we consider plant responses in the form of stomatal control at the leaf level that regulates

the CO2 supply limiting photosynthetic assimilation rates, and also the inevitable loss of water

vapor in the form of transpiration. A traditional procedure solving the calculus of variations prob-

lem using the Euler-Lagrange equation is discussed, followed by an alternative solution procedure

using dynamic programming. Both of these solution procedures are then compared using published

data from a case-study. Finally, we discuss problem formulations that may be more efficient using

dynamic programming, or even impossible to solve with the traditional Euler-Lagrange solution

procedure.

2.2 Optimal Stomatal Control

Stomata are small epidermal pores, usually on the abaxial side of leaves, that allow the exchange

of gases into and out of the leaves, including CO2, H2O and O2, during photosynthesis [105]. For

a given set of leaf photosynthetic capacities and environmental conditions, photosynthesis cannot

be increased by adjusting the supply rate of CO2 (e.g., by increasing the stomatal conductance, g,

through increasing stomatal aperture) without concurrently increasing transpiration. This trade-

off between carbon gain and water loss is the basis of optimal stomatal control theories [28, 56,

71]. Optimal stomatal control assumes that stomata operate in a manner such that assimilation

is maximized for a given set of constraints, for example water, light and nitrogen limitations.

Here, we consider optimal stomatal function constrained only by water supply. As applied here

for stomatal control, we are interested in the rate of net assimilation (A, µmolCO2 m−2s−1)

integrated over a period of time (an hour, a day, or potentially longer). Assimilation is a function

of stomatal conductance (g, mol CO2 m−2s−1), which is itself a function varying over the period

of integration. Assimilation, stomatal conductance, and transpiration depend on time-varying

exogenous environmental variables (Θ), which vary with time (τ) creating set Θ(τ), including

irradiance, temperature, etc.
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The total assimilation over a period of time, T , is given by the following general integral of a

functional,

F (g) =

∫

T
A(τ, g(τ), g′(τ)) dτ (2.1)

where A is the rate of assimilation. For notational convenience, the dependence of A and g on

Θ(τ) is not explicitly indicated. Here, we want to determine the optimal stomatal variation, g∗(τ),

such that the net assimilation is maximized over a period of time, T . That is,

F ∗ = F (g∗(τ)) =

∫

T
A(τ, g∗(τ), g∗

′

(τ)) dτ = extremum (2.2)

In this form, the extremum (maximum) value is simply found by maximizing the stomatal con-

ductance, which would maximize the integrated assimilation. However, this ignores the constraint

of water limitation. A water limitation constraint for integrated transpiration takes the following

general form,

J(g) =

∫

T
Et(τ, g(τ), g

′(τ)) dτ = ET (2.3)

where Et is the rate of transpiration (mol H2O m−2s−1), and ET (mol H2O m−2) is a constant

constraint on the cumulative volume of transpiration for the period of integration.

2.2.1 Calculus of Variations

The solution to the optimal stomatal control problem has been approached using the Calculus

of Variations for many decades [17, 28, 52, 53]. The calculus of variations may be used to find

stationary points of functionals, which are functions of functions.

Using a Lagrange multiplier, λ, the problem of solving (3.2) subject to the constraint of (2.3)

is equivalent to solving,

H∗ = H(g∗(τ)) =

∫

T
G(τ, g∗(τ), g∗

′

(τ))dτ (2.4)

where

G(τ, g(τ), g′(τ)) = A(τ, g(τ), g′(τ))− λEt(τ, g(τ), g
′(τ)) (2.5)
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Here, the solution of (2.4) can be obtained by solving the generalized Euler-Lagrange partial

differential equation,

∂G

∂g
−

d

dτ

∂G

∂g′
= 0 (2.6)

which expanded and restating the constraint is,

∂(A− λEt)

∂g(τ)
−

d

dτ

∂(A− λEt)

∂g′(τ)
= 0 (2.7a)

∫

T
Etdτ = ET (2.7b)

where for notational convenience explicit dependence on τ , g(τ), and g′(τ) has been omitted.

Because A and Et do not depend on the first derivative of g, the second term in Eq.(2.7a) is

equal to zero. Therefore, Eq.(2.7a) reduces to,

∂(A− λEt)

∂g(τ)
= 0 (2.8)

Or equivalently,

∂A

∂g(τ)
− λ

∂Et

∂g(τ)
= 0 (2.9)

where the system is constrained by,

∫

T
Et(τ, g(τ)) dτ = ET (2.10)

Obtaining an analytical solution of Eqs.(2.9) and (2.10) is not trivial and may not be feasible.

The typical approach is to assume a value for the unknown marginal water use efficiency λ (also

known as a Lagrange parameter), and then solve equation Eq.(2.9) without addressing (2.10). This

approach is generally applied using a biome based approximation of λ [84]. However, because the

resulting amount of total transpiration may exceed the capacity to transpire such volume (e.g.

low soil matric potentials), empirical relationships can be used to estimate λ against soil moisture,

soil water potential, or leaf water potential [89]. Increased λ, or higher values of efficiency, will

reduce result in reduced assimilation and transpiration rates, inevitably decreasing the volume of

transpiration over the period of integration.
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2.2.2 Dynamic Programming

An alternative approach is to solve the constrained calculus of variations problem of Eqs. (3.2)

and (2.3) using Dynamic Programming. Dynamic programming (DP) is a numerical solution pro-

cedure that divides complicated continuous problems into smaller discrete subproblems [9]. Here,

the period of integration in Eq.(3.2) can be divided into T discrete stages (indexed by t) with a

width of ∆t (seconds), and the constraint on the total volume of transpiration (ET ) Eq.(2.10) may

be divided into K discrete states (indexed by k), each of width ∆ET (moles H2O m−2). The

question becomes,“How do the stomata operate over the choices of discrete states such that total

transpiration over all stages is equal to (or less than) the constrained volume, while maximizing

assimilation?”.

State Dynamics In the non-inverted form, the state dynamics equation can be written as,

St+1,j = f(St,k, gt,Θt) (2.11)

where, the state variable St,k is the starting cumulative transpiration at stage t and state k, St+1,j

is the cumulative transpired volume at the following stage t + 1 and state j, gt is the stomatal

conductance to CO2, and Θt is the exogenous time-varying environmental parameters set.

This can be rearranged into the inverted state dynamics equation,

gt = f(St,i, St+1,j ,Θt) (2.12)

In this form, knowing the state of cumulative transpired volume between two stages, and the

environmental conditions, allows solution of the stomatal conductance as a continuous variable for

any stage t.

Using a simple Fickian diffusive approach for transpiration (Eq. (A.10)), the stomatal conduc-

tance can be solved as,

gt =
St+1,j − St,k

∆taDt
=

(j − k)∆ET

∆taDt
(2.13)

where ∆t is the discrete timestep length (seconds), a is a constant for the ratio of conductance
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of water vapor to CO2, (j − k) is the number of discrete intervals change of cumulative storage

(where, j ≥ k), and Dt is the vapor pressure deficit at stage t.

Cost-to-go Objective For a given stomatal conductance and environmental parameter set Θt

(for this study, only including irradiance and vapor pressure deficit), the estimated assimilation

rate (or total assimilated carbon when integrated over ∆t), may be found using the Farquhar, von

Caemmerer, Berry biochemical (FvCB) model of photosynthesis (Appendix A.1).

Therefore, knowing the stomatal conductance and the environmental conditions, we can find

the ‘benefit’ of assimilation for any cumulative transpiration states between stage t to t+ 1.

Recursive Backward Dynamic Programming Backward dynamic programming is a proce-

dure that can solve these combinatorial options for discrete cumulative transpiration over all stages.

In Backward DP, the final stage (t = T ) is assessed first. For every possible state (∀k ∈ K), all fea-

sible cumulative transpiration volume states S(t+1,j) from state k are considered. Feasible actions

(movement between states) require the total cumulative transpiration state 0 ≤ St ≤ St+1 ≤ ET

(or, j ≥ k), otherwise implying a positive transpiration rate, Et ≥ 0.

With the calculated stomatal conductance from a selected action and environmental parameter

set, the assimilation (benefit) is determined (Eq. (A.9)); this is otherwise known as the cost-to-go.

The total benefit (Ft,k) for any selected action is the sum of the cost-to-go (A) and the future total

benefit (Ft+1,j) at decision St+1,j . From all feasible actions, the maximum total benefit and the

associated action is recorded, described as,

Ft,k = max(At,∀k + Ft+1,∀j) (2.14)

For the last stage (t = T ), it is assumed that all future benefits are 0, or Ft+1,∀j = 0. This process

is illustrated for a given stage t and state k in Figure 2.1.

The procedure is repeated for the next state k + 1 at time t, considering all actions to state j

at t + 1, until all states are considered over the final stage t. Then, the solution procedure steps

’backward’ in time to the previous stage, and repeats the process moving backward until the first

stage, where t = 0.
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Figure 2.1: Discrete Dynamic Programming Decision Space - Backward DP feasible options are
shown as thick arrows, infeasible option shown as light arrow. Objective function for current
stage-state (t,k) is maximum of the sum of cost-to-go and future benefits.
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Once the states and stages have been populated with optimal policies, a traceback is performed

moving forward in time from any initial state; in other words, the optimal decision for all discrete

states and times is now known. For this problem, the cumulative transpiration over the period

of integration will always be starting with zero cumulative transpiration (S0,k = 0). As recorded

during the recursive backward dynamic programming process, the optimal policy is fully known

from the starting stage - from each optimal stage, the next optimal stage (action) has also already

been determined.

As a result, the stomatal conductance function over time is determined from a traceback that

maximizes the accumulated net assimilation, constrained by a prescribed (known) total amount of

available transpiration over the period of integration.

2.3 Case Study

To demonstrate and compare the procedure using the two optimal solution procedures (Euler-

Lagrange and Dynamic Programming), we consider data from a study of C3 grasses [99] that

presented detailed temporal data on environmental conditions and stomatal conductance. Observed

field data allows for a direct comparison to observations of the predicted responses by the optimal

stomatal control assumption, as well as a comparison between the two solution procedures.

The Monson study includes data collected during day-light periods, over two different summer

sampling days (mid June, and mid July), for Agropyron Smithii, or wheatgrass. Data include vapor

pressure deficit (mmol H2O (moleair)−1), leaf temperature (C), air temperature (C), irradiance

(W m−2), assimilation (µmoles CO2 m−2s−1), and transpiration (mmoles H2O m−2s−1). Data

from the Monson study was digitized into 1-hour increments (∆t = 3600 s) for this demonstration.

For the Euler-Lagrange solution, the value of λ is unknown and cannot be calculated directly.

Therefore, using the temporally varying environmental data measurements, the value of λ was

tested iteratively using the solution from Eq. (2.9) where the calculated stomatal conductance

values were compared to observations. This approach does not address the volume of transpiration

explicitly, but simply was a calibration of the unknown λ parameter.

For the Dynamic Programming solution, rather than needing to estimate a constant λ parameter

over the period of integration, the constraint on the total volume of transpiration over the period of
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Figure 2.2: Sample State-Stage Decision Policy Matrix. Dashed line shows the optimal traceback
path starting from zero cumulative transpiration at t = 0.

integration (ET ) is required. Although transpiration rates were reported in the study by Monson,

our approach assumes a simple Fickian diffusive transpiration rate, thus requiring a calibration

adjustment of the total transpirative volume, ET .

Following the DP procedure, the optimal stomatal conductance values were determined for

each state and stage, and are shown in Figure 2.2. Starting at midnight with no cumulative

transpiration, the optimal policy traceback over the period of integration was determined (shown

as the white dashed line). The stages begin at midnight, where the traceback shows no transpiration

until daylight periods (as would be expected). Cumulative transpiration increases through the day,

reaching the peak cumulative value ET (the constraint) by the end of day-light hours. During the

day, the rate of transpiration varies, as does the associated optimal stomatal conductance at each

stage. The stomatal conductance values along the optimal traceback policy line are extracted from

this surface.
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Comparisons of stomatal response to Monson data during two separate sampling periods are

shown in Figures 2.3 and 2.4. Also included on these figures is the solution using the Euler-Lagrange

approach with the calibrated estimates of λ (a different value for each day).

Figure 2.3: Hourly Optimal Stomatal Responses with Original Observed Data (July 17, 1983) [99]

2.4 Discussion

The temporal response of the optimal stomatal policy compares well to the observations con-

sidering the coarse environmental data and gross simplification of many plant physiological and

soil-root processes. The mid-morning peak assimilation rate is well captured, while vapor pressure

deficits are low, and depression of stomatal conductance through the course of the day is captured.

Inclusion of a more robust transpiration scheme, including leaf energy balances, micro-climate vari-

ability, leaf boundary layer resistances, and coupling to soil moisture dynamics may further improve

the performance of the model.

As can be seen in Figures 2.3 and 2.4, the optimal policies between the dynamic programming

and the Euler-Lagrange solution procedure are nearly identical. This shouldn’t be a surprise,
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Figure 2.4: Hourly Optimal Stomatal Responses with Original Observed Data (June 14, 1983) [99]

considering that if both methods are providing the optimal policy, they should be equivalent.

Note, the Euler-Lagrange solution is a ’continuous’ solution, whereas the Dynamic Programming

solution is ’discrete’, thus there may be small differences between states and stages.

This detailed derivation and solution of the calculus of variations problem using either the Euler-

Lagrange equation, or dynamic programming, highlight an important consideration - regardless of

solution procedure when using an optimal stomatal control approach, a statement regarding total

transpiration volume over the period of integration must be made. This occurs either implicitly

through the selection of λ, or explicitly as an upper limit state constraint in dynamic programming.

Therefore, models utilizing an estimate of λ through empirical relationships should consider adding

further environmental covariates – as the value of λ is related directly to the total transpiration

volume, soil moisture status, root structure, vapor pressure deficit, wind speed, leaf shape and size,

canopy structure and micro-climate, and many other factors can affect an appropriate estimate -

it is not simply a constant based on species or biome, and should instead be considered a dynamic

environment dependent variable.
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There are potentially gross errors through selection of a single value of λ (even for well-watered

conditions) without considering the plant physiology and environmental affects on the constraint

explicitly. Dynamic programming may be a more direct solution procedure, where estimating

a value of daily integrated transpiration can be related to well established soil-plant-atmosphere

processes. Whereas the meaning of the marginal water use efficiency parameter (λ) is well-defined

analytically, estimation of the parameter beyond observational or regressive means is difficult or

even impossible.

A simple recursive backward DP solution procedure has been presented here - the approach of

utilizing DP to solve this problem opens further avenues of research and opportunity. For example,

the problem can easily be adapted as a stochastic-dynamic programming problem, rather than

using fully explicit environmental values as shown in this study. Further, multi-dimensional states

can be defined, such as including soil moisture dynamics, or even possibly canopy level processes

(rather than single leaf states as used in this study).

The advantage of DP is the ability to solve a wide array of complicated problems by divid-

ing them into smaller discrete problems, and the potential applications in plant physiology and

ecohydrology are unlimited.

2.5 Conclusions

Optimal stomatal conductance has been studied and applied for decades, but the traditional

solution procedure, using the Euler-Lagrange equation without explicit consideration of the con-

straint for selection of λ may result in stomatal conductance errors as physiologic or environmental

conditions change. We offer an alternative solution procedure to the original calculus of variations

problem while explicitly considering the integrated transpiration volume using DP, rather than

requiring an estimate of the marginal water use efficiency λ.

The final solution shows virtually no difference between procedures, assuming the integrated

transpiration depth equals the resulting transpiration for a given MWUE.

Numerically, λ is well defined, although relating the magnitude of this parameter directly to

a physical constraint of a system is difficult. Conversely, specifying the transpirative volume of a

system (e.g. over the period of a day) can more easily be related to environmental conditions, soil
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moisture status, and xylem conductance from roots to leaves. As such, for an optimal stomatal

model, the DP approach can be integrated into a modeling framework where the volume used for

transpiration is specified based on resource limitations and physical constraints of a system, rather

than utilizing either a constant marginal water use efficiency or increasing the MWUE through

empirical relationships.

Further, extensions of the DP approach into stochastic processes, or multi-state problem for-

mulations, opens many avenues for assessing optimality in ecohydrology and plant physiology not

possible using the traditional Euler-Lagrange solution procedure.
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Chapter 3

Optimal Allocation of Leaf-Level Re-

sources

It is not the strongest of the species that survives, not the most intelligent that survives.
It is the one that is the most adaptable to change.

– Charles Darwin, Origin of Species

3.1 Introduction

Photosynthesis uses atmospheric carbon dioxide (CO2), water, nitrogen, and other molecules

to transform solar energy (i.e., from photons) into chemical energy (i.e., glucose, ATP, and other

forms of chemical energy), a process also termed carbon assimilation. Photosynthesis occurs in the

leaf chloroplasts and involves light-dependent and light-independent biochemical reactions. The

former reactions produce O2, ATP and NADPH and are constrained by the maximum rate of

electron transport, Jmax (µmol e− m−2s−1), whereas the latter reactions use the products of the

light-dependent reactions to produce glucose from CO2, and are constrained by the maximum rate

of carboxylation, Vcmax (µmol CO2 m−2s−1).

CO2 enters the leaf through stomata, small pores on the epidermis of leaves (most abundant

on the abaxial side) whose aperture varies depending on environmental and biochemical factors.

The flux of CO2 is the product of the stomatal conductance and the concentration gradient of CO2
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between the leaf pore spaces and the atmosphere. However, the rate of carbon assimilation depends

also on the biochemical capacity of the photosynthetic system defined by Vcmax and Jmax.

Carboxylation includes the reaction of CO2 with Ribulose-1,5-Bisphosphate (RuBP), which

is catalyzed by the enzyme Ribulose-1,5-Bisphosphate Carboxylase-Oxygenase (RuBisCO); Vcmax

is the maximum rate of RuBP carboxylation. RuBP and RuBisCO are essential in the light-

independent reactions leading to the production of glucose (i.e., of the Calvin-Benson cycle) [105].

Jmax is the maximum rate of electron transport in the light-dependent reactions that limits the

supply of energy (i.e., ATP and NADPH) for carboxylation and for regeneration of RuBP in the

Calvin-Benson cycle. Therefore, both Vcmax and Jmax are critical in determining the rate of carbon

assimilation.

The biochemical model of photosynthesis of Farquhar, von Caemmerer and Berry [40], hereafter

referred to as the FvCB model, is widely employed to describe C3 and C4 photosynthesis over a

range of climates and species (see Appendix A for details about the FvCB model). Typically, Vcmax

and Jmax are estimated by fitting the FvCB model to gas-exchange measurements [120]. This has

resulted in a plethora of published values varying between species, climates and environmental

conditions [79, 95, 129, 136, 146]. Furthermore, Vcmax and Jmax also vary with depth in the canopy

[101,104], and through the season [15,98,108,142,147]. However, a general approach for describing

variable Vcmax and Jmax dependent on environmental and biochemical conditions has not been

developed. As a result, many photosynthesis models currently used in terrestrial biosphere models

(TBMs) assume constant values for Vcmax and Jmax normalized to a reference temperature (usually

25 deg.C, referenced as Vcmax25
or Jmax25

).

Here, we propose a new optimal allocation approach for C3 photosynthesis such that Vcmax and

Jmax vary with mean environmental and biochemical conditions so as to make optimal use of a

finite supply of resources (i.e., light, nitrogen and water). Optimal use is that which maximizes

the expected value of carbon assimilation over appropriate timescales (e.g., seasonal, inter-annual,

climatic).
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3.2 Approach

3.2.1 Optimality

Many optimality hypotheses describing photosynthetic responses to varying environmental con-

ditions have been proposed and studied for well over 50-years, including optimal stomatal re-

sponses [28, 81], optimal nitrogen partitioning in a canopy [21, 33, 117], optimal partitioning of

leaf level nitrogen [59], optimal leaf area indices [4], and mutually dependent (i.e., coordinated)

optimality of plant hydraulic traits (i.e., water transport) and photosynthesis [90, 111].

Here, we consider a novel optimal allocation approach for partitioning leaf-level nitrogen be-

tween the two photosynthetic sub-systems associated with light-dependent and light-independent

reactions that maximizes the expected value of assimilation, and leads to optimal values for car-

boxylation and electron transport capacities for a given light environment and mean stomatal

conductance. As opposed to previous approaches that either fix the magnitude of one of the sys-

tems at a reference temperature, or constrain the ratio of Jmax25
to Vcmax25

, this approach allows

both Vcmax and Jmax to vary in a coordinated manner.

The photosynthetic system includes a series of inter-operating sub-systems where solar energy is

used for converting atmospheric carbon and water into active and stored forms of energy [40,131].

This includes sub-systems for light harvesting and electron transport, and for the development

and maintenance of RuBisCO, critical for carboxylation. Larger values of Vcmax or Jmax represent

greater photosynthetic capacities of each sub-system, although at a cost of increased requirements

for limited resources (primarily nitrogen) [113].

Stomata adjust to environmental and biotic conditions on short time scales on the order of

minutes [62,76,124], whereas Vcmax and Jmax adjust seasonally on longer time scales [108]. Approx-

imately 2-5% of biomass proteins (e.g., RuBisCO, etc.) are turned over and regenerated daily [123],

which is approximately 100% turnover every 30 days. This is a more appropriate time scale for

assessment of adaptation of Vcmax and Jmax.

If most nitrogen resources were invested primarily in the development and maintenance of Ru-

BisCO, the leaf would have a relatively high maximum rate of carboxylation (Vcmax), but limited

resources remaining for investment in the electron transport system resulting in a relatively low
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Jmax. Under this condition, the assimilation rate will remain limited by Jmax regardless of irra-

diance level – clearly not an optimal allocation of nitrogen. Conversely, the system could have a

high value of Jmax, but no capacity for RuBP carboxylation with limited investment in RuBisCO.

An optimal allocation is likely closer to a state of co-limitation between both photosynthetic sys-

tems [132]. We posit that there exists an optimal nitrogen allocation strategy that maximizes

expected assimilation over a given time scale for Vcmax and Jmax variation. In the case of natural

vegetation, this can be approximated as a period of one month.

For a given concentration of leaf-level organic nitrogen, Norg, we define the optimal values

of Vcmax and Jmax corresponding to the optimal allocation of organic nitrogen by the following

expression,

V ∗

cmax, J
∗

max = argmax
∫

t
An(Vcmax, Jmax, gs; Θ) dt | Norg (3.1)

where An is the net rate of assimilation (gross assimilation minus leaf respiration), gs is the stomatal

conductance, and Θ is a vector of exogenous time-dependent variables including irradiance, soil

moisture, and vapor pressure. The period of integration, t, corresponds to the time scale of variation

of Vcmax and Jmax (e.g., a month). In the above expression, Norg, Vcmax and Jmax are constant for

the given t, but An, gs, and Θ vary continuously.

For a given period of integration, the values of Vcmax and Jmax that solve Eq. 3.1 also maximize

the expectation of An. Therefore, we can similarly restate the above as,

V ∗

cmax, J
∗

max = argmax

E [An(Vcmax, Jmax, gs; Θ)] | Norg (3.2)

which is analogous to,

V ∗

cmax, J
∗

max = argmax

∫

Θ
f(Θ)

An(Vcmax, Jmax, gs; Θ) dΘ| Norg (3.3)
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where f(Θ) is the joint probability density function (PDF) of variable(s) in set Θ for the given time

period t.

3.2.2 Nitrogen and Photosynthetic Capacity

Nitrogen is critical for development and maintenance of all components of the photosynthetic

system [114] and is allocated to its various components as follows, [37],

Norg = NP +NE +NR +NS +NO (3.4)

where, NP is the nitrogen invested in pigment proteins such as chlorophyll a and b, NE is nitrogen

allocated to the electron transport system including cytochrome f and coupling factor, NR is the

nitrogen allocated to RuBisCO, NS is nitrogen in soluble proteins other than RuBisCO, and NO

is additional organic leaf nitrogen not invested in photosynthetic functions such as in cell walls (all

terms in Eq. 3.4 are in units of mmol N m−2.)

In order to solve Eq.3.1 through Eq.3.3, constrained by leaf-level nitrogen, an explicit link

relating leaf nitrogen concentration to Vcmax and Jmax is required, although this does not spec-

ify any fixed relationship between nitrogen and mean/max photosynthetic capacity. Several re-

searchers have assessed these relationships for C3 species using observations, including Hikosaka

and Terashima in 1995 [58], and Evans and Poorter in 2001 [36].

Following Evans and Poorter, the non-soluble thylakoid nitrogen, equal to the sum NP +NE ,

may be estimated as [36, 149],

NP +NE = 0.079Jmax + 0.0331χ (3.5)

where Jmax is in (µmol e−)m−2 s−1, χ is the concentration of chlorophyll per unit area (µmol Chl m−2),

0.079 is in mmol N s (µmol e−)−1, and 0.0331 is in mmol N (µmol Chl)−1.

The soluble nitrogen excluding that allocated to Rubisco is,

NS = νJmax (3.6)

where ν ≈ 0.3 (mmol N s (µmol e−)−1).
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To make the connection between Vcmax and RuBisCO, we utilize relationships from Niinemets

et al. [101,103],

NR = Vcmax/(6.25× Vcr × ξ) (3.7)

where Vcmax is in µmol CO2 m
−2 s−1, Vcr is the specific activity of RuBisCO, that is, the maximum

rate of RuBP carboxylation per unit Rubisco

(≈ 20.5 µmol CO2 (g RuBisCO)−1 s−1), 6.25 is grams RuBisCO per gram nitrogen in RuBisCO,

and ξ is the mass of one millimole of nitrogen in grams equal to 0.014 gN (mmol N)−1.

Finally, the termNO is a constant of ’extra’ organic leaf nitrogen allocated to non-photosynthetic

resources.

Therefore, substituting Eqs. 3.5, 3.6, and 3.7 into Eq. 3.4, leads to,

Norg = 0.079Jmax + 0.0331χ + Vcmax/(6.25Vcrξ)

+νJmax +NO (3.8)

which directly relates leaf organic nitrogen Norg to Vcmax and Jmax.

3.2.3 Assimilation and Stomatal Control

We implement the FvCB model to determine the rate of net assimilation in Eqs.3.1 - 3.3 for a

given Vcmax and Jmax, (see Appendix A for details about the FvCB model). However, the FvCB

model does not explicitly include stomatal function regulating the internal concentration of CO2

and the supply of CO2 into the leaf. There are several models describing the relationship between

assimilation and stomatal conductance, including the Ball-Woodrow-Berry model [5] and its variant

the Leuning model [78], as well as optimality based models including the seminal work of Farquhar

and Cowan [28], and more recent adaptations of optimal stomatal control by Katul et al. [70] and

Manzoni et al. [89].

In order to determine the variations of stomatal conductance and the associated rate of assim-

ilation, we implement an optimality based approach similar to that of Manzoni et al. (2011) (see

Appendix A for the derivation of the optimal stomatal control model).
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3.3 Results

3.3.1 Optimization

A closed form analytical solution of Eq. 3.3 is not feasible, therefore we implemented a numerical

procedure as described in detail in Appendix A. The maximum expected value of assimilation is

determined by using a gridded-search in the feasible decision space of Vcmax and Jmax.

For a given Norg and distribution of irradiance, the numerical procedure leads to a decision

surface as shown in Figure 3.1. The figure shows that there exists a unique pair of carboxylation

and electron transport capacities that maximize the expected assimilation; that is, there exists an

optimal pair (V ∗
cmax, J

∗
max) that solves Eq.3.3.

Suboptimal values occur for alternate allocations of nitrogen between NP , NR, NS and NE . For

example, holding the optimal value of Jmax, while increasing allocation of nitrogen in chlorophyll

(NP ) and concurrently decreasing nitrogen in RuBisCO (NR) to maintain a constant Norg, would

decrease the expected value of assimilation. Even as the absorptance fraction (solid white lines)

increases from higher levels of Chlorophyll, the system would become increasingly carboxylation-

limited due to lower investment of nitrogen in RuBisCO. This condition is demonstrated by moving

along the dashed line, which represents constant Jmax, with lower values of Vcmax than the optimal

value in Figure 3.1.

3.3.2 Variable Leaf-Level Nitrogen

The process of finding optimal allocations was repeated for a number of leaf organic nitrogen

levels, holding all other parameters constant, resulting in an optimal response function. The optimal

Vcmax values over a typical range of observed nitrogen levels were then compared to regressed

relationships by Kattge et al. (2009) [69], who used a collection of observations from a number of

different studies and plant functional types. This comparison is shown in Figure 3.2.

For temperate broadleaf trees, shrubs and herbaceous groups, Figure 3.2 shows that the optimal

allocation approach leads to relationships between Norg and Vcmax that are nearly identical to the

relationships of Kattge et al. (2009), supporting the hypothesis that nitrogen is allocated between

various photosynthetic systems to maximize net expected assimilation.
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Figure 3.1: Photosynthetic Parameter Decision Space - Leaf level photosynthetic parameters and
the expected value of daily assimilation. White contours represent the irradiance absorptance
fraction. Optimal allocation with maximum expected assimilation marked with a small triangle.
[The graph shown corresponds to Norg = 2.7g m−2, Km = 450 µmol mol−1, and a scaled beta-
distributed irradiance with parameters: Irrmax = 1000W m−2, Irradiance density parameters:
βa = 1.2, βb = 1.5]
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Figure 3.2: Comparison of optimal Vcmax values with regressed relationships for different biomes
(Regressions from Kattge, 2009, Table 2, using just Vcmax regressions) [Km = 450 µmol mol−1,
Irrmax = 1000W m−2, βa = 1.2, βb = 1.5]

3.3.3 Variable Light Environment

Variability in the characteristics of the light environment (i.e., changes in the distribution of

irradiance) may result from seasonal effects [8], from canopy closure [142], or both.

For a given amount of Norg, the optimal allocation approach for variable irradiance levels leads

to results as those shown in Figure 3.3. Reduction of irradiance leads to a reduction in V ∗
cmax

(and an increase in the ratio J∗
max/V

∗
cmax = ω∗), representing an optimal solution with greater

investment of organic nitrogen in chlorophyll a and b for light harvesting as compared to that

invested in carboxylation systems.

The predicted pattern of change in ω∗ shown in Figure 3.3 is similar to observations in nature

[142], and is explained by the optimal allocation approach. Thus, the optimal allocation of nitrogen

between photosynthetic sub-systems also explains why the ratio of J∗
max/V

∗
cmax, (i.e., ω

∗), is com-

monly observed to equal 2.1 +/- 0.6 across a wide range of biomes and species [7,68,79,95,108,146].
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Figure 3.3: Optimal values of Vcmax and ω with variable light environment [Norg = 2.7g m−2,
Km = 450 µmol mol−1, Irrmax = variable, βa = 1.2, βb = 1.5, Rd = 0.015× Vcmax]

3.3.4 Photosynthetic Down-Regulation

During periods of low soil moisture supply (i.e., periods of moisture stress), stomata may par-

tially or fully close to prevent excessive negative leaf, shoot or root water potentials causing xylem

embolism [66, 86, 128]. Closure of stomata reduces transpiration and the flux of CO2 into the leaf

resulting in inhibited assimilation – rates below the maximum potential for well-watered capac-

ity (i.e., no moisture stress). This available but unused photosynthetic capacity incurs continued

maintenance costs from respiration and protein re-synthesis.

Rather than maintaining this unused capacity, the photosynthetic system may be down-regulated

(sometimes referred to as a non-stomatal response), resulting in a reduction of Vcmax and Jmax from

well-watered values [43]. The down-regulation process requires modification of the photosynthetic

system and potentially translocation of resources. For a given Norg, light, and temperature, re-

duction of Vcmax and Jmax from the optimum values should occur in a coordinated manner that

maximizes the assimilation at reduced photosynthetic capacity.

In terms of Vcmax and Jmax, an optimal down-regulated state is where the reduction in ex-

pected assimilation is minimum for a unit change in photosynthetic capacity (i.e., unit changes in

Vcmax, Jmax), implying a reallocation of the maximum amount of Norg to other biochemical uses.
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Figure 3.4: Most efficient non-stomatal down-regulation pathway (dashed black line) for Vcmax and
Jmax. Contours of mean stomatal conductance (white solid lines) (mol m−2s−1).

Mathematically, the optimal down-regulation path is the locus of (Vcmax, Jmax), starting from the

(V ∗
cmax, J

∗
max), satisfying the condition that the magnitude of the gradient is minimum, that is,

|∇An(Vcmax, Jmax)| = minimum.

Figure 3.4 shows the path of down-regulation on the assimilation decision surface. The optimal

down-regulation path represents a path of optimal reallocation of nitrogen – this is also an allocation

strategy that closely follows a state of co-limitation between the photosynthetic systems. Chen

et al.,(1993) proposed the Coordination Theory describing nitrogen allocation through a canopy

where photosynthetic systems are co-limited [21]. More recently, Maire et al., (2012) assessed 293

observations from 31 different species under a range of environmental conditions, and found that

under mean environmental conditions during the preceding month, RuBP carboxylation equaled

RuBP regeneration [88]. Our results further support these ideas from an optimality perspective.
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The path of down-regulation provides a direct link between the expected value of assimilation

and the optimal values of V ∗
cmax and J∗

max. Therefore, knowing the leaf-level Norg and the irradiance

density distribution, the optimal allocation resulting in the stomatal-constrained values of V ∗
cmax

and J∗
max can be found for any An lower than the maximum value. However, a relationship between

expected An (or equivalently gs) and soil moisture status is required. Generally, these relationships

can be estimated using linear-step functions similar to maximum stomatal conductance responses

[42, 127], or any other available species-specific approach.

3.3.5 Optimal Allocation Down-Regulation against Observations

The optimal down-regulation procedure postulated here was tested against reported seasonal

values of Jmax and Vcmax in a summer semi-arid environment. We utilized data reported by Xu

and Baldocchi [147], who studied an oak savanna system in California exposed to extended summer

dry periods. Their study provided detail of temperatures, vapor pressure deficits, and soil moisture

throughout the growing season. Additionally, they measured stomatal conductance and carbon

assimilation, which were used to determine the seasonally variable Vcmax and Jmax.

The study by Xu and Baldocchi represents a system whose moisture stress is slowly increased

through a season – a condition allowing photosynthetic system down-regulation compared to solely

regulating assimilation with stomatal control.

Using the reported values of total leaf nitrogen (where total leaf nitrogen is organic nitrogen

plus nitrate nitrogen), with an estimated fraction as organic nitrogen, in addition to tempera-

ture adjusted estimates of the Michaelis-Menten half-rate constant, Km, [96] and an irradiance

density distribution (assumed constant during the growing season), the down-regulation path was

determined starting from the unstressed optimum as postulated above, resulting in optimal down-

regulated values of V ∗
cmax and J∗

max at a range of stomatal conductances and expected assimilation

rates. Finally, using only the stomatal conductance values reported over the season, the correspond-

ing optimal values of V ∗
cmax and J∗

max were returned from the optimal path. Figure 3.5 compares

the resulting optimal values of V ∗
cmax and J∗

max (without any calibration) to those reported by Xu

and Baldocchi [147].

The observed seasonal variation in Vcmax and Jmax is well reproduced with the optimal down-

regulated path from the maximum value of assimilation. The peak values of Vcmax and Jmax during
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Figure 3.5: Comparison of Seasonal Co-Limited Down Regulation to Observed Data. Blue line
is a trace of the Vcmax and Jmax values at a state of co-limitation using only observed maximum
assimilation rate data. Data obtained from a study by Xu and Baldocchi, 2003 [147]. Note: these
results are uncalibrated.

leaf flushing (initial growth of leaves during the spring) is not fully captured, most likely from

increased leaf respiration not included in the model during this period. Regardless, as assimilation

and stomatal conductance become limited during the summer due to soil moisture stress, the

down-regulation of the photosynthetic system is replicated. This result further supports the idea of

optimal allocation, and demonstrates how the optimal approach can allow for a dynamic seasonal

response of photosynthetic capacity.

3.4 Summary and Concluding Remarks

We have introduced a new optimality based approach for considering leaf level partitioning of

nitrogen in various environments. Although many simplifications were made, the optimal allocation

of organic nitrogen between components of the photosynthetic systems results in photosynthetic

system capacities as well as relationships between those capacities and levels of organic nitrogen

and irradiance that replicate those observed in nature as reported in the literature.

This includes relationships between Norg and Vcmax, light environment and ω, and the response

of photosynthetic system capacity during periods of down-regulation. This approach provides a new

mechanism to incorporate dynamic responses of Vcmax and Jmax for C3 photosynthesis in TBMs.

Accurate parameterization of the photosynthetic system is paramount in coupled TBMs and

global circulation models with respect to carbon and water cycling processes, and critical to these

processes are the maximum rates of electron transport and carboxylation capacity. Assuming con-

stant values for these capacities, as is currently done (e.g., at Jmax25
and Vcmax25

), may introduce
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significant accumulated errors in the carbon and water balances over multi-decadal model projec-

tions [116]. Utilizing this optimal allocation approach addresses these variations with environment.

The optimal allocation approach allows a unique perspective into seasonal and climatic variation

of photosynthetic capacity with a finite supply of resources, and opens many avenues of research

allowing an improved understanding of vegetation dynamics in our changing climate.
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Chapter 4

An Empirical Harmonic Approach for

Climatic Leaf Area Index Phenology

Every blade in the field - Every leaf in the forest - lays down its life in its season as
beautifully as it was taken up.

– Henry David Thoreau

4.1 Introduction

Changes in climate are resulting in significant variations of the biota and flora across the planet

[141], including changes of leaf phenology [18, 112], the seasonal timing of leaf budding, growth

and senescence [23]. Changing phenology and peak leaf area index (LAI), the approximate one-

sided area of canopy leaves per unit ground area, is troublesome for estimation of canopy level

transpiration, precipitation interception, and gross primary productivity [50] over projected multi-

decadal periods in macro-scale terrerstrial biosphere models (TBMs). These variations in annual

LAI phenology are critical for understanding the long-term influence on the hydrologic cycle, gross

primary production, and carbon cycling.

Physically based approaches for predicting vegetation, sometimes referred to as mechanistic

methods, may be used to evaluate the response of vegetation cover in a changing climate. These

classes of models are called Dynamic Global Vegetation Models (DGVMs) [49, 74, 118, 122], and

require assumptions for: carbon allocation within an individual species [83], growth limitations and
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mortality, water use strategies, nutrient supplies, stress responses, and potentially accounting for

competition amongst individuals [22, 119]. Besides being highly parameterized, it is common to

assume that parameterization under past climates will remain valid in novel climates [119]. Further,

generalized land cover classes may be used in DGVMs, but either the associated phenology is static

for each class, or the relationships determining the phenology are static (e.g. specified value of

degree-days for bud burst).

An alternative approach to DGVMs is to utilize a regression approach linking vegetation to

climatic covariates. One of the earlier studies using this approach was completed by Box in 1981

[12], which concluded that, ‘general macroclimatic conditions are more important than any other

factors... in determining general ecologic structure on most sites’. This model used eight climate

variables for prediction of land cover plant growth forms, and also included limits for acceptable

ranges of growth forms.

A biome regression model was also developed by Prentice et.al. [115], where climatic covariates

included the mean coldest month temperature, annual accumulated temperature over 5◦C, and a

drought index to consider seasonality of soil moisture availability. This model was able to predict

natural vegetation with a high degree of fitness across the globe, with the intended application of

using the model to understand changes in land cover and carbon balance in a changing climate.

More recently, a regression model for phenologic response (in the form of a greenness index)

was developed by Jolly, et.al. 2005, [64] using variables of photoperiod, vapor pressure deficit,

and minimum temperatures. This model was able to accurately replicate seasonal timing of NDVI

observations, with proposed applications for projecting future climatic vegetation responses.

Clearly, a direct link between climate and vegetation cover exists that can be used for reanalysis

and prediction of vegetation responses. As resource availability changes, so does the response of

the terrestrial vegetation with respect to phenology and supportable biomass; it is theorized that

vegetation will optimally use available resources to maximize biomass but minimize the chance of

mortality. A regression of phenology (essentially a seasonal measure of biomass production) is a

regression of this optimal state of resource utilization.

The unique aspect of this chapter compared to previous studies is the linking of climate directly

to the Leaf Area Index values as a temporal (harmonic) series, allowing prediction of annual LAI

phenology - this has greater direct utility in applications for macro-scale hydrologic modeling,
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compared to estimates of NDVI or categorical regression for biomes, for example. We are specifically

interested in the change in the magnitude and timing of LAI, based solely on descriptions of the

local climate.

The growth and maintenance of vegetation biomass, which requires leaf area, involves many

complicated and interacting processes as noted, and is critical to understand in the development of

hydrologic projection models in novel climates. Although a regression approach moves away from

physical explanation of certain processes, it does allow for a more dynamic response of vegetation

accounting for latent processes currently unexplainable even through the most advanced and highly

parameterized physically based modeling systems.

A space-for-time substitution requires regression solely on climatic variables, excluding space

dependent covariates such as: soil type, elevation, latitude, etc. For the purposes of fitting param-

eters in this analysis, climate is assumed to represent the mean values of covariates over a 30-year

period. Therefore, the locations evaluated through space are considered to be responding to the

same process, but within a different climate, which allows us to evaluate new climates over time

and the potential vegetation response in the form of annual LAI phenology.

4.2 Approach

4.2.1 Harmonic Regression and Phenology

Leaf phenology is highly temporally correlated over a season creating a relatively smooth har-

monic function from leaf growth to senescence. Any temporally varying continuous process can be

fully defined by a Fourier Series.

The first order of a Fourier Series is the primary harmonic, and all sequential series are multiples

at higher frequencies of the primary harmonic. We consider a stationary series using only the

primary harmonic to estimate the seasonal phenology - this can be defined in real-dimensional

space as,

Lt = β0 + β1 × cos(2πt/T ) + β2 × sin(2πt/T ) (4.1)

where, t is the time (month and fraction, [0,12] 1), Lt is the LAI at t, T is the primary period (12

1This approximates each month as the same duration.
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months), and the β terms are scalar coefficients. This form of Eq. 4.1 meets the definition of a

linear model that can be used in a first-order linear regression - even though the response function

is a non-linear harmonic, the coefficients are linear. Further, it’s noted that the entire continuous

seasonal phenology is defined solely by the three β parameters, rather than requiring specification

of LAI by month (12 parameters), or parameterizing a mechanistic model to develop phenology

(>>12 parameters), for example.

The three β parameters, which wholly define the annual phenology, are functions of climate.

Therefore, our goal is to develop regressed relationships between climate and the set of β’s that are

used to describe the temporal sequence of annual phenology - as the climate changes, so does the

resulting annual phenology. In order to develop regressed relationships between βs and climate,

we first need to develop a set of β values using the harmonic regression model Eq.(4.1), where the

observed sequence of LAI is the response variable Lt . In other words, we need to use observations

of LAI to fit β values defining the harmonics across a wide geographic region, and then regress

those β values on the local climate at each location.

Extensive spatial and temporal data is required to develop relationships between seasonal phe-

nologic responses (described by the harmonic parameters) and the associated description of climate

at each location. We only consider locations with natural vegetation to develop relationships be-

tween phenology and climate - managed landscapes, urban areas, agricultural lands and highly

disturbed lands are not representative of natural landscape level vegetation responses to climate.

In order to only assess natural vegetation, the National Land Cover Dataset (NLCD2011) [60]

was used to filter out non-natural vegetation regions by only including large contiguous areas of

NLCD classifications of: Deciduous Forest, Evergreen Forest, Mixed Forest, Shrub/Scrub, Grass-

land/Herbaceous, and Woody Wetlands. The spatial resolution of NLCD2011 data is 30 meters,

creating regions of highly variable natural and non-natural vegetation. To eliminate these regions,

the natural land cover was up-scaled using a majority filter (ESRI, 2011) resulting in regions of

what is more likely to include natural vegetation. Finally, these large regions were converted into

a regular point-grid, resulting in 2883 points across the contiguous United States (CONUS), as

shown in Figure 4.1. These points were further filtered for outliers resulting in a dataset of 2414

points covering the CONUS.

36



Figure 4.1: Natural vegetation point locations used for LAI sampling and regression

Bi-Weekly Leaf Area Index Phenology

The Boston University Department of Earth and Environment developed a 1/12 degree resolu-

tion reanalysis of bi-weekly (two per month) LAI values for 30+ years (1980-2010)2 [151], referred

to as LAI3g. A temporal series of 30-year bi-weekly LAI values was extracted for each natural

vegetation point shown in Figure 4.1. In this case, the phenology represents a lumped average esti-

mate of LAI from remotely sensed data of the 1/12 degree region during a given two-week period,

and not a specific species or single PFT.

For each extracted LAI3g dataset, an ordinary least squares (OLS) regression was used to

estimate the three harmonic β coefficients of the leaf phenology using Eq.(4.1). This analysis was

performed using R3. As a result, spatially varying coefficients (βs) fitted to the LAI3g dataset across

the CONUS were developed. These coefficients, shown in Figure 4.2 for just the Colorado River

Basin, describe the spatially varying phenologic process, which is then regressed against climate

covariates at each location.

2http://sites.bu.edu/cliveg/datacodes/
3https://cran.r-project.org/
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Figure 4.2: Fitted Harmonic Coefficients across the Colorado River Basin

As part of exploratory data analysis, a non-parametric Mann-Kendall trend test was performed

on the extracted LAI3g data. For each location, the bi-weekly values of LAI were averaged to a

single monthly value over the period of record (for use in monthly LAI phenology regression and

easier description of monthly responses). The Mann-Kendall test results in a p-value for significance

of trend, and a τ value in set [-1,1] indicating the strength and direction of the trend. Locations

with p-values ≤ 0.05 were extracted and then displayed spatially by month, and color-shaded by

the τ value, as shown in Figure 4.3. The result is a figure showing locations and directions of LAI

trends by month across the CONUS.

As can be observed, Figure 4.3 shows significant trends in both positive and negative directions

for monthly average LAI values across the country, with significant aggregated regional trends.

Of significance, the extensive greening of the east coast in late-season months is quite apparent,

indicating a wide-spread extension of the growing season, with a similar (but less extensive) pat-

tern at the beginning of the growing season. Additionally, note the persistent year-round loss of

vegetation cover as measured by LAI in the southwest CONUS. And finally, there appears to be

a winter decrease of LAI and a fall growing season extension of LAI in Idaho and Montana; this

is significant, as it may indicate shifts from conifer evergreen species to deciduous species, as has

been observed by others [18].

This brief data exploration of trends in seasonal phenologic magnitudes also highlights the

motivation for a dynamic parameterization - across the CONUS, statistically significant shifts in

vegetation LAI are observed, and the magnitude and direction of trends also varies by time within an

annual season. For long-term hydrologic projection modeling, utilization of stationary LAI values,

or even fixed patterns of phenology, may lead to gross errors in the water balance and certainly in

the carbon balance. Utilization of methods associating expected phenology with climate allow the
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Figure 4.3: Significant Trend Locations of Average LAI by Month - Points indicate the Mann-
Kendall τ value, and Months are indexed as shown in the colorbar legend.
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vegetation to adapt dynamically over long periods of time, following the assumption that vegetation

processes will maintain an assumed optimal balance of seasonal LAI with the prevailing climate.

4.2.2 Climate Data

Climate data is required for each location where harmonic covariates were developed, which

was assembled from two different data sources: PRISM4 and Daymet5.

PRISM data is distributed at a 1-km spatial resolution across the CONUS on a monthly

timescale, but also includes published values for the 30-year average of each parameter. From this

latter long-term mean dataset, values were extracted for: annual precipitation total (ppt), mean

annual max daily temperature (tmax), mean annual min daily temperature (tmin), mean annual

daily minimum vapor pressure deficit (vpdmin), and mean annual daily maximum vapor pressure

deficit (vpdmax). Additional monthly specific parameters were assembled including the average

January minimum daily temperature (tmin01), average July maximum temperature (tmax07),

total January precipitation (ppt01), and total July precipitation (ppt07). These covariates were

selected partly from an understanding of known important factors for vegetation growth and main-

tenance, in addition to factors that explained significant variance during model development and

testing phases.

The second source of climate data was from Daymet, which was used to obtain long-term mean

annual snow water equivalent (swe), and annual mean day-light period solar irradiance (srad).

As a summary, each natural vegetation point has a temporal series of LAI phenology that was

used to regress three β parameters defining the observed phenologic process (β0, β1 and β2), in

addition to a set of climate covariates describing the long-term mean climate. Now, the phenologic

coefficients can be regressed against climate.

4.2.3 Transformations

Plots of histograms of the climate covariates indicate several that require transformation to

reduce excess skew. These include the snow water equivalent values, and the annual precipitation

totals. Secondly, the mean of each covariate was subtracted to reduce effects of multicollinearity.

4http://www.prism.oregonstate.edu/
5http://daymet.ornl.gov/
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Table 4.1: Regression Model Parameters, Descriptions and Units

Parameter Description Units

ppt Total annual precipitation mm/year
tmin Annual mean of daily min temperature ◦C
tmax Annual mean of daily max temperature ◦C
vpdmin Annual mean of minimum daily VPD hPa
vpdmax Annual mean of maximum daily VPD hPa
ppt01 Total January precipitation mm/month
ppt07 Total July precipitation mm/month
tmax07 Mean July max daily temperature ◦C
tmin01 Mean January min daily temperature ◦C
srad Annual mean shortwave radiation W/m2

swe Annual SWE (Sum of SWE on first of each month) mm
lswe1 Log of non-zero SWE mm
lppt Log of annual total precipitation mm

Transformations were also applied to the response variables (i.e. the β values) to reduce skew.

For β0, all values were positive and therefore were simply scaled by a power of 0.25. For β1 and β2,

a small number of values were positive - upon further review, many of these positive values were

located in potentially non-natural vegetation locations. Therefore, positive values were removed

allowing a 0.25 power of the negative values of β1 and β2 (i.e. powers of positive values). Additional

transformations were considered along Tukey’s Ladder of Transformations [126], including the log,

square root and the inverse root, but the quarter root resulted in the best model residual diagnostics

(Q-Q Plot).

4.2.4 Regress Harmonic Coefficients on Climate

Three separate and independent regressions of the β parameters on climate were completed

using a simple linear regression expressed as,

βk =
N
∑

i=0

αk,i × Parameterk,i (4.2)

where k is the beta parameter in integer set [0,1,2], Parameter is the independent climate covariate,

Parameterk,0∀k = 1 represents the intercept parameter, α is the regressed coefficient, and N is the

number of covariates in the regression model. The list of full model covariates is shown in Table

4.1.
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To create the most parsimonious yet explanatory model, a stepped Akaike Information Criterion

(AIC) approach was used to evaluate reduced models from the full model. This process considers

both forward and backward removal/addition of covariates and the resulting AIC value, which is

used to select a reduced model. Output for for stepped AIC model selection for the intercept β0

term (referred to in the R code as INTq) is demonstrated in the output included below.

The output shows both the Initial Model and the Final Model covariates; note the reduced set

in the Final Model, where covariates such as srad and tmin01 have been removed, for example.

The output then shows each step used to arrive at the reduced Final Model, where line ‘1’ is the

Full Model. Line ‘2’ shows the model without ppt, resulting in an increase to residual degrees of

freedom from 317 to 318, and a concurrent reduction in AIC (the goal is the minimum AIC value).

Line ‘3’ removes another covariate, tmin01, and again the AIC is checked. This process is repeated

until further removal of covariates does not result in further decrease of the AIC - this represents

a balanced model between explanation and parsimony.

Stepwise Model Path

Ana lys i s o f Deviance Table

I n i t i a l Model :

INTq ˜ ppt + tmin + tmax + vpdmin + vpdmax + ppt01 + ppt07 +

tmax07 + tmin01 + srad + swe + lswe1 + lppt

Fina l Model :

INTq ˜ tmin + tmax + vpdmin + vpdmax + ppt01 + ppt07 + swe +

lswe1 + lppt

Step Df Deviance Resid . Df Resid . Dev AIC

1 317 2.224349 −1627.878

2 − ppt 1 0.0007261522 318 2.225075 −1629.770

3 − tmin01 1 0.0019229559 319 2.226998 −1631.485
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4 − srad 1 0.0040702392 320 2.231068 −1632.880

5 − tmax07 1 0.0087938320 321 2.239862 −1633.578

Note the reduction in covariates between the Initial Model and the Final Model, only retaining

those terms resulting in the lowest AIC value (a balance between variance explained and the number

of covariate terms).

The full model only considers simple model covariates, and does not include higher powers of

covariates or interactions. A significant concern in regression, especially here for use in projection in

novel climates, is hidden extrapolation, or the consideration of data outside the regressor variable hull

(RVH). Hidden extrapolation can potentially lead to erroneous results when covariates are outside

of the available RVH support, where the extrapolation is potentially exaggerated when including

interactions and higher order terms. Refer to Section 4.3.3 for detailed review and analysis of

models and results.

With each model of regressed β parameters on climate, the expected parameters were used to

re-evaluate the expected phenology. This predicted phenology was then compared to the original

fitted LAI phenology to indicate degree of fitness. Three measures of fitness were used to assess the

predictive power of the climate-based relationships. These include a Nash-Sutcliffe (NS) measure

of efficiency [100], comparison of residuals of peak LAI, and residuals of mean LAI.

The Nash-Sutcliffe measure of efficiency, NS, is described by,

NS = 1−
N
∑

i=1

(Modi −Obsi)
2

(Obsi −Obs)2
(4.3)

where N is the number of observations, Mod is the set of model predicted values, Obs is the set

of observations, and Obs is the mean of the observation set. The NS measure of efficiency can

take values in set [−∞, 1], where 1 represents a perfect correlation between the model and the

observations.

Finally, temporal LAI sequences were developed and compared against observations over a

20-year period from 1980 to 2000. Additionally, the model was then used to predict changes in

phenology to year 2100 with Global Circulation Model (GCM) projection data as an example

application of the space-for-time substitution approach.
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4.3 Results

Results of this effort include the harmonic regression models, in addition to tests of fitness and

reanalysis.

4.3.1 Regression of Phenology Harmonics on Climate

With the collection of β terms and climate covariates for each point, a regression model for each

β term was completed. The following reduced models were determined, with coefficients shown in

Table 4.2.

β0 = α0 + α1 × tmin+ α2 × tmax+ α3 × vpdmin+ α4 × vpdmax+

α5 × ppt01 + α6 × ppt07 + α7 × swe+ α8 × lswe1 + α9 × lppt (4.4a)

β1 = α0 + α1 × ppt+ α2 × tmin+ α3 × vpdmax+ α4 × ppt01 +

α5 × tmin01 + α6 × swe+ α7 × lppt (4.4b)

β2 = α0 + α1 × ppt+ α2 × tmin+ α3 × tmax+ α4 × vpdmin+

α5 × ppt07 + α6 × tmax07 + α7 × tmin01 + α8 × swe+ α9 × lppt (4.4c)

Diagnostics A series of diagnostic tests were performed on each of the three regression models,

including checks for outliers (residual and studentized residual plots), checks for normality of resid-

uals (Q-Q plots), and checks for excessive influence on the regression (Cook’s Distance, DFFITS,

and DFBETAS). Figures of diagnostics for each β regression model are included in Appendix C.1.

Review of the diagnostics show acceptable model performances with good residuals, normality,

influence and outliers.
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Table 4.2: Summary of Regressed Model Coefficients

Coefficient β0 β1 β2

α0 8.599e-1 6.938e-1 5.835e-1
α1 -2.091e-2 -5.472e-4 -3.946e-4
α2 4.074e-2 4.163e-2 3.964e-2
α3 3.171e-2 -6.290e-3 3.034e-2
α4 -2.147e-2 1.493e-3 -3.122e-2
α5 1.206e-3 -4.278e-2 -1.658e-3
α6 1.022e-3 -7.498e-7 -3.007e-2
α7 -1.018e-6 5.157e-1 -4.461e-2
α8 1.536e-2 - -5.637e-7
α9 1.836e-1 - 6.540e-1

Model Performance Using just climate variables and the fitted β regressions, the expected

phenology was determined and compared to the phenology described by the fitted phenologic series

of randomly selected points through the modeled domain, as shown in Figure 4.4. Included on each

sample comparison is the Nash-Sutcliffe measure of efficiency. This random sample demonstrates

that over a range of LAI phenologies and climates, an acceptable phenologic response can be

achieved based solely on long-term mean climate parameters.

This figure also shows points where the phenology was over- and under-predicted, although

in the mean process, the bias of the predicted phenologic harmonics is zero. Also note locations

where the LAI decreases to zero, whereas other locations may maintain positive values of LAI

year-round. In this case, phenologic differences between conifers and deciduous species may be

captured. Clearly for any location, a mix of conifer and deciduous species may actually be present,

in addition to overstory gaps, and errors in the original development of the LAI3g dataset, but the

focus here is on the mean phenologic process of lumped canopy LAI based on climate. For these

purposes, the responses appear to be well captured, and can be summarized quantitatively with

measures of fitness over space.

For each point evaluated, three measures of fitness were determined and are shown in Figure

4.5. The first figure of this set (a) shows the Nash-Sutcliffe values over the model domain. Very

high values (where 1 is a perfect response), are shown in regions with high annual maximum LAIs,

and poorer efficiencies are shown in lower LAI regions. Although Nash-Sutcliffe can be a reasonable
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Figure 4.4: Sample Phenology of Random Location Sample
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indicator of model fitness, in regions of low variation of annual LAI, small errors produce very poor

model efficiencies, thus not providing a good indicator of fitness alone, and additional measures of

fitness should be considered.

The second figure of this set, Figure 4.5(b) is the difference of maximum LAI (Model-Original).

Here, we see a spectacular fit in regions with low LAI (where NS was showing poor values), clearly

indicating appropriate reanalysis of biomass in arid regions. Regions with higher LAI include

locations of bias for under-estimating maximum seasonal LAI values, in addition to regions that

show an over-estimation of LAI.

The third metric is the difference in mean annual LAI (Figure 4.5(c) ), which is near zero across

most of the domain indicating good fitness of the mean LAI process.

4.3.2 Projected Climate Phenology

Regressed relationships of annual phenology harmonics can also be applied to projected climate

data to estimate future phenologic conditions. Data from the Canadian GCM (CAN) and concen-

tration emission profile RCP85 was assembled for several locations in CORB. The GCM data does

not include all the required covariates for regression of annual phenology, therefore portions of the

data were obtained as direct output from model runs (VIC Model). Using this climate data and the

fit regressions, plots of the projected average phenology by month was determined. As an example,

a sample location east of the Town of Bondurant, Wyoming (Lat=43.1875, Lon=-110.1875) was

selected for detailed review.

The climate data shows a clear and steady increase in average daily minimum, maximum and

July maximum temperatures, in addition to an expected increase in annual precipitation. During

this period, the location also shows a clear steady decrease in the annual expected SWE. Using this

climate data (and other data not shown), the expected annual phenology sequence was prepared,

shown in Figure 4.8. This figure shows a clear increase in the expected peak LAI, but it is difficult

to distinguish more specific changes in the temporal sequence, whereas separating out the trend for

each month is more informative, as shown in Figure 4.9.
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Figure 4.5: Model Fitness Metrics
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Figure 4.6: Re-Analysis of Predicted LAI Phenology Compared to Observations

The phenologic response for this location in the Wyoming headwaters of the CORB, for the

CAN:RCP85 projection, is an increase in LAI across the growing season. This indicates both an

increase for Gross Primary Productivity (GPP), but also an extension of the growing season as

conditions are increasingly favorable for longer periods of time.

Conversely, for the same GCM and RCP, at an alternate location in the mountains northeast

of Roosevelt Reservoir, Arizona (Lat=33.8125, Lon=-110.9375), indicates an opposite phenologic

response. Annual climate data is shown in Figure 4.10, and the projected monthly phenology is

shown in Figure 4.11. Here, increased temperatures and vapor pressure deficits may be inhibiting

vegetation growth in spite of minimal changes in precipitation. It is also worth observing the

projection of annual SWE at this location reaching approximately zero by year 2100.

4.3.3 Multi-Colinearity and Hidden Extrapolation

In developing and fitting regression models, care should be given to both mutli-colinearity and

hidden extrapolation.
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Figure 4.7: Mean 20-Year Projected Climate Data near Bondurant, WY (CAN,RCP85)

Multi-colinearity is a dependence between the covariates (independent variables) that can lead

to expected coefficients with high standard errors (e.g. extremely sensitive coefficients). Coefficient

sensitivity and high standard error is primarily of concern for covariate explanation, but is less

of concern for prediction, which is our primary goal here. When predicting values with models

developed using partially dependent covariates, it’s important to check the location of the point

to be predicted with respect to the regressor variable hull (RVH), or the non-Euclidean space

envelope of the covariates. Projected points beyond the RVH are considered a hidden extrapolation.

Covariates outside of the RVH can potentially lead to erroneous predictions.

For low-dimensional space (e.g. 2 or 3-dimensions), location of covariates with respect to the

RVH can be evaluated graphically, but for higher dimensional space, this is infeasible. Instead,

the hat-values of the covariate set (h0), a measure of the distance from the mean of the covariate

set, also referred to as leverage, may be checked against the maximum hat value of the regression

(hmax). If h0 > hmax, then the point is extreme and may be considered an extrapolated regression

outside of the RVH. Large hat-values beyond the RVH are questionable and should be evaluated

carefully [75].
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Figure 4.8: Leaf Area Index Projections near Bondurant, WY (CAN,RCP85)

Hat-values are the diagonal values of hat-matrix, which is,

H = X(X ′X)−1X ′ (4.5)

where X is the covariate matrix (and X ′ is the transpose of X). For the given set of support, each

point has a unique hat-value. The maximum hat-value is then defined as hmax.

An individual hat-value (h0) for a given set of covariates (X0), is,

h0 = X ′

0(X
′X)−1X0 (4.6)

Therefore, for any extreme or potentially unique covariates, we can consider the location of the point

and estimate if it is a hidden extrapolation. Unfortunately, considering we are moving into novel

climates, it is virtually impossible to avoid hidden extrapolation - observations of the vegetation

response to future climates are not available. Instead, to consider the magnitude and frequency for

potential hidden extrapolation through the study domain, we determined the hat-values (h0) for

each year for 2000 randomly selected points in the domain - for 114 modeled years (the first year

is not included), this results in 228,000 hat-values for each of the three regressions.

Histograms for each of the regressions are shown in Figure 4.12, and summaries of the results

are in Table 4.3.
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Figure 4.9: Predicted Leaf Area Indices by Month near Bondurant, WY (CAN,RCP85)
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Figure 4.10: Mean 20-Year Projected Climate Data near Roosevelt Reservoir, AZ (CAN,RCP85)

Table 4.3: Summary of Hat-Values

Model hmax % > hmax

β0 0.228 19.8
β1 0.206 9.2
β2 0.226 10.0

The CAN:RCP85 model was selected, as it represents a model with extreme set of predicted

covariates to year 2100, and thus may be considered near the upper end of potential expected hidden

extrapolation. The percent of hidden extrapolation trials varies between each of the models, as they

use different subsets of selected covariates. The regression for β0 has over 80% of the projected

climate covariates within the RVH, whereas β1 and β2 are within the RVH for more than 90%

of the projected covariates. Preventing hidden extrapolations is impossible without reducing the

explanatory power of the model by reducing the number of covariates. Instead, results were carefully

reviewed to determine if any hidden extrapolations resulted in extreme or abnormal behavior.

Further, utilization of a linear model, without interactions and higher order terms, helps to prevent

extreme results at extrapolated points.

This method is not exhaustive in checking for hidden extrapolation and extreme responses, but

certainly increases confidence that that regression models are appropriate for applications in novel

conditions, even when evaluating potential values beyond the support. Through model checking of
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Figure 4.11: Predicted Leaf Area Indices by Month near Roosevelt Reservoir, AZ (CAN,RCP85)
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Figure 4.12: Histogram of Hat-Values in Projected Climate to Year 2100

predicted parameters and review of the magnitude of extrapolation (i.e. h0), the model is considered

acceptable for applications of phenologic prediction.

4.4 Discussion and Conclusions

Observational data in many different forms are indicating rapid changes in vegetation with

respect to species composition and diversity, density, health, and the seasonal phenology of leaf

flushing, magnitudes of LAI, and senescence [51]. Vegetation cover has a direct effect on the water

and energy balance of the land surface, and thus accurate estimates of how vegetation cover changes

in our changing climate are essential.

Mechanistic DGVMs may be used to estimate vegetation cover, which can perform well, but

are highly parameterized and may not fully capture the complicated processes over time in new

climates, especially with fixed physiologic process definitions. Further, incorporation of DGVMs

in macro-scale hydrologic models over large spatial domains covering many different climates is

subject to great uncertainty in model parameterization. An alternative approach is to consider

regression of natural vegetation responses, in the form of a temporal sequence of annual LAI values

based solely on climate, assuming these responses are following an optimal but latent process. Our

approach performs a space-for-time substitution such that vegetation parameterization is dynamic,

accounting for these latent processes difficult to capture using mechanistic models, which can then

be used for projection modeling.
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Here, we describe the temporal pattern of seasonal LAI using a primary harmonic parameterized

by three coefficients that are based on estimates of the local climate. A harmonic model is linear

in the coefficients, and thus a simple linear regression was used to estimate phenologic coefficients

across the Colorado River Basin using a set of bi-weekly LAI estimates over a 30-year period. These

harmonic coefficients were then regressed against the local climate to create climate dependent

relationships. As these relationships were developed solely using climate data, they may be used

in a space-for-time substitution to estimate future responses of vegetation phenologic patterns in a

changing climate.

A reanalysis of observed LAI data (LAI3g) was completed by comparing the predicted pheno-

logic parameters to the observed response over a 20-year period in four different climates. This

reanalysis showed a high degree of skill for replicating the magnitude and timing of phenologic

sequences using only local climate as the independent data.

Reanalysis shows some regions of over and under-estimation of peak annual LAI, but the mean

process was well captured. The models also present high values of Nash-Sutcliffe efficiency (NS)

for regions of moderate to high LAI, but regions with low annual LAI variability indicated poor

values of NS. This does not necessarily indicate poor performance, but is rather a statement of

appropriateness of NS for use with small LAI magnitudes and minimal temporal variation. In this

case, comparison of the difference of maximum annual and mean annual LAI are more indicative

of model fitness. It was determined that the model was able to sufficiently replicate LAI phenology

using climate-based relationships.

For novel climates to year 2100, it was determined the regression relationships had acceptable

hat-values (i.e. within the RVH) for at least 80% of the projected annual climate series. Through

testing of various locations, it was also observed that even extreme hat-values did not result in an

erratic regressed response.

Description of the seasonal phenology using three parameters in a Fourier Series primary har-

monic is a reasonable approximation for reduction of parameter space, and allows easy regression

against climate. Significant improvements in the model fitness are possible by including spatial co-

variates, such as soils, aspect, latitude, elevation, etc., but this would violate the approach needed

when applying these relationships in a space-for-time substitution model. Regardless, additional

or alternative covariates to those used in this study could be used to improve model fitness.
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As an example, better descriptions of the solar environment, possibly describing growing and

dormant season conditions rather than a single annual value, may be helpful. Similarly, seasonal

patterns of vapor pressure deficits rather than annual min and max values, or additional means of

accounting for seasonal precipitation distribution, could explain further variance in the phenologic

response.

This regression model was also developed specifically for the Colorado River Basin, and should

not be applied to regions beyond this domain. However, comparison of regressed relationships

between different regions could be quite interesting showing similar (or diverging) patterns in

predicted harmonic coefficients.

Until mechanistic processes are sufficiently developed to efficiently describe vegetation responses

to climate for applications in macro-scale modeling, a regression based approach is ideal to allow

dynamic vegetation phenology in macro-scale modeling applications.
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Chapter 5

Vegetation Dynamics in Macro-Scale

Hydrologic Modeling Applications

Look at a plant in the midst of its range, why does it not double or quadruple its numbers?
We know that it can perfectly well withstand a little more heat or cold, dampness or
dryness, for elsewhere it ranges into slightly hotter or colder, damper or drier districts.
In this case we can clearly see that if we wished in imagination to give the plant the power
of increasing in number, we should have to give it some advantage over its competitors,
or over the animals which preyed on it. On the confines of its geographical range, a
change of constitution with respect to climate would clearly be an advantage to our
plant; but we have reason to believe that only a few plants or animals range so far, that
they are destroyed by the rigour of the climate alone.

– Charles Darwin, On the Origin of Species

5.1 Introduction

Terrestrial Biosphere Models (TBMs) are used to study the interaction and response of the

land surface energy and water balance to climatic and meteorologic forcings, including the inter-

action and feedbacks from vegetation. Global Circulation Models (GCMs) model the land surface

responses, including reflection of solar energy, atmospheric carbon assimilation and release of water

vapor into the atmosphere, to predict climatic changes. Conversely, the land surface vegetation

cover responds to the climate, creating a dynamic system of feedbacks and responses. Here, we

are focused on evaluating the latter of these processes, considering how vegetation is changing with

climate, and how these changes may affect land surface hydrologic responses [13].
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Earth’s climate is rapidly changing with respect to temperatures, atmospheric CO2 concentra-

tions, and patterns of precipitation. These changes are resulting in actively observed responses of

vegetation cover, properties and mortality rates [1,14,22,134,137,139,140,150], although methods

to efficiently include vegetation dynamics in macro-scale TBMs are still evolving. Many methods

are either excessively simple and ignore certain dynamics, or excessively parameterized limiting

their interpretability and utility. Regardless, inclusion of dynamic vegetation responses in TBMs

is critical when using climate projection models for estimating future hydrologic responses.

Here, we discuss the implementation of several optimality theories within a TBM, including

a) an optimal stomatal control model, b) an optimal photosynthetic resource allocation model,

and c) a climate-based leaf-area phenologic harmonic regression model. Inclusion of these theories

and approaches within a TBM requires many assumptions to make the modeling system viable for

application in a continuous simulation model.

With a developed model, we then consider the model performance at a range of temporal and

spatial scales. We start by considering model performance for transpiration (as part of modeled

evapotranspiration) against observations, while concurrently comparing against another modeling

system. Secondly, we look at model responses using future GCM projection data, and compare the

dynamic response to a static vegetation parameterization by evaluating separate components of

the hydrologic system. For example, we evaluate canopy transpiration, evaporation, soil moisture,

runoff and baseflow separately, rather than as an aggregated response. This highlights the potential

significant differences in each component of the hydrologic cycle in response to vegetation differ-

ences. Finally, we consider the Colorado River Basin, and evaluate spatial and temporal differences

in subcatchment-scale mean decadal yields between a static and dynamic vegetation model. Again,

this highlights the potential error in macro-scale models if vegetation dynamics are not included in

climate projection modeling.

Implementation of these systems was completed by modifying source code based on VIC 4.1.2M

[80] 6, resulting in a new multi-layered dynamic vegetation system referred to as VIC-VEO, where

VEO refers to the VEgetal Optimality theories employed. It is worth noting that since the orig-

inal inception of this model, researchers have released VIC-4.27, which includes a multi-layered

6http://www.hydro.washington.edu/Lettenmaier/Models/VIC/index-old.shtml
7https://vic.readthedocs.org/en/vic.4.2.c/
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canopy model and an explicit assimilation model. This latter release model is used for the basis of

comparisons with VIC-VEO, rather than comparing to the original base-model of VIC 4.1.2M.

5.2 Optimal Stomatal Control

Key to understanding canopy level transpiration is proper estimation of leaf-level stomatal

conductance, or the aperture that allows CO2 to enter the leaf, and concurrently results in H2O

vapor leaving the leaf. The aperture adjusts in response to light, temperature, vapor pressure

deficit and other exogenous and endogenous variables. TBMs require a method to determine an

appropriate stomatal conductance in response to these environmental conditions.

There are several existing models for estimating stomatal function in TBMs; one of the earliest

and still widely applied models is the Jarvis model [62], which included five empirical adjustment

functions to a specified minimum stomatal resistance (resistance is the inverse of conductance).

Alternatively, another popular empirical approach is the Ball-Woodrow-Berry model [5] or it’s

variants such as the Leuning model [78], to determine stomatal conductance. Parameterization

of these models is generally based on either fitted data to observations, or estimates based on

generalized classes from collections of observations. Although, as noted recently by Belinda Medlyn,

”...because these stomatal conductance models are empirical, their parameters have no

meaning attached. Consequently, there is little understanding of how the parameters

vary with species or acclimate to changes in climate, and many models simply assume

the parameters are constant for all C3 species... A successful theoretical model of

stomatal behaviors is a priority for vegetation modelers because it would provide a

synthetic framework for research into acclimation adaptation of carbon-water coupling

in terrestrial ecosystems.” [97]

Alternative to empirical models is an optimal stomatal conductance approach that can be em-

ployed to reduce the required parameterization with more meaningful and explainable parameters.
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5.2.1 Optimal Stomatal Conductance and Assimilation Model

Optimal stomatal control assumes that stomata operate to maximize (or minimize) some ob-

jective function over time, although the objective function and timescale vary between different

theories [2, 3, 26–28, 32, 52, 56, 90, 94]. Ideas of optimal stomatal control (and optimal vegetation

responses, in general) have been studied for well over 50-years. An optimal control approach has the

advantage of allowing certain parameters to become emergent outcomes, rather than an unknown

fitted or empirical parameter [93].

Cowan and Farquhar [28] pioneered early ideas of optimal stomatal control still employed today

by utilizing the calculus of variations to solve a constrained maximization problem. This is generally

cast as8,

∂An

∂gs
− λ

∂Et

∂gs
= 0 (5.1)

where An is the net rate of leaf-level assimilation, gs is the leaf stomatal conductance, and Et is the

leaf-level transpiration rate. The coefficient λ is referred to as the marginal water use efficiency,

and is a Lagrange multiplier. This approach maximizes the integrated assimilation (the benefit) for

a given amount of transpired volume (the constraint or cost) over the period of integration. Refer

to Chapter 2 for a detailed discussion and derivation of this optimal condition.

The rate of carbon assimilation (An) in Eq. (5.1) can be determined using the Farquhar, von

Caemmerer and Berry biochemical model of photosynthesis [40], referred to as the FvCB model.

Additionally, a simple Fickian diffusive approach can be used to estimate the rate of transpiration

(Et). Solution of this partial differential equation, using a linearized form of the assimilation

function (refer to Appendix A) [89], leads to a closed form solution for optimal stomatal conductance

(gs), given as,

gs =

√

k(kCa − kΓ∗ −Rd)

λaD
− k (5.2)

where k is the carboxylation efficiency, Ca is the atmospheric CO2 concentration, D is the vapor

pressure deficit, and Rd is the rate of mitochondrial respiration. This equation represents a lin-

8This is a modification of the original formulation that was stated as a minimization problem, ∂Et − λ∂An = 0.
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earized assimilation model resulting in an optimal stomatal conductance (gs), for a given set of

environmental and physiological conditions, and a given marginal water use efficiency, λ.

Following the FvCB model, the carboxylation efficiency k is determined from the most limiting

photosynthetic process - photosynthesis is either limited by the rate of carboxylation, or the rate of

electron transport9. Carboxylation is the rate of CO2 binding to RuBP with the enzyme RuBisCO

as part of the Calvin-Benson cycle, resulting in glucose as stored energy. For the second potentially

limiting system, electron transport is the rate of photon supply and processing available for var-

ious photosystem processes, including the regeneration of RuBP, which is essential for continued

operation of the Calvin-Benson cycle. The carboxylation efficiency (k) in the linearized model can

be defined using general notation as,

k = a1/(rCa + a2) (5.3)

where a1 is equal to either Vcmax or J/4, and a2 is equal to either Km or 2Γ∗, for carboxylation

or electron transport limited systems, respectively. Here, Vcmax is the maximum rate of carboxy-

lation, J is the electron transport rate (a function of Jmax, the irradiance at the leaf surface and

Photosystem-II absorptance capacity of the leaf), Km is the Michaelis-Menten half rate capacity,

Γ∗ is the CO2 compensation point in the absence of mitochondrial respiration, r is a near-constant

ratio of internal leaf (Ci) to ambient atmospheric (Ca) CO2 concentrations [148]. Refer to Appendix

A for further details of the Γ∗, Rd, D, Km, and r parameters.

Two remaining key parameters of this model are Vcmax and Jmax, the maximum rate of car-

boxylation (µmoles CO2 m−2s−1) and maximum rate of electron transport (µmoles e− m−2s−1).

These rates determine the level of assimilation under a given set of environmental conditions, which

are key to determine the stomatal conductance and rate of transpiration.

Typically Vcmax and Jmax are fixed values for a given plant functional type or biome region

[116], and are defined by selecting a value from published literature [146] or fitted to gas exchange

measurements [120]. Unfortunately, the values of Vcmax and Jmax vary significantly between species,

9This does not include a third potential limitation, triose-phosphate utilization (TPU), which generally only occurs
during extreme conditions.
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within species, with age, within a season, from water stress, and even within a single canopy at

any time, making reliable parameterization difficult. Later, we discuss how these parameters can

be estimated using an optimal allocation approach.

Leaf kinetics are also highly temperature dependent - therefore, temperature response functions

are needed to adjust parameters from some given value at a reference temperature.

5.2.2 Temperature Response Functions

Typically, estimates of kinetic parameters are made at a reference temperature of 25◦C, referred

to as Vcmax25
or Kc25 , for example, which are then adjusted from this reference temperature based

on the current leaf temperature. The photosynthetic capacities of each system are highly sensitive

to leaf temperature, thus the capacity of each system needs to be adjusted accordingly.

Here we utilize two separate temperature response functions: the Arrhenius and the Peaked

Arrhenius function [63]. The former utilizes a monotonically increasing relationship between some

parameter and temperature, whereas the latter assumes a peaked function at some temperature,

with decreasing capacity with further temperature increase.

The Arrhenius and Peaked Arrhenius models are described by Medlyn and Bernacchi [10, 96].

In the former, increases in temperature increase the kinetic constants monotonically, whereas in

the latter form, eventually a sufficiently high temperature results in a decrease of the kinetic value,

possibly from protein denaturing, for example [105].

The simple monotonically increasing Arrhenius form is described as,

f(Tk) = k25exp

[

(Tk − 298)Ea

298RTk

]

(5.4)

where k25 is the parameter of interest at a reference temperature of 25◦C, Tk is the temperature in

Kelvin, and R is the universal gas constant (8.314J mol−1K−1).
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Alternatively, the peaked Arrhenius model is given as,

f(Tk) = kopt
Hdexp(

Ha(Tk−Topt)
TkRTopt

)

Hd −Ha(1− exp(
Hd(Tk−Topt

TkRTopt
))

(5.5)

where,

Topt =
Hd

∆S −Rln[ Ha

Hd−Ha ]
(5.6)

Parameterization of the Peaked Arrhenius model includes the activation energy (Ha), the de-

activation energy (Hd), the entropy (S), in addition to simply providing an estimate of the leaf

temperature [131]. Although this process is well defined and can be fit to observed data, implemen-

tation within a broader general TBM over a range of climates is extremely difficult. The kinetic

properties for temperature response vary between species, but also acclimate within species depen-

dent on growth conditions [68] making estimation and parameterization of these terms for general

applications challenging. Further, the system includes a series of feedbacks between leaf tempera-

ture and kinetics - growth conditions affect the kinetic temperature response function, which in-turn

affects stomatal conductance and transpiration, and transpiration affects leaf temperature through

transfer of latent heat. Separating these effects for application in a generalized PFT based big-leaf

macro-scale TBM is likely impossible.

To solve this problem, we assume a) a generalized set of static kinetic properties, and b) leaf

temperatures equivalent to air temperatures ignoring latent cooling or increased temperatures from

absorbed solar energy. Kinetic constants follow those utilized by Medlyn et. al. [96], and Bernacchi

et.al. [10].

5.2.3 Marginal Water Use Efficiency

The optimal stomatal control model requires an estimate of the marginal water use efficiency

(λ). Although typically thought of as an empirical parameter, it instead is directly related to the

total depth of transpiration for a given set of environmental conditions over the period of integration

(Chapter 2). Manzoni et.al. [89] proposed an exponential decay of λ from some maximum well-

watered value, referred to as λ0. This reduction in stomatal conductance is similar to the originally

postulated approach by Jarvis [62], a more recent approach using a logistic function [127], and even
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an exponential abscisic acid response [55]. In all cases, an estimated decrease in stomatal function

due to water stressed conditions is required; here, we utilize Manzoni et.al.’s approach described

as,

λ = λ0exp(−βΨL) (5.7)

where β is a coefficient of the leaf water potential, ΨL (MPa).

Without explicit knowledge of the leaf water potential (which varies with canopy height, stom-

atal conductance, transpiration rate, and root-leaf conductance), we can approximate the leaf water

potential ΨL from the soil water potential, ΨS [55]. Although we know that ΨL < ΨS , even under

low transpiration rates, this assumption can provide a reasonable estimation of leaf water potential

adjusted for variable soil moisture status.

The soil water potential Ψs (MPa) is determined as a function of the pore size distribution

index (m) and the degree of saturation (s0) [35].

ΨS = −Ψ1s
−1/m
0 (5.8)

5.2.4 Light Environment

Light in the canopy is attenuated based on a simple reduction of the above-canopy irradiance

following Beer’s extinction law for a homogeneous media [130], given as,

Irr = Irr0exp(−KL × Lc) (5.9)

where Irr0 is the irradiance at the top of the canopy, KL is a light attenuation factor dependent

on leaf angle, shape and density, Lc is the cumulative leaf area index above a given layer of leaf

(e.g. the top leaf layer of a canopy has Lc = 0), and Irr is the reduced irradiance10.

The value of irradiance (Irr) is required to determine the rate of electron transport J .

10A simple estimate of KL = 0.8 has been utilized for all classes, which approximates slightly non-horizontal leaves
and/or clumping [65], although the VIC-VEO vegetation library allows adjustment of this parameter by PFT
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5.3 Optimal Monthly Resource Allocation

Stomata adjust rapidly to changing environmental conditions, whereas the photosynthetic sys-

tem capacity adjusts at much slower timescales [108]. An increase or reduction of photosynthetic

capacity is expressed by the maximum rate of carboxylation (Vcmax) and electron transport (Jmax)

when using the FvCB model, due to water stress [135,147], light environment [8,36,57,58,142], or

nutrient supplies [27,38]. A common practice in current TBM modeling is to utilize a fixed photo-

synthetic capacity parameterization by biome or PFT class [116], but this static parameterization

doesn’t allow for variation of a single PFT within different climates, or for a PFT to adjust parame-

terization as environmental conditions change. Here, we implement the optimal allocation approach

for estimation of photosynthetic system capacities in response to environmental conditions.

The optimal allocation approach considers a fixed amount of available nitrogen, and determines

how the nitrogen should be allocated between Vcmax, Jmax and Chl (the latter resulting in a certain

absorptance efficiency, α) such that the expected assimilation rate is maximized. For modeling

applications in TBMs, an appropriate timescale is one month; kinetics are constantly adapting, but

a month allows sufficient time for protein development and re-generation (if needed), or nutrient

translocation [88,123,136].

Further, the determination of optimal allocation is performed for all leaf layers such that capac-

ity of the photosynthetic system changes with depth in the canopy [30,104,144]. Here, we consider

integer levels of leaf area, with any fractions of LAI evaluated as a ratio of the full rounded up

integer LAI level. Not only is this process repeated through the canopy depth, but also for each

vegetation class at the start any month.

5.3.1 Maximize Expected Assimilation Rate

The optimal allocation model has been developed to find the constrained values that maximize

the expected assimilation rate using the optimal assimilation model previously discussed. Derivation

of the maximum expected assimilation rate is not included here (refer to Chapter 3), but rather

discussion is focused on how it has been implemented within the TBM modeling framework. When

each leaf layer is allocated optimally, we then also know that the total canopy expected assimilation

rate is optimal. The expected assimilation rate is based on mean conditions from the previous
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month, thus allowing changes in light environment, vapor pressure deficits, temperatures, etc. to

affect how resources for photosynthesis are allocated.

Mean air temperature and vapor pressure deficit are simply estimated as the mean from the

previous 30-day period. The maximum value of irradiance (Irrmax) is found as the maximum value

of the previous 30-day period, and is used in the scaled irradiance distribution function (refer to

Appendix B.1.1).

Although the maximum leaf-level nitrogen concentration is specified by PFT, these concen-

trations are not reached at lower canopy levels shaded by upper leaf layers. To account for this

variation in nitrogen with depth in the canopy, we implement a limitation following the marginal

nitrogen use efficiency, discussed next.

5.3.2 Marginal Nitrogen Use Efficiency

Each vegetation class is given a typical expected maximum organic nitrogen concentration

(gN m−2) based on available literature [67, 109, 145]. This is an expected upper limit of the

concentration, but it is well known that concentrations decay exponentially with canopy depth

[33, 104]. Therefore, rather than incorrectly assuming a constant nitrogen concentration by unit

leaf area through the canopy, the marginal nitrogen use efficiency is determined [41]. A simple

finite difference can be used to estimate the marginal nitrogen use efficiency,

η =
∂An

∂N
≈

Ani
−Ani−1

Ni −Ni−1
(5.10)

where Ani
is the assimilation rate at an upper canopy layer i, and Ani−1

is the assimilation rate

one layer lower in the canopy. Similarly, Ni and Ni−1 are the leaf-level nitrogen concentrations

per unit area at the respective layers. In an optimal canopy, the value of η will be constant with

canopy depth as determined using a calculus of variations approach [17].

We utilize this approach to determine the decrease in nitrogen with canopy depth as the light

environment changes (refer to Chapter 3). Through incremental increases in nitrogen concentration,

and determining the optimal expected assimilation rate for that level of nitrogen, Eq. 5.10 can be

used to estimate the marginal nitrogen use efficiency. As nitrogen levels increase, the efficiency

continues to decrease, until it reaches or falls below the specified threshold of η.
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With a means of finding the assimilation rate given a set of expected environmental conditions

and light distributions, the allocation that maximizes the expected assimilation for each leaf-layer

can be determined using a numerical solution procedure.

5.3.3 Particle Swarm Optimization

Solving the optimal resource allocation problem resulting in the maximum expected assimilation

is found by integrating over the irradiance distribution, but a closed form analytical solution to

this problem does not exist, therefore, a numerical solution procedure is required. Particle Swarm

Optimization (PSO) is a heuristic approach utilizing a population of individuals searching the

decision space for an optimal solution, where the ‘flock’ can ‘communicate’ and direct optimal

search directions [72]. For this application, the decision space is the set of constrained resource

allocations resulting in photosynthetic capacities described by Vcmax and Jmax (refer to Chapter

3). Fortunately, this decision space is a simple convex surface, thus convergence near the global

optimum is certain.

For this study, a population of ten particles was used to search the decision space. Each of the

particles is moved according to the PSO algorithm limited by a maximum step length [24] until

one of two stopping criteria is met: either the number of iterations exceeds seven (a limit found

acceptable during testing phases), or the average of the sum-squared-errors from the average value

is than 0.05 (i.e. the population is clustered around the same point). The number of points, the

maximum step length (also referred to as a ‘velocity’), and the stopping criteria, were all tested

iteratively to find an acceptable response for a variety of decision space surfaces.

For each iteration in the PSO process, for each of the particles, for every leaf layer, and each

plant functional type, the expected assimilation value is determined. Although computationally

expensive, the process has been streamlined in the VIC-VEO code, and only occurs at the start

of any month, helping to limit computational burden. Completion of these processes continuously,

rather than on a monthly basis, would be exceptionally limiting computationally. Further details

are discussed in Chapter 3 and in Appendix B.2.

In addition to varying photosynthetic capacities by month, the leaf area index follows a monthly

step-function using a harmonic phenologic regression, which is completed at the start of every new

calendar year.
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5.4 Annual Leaf Area Index Phenology

Leaf area plays a significant role in TBMs greatly affecting the energy and water balance through

interception, boundary layer roughness and the transpiration of soil moisture, among other processes

[11]. Even at macro-hydrologic scales, appropriate description of the leaf canopy area is critical

for description and prediction of long-term energy and water balances. Additionally, leaf area and

the associated carbon assimilation is of paramount importance for estimating the global carbon

balance between sources and sinks [94].

Climatic regression considers a description of the climate (e.g. temperatures, precipitation

amounts, seasonal patterns, solar environment, etc., over multiple decades), which is used to es-

timate the vegetation cover. Categorical approaches use climatic covariates to describe the type

of expected land cover, such as deciduous forest, grassland, conifer evergreen, etc., but this does

not make any statement regarding the LAI magnitude and phenology [12]. Categorical approaches

could be used to describe the type of land cover, but utilize inappropriate fixed relationships for

LAI phenology within each category. For this study, we utilize an approach that fits a harmonic

model based on climate (Chapter 4), which allows a dynamic response in leaf area magnitudes and

phenology as climate changes. A regression approach accounts for many unaccounted and latent

processes in LAI responses not captured in more complex DGVMs.

The annual leaf area phenology is determined here using a regression approach, which assumes a

big-leaf multi-layered canopy scheme. Clearly canopies have widely variable leaf area densities, but

for macro-scale applications, it can be generalized as a simpler multi-layer big-leaf process [30]. The

annual phenology is determined at the start of any model year, and specifies a monthly variation

using a step-wise function; each month has a uniform total big-leaf area that adjusts as a step at

the start of the proceeding month.

The phenologic regression model employed here uses climate parameters which are described

using a 20-year pulled rolling average. Monthly parameters (e.g. mean July daily maximum

temperature) considers only data from July months over this past 20-year period, for example.

Natural disturbances such as wind-throw or forest fires are not included in this model; it only

considers mean expected vegetation leaf area phenology.
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5.5 Model Implementation

Implementation of these various processes into a macro-scale eco-hydrologic model requires the

development of an algorithm which includes many interrelated and dependent steps. To best outline

this process, the major components of this system are outlined in a process line diagram in Figure

5.1, which shows the relationship of each step in the solution procedure. Major components can be

summarized as,

Annual Phenology Climate defined by a 20-year rolling mean period is used to estimate

the leaf area index phenology of the general vegetation cover using a regression approach, as

discussed in detail in Chapter 4. This process is called at the start of any new calendar year,

and determines monthly phenology for the coming year, based on the previous climate period.

Monthly Photosynthetic Capacity At the start of each month, the previous month con-

ditions including light, water availability, and temperatures, are used to determine an optimal

allocation of available nitrogen. This was discussed in detail in Chapter 3, and is completed for

each discrete canopy layer.

Particle Swarm For a single layer in the the canopy, a given set of environmental conditions

and a specified maximum nitrogen concentration, the optimal solution is determined through a

numerical Particle Swarm solution procedure. Details of this process are discussed in Appendix

B.2.

Expected Assimilation This process is repeated using a distribution of irradiance which

is used to determine the expected assimilation rate, where the optimal allocation maximizes

this expected assimilation rather than any given individual rate. Photosynthetic assimilation

includes many steps, which have been discussed in detail in Chapter 3 and Appendix A.

Temperature Normalization Optimal allocation is temperature sensitive; once optimal pa-

rameters have been found, they are normalized to a common industry standard temperature of

25◦C.

The phenology for the year is updated at the start of each new modeling calendar year using

the pulled moving average conditions of the previous 20-years. This determines the leaf area index,
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Figure 5.1: VIC-VEO Process Line Diagram
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rounded up to the next whole integer, where the optimal allocation of resources to photosynthetic

systems is determined. Again, capacity is limited through canopy depth using the marginal ni-

trogen use efficiency approach. Determination of optimal allocation for each layer is completed

by iteratively searching the decision space using Particle Swarm Optimization. For each test of

resource allocation, the expected value of assimilation is found by iterating over discrete levels of

the irradiance density distribution, where assimilation is found at each increment using the FvCB

model of photosynthesis and the optimal stomatal control model. Parameters are adjusted based

on soil moisture status, light environment and temperature. Once the optimal allocation is found

for each layer, it is held constant for the reference temperature for the month, and the process is

repeated at the start of the next month, allowing a dynamic response of the photosynthetic system.

5.6 Evapotranspiration Model Verification

Several different tests were completed to evaluate the performance of the VIC-VEO optimal

stomatal responses by comparing modeled evapotranspiration (ET) fluxes to a) ET observations

and b) calculated ET from the most recent VIC release.

Transpiration is the process of water vapor moving from leaf internal mesophyll pore spaces

into the atmosphere, primarily through stomatal pores. Long-term large-scale measurements of

transpiration at the leaf or canopy level are not available for assessment of model fitness. Although,

as a surrogate, aggregated long-term canopy level measurements of ET are available from Fluxnet

towers11. Evapotranspiration includes processes of evaporation from soil and vegetation surfaces,

in addition to transpiration, creating a source identifiability issue.

Therefore, as a measure of model performance, we compare hourly observations from Fluxnet

data to total hourly ET calculated from VIC-VEO. As a secondary evaluation, the results are

also compared to the hourly integrated ET from the most recent release of VIC-4.2. The latter

also includes a multi-layered canopy model, but uses the ubiquitous Jarvis model of stomatal

resistance. Identical sets of forcing variables are used for the VIC-VEO and the VIC-4.2 models,

11http://fluxnet.ornl.gov/
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thereby processes of snow accumulation, melt, precipitation interception, surface evaporation, soil

evaporation, etc. are nearly identical, and any differences of modeled ET can be attributed wholly

to stomatal function and the estimated rate of transpiration.

Note, for these performance tests, a fixed monthly phenology of leaf area index and resource

allocation was used to create an equal comparison for evaluation of the influence of stomatal model

differences on ET.

5.6.1 Study Sites

Six Fluxnet locations from diverse biomes across the United States were selected to compare

calculated ET to observed data. Available data was downloaded, although available years and

durations differered between sites. Original Fluxnet data is available in 30-minute increments; this

information was aggregated to create hourly averaged datasets, matching the output timestep from

the VIC models.

The six study sites included:

Tablelands, NM - A Pinyon-Juniper arid scrubland

Willow, WI - A northern Wisconsin deciduous site

Mary’s River, OR - A closed canopy evergreen fir site

Sandhills, NE - Open grasslands with excessively drained soils

Duke, NC - Mixed evergreen and deciduous canopy

Howland, ME - An evergreen dominated location in central Maine

Fluxnet towers report the latent heat flux in W m−2, which can approximate the ET rate in

mm hr−1 using,

Flux(mm hr−1) = Flux(W m−2)× 0.00147 (5.11)

This allows direct comparison of the Ameriflux ET rates to the VIC-VEO (or VIC4.2) output for

calculation of various fitness functions.

Environmental forcing data for each site was created using Daymet data, which provided daily

precipitation, and daily minimum and maximum temperatures. Wind was assumed a constant for
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each site due to limited data availability. The model duration evaluated for each site varied based

on local site data availability, but included a minimum three contiguous years of model time.

The Nash-Sutcliffe (NS) measure of efficiency was used to describe the model fitness for total

evapotranspiration [100] using hourly data. Evapotranspiration follows a diurnal pattern as stomata

open and close with variable irradiance and vapor pressure deficits. In order to further evaluate

the fitness with NS, the data was divided into monthly blocks (rather than a single NS value for an

entire year or multiple years) to assess degrees of fitness between seasons under variable phenology

and environmental conditions. Nash-Sutcliffe values are constrained in the range of [−∞, 1], where

an NS=1 indicates an identical match to observations.

As a second measure of fitness, the variance of the hourly residual was determined, where again

the data were divided into monthly blocks to ascertain seasonal differences in model variance.

Clearly, lower variance would represent a more fit response with tighter clustering of the residuals

around the observed values.

5.6.2 Evapotranspiration Results

Models were run for both the VIC-VEO and the VIC-4.2 producing ET estimates at each of the

six sites. A sample comparison of the VIC-VEO and VIC-4.2 model ET outputs against observations

at Willow, Wisconsin, for the month of June in 2005, is shown in Figure 5.2. This figure shows

periods of significant deviations from observations, most likely due to environmental conditions that

vary from those used in driving the models, such as wind, vapor pressure or irradiance. Although

with significant variation, this period still mimics the diurnal patterns measured by the Fluxnet

towers. This figure also demonstrates a period where there is continuous bias of over-estimating

ET flux from VIC-4.2, whereas VIC-VEO appears to be producing lower residuals and bias.

Clearly, results for any modeling framework can be adjusted through a calibration procedure

to increase/decrease residuals against observations, but the goal here was simply to demonstrate

the feasibility of reproducing observed ET fluxes using an alternative stomatal model in a macro-

scale modeling framework; no ‘calibration’ or adjustment of parameters used in either model was

performed, but rather it was based on best estimates of parameters, as is typically done in large-

scale modeling efforts.
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Figure 5.2: Hourly Evapotranspiration Fluxes

When considering the metric of residuals and bias, the VIC-VEO consistently shows improved

performance of reduced mean monthly residual and lower degrees of bias compared to VIC-4.2

across all study sites (Figure 5.3). Further, the VIC-VEO optimal model generally maintains lower

standard errors from observations across all sites. Figure 5.3 shows the mean difference between

Fluxnet total canopy evaporation and model computed values for the six study sites.

The VIC-VEO optimal model also shows higher values of the Nash-Sutcliffe coefficient of ef-

ficiency for most months at the six study sites. Figure 5.4 shows these results for each of the

sites.

This demonstration shows sufficient skill for application of an optimal stomatal model within

a macro-scale modeling framework, requiring minimal parameterization. Magitudes of residuals,

timing of ET, and stomatal response to environmental conditions are well-captured within the

optimal stomatal model paradigm.

5.7 Macro-Scale Hydrologic Response with Climate Projections

Although similar to the previous section of testing the VIC-VEO model, in this section we

are specifically interested in a) extension to climate projection data and b) review of impacts on
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Figure 5.3: Mean Monthly Residual. Comparison of VIC-VEO and VIC-4.2 total canopy evapora-
tion and mean residual by month. Error bars indicate 5% and 95% errors.
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Figure 5.4: Nash-Sutcliffe Measures of Efficiency. Comparison of VIC-VEO and VIC-4.2 total
canopy evaporation and mean residual by month. Error bars indicate 5% and 95% errors.
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hydrologic yield differences when including full dynamic vegetation responses. These tests are

conducted by now including the models for variable LAI phenology, optimal stomatal control, and

optimal photosynthetic resource allocation approaches (i.e. the ‘full’ VIC-VEO model).

Although comparison of model hydrologic responses from future GCM projections to obser-

vations is obviously not possible [73], comparison between models with and without vegetation

dynamics is informative for macro-scale hydrologic model sensitivity to the impact of dynamic

vegetation on the hydrologic response.

5.7.1 Approach

We consider two separate scales of comparison: a single ‘point’ in the macro-scale hydrologic

model that includes detailed information regarding evaporation, runoff, baseflow, soil moisture,

etc., and secondly an aggregated watershed level hydrologic response, which is the sum of runoff

and baseflow from multiple points over a large region. The former is informative to understand how

individual components of the hydrologic cycle are affected, whereas the latter provides estimates

of changes in macro-scale potential yield if vegetation is responding dynamically. Each of these

scenarios are run using a dynamic and a static version of the VIC-VEO model.

The static model essentially means the dynamic components are ‘turned-off’, compared to

running an alternate model like VIC-4.2, ensuring an equal comparison between models. The

components that are turned off include a) the dynamic phenology and b) the optimal resource

allocation routines - the optimal stomatal model is still retained, but parameterization of that

routine does not change over time in the static model.

All models are forced using the same datasets, over the same modeled time domain, with

identical soils information.

The comparison is accomplished by running identical dynamic models from year 1985 to mid-

summer of 1999 (14.5 years). Then the ‘static’ model stops updating photosynthetic capacities and

leaf area indices, maintaining values set during the last update. In this manner, we ensure equivalent

starting positions of the model, allowing evaluation of the divergence in hydrologic responses.

The reason updating of the static model was stopped during the mid-summer period was to

maintain expected summer period photosynthetic parameterization. This is common practice in

TBMs, where a single value for Vcmax and Jmax at a reference temperature (usually 25◦C) is used
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for all seasons for a given vegetation or PFT. Here, we are mimicking that response in the static

model runs. This does not preclude the capacity of the model to adjust the value due to standard

temperature responses, but rather simply maintains a constant reference value throughout the year.

5.7.2 Climate and Model Data

Projected climate data from the most recent CMIP512 ensemble collection was utilized. Specif-

ically, this section utilizes the Beijing Climate Center (BCC) model13, with the representative

concentration pathway (RCP) 8.5, the most ‘aggressive’ emission scenario with the largest pre-

dicted greenhouse gas emissions and climatic temperature increases. The focus of this section is

to discuss specific model vegetation responses in a changing climate, rather than focusing on com-

paring a range of GCM and RCP scenarios; these models are discussed in Chapter 6. Forcing data

was supplied to the models on a 24-hr timestep and included daily minimum temperature, daily

maximum temperature, total daily precipitation, and daily average wind speed14.

The VIC-VEO model was run from a period of January of 1985, through December of 2099,

using a three-hour timestep. Results were retained at an aggregated daily timestep, and include:

Runoff, Baseflow, Evaporation (Canopy, Surface, Soil), Transpiration, Soil Moisture (three layers),

Sublimation (Surface, Canopy, Blowing), Potential Evapotranspiration (Open Water and Natural

Vegetation), and Snow Water Equivalent (SWE).

5.7.3 Results - Difference in Projected Point Hydrologic Response

We compare the partitioned hydrologic responses between the dynamic and the static models

up to year 2100 using the GCM projections. The partitioned response is important to see how

and where changes in hydrologic response may be occurring if vegetation is allowed to change with

climate. The lumped hydrologic response may show no changes in yield, for example, but is this due

to increased transpiration counteracted with decreased canopy interception with a thinner canopy?

By comparing the individual components of the hydrologic response, we can start to understand

the complex and interacting components of the hydrologic cycle and the potential response.

12https://cmip-pcmdi.llnl.gov/cmip5/
13http://cmdp.ncc.cma.gov.cn/pred/en_cs.php
14http://gdo-dcp.ucllnl.org/
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Figure 5.5: Annual Aggregated Hydrologic Responses of Dynamic and Static Vegetation Model

Using the BCC GCM model for the RCP 8.5 concentration profile, the hydrologic response

from several different locations from the VIC-VEO model were compared. Figure 5.5 shows par-

titions of hydrologic responses for both the static and the dynamic model runs at one location

(40.8125N,107.3125W) within the Colorado River Basin. As can be seen, the responses are nearly

identical until mid-sumer 199915, and then start to diverge in their hydrologic response.

Most apparent is the difference in the Potential Transpiration from the natural vegetation; we

see a clear and steady increase in the PET from the dynamic model, whereas we observe a stagnant

response from the static model. Not only is there a change in the potential transpiration, but

the actual transpiration is increasing with the dynamic model. As a result, there are lower soil

moistures, lower baseflow rates, and slightly lower runoff.

Although some differences are obvious when reviewing the absolute values in Figure 5.5, we can

instead review Figure 5.6 which shows the percent change between models for each variable. Here,

15The model uses heuristic optimization techniques, so some small differences may be observed
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Figure 5.6: Percent Change in Annual Hydrologic Responses of Dynamic and Static Vegetation
Model (Location-1)

trends and changes are much more apparent. We again note the steady increase in PET from the

canopy, the increase in the modeled transpiration, and the decreases in soil moisture. Although

now, the changes in baseflow and runoff are more apparent in the percent difference figure, clearly

showing changes between the static and dynamic models towards the end of the century on the

order of a 10% reduction in flow. Note, this is not stating a 10% reduction in yield due to climate

change, but is rather stating that accounting for a dynamic vegetation response will result in 10%

lower flow than would be expected assuming a static representation of vegetation at this location.

This response is from a single point for a single GCM and RCP, and is certainly not indicative of

the expected response from other locations in the modeling domain. As an example of an opposite

response, we can evaluate the percent differences as shown in Figure 5.7, which is a location further

south and west of the first study site in the Colorado River Basin. Here, we can see a slight

increase in baseflow, but a significant change in runoff and canopy evaporation. Although not

shown explicitly here, this is due to a decrease in the leaf area index - less leaf area is available for

81



Figure 5.7: Percent Change in Annual Hydrologic Responses of Dynamic and Static Vegetation
Model (Location-2)

intercepting precipitation that can be evaporated, which is also resulting in a greater surface runoff

response from excess precipitation. Finally, percent differences in soil moisture, transpiration and

total evaporation are only a few percent between the static and the dynamic models. Increases in

transpiration are potentially from greater vapor pressure deficits offsetting any decrease in leaf area

or change in stomatal function.

5.7.4 Results - Difference in Watershed Scale Yield

Rather than considering a single point response, we now scale up to an aggregated watershed

level response and consider the changes in total expected yield should dynamic vegetation be

included in TBMs compared to a static vegetation response.Continuing with the utilization of
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the BCC GCM and RCP 8.5, the baseflow and runoff for all contributing distributed cells are

routed through a subcatchment using a linear time invariant model based on the de St. Venant

equations [85], resulting in outflow hydrographs at various locations for both the static and dynamic

model scenarios.

Throughout the Colorado River Basin, 41 different subcatchments have been defined - flows

for each of the subcatchments have been routed for both the static and dynamic models. This

allows comparison of the hydrologic yields for each subcatchment across a large and diverse region

for considering the hydrologic response difference from dynamic vegetation. Again, this assumes

approximately 15-years of nearly identical modeled conditions, followed by the static model not

updating photosynthetic capacities or leaf phenology.

For each subcatchment in both model scenarios, flows were aggregated into a total annual yield.

These values were then grouped by decade (e.g. 1990-1999, 2000-2009, etc.) and the mean for each

decadal block was determined. Finally, the percent change for each subcatchment by decadal block

was found by simply finding (Qdd,i−Qsd,i)/Qsd,i× 100 ∀ d, i, where Qs is the yield from the static

model, Qd is the yield from the dynamic model, d is the decade block, and i is the subcatchment.

Figure 5.8 shows the percent change between the dynamic and static vegetation models by

decadal block for all of the subcatchments. It needs to be emphasized that this is the percent

difference in mean decadal yield between a static and dynamic vegetation response. This figure

obviously shows no difference in the first decadal block starting in 1990, while some slight differences

are noted in the subsequent decadal period, mostly as an increase in yield with a dynamic model

through the northern portions of the Upper Colorado River watershed. Quickly, yield increases

significantly (> 20%) with a dynamic model compared to the static model in several locations (e.g.

west of Lake Powell, western edges of lower Green River), with smaller differences throughout the

entire basin. Towards the end of the century, the increases in yield begin to subside, with many

locations showing a reduction in yield when using a dynamic vegetation model.
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Figure 5.8: Percent Change in Distrbuted Subcatchment Yield by Decade - Difference is from Static to Dynamic model, where positive
values indicate an increase in annual mean decadal yield when accounting for dynamic vegetation responses, whereas negative values
indicate dynamic vegetation will reduce the expected yield. Note, positive or negatives values are not a statement of total increases or
decreases in yield, but solely the difference when accounting for a dynamic vegetation response.
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The critical nature of the influence of vegetation on hydrologic response should be apparent,

with differences in annual yield > 40% in some locations. As the LAI density decreases due to

changing climatic conditions (i.e. vegetation is responding to climate), the amount of precipita-

tion intercepted and transformed as canopy evaporation will decrease allowing a greater potential

depth of either infiltration or runoff. Conversely, the canopy may maintain similar LAI densities,

but become more favorable to photosynthetic assimilation thus allowing an increase in stomatal

conductance and transpiration rates.

Rather than comparing the percent differences between model responses, we can also look at the

total difference in aggregated yield for the entire watershed by decadal block. Simply subtracting

the static from the dynamic yield would show the changes in modeled yield when accounting for

dynamic vegetation.

Figure 5.9 shows the aggregated difference in response for the entire Colorado River Basin in

mean MAF/year by decade with the inclusion of a dynamic vegetation model. We see a clear

increase in yield for the first half of the century, followed by a decreasing trend in the latter half

with a small increase around 2075 in response to the variable climate. For the entire Colorado River

Basin, a 2 MAF/year increase is approximately a 15% difference in total yield; this is certainly a

significant change in yield for such a water scarce basin. It’s worth noting the absolute magnitude

of yield for both the static and the dynamic models show a decreasing trend through the century,

only that the dynamic vegetation model shows a smaller trend (i.e. 15% less) in yield loss.

Finally, these differences are for a single GCM and RCP scenario, but the influence of changing

vegetation on the hydrologic cycle should be apparent, regardless of which GCM or RCP is selected

to be tested in this comparison. GCM and RCP scenarios resulting in greater climatic changes

will have greater potential differences in hydrologic yield between a static and dynamic vegetation

parameterization approach.

5.8 Discussion

Inclusion of an optimal and dynamic vegetation response in a macro-scale hydrologic modeling

framework involves several complicated and interacting components at a range of spatial and tem-

poral scales. Stomata respond nearly instantaneously to rapidly changing environment conditions,
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Figure 5.9: Accumulated Mean Decadal Difference in Yield - Total accumulated difference in MAF
averaged by decade for all subcatchments.

such as light, temperature, vapor pressure deficit, etc. The rate of assimilation and the most limit-

ing photosynthetic system depend on the capacities of two separate yet interacting photosynthetic

systems. The capacities are described by the terms Vcmax and Jmax, which depend on available

resource supplies and environmental conditions, which also change seasonally. We postulated an

optimal allocation approach which adjusts these parameters to maximize the expected assimilation

rates for the given environmental conditions and set of limited resources. Finally, we considered

variable leaf area phenologic responses based on long-term mean climatic conditions using a regres-

sion approach. This allows the parameters defining periodic LAI phenology to change, where LAI

amplitude, frequency and phase can shift as a function of climate. It is assumed the relationship

between climate and phenology over multiple decades is optimal, which is used to parameterize the

regression approach, therefore the regression is mimicking an observed optimal response of natural

vegetation.

Bringing these components together into a macro-scale modeling framework for large-scale long-

term modeling requires a series of assumptions and numerical approximations. Although several

simplifying assumptions are required, they are not considered to significantly affect the macro-scale

response. For example, we are utilizing a multi-layered big-leaf model; although multi-layered

models provide an improved response over a single big-leaf approach, the canopy is still assumed

to be integrated into discrete big-leaf layers, a simplifying assumption. Similarly, for this macro-
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scale approach, we assume a well-coupled system between the vegetation and the atmosphere - this

implies that the leaf temperature is approximated by the ambient air temperature, and the vapor

pressure deficit above the leaf boundary layer is assumed identical to the ambient atmospheric

vapor pressure. These assumptions, amongst others utilized, are not novel, but are required to

create a numerically solvable solution procedure.

Testing of the optimal stomatal model utilized Fluxnet data, which includes combined evap-

oration and transpiration responses from an integrated canopy, rather than solely transpiration

responses at the leaf level. Transpiration measurements are typically available in certain studies at

short temporal periods, but macro-scale modeling requires larger spatial and temporal scales only

comparable to available Fluxnet data. To help understand the performance of the VIC-VEO model

against observations, a second model was run (VIC 4.2) using identical soil and forcing data, with

a static canopy and resource allocation. The VIC-VEO model with an optimal stomatal model

consistently showed improved performance with reduced residuals, bias, and variance. This was

further supported with improved values of the Nash-Sutcliffe measure of efficiency.

Testing of the long-term dynamic response, including dynamic resource allocation and climatic

regressed phenology, was done as a comparison between the dynamic and static models. Longer

term phenologic testing against LAI observations was completed in Chapter 4, whereas here we were

specifically interested in the long-term partitioned and aggregated hydrologic response. Partitioning

of the long-term response showed how water is re-allocated between different processes as vegetation

adjusts to a changing climate - it was noted that solely focusing on yield may neglect how it is

partitioned between baseflow and runoff, or focusing on total ET may not be informative for changes

in transpiration versus canopy evaporation, for example. In some applications, it may be critical

to understand partitioning within the various components of the hydrologic cycle.

Finally, for the long-term simulations with both the static and dynamic vegetation models, we

considered an aggregated hydrologic response for 41 subcatchments across the Colorado River Basin.

In this analysis, we evaluated the mean annual yield in decadal blocks, and then determined the

percent difference between static and dynamic responses for each subcatchment and decadal block.

This shows the differences in yield between both approaches, and helps illustrate the significant

effect vegetation plays on the hydrologic cycle, along with the non-uniform spatial response. When
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hydrologic yield was aggregated across the entire Colorado River Basin, the magnitude of the

difference between an assumed static and dynamic model becomes apparent.

Inclusion of dynamic vegetation parameterization is not unique for macro-scale hydrologic

TBMs; what is unique here is an application using optimal stomatal control, optimal resource

allocation scheme for depth varying photosynthetic parameterization, and a climatic based leaf

area phenologic regression approach. Each of these models employed in VIC-VEO were determined

to be both fit in performance, and show a significant effect on the hydrologic cycle. Inclusion of

dynamic vegetation responses is critical in long-term hydrologic modeling in our rapidly changing

climate.
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Chapter 6

Water Supply Vulnerability Analysis

The Colorado’s modern notoriety, however, stems not from its wild rapids and plunging
canyons, but from the fact that it is the most legislated, most debated, and most litigated
river in the entire world. It also has more people, more industry, and a more significant
economy dependent on it than any comparable river in the world.

– Marc Reisner, Cadillac Desert

6.1 Introduction

A critical future economic and societal risk is the possibility of insufficient water supply to meet

the various demands and consumptive uses, and very few regions in the world face a greater risk than

the Colorado River Basin [19]. This watershed covers an area of approximately 243,000 sq.miles

and drops 14,000 feet of elevation to the sea. More than 33 million people depend directly (wholly

or in part) on the Colorado River for their water supply16, where water supply includes water for

irrigation for food security, stream flow for recreation and habitat, and hydropower generation.

The demands for consumptive water use have continued to increase over the past century,

whereas the actual supply of water available to meet those demands has not grown in recent years,

and is uncertain in the future, especially in light of our rapidly changing climate [138].

Many studies have been completed to assess changes in potential future hydrologic yield [106]

and seasonal runoff timing [25, 31], whereas others have included detailed evaluations of variable

demand in a changing climate using such projections [6,16,46–48]. Significant uncertainty surrounds

16http://www.coloradoriverbasin.org/about-the-colorado-river-basin
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the Global Circulation Model (GCM) projections [82], the downscaling [44], and the consequent

hydrologic response [91]. Despite those uncertainties, GCM projections still remain the best source

of data for understanding the potential future hydrologic yield for use in demand and vulnerability

analyses.

Hydrologic responses are determined using Terrestrial Biosphere Models (TBMs), which model

the interaction of short-term meteorology within the earth’s soil, plant, and atmospheric boundary

region. Within this domain, vegetation plays a significant role in the mediation of the earth’s

energy and water balance, although vegetation is extremely dynamic. Vegetation responses can be

short-term on the order of minutes (e.g. stomatal movement), medium-term responses on the order

of months (e.g. nutrient translocation, leaf senescence, growth, mortality), and long-term responses

on the order of years (e.g. canopy level biomass, seasonal phenology). Assuming a static response,

such as a single stomatal conductance value, a fixed photosynthetic capacity within and between

years, or a fixed leaf area phenology, is not appropriate in such a dynamic system and can lead to

significant errors in the energy and water balance for long-term large-scale TBM simulations.

Here, we apply a new spatially-distributed dynamic vegetation parameterization model, VIC-

VEO, to the Colorado River Basin to study the vulnerability of water supply to meet projected

spatially varying demands at the fourth Hydrologic Unit Code (HUC4) level. Previous analysis

using VIC-VEO showed significant variation in the projected yield when accounting for dynamic

vegetation responses compared to a static dynamic response (Chapter 5); here, we now include

demand, storage, and routing components for assessment of long-term supply and vulnerability to

delivery shortages throughout the Colorado River Basin.

Vulnerability is defined here as the probability that supply will not be sufficient to meet the

required demand [6,46–48], or P [Supply ≤ Demand]. This assumes that demands are not adapting

to shortages - in this case, demand estimates showing vulnerability provide an indication of where

adaptation will likely be required.

Similar to previous studies [106], the Gila River Basin was not included in the detailed demand

analysis, although diversions into this basin were still included in the modeling efforts. The Gila

River basin does not include a sufficient record of naturalized yield for model calibration, and thus

analysis of the supply vulnerability is unreliable. The lower reaches of the Gila River are generally
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completely dry, thus any potential supply to downstream reaches to help meet required deliveries

to Mexico are negligible and completely ignored in this analysis.

6.2 Approach

The VIC-VEO is a spatially distributed hydrologic model that includes a dynamic parameteriza-

tion model based on optimality theories and space-for-time climatic regression models. It accounts

for many detailed processes of the hydrologic cycle including both energy and water fluxes. For the

purposes of this analysis, we are interested in the spatially distributed yield in the form of direct

runoff and baseflow. Refer to Appendix D.3 for additional details of VIC-VEO development and

model specification details.

Spatially distributed hydrologic modeling was completed on a 1/8th decimal degree scale (cell

length of approximately 11km), where each cell allows sub-grid heterogeneity of vegetation classes

and elevation bands. Calculations were performed at a three-hour timestep, with output at an

aggregated daily level. The VIC-VEO models were run from January 1985 through December

2099.

Total yield output (mm) was then routed through each subcatchment cell and aggregated for

each of 41 different subcatchments, resulting in a set of daily discharge hydrographs. Subcatchments

were specified at the level of HUC4 or finer, possibly including subcatchment breaks at significant

reservoirs or gaging stations, as appropriate. As a spatially distributed model, contribution from

each cell was fractioned by the drainage area located in the given subcatchment, which is critical

along watershed boundaries. This implies that each subcatchment has a unique flow direction grid,

as grid cells that share a fraction of area are required to drain in separate directions. All processing

was completed using ESRI ArcMap and Python/ArcPy scripting.

Once hydrographs for each subcatchment were calculated for each GCM-RCP scenario (fourteen

scenarios in total), the data were aggregated into a monthly series of yield volumes, which were

imported into the WEAP model for routing. The WEAP model routes flows through the stream

network and accounts for consumptive demand withdrawals, trans-basin diversions, and reservoir

storage and allocation. It also uses a priority scheme to determine how flows (and possibly deficits)

should be allocated between competing demands. Filling of reservoir storage is lowest on the
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priority list, compared to meeting required demands. In addition to demand requirements, the

WEAP model includes minimum in-stream flow requirements (highest priority) which were set as

10% of the annual streamflow uniformly distributed through the year [6, 46–48].

Model results include monthly reservoir storage volumes, unmet demand volumes, unmet in-

stream flow requirements, unmet trans-basin diversions, and monthly streamflow volumes, for each

of the GCM-RCP scenarios. These model results were then used to determine the vulnerability by

calculating the probability that demand is greater than supply.

6.2.1 WEAP Model Development

A watershed operations model was used to characterize the interaction of supply and de-

mand, dependent on reservoir operations and trans-basin diversions, to estimate potential shortages

throughout the Colorado River Basin. The routing model utilized for this study was the Water

Evaluation and Planning System (WEAP)17. This system allows the specification of temporally

changing demands, reservoir-storage operations and allocations, and prioritization of water alloca-

tions and rights. Further, it allows easy assessment of different climate scenarios for each GCM

and RCP.

A schematic of the WEAP model layout for the Colorado River Basin is shown in Figure 6.1,

which shows the major HUC4 delineations (red lines), finer resolution subdivisions of HUC4 basins

creating 41 subcatchments (gray lines), river segments (blue lines), demand sites (red circles), and

trans-basin diversions (green and orange lines).

For the climate projection scenarios, the WEAP model was run at a monthly timestep from

1985 through 2099, matching the available period of demand data. This was repeated for seven

GCMs, each with two RCPs, resulting in 14 different model scenarios. The WEAP geometry was

specified as ’current’ conditions with respect to reservoirs and trans-basin diversions; new reservoirs

or diversion projects, changing priorities, or removal of existing projects was not analyzed over the

modeled period.

As a result of the WEAP model, each scenario produced monthly deficits for demand at each

HUC4, in addition to the projected reservoir volumes over time.

17www.weap21.org
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Figure 6.1: Schematic of WEAP Model Layout - Red basins are HUC4 delineations labeled with 4-
digit codes, gray lines are divisions of HUC4 into subcatchments (41 in total) labled with bold face
up to 2-digits [0-40]. Blue lines are major connecting rivers, green lines are trans-basin diversion
connections, yellow lines are intra-basin diversions, red dots are HUC4 consumptive demand sites.
Outlines of the State boundaries are included for clarity.
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6.2.2 Climate Projections

The vulnerability study was completed by assessing hydrologic response to future projections of

climate from down-scaled CMIP5 model projections 18. This dataset was downscaled to the 1/8th

degree scale spatially, and as daily data temporally 19. Downscaled data provided daily values

of minimum and maximum temperature, along with daily total precipitation amounts. A fourth

climate parameter, daily wind, was developed separately from downscaled estimates of monthly

GCM wind values.

Seven different GCM models were evaluated for this study,

BCC Beijing Climate Center

CAN Canadian Centre for Climate Modelling and Analysis

CSIRO Commonwealth Scientific and Industrial Research Organisation, Australia

GFDL Geophysical Fluid Dynamics Laboratory

IPSL Institut Pierre-Simon Laplace

MIROC Atmosphere and Ocean Research Institute (The University of Tokyo), National In-

stitute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology

MPI Max Planck Institute for Meteorology

For each of the GCMs, two emission profiles were considered (RCP 4.5 and RCP 8.5), resulting

in fourteen unique projection scenarios. Data for each scenario was extracted from the NetCDF

file system into individual 1/8th degree text files, which are read by VIC-VEO at runtime.

6.2.3 Demand Analysis

The demand is the required consumptive (non-return) flow for all uses distributed throughout

the Colorado River Basin. These uses include: domestic and public, industrial and commercial,

thermoelectric, agricultural irrigation, and livestock and aquaculture [16,46,47]. For the Colorado

18http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
19http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
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River Basin, two different types of Demands are considered - this includes the HUC level within-

basin consumptive use, in addition to trans-basin diversions out of the basin.

Consumptive Demands Demands were generously provided by Thomas C. Brown of the U.S.

Forest Service using historic 5-year consumptive use data in conjunction with climate projection

data to determine projected monthly demand to year 2100 [unpublished] following previously es-

tablished methodologies [16]. This monthly demand data is used ‘as-is’ within the WEAP modeling

framework.

Monthly data was provided from January 1985 to December 2099, on the HUC4 spatial scale,

for a range of CMIP5 GCM projections. For this analysis, we utilized the Representative Concen-

tration Profile (RCP) 4.5 and 8.5, for seven GCM models (BCC, CAN, CSIRO, GFDL, IPSL, MPI,

MIROC), resulting in fourteen unique supply-demand scenarios.

As an example, Figure 6.2 shows the projected annual demand by HUC4 in the Colorado River

basin as a stacked plot. Simply looking at the annual total clearly indicates a steady trend in

overall total demand increases through the century, where some basins are accounting for most

of the increased demand, compared to others with minimal projected change. A similar trend of

increased projected demand can be seen in all of the other projected demand scenarios.

The total annual demand volumes for each HUC4 are changing over time, but a static fraction

of the annual total is used to downscale this demand to a monthly scale. Figure 6.3 shows the

repeating pattern of fractional allocations by month. This pattern is fixed for all years, and is

identical for each of the GCM-RCP scenarios.

Trans-Basin Diversions In addition to within-basin consumptive demands, various agreements

have been made to divert water outside of the Colorado River basin, referred to as trans-basin

diversions. Although the demand beyond the basin may change, we assumed the agreements remain

constant over the coming century and the specified fixed volume of water is diverted annually to

meet these agreements. Further, it is assumed that trans-basin diversions have priority over internal

basin consumptive demands.
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Figure 6.2: Annual Demand Volumes by HUC (BCC45) - Consumptive In-Basin demands; Trans-Basin demands included separately.

Figure 6.3: Monthly Fractional Allocation of Annual Demand
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Diversions outside of the continental Colorado River basin are shown in Table 6.1. These are

annual volumes which are then divided into a monthly temporal demand based on a fixed monthly

fraction pattern.

Table 6.1: Annual Trans-Basin Diversions - Assessment Sub-Region (ASR) from original demand
study, whereas HUC is a smaller scale downstream basin within the ASR where demand is with-
drawn.

ASR HUC Diversion (m3 10−3)

1401 1406 108,395
1402 1403 619,268
1403 1407 115,301
1502 1503 7,328,310
1503 1507 154,091

In addition to consumptive diversions beyond the Colorado River basin watershed, internal

diversions are included between HUC4s (Table 6.2).

Table 6.2: Annual Intra-Basin Diversions - Required annual supply between HUC4s that remains
within the Colorado River Basin.

From HUC To HUC Diversion (m3 10−3)

1502 1506 10,928
1503 1507 2,352,152

6.2.4 VIC-VEO Model Development and Calibration

The VIC-VEO model was setup to run 41 subcatchments defining the Colorado River Basin.

Subbasins and the stream network topology are used to develop hydrographs at a number of

locations through the watershed. A simplified stream routing network was used with zero-lag; the

temporal scale of interest for the vulnerability and demand analysis is one-month, thus detailed

routing methods were deemed not necessary.

Spatially distributed meteorologic forcing data (precipitation, daily minimum and daily maxi-

mum temperatures) for model calibration were obtained from a reanalysis dataset20 of Maurer [34].

Daily forcing data is at the 1/8th degree spatial scale, and extends from January 1949 to July of

2000. It is the best representation of the historic spatially distributed daily meteorology across the

Colorado River Basin.

20http://www.hydro.washington.edu/Lettenmaier/Data/gridded/index_maurer.html
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Calibration of the hydrologic model also requires observations of historic yield, which is used to

guide adjustment of model parameters. However, the Colorado River Basin is a highly regulated

region including multiple trans-basin diversions, storages, irrigation and diversion projects, and

other consumptive uses. As such, unless all of these processes are correctly accounted for, utilization

of observed streamflow from USGS gages will result in an incorrect calibration of the hydrologic

process. Instead, the USBR has prepared naturalized flows, or a reanalysis of flows that would have

occurred without excessive within-basin regulation.

Naturalized flow data21 of monthly flow volumes at various locations are available throughout

the Colorado River Basin. For calibration and verification of the VIC-VEO hydrologic model,

this dataset removes the need to account for reservoir operations, transbasin diversions, or other

consumptive uses when evaluating hydrographs of yield. Records of naturalized flow are henceforth

referred to as ‘observations’.

The VIC-VEO model was run on a 1/8th decimal degree spatially distributed grid across the

Colorado River basin. Hydrographs of yield represent an aggregation of the yield (as runoff and

baseflow) from the accumulating cells upstream. For 41 different subcatchments, watershed bound-

aries cross these 1/8th degree grids resulting in fractional yields by area. Therefore, each of the

subcatchments was routed separately with a unique grid defining the fraction of contributing area,

in addition to a unique flow direction raster. With those components, the VIC rout model was then

used, which is a kinematic wave routing model, resulting in individual subcatchment hydrographs.

These hydrographs were then further routed through the river network model (WEAP) allowing

development of aggregated hydrographs throughout the Colorado River Basin. Hydrographs were

then compared to the observed record during the calibration process.

The model was calibrated in an ‘upstream-to-downstream’ manner, thus reducing compensatory

calibration in lower mainstem reaches. Figure 6.4 shows the monthly values of calculated and ob-

served yield at sixteen locations throughout the Colorado River Basin. These locations represent

a range of locations, including headwater basins, lower Colorado River reaches, and arid subcatch-

ments, such as the Little Colorado River.

21http://www.usbr.gov/lc/region/g4000/NaturalFlow/
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In general, the model represents the seasonal patterns well with magnitudes of peak streamflow

and inter-annual variation of wet and dry years. As a vulnerability analysis, we are interested

particularly in the volumes of yield, especially at the annual scale.

Figure 6.5 shows the aggregated annual yield volume compared to observations for each of the

sixteen observation locations. Here, it is easier to discern model fitness, replicating the inter-annual

variation in yield fairly well over the historic record of naturalized flows.

The Nash-Sutcliffe measure of efficiency quantifies model fitness, and is summarized at both

the monthly and annual hydrograph level in Table 6.3. In general, the model performs quite well

in representing both temporal scales.

The exception is the Little Colorado River, a highly ephemeral river along the lower reaches,

which is difficult to replicate with the given spatially distributed model and routing approach.

Although Nash-Sutcliffe values are near zero for the Little Colorado River, this does not represent

a completely random process, but still indicates some degree of model fitness (Nash-Sutcliffe values

<< 0 are possible). Considering the limited contributing volumes from the Little Colorado River

subcatchment, the low Nash-Sutcliffe values for that specific gage are not concerning.
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Figure 6.4: Comparison of Calibrated and Observed Monthly Yield
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Figure 6.5: Comparison of Calibrated and Observed Annual Yield
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Table 6.3: Monthly and Annual Nash-Sutcliffe Measures of Efficiency - All Nash-Sutcliffe efficiencies
based on natural flows, even if the location is listed as below a dam; this is merely for reference of
locations. No storage routing or diversion models were used in calculating natural yield.

Site Monthly NS Annual NS

Fontenelle Dam, WY 0.771571 0.648332
Green River, WY 0.767528 0.654389
Flaming Gorge Dam, WY 0.706326 0.620407
Colo.Riv. at Cameo, CO 0.756447 0.882783
Colo.Riv. at Cisco, UT 0.880417 0.903717
Green River, UT 0.835144 0.843421
Lees Ferry, AZ 0.909699 0.889583
Hoover Dam, AZ 0.89752 0.884937
Parker Dam, AZ 0.898596 0.899146
Taylor Park Dam, CO 0.541275 0.456001
Blue Mesa Dam, CO 0.70341 0.637858
Little Snake Riv., CO 0.563994 0.626993
San Juan Riv. at Navajo 0.771209 0.672496
San Juan Riv. at Mexican Hat 0.826078 0.873046
Gunnison Riv. at Grand Junction, CO 0.856683 0.828705
Little Colorado River -0.0316123 0.0157677

6.3 Vulnerability Analysis Results

The vulnerability analysis is used to provide insight into the probability of insufficient supply to

meet demand, but additional useful diagnostics of the system health and response are available. We

start this section by looking at several different datasets developed during the process of assessing

vulnerability.

Forcing data are used with the TBM (VIC-VEO) to estimate the hydrologic yield by subcatch-

ment. Here, we review temporal (using bi-decadal blocks and four seasonal periods per year) and

spatial variation (HUC4 level) of the hydrologic response using histograms of the yield. This process

allows insight into where yield is changing the greatest, and how it may be shifting with seasons

over the next century.

Various reservoirs are included as part of the routing model (WEAP) to allow for storage and

allocation of flows used to meet demand. We look at several major reservoirs in the Colorado River

Basin, and find the probability of complete storage loss due to excessive demand and insufficient

supply.
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Finally, the routing model provides an indication of the number and location of shortages

throughout the Colorado River Basin. These results allow an estimate of the probability of shortage,

otherwise referred to as the vulnerability. Again, this vulnerability is further evaluated in time using

20-year temporal blocks, and spatially at the HUC4 level, for each of the GCM and RCP scenarios.

6.3.1 Estimate PDFs of Climate Forcing

Each of the GCM and RCP scenarios has a unique set of downscaled meteorologic forcings

including daily precipitation, minimum daily temperature, maximum daily temperature, and daily

average wind speed. Of interest is how these meteorologic forcings change between GCMs, RCPs,

and also over time.

To help visualize this data, histograms of daily precipitation, minimum, and maximum temper-

ature were prepared for each RCP and GCM. Further, the data were divided into 3-month blocks

to indicate seasonal meteorologic properties, in addition to 20-year temporal blocks to indicate how

these probability distributions are changing over climatic scales. Finally, meteorology and climate

vary spatially, thus data was area-weighted for each of the 41 subcatchments through the Colorado

River Basin. As a result, over 1100 plots of this climatic forcing PDFs have been prepared (41

subcatchments * 4 seasons * 7 GCMs = 1148 figures).

A sample figure is shown in Figure 6.6 for the IPSL GCM, Subcathment 00 (near Glenwood

Springs, CO), and the second seasonal block (Jul-Sep). The probability density function of precip-

itation is shown with a log-scale to help illustrate differences between bi-decadal blocks. Although

the precipitation data exhibit some differences between bi-decadal periods, there do not appear

to be any significant differences except for a slight increase in extreme precipitation towards the

end of the century. Note, this statement only applies to the IPSL scenario shown here, and is not

a global statement for all GCMs; review of each subcatchment and GCM would be required to

develop more generalized conclusions. The temperature densities show a more consistent response

between GCMs.

Most apparent is a clear and consistent shift of the histogram from lower to warmer temperatures

through the rest of the century. This conclusion applies to both the RCP 4.5 and RCP 8.5 emission

scenarios, and also applies globally to varying degrees for all other evaluated GCMs and seasonal

blocks.
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Comparison of different histograms is possible (e.g. same models and differenty seasons, or

same season but different models), but it is difficult to quickly visualize differences and the spatio-

temporal variation of climatic forcings. Rather than evaluating the entire set of available his-

tograms, we can summarize the difference in means for monthly values between the periods of

2000-2020 and 2080-2100 for each GCM, RCP and subcatchment. For example, the mean daily

minimum October temperature difference between the first and last bi-decadal blocks can be found

for each subbasin, GCM, and RCP, and then plotted spatially.

This summarizing process was completed for mean monthly daily maximum and daily minimum

temperatures, and mean monthly daily precipitation, for both RCP 4.5 and RCP 8.5 as seen in

Figures 6.7 - 6.12.
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Figure 6.6: Sample PDF of Climatic Forcings - Forcings include Daily Precipitation Total (mm), Daily Maximum Temperature (C), and
Daily Minimum Temperature (C). Data series for each forcing are divided into 20-year bins from 2000-2099, with the center year shown
in the legend. RCP45 in left column, RCP85 in right column.
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Figure 6.7: Bi-Decadal Difference in Mean Daily Minimum Temperature by Month (RCP 4.5)
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Figure 6.8: Bi-Decadal Difference in Mean Daily Maximum Temperature by Month (RCP 4.5)
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Figure 6.9: Bi-Decadal Difference in Mean Daily Precipitation by Month (RCP 4.5)
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Figure 6.10: Bi-Decadal Difference in Mean Daily Minimum Temperature by Month (RCP 8.5)
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Figure 6.11: Bi-Decadal Difference in Mean Daily Maximum Temperature by Month (RCP 8.5)
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Figure 6.12: Bi-Decadal Difference in Mean Daily Precipitation by Month (RCP 8.5)
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Note, the scales obviously vary between parameters, but less obviously, scales vary between

RCP emission scenarios. For example, temperature increases for RCP 8.5 are significantly greater

than RCP 4.5, and thus the range of the scales were adjusted for clarity.

These spatio-temporal figures show interesting variations in the seasonal and spatial responses

between GCMs. For example, considering Figure 6.7 for mean monthly difference in daily minimum

temperature, all models show some degree of warming over the century, but CSIRO shows significant

warming from June to October, whereas GFDL shows a more uniform warming for all months. The

magnitude of warming is also apparently quite different between CSIRO and GFDL, with CSIRO

showing maximum daily temperature increases nearly 3◦C greater than GFDL.

Spatially, a few of the models show greater increases in seasonal temperatures in the northern

subcatchments of the watershed, compared to the southern subcatchments. This is significant -

a majority of the water supplied in the Colorado River is sourced from the upper mountainous

subcatchments. Simply considering aggregated watershed level changes will under represent the

changes predicted in water supply source regions.

Figure 6.8 shows similar patterns for daily maximum temperatures under RCP 4.5, although

some seasonal differences are more apparent between GCMs, such as the significant temperature

increases occurring during the growing season shoulders in the CAN model. Increases in northern

subcatchments compared to southern ones are also quite apparent for the daily maximum temper-

ature differences over the coming century.

The differences in mean daily precipitation for RCP 4.5 shown in Figure 6.9 again displays

unique differences in the spatial and temporal variation of monthly precipitation. The CAN model

shows clear April increases in precipitation in the northern subbasins, whereas the GFDL and

CSIRO models show decreases in precipitation. Although individual comparisons can be made,

there is no clear pattern in precipitation changes between each of the GCMs, by months, or spatially.

As we move into the RCP 8.5 figures, the differences over the coming century become more

extreme than those observed in the RCP 4.5 emission scenario, although the expected patterns of

response for a given GCM are similar between emission scenarios. For temperature increases, it is

apparent that the GFDL model shows a lower increase in temperature compared to the IPSL model.

Similarly, spatial patterns of greater northern subcatchment increases in temperature compared to

the southern reaches are apparent for all/most GCMs.
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Figure 6.12 shows precipitation differences for the RCP 8.5 scenario - in this figure, the CAN

model shows extreme increases in precipitation compared to other GCMs for January-February and

July-September periods.

These figures help to illustrate the spatial and temporal variations across GCM projections and

emission scenarios. It also helps to highlight the risks in looking at large- temporal or spatial scale

averages. Only considering annual or decadal differences will eliminate significant seasonal differ-

ences in climate projections. Similarly, an average of temperatures over the Colorado River basin

will obscure significant spatial variations in changes between northern and southern, or between

mountainous and flatter regions.

For this review, we considered climatic differences between the first and last bi-decadal block

of the century, rather than difference between each incremental decadal block. Although this is a

reasonable approach for RCP 8.5, in some cases, RCP 4.5 has increased differences in mean climate

response toward the middle of the century. In this case, differences between the first and last

bi-decadal block may under-estimate the maximum expected difference in climate over the coming

century.

6.3.2 Predict PDFs of Hydrologic Yield

Projected meteorologic forcings from the GCM and RCP models are used with VIC-VEO to

determine the expected spatially distributed yield. These values are aggregated and routed to

develop runoff hydrographs to year 2100 for each subcatchment. To help understand how differences

in meteorological forcings between GCMs translate to hydrologic yield, density functions of bi-

decadal yield for each HUC4 basin divided into four 3-month seasonal blocks have been prepared.

By considering the HUC level, we can begin to understand differences between headwater basins

rather than aggregated watershed level responses. This scale also matches the availability of demand

data. Seasonal blocks help to differentiate changes in temporal response. In total, this represents

44 figures (11 HUC4s * 4 seasons) - two of those figures are included below for discussion.

Figure 6.13 shows the response histograms for HUC1402 (Gunnison River headwaters) for a

seasonal block of April to June, for both RCP scenarios (two columns) and seven GCMs (seven

rows). For any given RCP, differences in densities between GCMs are apparent.For example, the
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Figure 6.13: Histogram of Monthly Yield by Season (Apr-Jun)
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Figure 6.14: Histogram of Monthly Yield by Season (Jul-Sep)
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CAN model shows more frequent high monthly yields than other models for both RCP scenarios,

whereas the MIROC has fewer extreme runoff events.

Each histogram includes colored bars representing five different bi-decadal periods from 2000-

2100, which illustrates how the frequency of a given yield changes over the century. Figure 6.13

shows a fairly consistent increase in higher spring flows, and either marginal change or decrease in

the frequency of lower flows. This likely represents increases in spring runoff and loss of snowpack

in this headwater basin; warmer temperatures are more likely to produce rainfall compared to snow

accumulation, resulting in greater melt and earlier runoff. Evaluation of the next seasonal block

helps to support this assertion.

Figure 6.14 shows the following mid- to late-summer seasonal block, July to September, which

illustrates a clear and consistent increase in the frequency of low-flow events, and a reduction

of higher flow events - the opposite from the previous seasonal period. Towards the end of the

century, warmer temperatures are depleting the snow pack earlier in the season, reducing the mid

to late-summer yields. Again, this shift is apparent for all GCMs, and even for both RCPs.

6.3.3 Reservoir Storages

Yield for each of the subbasins is used as input for the WEAP water allocation model. The

model manages reservoir storage and routing, resulting in a temporal sequence of monthly reservoir

storage volumes. Major reservoirs included in this study are Fontenelle, Flaming Gorge, Blue Mesa,

Taylor Park, Navajo, Powell and Mead. The WEAP model uses HUC4 level demand data, thus

some HUC4 basins include aggregated reservoir volumes (e.g. Fontenelle and Flaming Gorge, or

Blue Mesa and Taylor Park).

Plots of the monthly storage volumes for each HUC region are shown in Figure 6.15, where a

line represents a trace of a unique GCM and RCP for that HUC. This figure shows significantly

varying projections of reservoir volumes, where some GCMs show sufficient supply to meet demand

thus avoid emptying the reservoir, whereas others show complete draining of the reservoirs’ active

storage to meet the required demand. Although individual GCM models perform similarly between

RCP scenarios, projections of storage levels between GCMs show little consistency.

For each GCM and RCP, we can tabulate the probability of utilizing all of the active storage

by decade (i.e. completely emptying the storage), or
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P [Active Storage = 0] ≈ (# Months Empty)/(Total# Months) for each bi-decadal period. These

estimates are tabulated for RCP 4.5 and RCP 8.5 in Tables 6.4 and 6.5, respectively.

For the MPI GCM, moving from RCP 4.5 to 8.5 shows a significant increase in the probability

of complete storage loss, whereas for other GCMs, such as CSIRO, RCP 4.5 actually shows a higher

level of risk over the century for complete storage utilization. Only the CAN GCM shows a chance

of utilizing all active storage during the first bi-decadal period (although interestingly it shows

sufficient supply for the remainder of the century), and GFDL is the only model showing no risk

of complete storage loss for any reservoir.

Figure 6.15: Reservoir Storage Volumes for each GCM
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Table 6.4: Percent Probability of Fully Utilizing Active Reservoir Storage (RCP 4.5)

HUC Bi-Decade BCC CAN CSIRO GFDL IPSL MIROC MPI

1402 2000-2020 0 4.17 0 0 0 0 0
2020-2040 4.17 5 38.33 0 0 0 0
2040-2060 25.83 0 10.83 0 0 11.67 0
2060-2080 39.58 0 17.5 0 16.25 34.17 0
2080-2100 0 0 40 0 35.83 43.33 0

1404 2000-2020 0 4.17 0 0 0 0 0
2020-2040 5.83 6.25 39.58 0 0 0 0
2040-2060 27.08 0 12.08 0 0 13.75 0
2060-2080 41.67 0 17.5 0 16.25 35 0
2080-2100 0 0 41.25 0 34.17 46.25 0

1407 2000-2020 0 2.92 0 0 0 0 0
2020-2040 4.17 5 37.08 0 0 0 0
2040-2060 25.42 0 10.42 0 0 10.83 0
2060-2080 36.67 0 15.83 0 14.17 32.92 0
2080-2100 0 0 36.25 0 32.08 39.17 0

1408 2000-2020 0 3.33 0 0 0 0 0
2020-2040 4.17 5 37.08 0 0 0 0
2040-2060 25.42 0 10.42 0 0 10.83 0
2060-2080 37.5 0 16.25 0 15.83 33.33 0
2080-2100 0 0 36.67 0 34.17 42.08 0

1501 2000-2020 0 2.5 0 0 0 0 0
2020-2040 4.17 5 36.67 0 0 0 0
2040-2060 24.58 0 11.25 0 0 10.83 0
2060-2080 35.83 0 15 0 14.17 33.33 0
2080-2100 0 0 35.42 0 31.25 39.58 0
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Table 6.5: Percent Probability of Fully Utilizing Active Reservoir Storage (RCP 8.5)

HUC Bi-Decade BCC CAN CSIRO GFDL IPSL MIROC MPI

1402 2000-2020 0 0 0 0 0 0 0
2020-2040 0 0 24.17 0 0 0 0
2040-2060 0 0 7.92 0 0 7.92 0
2060-2080 14.58 0 39.17 0 50.42 39.58 25.83
2080-2100 32.5 0 32.5 0 32.5 42.92 20.83

1404 2000-2020 0 0 0 0 0 0 0
2020-2040 0 0 24.17 0 0 0 0
2040-2060 0 0 9.17 0 0 8.75 0
2060-2080 14.58 0 39.58 0 49.17 39.58 27.5
2080-2100 32.08 0 29.17 0 28.33 43.33 18.33

1407 2000-2020 0 0 0 0 0 0 0
2020-2040 0 0 22.92 0 0 0 0
2040-2060 0 0 7.92 0 0 7.08 0
2060-2080 10.83 0 34.58 0 45.83 35.83 22.08
2080-2100 27.5 0 22.5 0 25.42 37.08 15

1408 2000-2020 0 0 0 0 0 0 0
2020-2040 0 0 23.33 0 0 0 0
2040-2060 0 0 7.92 0 0 7.08 0
2060-2080 12.5 0 36.25 0 47.92 35.83 23.75
2080-2100 29.58 0 25.42 0 28.33 40.42 16.67

1501 2000-2020 0 0 0 0 0 0 0
2020-2040 0 0 21.67 0 0 0 0
2040-2060 0 0 7.5 0 0 7.08 0
2060-2080 10.83 0 32.92 0 43.75 35.42 21.67
2080-2100 27.08 0 22.08 0 24.17 37.08 15
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6.3.4 Vulnerability Analysis - Annualized

Vulnerability is simply defined here as the probability that supply is less than demand, resulting

in a delivery shortage. Similar to estimating the probability of draining the reservoir, we can

estimate the vulnerability by counting the number of months there is a shortage (not considering

magnitude, but simply that there was some degree of shortage), and divide by the months of record.

Demand data was available on the HUC4 level; therefore, the vulnerability is also reported on this

same spatial scale.

We start by considering changes in yield for each HUC, and then evaluate the vulnerability in

bi-decadal blocks for each GCM and RCP grouping all months together.

Determination of vulnerability utilizes output from the WEAP model when it is forced by the

yield, which is equal to the sum of runoff and baseflow from each subcatchment. We start by

considering the spatial distribution of changes in yield for each GCM and RCP scenario. This is

completed by finding the mean annual yield for each bi-decadal block, and then determining the

difference from the 2000-2020 decadal period, resulting in four figures of bi-decadal block differences.

As an example, Figure 6.16 shows the changes in mean annual yield for the MIROC GCM and

RCP 8.5. This example shows continual decreases in expected annual yield, mostly focused around

headwater basins, especially on the east side of the basin. Further, no basins show any significant

increases in expected yield for any of the bi-decadal periods. Figures of all GCMs and RCPs for

changes in hydrologic yield are included in Appendix D.1.1.

Using the yield, demands, instream flows requirements, reservoirs, and the stream network, the

WEAP model was used to find the delivery shortages for each HUC4 basin. Dividing the data

again into bi-decadal blocks, the probability of a shortage is plotted for each GCM and RCP.

As an example, Figure 6.17 shows the vulnerability for the MIROC GCM and RCP 8.5 (same

figure for yield changes shown above). The increase in vulnerability over time matches the expected

response with decreased yield throughout the century as previously observed, eventually reaching

nearly a 50% chance of not meeting demand (e.g. nearly half the months, most HUCs will have

insufficient supply to meet demand). This also shows the extremely vulnerable state of the Lower

Colorado River basin with excessive shortages. A very similar pattern is seen for all GCMs (all

figures included in Appendix D.1.2) under the RCP 8.5 scenario, except for the GFDL GCM.
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Figure 6.16: Change in Mean Bi-Decadal Yield from 2000-2020 Period (MIROC-RCP 8.5)

Of interest, when comparing changes in yield to the changes vulnerability, is the difference

in spatial distributions. The yield reductions are focused mainly in the mountainous headwater

basins, whereas the vulnerability increase is shared across all HUCs in the Colorado System.

The lower emissions scenario RCP 4.5 shows mixed ranges of vulnerabilities, some with marginal

changes such as CAN and GFDL, whereas IPSL, MIROC and BCC show increased vulnerabilities

through the 21st century.

Summary tables of the vulnerability as a percent of months experiencing a delivery shortage

are included here for each GCM. Here, we can see the change between RCP scenarios, in addition

to the change in vulnerability over time between bi-decadal blocks.

6.3.5 Vulnerability Analysis - Monthly

In a similar manner to the annual analysis, we can also extract the vulnerabilities by month

to understand the range of seasonal differences between models and bi-decadal blocks. A single

121



Figure 6.17: Vulnerability to Insufficient Supply (MIROC-RCP8.5)

Table 6.6: Summary of Bi-Decadal Vulnerability (%) by HUC4 (BCC)

GCM RCP HUC 2000-2020 2020-2040 2040-2060 2060-2080 2080-2100

BCC RCP45 1401 0 6.25 27.08 40 5
1402 0 6.25 27.08 40.42 1.67
1403 0 5.83 26.67 39.17 1.67
1404 0 7.92 28.33 42.5 1.67
1405 8.75 23.33 40.42 48.75 17.5
1406 0 7.92 28.33 42.5 1.67
1407 0 5.83 26.67 37.5 1.67
1408 0 5.83 26.67 38.33 1.67
1501 0 5.83 26.67 37.5 1.67
1502 0 5.42 21.67 31.67 1.67
1503 0 5.83 26.67 37.5 1.67

RCP85 1401 0 0 4.17 18.33 38.33
1402 0 0 0 14.58 32.92
1403 0 0 0 14.17 31.25
1404 0 0 0 15 32.5
1405 9.17 13.75 15 27.08 42.92
1406 0 0 0 15 32.5
1407 0 0 0 10.83 27.5
1408 0 0 0 12.5 29.58
1501 0 0 0 10.83 27.5
1502 44.58 47.5 61.25 75 82.08
1503 0 0 0 10.83 27.5
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Table 6.7: Summary of Bi-Decadal Vulnerability (%) by HUC4 (CAN)

GCM RCP HUC 2000-2020 2020-2040 2040-2060 2060-2080 2080-2100

CAN RCP45 1401 4.58 6.25 0.83 3.33 5.42
1402 4.17 5 0 0 0
1403 3.75 5 0 0 0
1404 4.17 6.25 0 0 0
1405 19.58 16.67 15 12.08 13.75
1406 4.17 6.25 0 0 0
1407 2.92 5 0 0 0
1408 3.33 5 0 0 0
1501 2.92 5 0 0 0
1502 47.08 43.33 59.17 58.75 78.75
1503 2.92 5 0 0 0

RCP85 1401 0 0 2.5 5.83 10
1402 0 0 0 0 0
1403 0 0 0 0 0
1404 0 0 0 0 0
1405 12.5 15.83 13.75 14.58 12.92
1406 0 0 0 0 0
1407 0 0 0 0 0
1408 0 0 0 0 0
1501 0 0 0 0 0
1502 41.67 47.5 58.75 60.42 56.67
1503 0 0 0 0 0

Table 6.8: Summary of Bi-Decadal Vulnerability (%) by HUC4 (CSIRO)

GCM RCP HUC 2000-2020 2020-2040 2040-2060 2060-2080 2080-2100

CSIRO RCP45 1401 0 37.92 15.83 20.83 43.75
1402 0 38.33 11.25 17.5 41.25
1403 0 37.5 10.83 16.67 38.75
1404 0 39.58 12.08 17.5 41.25
1405 11.67 46.67 26.67 29.17 50.42
1406 0 39.58 12.08 17.5 41.25
1407 0 37.08 10.42 15.83 35.83
1408 0 37.08 10.42 15.83 36.67
1501 0 37.08 10.42 15.83 35.83
1502 42.5 72.5 69.17 69.58 86.25
1503 0 37.08 10.42 15.83 35.83

RCP85 1401 1.25 25.83 13.75 45.42 40
1402 0 24.17 7.92 39.58 32.5
1403 0 22.92 7.92 37.5 26.67
1404 0 24.58 9.17 40 29.58
1405 12.92 36.25 25 52.08 42.08
1406 0 24.58 9.17 40 29.58
1407 0 22.92 7.92 34.58 22.08
1408 0 23.33 7.92 36.25 25.42
1501 0 22.92 7.92 34.58 22.08
1502 40.83 63.75 62.08 83.33 77.5
1503 0 22.92 7.92 34.58 22.08
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Table 6.9: Summary of Bi-Decadal Vulnerability (%) by HUC4 (GFDL)

GCM RCP HUC 2000-2020 2020-2040 2040-2060 2060-2080 2080-2100

GFDL RCP45 1401 0 0 0 0 1.67
1402 0 0 0 0 0
1403 0 0 0 0 0
1404 0 0 0 0 0
1405 7.08 7.92 13.33 13.75 12.08
1406 0 0 0 0 0
1407 0 0 0 0 0
1408 0 0 0 0 0
1501 0 0 0 0 0
1502 37.5 44.58 58.33 62.08 70.42
1503 0 0 0 0 0

RCP85 1401 0 0 0.42 1.67 6.25
1402 0 0 0 0 0
1403 0 0 0 0 0
1404 0 0 0 0 0
1405 12.08 10.42 11.67 17.5 17.08
1406 0 0 0 0 0
1407 0 0 0 0 0
1408 0 0 0 0 0
1501 0 0 0 0 0
1502 37.92 48.33 52.92 71.67 72.08
1503 0 0 0 0 0

Table 6.10: Summary of Bi-Decadal Vulnerability (%) by HUC4 (IPSL)

GCM RCP HUC 2000-2020 2020-2040 2040-2060 2060-2080 2080-2100

IPSL RCP45 1401 0 0.83 6.25 23.33 38.33
1402 0 0 0 16.67 36.25
1403 0 0 0 16.25 33.75
1404 0 0 0 16.67 34.17
1405 8.33 17.5 17.92 31.67 45
1406 0 0 0 16.67 34.17
1407 0 0 0 14.17 32.08
1408 0 0 0 15.83 34.17
1501 0 0 0 14.17 32.08
1502 38.33 49.17 60.42 70 87.92
1503 0 0 0 14.17 32.08

RCP85 1401 0 0.83 8.75 54.58 40.83
1402 0 0 0 50.83 33.33
1403 0 0 0 48.33 28.75
1404 0 0 0 49.58 29.58
1405 9.58 17.08 19.58 57.92 42.92
1406 0 0 0 49.58 29.58
1407 0 0 0 45.83 25.42
1408 0 0 0 47.92 28.33
1501 0 0 0 45.83 25.42
1502 37.08 47.92 55.83 91.67 82.5
1503 0 0 0 45.83 25.42
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Table 6.11: Summary of Bi-Decadal Vulnerability (%) by HUC4 (MIROC)

GCM RCP HUC 2000-2020 2020-2040 2040-2060 2060-2080 2080-2100

MIROC RCP45 1401 0 0 14.17 36.67 45.42
1402 0 0 12.08 34.17 44.17
1403 0 0 11.25 32.92 41.25
1404 0 0 13.75 35 46.25
1405 12.08 18.33 28.33 46.25 55.83
1406 0 0 13.75 35 46.25
1407 0 0 10.83 32.92 39.17
1408 0 0 10.83 33.33 42.08
1501 0 0 10.83 32.92 39.17
1502 42.5 53.33 75 89.17 91.67
1503 0 0 10.83 32.92 39.17

RCP85 1401 0 0 9.17 42.5 48.33
1402 0 0 7.92 39.58 44.58
1403 0 0 7.08 37.5 41.67
1404 0 0 8.75 40 44.17
1405 8.33 15 26.25 48.75 52.5
1406 0 0 8.75 40 44.17
1407 0 0 7.08 35.42 37.08
1408 0 0 7.08 35.83 40.42
1501 0 0 7.08 35.42 37.08
1502 38.75 52.08 74.17 89.58 88.75
1503 0 0 7.08 35.42 37.08

Table 6.12: Summary of Bi-Decadal Vulnerability (%) by HUC4 (MPI)

GCM RCP HUC 2000-2020 2020-2040 2040-2060 2060-2080 2080-2100

MPI RCP45 1401 0.42 1.67 1.25 7.92 7.5
1402 0 0 0 0 0
1403 0 0 0 0 0
1404 0 0 0 0 0
1405 7.92 12.08 14.17 17.08 14.58
1406 0 0 0 0 0
1407 0 0 0 0 0
1408 0 0 0 0 0
1501 0 0 0 0 0
1502 40 49.58 56.25 65.83 76.67
1503 0 0 0 0 0

RCP85 1401 0 0.83 4.17 33.75 30
1402 0 0 0 27.5 20.83
1403 0 0 0 25.83 18.33
1404 0 0 0 27.5 18.75
1405 7.92 11.67 17.5 40.83 34.17
1406 0 0 0 27.5 18.75
1407 0 0 0 22.08 15
1408 0 0 0 23.75 16.67
1501 0 0 0 22.08 15
1502 42.5 50.42 60.42 80 79.17
1503 0 0 0 22.08 15
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table for the MIROC GCM with RCP 8.5 emissions scenario is shown in Table 6.13, which indicates

interesting seasonal patterns not identified through the annual lumping analysis. The full collection

of monthly summary tables for each GCM and RCP have been included in Appendix D.2.

For MIROC, RCP 8.5, the 2020-2040 period shows limited vulnerability, except for HUC 1502,

where vulnerability is already severe. This HUC is the Little Colorado River, which includes

transbasin diversions out of the Colorado River Basin, in addition to diversions into the Gila River

Basin. Again, the Gila was not explicitly included in the hydrologic yield, but the required basin

diversions were still retained in the WEAP operations model.

The next bi-decadal period, 2040-2060, shows an increase in vulnerability with a quite interest-

ing pattern during an unexpected period - winter months. Demand data for each HUC was supplied

as an annual volume, which was then disaggregated by month for the vulnerability analysis. The

other set of demand data was for transbasin diversions, which were supplied as an annual volume

equally distributed throughout the year. The total demand is appropriate, but the temporal pat-

tern of actual trans-basin diversions may not match a uniform distribution. Therefore, periods

of low natural yield, combined with low reservoir storage volumes, may lead to high cool-season

vulnerabilities.

Determining whether this temporal demand pattern for transbasin diversions is realistic, leading

to cool-season vulnerabilities, would require further investigation of temporal diversion disaggre-

gation. Regardless, the storage volume supplied is appropriately determined in the WEAP model,

and the annualized vulnerabilities are represented appropriately.

The final two bi-decadal periods show continued increases in vulnerabilities across all months,

although at lower levels during spring-melt periods. Similar to the annual results, this specific

GCM and RCP scenario shows gross increases in vulnerability in the coming decades.

Review of other GCM and RCP scenarios show similar patterns of cool-season vulnerabilities

(Appendix D.2), although the magnitude of vulnerabilities between various models changes similarly

to the annualized data. For example, the CAN and GFDL GCMs show limited vulnerability for

all bi-decadal periods, although do show late-summer vulnerabilities when they occur (August and

September). Conversely, the CSIRO model shows gross shortages for most months and bi-decadal

periods. Even in the CSIRO model, the vulnerability decreases substantially during April, May

and June, as would be expected with months of increased spring yield.
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Table 6.13: Summary of Bi-Decadal Vulnerability (%) by HUC4 and Month (MIROC, RCP85)

1401 1402 1403 1404 1405 1406 1407 1408 1501 1502 1503
Decadal Block Month

2020-2040 1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 35 0
5 0 0 0 0 0 0 0 0 0 75 0
6 0 0 0 0 0 0 0 0 0 100 0
7 0 0 0 0 20 0 0 0 0 100 0
8 0 0 0 0 85 0 0 0 0 100 0
9 0 0 0 0 75 0 0 0 0 100 0
10 0 0 0 0 0 0 0 0 0 75 0
11 0 0 0 0 0 0 0 0 0 40 0
12 0 0 0 0 0 0 0 0 0 0 0

2040-2060 1 20 20 20 20 20 20 20 20 20 30 20
2 20 20 20 20 20 20 20 20 20 55 20
3 10 10 10 10 10 10 10 10 10 20 10
4 0 0 0 0 0 0 0 0 0 50 0
5 0 0 0 0 0 0 0 0 0 90 0
6 0 0 0 0 0 0 0 0 0 100 0
7 0 0 0 0 60 0 0 0 0 100 0
8 20 10 0 5 100 5 0 0 0 100 0
9 5 0 0 15 70 15 0 0 0 100 0
10 5 5 5 5 5 5 5 5 5 100 5
11 15 15 15 15 15 15 15 15 15 90 15
12 15 15 15 15 15 15 15 15 15 55 15

2060-2080 1 50 50 50 50 50 50 50 50 50 75 50
2 60 60 60 60 60 60 60 60 60 85 60
3 35 35 35 35 35 35 35 35 35 55 35
4 5 5 5 5 5 5 5 5 5 70 5
5 0 0 0 0 0 0 0 0 0 95 0
6 20 20 20 20 20 20 20 20 20 100 20
7 55 45 45 40 75 40 35 35 35 100 35
8 70 60 40 55 100 55 35 40 35 100 35
9 70 55 50 70 95 70 40 40 40 100 40
10 40 40 40 40 40 40 40 40 40 100 40
11 50 50 50 50 50 50 50 50 50 100 50
12 55 55 55 55 55 55 55 55 55 95 55

2080-2100 1 55 55 55 55 55 55 55 55 55 85 55
2 55 55 55 55 55 55 55 55 55 70 55
3 35 35 35 35 35 35 35 35 35 50 35
4 5 5 5 5 5 5 5 5 5 65 5
5 5 5 5 5 5 5 5 5 5 95 5
6 15 15 15 15 15 15 15 15 15 100 15
7 60 55 45 50 95 50 25 40 25 100 25
8 95 70 55 65 100 65 35 50 35 100 35
9 85 70 60 75 95 75 45 55 45 100 45
10 45 45 45 45 45 45 45 45 45 100 45
11 60 60 60 60 60 60 60 60 60 100 60
12 65 65 65 65 65 65 65 65 65 100 65
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Although the WEAP model does produce monthly vulnerabilities, without improved temporal

disaggregation information for transbasin diversions, the actual magnitudes and frequencies of vul-

nerabilities should be interpreted with caution. Regardless, the annualized model is appropriately

considering demands, storages and shortages, and may be a more reliable estimate of projected

future vulnerabilities.

6.4 Discussion and Conclusions

Significant uncertainty surrounds the future water supply for users of the Colorado River Basin

waters, but many climate models, TBMs, and demand models show similar patterns of increased

strain on the watershed’s limited resources. This pattern matches recent trends in observations,

with continued increases in consumptive demand, and decreases in yield and major reservoir storage

levels. Even with great uncertainty in projected yield through the 21st century, the outlook for

sustainable and sufficient supply to meet demand is bleak.

For this assessment, we used the best available consumptive demand data in conjunction with

a dynamic vegetation response model in order to estimate spatially distributed vulnerability. The

dynamic vegetation model accounts for changing short-term stomatal response as vapor pressure

and soil moisture states change, allows for a dynamic allocation of photosynthetic resources, and also

varies the leaf area phenology following long-term mean climate properties. It was demonstrated

that accounting for changes in vegetal processes can lead to upwards of 15% difference in expected

hydrologic yield (Chapter/Section 5.7.4), highlighting the significance of these changes for long-term

water yield projection modeling.

A storage and allocation model, WEAP, provided a means of estimating the location and

frequency of shortages for seven different climate models and two emission scenarios using one-

month temporal periods at the HUC4 level. Summarizing this volume of data is challenging,

therefore data was aggregated to represent a mean bi-decadal response, where appropriate.

A majority of the annual yield is provided from the upper headwater reaches of the basin, which

coincides with the region of greatest potential decreases in expected hydrologic yield (Table 6.14).

But, the Colorado River Basin is a large network with distributed consumptive uses. Because

lower subcatchments may be dominated by irrigation utilizing water not sourced locally, spatially
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distributed shortages display a more uniform vulnerability compared to decreases in yield. This

can be visualized in vulnerability figures, which show fairly uniform changes in vulnerability with

time (e.g. shared shortages).

The risk of excessive loss of reservoir storage through the century is high, with four of the seven

models showing a high risk of complete utilization of active storage. The calculated frequency is

likely over-estimated, as the WEAP model assumes the specified demands are completely satisfied if

possible prior to supply curtailment. In reality, water conservation practices and mandatory supply

limitations would help reduce the storage loss prior to complete loss of active storage. Regardless,

these projections highlight potential future risks in meeting demand and maintaining sufficient

storage levels.

Most of the models show a significant increase in supply vulnerability in the coming decade,

with some of the models showing extreme vulnerability. Even under cases of limited change to yield

over the coming century, the ability to meet the continued increases in demand with population

growth, increased consumption from energy and food production, and increased evapotranspiration,

will remain a significant challenge for this already stressed watershed.
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Table 6.14: Summary of Expected Annual Yield (MAF) in Bi-Decadal Blocks for Upper and Lower
Colorado River Regions

GCM RCP Region 2000-2020 2020-2040 2040-2060 2060-2080 2080-2100

BCC RCP45 Upper 14.64 13.54 14.2 12.56 15.33
Lower 1.01 1.07 1.46 0.94 1.56

RCP85 Upper 14.26 15.77 15.44 14.83 12.68
Lower 0.96 1.29 1.29 1.3 1.12

CAN RCP45 Upper 13.34 17.71 16.24 17.76 16.8
Lower 1.02 1.92 1.56 2 1.72

RCP85 Upper 15.64 15.85 17.65 19.7 22.57
Lower 1.3 1.58 1.95 3.22 5.53

CSIRO RCP45 Upper 13.58 12.93 13.02 14.05 12.21
Lower 1.02 1.36 1.12 1.54 1.19

RCP85 Upper 13.57 12.81 15.44 11.19 13.5
Lower 1.19 1.09 1.81 1.21 1.98

GFDL RCP45 Upper 15.95 18.39 16.32 16.28 16.9
Lower 1.19 1.9 1.56 1.21 1.43

RCP85 Upper 14.56 16.89 17.91 15.62 17.4
Lower 1.06 1.41 1.73 1 1.51

IPSL RCP45 Upper 16.59 14.9 14.96 13.7 13.79
Lower 1.87 1.29 1.46 1.33 1.19

RCP85 Upper 16.94 15.69 15.69 10.13 13.85
Lower 1.74 1.78 1.83 0.87 1.48

MIROC RCP45 Upper 14.88 14.17 14.13 12.75 12.71
Lower 1.28 1.18 1.26 0.9 0.87

RCP85 Upper 17.19 15.05 13.82 12.16 12.47
Lower 1.56 1.2 0.93 0.94 0.97

MPI RCP45 Upper 15.69 15.85 15.51 15.3 15.78
Lower 1.12 1.45 1.25 1.49 1.46

RCP85 Upper 14.97 16.38 15.93 12.3 14.84
Lower 1.16 1.33 1.49 1.01 1.34

130



Bibliography

[1] Craig D Allen, Alison K Macalady, Haroun Chenchouni, Dominique Bachelet, Nate Mcdowell,

Michel Vennetier, Thomas Kitzberger, Andreas Rigling, David Breshears, Patrick Gonzalez,

Rod Fensham, Zhen Zhang, Jorge Castro, Natalia Demidova, Jong hwan Lim, Gillian Allard,

Steven W Running, Akkin Semerci, and Neil Cobb. A global overview of drought and heat-

induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and

Management, Vol. 259:660–684, 2010.

[2] Niels P. R. Anten. Optimal photosynthetic characteristics of individual plants in vegetation

stands and implications for species coexistence. Annals of Botany, 95(3):495–506, 2005.

[3] NielsP.R. Anten and HeinjoJ. During. Is analysing the nitrogen use at the plant canopy level

a matter of choosing the right optimization criterion? Oecologia, 167(2):293–303, 2011.

[4] N.P.R. Anten, F. Schieving, E. Medina, M.J.A. Werger, and P. Schuffelen. Optimal leaf area

indices in c3 and c4 mono- and dicotyledonous species at low and high nitrogen availability.

Physiologia Plantarum, 95(4):541–550, 1995.

[5] J. Timothy Ball, Ian E. Woodrow, and Joseph A Berry. A model predicting stomatal con-

ductance and its contribution to the control of photosynthesis under different environmental

conditions. Progress in Photosynthesis Research, Vol. 4:221–224, 1987.

[6] Chenchayya T. Bathala, editor. Integrated Hydrological/Ecological/Economic Modeling for

Examining the Vulnerability of Water Resources to Climate Change, number 978-0-7844-

0166-8 in Proceedings, North American Water and Environment Congress 1996 - ASCE, pp.

2157-2162. ASCE, 1996.

[7] William L. Bauerle, Joseph D. Bowden, and G. Geoff Wang. The influence of temperature

on within-canopy acclimation and variation in leaf photosynthesis: spatial acclimation to

microclimate gradients among climatically divergent acer rubrum l. genotypes. Journal of

Experimental Botany, 58(12):3285–3298, 2007.

131



[8] William L. Bauerle, Ram Oren, Danielle A. Way, Song S. Qian, Paul C. Stoy, Peter E.

Thornton, Joseph D. Bowden, Forrest M. Hoffman, and Robert F. Reynolds. Photoperiodic

regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon

cycling. Proceedings of the National Academy of Sciences, 109(22):8612–8617, 2012.

[9] Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA,

1 edition, 1957.

[10] C. J. Bernacchi, E. L. Singsaas, C. Pimentel, A. R. Portis Jr, and S. P. Long. Improved

temperature response functions for models of rubisco-limited photosynthesis. Plant, Cell &

Environment, 24(2):253–259, 2001.

[11] G. B. Bonan, M.Williams, R. A. Fisher, and K. W. Oleson. Modeling stomatal conductance

in the earth system: linking leaf water-use efficiency and water transport along the soil-plant-

atmosphere continuum. Geoscientific Model Development, 7:21932222, 2014.

[12] Elgene O. Box. Predicting physiognomic vegetation types with climate variables. Vegetatio,

45(2):127–139, 1981.

[13] Steven Brantley, Chelcy R. Ford, and James M. Vose. Future species composition will affect

forest water use after loss of eastern hemlock from southern appalachian forests. Ecological

Applications, 23(4):777–790, June 2013.

[14] David D Breshears, Neil S Cobb, Paul M Rich, Kevin P Price, Craig D Allen, Y G Balice,

William H Romme, Jude H Kastens, M Lisa Floyd, Jayne Belnap, Jesse J Anderson, Orrin B

Myers, and Clifton W Meyer. Regional vegetation die-off in response to global-change-type

drought. Proceedings of the National Academy of Sciences, Vol. 102:15144–15148, 2005.

[15] L.S. Broeckx, R. Fichot, M.S. Verlinden, and R. Ceulemans. Seasonal variations in photo-

synthesis, intrinsic water-use efficiency and stable isotope composition of poplar leaves in a

short-rotation plantation. Tree Physiology, 34(7):701–715, 2014.

[16] Thomas C. Brown, Romano Foti, and Jorge A. Ramirez. Projected freshwater withdrawals in

the united states under a changing climate. Water Resources Research, 49:1259–1276, 2013.

132



[17] Thomas N. Buckley, Graham D. Farquhar, and Jeffrey M. Miller. The mathematics of linked

optimisation for water and nitrogen use in a canopy. Silva Fennica, 36(3):639–669, 2002.

[18] Robert Buitenwerf, Laura Rose, and Steven I. Higgins. Three decades of multi-dimensional

change in global leaf phenology. nature climate change, 5:364–368, April 2015.

[19] Stephanie L. Castle, Brian F. Thomas, John T. Reager, Matthew Rodell, Sean C. Swenson,

and James S. Famiglietti. Groundwater depletion during drought threatens future water

security of the colorado river basin. Geophysical Research Letters, 41:5904–5911, 2014.

[20] Haishan Chen, Robert E. Dickinson, Yongjiu Dai, and Liming Zhou. Sensitivity of simulated

terrestrial carbon assimilation and canopy transpiration to different stomatal conductance

and carbon assimilation schemes. Climate Dynamics, 36(5-6):1037–1054, 2011.

[21] Jia-Lin Chen, James F. Reynolds, Peter C. Harley, and John D. Tenhunen. Coordination

theory of leaf nitrogen distribution in a canopy. Oecologia, 93(1):pp. 63–69, 1993.

[22] James S. Clark, David M. Bell, Matthew C. Kwit, and Kai Zhu. Competition-interaction

landscapes for the joint response of forests to climate change. Global Change Biology, pages

n/a–n/a, 2014.

[23] James S. Clark, Jerry Melillo, Jacqueline Mohan, and Carl Salk. The seasonal timing of

warming that controls onset of the growing season. Global Change Biology, 20(4):1136–1145,

2014.

[24] M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and convergence in a

multidimensional complex space. Evolutionary Computation, IEEE Transactions on, 6(1):58–

73, Feb 2002.

[25] David W. Clow. Changes in the timing of snowmelt and streamflow in colorado: A response

to recent warming. Journal of Climate, Vol. 23:2293–2306, 2010.

[26] I.R. Cowan. Regulation of Water Use in Relation to Carbon Gain in Higher Plants, volume

Vol. 12B of Encyclopedia of Plant Physiology, Physiological Plant Ecology, chapter Ch. 17,

pages 589–613. Springer-Verlag, Berlin, Germany, 1982.

133



[27] I.R. Cowan. On the economy of plant form and function, chapter Economics of carbon fixation

in higher plants, pages 133–170. Cambridge University Press, 1986.

[28] I.R. Cowan and G.D. Farquhar. Stomatal function in relation to leaf metabolism and envi-

ronment. Experimental Biology Symposium, pages 471–505, 1977.

[29] Edoardo Daly, Amilcare Porporato, and Ignacio Rodrguez-Iturbe. Coupled dynamics of pho-

tosynthesis, transpiration, and soil water balance. part i: Upscaling from hourly to daily level.

Journal of Hydrometeorology, 5:546–558, 2004.

[30] D. G. G. De Pury and G. D. Farquhar. Simple scaling of photosynthesis from leaves to

canopies without the errors of big-leaf models. Plant, Cell & Environment, 20(5):537–557,

1997.

[31] Michael D. Dettinger and Daniel R. Cayan. Trends in snowfall versus rainfall in the western

united states. Journal of Climate, Vol. 19:4545, 2006.

[32] Roderick C. Dewar, Oskar Franklin, Annikki Mkel, Ross E.Mcmurtrie, and Harry T. Valen-

tine. Optimal function explains forest responses to global change. Bioscience, 59(2):127–139,

2009.

[33] Roderick C. Dewar, Lasse Tarvainen, Kathryn Parker, Gran Wallin, and Ross E. McMurtrie.

Why does leaf nitrogen decline within tree canopies less rapidly than light? an explanation

from optimization subject to a lower bound on leaf mass per area. Tree Physiology, 32(5):520–

534, 2012.

[34] J. C. Adam E. P. Maurer, A. W. Wood, D. P. Lettenmaier, and B. Nijssen. A long-term

hydrologically based dataset of land surface fluxes and states for the conterminous united

states. American Meteorological Society, Vol. 15:3237–3251, 2002.

[35] Peter S. Eagleson. Climate, soil and vegetation 3 - a simplified model of soil moisture move-

ment in the liquid phase. Water Resources Research, Vol. 14, 1978.

[36] J. R. Evans and H. Poorter. Photosynthetic acclimation of plants to growth irradiance: the

relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain.

Plant, Cell & Environment, 24(8):755–767, 2001.

134



[37] John R. Evans. Partitioning of nitrogen between and within leaves grown under different

irradiances. Australian Journal of Plant Physiology, 16:533–548, 1989.

[38] John R. Evans. Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy.

i. canopy characteristics. Australian Journal of Plant Physiology, 20(1):55–67, 1993.

[39] John Richard Evans. Developmental Constraints on Photosynthesis: Effects of Light and

Nutrition, volume 5 of Advances in Photosynthesis and Respiration, pages 281–304. Springer

Netherlands, 1996.

[40] G.D. Farquhar, S. von Caemmerer, and J.A. Berry. A biochemical model of photosynthetic

co2 assimilation in leaves of c3 species. Planta, Vol. 149:78–90, 1980.

[41] Graham D. Farquhar, Thomas N. Buckley, and Jeffrey M. Miller. Optimal stomatal control

in relation to leaf area and nitrogen content. Silva Fennica, Vol. 36:625–637, 2002.

[42] Caroline E. Farrior, Ignacio Rodriguez-Iturbe, Ray Dybzinski, Simon A. Levin, and

Stephen W. Pacala. Decreased water limitation under elevated co2 amplifies potential for

forest carbon sinks. Proceedings of the National Academy of Sciences, 2015.

[43] J. Flexas and H. Medrano. Drought-inhibition of photosynthesis in c3 plants- stomatal and

non-stomatal limitations revisited. Annals of Botany, Vol. 89:183–189, 2002.

[44] Lorraine E Flint and Alan L Flint. Downscaling future climate scenarios to fine scales for

hydrologic and ecological modeling and analysis. Ecological Processes, 1(1), February 2012.

[45] Chelcy R. Ford, Robert M. Hubbard, Brian D. Kloeppel, and James M. Vose. A comparison of

sap flux-based evapotranspiration estimates with catchment-scale water balance. Agricultural

and Forest Meteorology, 145:176–185, 2007.

[46] Romano Foti, Jorge A. Ramirez, and Thomas C. Brown. Vulnerability to u.s. water supply to

shortage. Technical Report RMRS-GTR-295, U.S. Department of Agriculture, Forest Service,

2012.

135



[47] Romano Foti, Jorge A. Ramirez, and Thomas C. Brown. A probabilistic framework for

assessing vulnerability to climate variability and change: The case of the us water supply

system. Climate Change, 125:413427, 2014.

[48] Romano Foti, Jorge A. Ramirez, and Thomas C. Brown. Response surfaces of vulnerability

to climate change: the colorado river basin, the high plains, and california. Climatic Change,

125(3):429–444, 2014.

[49] A.D. Friend, A.K. Stevens, R.G. Knox, and M.G.R. Cannell. A process-based, terrestrial

biosphere model of ecosystem dynamics (hybrid v3.0). Ecological Modelling, 95(23):249 –

287, 1997.

[50] Andrew D. Friend. Terrestrial plant production and climate change. Journal of Experimental

Botany, 61(5):1293–1309, 2010.

[51] Yongshuo S. H. Fu, Matteo Campioli, Yann Vitasse, Hans J. De Boeck, Joke Van den Berge,

Hamada AbdElgawad, Han Asard, Shilong Piao, Gaby Deckmyn, and Ivan A. Janssens.

Variation in leaf flushing date influences autumnal senescence and next years flushing date

in two temperate tree species. PNAS, 111(20):7355–7360, 2014.

[52] Thomas J. Givnish. On the economy of plant form and function, chapter Optimal stom-

atal conductance, allocation of energy between leaves and roots, and the marginal cost of

transpiration, pages 171–213. Cambridge University Press, 1986.

[53] Thomas J. Givnish and Geerat J. Vermeij. Sizes and shapes of liane leaves. The American

Naturalist, 110(975), 1976.

[54] M. Groenendijk, A. J. Dolman, C. Ammann, A. Arneth, A. Cescatti, D. Dragoni, J. H. C.

Gash, D. Gianelle, B. Gioli, G. Kiely, A. Knohl, B. E. Law, M. Lund, B. Marcolla, M. K.

van der Molen, L. Montagnani, E. Moors, A. D. Richardson, O. Roupsard, H. Verbeeck, and

G. Wohlfahrt. Seasonal variation of photosynthetic model parameters and leaf area index

from global fluxnet eddy covariance data. Journal of Geophysical Research: Biogeosciences,

116(G4):n/a–n/a, 2011.

136



[55] V. P. Gutschick and T. Simonneau. Modelling stomatal conductance of field-grown sunflower

under varying soil water content and leaf environment: comparison of three models of stomatal

response to leaf environment and coupling with an abscisic acid-based model of stomatal

response to soil drying. Plant Cell & Environment, 25:1423–1434, 2002.

[56] Pertti Hari, Annikki Makela, Eeva Korpilahti, and Maria Holmberg. Optimal control of gas

exchange. Tree Physiology, 2(1-2-3):169–175, 1986.

[57] K. Hikosaka, Y. T. Hanba, T. Hirose, and I. Terashima. Photosynthetic nitrogen-use efficiency

in leaves of woody and herbaceous species. Functional Ecology, 12(6):896–905, 1998.

[58] K. Hikosaka and I. Terashima. A model of the acclimation of photosynthesis in the leaves

of c3 plants to sun and shade with respect to nitrogen use. Plant, Cell & Environment,

18(6):605–618, 1995.

[59] Kouki Hikosaka and Tadaki Hirose. Leaf angle as a strategy for light competition: optimal and

evolutionarily stable light-extinction coefficient within a leaf canopy. Ecoscience, 4(4):501–

507, 1997.

[60] C.G. Homer, J.A. Dewitz, Jin S. Yang, L., P. Danielson, G. Xian, J. Coulston, N.D. Herold,

J.D. Wickham, and K. Megown. Completion of the 2011 national land cover database for

the conterminous united states-representing a decade of land cover change information. Pho-

togrammetric Engineering and Remote Sensing, 81(5):345–354, 2015.

[61] Mevin B. Hooten and Christopher K. Wikle. Statistical agent-based models for discrete spatio-

temporal systems. Journal of American Statistical Association, 105(489):236–248, 2010.

[62] P.G. Jarvis. The interpretation of the variations in leaf water potential and stomatal con-

ductance found in canopies in the field. Philosophical Transactions of the Royal Society of

London. Series B, Biological Sciences, Vol. 273:593–610, 1976.

[63] Frank H. Johnson, Henry Eyring, and R. W. Williams. The nature of enzyme inhibitions

in bacterial luminescence: Sulfanilamide, urethane, temperature and pressure. Journal of

Cellular and Comparative Physiology, 20(3):247–268, 1942.

137



[64] William M. Jolly, Ramakrishna Nemani, and Steven W. Running. A generalized, bioclimatic

index to predict foliar phenology in response to climate. Global Change Biology, 11(4):619–

632, 2005.

[65] Hamlyn G. Jones. Plants and Microclimate - A Quantitative Approach to Environmental

Plant Physiology. Cambridge University Press, 3rd edition, 2014.

[66] H.G. Jones and R.A. Sutherland. Stomatal control of xylem embolism. Plant , Cell and

Environment, Vol. 14:607–612, 1991.

[67] J. Kattge, S. Daz, S. Lavorel, I. C. Prentice, P. Leadley, G. Bnisch, E. Garnier, M. Westoby,

P. B. Reich, I. J. Wright, J. H. C. Cornelissen, C. Violle, S. P. Harrison, P. M. Van Bodegom,

M. Reichstein, B. J. Enquist, N. A. Soudzilovskaia, D. D. Ackerly, M. Anand, O. Atkin,

M. Bahn, T. R. Baker, D. Baldocchi, R. Bekker, C. C. Blanco, B. Blonder, W. J. Bond,

R. Bradstock, D. E. Bunker, F. Casanoves, J. Cavender-bares, J. Q. Chambers, F. S.

Chapin Iii, J. Chave, D. Coomes, W. K. Cornwell, J. M. Craine, B. H. Dobrin, L. Duarte,

W. Durka, J. Elser, G. Esser, M. Estiarte, W. F. Fagan, J. Fang, F. Fernndez-mndez, A. Fi-

delis, B. Finegan, O. Flores, H. Ford, D. Frank, G. T. Freschet, N. M. Fyllas, R. V. Gallagher,

W. A. Green, A. G. Gutierrez, T. Hickler, S. I. Higgins, J. G. Hodgson, A. Jalili, S. Jansen,

C. A. Joly, A. J. Kerkhoff, D. Kirkup, K. Kitajima, M. Kleyer, S. Klotz, J. M. H. Knops,

K. Kramer, I. Khn, H. Kurokawa, D. Laughlin, T. D. Lee, M. Leishman, F. Lens, T. Lenz,

S. L. Lewis, J. Lloyd, J. Llusi, F. Louault, S. Ma, M. D. Mahecha, P. Manning, T. Massad,

B. E. Medlyn, J. Messier, A. T. Moles, S. C. Mller, K. Nadrowski, S. Naeem, . Niinemets,

S. Nllert, A. Nske, R. Ogaya, J. Oleksyn, V. G. Onipchenko, Y. Onoda, J. Ordoez, G. Over-

beck, W. A. Ozinga, S. Patio, S. Paula, J. G. Pausas, J. Peuelas, O. L. Phillips, V. Pillar,

H. Poorter, L. Poorter, P. Poschlod, A. Prinzing, R. Proulx, A. Rammig, S. Reinsch, B. Reu,

L. Sack, B. Salgado-negret, J. Sardans, S. Shiodera, B. Shipley, A. Siefert, E. Sosinski, J.-

f. Soussana, E. Swaine, N. Swenson, K. Thompson, P. Thornton, M. Waldram, E. Weiher,

M. White, S. White, S. J. Wright, B. Yguel, S. Zaehle, A. E. Zanne, and C. Wirth. Try a

global database of plant traits. Global Change Biology, 17(9):2905–2935, 2011.

138



[68] J. Kattge and W. Knorr. Temperature acclimation in a biochemical model of photosynthesis:

a reanalysis of data from 36 species. Plant , Cell and Environment, 30(9):1176–1190, 2007.

[69] Jens Kattge, Wolfgang Knorr, Thomas Raddatz, and Christian Wirth. Quantifying pho-

tosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial

biosphere models. Global Change Biology, 15(4):976–991, 2009.

[70] G. Katul, S. Manzoni, S. Palmroth, and R. Oren. A stomatal optimization theory to describe

the effects of atmospheric co2 on leaf photosynthesis and transpiration. Annals of Botany,

Vol. 105(No. 3):431–442, 2010.

[71] Gabriel G. Katul, Sari Palmroth, and Ram Oren. Leaf stomatal responses to vapour pres-

sure deficit under current and co2-enriched atmosphere explained by the economics of gas

exchange. Plant , Cell and Environment, Vol. 32:968–979, 2009.

[72] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks, 1995.

Proceedings., IEEE International Conference on, volume 4, pages 1942–1948 vol.4, 1995.

[73] Thomas R. Knutson and Robert E. Tuleya. Reply. Journal of Climate, 18:5183–5187, 2005.

[74] Christopher J. Kucharik, Jonathan A. Foley, Christine Delire, Veronica A. Fisher, Michael T.

Coe, John D. Lenters, Christine Young-Molling, Navin Ramankutty, John M. Norman, and

Stith T. Gower. Testing the performance of a dynamic global ecosystem model: Water

balance, carbon balance, and vegetation structure. Global Biogeochemical Cycles, 14(3):795–

825, 2000.

[75] Michael H. Kutner, Christopher J. Nachtsheim, John Neter, and William Li. Applied Linear

Statistical Models. MxGraw-Hill, 5th edition, 2005.

[76] O.L. Lange, R. Lsch, E.-D. Schulze, and L. Kappen. Responses of stomata to changes in

humidity. Planta, 100(1):76–86, 1971.

[77] Michael J. Lauer and John S. Boyer. Internal co2 measured directly in leaves - abscisic acid

and low leaf water potential cause opposing effects. Plant Physiology, 98(4):1310–1316, 1992.

139



[78] R. Leuning. A critical appraisal of a combined stomatal-photosynthesis model for c3 plants.

Plant, Cell and Environment, Vol. 18:339–355, 1995.

[79] R. Leuning. Scaling to a common temperature improves the correlation between the pho-

tosynthesis parameters jmax and vcmax. Journal of Experimental Biology, 48(2):345–347,

1997.

[80] Lettenmaier Liang, Wood. Surface soil moisture parameterization of the vic-2l model: Eval-

uation and modification. Global and Planetary Change, Vol. 13:195–206, 1996.

[81] Yan-Shih et.al. Lin. Optimal stomatal behaviour around the world. Nature Climate Change,

5:459–464, 2015.

[82] Jeremy S. Littell, Marketa McGuire Elsner, Guillaume Mauger, Eric Lutz, Alan F. Hamlet,

and Eric Salath. Regional climate and hydrologic change in the northern us rockies and pacific

northwest: Internally consistent projections of future climate for resource management. Tech-

nical report, Climate Impacts Group University of Washington College of the Environment,

2011.

[83] Creighton M. Litton, James W. Raich, and Michael G. Ryan. Carbon allocation in forest

ecosystems. Global Change Biology, 13(10):2089–2109, 2007.

[84] Jon Lloyd. Modelling stomatal responses to environment in macadamia integrifolia. Aus-

tralian Journal of Plant Physiology, 18(6):649–660, 1991.

[85] Raschke Lohmann, Nolte-Holube. A large scale horizontal routing model to be coupled to

land surface parameterization schemes. 1996.

[86] Rosana Lpez, Unai Lpez de Heredia, Carmen Collada, Francisco Javier Cano, Brent C. Emer-

son, Herv Cochard, and Luis Gil. Vulnerability to cavitation, hydraulic efficiency, growth and

survival in an insular pine (pinus canariensis). Annals of Botany, 111(6):1167–1179, 2013.

[87] David R. Maidment, editor. Handbook of Hydrology. McGraw Hill, 1992.

[88] Vincent Maire, Pierre Martre, Jens Kattge, Franois Gastal, and Gerd Esser. The coordination

of leaf photosynthesis links c and n fluxes in c3 plant species. PLoS ONE, 7(6), 2012.

140



[89] Stefano Manzoni, Giulia Vico, Gabriel Katul, Philip A. Fay, Wayne Polley, Sari Palmroth,

and Amilcare Porporato. Optimizing stomatal conductance for maximum carbon gain under

water stress: a meta-analysis across plant functional types and climates. Functional Ecology,

Vol. 25:456–467, 2011.

[90] Stefano Manzoni, Giulia Vico, Gabriel Katul, Sari Palmroth, and Amilcare Porporato. Opti-

mal plant water-use strategies under stochastic rainfall. Water Resources Research, 50:5379–

5394, 2014.

[91] Edwin P Maurer and Philip B. Duffy. Uncertainty in projections of streamflow changes due

to climate change in california. Geophysical Research Letters, 32(L03704), 2005.

[92] EdwinP. Maurer. Uncertainty in hydrologic impacts of climate change in the sierra nevada,

california, under two emissions scenarios. Climatic Change, 82(3-4):309–325, 2007.

[93] RE McMurtrie, RJ Norby, RC Medlyn, BE amd Dewar, DA Pepper, PB Reich, and CVM

Barton. Why is plant-growth response to elevated co2 amplified when water is limiting,

but reduced when nitrogen is limiting? a growth-optimisation hypothesis. Functional Plant

Biology, 35(6):521–534, 2008.

[94] Ross E. McMurtrie and Roderick C. Dewar. Leaf-trait variation explained by the hypothesis

that plants maximize their canopy carbon export over the lifespan of leaves. Tree Physiology,

31(9):1007–1023, 2011.

[95] B. E. Medlyn, F. W. Badeck, D. G. G. De Pury, C. V. M. Barton, M. Broadmeadow, R. Ceule-

mans, P. De Angelis, M. Forstreuter, M. E. Jach, S. Kellomki, E. Laitat, M. Marek, S. Philip-

pot, A. Rey, J. Strassemeyer, K. Laitinen, R. Liozon, B. Portier, P. Roberntz, K. Wang, and

P. G. Jstbid. Effects of elevated [co2] on photosynthesis in european forest species: a meta-

analysis of model parameters. Plant, Cell & Environment, 22(12):1475–1495, 1999.

[96] B. E. Medlyn, E. Dreyer, D. Ellsworth, M. Forstreuter, P. C. Harley, M. U. F. Kirschbaum,

X. Le Roux, P. Montpied, J. Strassemeyer, A. Walcroft, K. Wang, and D. Loustau. Temper-

ature response of parameters of a biochemically based model of photosynthesis. ii. a review

fo experimental data. Plant, Cell & Environment, 25(9):1167–1179, 2002.

141



[97] Belinda E. Medlyn, Remko A. Duursma, Derek Eamus, David S. Ellsworth, I. Colin Pren-

tice, Craig V. M. Barton, Kristine Y. Crous, Paolo De Angelis, Michael Freeman, and Lisa

Wingate. Reconciling the optimal and empirical approaches to modelling stomatal conduc-

tance. Global Change Biology, 17(6):2134–2144, 2011.

[98] Laurent Misson, Kevin P. Tu, Ralph A. Boniella, and Allen H. Goldstein. Seasonality of

photosynthetic parameters in a multi-specific and vertically complex forest ecosystem in the

sierra nevada of california. Tree Physiology, 26:729–741, 2006.

[99] Russel K. Monson, Michael R. Sackschewsky, and George J. Williams III. Field measurements

of photosynthesis, water-use efficiency, and growth in agropyron smithii (c3) and bouteloua

gracilis (c4) in the colorado shortgrass steppe. Oecologia, Vol. 68:400–409, 1986.

[100] J.E. Nash and J.V. Sutcliffe. River flow forecasting through conceptual models part i a

discussion of principles. Journal of Hydrology, 10(3):282 – 290, 1970.

[101] . Niinemets and J. D. Tenhunen. A model separating leaf structural and physiological effects

on carbon gain along light gradients for the shade-tolerant species acer saccharum. Plant,

Cell & Environment, 20(7):845–866, 1997.

[102] lo Niinemets. Optimization of foliage photosynthetic capacity in tree canopies: towards

identifying missing constraints. Tree Physiology, 32(5):505–509, 2012.

[103] lo Niinemets, Olevi Kull, and John D. Tenhunen. An analysis of light effects on foliar morphol-

ogy, physiology, and light interception in temperate deciduous woody species of contrasting

shade tolerance. Tree Physiology, 18(10):681–696, 1998.

[104] Ulo Niinemets, Olevi Kull, and J.D. Tenhunen. Within-canopy variation in the rate of de-

velopment of photosynthetic capacity is proportional to integrated quantum flux density in

temperate deciduous trees. Plant , Cell and Environment, 27:293–313, 2004.

[105] Park S. Nobel. Physicochemical and Environmental Plant Physiology. Elsevier, 4th edition,

2009.

142



[106] United States Bureau of Reclamation. West-wide climate risk assessments: Bias-corrected

and spatially downscaled surface water projections. (Technical Memorandum No. 86-68210-

2011-01), 2011.

[107] E Ogren and J.R. Evans. Photosynthetic light-response curves- i. the influence of co2 partial

pressure and leaf inversion. Planta, 189(2):182–190, 1993.

[108] Yusuke Onoda, Kouki Hikosaka, and Tadaki Hirose. Seasonal change in the balance between

capacities of rubp carboxylation and rubp regeneration affects co2 response of photosynthesis

in polygonum cuspidatum. Journal of Experimental Botany, 56(412):755–763, 2005.

[109] Jeanne L. D. Osnas, Jeremy W. Lichstein, Peter B. Reich, and Stephen W. Pacala. Global leaf

trait relationships: Mass, area, and the leaf economics spectrum. Science, 340(6133):741–744,

2013.

[110] Alan Owen and Inman Harvey. Adapting particle swarm optimization for fitness landscapes

with neutrality. In Proceedings of the 2007 IEEE Swarm Intelligence Symposium, Proceedings

of the 2007 IEEE Swarm Intelligence Symposium, pages 258–265. IEEE Press, 2007.

[111] Mikko S. Peltoniemi, Remko A. Duursma, and Belinda E. Medlyn. Co-optimal distribution

of leaf nitrogen and hydraulic conductance in plant canopies. Tree Physiology, 32(5):510–519,

2012.

[112] Caroline A. Polgar and Richard B. Primack. Leaf-out phenology of temperate woody plants:

from trees to ecosystems. New Phytologist, 191(4):926–941, 2011.

[113] Hendrik Poorter, Steeve Pepin, Toon Rijkers, Yvonne de Jong, John R. Evans, and Christian

Krner. Construction costs, chemical composition and payback time of high- and low-irradiance

leaves. Journal of Experimental Botany, 57(2):355–371, 2006.

[114] Hendrik Poorter, ClaudiusA.D.M. van de Vijver, RenG.A. Boot, and Hans Lambers. Growth

and carbon economy of a fast-growing and a slow-growing grass species as dependent on

nitrate supply. Plant and Soil, 171(2):217–227, 1995.

143



[115] I. Colin Prentice, Wolfgang Cramer, Sandy P. Harrison, Rik Leemans, Robert A. Monserud,

and Allen M. Solomon. A global biome model based on plant physiology and dominance, soil

properties and climate. Journal of Biogeography, 19(2):pp. 117–134, 1992.

[116] Alistair Rogers. The use and misuse of vc,max in earth system models. Photosynthesis

Research, 119:15–29, 2014.

[117] P.J. Sands. Modelling canopy production. i. optimal distribution of photosynthetic resources.

Australian Journal of Plant Physiology, 22(4):593–601, 1995.

[118] Hisashi Sato, Akihiko Itoh, and Takashi Kohyama. Seibdgvm: A new dynamic global veg-

etation model using a spatially explicit individual-based approach. Ecological Modelling,

200(34):279 – 307, 2007.

[119] Simon Scheiter, Liam Langan, and Steven I. Higgins. Next-generation dynamic global vege-

tation models: learning from community ecology. New Phytologist, 198(3):957–969, 2013.

[120] Thomas D. Sharkey, Carl J. Bernacchi, Graham D. Farquhar, and Eric L. Singsaas. Fitting

photosynthetic carbon dioxide response curves for c3 leaves. Plant, Cell & Environment,

30(9):1035–1040, 2007.

[121] Yuhui Shi and RussellC. Eberhart. Parameter selection in particle swarm optimization. In

V.W. Porto, N. Saravanan, D. Waagen, and A.E. Eiben, editors, Evolutionary Programming

VII, volume 1447 of Lecture Notes in Computer Science, pages 591–600. Springer Berlin

Heidelberg, 1998.

[122] Sitch, Smith, Prentice, Arneth, Bondeau, Cramer, Kaplan, Levis, Lucht, Sykes, Thonicke,

and Venevsky. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon

cycling in the lpj dynamic global vegetation model. Global Change Biology, Vol. 9:161–185,

2003.

[123] Y. Suzuki, A. Makino, and T. Mae. Changes in the turnover of rubisco and levels of mrnas

of rbcl and rbcs in rice leaves from emergence to senescence. Plant, Cell & Environment,

24(12):1353–1360, 2001.

144



[124] F. Tardieu, T. Lafarge, and Th. Simonneau. Stomatal control by fed or endogenous xylem

aba in sunflower: interpretation of correlations between leaf water potential and stomatal

conductance in anisohydric species. Plant, Cell & Environment, 19(1):75–84, 1996.

[125] J.D. Tenhunen, O.L. Lange, J. Gebel, W. Beyschlag, and J.A. Weber. Changes in photosyn-

thetic capacity, carboxylation efficiency, and co2 compensation point associated with midday

stomatal closure and midday depression of net co2 exchange of leaves of quercus suber. Planta,

162(3):193–203, 1984.

[126] J.W. Tukey. Exploratory Data Analysis. Addison-Wesley, MA, 1977.

[127] A. Tuzet, A. Perrier, and R. Leuning. A coupled model of stomatal conductance, photosyn-

thesis and transpiration. Plant , Cell and Environment, Vol. 26:1097–1116, 2003.

[128] M T Tyree and J S Sperry. Vulnerability of xylem to cavitation and embolism. Annual

Review of Plant Physiology and Plant Molecular Biology, 40(1):19–36, 1989.

[129] L. M. Verheijen, V. Brovkin, R. Aerts, G. Bönisch, J. H. C. Cornelissen, J. Kattge, P. B.

Reich, I. J. Wright, and P. M. van Bodegom. Impacts of trait variation through observed

traitclimate relationships on performance of an earth system model: a conceptual analysis.

Biogeosciences, 10(8):5497–5515, 2013.

[130] von Beer. Bestimmung der absorption des rothen lichts in farbigen flussigkeiten. Annalen

der Physik, 86:78–88, 1852.

[131] S. von Caemmerer. Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, 2000.

[132] S. von Caemmerer and Graham D. Farquhar. Some relationships between the biochemistry

of photosynthesis and the gas exchange of leaves. Planta, 153(4):376–387, 1981.

[133] Susanne von Caemmerer, John R. Evans, Graham S. Hudson, and T. John Andrews. The

kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measure-

ments of photosynthesis in leaves of transgenic tobacco. Planta, 195(1):88–97, 1994.

145



[134] James M. Vose, David L. Peterson, and Toral Patel-Weynand, editors. Effects of Climatic

Variability and Change on Forest Ecosystems: A Comprehensive Science Synthesis for the

US Forest Sector. United States Department of Agriculture, 2012.

[135] Joseph C.V. Vu and George Yelenosky. Water deficit and associated changes in some photo-

synthetic parameters in leaves of ’valencia’ orange (citrus sinensis [l.] osbeck). Plant Physiol-

ogy, 88(2):375–378, 1988.

[136] Anthony P. Walker, Andrew P. Beckerman, Lianhong Gu, Jens Kattge, Lucas A. Cernusak,

Tomas F. Domingues, Joanna C. Scales, Georg Wohlfahrt, Stan D. Wullschleger, and F. Ian

Woodward. The relationship of leaf photosynthetic traits vcmax and jmax to leaf nitrogen,

leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. Ecology and

Evolution, 4(16):3218–3235, August 2014.

[137] Jeffrey M. Warren, Richard J. Norby, and Stan D. Wullschleger. Elevated co2 enhances leaf

senescence during extreme drought in a temperate forest. Tree Physiology, 31:117–130, 2011.

[138] Richard A Wildman and Noelani A Forde. Management of water shortage in the colorado

river basin - evaluating current policy and the viability of interstate water trading. Journal

of the American Water Resources Association, Vol. 48:411–422, 2012.

[139] A. Park Williams, Craig D. Allen, Constance I. Millar, Thomas W. Swetnam, Joel Michaelsen,

Christopher J. Still, and Steven W. Leavitt. Forest responses to increasing aridity and warmth

in the southwestern united states. PNAS, Vol. 107:21289–21294, 2010.

[140] Park Williams, Craig D. Allen, Alison K. Macalady, Daniel Griffin, Connie A. Woodhouse,

David M. Meko, Thomas W. Swetnam, Sara A. Rauscher, Richard Seager, Henri D. Grissino-

Mayer, Jeffrey S. Dean, Edward R. Cook, Chandana Gangodagamage, Michael Cai, and

Nate G. McDowell. Temperature as a potent driver of regional forest drought stress and tree

mortality. Nature Climate Change, 3:292–297, 2013.

[141] Charles G. Willis, Brad Ruhfel, Richard B. Primack, Abraham J. Miller-Rushing, and

Charles C. Davis. Phylogenetic patterns of species loss in thoreau’s woods are driven by

climate change. Proceedings of the National Academy of Sciences, 105(44):17029–17033, 2008.

146



[142] Kell B. Wilson, Dennis D. Baldocchi, and Paul J. Hanson. Spatial and seasonal variability of

photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree

Physiology, 20:565–578, 2000.

[143] I E Woodrow and J A Berry. Enzymatic regulation of photosynthetic co2, fixation in c3 plants.

Annual Review of Plant Physiology and Plant Molecular Biology, 39(1):533–594, 1988.

[144] Ian J. Wright, Michelle R. Leishman, Cassia Read, and Mark Westoby. Gradients of light

availability and leaf traits with leaf age and canopy position in 28 australian shrubs and trees.

Functional Plant Biology, 33:407–419, 2006.

[145] Ian J. Wright, Peter B. Reich, Mark Westoby, David D. Ackerly, Zdravko Baruch, Frans

Bongers, Jeannine Cavender-Bares, Terry Chapin, Johannes H. C. Cornelissen, Matthias

Diemer, Jaume Flexas, Eric Garnier, Philip K. Groom, Javier Gulias, Kouki Hikosaka, By-

ron B. Lamont, Tali Lee, William Lee, Christopher Lusk, Jeremy J. Midgley, Marie-Laure

Navas, Ulo Niinemets, Jacek Oleksyn, Noriyuki Osada, Hendrik Poorter, Pieter Poot, Lynda

Prior, Vladimir I. Pyankov, Catherine Roumet, Sean C. Thomas, Mark G. Tjoelker, Erik J.

Veneklaas, and Rafael Villar. The worldwide leaf economics spectrum. Nature, 428(6985):821–

827, April 2004.

[146] Stan D. Wullschleger. Biochemical limitations to carbon assimilation in c3 plants–a retro-

spective analysis of the a/ci curves from 109 species. Journal of Experimental Botany, Vol.

44:907–920, 1993.

[147] Liukang Xu and Dennis D. Baldocchi. Seasonal trends in photosynthetic parameters and

stomatal conductance of blue oak (quercus douglasii) under prolonged summer drought and

high temperature. Tree Physiology, 23(13):865–877, 2003.

[148] F. Yoshie. Intercellular co2 concentration and water-use efficiency of temperate plants with

different life-forms and from different microhabitats. Oecologia, 68(3):370–374, 1986.

[149] S. Zaehle and A. D. Friend. Carbon and nitrogen cycle dynamics in the o-cn land surface

model: 1. model description, site-scale evaluation, and sensitivity to parameter estimates.

Global Biogeochemical Cycles, 24(1):n/a–n/a, 2010.

147



[150] Jian Zhanga, Shongming Huang, and Fangliang He. Half-century evidence from western

canada shows forest dynamics are primarily driven by competition followed by climate. PNAS,

2015.

[151] Zaichun Zhu, Jian Bi, Yaozhong Pan, Sangram Ganguly, Alessandro Anav, Liang Xu,

Arindam Samanta, Shilong Piao, Ramakrishna R. Nemani, and Ranga B. Myneni. Global

data sets of vegetation leaf area index (lai)3g and fraction of photosynthetically active ra-

diation (fpar)3g derived from global inventory modeling and mapping studies (gimms) nor-

malized difference vegetation index (ndvi3g) for the period 1981 to 2011. Remote Sensing,

5(2):927–948, 2013.

148



Appendix A

Optimal Stomatal Control

A.1 Farquhar, von Caemmerer and Berry Model of Photosynthe-

sis

Carbon assimilation from photosynthesis is assessed using the ubiquitous Farquhar, von Caem-

merer, Berry (FvCB) biochemical model of photosynthesis [40]. Carboxylation rate limited net

assimilation for C3 photosynthesis can be defined as,

Ac =
Vcmax(Ci − Γ∗)

Ci +Km
−Rd (A.1)

where, Ac is the net rate of carboxylation limited assimilation (µmol CO2 m−2s−1), Vcmax is

the maximum rate of carboxylation (µmol CO2 m−2s−1), Ci is the leaf internal pore space CO2

concentration (µmol mol−1), Γ∗ is the CO2 compenation point in the absence of mitochondrial

respiration (µmol mol−1), Km is the Michaelis-Menten half-rate constant (µmol mol−1), and Rd

is the rate of mitochondrial respiration (µmol CO2 m−2s−1). The Michaelis-Menten constant Km

can be expanded [133,143],

Km = Kc × (1 +Ko/O2) (A.2)

where Kc is the rate constant for carboxylation reactions, O2 is the concentration of oxygen

(µmol mol−1), and Ko is the rate constant for oxygenation reactions with RuBisCO. Km describes

the competitively inhibited carboxylation rate due to the presence of oxygen.

The RuBP limited rate of assimilation may also be defined as,

Aj =
J(Ci − Γ∗)

4Ci + 8Γ∗
−Rd (A.3)
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where, Aj is the RuBP limited rate of net assimilation, and J is the electron transport rate. The

rate J depends on absorbed irradiance for photosynthetic processing, and can be approximated

with a non-rectangular hyperbola [107],

J =
1

2θ

[

I2 + Jmax −
√

(I2 + Jmax)2 − 4θI2Jmax

]

(A.4)

where θ is a curvature factor within [0 (for a rectangular hyperbola), 1 (for a Blackman-type

hyperbola)], Jmax is the maximum rate of electron transport, and I2 is the irradiance absorbed by

the chlorophyll such that,

I2 = αI(1− f)/2 (A.5)

where I is the photosynthetically active radiation (PAR, wavelengths between 400-700nm [65],

µmol m−2s−1), α is the absorptance fraction [36], f adjusts for light quality (typically 0.15), and

it is divided by 2 to approximate the split between Photosystems I and II [105].

The relationship between chlorophyll concentration and absorptance can be described as [36],

α =
χ

χ+ 76
(A.6)

The form of Eqs.(A.1) and (A.3) are quite similar. Converting to generalized symbology, each

equation can be represented as,

A∗ =
a1(Ci − Γ∗)

Ci + a2
−Rd (A.7)

where, a1 is either Vcmax or J/4, and a2 is either Km or 2Γ∗.

The Farquhar biochemical model of photosynthesis only represents the ’demand’ of photosyn-

thesis, and is not constrained from the supply side, such as would occur with stomatal limitations

during soil water deficits. The internal Ci can be replaced with a Fickian diffusive process for

assimilation, solved for Ci as,

Ci = Ca −A/g (A.8)

where A is the net rate of assimilation, g is the stomatal conductance to CO2, and Ca is the ambient

atmospheric CO2 concentration (µmol mol−1). Further, a simplifying assumption resulting in a

’linearized’ biochemical model may be made by assuming that the denominator Ci in Eq. (A.7) is

150



constant [70], and may be approximated as a fraction of the atmospheric CO2 concentration, Ci ≈

rCa, where r is the long-term ratio of Ci/Ca. It is well-known that the internal CO2 concentration is

relatively constant over a range of irradiances and seasons [77,125,148], and thus the approximation

is not unreasonable with an appropriate estimate of r.

Re-writing Eq.(A.7) with the substituted denominator, also replacing the Ci in the numerator

with Eq.(A.8), and solving for A, results in,

An =
gs(kCa − Γk −Rd)

k + gs
(A.9)

where k is the carboxylation efficiency, and is defined as k = a1/(rCa + a2).

The net rate of assimilation is then the minimum of the two assimilation rates, A = min(Ac, Aj).

Transpiration can be estimated also using a Fickian diffusive process,

Et = agsD (A.10)

where, Et is the transpiration rate, a is the ratio of conductance of H2O vapor to CO2 (assumed a

constant (a ≈ 1.6) under normal environmental conditions), and D is the vapor pressure deficit.

The vapor pressure deficit D is the difference from leaf internal pore space vapor pressure and

vapor pressure above the leaf boundary layer. Several simplifying assumptions allow closed form

solution of this aspect, including assuming the leaf internal pore space is saturated, assuming leaf

temperature is equivalent to the ambient air temperature, and also assuming the ambient vapor

pressure is equivalent to the vapor pressure above the leaf boundary layer. In coupled micro-

climates, these assumptions have minimal affect on the result.

The vapor pressure deficit D is found as,

D = V Pleaf − V Pamb (A.11)

where V Pamb is the ambient atmospheric vapor pressure, and V Pleaf is the leaf internal pore space

vapor pressure, which is assumed saturated.
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Saturated vapor pressure can be estimated using the Clausius-Clapeyron equation [87],

Dsat = 611 ∗ exp(−2.5e6/461.5 ∗ (1/Tk − 1/273.15)) (A.12)

where Tk is the temperature in Kelvin.

A.2 Optimal Stomatal Control with Euler-Lagrange

Optimal stomatal response is that where over the course of some period of integration, and

for some finite supply of resources, the stomata operate in a manner to maximize some objective

function, defined here as the net assimilation. The problem is formulated as a calculus of variations

problem, which can be solved using the Euler-Lagrange equation (refer to Chapter 2).

Bringing Eqs.(A.9) and (A.10) together as a Lagrange function,

L =
gs(kCa − Γk −Rd)

k + gs
− λ× agsD (A.13)

where λ is a Lagrange parameter, also referred to here classically as the marginal water use effi-

ciency.

Differentiating both Eq.(A.13) with respect to stomatal conductance (g), setting equal to 0,

and solving for stomatal conductance results in,

g =

√

k(kCa − kΓ∗ −Rd)

λaD
− k (A.14)

Therefore, for a given λ, and carboxylation efficiency k (function of irradiance, Vcmax, Jmax, Km,

Ca and r), the optimal stomatal conductance may be found. This may then be substituted into

Eq. A.9 to determine the net assimilation rate.
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Appendix B

Numerical Solution Procedures

B.1 Optimal Allocation

The optimal resource allocation problem of Eq. 3.2 and Eq.3.3 is not easily solved analyti-

cally. However, because the assimilation rate for a given Norg, Vcmax and Jmax can be uniquely

determined, the optimal resource allocation problem can be solved numerically as follows:

1. Set an estimate of leaf nitrogen concentration Norg, and select values of Vcmax and Jmax from

a feasible set,

2. Solve 3.8 for the chlorophyl content as,

χ =
1

0.0331
[Norg − 0.079Jmax

−
Vcmax

6.25Vcrξ
− νJmax −NO] (B.1)

3. Determine the absorptance, α, using Eq. A.6,

4. Adjust Km for temperature based on mean monthly values [96],

5. For a given discrete level of irradiance, determine the rate of assimilation using the FvCB

model and the optimal stomatal conductance of Eqs. A.9 and A.14, respectively,

6. Iterate for each level of irradiance from the density function in Eq. 3.2 and Eq.3.3 and obtain

estimates of the expected rate of assimilation,

7. This process is then repeated for new values of Vcmax and Jmax (with Norg constant), resulting

in a different expected value of assimilation.
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Spanning the feasible solution space of Vcmax and Jmax, results in a surface of expected assim-

ilation values for a given concentration of leaf nitrogen and light distribution, referred to as the

decision surface. The maximum value of expected assimilation, and therefore the corresponding

values of V ∗
cmax and J∗

max solving Eq. 3.2 and Eq.3.3, may then be extracted from the decision

surface providing an estimate of the optimal solution.

B.1.1 Solar Irradiance Density Distribution

Although it may be possible to estimate daily irradiance using a uniform distribution [39], this

may over-estimate the high irradiance density.

More appropriately, a scaled-Beta distribution may be used to estimate the solar irradiance

density function. A Beta distribution is defined between the range [0, 1], which easily allows defi-

nition of a constrained distribution between 0 (or some minimum value) and a specified maximum

value (i.e. scaled).

The Beta Density function can be defined as,

Beta(X) =
Γ(α+ β)

Γ(α)Γβ
×Xα−1(1−X)β−1 (B.2)

where Γ is the Gamma Function, α and β are shape parameters, and X is some fraction in set

[0− 1]. This is scaled by simply multiplying the fraction X by some maximum value of irradiance,

Imax.

As an example, 20-years of hourly data during May at the Denver International Airport were

analyzed 22, where a scaled Beta density was fit to the irradiances (greater than 50 W m−2 shown),

and are shown in Figure B.1. Here, it becomes apparent how a uniform density would over estimate

the probability density of high irradiances.

The numerical solution procedure divides the density function into 20 equal intervals, which are

then used to find the expected value of daily integration.

22http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010
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Figure B.1: Fitted Beta Density Distribution of Hourly Irradiance in May - Denver International
Airport. Irradiance is the sum of direct and diffuse radiation on a horizontal surface. Includes
hourly data from the years 1991-2010, and excludes radiation below 50 W m−2.

B.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is a heuristic optimization approach that utilizes a popula-

tion of self and co-aware particles ‘flying’ through decision space. The numerical process is designed

to mimic flocking behavior of a population where information (e.g. the best or most optimal lo-

cation from all individuals) is shared between individuals, in addition to individual memory of the

personal best location. This knowledge is used to then move each point through decision space,

converging on the optimal solution. Originally presented by Kennedy and Eberhart in 1995 [72],

several modifications and improvements have been proposed to both the parameterization and solu-

tion procedure [24,110,121]. Here, we present the PSO used for the optimal resource optimization

procedure.

Let us define a population of N particles located in D dimensional space. Each individual (Ni)

has a position, defined as, Xi,d, a personal best location of PDi,d associated with the personal

best value of PVi, and a population wide global best location of GDd with a value of GV , ∀i ∈

N and ∀d ∈ D. The location of each individual is initialized randomly through D dimension space,

and the personal best value PV is then assigned as the value at the starting location X, where
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PD = X. From the population of personal bests, the global best solution GV and location GDd

are assigned.

For each iteration step t, the velocity23 and position of each point is then updated by,

Vt+1,i,d = CkVt,i,d + C1R1(Pi,d −Xi,d) + C2R2(GDd −Xi,d) (B.3a)

Xt+1,i,d = Xt,i,d + Vt+1,i,d ∀i ∈ N and ∀d ∈ D (B.3b)

where Ck, C1, C2 are inertial parameters for the velocity, personal best and global best positions,

respectively, and R1 and R2 are random uniform values in [0, 1]. The velocity inertia Ck is a

decaying coefficient defined as,

Ck = C0exp
−ζk (B.4)

where k is the current iteration, and ζ is a rate of decay parameter, here set equal to 0.1. Further,

the resulting velocities V are checked against set simple non-reflecting bounds such that Vmin ≤

V ≤ Vmax for each d in D (i.e. each d has a unique set of velocity bounds).

For each new position Xt+1 (i and d implied for simpler notation), the value of the function

is then evaluated. For each individual, if the current value is better than the personal best value,

then both PD and PV are updated. If any personal best is greater than the global personal best,

then GV and GD would also be updated.

This process is repeated for either a fixed number of K iterations, or until a minimum error

tolerance ǫ is not exceeded.

The following summarize the parameters used in the optimal allocation particle search:

DVcmin =5.; // Dimensional minimum Vcmax

DVcmax =160.; // Dimensional maximum Vcmax

Dwmin =1.; // Dimensional minimum omega

Dwmax =2.7; // Dimensional maximum omega

Smax =0.1; // maximum Step velocity (scaled 0 to 1)

Smin = -0.1; // minimum Step (velocity) length

C0 =0.7298; // Inertia [Clerc and Kennedy 2002]

C1 =2.9922/2.; //

C2 =2.9922/2.; // weighting factors for personal and global bests

23The term velocity simply refers to a step distance for each dimension for each iteration.
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Figure B.2: Sample Particle Swarm Traces - 10 particles converging on the optimal solution in
approximately seven steps. White circles show clustering of solutions near optimal, while a small
triangle indicates the global best solution. Here, decision space is shown defined as Vcmax and ω,
where ω = Jmax/Vcmax.

The objective function determined for each point is the expected value of daily integrated

assimilation (refer to Chapter 3) in a two-dimensional Jmax and Vcmax decision space.

Since only two-dimensions are being explored, we can easily visualize this process and show

traces of particles as they converge on optimal solutions. For N = 10, we can see a sample

convergence of traces in Figure B.2.
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Appendix C

Harmonic Phenologic Regression

C.1 Regression Diagnostics

An important aspect of developing a regression includes evaluation of the model diagnostics.

This includes checking for heteroskedasticity, residual bias, residual normality, and data points with

extreme leverage adversely affecting the regression.

For each of the β regression models, which are the beta coefficients for the harmonic regression

Intercept, Cosine and Sine terms, respectively, a series of four diagnostic plots are included.

Overall, these plots indicate a excellent to acceptable diagnostics. Heteroskedasticity is limited,

normality is maintained with a few exceptions for fat-tails at the extremes, and no data points were

considered for additional removal due to extreme residual leverage. This information is available

in Sections C.1.1 to C.1.3

Additionally, a section of histograms of fitness metrics is included. Each natural vegetation

point in the study domain was reanalyzed using the regressed relationships and compared to the

fitted values, resulting in: Nash-Sutcliffe measures of efficiency, annual differences of maximum LAI

values, and annual differences of mean LAI values. Histograms of each of these three metrics are

included in Section C.2
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C.1.1 Regression Diagnostic Plots - Intercept (β0)

Figure C.1: Intercept (β0) Regression Diagnostics - Residuals against Fitted
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Figure C.2: Intercept (β0) Regression Diagnostics - Residual QQ Plot

Figure C.3: Intercept (β0) Regression Diagnostics - Standardized Residuals
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Figure C.4: Intercept (β0) Regression Diagnostics - Residual Leverage and Cooks Distance
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C.1.2 Regression Diagnostic Plots - Cosine Coefficient (β1)

Figure C.5: Cosine Coefficient (β1) Regression Diagnostics - Residuals against Fitted
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Figure C.6: Cosine Coefficient (β1) Regression Diagnostics - Residual QQ Plot

Figure C.7: Cosine Coefficient (β1) Regression Diagnostics - Standardized Residuals
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Figure C.8: Cosine Coefficient (β1) Regression Diagnostics - Residual Leverage and Cooks Distance
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C.1.3 Regression Diagnostic Plots - Sine Coefficient (β2)

Figure C.9: Sine Coefficient (β2) Regression Diagnostics - Residuals against Fitted
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Figure C.10: Sine Coefficient (β2) Regression Diagnostics - Residual QQ Plot

Figure C.11: Sine Coefficient (β2) Regression Diagnostics - Standardized Residuals
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Figure C.12: Sine Coefficient (β2) Regression Diagnostics - Residual Leverage and Cooks Distance

Figure C.13: Measure of Influence on Individual Regressed Observation (DFFITS), β0
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Figure C.14: Measure of Influence on Individual Regressed Observation (DFFITS), β1

Figure C.15: Measure of Influence on Individual Regressed Observation (DFFITS), β2
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Figure C.16: Measure of Influence on Individual Regressed Coefficient (DFBETA), β0
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Figure C.17: Measure of Influence on Individual Regressed Coefficient (DFBETA), β1
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Figure C.18: Measure of Influence on Individual Regressed Coefficient (DFBETA), β2
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C.2 Histograms of Fitness Metrics

Figure C.19: Histogram of Nash-Sutcliffe Measures of Efficiency

Figure C.20: Histogram of Annual Mean LAI Difference
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Figure C.21: Histogram of Annual Maximum LAI Difference
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Appendix D

Vulnerability Analysis

D.1 Figures

D.1.1 Yield
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D.1.2 Vulnerability

182



183



184



185



186



187



188



189



D.2 Monthly Vulnerability Summary Tables

Table D.1: Summary of Bi-Decadal Vulnerability (%) by HUC4 and Month (BCC, RCP45)

1401 1402 1403 1404 1405 1406 1407 1408 1501 1502 1503
Decadal Block Month

2020-2040 1 5 5 5 5 5 5 5 5 5 5 5
2 10 10 10 10 10 10 10 10 10 10 10
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 35 0
5 0 0 0 0 0 0 0 0 0 80 0
6 0 0 0 0 0 0 0 0 0 100 0
7 0 0 0 5 40 5 0 0 0 100 0
8 5 5 5 10 85 10 5 5 5 100 5
9 5 5 5 15 95 15 5 5 5 95 5
10 5 5 5 5 5 5 5 5 5 90 5
11 10 10 10 10 10 10 10 10 10 40 10
12 10 10 10 10 10 10 10 10 10 10 10

2040-2060 1 45 45 45 45 45 45 45 45 45 50 45
2 45 45 45 45 45 45 45 45 45 55 45
3 30 30 30 30 30 30 30 30 30 40 30
4 15 15 15 15 15 15 15 15 15 35 15
5 5 5 5 5 5 5 5 5 5 70 5
6 5 5 5 5 5 5 5 5 5 95 5
7 15 20 15 15 45 15 15 15 15 100 15
8 30 25 25 30 95 30 25 25 25 100 25
9 25 25 25 40 90 40 25 25 25 100 25
10 25 25 25 25 25 25 25 25 25 90 25
11 35 35 35 35 35 35 35 35 35 70 35
12 35 35 35 35 35 35 35 35 35 50 35
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1401 1402 1403 1404 1405 1406 1407 1408 1501 1502 1503
Decadal Block Month
2060-2080 1 55 55 55 55 55 55 55 55 55 75 55

2 60 60 60 60 60 60 60 60 60 75 60
3 50 50 50 50 50 50 50 50 50 55 50
4 30 30 30 30 30 30 30 30 30 60 30
5 5 5 5 5 5 5 5 5 5 90 5
6 0 0 0 0 0 0 0 0 0 100 0
7 5 20 5 25 40 25 5 10 5 100 5
8 55 50 50 55 95 55 30 35 30 100 30
9 50 45 45 60 85 60 45 45 45 100 45
10 50 50 50 50 50 50 50 50 50 95 50
11 55 55 55 55 55 55 55 55 55 80 55
12 55 55 55 55 55 55 55 55 55 80 55

2080-2100 1 0 0 0 0 0 0 0 0 0 60 0
2 0 0 0 0 0 0 0 0 0 45 0
3 0 0 0 0 0 0 0 0 0 20 0
4 0 0 0 0 0 0 0 0 0 35 0
5 0 0 0 0 0 0 0 0 0 75 0
6 0 0 0 0 0 0 0 0 0 95 0
7 0 0 0 0 20 0 0 0 0 100 0
8 15 0 0 0 95 0 0 0 0 100 0
9 25 0 0 0 75 0 0 0 0 100 0
10 0 0 0 0 0 0 0 0 0 95 0
11 0 0 0 0 0 0 0 0 0 95 0
12 0 0 0 0 0 0 0 0 0 70 0
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Table D.2: Summary of Bi-Decadal Vulnerability (%) by HUC4 and Month (CAN, RCP45)

1401 1402 1403 1404 1405 1406 1407 1408 1501 1502 1503
Decadal Block Month

2020-2040 1 15 15 15 15 15 15 15 15 15 15 15
2 15 15 15 15 15 15 15 15 15 15 15
3 10 10 10 10 10 10 10 10 10 5 10
4 0 0 0 0 0 0 0 0 0 25 0
5 0 0 0 0 0 0 0 0 0 50 0
6 0 0 0 0 0 0 0 0 0 75 0
7 5 0 0 0 35 0 0 0 0 95 0
8 5 0 0 10 65 10 0 0 0 90 0
9 10 5 5 10 45 10 5 5 5 80 5
10 5 5 5 5 5 5 5 5 5 45 5
11 5 5 5 5 5 5 5 5 5 20 5
12 5 5 5 5 5 5 5 5 5 5 5

2040-2060 1 0 0 0 0 0 0 0 0 0 10 0
2 0 0 0 0 0 0 0 0 0 10 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 35 0
5 0 0 0 0 0 0 0 0 0 85 0
6 0 0 0 0 0 0 0 0 0 100 0
7 0 0 0 0 45 0 0 0 0 100 0
8 5 0 0 0 85 0 0 0 0 100 0
9 5 0 0 0 50 0 0 0 0 95 0
10 0 0 0 0 0 0 0 0 0 90 0
11 0 0 0 0 0 0 0 0 0 60 0
12 0 0 0 0 0 0 0 0 0 25 0

2060-2080 1 0 0 0 0 0 0 0 0 0 25 0
2 0 0 0 0 0 0 0 0 0 5 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 30 0
5 0 0 0 0 0 0 0 0 0 75 0
6 0 0 0 0 0 0 0 0 0 100 0
7 0 0 0 0 45 0 0 0 0 100 0
8 20 0 0 0 70 0 0 0 0 95 0
9 20 0 0 0 30 0 0 0 0 85 0
10 0 0 0 0 0 0 0 0 0 70 0
11 0 0 0 0 0 0 0 0 0 75 0
12 0 0 0 0 0 0 0 0 0 45 0

2080-2100 1 0 0 0 0 0 0 0 0 0 65 0
2 0 0 0 0 0 0 0 0 0 45 0
3 0 0 0 0 0 0 0 0 0 30 0
4 0 0 0 0 0 0 0 0 0 40 0
5 0 0 0 0 0 0 0 0 0 85 0
6 0 0 0 0 0 0 0 0 0 100 0
7 5 0 0 0 30 0 0 0 0 100 0
8 20 0 0 0 80 0 0 0 0 100 0
9 40 0 0 0 55 0 0 0 0 100 0
10 0 0 0 0 0 0 0 0 0 100 0
11 0 0 0 0 0 0 0 0 0 95 0
12 0 0 0 0 0 0 0 0 0 85 0
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Table D.3: Summary of Bi-Decadal Vulnerability (%) by HUC4 and Month (CSIRO, RCP45)

1401 1402 1403 1404 1405 1406 1407 1408 1501 1502 1503
Decadal Block Month

2020-2040 1 45 45 45 45 45 45 45 45 45 45 45
2 45 45 45 45 45 45 45 45 45 50 45
3 50 50 50 50 50 50 50 50 50 50 50
4 50 50 50 50 50 50 50 50 50 65 50
5 15 15 15 15 15 15 15 15 15 80 15
6 5 5 5 5 5 5 5 5 5 100 5
7 20 25 20 30 40 30 20 20 20 100 20
8 45 45 40 50 95 50 35 35 35 100 35
9 45 45 45 50 80 50 45 45 45 100 45
10 45 45 45 45 45 45 45 45 45 80 45
11 45 45 45 45 45 45 45 45 45 55 45
12 45 45 45 45 45 45 45 45 45 45 45

2040-2060 1 25 25 25 25 25 25 25 25 25 40 25
2 25 25 25 25 25 25 25 25 25 50 25
3 20 20 20 20 20 20 20 20 20 20 20
4 0 0 0 0 0 0 0 0 0 45 0
5 0 0 0 0 0 0 0 0 0 85 0
6 0 0 0 0 0 0 0 0 0 100 0
7 10 5 0 5 45 5 0 0 0 100 0
8 40 10 10 10 100 10 5 5 5 100 5
9 30 10 10 20 65 20 10 10 10 95 10
10 10 10 10 10 10 10 10 10 10 80 10
11 10 10 10 10 10 10 10 10 10 75 10
12 20 20 20 20 20 20 20 20 20 40 20

2060-2080 1 25 25 25 25 25 25 25 25 25 50 25
2 25 25 25 25 25 25 25 25 25 45 25
3 20 20 20 20 20 20 20 20 20 30 20
4 15 15 15 15 15 15 15 15 15 30 15
5 0 0 0 0 0 0 0 0 0 75 0
6 0 0 0 0 0 0 0 0 0 100 0
7 15 20 15 20 50 20 10 10 10 100 10
8 45 25 25 20 100 20 20 20 20 100 20
9 50 25 20 30 60 30 20 20 20 95 20
10 15 15 15 15 15 15 15 15 15 80 15
11 15 15 15 15 15 15 15 15 15 70 15
12 25 25 25 25 25 25 25 25 25 60 25

2080-2100 1 55 55 55 55 55 55 55 55 55 85 55
2 50 50 50 50 50 50 50 50 50 60 50
3 40 40 40 40 40 40 40 40 40 50 40
4 15 15 15 15 15 15 15 15 15 60 15
5 0 0 0 0 0 0 0 0 0 85 0
6 5 5 5 5 5 5 5 10 5 100 5
7 30 30 25 30 75 30 20 25 20 100 20
8 70 60 40 55 100 55 25 25 25 100 25
9 85 65 60 70 90 70 45 45 45 100 45
10 55 55 55 55 55 55 55 55 55 100 55
11 60 60 60 60 60 60 60 60 60 100 60
12 60 60 60 60 60 60 60 60 60 95 60
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Table D.4: Summary of Bi-Decadal Vulnerability (%) by HUC4 and Month (GFDL, RCP45)

1401 1402 1403 1404 1405 1406 1407 1408 1501 1502 1503
Decadal Block Month

2020-2040 1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 10 0
5 0 0 0 0 0 0 0 0 0 60 0
6 0 0 0 0 0 0 0 0 0 100 0
7 0 0 0 0 10 0 0 0 0 100 0
8 0 0 0 0 50 0 0 0 0 100 0
9 0 0 0 0 35 0 0 0 0 95 0
10 0 0 0 0 0 0 0 0 0 45 0
11 0 0 0 0 0 0 0 0 0 25 0
12 0 0 0 0 0 0 0 0 0 0 0

2040-2060 1 0 0 0 0 0 0 0 0 0 10 0
2 0 0 0 0 0 0 0 0 0 10 0
3 0 0 0 0 0 0 0 0 0 10 0
4 0 0 0 0 0 0 0 0 0 35 0
5 0 0 0 0 0 0 0 0 0 55 0
6 0 0 0 0 0 0 0 0 0 100 0
7 0 0 0 0 30 0 0 0 0 100 0
8 0 0 0 0 60 0 0 0 0 100 0
9 0 0 0 0 70 0 0 0 0 100 0
10 0 0 0 0 0 0 0 0 0 90 0
11 0 0 0 0 0 0 0 0 0 65 0
12 0 0 0 0 0 0 0 0 0 25 0

2060-2080 1 0 0 0 0 0 0 0 0 0 25 0
2 0 0 0 0 0 0 0 0 0 20 0
3 0 0 0 0 0 0 0 0 0 10 0
4 0 0 0 0 0 0 0 0 0 30 0
5 0 0 0 0 0 0 0 0 0 65 0
6 0 0 0 0 0 0 0 0 0 100 0
7 0 0 0 0 30 0 0 0 0 100 0
8 0 0 0 0 85 0 0 0 0 90 0
9 0 0 0 0 50 0 0 0 0 90 0
10 0 0 0 0 0 0 0 0 0 90 0
11 0 0 0 0 0 0 0 0 0 80 0
12 0 0 0 0 0 0 0 0 0 45 0

2080-2100 1 0 0 0 0 0 0 0 0 0 45 0
2 0 0 0 0 0 0 0 0 0 35 0
3 0 0 0 0 0 0 0 0 0 25 0
4 0 0 0 0 0 0 0 0 0 45 0
5 0 0 0 0 0 0 0 0 0 75 0
6 0 0 0 0 0 0 0 0 0 100 0
7 10 0 0 0 35 0 0 0 0 100 0
8 10 0 0 0 60 0 0 0 0 100 0
9 0 0 0 0 50 0 0 0 0 95 0
10 0 0 0 0 0 0 0 0 0 95 0
11 0 0 0 0 0 0 0 0 0 75 0
12 0 0 0 0 0 0 0 0 0 55 0
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Table D.5: Summary of Bi-Decadal Vulnerability (%) by HUC4 and Month (IPSL, RCP45)

1401 1402 1403 1404 1405 1406 1407 1408 1501 1502 1503
Decadal Block Month

2020-2040 1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 25 0
5 0 0 0 0 0 0 0 0 0 60 0
6 0 0 0 0 0 0 0 0 0 100 0
7 5 0 0 0 40 0 0 0 0 100 0
8 5 0 0 0 95 0 0 0 0 100 0
9 0 0 0 0 75 0 0 0 0 100 0
10 0 0 0 0 0 0 0 0 0 80 0
11 0 0 0 0 0 0 0 0 0 25 0
12 0 0 0 0 0 0 0 0 0 0 0

2040-2060 1 0 0 0 0 0 0 0 0 0 10 0
2 0 0 0 0 0 0 0 0 0 15 0
3 0 0 0 0 0 0 0 0 0 15 0
4 0 0 0 0 0 0 0 0 0 30 0
5 0 0 0 0 0 0 0 0 0 75 0
6 0 0 0 0 0 0 0 0 0 100 0
7 10 0 0 0 45 0 0 0 0 100 0
8 30 0 0 0 95 0 0 0 0 100 0
9 35 0 0 0 75 0 0 0 0 95 0
10 0 0 0 0 0 0 0 0 0 90 0
11 0 0 0 0 0 0 0 0 0 70 0
12 0 0 0 0 0 0 0 0 0 25 0

2060-2080 1 25 25 25 25 25 25 25 25 25 40 25
2 25 25 25 25 25 25 25 25 25 40 25
3 10 10 10 10 10 10 10 10 10 15 10
4 5 5 5 5 5 5 5 5 5 35 5
5 5 5 5 5 5 5 5 5 5 90 5
6 5 5 5 5 5 5 5 5 5 100 5
7 20 20 15 15 60 15 5 10 5 100 5
8 50 20 20 20 95 20 5 20 5 95 5
9 70 20 20 25 85 25 20 20 20 100 20
10 20 20 20 20 20 20 20 20 20 95 20
11 20 20 20 20 20 20 20 20 20 80 20
12 25 25 25 25 25 25 25 25 25 50 25

2080-2100 1 45 45 45 45 45 45 45 45 45 75 45
2 45 45 45 45 45 45 45 45 45 70 45
3 30 30 30 30 30 30 30 30 30 55 30
4 15 15 15 15 15 15 15 15 15 75 15
5 5 5 5 5 5 5 5 5 5 90 5
6 10 10 10 10 10 10 10 10 10 100 10
7 30 50 30 25 75 25 15 40 15 100 15
8 70 50 40 50 95 50 40 40 40 100 40
9 75 50 50 50 85 50 45 45 45 100 45
10 45 45 45 45 45 45 45 45 45 100 45
11 45 45 45 45 45 45 45 45 45 100 45
12 45 45 45 45 45 45 45 45 45 90 45
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Table D.6: Summary of Bi-Decadal Vulnerability (%) by HUC4 and Month (MIROC, RCP45)

1401 1402 1403 1404 1405 1406 1407 1408 1501 1502 1503
Decadal Block Month

2020-2040 1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 45 0
5 0 0 0 0 0 0 0 0 0 70 0
6 0 0 0 0 0 0 0 0 0 100 0
7 0 0 0 0 40 0 0 0 0 100 0
8 0 0 0 0 100 0 0 0 0 100 0
9 0 0 0 0 80 0 0 0 0 100 0
10 0 0 0 0 0 0 0 0 0 85 0
11 0 0 0 0 0 0 0 0 0 40 0
12 0 0 0 0 0 0 0 0 0 0 0

2040-2060 1 20 20 20 20 20 20 20 20 20 30 20
2 25 25 25 25 25 25 25 25 25 45 25
3 20 20 20 20 20 20 20 20 20 35 20
4 5 5 5 5 5 5 5 5 5 65 5
5 0 0 0 0 0 0 0 0 0 85 0
6 0 0 0 0 0 0 0 0 0 95 0
7 0 5 0 5 55 5 0 0 0 100 0
8 35 15 10 15 95 15 5 5 5 100 5
9 20 10 10 30 75 30 10 10 10 100 10
10 10 10 10 10 10 10 10 10 10 95 10
11 10 10 10 10 10 10 10 10 10 90 10
12 25 25 25 25 25 25 25 25 25 60 25

2060-2080 1 50 50 50 50 50 50 50 50 50 90 50
2 55 55 55 55 55 55 55 55 55 85 55
3 45 45 45 45 45 45 45 45 45 50 45
4 15 15 15 15 15 15 15 15 15 70 15
5 0 0 0 0 0 0 0 0 0 85 0
6 5 5 5 5 5 5 5 5 5 100 5
7 30 35 25 35 75 35 25 30 25 100 25
8 50 40 35 40 95 40 35 35 35 100 35
9 65 40 40 50 90 50 40 40 40 100 40
10 40 40 40 40 40 40 40 40 40 100 40
11 40 40 40 40 40 40 40 40 40 100 40
12 45 45 45 45 45 45 45 45 45 90 45

2080-2100 1 65 65 65 65 65 65 65 65 65 90 65
2 75 75 75 75 75 75 75 75 75 90 75
3 50 50 50 50 50 50 50 50 50 50 50
4 10 10 10 10 10 10 10 10 10 70 10
5 5 5 5 5 5 5 5 5 5 100 5
6 5 5 5 5 5 5 5 5 5 100 5
7 5 35 5 30 85 30 5 25 5 100 5
8 70 55 55 60 100 60 30 45 30 100 30
9 85 55 50 80 100 80 50 50 50 100 50
10 55 55 55 55 55 55 55 55 55 100 55
11 60 60 60 60 60 60 60 60 60 100 60
12 60 60 60 60 60 60 60 60 60 100 60
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Table D.7: Summary of Bi-Decadal Vulnerability (%) by HUC4 and Month (MPI, RCP45)

1401 1402 1403 1404 1405 1406 1407 1408 1501 1502 1503
Decadal Block Month

2020-2040 1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 25 0
5 0 0 0 0 0 0 0 0 0 55 0
6 0 0 0 0 0 0 0 0 0 95 0
7 5 0 0 0 20 0 0 0 0 100 0
8 10 0 0 0 70 0 0 0 0 100 0
9 5 0 0 0 55 0 0 0 0 95 0
10 0 0 0 0 0 0 0 0 0 75 0
11 0 0 0 0 0 0 0 0 0 50 0
12 0 0 0 0 0 0 0 0 0 0 0

2040-2060 1 0 0 0 0 0 0 0 0 0 5 0
2 0 0 0 0 0 0 0 0 0 10 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 25 0
5 0 0 0 0 0 0 0 0 0 50 0
6 0 0 0 0 0 0 0 0 0 100 0
7 0 0 0 0 25 0 0 0 0 100 0
8 15 0 0 0 95 0 0 0 0 100 0
9 0 0 0 0 50 0 0 0 0 100 0
10 0 0 0 0 0 0 0 0 0 95 0
11 0 0 0 0 0 0 0 0 0 75 0
12 0 0 0 0 0 0 0 0 0 15 0

2060-2080 1 0 0 0 0 0 0 0 0 0 25 0
2 0 0 0 0 0 0 0 0 0 15 0
3 0 0 0 0 0 0 0 0 0 10 0
4 0 0 0 0 0 0 0 0 0 40 0
5 0 0 0 0 0 0 0 0 0 75 0
6 0 0 0 0 0 0 0 0 0 100 0
7 15 0 0 0 45 0 0 0 0 100 0
8 45 0 0 0 85 0 0 0 0 100 0
9 35 0 0 0 75 0 0 0 0 100 0
10 0 0 0 0 0 0 0 0 0 100 0
11 0 0 0 0 0 0 0 0 0 75 0
12 0 0 0 0 0 0 0 0 0 50 0

2080-2100 1 0 0 0 0 0 0 0 0 0 60 0
2 0 0 0 0 0 0 0 0 0 45 0
3 0 0 0 0 0 0 0 0 0 30 0
4 0 0 0 0 0 0 0 0 0 45 0
5 0 0 0 0 0 0 0 0 0 75 0
6 0 0 0 0 0 0 0 0 0 95 0
7 0 0 0 0 25 0 0 0 0 100 0
8 35 0 0 0 90 0 0 0 0 100 0
9 55 0 0 0 60 0 0 0 0 100 0
10 0 0 0 0 0 0 0 0 0 95 0
11 0 0 0 0 0 0 0 0 0 95 0
12 0 0 0 0 0 0 0 0 0 80 0
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Table D.8: Summary of Bi-Decadal Vulnerability (%) by HUC4 and Month (BCC, RCP85)

1401 1402 1403 1404 1405 1406 1407 1408 1501 1502 1503
Decadal Block Month

2020-2040 1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 15 0
5 0 0 0 0 0 0 0 0 0 65 0
6 0 0 0 0 0 0 0 0 0 100 0
7 0 0 0 0 20 0 0 0 0 100 0
8 0 0 0 0 90 0 0 0 0 100 0
9 0 0 0 0 55 0 0 0 0 100 0
10 0 0 0 0 0 0 0 0 0 70 0
11 0 0 0 0 0 0 0 0 0 20 0
12 0 0 0 0 0 0 0 0 0 0 0

2040-2060 1 0 0 0 0 0 0 0 0 0 15 0
2 0 0 0 0 0 0 0 0 0 5 0
3 0 0 0 0 0 0 0 0 0 5 0
4 0 0 0 0 0 0 0 0 0 40 0
5 0 0 0 0 0 0 0 0 0 80 0
6 0 0 0 0 0 0 0 0 0 100 0
7 0 0 0 0 40 0 0 0 0 100 0
8 25 0 0 0 80 0 0 0 0 100 0
9 25 0 0 0 60 0 0 0 0 95 0
10 0 0 0 0 0 0 0 0 0 90 0
11 0 0 0 0 0 0 0 0 0 75 0
12 0 0 0 0 0 0 0 0 0 30 0

2060-2080 1 15 15 15 15 15 15 15 15 15 40 15
2 15 15 15 15 15 15 15 15 15 40 15
3 10 10 10 10 10 10 10 10 10 20 10
4 10 10 10 10 10 10 10 10 10 45 10
5 0 0 0 0 0 0 0 0 0 90 0
6 0 0 0 0 0 0 0 0 0 100 0
7 10 15 10 15 40 15 5 5 5 100 5
8 50 30 30 25 100 25 5 15 5 100 5
9 55 25 25 35 80 35 15 25 15 100 15
10 20 20 20 20 20 20 20 20 20 100 20
11 15 15 15 15 15 15 15 15 15 95 15
12 20 20 20 20 20 20 20 20 20 70 20

2080-2100 1 35 35 35 35 35 35 35 35 35 60 35
2 40 40 40 40 40 40 40 40 40 50 40
3 30 30 30 30 30 30 30 30 30 40 30
4 10 10 10 10 10 10 10 10 10 65 10
5 5 5 5 5 5 5 5 5 5 100 5
6 10 10 10 15 15 15 10 20 10 100 10
7 50 40 40 35 90 35 30 30 30 100 30
8 95 60 55 55 100 55 30 35 30 100 30
9 80 60 45 60 85 60 35 45 35 100 35
10 35 35 35 35 35 35 35 35 35 100 35
11 30 30 30 30 30 30 30 30 30 85 30
12 40 40 40 40 40 40 40 40 40 85 40
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Table D.9: Summary of Bi-Decadal Vulnerability (%) by HUC4 and Month (CAN, RCP85)

1401 1402 1403 1404 1405 1406 1407 1408 1501 1502 1503
Decadal Block Month

2020-2040 1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 20 0
5 0 0 0 0 0 0 0 0 0 60 0
6 0 0 0 0 0 0 0 0 0 95 0
7 0 0 0 0 30 0 0 0 0 100 0
8 0 0 0 0 85 0 0 0 0 100 0
9 0 0 0 0 75 0 0 0 0 100 0
10 0 0 0 0 0 0 0 0 0 65 0
11 0 0 0 0 0 0 0 0 0 30 0
12 0 0 0 0 0 0 0 0 0 0 0

2040-2060 1 0 0 0 0 0 0 0 0 0 15 0
2 0 0 0 0 0 0 0 0 0 10 0
3 0 0 0 0 0 0 0 0 0 15 0
4 0 0 0 0 0 0 0 0 0 35 0
5 0 0 0 0 0 0 0 0 0 80 0
6 0 0 0 0 0 0 0 0 0 100 0
7 0 0 0 0 60 0 0 0 0 100 0
8 25 0 0 0 80 0 0 0 0 95 0
9 5 0 0 0 25 0 0 0 0 80 0
10 0 0 0 0 0 0 0 0 0 75 0
11 0 0 0 0 0 0 0 0 0 65 0
12 0 0 0 0 0 0 0 0 0 35 0

2060-2080 1 0 0 0 0 0 0 0 0 0 25 0
2 0 0 0 0 0 0 0 0 0 15 0
3 0 0 0 0 0 0 0 0 0 10 0
4 0 0 0 0 0 0 0 0 0 40 0
5 0 0 0 0 0 0 0 0 0 85 0
6 0 0 0 0 0 0 0 0 0 100 0
7 25 0 0 0 65 0 0 0 0 100 0
8 30 0 0 0 75 0 0 0 0 100 0
9 15 0 0 0 35 0 0 0 0 85 0
10 0 0 0 0 0 0 0 0 0 70 0
11 0 0 0 0 0 0 0 0 0 65 0
12 0 0 0 0 0 0 0 0 0 30 0

2080-2100 1 0 0 0 0 0 0 0 0 0 20 0
2 0 0 0 0 0 0 0 0 0 20 0
3 0 0 0 0 0 0 0 0 0 20 0
4 0 0 0 0 0 0 0 0 0 25 0
5 0 0 0 0 0 0 0 0 0 80 0
6 0 0 0 0 0 0 0 0 0 100 0
7 30 0 0 0 70 0 0 0 0 100 0
8 55 0 0 0 70 0 0 0 0 90 0
9 35 0 0 0 15 0 0 0 0 65 0
10 0 0 0 0 0 0 0 0 0 55 0
11 0 0 0 0 0 0 0 0 0 60 0
12 0 0 0 0 0 0 0 0 0 45 0
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Table D.10: Summary of Bi-Decadal Vulnerability (%) by HUC4 and Month (CSIRO, RCP85)

1401 1402 1403 1404 1405 1406 1407 1408 1501 1502 1503
Decadal Block Month

2020-2040 1 35 35 35 35 35 35 35 35 35 35 35
2 35 35 35 35 35 35 35 35 35 35 35
3 35 35 35 35 35 35 35 35 35 30 35
4 25 25 25 25 25 25 25 25 25 40 25
5 5 5 5 5 5 5 5 5 5 70 5
6 5 5 5 5 5 5 5 5 5 100 5
7 25 20 15 15 40 15 15 15 15 100 15
8 35 25 15 30 90 30 15 20 15 100 15
9 30 25 25 30 85 30 25 25 25 100 25
10 20 20 20 20 20 20 20 20 20 75 20
11 30 30 30 30 30 30 30 30 30 50 30
12 30 30 30 30 30 30 30 30 30 30 30

2040-2060 1 20 20 20 20 20 20 20 20 20 25 20
2 20 20 20 20 20 20 20 20 20 25 20
3 15 15 15 15 15 15 15 15 15 15 15
4 5 5 5 5 5 5 5 5 5 35 5
5 0 0 0 0 0 0 0 0 0 60 0
6 0 0 0 0 0 0 0 0 0 100 0
7 5 0 0 0 40 0 0 0 0 100 0
8 35 0 0 5 90 5 0 0 0 95 0
9 30 0 0 10 75 10 0 0 0 95 0
10 10 10 10 10 10 10 10 10 10 90 10
11 10 10 10 10 10 10 10 10 10 70 10
12 15 15 15 15 15 15 15 15 15 35 15

2060-2080 1 55 55 55 55 55 55 55 55 55 75 55
2 50 50 50 50 50 50 50 50 50 70 50
3 45 45 45 45 45 45 45 45 45 50 45
4 20 20 20 20 20 20 20 20 20 55 20
5 10 10 10 10 10 10 10 10 10 85 10
6 15 15 15 15 15 15 15 15 15 100 15
7 45 45 35 35 95 35 20 35 20 100 20
8 90 60 50 55 100 55 30 35 30 100 30
9 80 40 35 60 100 60 35 35 35 100 35
10 35 35 35 35 35 35 35 35 35 85 35
11 50 50 50 50 50 50 50 50 50 90 50
12 50 50 50 50 50 50 50 50 50 90 50

2080-2100 1 50 50 50 50 50 50 50 50 50 75 50
2 45 45 45 45 45 45 45 45 45 70 45
3 10 10 10 10 10 10 10 10 10 25 10
4 0 0 0 0 0 0 0 0 0 45 0
5 0 0 0 0 0 0 0 0 0 85 0
6 5 5 5 0 0 0 0 0 0 100 0
7 60 50 45 30 95 30 5 25 5 100 5
8 100 65 25 50 100 50 15 35 15 100 15
9 95 50 25 55 90 55 25 25 25 95 25
10 30 30 30 30 30 30 30 30 30 80 30
11 40 40 40 40 40 40 40 40 40 80 40
12 45 45 45 45 45 45 45 45 45 75 45
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Table D.11: Summary of Bi-Decadal Vulnerability (%) by HUC4 and Month (GFDL, RCP85)

1401 1402 1403 1404 1405 1406 1407 1408 1501 1502 1503
Decadal Block Month

2020-2040 1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 25 0
5 0 0 0 0 0 0 0 0 0 70 0
6 0 0 0 0 0 0 0 0 0 95 0
7 0 0 0 0 20 0 0 0 0 100 0
8 0 0 0 0 55 0 0 0 0 100 0
9 0 0 0 0 50 0 0 0 0 100 0
10 0 0 0 0 0 0 0 0 0 65 0
11 0 0 0 0 0 0 0 0 0 25 0
12 0 0 0 0 0 0 0 0 0 0 0

2040-2060 1 0 0 0 0 0 0 0 0 0 10 0
2 0 0 0 0 0 0 0 0 0 10 0
3 0 0 0 0 0 0 0 0 0 5 0
4 0 0 0 0 0 0 0 0 0 25 0
5 0 0 0 0 0 0 0 0 0 60 0
6 0 0 0 0 0 0 0 0 0 90 0
7 5 0 0 0 25 0 0 0 0 100 0
8 0 0 0 0 65 0 0 0 0 95 0
9 0 0 0 0 50 0 0 0 0 95 0
10 0 0 0 0 0 0 0 0 0 80 0
11 0 0 0 0 0 0 0 0 0 50 0
12 0 0 0 0 0 0 0 0 0 15 0

2060-2080 1 0 0 0 0 0 0 0 0 0 45 0
2 0 0 0 0 0 0 0 0 0 30 0
3 0 0 0 0 0 0 0 0 0 20 0
4 0 0 0 0 0 0 0 0 0 50 0
5 0 0 0 0 0 0 0 0 0 85 0
6 0 0 0 0 0 0 0 0 0 100 0
7 15 0 0 0 40 0 0 0 0 100 0
8 5 0 0 0 90 0 0 0 0 95 0
9 0 0 0 0 80 0 0 0 0 100 0
10 0 0 0 0 0 0 0 0 0 95 0
11 0 0 0 0 0 0 0 0 0 80 0
12 0 0 0 0 0 0 0 0 0 60 0

2080-2100 1 0 0 0 0 0 0 0 0 0 55 0
2 0 0 0 0 0 0 0 0 0 30 0
3 0 0 0 0 0 0 0 0 0 15 0
4 0 0 0 0 0 0 0 0 0 35 0
5 0 0 0 0 0 0 0 0 0 80 0
6 0 0 0 0 0 0 0 0 0 100 0
7 0 0 0 0 50 0 0 0 0 100 0
8 35 0 0 0 90 0 0 0 0 100 0
9 40 0 0 0 65 0 0 0 0 95 0
10 0 0 0 0 0 0 0 0 0 90 0
11 0 0 0 0 0 0 0 0 0 90 0
12 0 0 0 0 0 0 0 0 0 75 0
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Table D.12: Summary of Bi-Decadal Vulnerability (%) by HUC4 and Month (IPSL, RCP85)

1401 1402 1403 1404 1405 1406 1407 1408 1501 1502 1503
Decadal Block Month

2020-2040 1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 30 0
5 0 0 0 0 0 0 0 0 0 50 0
6 0 0 0 0 0 0 0 0 0 90 0
7 0 0 0 0 35 0 0 0 0 100 0
8 10 0 0 0 95 0 0 0 0 100 0
9 0 0 0 0 75 0 0 0 0 100 0
10 0 0 0 0 0 0 0 0 0 75 0
11 0 0 0 0 0 0 0 0 0 30 0
12 0 0 0 0 0 0 0 0 0 0 0

2040-2060 1 0 0 0 0 0 0 0 0 0 5 0
2 0 0 0 0 0 0 0 0 0 10 0
3 0 0 0 0 0 0 0 0 0 10 0
4 0 0 0 0 0 0 0 0 0 30 0
5 0 0 0 0 0 0 0 0 0 60 0
6 0 0 0 0 0 0 0 0 0 100 0
7 15 0 0 0 65 0 0 0 0 100 0
8 50 0 0 0 100 0 0 0 0 95 0
9 40 0 0 0 70 0 0 0 0 95 0
10 0 0 0 0 0 0 0 0 0 90 0
11 0 0 0 0 0 0 0 0 0 65 0
12 0 0 0 0 0 0 0 0 0 10 0

2060-2080 1 60 60 60 60 60 60 60 60 60 90 60
2 55 55 55 55 55 55 55 55 55 70 55
3 45 45 45 45 45 45 45 45 45 60 45
4 20 20 20 20 20 20 20 20 20 85 20
5 10 10 10 10 10 10 10 10 10 95 10
6 20 20 20 20 20 20 20 30 20 100 20
7 65 65 50 60 95 60 40 45 40 100 40
8 95 70 60 65 100 65 50 55 50 100 50
9 95 75 70 70 100 70 60 65 60 100 60
10 60 60 60 60 60 60 60 60 60 100 60
11 65 65 65 65 65 65 65 65 65 100 65
12 65 65 65 65 65 65 65 65 65 100 65

2080-2100 1 45 45 45 45 45 45 45 45 45 75 45
2 25 25 25 25 25 25 25 25 25 55 25
3 15 15 15 15 15 15 15 15 15 40 15
4 5 5 5 5 5 5 5 5 5 50 5
5 5 5 5 5 5 5 5 5 5 100 5
6 10 15 10 10 15 10 10 15 10 100 10
7 70 50 40 40 95 40 20 40 20 100 20
8 100 60 45 40 100 40 25 35 25 100 25
9 95 60 35 50 90 50 35 35 35 100 35
10 40 40 40 40 40 40 40 40 40 100 40
11 40 40 40 40 40 40 40 40 40 90 40
12 40 40 40 40 40 40 40 40 40 80 40
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Table D.13: Summary of Bi-Decadal Vulnerability (%) by HUC4 and Month (MIROC, RCP85)

1401 1402 1403 1404 1405 1406 1407 1408 1501 1502 1503
Decadal Block Month

2020-2040 1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 35 0
5 0 0 0 0 0 0 0 0 0 75 0
6 0 0 0 0 0 0 0 0 0 100 0
7 0 0 0 0 20 0 0 0 0 100 0
8 0 0 0 0 85 0 0 0 0 100 0
9 0 0 0 0 75 0 0 0 0 100 0
10 0 0 0 0 0 0 0 0 0 75 0
11 0 0 0 0 0 0 0 0 0 40 0
12 0 0 0 0 0 0 0 0 0 0 0

2040-2060 1 20 20 20 20 20 20 20 20 20 30 20
2 20 20 20 20 20 20 20 20 20 55 20
3 10 10 10 10 10 10 10 10 10 20 10
4 0 0 0 0 0 0 0 0 0 50 0
5 0 0 0 0 0 0 0 0 0 90 0
6 0 0 0 0 0 0 0 0 0 100 0
7 0 0 0 0 60 0 0 0 0 100 0
8 20 10 0 5 100 5 0 0 0 100 0
9 5 0 0 15 70 15 0 0 0 100 0
10 5 5 5 5 5 5 5 5 5 100 5
11 15 15 15 15 15 15 15 15 15 90 15
12 15 15 15 15 15 15 15 15 15 55 15

2060-2080 1 50 50 50 50 50 50 50 50 50 75 50
2 60 60 60 60 60 60 60 60 60 85 60
3 35 35 35 35 35 35 35 35 35 55 35
4 5 5 5 5 5 5 5 5 5 70 5
5 0 0 0 0 0 0 0 0 0 95 0
6 20 20 20 20 20 20 20 20 20 100 20
7 55 45 45 40 75 40 35 35 35 100 35
8 70 60 40 55 100 55 35 40 35 100 35
9 70 55 50 70 95 70 40 40 40 100 40
10 40 40 40 40 40 40 40 40 40 100 40
11 50 50 50 50 50 50 50 50 50 100 50
12 55 55 55 55 55 55 55 55 55 95 55

2080-2100 1 55 55 55 55 55 55 55 55 55 85 55
2 55 55 55 55 55 55 55 55 55 70 55
3 35 35 35 35 35 35 35 35 35 50 35
4 5 5 5 5 5 5 5 5 5 65 5
5 5 5 5 5 5 5 5 5 5 95 5
6 15 15 15 15 15 15 15 15 15 100 15
7 60 55 45 50 95 50 25 40 25 100 25
8 95 70 55 65 100 65 35 50 35 100 35
9 85 70 60 75 95 75 45 55 45 100 45
10 45 45 45 45 45 45 45 45 45 100 45
11 60 60 60 60 60 60 60 60 60 100 60
12 65 65 65 65 65 65 65 65 65 100 65
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Table D.14: Summary of Bi-Decadal Vulnerability (%) by HUC4 and Month (MPI, RCP85)

1401 1402 1403 1404 1405 1406 1407 1408 1501 1502 1503
Decadal Block Month

2020-2040 1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 35 0
5 0 0 0 0 0 0 0 0 0 70 0
6 0 0 0 0 0 0 0 0 0 95 0
7 0 0 0 0 15 0 0 0 0 100 0
8 10 0 0 0 70 0 0 0 0 100 0
9 0 0 0 0 55 0 0 0 0 100 0
10 0 0 0 0 0 0 0 0 0 60 0
11 0 0 0 0 0 0 0 0 0 45 0
12 0 0 0 0 0 0 0 0 0 0 0

2040-2060 1 0 0 0 0 0 0 0 0 0 5 0
2 0 0 0 0 0 0 0 0 0 10 0
3 0 0 0 0 0 0 0 0 0 5 0
4 0 0 0 0 0 0 0 0 0 35 0
5 0 0 0 0 0 0 0 0 0 70 0
6 0 0 0 0 0 0 0 0 0 100 0
7 5 0 0 0 45 0 0 0 0 100 0
8 25 0 0 0 95 0 0 0 0 100 0
9 20 0 0 0 70 0 0 0 0 95 0
10 0 0 0 0 0 0 0 0 0 90 0
11 0 0 0 0 0 0 0 0 0 80 0
12 0 0 0 0 0 0 0 0 0 35 0

2060-2080 1 35 35 35 35 35 35 35 35 35 65 35
2 35 35 35 35 35 35 35 35 35 55 35
3 25 25 25 25 25 25 25 25 25 40 25
4 10 10 10 10 10 10 10 10 10 50 10
5 5 5 5 5 5 5 5 5 5 90 5
6 5 5 5 5 5 5 5 5 5 100 5
7 25 35 25 20 80 20 10 20 10 100 10
8 85 40 40 40 100 40 20 25 20 100 20
9 85 45 35 60 100 60 25 30 25 100 25
10 30 30 30 30 30 30 30 30 30 95 30
11 30 30 30 30 30 30 30 30 30 90 30
12 35 35 35 35 35 35 35 35 35 75 35

2080-2100 1 25 25 25 25 25 25 25 25 25 60 25
2 25 25 25 25 25 25 25 25 25 50 25
3 15 15 15 15 15 15 15 15 15 35 15
4 5 5 5 5 5 5 5 5 5 40 5
5 5 5 5 5 5 5 5 5 5 95 5
6 5 5 5 5 5 5 5 10 5 100 5
7 40 25 15 15 80 15 5 15 5 100 5
8 90 45 40 35 100 35 15 20 15 100 15
9 90 40 25 35 90 35 20 20 20 100 20
10 20 20 20 20 20 20 20 20 20 95 20
11 20 20 20 20 20 20 20 20 20 90 20
12 20 20 20 20 20 20 20 20 20 85 20
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D.3 Development of VIC-VEO

VIC-VEO (Vegetal Optimality) was developed through modifications of existing source code

files. The development is based upon VIC-4.1.2m, a single layered big-leaf model. Several significant

modifications to the code were made, and are detailed in the following sections, including several

of the input files and data requirements.

D.3.1 Source Code Modifications

Modifications of the source code files is summarized here:

1. Vegetation Library - The vegetation library defines properties of plant functional types; the

code was modified to read in additional parameters including: well-watered marginal water

use efficiency (λ), maximum Norg, canopy light decay exponent (KL), and marginal nitrogen

use efficiency (η).

2. Climate Summaries - The leaf phenology is determined at the start of each year, looking back

at the historic 20-year period, and determining annual averages, totals, or monthly statistics.

Data stored in the forcing files, or derived variables during run-time and stored, are evaluated

to create the required statistics for the LAI phenology regression. Shortened climate periods

are assumed for initial model timesteps less than 20-years.

3. Monthly Summaries - At the start of each month, summaries of the previous month tem-

peratures and irradiance are determined. This is used to update the biochemical properties

through optimal resource allocation. Optimal allocation is found through a particle swarm

optimization routine.

4. Stomatal Resistance - The stomatal resistance function has been updated to use an optimal

stomatal response. This formulation requires the vapor pressure deficit, irradiance, photo-

synthetic system capacities, and leaf water potential.

5. Leaf Water Potential - A routine to estimate leaf water potential based on soil water potential,

fluxes from soil to root, and then root to leaf, was added.
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6. Multi-Layered Canopy - The canopy is divided into discrete integer layers (rounded up to

next integer from current estimate of LAI), where calculations are performed separately for

each layer. Transpiration and conductance of the fractional layer is then adjusted accordingly.

D.3.2 Running VIC-VEO

Implementation of the dynamic vegetation model significantly increases computational demand

and model run-times. Further developments should focus on streamlining the code to further reduce

computational burden.

Beyond additions to the vegetation library, the model is compiled and run exactly the same as

previous versions of VIC. Monthly phenology specified in the vegetation library is used for the first

year of run-time, and thus is still required even though the phenology is updated for subsequent

years.

Routing Model

The available routing model based upon the St.Venant equations (simply named ’rout’), was

used to determine the outflow hydrographs from each basin. Inputs to the routing model include

the surface and groundwater runoff hydrographs for each cell covering the basin, in addition to

several other controlling datasets. This includes:

• Direction Raster - a file indicating the flow direction for each grid cell,

• Area File - a file indicating the cell area for each grid cell,

• Fraction File - a file indicating the fraction of cell area contributing to the runoff for a given

watershed.

Each of these items required additional setup for the CORB with subcatchment specific files. For

example, a given calculation cell in VIC may cross a watershed boundary between two subcatch-

ments; in this case, the cell requires a different flow direction value depending on the subcatchment

being routed. In this case, ESRI ArcGIS and ArcPy were used to create hydrologically correct flow

direction rasters for each subcatchment, resulting in unique files for each.

The VIC-VEO model utilizes a spatially distributed regular gridded layout in decimal degrees,

here at 1/8th of a degree intervals. Although the decimal degrees are constant across the entire
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CORB, the contributing area for each 1/8th degree cell changes with latitude. Therefore, an area

raster specifying the cell contributing area is required.

Finally, the fraction file was developed by dividing the contributing cell area clipped to the

subcatchment boundaries by the total cell area, resulting in a fraction in [0,1].

All of these files for each subcatchment are included on the Data CD.
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