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ABSTRACT

The role of ice clouds in the hydrological cycle is uncertain. As a direct consequence,

we do not fully understand the role of ice clouds in the atmospheric energy balance. It is

therefore necessary to quantify the existence of ice clouds to understand their role in the

upper tropospheric hydrologic cycle. This is primarily achieved with the aid of remote sen­

sors. To extract information from remotely sensed data, it is necessary to understand how

electromagnetic radiation interacts with cirrus ice particles. The work presented herein at­

tempted to understand how ice particles of an arbitrary shape backscatter electromagnetic

radiation at cloud radar wavelengths.

The discrete dipole approximation (DDA) was applied to the backscattering of mil­

limeter wave radiation by nonspherical ice particles. A simple analytical model of the

DDA was developed to demonstrate the underlying physical principles and to understand

the directional sensitivity of scattering. Backscattering by single particles was studied to

test the use and validity of spheroidal models to model nonspheroidal hydrometeors which

are characteristic of cirrus. Limitations of the Rayleigh approximation at millimeter wave­

lengths were also explored. It was found that for wavelengths on the order of or greater

than 3 mm, spheroidal shapes adequately represent hexagonal columns and plates. The

Rayleigh approximation for spheroids begins to break down for wavelengths below 8 mm

if the particles have major dimensions which are typical of cirrus ice crystals.

The sensitivity of backscattered radiation to variations in microphysical properties

were examined, based on DDA calculations for ensembles of ice particles. The most

important factor was found to be the median diameter of the third moment (Dm ) of the ice

crystal size distribution. In particular, if Dm was relatively large, the contribution of small

crystals (i.e. crystals whose major dimension was on the order of, or less than 100 Jlm) was

masked by the signal of the larger crystals which possessed major dimensions of greater

than approximately 400 Jlm. Simulations of effective radar reflectivity factor-ice water

content relations (Ze - IWC) were also presented. Comparison with available empirical

relations indicate a functional dependence of the IWC on the number oflarge crystals (i.e.

D m ) and also suggest a set of reasonable limits for the parameter D m • Implications for

the remote sensing of ice clouds at millimeter wavelengths were discussed.
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Chapter 1

INTRODUCTION

In a recent paper, Dyson (1993) observes that scientific revolutions are not only

driven by new concepts but are in fact more frequently driven by new tools. As examples

of tool driven revolutions he cites the invention of Green's functions in 1828 and the much

later advent of electronic computers. The role of Green's functions in atmospheric science

has undoubtedly been more sublime than the revolutionary role played by computers.

Nevertheless the Green's function is at the core of this research in that it allows us to

tackle a problem which has long avoided solution; scattering by irregular particles. The

exact role of the Greens function will be elucidated in Chapter 2. Although Dyson's paper

focuses on George Green's legacy in physics (the class of functions which bare the name

of this independent thinker), his observation regarding tool driven revolutions in science

is particularly relevant to atmospheric science and the study of this report.

1.1 MOTIVATION

Humanity has long sought to modify the weather to its advantage. There is now a

growing realization that we may have indeed succeeded in changing the weather, although

it may not be to our advantage or under our control. Humankind has always maintained

a keen interest in the weather; only modern convenience permitted by the industrial and

technological revolutions has allowed us the luxury of contemplating the climate. And

now fears of anthropogenically-induced climate change have induced a societal awareness

of climate providing an impetus to improve our understanding of atmospheric processes.

Subsequently, since the middle of this century humanity's understanding of the climate

system has advanced considerably.

Furthermore these advances in our understanding of the atmosphere are intimately

linked to advances in technology. Remote sensors have given us the ability to probe

the atmosphere from above and below. With the early satellites we obtained the first

global perspective of our weather. This tool has the potential to measure all of the

important atmospheric parameters, globally. We have already begun to realize some of

these aspirations; measurements of the Earth's radiation budget, the tracking of weather

systems, and cloud climatologies are some outstanding examples. Ground based sensors

such as radars, lidars, and radiometers permit us to observe the atmosphere on a regional

scale and at a higher resolution.
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Computers allow us to store and process the enormous quantities of data which have

been collected by our instruments. With the aid of computers, we are able to explore the

sensitivity of the Earth's climate and weather systems to various components. And finally,

computers have allowed us to predict and model the weather with a speed and efficiency

which have far surpassed the dreams of L. F. Richardson (1922) when he mused about

having 64,000 human computers in a room, coordinated by colored lights.

These tools have given us an unprecedented ability to see and understand the climatic

system of the Earth. From our perspective thus gained, we have been reminded of the

fundamental importance of the hydrologic cycle to the Earth's climate. The hydrology

of the atmosphere is intimately intertwined with the radiation and heat budgets of the

Earth (e.g. see Stephens and Greenwald, 1991). These components interact through

a variety of complex feedback mechanisms involving clouds, precipitation, water vapor,

and transport. Manabe and Wetherald (1967) have demonstrated the sensitivity of the

radiative convective equilibrium to the vertical profile of water vapor. We are only just

beginning to understand the atmospheric hydrologic cycle, but one particular element of

the cycle is conspicuous for our lack of understanding of it; namely the hydrology of the

upper troposphere (Lindzen, 1990a; Lindzen, 1990b; Sun and Lindzen, 1993). In the

upper troposphere ice clouds predominate (i.e. cirrus) and the mechanisms by which the

ice clouds hydrate/dehydrate this region are not clearly understood (Danielsen, 1993). In

a review of cirrus (Liou, 1986), it was noted that cirrus clouds are ubiquitous, important

to the energetics of the atmosphere, and poorly understood. As a first step in clarifying

the role of ice clouds in the hydrology of the upper troposphere and in understanding their

effect on the water vapor profile, we must be able to measure their properties. Due to

their relative inaccessibility we must attempt to quantify them remotely.

To this end a relatively new class of high frequency radars are being exploited. They

are often referred to as cloud radars and they operate at millimeter wavelengths. Although

the higher frequencies are subject to greater attenuation, cloud radars characteristically

possess intrinsic qualities such as higher spatial resolution and greater sensitivity to small

scale cloud processes. The attenuation in and of itself may be exploited as a source of

information.

'Whereas there is presently not a preponderance of cloud radars, the list is begin­

ning to grow. The National Oceanic and Atmospheric Administration (NOAA), Wave

Propagation Laboratory (WPL) operates a fully polarized 35-GHz radar (Kropfli et al.,

1990). The Microwave Remote Sensing Laboratory (MRSL) at the University of Mas­

sachusetts (Pazmanyet al., 1993) has developed an airborne, polarized, 95-GHz radar

and is presently developing a dual wavelength, fully polarized radar which will operate

at 35 and 95 GHz (McIntosh et al., 1991). The MRSL (Mead et al., 1989) also has an

operational 215 GHz radar. Lhermitte (1987); Lhermitte (1988) has developed a 94 GHz

radar for use in cloud studies. A group at Pennsylvania State University has developed
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Group Wavelength Comments
NOAA-WPL 8.7mm (35 GHz) Elliptical and linear polarization, Doppler,

100 kW peak power.
RABELAIS 8.6 mm (35 GHz) Linear and circular polarization, Doppler,

(France) 70 kW peak power.
UMass MRSL 3.2 mm (95 GHz) Linear polarization, Doppler, airborne,

1.2 kW peak power.
Lhermitte 3.2 mm ~94 GHZ~ Doppler, 1 kW peak power.
Penn. State U. 3.2mm 94 GHz Doppler, 1.4 kW peak power.
UMass, MRSL 1.4mm (215 GHz) Incoherent, 60 W peak power

Table 1.1: Operational cloud radars.

a 94 GHz radar (Peters et al., 1992). There is another 34.8 GHz radar at Laboratoire

d'Aerologie (RABELAIS) in France (see Table 3.1 in Bringi and Hendry, 1990). Some of

the characteristics of these radars are summarized in Table 1.1. Furthermore, technological

advances have made it possible to include high frequency radars on satellites. A precipi­

tation radar (13.8-GHz) is a part of the TRMM-I package (Meneghini and Kozu, 1990)

and a millimeter-wave radar is being considered for inclusion on the TRMM-II package

(personal communication; Graeme Stephens, 1993).

The hydrometeors which comprise the upper tropospheric clouds are primarily ice

crystals of a highly nonspherical nature. In order to interpret and understand the radar

signals returned by these clouds, it is essential to understand the backscattering properties

of ice-phase hydrometeors. The work contained in this report has grown out of this need

to understand how ice particles of complex nonspherical shapes backscatter polarized

microwave energy.

1.2 METHOD

Historically, nonspherical hydrometeors have been theoretically modeled at radar fre­

quencies in one of two ways: either as equal volume spheres or as equal volume spheroids.

In the former case one may employ the Lorenz-Mie formulation of scattering by spheres.

However, for many meteorological radars it is reasonable to assume that the hydromete­

ors (excluding large hail) are optically small. Then one may employ what has come to

be known as Rayleigh theory, in which a simple analytical expression can be obtained for

both spheres and spheroids ( i.e. prolate and oblate spheroids). Several other numerical

methods have been developed to solve spheroidal scattering problems. For a brief survey

of these methods and their applications see Section 2.1.

We know that hydrometeors in cirrus clouds consist of highly aspherical ice parti­

cles which posses major dimensions (a) typically ranging in size from approximately 50

microns to 2000 microns. It has been demonstrated that for cirrus ice particles of order

a ~ 1000j.Lm, scattering in the K a band (about 35 GHz) is within the Rayleigh regime
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(Yeh et al., 1982). As one progresses beyond this to higher frequencies however, the as­

sumption ofoptically small particles becomes suspect. Therefore, we must conclude that to

some degree the "standard" models are inadequate to study the scattering of millimeter­

wavelength radiation by cirrus ice particles due to both size and shape considerations.

Spheres grossly misrepresent the true shape of cirrus ice particles and although oblate

and prolate spheroids do a better job at representing the true shape of cirrus ice particles,

the fundamental assumption of optically small particles becomes suspect for frequencies

greater than approximately 35 GHz.

The issues of shape and optical size were examined through the use of a relatively new

numerical modeling technique known as the discrete dipole approximation (DDA). The

DDA can model particles of arbitrary shape and size although in practice computer mem­

ory and CPU time limits the optical sizes which can be modeled. Because the wavelengths

and particle sizes of interest here are ideally suited to the application of the DDA, many of

these outstanding issues can be explored. A comparison of DDA-spheroids and Rayleigh­

spheroids at 35 and 96 GHz over many particle sizes indicates the range of validity of the

Rayleigh approximation. Using the DDA, comparisons between various geometrical mod­

els were also performed; spheroidal models were verified against models of shapes which

have been observed in cirrus which, for the purposes of this report, were referred to as true

or observed shapes (equivalently). The calculations were performed with both the DDA

(observed and spheroidal shapes) and a Rayleigh model (spheroidal shapes only) at 13.8,

35, 94 and 220 GHz and for several radar elevation angles. In each case the full Mueller

matrix was computed from which various polarimetric radar parameters were derived.

The ice particles were assumed to fall with their major dimension in the horizontal plane

and to be randomly oriented in this plane.

Simulations ofbackscattering by various ensembles ofice particles were also performed

to represent cirrus clouds. The DDA was used to compute the backscattering of observed

ice particle shapes over observationally determined size distributions and polarimetric

radar parameters were computed at 35 and 94 GHz for a distribution of sizes. Sensitivities

to both bulk and microphysical parameters were examined.

1.3 OUTLINE AND OBJECTIVES

In Chapter 2 the details of the DDA scattering model used in this research are dis­

cussed. The physical principles upon which it is based are outlined and some details of

the implementation is given. To place these models in context, a review of scattering

models which have been used to study scattering by nonspherical hydrometeors at radar

frequencies is provided. Calculations are presented to demonstrate the requirements of az­

imuthal averaging to approximate particles which are randomly oriented with their major

dimensions in the horizontal plane. In Chapter 3, issues of shape and size are examined in
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the context of Rayleigh scattering. The principles of the Rayleigh model are outlined in

the first section of this chapter, followed by a discussion of the optical size limitations of

the Rayleigh approximation. Geometrical considerations render the notion of optical size

ambiguous for nonspherical particles. Alternative definitions of optical size for nonspher­

ical particles are compared to ascertain which one is most representative of the optical

properties of these particles. The ability of spheroidal particles to represent the observed

(true) cirrus ice particles is also examined in detail.

In Chapter 4 the focus shifts to simulations of cirrus clouds. The microphysical

properties of cirrus clouds are reviewed to form the basis for subsequent calculations. Cal­

culations of the effective radar reflectivity factor for ensembles ofice crystals are presented.

Sensitivities to bulk properties of cirrus clouds such as ice water content and number dis­

tributions are examined. We also explore the effects of particle shape on the reflectivity.

The results are used to understand the dependencies of radar parameters to the afore­

mentioned issues. A tentative retrieval of an important parameter in the ice crystal size

distribution is proposed.

In Chapter 5 the prerequisite summary and examination of inherent deficiencies are

supplied. Accordingly, future directions of research are suggested to build upon this

work. Appendix A defines the relation between the Mueller scattering matrix (which is

the output of the scattering models) and radar observables. Emphasis is placed on the

physical interpretation of radar polarization parameters.



Chapter 2

SCATTERING MODELS FOR IRREGULAR PARTICLES

In this chapter an overview of models used to study scattering by nonspherical par­

ticles is provided. There are numerous models available, all of which vary in their sophis­

tication and range of applicability. At the frequencies of interest, the models employed

to study scattering have historically fallen into two categories; spheres and spheroids.

Although it is generally accepted that spheres are poor geometrical representatives of

nonspherical particles in the context of scattering, scattering by spheres continues to be

widely relied upon by many researchers, especially as a first order approximation. Beyond

spheres, the high degree of symmetry afforded by ellipsoids has provided for a veritable

potpourri of methods. Some of these methods will be reviewed in Section 2.1. Since real

ice particles are not generally spheroidal in nature but rather possess corners and fiat

faces, one must ask the question how well do spheroids represent real ice particles with

respect to scattering. Of these methods, perhaps one of the most widely applied models

for scattering by ice particles at the frequencies of interest is the Rayleigh approxima­

tion for ellipsoids (e.g.Atlas et al., 1953; Seliga and Bringi, 1976; Matrosov, 1991a;

Matrosov, 1991b). As technology and interest drives the frequencies of meteorological

research radars to higher values, it is probable that the Rayleigh assumption of optically

small particles will be violated by some ice particles found in atmospheric conditions.

The discrete dipole model can be used to test these hypotheses because it can be

applied to particles of arbitrary shape and size. The work in this report will utilize the

Rayleigh approximation for ellipsoids and the DDA. The Rayleigh model for ellipsoids

will be discussed in Section 3.1. The underlying physical principles of the DDA as well as

some specifics of the implementation employed will be provided in Section 2.2. A simple

model of two dipoles is exploited in this section to provide insight into the discrete dipole

method as well as to assess the directional sensitivity of scattering. An assumption made

throughout this work is that the ice particles are randomly oriented in a plane normal to

the local vertical. To simulate this randomness, the particles are averaged azimuthally.

Results which indicate the appropriate number of angles to average azimuthally to achieve

a sense of randomness are presented in Section 2.3.
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2.1 A POTPOURRI OF MODELS

An overview of the various models available for studying scattering by non spherical

particles is now given. Emphasis is placed on methods which have been used to study

nonspherical meteorological targets at radar wavelengths. Furthermore, the focus is pri­

marily on monostatic applications as opposed to bistatic applications: i.e. backscattering.

This is done to limit the scope as a comprehensive review of scattering would be truly

voluminous. The review is intended to provide a starting point such that the interested

reader may find herlhis way into the literature, to provide the reader with a notion of

what scattering models are available, and to place the models employed in this research

in context. The intention is to achieve breadth as opposed to depth and no effort is made

to give each method equitable treatment.

As with any discussion of scattering methods one must be careful with the termi­

nology. Consequently, reference will be given to the original work wherever possible. A

concise description of each method has been provided accompanied by a discussion of some

of the meteorological problems to which it has been applied. The results of this survey

are summarized in Table 2.1.

Holt (1982) notes that until the early 1970's, the only models available for comput­

ing scattering amplitudes were Rayleigh and Lorenz-Mie for spheres and for nonspheres

Rayleigh or Rayleigh-Gans. Since then, however, there has been a profusion of methods

available. In 1982 the state of the art according to Holt included the point matching tech­

nique, the T-matrix method, the unimoment method, and the Fredholm integral equation

method. The the list has since grown. An up to date accounting of methods available

to compute scattering by nonspherical particles adds the discrete dipole approximation

(DDA) and the finite difference-time domain (FDTD) method.

2.1.1 Approximations For Small Sizes

There are two models available for particles which fall into the category of being opti­

cally small; Rayleigh and Rayleigh-Gans. In both cases solutions can be readily obtained

for oblate and prolate spheroids. Because both Rayleigh and Gans made considerable

contributions to scattering by small particles a large amount of confusion exists in the

nomenclature. Van de Hulst (1981) however, seems to provide the cleanest delineation

of terminology and his conventions are adopted throughout.

Rayleigh

The details and limitations of this method are given in Section 3.1. Two recent stud­

ies exemplify the application of the Rayleigh approximation and have particular relevance:

Matrosov (1991a) and Matrosov (1991b). A theoretical study of the radar polarization

parameters of cirrus is the subject of Matrosov (1991b). Plates, needles and colunms
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Small Size Approximations
Paper Techmque Applicatlon

Atlas et al. (1953) Gans Water and ice, oblate and prolate
spheroids; ,\ = 1, 3, 10 em.

Seliga and Bringi (1976) Gans Used oblate spheroids to study
droplet scattering; X, 5 bands.

Matrosov (1991b) Rayleigh Used prolate and oblate spheroids to
study effect of cirrus particles
on elliptic polarization; 35 GHz.

Matrosov (1991a) Rayleigh Used prolate and oblate spheroids to
study scattering by cirrus; 35 GHz.

Matrosov (1992) Rayleigh-Gans Used ice spheres to model scattering
by snow; X, K a bands.

Integral Methods
Paper Techmque Applicatlon

Barber and Yeh (1975) T-matrix Various dielectric properties, spheres
spheroids, and modified cylinders;
various optical sizes.

Seliga and Bringi (1978) T-matrix Oblate rain and hail particles; 10 em.
Shepard et al. (1981) FIM Small spheroidal ice particles; 20 GH z
Yeh et al. (1982) T-matrix Oblate and prolate spheroids are used to

study ice crystals; 30 GHz.
Vivekanandan et al. (1991) T-matrix Used prolate and oblate spheroids to

study scattering by hail at various
orientations; primarily at 8 mm.

Discrete Methods
Paper Techmque ApplicatIOn

O'Brien and Goedecke (1988) DDA Comparison of ice phase hexagonal
columns and stellates with cylinders,
spheroids and disks; 1 em.

Evans and Vivekanandan (1990) DDA Hexagonal plates and cylinders are used
to simulate ice particles.
Radar; 5, C, X, and K a bands.
Radiative transfer; 37,85, and 157 GHz

Vivekanandan and Adams (1993) DDA Hexagonal plates and columns, ice
(wavelength not reported).

Dungey and Bohren (1993) DDA Hexagonal plates and columns are used
to model ice particles; 94 GHz.

Aydin and Tang (1993) FDTD Hexagonal plates, columns and stellates
(ice phase); 94 and 220 GHz.

Point Matching Techniques
Paper Techmque Applicatlon

Oguchi (197~) Point Matching Deformed, spheroidal rain drops.
Morrison and Cross (1979)

Table 2.1: A sununary of scattering models for nonspherical particles and their applica­
tions.
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are modelled as oblate and prolate spheroids of varying aspect ratios. The calculations

are done at a wavelength of 8.66 mm and for various radar elevation angles and canting

angles. Results are presented for particles with a major dimension of 0.2 mm because he

notes that polarization parameters vary by an insignificant amount over the range 0.08

mm to 1.0 mm; the signals at the smallest wavelengths are masked by the larger particles

and particles greater than 1.0 mm are thought to precipitate out of the cloud. Overall,

circular polarization tends to be more sensitive in the orthogonal channel than linear po­

larization. Particle orientation effects are significant although the circular depolarization

ratio (CDR) is less sensitive to particle orientation than is the linear depolarization ratio

(LDR). Radar elevation effects allow one to distinguish between plate-like and columnar

particles. Tentative estimates of an average aspect ratio and particle size can be made

if assumptions are made about the equivalent cloud water content and the particle size

distribution for a given scattering volume. Matrosov (1991b) also estimates the effects

of propagation in ice clouds and reports them to be negligible.

In a subsequent paper Matrosov (1991a) uses the Rayleigh model in the same manner

to examine the use of elliptically polarized radar signals to measure properties ofice clouds.

The most general state of polarization can be described as an ellipse of unit amplitude

which is characterized in part by its ellipse polarization angle. If this angle is 0° the result

is linear polarization, whereas for an ellipse polarization angle of 45° the result is circular

polarization. Any other angle results in elliptical polarization. Matrosov (1991a) shows

that for the proper choice of elliptical polarization the backscattered radiation in the cross­

polar channel is enhanced yielding a greater sensitivity to radar polarization parameters.

If the two complementary elliptical polarization angles of ±22.5° are employed, it may be

possible to separate the effects of shape and orientation providing an estimate of the mean

canting angle and the aspect ratio if assumptions regarding the complex refractive index

are made.

To provide depth to this discussion we note that this theory has been applied by

researchers for a considerable time (e.g. Atlas et al., 1953; Seliga and Bringi, 1976),

although these researchers call it the Gans approximation. Atlas et al. (1953) examines

scattering by water and ice hydrometeors at 1, 3 and 10 em. Among other things they

suggest that particle shape under both oriented and un-oriented cases is an important

factor in explaining the bright band. They also conclude that spheres may be used to

model low density ice (especially snow) primarily because of the very low refractive index.

In their day, a single radar was not capable of testing these suppositions because radars

were not sophisticated enough in terms of polarization capabilities. By the time of the

work of Seliga and Bringi (1976) such measurements were feasible and they applied Gans

(i.e. Rayleigh) theory to the scattering of oblate raindrops in an attempt to ascertain

raindrop distribution parameters.
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Rayleigh- Gans

The approximation known as Rayleigh-Gans (or sometimes Rayleigh-Gans-Debye)

can be applied to "soft" particles; Le. those particles whose dielectric constants are close

to the surrounding medium. One makes the assumptions that the internal electromagnetic

field of a particle can be approximated by the applied field and that each subvolume of

the particle behaves as an independent Rayleigh scatterer. The total scattered field is

determined by the integration over all of the subvolumes.

Matrosov (1992) applies this theory to backscattered returns by snowfall by modelling

dry snowflakes as spheres with the complex refractive index adjusted with a mixing rule

to account for its low density. He compares Rayleigh, Rayleigh-Gans, and Lorenz-Mie

theories and demonstrates a significant discrepancy between the Rayleigh and Lorenz-Mie

theories when the optical size X = 27l"T /). exceeds approximately 0.3, whereas Rayleigh­

Gans shows reasonable agreement throughout the range of optical size examined (X '" 4).

Measurements at X- and Ka-bands in snowfall generally confirm the modelling results,

lending confidence to the earlier conclusion of Atlas et al. (1953), that spheres should

be sufficient to model snow. Another significant result from Matrosov (1992) is that it

may be possible to utilize dual-wavelength radar measurements in snowfall to ascertain

size distributions and characteristic sizes.

2.1.2 Integral Methods

T-matrix

T-matrix (for transition matrix) method, which is also known as the extended bound­

ary condition method (EBCM) or even the extended integral equation technique, was

initially developed by Waterman (1965) for conducting bodies and then later adapted

to homogeneous dielectrics by Waterman (1969). The basic concept is to expand the

vector Helmholtz equation in terms of spherical wave functions. Barber and Yeh (1975)

provide an alternate derivation of the method which seems to be more physically intu­

itive. Barber and Yeh (1975) apply an equivalence theorem which allows them to cast

the scattered field in terms of currents over the dielectric's surface. Vector spherical wave

functions are then used to evaluate the scattered field numerically. The resulting integral

equations can then be formulated as an exact matrix problem. The transition (T) matrix

relates the unknown coefficients of the scattered field to the known coefficients which are

associated with the incident wave. Geometrical considerations prove to be the limiting

factor; exploitation of symmetry greatly increases the efficiency of the calculations.

Barber and Yeh (1975) compute scattering diagrams (scattering cross section vs. scat­

tering angle) of spheres, oblate and prolate spheroids, and modified cylinders. The results

for spheres are qualitatively "correct" (quantitatively the sphere results are validated with
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Lorenz-Mie theory). They present results for a variety of optical sizes and dielectric prop­

erties, but we will mention only two of their observations. Firstly, they note a distinct

difference in the behavior of the differential scattering as a function of scattered angle,

between the major and minor dimensions of the particle. That is, if the incident wave is

along the major dimension the scattered field is significantly different from the result if the

incident wave is in the plane of the minor dimension of the particle. Secondly they observe

that cylinders and prolate spheroids of equivalent optical size (well within the resonance

region at X '" 10) exhibit noticeably different differential scattering characteristics.

Seliga and Bringi (1978) utilize the T-matrix method to validate their earlier calcu­

lations of differential reflectivity (Seliga and Bringi, 1976) and to extend their results to

include differential phase shift. Their calculations are for raindrops distributed exponen­

tially (a Marshall-Palmer type distribution) and for monodisperse distributions oflarge

hail stones. The rain and hail particles are assumed to be oblate spheroids of a specified

aspect ratio and the wavelength considered is 10 em. Their results indicate that the Gans

theory and T-matrix method are in excellent agreement for equal volume sphere diam­

eters of up to 6 mm in both vertical and horizontal polarizations. They also conclude

that measurements of the differential reflectivity and either the absolute reflectivity or the

differential phase shift may be used to identify large dry hail stones.

Yeh et al. (1982) utilize the work of Barber and Yeh (1975) to study scattering by

single ice needles (prolate spheroids) and plates (oblate spheroids) at 30 GHz. Special

emphasis is given to canting angle and cross polarization. They find attenuation by ice to

be much smaller than in rain primarily due to the small imaginary part of the complex

refractive index. They also note that ice plates can induce a stronger cross polarization

than ice needles. Induced, cross-polarized fields are only observed for zenith angles other

than 0°. Perhaps the most interesting observation is that nonspherical ice particles induce

stronger cross-polarized fields than do nonspherical water particles.

The paper of Vivekanandan et al. (1991) furthers the work by modelling polarimetric

radar quantities for monodisperse ice hydrometeors at wavelengths of 8 mm and 10 em.

The ice particles are modelled as prolate and oblate spheroids. They utilize a coordinate

system transformation which allows them to compute the T-matrix once for a given particle

as defined by its physical and optical properties and then compute the scattered field

for a variety of particle orientations. This allows them to examine the sensitivity of

monodisperse hydrometeors to variations in compound canting angle. The conclusion of

import which can be drawn from this paper in terms of the present work is the sensitivity

of the scattering to the canting angle. Their calculations show a marked sensitivity to

deviations in the particle's preferred orientation. The degree of this sensitivity depends

on how the the canting angle is modelled. For deviations on the order of 20° or less, their

work suggests that differential reflectivity (ZDR), specific differential phase (KDP)' and

backscatter differential phase (8) are relatively insensitive to canting angle whereas the

LDR seems to be most sensitive to such fluctuations.
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Fredholm integral equation

The Fredhohn integral equation method (FIM) differs from the T-matrix method in

that the incident field is related to the scattered field via an integral over the target volume

rather than as a surface integral; the internal field as opposed to the surface currents. The

development Fredhohn integral equation method for ellipsoids has been driven primarily by

A. R. Holt (Holt et al., 1978; Holt, 1980). The method has been applied by Shepard et al.

(1981) to study scattering by small ice particles at 20 GHz (X ~ 1, where X = 21ra/ >..

and a is the major dimension of the particle). They report good agreement between

experimentally determined scattering coefficients from discs and needles and values from

the FIM. They also report little difference between Rayleigh spheroids and FIM discs and

needles in terms of vertical and horizontal scattering amplitudes. The exception is in the

backward direction in which shape effects become important even at these small optical

sizes.

2.1.3 Discrete Methods

There are two methods which involve the discretization of the scatterer: the finite

difference-time domain method (FDTD) and the discrete dipole approximation (DDA).

Although these methods were proposed a relatively long time ago, the early seventies for

DDA and the early eighties for FDTD), they have only recently become reasonable from

a computational standpoint.

FDTD

The FDTD method was originally proposed by Umashankar and Taflove (1982). This

method has seen recent application in the work of Aydin and Tang (1993), who apply

it to the scattering of linearly polarized radiation by hexagonal ice columns, plates and

stellates. They consider frequencies of 94 and 220 GHz. The backscatter cross section

is approximately 12 to 15 dB higher for 220 GHz. Also noteworthy is the resonance-like

behavior of the horizontal backscatter cross-section of plates and stellates at 220 GH z for

partides which are larger than approximately 600 f.Lm at side incidence. This behavior is

much more subdued at for normal incidence and is virtually nonexistent for columns. For

columns they report an increase of approximately 0.7 to 1.8 in the depolarization ratio

from 94 to 220 GHz for the larger crystals (2:: 400 f.Lm) at vertical incidence.

DDA

The physical principles underlying the DDA are detailed in Section 2.2, we will men­

tion only some of the applications. O'Brien and Goedecke (1988) use the DDA to

examine the sensitivity of differential and total cross sections to variations in mixing rule

and geometrical shape at a wavelength of 1 em in the resonance region. Mixing rules
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are used to adjust the complex refractive index of ice to account for the inclusion of air.

They examine the ability of homogeneous circular disks and inscribed and circumscribed

oblate spheroids to represent a stellar snow crystal where the mixing rules are used to

adjust the complex refractive index based on the relative volumes. A similar procedure is

employed for a hexagonal column where a circular cylinder and prolate spheroid are used

for comparison. They provide the following tentative recommendations, tentative in that

they suggest further calculations should be performed before they be regarded as sound.

The modelled geometry should have the same overall linear dimensions as the particle.

Secondly the modelled shape should match the distributed mass as accurately as possible

as one would intuit. Finally, the Bruggeman mixing rule was the most reliable.

Evans and Vivekanandan (1990) employ the DDA to examine issues ofmultiparameter

radar scattering by randomly oriented (in the plane) hexagonal plates and cylindrical

columns and needles which are distributed according to a power law. They report results

which indicate that reflectivity changes with bulk density cannot be explained via the

standard spherical polarizability term. The differential reflectivity, ZDR, depends on shape

primarily as a result of the aspect ratio of the the scatterer. The linear depolarization

ratio is sensitive to gross particle shape such that it may be used to distinguish between

plate-like and columnar crystals. They also observe that the differential phase shift and

the reflectivity may be used to quantify the degree to which the particles are oriented

since K DP is sensitive to particle orientation whereas the reflectivity responds to oriented

and unoriented particles alike.

The issue of habit discrimination is further explored in Vivekanandan and Adams

(1993). The crystal shapes modeled are the same as Evans and Vivekanandan (1990),

except the columns were now modeled as hexagonal columns as opposed to cylindrical

columns. They employ both monodisperse and modified gamma distributions and experi­

ment with various ice water contents. Their monodisperse results again suggest the ability

to discriminate between columns and plates via multiparameter radar measurables. The

modified gamma distribution tends to dampen the variations in reflectivity for a given

habit. They indicate that either of the following combinations appear to be most use­

ful to discriminate between plates, needles and columnar crystals: horizontal reflectivity

(ZHH) and differential phase shift (KDP) or differential reflectivity (ZDR) and correlation

(p (h, v)). They do not indicate which wavelength is used. They also mention that the

relationship connecting reflectivity-factor and IWC seems to be only nominally dependent

upon parameters of the distribution.

Dungey and Bohren (1993) use the DDA (which they call the coupled dipole method)

to examine backscattering by hexagonal columns and plates at 94 GHz. They empha­

size that backscattering is the most severe test for any scattering model as is discussed

elsewhere (see Section 2.2.3 and Bohren and Singham, 1991). They focus on the sensi­

tivity of backscattering to unpolarized as well as horizontal and vertical polarizations at
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several zenith angles as a function of the size parameter. In general, as the size parame­

ter (based on the diameter of an equal volume sphere in this case) increases from f'.J 1.0

to f'.J 2.4 the backscattered intensity displays a local maximum, then a local minimum,

and then proceeds to grow to an even greater undetermined value (results were truncated

at this point). They observe the first scattering minimum which they suggest as being

important in a possible retrieval scheme involving the Doppler velocity of the particles.

Generally, the first maxima and minima are better defined and more pronounced for the

columns than the plates. There is a strong dependence of these minima on zenith angle.

This dependence is expected to disappear if the ice particles lose their orientation which

could provide information regarding the turbulent nature in a cloud if the habits can be

determined independently.

2.1.4 Point Matching Techniques

Point matching techniques are physically exact methods in the same sense in which

the integral methods are exact; exact in a mathematical sense. They are all inexact in a

computational and geometrical sense although these problems can be dealt with.

The concept of the point matching technique is to employ regular vector spherical

harmonics to express the internal and external fields. The external field is the superposi­

tion of the incident and scattered field. The boundary conditions at the particles surface

are applied to "match" the internal and external fields - hence the name of the method.

There are two variants of the point matching technique. The approach of Oguchi (1973)

is a straight forward collocation of these fields at the boundary of the particle. The sec­

ond variant employs least squares fitting to match the fields at the boundary as is done

in Morrison and Cross (1979) and Oguchi and Hosoya (1974). Their results are used to

study scattering by deformed rain drops. We will not discuss their results further as they

have been applied primarily to hydrometeors in the water phase and we are interested in

ice. There is no reason why this method can not be applied to ice, however.

One final comment pertaining to these papers. Morrison and Cross (1979), Oguchi

(1973) and Oguchi (1975) discuss perturbation methods which assume that the scatterer

is a slightly deformed sphere. These methods are not detailed here as they are only

applicable to slightly deformed particles.

2.1.5 Some Remarks

There are a number of reviews in the literature pertaining to the subject of this

section, we conclude by mentioning three of them. Holt (1982) primarily focusses on

the implementational aspects of the point matching technique, the T-matrix method, the

unimoment method, and the Fredholm integral equation method, and an inter-comparison

amongst these methods. He also discusses approximations which may be obtained by

special considerations of size, orientation and frequency. Mon (1982) reviews methods
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for both spheres and nonspheres as well as various approximations. His list is nearly

identical to Holt (1982) although he omits the unimoment method which we have done in

this review as well. Mon (1982) also explores issues pertaining to scattering by oriented

clouds of ice particles distributed exponentially. Bohren and Singham (1991) review

several of the methods above and add the DDA. They emphasize the special nature of

scattering in the backward direction and address statistical issues which may shed some

light on scattering by ensembles of nonspherical particles.

Of course one may always use equivolume spheres with the Lorenz-Mie theory or

Rayleigh approximation to model scattering by nonspherical hydrometeors. We have

omitted theories for spheres from the list since we are exclusively interested in theories for

nonspherical particles. The scattering theory of spheres is well known and documented

(e.g., Van de Hulst, 1981; Bohren and Huffman, 1983) and the reader who is unfamiliar

with scattering theory in general is encouraged to consult the two works just cited. One

may speculate that spheres could prove useful under some circumstances, such as spacial

dendrites which tumble. When considering a statistical sampling of such scatterers which

would present approximately spherical geometrical cross sections, it is feasible that one

may apply ice spheres with the appropriate mixing rule. Such a study has been done in

Pazmanyet al. (1993). In this study Lorenz-Mie theory is used in conjunction with it in

situ ice particle measurements to simulate the 95 GH z radar measurements. The Lorenz­

Mie theory performed well (once the appropriate mixing rule was used) for some cases

but very poorly for others. One may further speculate, based on their reported results

of microphysical measurements, that the above speculation regarding tumbling crystals is

correct.

As can be seen from the dates of these papers the T-matrix approach has seen exten­

sive application for nearly two decades and should continue to remain useful. It appears

however, that the Fredholm integral equation method has grown out of favor at least

within the community of researchers working on scattering problems for hydrometeors.

Also somewhat out of favor is unimoment and point matching techniques. This list is not

complete as it ignores methods (such as Fuller, 1993) which have not yet been applied to

microwave problems.

2.2 THE DISCRETE DIPOLE APPROXIMATION

An efficient method to compute the scattering and absorption properties of dielectric

particles of arbitrary shape has long been sought. One such method was devised by Purcell

and Pennypacker (1973) and although it may not entirely meet the efficiency criteria it is

entirely general. Their method has come to be known by many names, but we will refer

to it here as the discrete dipole approximation (DDA). In this section we will discuss the

basic concept underlying the DDA, the specific implementation used in this study and

then provide a simple illustrative example of dipole scattering.
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2.2.1 1rlle J>llysics

Jilthough it can be computationally expensive or even prohibitive in many circum­

stances, the method of Purcell and Pennypacker is a physically intuitive solution to scatter­

ing by arbitrarily shaped dielectric particles. Purcell and Pennypacker posed the problem

not as a boundary value problem but as a finite element problem. They envisaged a par­

ticle comprised of many "polarizable atoms" which exist in a vacuum. They take it as

understood that the "atoms" are of point-like nature. These "atoms" are arranged on a

cubic lattice and are each assigned a complex polarizability a(w) to reproduce the bulk

dielectric constant of the material.

The instantaneous electromagnetic field at any given lattice site is determined by

the sum of the incident electromagnetic field and the electromagnetic field caused by all

of the other dipoles. When excited by an external source of radiation (i.e. an incident

plane wave of frequency w), each "atom" behaves as a dipole, absorbing and scattering

radiation according to its polarizability tensor. The far-field scattered radiation can then

be obtained by linear superposition of the radiation emitted by each dipole. It should be

noted that, implicit in this formulation is the omission of self terms; the radiation reaction

of a given dipole on itself. Later implementations such as those of Draine (1988) and

Goedecke and O'Brien (1988) incorporate these self terms.

This is the essence of the discrete dipole approximation, it is a physically and math­

ematically straight forward approach to scattering. At the heart of the DDA is dipole

radiation, a very basic concept in physics. It is a very complex book-keeping exercise,

however, and in many senses it is in the implementation where the difficulties arise. To

reiterate, it is an approximate method yet it is entirely general.

2.2.2 1rlle Implementation

Sufficient algorithmic variations fall under the rubric of the discrete dipole approxi­

mation (which is also known under other aliases such as the coupled-dipole method and

the scattering-orders approach as in Bohren and Singham (1991)) to merit a detailed dis­

cussion of the specific variant used here. The algorithm of Goedecke and O'Brien (1988)

forms the basis of the model used in this research. The FORTRAN code was written by

K. F. Evans and first appears in the literature in Evans and Vivekanandan (1990). From

this point on this particular model will be referred to as the implementation of Evans.

The task is to find the scattered electromagnetic field E (r) at all points in space due

to the interaction of an incident electromagnetic wave Ein (r) and an arbitrary dielectric

particle. The particle is defined by its optical properties and by the arrangement of cubic

dipolar cells of size d on a uniform rectangular Cartesian grid. Note that often times dis

referred to as the dipole size, however this is somewhat of a misnomer since dipoles are

to be thought of as having a point-like nature. It is perhaps better to think of d as an
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inter-dipole separation. The geometrical center of the particle is placed at the origin of

the coordinate system and the Cartesian grid is arranged such that the dipolar cells fit

across each dimension in an integral fashion; i.e. the origin lies either between two cells

or at the center of a cell accordingly. The maximal dimensions of the Cartesian lattice

are determined and then each cell on the Cartesian lattice is polled to determine if it is

a part of the particle according to standard geometrical formulae; e.g. spheres, ellipsoids,

hexagonal plates and columns, cylinders, etc. More complex shapes can be neatly handled

in an approximate fashion by the methods of Wang (1987). If a cell is not a part of the

particle it is rendered optically inert by setting its susceptibility to zero. It is the complex

susceptibility X which determines the optical properties and is related to the complex

refractive index m by X = (1/47r) [m2 - 1]. Each cell is further subdivided to facilitate

determination of the volume fraction Vj of each cell which lies on the edge of the particle.

This allows better resolution of the fine features of the particle's edges. Cells which have

volume fractions less than one have their susceptibility reduced (Xej j) according to the

Lorentz-Lorenz mixing rule:

Xejj = Vj X
47rXejj + 3 47r + 3

The cell size is restricted by the criteria Imlkd~ 1, which states that the amplitude

and phase of the internal field must be virtually constant across the cell, k = 27r / A is the

wave number for free-space wavelength A. In practice, Goedecke and O'Brien have shown

that Imlkd < 1 is adequate. In our studies, the criteria Imlkd < ~ was employed for higher

accuracy.

Since the nature of the problem is to find harmonic solutions to a wave equation,

we may apply the method of Green's functions. Beginning with Maxwell's equations,

Goedecke and 0 'Brien show that the electric field at all points r in space can be described

in terms of the dyadic Green's function G by

E (r)[l + (47r/3)X (r)] = E in (r) +Jd3r'G (r - r') . p (r) (2.2)

where p (r) = X (r) E (r) is the dielectric polarization. Equation (2.2) is discretized into

(with some rearrangement):

E~~i = [X;;l + 47r/3 (1- f)] Pa,i - d3 2: 2: GiJ (ra - r/3)p(3,i (2.3)
/3=1=a j

where Pa,i = XaEa,i' The system of linear equations represented by (2.3) can be compactly

expressed in matrix form as

(2.4)

where A is a 3N x 3N complex matrix which contains the information pertaining to

dipole-dipole interactions in the off-diagonal elements and the self-interaction terms as
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well as the susceptibilities along the diagonal. Note that in transgressing from equation

(2.2) to (2.3) an additional term r appears. r represents the small contribution to the

integral in (2.2) of the self-reaction of the dipole. r has been extracted out of the integral

and is treated separately, thus in discretizing the integral we omit the cases where (3 = a.

Goedecke and O'Brien model the self-term as

(2.5)

Here i is the imaginary number, i = .j=I. In this section the Roman characters 'i', 'j',

and 'k' will be used to denote indices, k is the wavenumber, and k is the propagation

vector. To ensure agreement with the optical theorem\ Goedecke and O'Brien show that

the imaginary part of (2.5) must be retained. This is crucial for the implementation of

Evans as the optical theorem is used as a consistency check.

Equation (2.3) is comprised of two parts on the right hand side: the first component is

the incident field plus the self-term and the second component accounts for the interaction

between the dipoles thus revealing the nature of the Green's function. We see that the

Green's function G (R) relates electric field at position a due to the electric field of another

dipole at position (3 and is dependent only upon the dipole separation R = r a - r{3 :

The incident plane wave at dipole a with position r a is modeled as

E~n (k') = Eo exp (-ikk' . r a ) ,

(2.6)

(2.7)

where the incident direction is indicated by k'. Eo has unit amplitude, IEol = 1, and is

either vertically or horizontally polarized. The vertical and horizontal polarization are

denoted respectively by the unit vectors V and iI and are defined such that V x iI = k,
where k is the direction of propagation. The geometry can be understood with the aid of a

sphere. Imagine a sphere with k originating at the center of a sphere and passing through

the equator. V is the unit vector beginning at the center of the sphere and pointing at

the pole with a positive vertical 'z' component. Then by default iI lies in the equatorial

plane perpendicular to k and V. The coordinate system for the scattering calculations is

defined by k and the local vertical axis (z).

In the implementation of Evans, there are two methods available to obtain the de­

sired dipole polarizations Pi direct inversion and conjugate gradient minimization. Direct

lIn Goedecke and O'Brien (1988), the optical theorem is defined in terms of the extinction, scattering
and absorption cross sections (O"e, 0"., and 0"0. respectively) by the two equations: O"e = 47rk-2 !J([Eo'F(k)]
and 0"e = 0". + 0"0.' See text for definitions.
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inversion approaches the problem in the form of Equation (2.4). The dipole polarizations

p are solved for by inverting A. This method has the advantage that once A is inverted

then many incident and outgoing angles can be solved for with little expense. Memory

usage for the matrix inversion technique, however, requires the storage of (3N)2 complex

elements, while CPU usage scales as (3N)3. In practice it is the memory limitations which

renders this method impractical for many of the applications in this study. As an example

consider a particle composed of 2000 dipoles (some of the particles modeled in Chap­

ter 3 consist of approximately 14000 dipoles): such a particle would require about 275

megabytes of memory! Thus the workhorse for the calculations presented in this research

was the conjugate gradient-FFT method.

The basic notion of the conjugate gradient method is to iterate p until the residuals

of (2.3) are at or below some acceptable value. Conjugate gradient minimization employs

FFT's to execute the convolution sum ofthe Green's function and the dipole polarizations.

The Green's function transform is precomputed once. Then for each convolution the

polarization vector is transformed, multiplied by the precomputed transform of the Green's

function and then an inverse FFT. This technique is very fast even for very great numbers

of dipoles because the FFT convolution process scales as order N log 2N. The number

of floating point operations for this method scales as C N log 2N where C is some large

prefactor which depends on the number of iterations, the fact that the FFT arrays are 8

times as large as N, and some constants due to geometry and the FFT itself.

Once p is determined the scattered far field Elk) can be related to the incident

electric field Ei(k') via the scattering amplitude matrix

[
Ev,s ] _ exp (-ikr) (Fvv FVh ) [ Ev,i ]
Eh,s - ikr Fhv Fhh Eh,i' (2.8)

The subscripts v and h indicate vertical and horizontal polarization. Note that each pair of

subscripts indicate the incident and scattered polarizations, respectively. The elements of

the scattering amplitude matrix are determined from p for each combination of incident

k', and outgoing k directions:

Fi (k) = 'L (8ij - kJ;j) i (kd)3 'L exp (ikk. r a ) Paj·
j a

(2.9)

The scattering amplitudes are derived from the far field limit (R -+ 00) of (2.6). The

Cartesian components iJ of (2.9) are projected onto the polarization vectors V and H in

(2.8). It follows that the scattering (Mueller) matrix is given by (e.g., Ulaby and Elachi,

1990; Van de Hulst, 1981; van Zyl, 1989):
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Re IFvv Fih +FhvF~hj -1m IFvvFih +FhVF~hl )
Re FvvFvh - FhvFhh - 1m FvvFvh - FhvFhh
Re FvvFhh +FvhFhv - 1m FvvFhh - FvhFh
1m (FvvFhh +FvhFhJ Re (FvvFhh - FVhFhJ

where nz is the number concentration of the particles and S has units of inverse length. The

subscripts indicate the incident and outgoing polarizations respectively. Equation (2.10)

represents an incoherent average over an ensemble of particles at various orientations

(when orientation averaging is invoked). In general, the Mueller matrix elements are

computed for each combination of incident and scattered angles. In monostatic radar

applications, however, k is taken to be in the direction of backscattering in (2.9), and

the Mueller matrix is expressed in terms of backscattering. As discussed in Section 2.3,

azimuthal averaging is performed to simulate randomly oriented particles in the plane.

The appropriate extinction matrix in terms of the forward scattering elements is

(

Re (Mvv +Mhh) Re IMvv - Mhh) Re (Mvh +MhVl 1m (Mvh - Mhv) )
K = Re (Mvv - Mhh) Re Mvv +Mhh ) Re (Mvh - Mhv 1m (Mvh +Mhv)

Re (Mhv +Mvh) Re Mhv - Mvh) Re (Mvv +Mhh Re (Mvv - Mhh)
1m(Mhv- Mvh) -1m (Mvh +Mhv) Re(Mvv-Mhh Re(Mvv+Mhh)

(2.11)

where the individual elements are given in terms of the forward scattering amplitudes

Flj (k) by

L 27T"i (~)M· - nz-Fz .. klJ - k ,lJ •

Z

The Mueller matrix contains all of the scattering information and can be used to derive

the more familiar radar parameters as discussed in Appendix A.2.

A final comment regarding the implementation of Evans is in order before we conclude

this discussion. Although absorption has not been discussed, the DDA model of Evans

does indeed compute the absorption. We have omitted any discussion of absorption as it

is not utilized in this work.

2.2.3 Sensitivity to Backscattering and an Illustration of Dipole Scattering

As was discussed above the underlying premise of the DDA is that the scattered

electromagnetic wave can be obtained by summing over the contributions of numerous

dipolar units. An angular dependence of the scattered intensity results from the phase

differences between individual scattered waves. The phase difference between any two

given dipoles depends upon the relative position of the dipoles and the direction of the

scattered waves. A small scale version of the discrete dipole approximation can be used

to illustrate the sensitivity of backscattering to particle shape and as a means of insight

into the DDA method. We shall begin by revisiting the analysis of Bohren and Singham

(1991).
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Consider an electromagnetic wave impinging upon two dipoles. The waves propaga­

tion vector lies in a plane defined by the two dipoles. For the moment the dipoles are

assumed to be non-interacting and polarization will be ignored. We will relax these con­

ditions later in our numerics. Under these conditions the phase difference between the

scattered waves of the two dipoles is given by

(2.13)

where k is the wave number, r is the relative position of the two dipoles, and ein, es are

unit vectors specifying the direction of the incident and scattered waves, respectively. To

simplify matters Bohren and Singham let r'~n = r, that is, the direction of propagation

of the incident wave is parallel to the dipole direction vector in which case

cp = kr (1- cosO)

for scattering angle 0 where r . es reduces to r cos O. Differentiating with respect to the

dipole separation r one finds that

ocpor = k (1 - cos 0) .

Thus, the scattering is least sensitive to changes in dipole separation in the forward direc­

tion (0 = 0) and most sensitive in the backward direction (0 = 1r). In their analysis Bohren

and Singham argue on physical grounds that this result holds for an arbitrary number of

dipoles (which is just the principle of linear superposition) and for the inclusion of dipole

interactions. The latter argument is supported via calculations which suggest that dipole

interactions actually increase the sensitivity for backscattering.

In this simple example it is evident that changing the dipole separation is equivalent

to changing the particle shape for a given wavelength. Thus the conclusion that scattering

is most sensitive in the backward direction to changes in dipole separation suggests that

scattering is most sensitive in the backward direction for changes in particle shape. With

the aid of Mathematica (software for symbolic and numeric manipulations) to alleviate the

tedium of symbolic matrix manipulation, it is possible to analytically solve the coupled

dipole problem for small numbers of dipoles. This exercise is useful as it illustrates how

the discrete dipole method works, and can test some of the above assertions.

Flatau et al. (1990) formulate the discrete dipole approximation in a convenient form

for the small dipole problem. The basic idea is to compute the dipole moment of the

particle (in this case composed of two dipoles 2) from which the scattered intensity can

2This represents the solution to problem 5.6 of Stephens (1994)
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be obtained. For a given incident wave Einc,j at the lh dipole, one can obtain the dipole

moment p from
N

L Aj ,kP = Einc,j

k=1

Here Aj ,k is the 3N X 3N dipole interaction matrix for dipole k acting on dipole j and N

is the number of dipoles. For the N = 2 case, the dipole interaction matrix is given by

k2eikr (100) (l-ikr)e
ikr

(1 ~2 0)A 12= A21 = --- 0 0 0 + 0 0
1

,
, , r 001 r 3 00

and 1(1 00)Al 1=A2 2 = - 0 1 0 ,
, , a 0 0 1

j =k.

As before k = 2~ is the wavenumber for wavelength A, and a is the polarizability. In this

formulation all dipole-dipole interactions are included, including the self term (radiative

reaction; i.e. the Ai,i) through the polarizability (Draine, 1988):

[
3 2 ]-1_ _ .2 (kaeq ) • m - 1

a-ao 1 1. N 2
3 m +2

where
3 m 2 -1

a o =--· ,
47rn m 2 +2

n is number density of dipoles, aeq = (3N/47rn)I/3, and m is the refractive index. The

problem was solved for an incident plane wave travelling along the x-axis in the x-y

plane with horizontal and vertical polarization. The dipoles were also in the x-y plane,

oriented along the y-axis corresponding to the second case discussed above. Solutions

were obtained for N = 1 (simple Rayleigh scattering by a sphere), N = 2, and N = 4

dipoles. The interaction matrix for N = 4 dipoles is not presented due to its similarity

to the solution above and its cumbersome nature. Results are presented as a function

of scattering angle e. The results are normalized to the maximum value (corresponding

to N = 4 dipoles at e = 0,7r), and the dipole separations, r, were adjusted to preserve

volume. The data are presented in Figure 2.1.

From Figure 2.1, since the particle volume remains the same in all three cases, it

can be concluded that it is the shape (or relative dipole separations) which is causing the

variation in scattered intensities. As one further test, the differential reflectivities (ZDR is

based on both the horizontally and vertically backscattered intensities as defined in A.2)

were computed for the N = 2 and N = 4 cases and were found to be significantly different:

ZDR,N=2 = 1.24 and ZDR,N=4 = 2.11 dBZ.

The backward-forward asymmetry is not visible in Figure 2.1 because we are only

looking at one orientation. To see the backward-forward assymetry and to demonstrate
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N = 2 and 4 dipoles.
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Figure 2.1: Scattering by N=l, 2, and 4 dipoles, oriented along the y-axis for an incident
wave propagating along the x-axis. Note: >. = 0.70JIm, and m = 1.31.

the sensitivity in the backward direction, calculations were done for a pair of dipoles

average over 12 planar orientations. The incident radiation was unpolarized and had a

wavelength of 0.7 JIm and m = 1.31. There were three different sets of dipole seperations

(in triplets): d = 0.17±.01, d = 0.35±.01, and d = 0.70± .01. The results are presented in

Figure 2.2. The backward-forward assymmetry develops as the dipole separation increases

transgressing from a Rayleigh-like pattern for d = 0.17 to a highly asymetric pattern for

d = 0.70. In looking at Figure 2.2, it is apparent that small changes in dipole separation

lead to sensitivities in the near forward and near backward directions. The sensitivity

seems to shift towards the backward direction for d = 0.70 although this cannot be as­

certained with any degree of confidence. Note that the intensity is proportional to the

magnitude of the electromagnetic field and that phase difference appears in the electric

field as the argument of the complex exponential function. This might be described as a

highly nonlinear system, and although Bohren and Singham's phase difference argument

is instructional it cannot be entirely generalized. An additional complicating factor which

cannot be accounted for in such a simple argument is the interaction of dipoles. In sum­

mary, it is quite remarkable that such a simple scattering system can exhibit such complex

behaviour.
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Figure 2.2: Normalized scattering intensity for two dipoles averaged over 12 dipole orien­
tations. Dipole separations are indicated in the key. Note: >. = O.70j.Lm, and m = 1.31.
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2.3 AN ASSUMPTION: RANDOM ORIENTATION

As discussed in Section 4.1, naturally occurring ice particles of the size and habit

with which we are concerned tend to fall with their major dimension oriented horizontally.

(There are exceptions to this rule, such as short columns which possess relatively large

aspect ratios, where the aspect ratio is defined as the ratio of the minor to the major

dimension. These particles will exhibit a more complex behaviour as they fall). Given

a large distribution of such particles it is reasonable to assume that the particles will be

randomly-oriented in this plane. Thus the major dimension of any particular ice particle

will lie horizontally and each azimuthal orientation will occur with equal probability. In

reality the hydrometeor's horizontal inclination is likely to deviate from this horizontal

mode in some distributed fashion. This deviation is known as the canting angle, and will

be neglected in this study. To simulate this random orientation azimuthal averaging is

performed over several incident directions. This section seeks to determine how many

angles are required to be averaged to ensure a satisfactory representation of randomly

oriented particles.

It should be noted that the number of solutions in the DDA model is directly pro­

portional to the number of azimuth angles averaged. Because the DDA can be com­

putationally expensive, even a small difference in the number of azimuth angles can be

significant. The methodology of this section is relatively straight forward. For several

different morphologies, the discrete dipole model was run with an ever increasing number

of azimuthally averaged angles. The particle is determined to be randomly oriented when

the output ceases to vary significantly relative to a reference case of 12 azimuthallyaver­

aged angles. The calculations were performed at a wavelength of 3.16 mID. The number

of dipoles were fixed across the minor dimension; 4 dipoles for plates and six dipoles for

the other morphologies. Results can be extended to other wavelengths by consideration of

the dependance of azimuthal averaging on optical size. The data are presented in Tables

2.2 and 2.3 in the form of fractional differences [%]. The fractional difference is defined to

be

F = 100 (IFN a.Z=12,pozI
2- IF~a.z,pozl2) [%].

IFN a.z=12,pozl
The polarization, denoted by the subscript pol, is either HH or VV.

As is evident from Tables 2.2 and 2.3, azimuthal averaging is sensitive to shape,

optical size, polarization and radar elevation angle. The differences between polarizations

are relatively small in comparison to the effects of shape, optical size and elevation. Any

value ::; 1% is deemed acceptable. This value offers an appropriate compromise between

accuracy and expediency and was determined subjectively by inspection of Tables 2.2 and

2.3. The most severe test of averaging is for edge on incidence (0 = 0°). The number of

azimuthal angles to be averaged which were used in Chapter 4 are summarized in Table

2.4.
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Polarization HH
Crystal N az = 2 N az = 3 N az =4 N az = 5 N az = 6 N az = 8
(a) e = 90°
Hex. Plate ~lm~~ 0.0006 0.0001 0.0000 0.0000 0.0000 0.0000
Hex. Plate 2mm 0.0000 0.0001 0.0009 0.0000 0.0000 0.0000
Cylinder ~lmm~ 3.1172 0.0008 0.0007 0.0004 0.0000 0.0000
Cylinder 2mm 4.6825 0.0005 0.0010 0.0001 0.0005 0.0005
Rosette-3 Imm 0.0003 0.0002 0.0000 0.0001 0.0000 0.0003
Rosette-3 2mm 0.0004 0.0001 0.0000 0.0002 0.0000 0.0000
Rosette-4 Imm 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rosette-4 2mm 0.0004 0.0000 0.0004 0.0000 0.0000 0.0004
(b) e = 60°
Hex. Plate ~1mm~ 0.0580 0.0068 0.0000 0.0001 0.0000 0.0000
Hex. Plate 2mm 0.2744 0.1700 0.0003 0.0001 0.0001 0.0001
Cylinder ~lmm~ 6.1621 0.1890 0.0021 0.0003 0.0003 0.0004
Cylinder 2mm 23.7574 2.5857 0.1563 0.0059 0.0006 0.0001
Rosette-3 lmmj 0.0710 0.1909 0.0034 0.0019 0.0011 OJ)006
Rosette-3 2mm 0.2697 2.2944 0.0011 0.0011 0.0015 0.0005
Rosette-4 Imm 1.6893 0.0000 0.0034 0.0000 0.0000 0.0000
Rosette-4 2mm} 11.6761 0.0000 0.1689 0.0000 0.0000 0.0000
(c) e = 30°
Hex. Plate ~lmm~ 0.1880 0.0745 0.0002 0.0000 0.0001 0.0002
Hex. Plate 2mm 1.3820 4.4352 0.0225 0.0250 0.0417 0.0000
Cylinder ~ Imm) 14.5183 1.0665 0.0399 0.0007 0.0000 0.0001
Cylinder 2mm) 77.7790 20.2846 3.2924 0.3383 0.0231 0.0001
Rosette-3 Imm 0.1314 1.0962 0.0046 0.0040 0.0026 0.0012
Rosette-3 2mm 4.9425 25.2320 0.8129 0.4681 0.2946 0.1267
Rosette-4 Imm 6.8258 0.0000 0.0580 0.0000 0.0000 0.0000
Rosette-4 2mm 75.6236 0.0311 6.6508 0.0001 0.0311 0.0000
(d) e = 0°
Hex. Plate ~ 1mm~ 0.2630 0.1496 0.0001 0.0000 0.0000 0.0001
Hex. Plate 2mm 0.6381 3.0087 0.1580 0.1717 0.5461 0.0003
Cylinder ~ 1mm~ 19.7399 1.8268 0.0894 0.0024 0.0000 0.0000
Cylinder 2mm 102.0246 33.5480 7.1871 0.9838 0.0902 0.0004
Rosette-3 Imm 0.1482 1.9124 0.0113 0.0093 0.0060 0.0024
Rosette-3 2mm 7.5980 42.2109 1.2253 0.6563 0.3962 0.1889
Rosette-4 Imm 10.4234 0.0000 0.1344 0.0000 0.0001 0.0000
Rosette-4 2mm 126.4119 0.1675 18.7309 0.0000 0.1678 0.0003

Table 2.2: Azimuthal orientation averaging results, where N az is the number of orIentations
averaged. The fractional difference is cased on Naz = 12. For horizontal polarization and
A = 3.16 mm.
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Polarization VV
Crystal II N az - 2 N az - 3 N az -4 N az - 5 N az - 6 N az - 8
(a) 0 = 90°
Hex. Plate (lmm) 0.0006 0.0001 0.0000 0.0000 0.0000 0.0000
Hex. Plate (2mm) 0.0000 0.0001 0.0009 0.0000 0.0000 0.0000
Cylinder ~ lmm~ 3.1172 0.0008 0.0007 0.0004 0.0000 0.0000
Cylinder 2mm 4.6825 0.0010 0.0010 0.0001 0.0005 0.0005
Rosette-3 ~lmm 0.0003 0.0002 0.0000 0.0001 0.0000 0.0003
Rosette-3 2mm 0.0004 0.0001 0.0000 0.0002 0.0000 0.0000
Rosette-4 (lmm 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rosette-4 (2mm 0.0004 0.0000 0.0004 0.0000 0.0000 0.0004
(b) 0=60°
Hex. Plate ~ 1mm~ 0.0505 0.0050 0.0000 0.0001 0.0000 0.0000
Hex. Plate 2mm 0.2358 0.1053 0.0000 0.0001 0.0001 0.0001
Cylinder (lmm~ 0.2712 0.0447 0.0001 0.0005 0.0005 0.0005
Cylinder (2mm 3.1579 0.1694 0.0083 0.0013 0.0002 0.0001
Rosette-3 lmm 0.0821 0.0840 0.0076 0.0044 0.0027 0.0008
Rosette-3 2mm 2.3784 0.8047 0.3042 0.1746 0.1075 0.0440
Rosette-4 lmm 1.0454 0.0000 0.0011 0.0000 0.0000 0.0000
Rosette-4 2mm 3.7516 0.0000 0.0178 0.0000 0.0000 0.0000
(c) 0 = 30°
Hex. Plate ~ lmm~ 0.0835 0.0194 0.0000 0.0000 0.0002 0.0000
Hex. Plate 2mm 0.7327 0.2459 0.0017 0.0017 0.0004 0.0000
Cylinder ~lmm~ 1.5168 0.0332 0.0002 0.0004 0.0003 0.0002
Cylinder 2mm 59.2071 10.9057 1.1719 0.0809 0.0027 0.0005
Rosette-3 lmm 0.2105 0.0780 0.0198 0.0116 0.0071 0.0027
Rosette-3 2mm 12.5159 20.9171 1.6083 0.8938 0.5475 0.2261
Rosette-4 lmm 0.5434 0.0000 0.0004 0.0000 0.0000 0.0001
Rosette-4 2mm 54.6303 0.0213 3.6776 0.0005 0.0213 0.0000
(d) 0 = 0°
Hex. Plate ~1mm~ 0.0047 0.0355 0.0009 0.0000 0.0000 0.0009
Hex. Plate 2mm 2.9995 27.3941 0.4240 0.0707 1.3229 0.0000
Cylinder (lmm~ 8.2794 0.5347 0.0202 0.0002 0.0000 0.0000
Cylinder (2mm 101.9605 31.3288 5.8609 0.7028 0.0590 0.0012
Rosette-3 tmmj 0.1746 0.5426 0.0215 0.0129 0.0076 0.0032
Rosette-3 2mm 10.5191 61.3371 1.5393 0.7980 0.4411 0.2098
Rosette-4 lmm 4.7846 0.0000 0.0287 0.0000 0.0001 0.0000
Rosette-4 2mm) 177.8930 0.4410 40.7844 0.0000 0.4437 0.0027

Table 2.3: Azimuthal orientation averaging results, where Naz is the number oforientations
averaged. The fractional difference is based on Naz = 12. For vertical polarization and
>.. = 3.16 mm.

>.. = 8.66mm

osette-4
3

3

Table 2.4: Number of azimuthal angles averaged which were used for the ensemble calcu­
lations of Chapter 4. Note: 'a' is the major dimension of the ice particle.
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The calculations presented above apply for highly deformed particles. It should be

noted that for particles with a larger aspect ratio (defined as the ratio of the minor to

major dimension) less averaging is required; this result was expected because in some

sense these particles can be regarded as being more spherical. These calculations are not

presented in this report as they are not directly relevant.



Chapter 3

BACKSCATTERING BY RAYLEIGH SPHEROIDS

This section examines the backscattering properties of single, non-spherical ice par­

ticles at millimeter wavelengths. Many studies of this nature have been presented in

the literature however little work has been presented which can validate the assumptions

commonly used in modeling non-spherical particles. Namely, the assumptions of Rayleigh

scattering are often sighted but rarely demonstrated. Additionally, many of the stud­

ies were concerned with water drops which are typically larger than the ice particles of

concern in this study and at much lower frequencies (e.g. X- and S-band radars). For

example, water drops with an equivalent spherical diameter of approximately 2 mm have

an aspect ratio of approximately 0.9 (Pruppacher and Klett, 1978) which may still be

considered nearly spherical. Water droplets may reach 6-mm in diameter in rainfall with

a corresponding increase in deformation. In contrast the ice particles studied herein have

a maximum dimension of approximately 2 mm and aspect ratios on the order of ~ 0.1 to

0.3.

As is evident in Section 2.1, the preferred approach by many researchers is to model

the ice particles as spheroids, whose symmetry allows one to solve scattering problems

efficiently while capturing the salient features of the actual particles. Over much of the

frequency domain of meteorological research radars it is possible to treat cirrus particles

as spheroidal Rayleigh scatterers. As technology and need increases the frequency of

millimetric radars, the limits of the Rayleigh approximation will be exceeded and the

backscattered signal will become increasingly sensitive to particle shape. The discrete

dipole model is ideally suited to explore the assumptions inherent in Rayleigh modeling

as well as issues regarding the shape of the scatterer.

In Section 3.1 of this chapter, the assumptions of the Rayleigh approximation will

be given as well as the mathematical details of the Rayleigh model. The discrete dipole

approximation will be used to explore two issues: what are the limitations of the Rayleigh

approximation and how well do spheroidal shapes represent nonspheroidal particles? Sec­

tion 3.2 will outline the nature of the calculations and the results of the calculations are

given in the two succeeding sections. In Section 3.3 the results of calculations which

explore the limits of Rayleigh scattering in terms of particle size and wavelength are pre­

sented. The question of how to define optical size (or size parameter) for nonspherical

particles arises naturally in this context and this issue will be addressed" In Section 3.4
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the backscattering of spheroidal models of ice crystals will be compared with the backscat­

tering by more realistic forms such as hexagonal plates and columns. As the focus of the

research is backscattering by cirrus ice particles at cloud radar wavelengths, appropriate

ice particle sizes and wavelengths are considered. In both analyses the method is straight

forward; the Mueller matrix elements for each particle are computed using the two models

and are analyzed in terms of radar measurables.

3.1 THE RAYLEIGH MODEL FOR ELLIPSOIDS

The expression 'Rayleigh scattering' is often used to convey the notion of scattering

by particles which are small compared to the wavelength. Scattering by spheres under

this condition is proportional to 1/A4 • The expression is applied in reference to the work

of Lord Rayleigh (1871). Based on historical considerations, Bohren and Huffman (1983)

note that this may not be altogether the best name for scattering under these conditions

as Lord Rayleigh did not consider absorbing particles. The expression is ingrained into the

community at large, however, and we will follow Bohren and Huffman, imprecise though

it may be, and apply the term in a general sense to imply scattering by all particles which

are small compared to the wavelength.

There is one more point which must be belabored, the criteria under which Rayleigh

scattering is applicable. As alluded to above, the condition most often cited in the liter­

ature is that the particles are optically small. Van de Hulst (1981) notes, however, that

there are actually two criteria to be met for Rayleigh scattering:

1. The applied field must be constant across the the particle: s?,ze ~ A/2tr (for a

sphere; X~ 1).

2. The internal field must remain in phase with the external field, i.e. the applied field

should penetrate the particle thoroughly and rapidly: I m I ·size ~ A/2tr. (for a

sphere; Im I ·X ~ 1).

The point we wish to make is that the latter condition is often over looked in the literature,

yet it is not entirely insignificant. For example at A = 3.16 mm, Im I~ 1.78 for ice. These

issues will be explored at length in this chapter with the aid of the DDA.

3.1.1 Model Specifics

A Rayleigh model for oblate and prolate spheroids was developed to work within

the framework of the DDA model to facilitate inter-comparisons. Van de Hulst (1981)

provides the formalism from which we begin. For an incident electric field, Eo, which has

components projected onto the semi-axes of an ellipse (a, b, and c), the electric field at

any point inside of the ellipse (subject to the above criteria) is given by

E = Eo - Lj·4trP (3.1)
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where Lj is a factor which depends upon the ratio of the axes. Using the relations

P = (m2 -1)~
471"

in Equation 3.1 yields the following relation for the polarizability tensor

v ( 1 )OJ = - l'
471" Lj + m L 1

j = 1,2,3. (3.2)

for volume V. We can use the polarizability tensor as defined by (3.2) to compute the

induced dipole moment via p = ojEo. If Eo is given by (2.7) then we can proceed as in

Section 2.2.2 to compute the scattering amplitudes by using the dipole moment p in (2.9).

From this point on the formalism for obtaining the desired elements of the Mueller matrix

follows Section 2.2.2.

In the context of scattering all of the geometrical information of the particle is deter­

mined by Lj and its optical properties are specified by the complex refractive index m.

We note that ellipsoids reduce to spheroids for c = b which implies that L 2 = L 3 (we also

observe that L 1 = L 2 = L 3 = ~ for spheres). Because L 1 +L 2 +L 3 = 1, we only need to

specify L1 as is given in van de Hulst (1981, p.71). For prolate spheroids (a> b):

L1 = 1- e
2
(~In (~) _1) ,

e2 2e 1- e

And for oblate spheroids (a < b):

1+ f2 (1 )L 1 = f2 -l- yarctan(j) ,

The model was validated by comparisons with DDA spheroids and with a similar Rayleigh

model of Sergey Matrosov (personal communication, 1993).

3.2 ABOUT THE CALCULATIONS

The discrete dipole approximation (DDA) is ideally suited to serve as a standard

for comparison with spheroidal models. It allows one to compute the scattering of po­

larized electromagnetic radiation by an arbitrarily shaped dielectric particle of virtually

any optical size to a specified accuracy, although in practice one is limited by the compu­

tational resources at hand. The DDA and Rayleigh models have been outlined in detail

above. The dielectric particles are modeled to represent ice particles characteristic of cir­

rus clouds. Below we briefly outline the characteristics of the particles. Justification for

the assumptions regarding the cirrus particles modeled in this section is given in Section

4.1.
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m
. 1-'/,.

1.782 - iO.0028
1.783 - iO.0014
1.783 - iO.0007

Table 3.1: Wavelengths (A) and complex refractive indices (m) used in the single particle
scattering calculations.

For the purposes of this analysis, we considered hexagonal plates and columns with

major dimensions of 50, 200, 600, 1000, 1400, and 2000 J.Lm as being representative of the

class of particles found in cirrus. The aspect ratios of the particles, defined here to be the

ratio of the minor dimension to the major dimension, were determined from the work of

Auer and Veal (1970). The columnar crystals were relatively straight forward to model

with the DDA, however, the plates posed a bit of a problem. In general, the aspect ratios

determined by Auer and Veal are significantly less than 0.1 for plate-like crystals. For

such particles choosing a sufficient number of dipoles to represent the vertical structure of

the particle yielded an enormous number of dipoles in the horizontal dimensions. Thus,

for purposes of numerical expediency, the aspect ratios of plate-like particles with major

dimensions greater than 200 J.Lm were set to 0.1. For each spheroid, the dipole spacing was

chosen such that exactly six dipoles fit across the minor dimension. The dimensions of the

corresponding oblate and prolate spheroids were determined by preserving volume and

aspect ratio with its hexagonal counterpart. In all cases the ice particles were assumed

to be randomly oriented with their major dimension in the horizontal plane. To achieve

a sense of random orientation the particles were averaged over three azimuthal angles.

This was slightly less than ideal as was discussed in Section 2.3, however, the analysis

will accommodate this fact. The wavelengths (A), together with the respective complex

refractive indices (m), were chosen to reflect current operating radars and are presented

in Table 3.1.

3.3 LIMITATIONS OF THE RAYLEIGH MODEL

As was discussed above there are really two criteria which must be considered in the

application of the Rayleigh approximation. The first condition is that the applied field

must be nearly constant across the particle. The second condition states that the incident

field should rapidly penetrate the particle, such that the internal field remains in phase

with the incident field. Since Im I~ 1.78 for ice, the latter condition was not too restrictive

and we focussed on the first stipulation. We can express this condition in terms of the

optical size (or size parameter) which is defined as X = 27l"RIAfor a sphere of radius R.

For nonspherical particles it is common to define X = 27l"ReiAwhere Re is the radius

of a sphere possessing a volume equal to the original particle. To determine the validity

of the Rayleigh approximation we defined the quantity

~Fi,s = 100· (lfi,.IJtay. - Ifi,.lbDA) I lJi,sIJtay. [%]
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Figure 3.1: The fractional difference [%] of the backscattering amplitudes between the
Rayleigh and DDA models for oblate spheroids.

where As is an element of the backscattering amplitude matrix in Equation 2.8 with in­

cident polarization 'i' and scattered polarization's'. Each element of the backscattering

amplitude matrix describes how a given particle scatters the incident radiation. Figure 3.1

presents the backscattering amplitude differences for oblate spheroids and vertical (tiFvv )

and horizontal (tiFhh) polarizations as a function of optical size. The cross polarization

terms (tiFvh) were negligible which was to be expected from oriented, plate-like ice par­

ticles. The analogous plots for prolate spheroids are presented in Figure 3.2. The radar

elevation angle is denoted by ().

Figure 3.1 will be analyzed first because the features are more clearly defined than in

Figure 3.2. Comparing Figure 3.1(a) with Figure 3.1(b) it is evident that the fractional

difference between the two models is virtually independent of polarization. This is good

because it indicates a consistency between the two models with respect to polarization.
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The exception to this is for small () (edge on incidence) at vertical polarization (Figure

3.1(b)). Bear in mind that these oblate spheroids were very thin. Also note the asymptotic

behavior; as the optical size becomes large IfllJDA/lfl1my . ---t 0, which is indicative of the

power law behavior of the backscattered energy by Rayleigh particles. It is important to

observe that the differences between the two models (LlF) becomes very Jlarge for X ~ 1

and appears to be strongly dependent upon the radar elevation. This indicates that X, as

based on the radius of an equal volume sphere, is somewhat ambiguous. We will examine

this issue in the following section. The backscattering amplitude differences for prolate

spheroids (Figure 3.2) are less clear than the corresponding plots for prolate spheroids

largely because the optical sizes tend to be cluttered towards smaller values. There is also

a general agreement between the vertical and horizontal plots for the prolate spheroids;

one would expect the difference to be the same for each polarization as noted above. The

asymptotic behavior is also evident although less pronounced and at lower values. There

is a considerable difference in the cross term for prolate spheroids. The difference, LlFvh'

is zero for edge on incidence but is quite large for other elevations.

Qualitatively we observe an abrupt change of the slope in the difference curves of

Figures 3.1 and 3.2, especially for the oblate spheroid case. There is also a significant

difference between elevations, with the lower radar elevations breaking down at smaller

major dimensions. It is also evident that oblate spheroids are more sensitive than prolate

spheroids. To be more quantitative we chose the criteria for breakdown to be LlFi.s =

12 -15%. This value was not entirely arbitrary as it was based on the following rationale:

• For optically small particles (i.e. X :S 0.1) there is approximately ±10% difference

between the Rayleigh and DDA models.

• Spheroids modelled by the discrete dipole approximation will possess many "edge"

dipoles which must have their dielectric functions reduced according to the Lorentz­

Lorenz mixing rule, which introduces some error.

• The DDA is only approximate - the iterations were stopped at an accuracy of 1 x
10-4 •

We are now in a position to ascertain the point at which the Rayleigh model breaks

down. The results, interpolated from the graphs in Figures 3.1 and 3.2 .are summarized

in Table 3.2. As was discussed in Section 2.2.3 backscattering represents the most severe

test for any scattering theory. Thus we can be confident that our conclusions are valid for

other scattering angles.
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= 00,30
() = 60,90

= 22mm
> 2000/Lm
> 2000j.Lm

Table 3.2: Limits of the Rayleigh approximation based on Rayleigh-DDA model differences
and a maximum allowable error of 12-15%.

3.3.1 On the Notion of Optical Size

The concept of 'size parameter' (X, sometimes it is also called the 'size factor') is

used to convey a notion of how large a particle is relative to the wavelength of some

incident radiation. In a sense it is an 'optical size' which is perhaps a better term as it

better represents the concept. Subsequently, this expression will be used throughout the

remainder of this document.

Holt (1982) observes that the concept of optical size is somewhat ambiguous for

nonspherical particles. For nonspherical particles the optical size can be defined as X =

27rReff / >.., where Ref! is some measure of the particles size; an effective radius. The

ambiguity arises in the definition of Ref!. In the scattering literature, the most common

definition is the radius of an equal volume sphere (call it R e ). One also finds Ref! = a

or Reff = a/2 where a is the major dimension of the nonspherical particle. Indeed

this ambiguity is born out in the graphs of the previous section. For example: note the

variation with elevation angle in Figures 3.1 and 3.2 where the fractional differences in

backscattered amplitude were plotted as a function of X = 27rRe / >... For a given optical

size the fractional difference between the Rayleigh model and the DDA model is strongly

dependent on the elevation angle.

W"e shall attempt to shed some light on this issue with the results from the previous

section. In Section 3.1, note that the first condition cited for the application of the

Rayleigh approximation is that size ~ >"/27r. Which is simply X = 27rRef! / >.. ~ 1. For

ice spheres it has been shown that the Rayleigh approximation begins to break down at

X ~ 0.3. Thus one would expect to see nonspherical Rayleigh ice particles to deviate from

their equivalent DDA counterparts for optical sizes of approximately 0.3 (e.g. Matrosov,

1992). Plots were made with the same data as in the previous section, but this time four

different definitions of the optical size were used: X = 27rRe />.. (case 1), X = 27ra/>.. (case

2), X = 7ra/>.. (case 3), and X = 7ra/>"(l + cos(0)) (case 4). The plots are presented in

Figures 3.3 and 3.4 for oblate spheroids and 3.5 and 3.6 for prolate spheroids. Based on the

argument just given it is evident from these figures that the definition based on the radius

of equal volume spheres is most appropriate. For all elevations and both polarizations, the

fractional difference (error in Rayleigh model) in case 1, begins to grow rapidly for optical

sizes significantly less than 0.5. In contrast, none of the other three definitions exhibit
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Figure 3.3: The fractional difference of the backscattering amplitudes between the
Rayleigh and DDA models for oblate spheroids and for various definitions of the opti­
cal size (see text). Horizontal polarization.
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Figure 3.4: Same as Figure 3.3 except for vertical polarization.
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Figure 3.5: The fractional. difference of the backscattering amplitudes between the
Rayleigh and DDA models for prolate spheroids and for various definitions of the optical.
size (see text). Horizontal. polarization.
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Figure 3.6: Same as Figure 3.5 except for vertical polarization.
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this behavior. Attempts to account for the variability caused by the elevation dependence

were unsuccessful as is exemplified by case 4.

3.4 VALIDITY OF SPHEROIDAL SHAPES

As is documented in Section 2.1, virtually all of the efforts to model scattering by

nonspherical hydrometeors have employed the oblate and prolate spheroids. Although the

variability in shape and size of naturally occurring hydrometeors is quite high, they gener­

ally possess a six sided structure. Excluding hail and aggregates of snowflakes, naturally

occurring ice particles can be characterized as being variations of hexagonal plates and

columns. Such particles are found in cirriform clouds (refer to Section 4.1). Thus it is

natural to ask the question, 'How well do spheroidal particles represent actual particles

with respect to the scattering of electromagnetic radiation?'.

To address this issue we will proceed in a fashion analogous to the previous section.

We define the fractional difference in the backscattering amplitudes as

where the subscript H e:v denotes hexagonal particles (plates or columns) and the subscript

Sph indicates spheroidal particles of equal volume and aspect ratio (oblate or prolate). As

before i, s indicate the polarization of the incident and scattered waves. The scattering

properties of both the hexagonal and spheroidal particles were computed with DDA. For

this analysis .\ = 22 mm has been omitted. As before, any fractional difference less

than 15% will be deemed acceptable. In each of the following figures, the fractional

difference is presented as a function of the major dimension and for several elevations

(0 = 0°,30°,60°,90°).

The results for columnar crystals are presented in Figures 3.7-3.9 (horizontal, ver­

tical and cross polarizations respectively). For horizontal and vertical polarizations the

fractional differences are mostly within the acceptable criteria with the exceptions be­

ing discussed below. The fractional differences between hexagonal columns and prolate

spheroids are more sensitive at vertical polarization. On the basis of vertical polarization

we observe significant differences for a ~ 600 J.Lm at .\ = 1.4 mm and for a ~ 1000 J.Lm at

.\ = 3.16 mm. These values are for the lower elevation angles and can be relaxed a bit for

higher elevation angles. For the cross polarization case all wavelengths are very sensitive

for small particles, and most sensitive to the shorter wavelengths for the larger particles,

which suggests that the Linear depolarization ratio (LDR) should be very sensitive to

shape for all sizes and wavelengths.

The ability of spheroids to represent hexagonal plates is presented in Figures 3.10

and 3.11. There is a very strong signature for elevation, with the lowest elevations being

most sensitive to shape. For.\ = 1.4 mm particles with major dimensions greater than



42

Scattering Amplitude (H) - Columnar

Radar Elevation (8) = 000 Radar Elevation (8) = 30°

0.5 1.0 1.5
Major Dimension [mm]

120

100

80

~ 60

.a
~ 40
<I

20

.. )II
:II x ..

0 ,;
~ .. x

x

-20

120

100

80

~
60

.a
~ 40
<I

20
)II

ill
0

-20

0.0

.
x

x

...
x

2.0 0.0 0.5 1.0 1.5
Major Dimension [mm]

..
x

2.0

120

100

80

~ 60

il 40~

<I
20

.. )II
)I(

)( x 0..
.. ~

x
-20

.. A= 1.40mm
x A=3.16mm
• A=8.66mm

120

100

80

I::R 60

il 40~

<I
20

)II
)II

0

-20

0.0

Radar Elevation (8) = 600

0.5 1.0 1.5
Major Dimension [mm]

2.0 0.0

Radar Elevation (8) = 90°

0.5 1.0 1.5
Major Dimension [mm]

..

2.0

Figure 3.7: The fractional difference between hexagonal columns and prolate spheroids as
computed by the DDA model. Horizontal polarization.
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Scattering Amplitude (V) - Columnar
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Figure 3.8: Same as Figure 3.7 except for vertical. polarization.
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Scattering Amplitude (Cross) - Columnar
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Figure 3.9: Same as Figure 3.7 except for cross polarization.
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Scattering Amplitude (H) - Plates
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Figure 3.10: The fractional difference between hexagonal plates and oblate spheroids as
computed by the DDA model. Horizontal polarization.



46

Scattering Amplitude (V) - Plates
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approximately 800 J.Lm are highly sensitive to shape. At). = 3.16 mm only particles

~ 1500 J.Lm become sensitive to shape.

For both oblate and prolate spheroids the results are the same for both polarizations

at vertical incidence (() = 900
) as expected. At wavelengths near or beyond 8.7 mm, the

differences in shape between hexagonal and spheroidal particles are insignificant for both

vertically and horizontally polarized waves.

These results are significant because it means that, with caution, spheroids can be

exploited as a theory to study the interaction of millimetric (). ~ 3.16 mm) polarized radi­

ation by cirrus particles. Given that the uncertainties in measured (in situ) microphysical

quantities are quite large and that the upper bound on cirrus particles can be taken to

be ~ 2 mm (see section 4.1), the application of spheroidal models to scattering by cirrus

particles (e.g. Matrosov, 1991) at 3.16 mm and 8.66 mm is justifiable. We add the caveat

that one must take care when applying the Rayleigh model, as the results become suspect

for the larger cirrus particles.



Chapter 4

BACKSCATTERING BY ENSEMBLES OF ICE PARTICLES

The global distribution of ice mass in the form of cirrus clouds is an important compo­

nent of the climate system. One means of quantifying the spatial and temporal distribution

of cirriform clouds is through the ice water content (!WC). The IWC of cirriform clouds

is an important parameter in both cloud models and in the modelling of the radiative

transfer through such clouds. Thus, the ability to remotely measure the bulk microphys­

ical properties of cirriform clouds is of seminal importance to our understanding of the

hydrologic and radiative nature of cirrus. Cloud radars are well suited to the measurement

of IWC and other properties of cirriform clouds such as shape and orientation because

of their sensitivity to small particles and their potentially high resolution. This chapter

will examine the connection between the !WC of cirrus and millimetric radar observables.

Focus was given to the wavelengths of 3 and 8 mm because of recent and impending ap­

plications at these wavelengths. All calculations were done at the radar elevation angles

of: e = 0°, 30°, 60°, 90°.

An overview of the relevant characteristics of cirrus clouds is the subject of Section

4.1. In Section 4.2, the sensitivity of radar reflectivity to the parameters of the particle

size distribution is explored. Theoretical ice water content-radar reflectivity relations

(IWC - Ze), along with comparisons to available empirically determined relations, are

focussed on in Section 4.3.

4.1 PROPERTIES OF CIRRUS CLOUDS

This section details the relevant microphysics of ice crystals found in cirrus clouds.

Relevance was defined by the special needs of this study of backscattering by cirrus par­

ticles. Issues such as nucleation mechanisms and rates are not of primary of interest,

whereas issues such as number concentrations and morphology are. The microphysics

covered is but a subset of the vast and interesting field of study of atmospheric ice par­

ticles. For the purposes of this work microphysics was defined as those characteristics

of the individual hydrometeors which were required to model their scattering properties.

We were interested in ice particle habit, size, aspect ratio, orientation (hydrodynamics),

size distribution, ice water content (IWC), and optical properties (the complex refractive

index). Although this definition is somewhat unconventional it is appropriate for this

study. We also note that the precise definition of what constitutes a cirrus cloud is still

somewhat ambiguous. We have adopted the working definition:
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Nonprecipitating ice clouds residing at high levels.

Where we should be careful to note that nonprecipitating means clouds which are not

precipitating at the ground. It should be pointed out that this definition is subtly different

than the definition proposed by the World Meteorological Organization (1969):

Layer, hook, and band or filament clouds composed principally of ice crystals.

The conditions under which most clouds exist make them difficult to measure in situ.

This is especially true for cirrus clouds. It has been observed that the microphysical prop­

erties can vary significantly from cloud to cloud and even spatially and temporally within

a single cloud. Furthermore, the optical properties of the clouds can vary dramatically for

slight changes in microphysical parameters. It can be concluded that the microphysical

properties of high-level ice clouds are the least known and most uncertain aspect of this

study. The work must continue, however. In the following sections the properties will be

described as they are best understood today.

4.1.1 The Physical Properties of Cirrus Clouds

To model scattering by ice crystals we must specify the morphology, size and aspect

ratio of each particle. We must also be concerned with the effects of hydrodynamics

on particle orientation and the temperature dependent complex refractive index of ice.

The number concentration of ice crystals in cirriform clouds is a complex issue; special

consideration is given to the specification of the particle size distribution in Section 4.1.2.

Two recent reviews (Liou, 1986; Dowling and Radke, 1990) provide a well rounded picture

of cirrus clouds and form the basis from which this work proceeded. Another perspective

of cirrus clouds is presented in Kosarev and Mazin (1991). The reader may also wish to

consult Pruppacher and Klett (1978) for a comprehensive discussion of the microphysics

of ice particles. It should be stressed how difficult it to make in situ measurements of

ice crystals. To date, methods of detecting ice crystals smaller than approximately 100

J-lm from fast flying aircraft are highly suspect, and the interpretation of 2-D images and

images from replicator devices, with respect to shape, is difficult.

Ice crystal habit is a function of the available vapor gradient and temperature. Habits

tend to be hexagonal in nature and either of plate-like or columnar varieties. These shapes

have been categorized by Magono and Lee (1966) and we have adopted their nomenclature.

Dowling and Radke (1990) report the following habits as being typical, columns (C1e),

bullets (C1c), rosettes (C2a), and plates (PIa). They note, however, that the literature

is not yet extensive enough for this list to be definitive or to offer relative abundances.

Hollow columns (Clf), bundled columns (N1d), and irregular crystals have also been

observed (e.g. Heymsfield and Platt, 1984; Liou, 1986).

Cirrus particle sizes are often characterized by their major dimension. Reported

values of the major dimension range from 1 J-lm to 8000 J-lm, however, these values are
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extreme and a more reasonable range would be 10 j.Lm to 2000 j.Lm. Based on mass­

weighted estimates, Dowling and Radke (1990) report a typical size of 250 j.Lm. In

general the aspect ratio varies with ice crystal size. We define the aspect ratio to be the

ratio of the minor dimension (b) to the major dimension (a), therefore: 0.0 < ~ :::; 1.0.

The relation between the major and minor dimension has been parameterized empirically

by Auer and Veal (1970) (a and b in j.Lm):

PIa { b = 2.020aO.449 a:::; 200j.Lm (4.1)
b = O.la a> 200j.Lm

C1e,C1! { b = -8.479 +1.002a - 0.00234a2 a:::; 200j.Lm (4.2)b = 11.3ao.414 a> 200j.Lm

C2a { b = 0.16a. (4.3)

It should be emphasized that the relation b = 2.020a°.449 for plates (PIa) is generally

valid for all 'a'. Because the number of dipoles becomes too great for large, very flat

plates, we were forced to model plates larger than 200 j.Lm with an aspect ratio of 0.1.

This is an artifact of how the dipole size was chosen. The general practice was to fix the

number of dipoles across the minor dimension and allow the dipole spacing to vary which

ensured consistency from particle to particle. Although spatial rosettes were not modelled,

planar rosettes were in an attempt to capture some of the irregular features of rosettes.

The aspect ratio of the individual spines on the planar rosettes were set to 0.16 based

on numerical constraints and estimates from images of ice crystals captured on replicator

slides. This aspect ratio is not entirely realistic because of the crude means of obtaining

it and because it ignores variation with overall size. The photographs of the replicator

slides were provided by Nancy Knight (personal communication, 1993) and were taken

on flights through cirrus during the First International Satellite and Cloud Climatology

Field Experiment (FIRE II) near Coffeeville Kansas. We also modeled hexagonal columns,

hollow columns, and hexagonal plates. For an ensemble of hexagonal columns we expect

the faces and edges to be randomly oriented. Consequently hexagonal columns were

treated as cylinders with an equal volume and aspect ratio.

The IWC can be measured directly from impaction devices or inferred from measured

ice crystal size distributions with assumptions relating the particle dimension to its mass.

Values of IWC have been reported in the range of 0.0001 gm-3 to 3.0 gm-3 • According to

Dowling and Radke (1990) a typical value might be considered to be 0.025 gm-3 • These

properties (shape, size and IWC) are summarized in Table 4.1. The typical values are

reported with an error factor of ±2.

Through observations in clouds and laboratories, theoretical calculations, and mea­

surements with lidars (Liou, 1986; Sassen, 1980) it has been concluded that cirrus

particles tend to fall with their major dimension oriented horizontally in a quiescent en­

vironment. That is to say the major axis of the ice crystal is normal to the vertical
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HABIT: MAJOR DIMENSION [pm]: !We [gm -3]:
Range: planar, columnar, (1) 20 :S a :S 2000 (8000) 0.0001 :S IWe :S 3.0

spatial, irregular
Typical: columns, bullets, 250 0.025

rosettes, plates

Table 4.1: The ranges and typical values of shape, major dimension and IWC for cirrus
clouds. Note: parenthetical values are extremely atypical.

component of the fall direction. This is a general characterization and in reality a three

dimensional picture might include motions such as spiraling oscillations, fluttering, and

rotation about an axis normal to the fall line. Air motions within the cloud, such as

turbulence, may modify this behavior. There is no mechanism to produce a preferred

orientation for a particular face or edge of hexagonal particles apart from electrical affects

which are not of concern here. From the perspective of radar modeling, we portray cirrus

particles as falling with their major dimensions oriented in a horizontal fashion with some

canting. Within this preferred orientation the ice particles will be randomly oriented.

Detailed calculations of the effects of distributions of canting angles on radar signals have

been done by Matrosov (1991b); Vivekanandan et al. (1991). Although the effects of

canting are significant on radar signals, a canting angle of zero was assumed in this work

for numerical expediency.

In terms of the modeling of scattering properties of ice crystals we were interested

in the complex refractive index (m), which depends upon the frequency and temperature

of the ice. The complex refractive index of ice were interpolated from tables produced

by Warren (1984). It should be noted that there is a large degree of uncertainty in the

imaginary part due to the lack of reliable measurements. In Figure 4.1 the temperature

dependence of the complex refractive index was examined at wavelengths of 1.4 mm, 3.16

mm, 8.66 mm, and 22.1 mm. It is evident from this figure that there is very little difference

in the real part of the complex refractive index at these temperatures and wavelengths;

to two significant figures Re(m) = 1.78. The imaginary component is very small at all

wavelengths, never dropping below -0.01 for the cases considered here. It is evident that

both the real component and the imaginary component (in the absolute sense) increases

with increasing temperature. The phase velocity is proportional to real component of the

complex refractive index and the imaginary part determines the absorption. From Figure

4.1 it can be concluded that absorption is very small for ice crystals at these frequencies.

The temperature within cirrus clouds can range from approximately -20°C to tem­

peratures colder than -60°C. Because both the real and imaginary components of the

complex refractive index exhibit relatively little variation over this range of temperature,

the temperature at which the refractive index is calculated is somewhat arbitrary. We

computed the refractive index at -27°C: for>.. = 3.16 mm, m = (1.782 - iO.0028) and for

>.. = 8.66 mm, m = (1.783 - iO.0014).
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Figure 4.1: The temperature dependence of the complex refractive index (m = n - ik) of
ice at wavelengths of 1.4 mID, 3.16 mm, 8.66 mm, and 22.1 mm.

4.1.2 The Discretized Modified Gamma Distribution

The most difficult aspect of modelling cirrus particles is to properly represent the

particle size distribution. The extreme environmental conditions under which cirrus are

found, coupled with their remote nature, make in situ measurements very difficult. Re­

ported measurements of size distributions tend to be biased towards larger particles. This

is due to our lack of ability to count the smallest crystals reliably (i.e. crystals with major

dimensions approximately less than 100 pm). It is also difficult to measure the major di­

mension due to the methods employed in capturing the crystals and to the highly variable

crystal morphologies.

One distribution which is conunonly used to represent cirrus particle size distributions

is the modified gamma distribution (e.g. Flatau et al., 1989; Dowling and Radke, 1990;

Kosarev and Mazin, 1991; Matrosovet al., 1992; Vivekanandan and Adams, 1993). It is

not overly complex in that it only has two free parameters and yet it is flexible enough to

capture the most salient feature present in many of the observations: namely a single peak.

As more is learnt about cirrus, it is possible that our depiction of cirrus ice crystal size

distributions will change. For instance, bi-modal distributions may be prevalent enough

to be relevant (e.g. Mitchell, 1994). We shall proceed, however, with the modified gamma

distribution which gives the number concentration per unit interval by the relation

b = a+3.67.
Dm

(4.4)
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The distribution is parameterized as a ftmction of the major dimension of the particle (D).

The two free parameters are D m and a and it is these two parameters which control the

character of the distribution. The parameter a is related to the width of the distribution

whereas Dm is the dimension of the median of the third moment of the distribution.

Evans (1993) has shown that the volume of nonspherical particles increases more slowly

than the third power because of the changing aspect ratio. Therefore the median of the

third moment of the distribution is not the median of the volume. The coefficient 'a' is

discussed below.

The scattering calculations were done in logarithmic intervals at 14 points for each

morphology. With 14 bins, it is difficult to obtain an accurate representation of the

distribution and care must be taken in the discretization. We followed Evans (1993) in

dealing with this problem. The scattering properties of an ensemble of ice crystals is given

by

The factor (D / Di)P has been introduced to account for the fact that the relative contri­

bution of the scattering property of a given size increases with increasing particle size. In

the modified gamma distribution it follows that the Ni are given by

The incomplete gamma ftmction is computed via r(a, ;x) = f; e-tta - 1dt. Since the Di

at which the scattering calculations were done were spaced logarithmically, the lower and

upper bounds of bin 'i' are given by the geometric mean about Di

The lower and upper limits of the distribution were determined according to the range

given in Table 4.1,

Di = 10j.Lm and D;!;=14 = 2000j.Lm.

The appropriate selection of the parameters a, Dm , and p are examined in Section

4.2. The coefficient 'a' was determined by a renormalization procedure and was based on

the specification of the IWC. Effectively, this means that the total concentration of ice

crystals is adjusted to give the desired value of the IWC.

4.2 SENSITIVITY TO DISTRIBUTION

It is the objective of this section to gain an understanding of the effects of the size

distribution on the scattering properties of ice crystal ensembles. It was not the intent to

simulate a particular cirrus cloud, rather, we were interested in studying the scattering
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properties in a general sense. With this in mind our strategy was to define a standard

distribution and then explore deviations in a reasonable range about it. The standard

distribution was obtained through the specification of the free parameters in the modified

gamma distribution which might be considered typical of cirrus clouds. The free param­

eters were the width of the distribution (a), the median of the third moment (Dm ), and

the power factor (p). As we shall see, the specification of at least one of these parameters

is of seminal importance. Mter defining the standard distribution and range of each of the

aforementioned parameters, we examined the effect of this range via a root mean square

(RMS) analysis. It was also enlightening to examine the relative contribution of each bin

in the distribution to the equivalent radar reflectivity factor.

4.2.1 Specification of the Parameters in the Modified Gamma Distribution

Kosarev and Mazin (1991) report that values for the parameter a fall in the range of

o ----)0 2 based on measurements primarily made in what was then the Soviet Union. The

moderate value of a = 1 was taken as typical, which is sometimes referred to as a first

order modified gamma distribution (e.g. Matrosov et al., 1992). Since the parameter 'p' is

the relative power law increase of the scattering properties, we note that for optically small

particles, the scattering goes as the volume squared. For nonspherical particles, Evans

(1993) has shown that the volume increases in proportion to rv D2.5 as was discussed in

the previous section. Thus for many of the particles which we have considered p ~ 5. We

considered the range 0 ~ p ~ 6 in our sensitivity analysis.

The determination of Dm was somewhat more problematic. Despite its inadequacies,

the parameter known as the effective radius (Teff) is often used to characterize cirrus

particle distributions. Although the notion of effective radius is exact for spheres, its use

in the characterization of nonspherical particles is of a dubious nature. We avoided these

issues and accepted values of Teff reported in the literature as a first order approximation.

An equivalent quantity for nonspherical particles can be considered to be (V) / (A) which

is the ratio of the volume averaged over the distribution to the projected area averaged

over the distribution. For spheres (V) / (A) = ~Teff and Dm can be parameterized as

Dm = (0.5112 (V) / (A) )2.0243.

Values of Teff generally fall in the range of 10 to 150 J.Lm although values outside of

this range have been reported (for example see Paul W. Stackhouse, 1989; Stephens et al.,

1993). These were then converted to values of Dm which fall into the range 50 ~ Dm ~

3280 J.Lm. We added the additional constraint that D m < D~=14' That is, D m should be

smaller than the maximum value considered in our distribution (i.e. D~=14 = 2000 J.Lm).

If D m 2': D~=14' then we would have violated the observations which suggest that the

distribution has a single peak beyond which it decays (there would be no peak at all).

Consequently we chose D m = 800 J.Lm as our standard size (Reff = 40 J.Lm) with a range

of 50 ----)0 1600 J.Lm (Teff: 10 ----)0 60 J.Lm). These values of Dm are for spheres; the Dm
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50 100 200 400 800 1600
0123456

Table 4.2: Standard values and ranges of the free parameters in the modified gamma
distribution.

for nonspherical crystals can be either greater or less than these values depending on the

shape (Evans, 1993). The standard values and ranges of the parameters a, D m , and p

are summarized in Table 4.2.

4.2.2 RMS Analysis

The methodology of this section was to employ RMS differences to gauge the vari­

ability of the computed radar observables caused by the ranges of parameters in Table 4.2.

The results were expressed in terms of a percentage of the RMS difference over the average

of the scattering property for each set of parameters. When considering one parameter,

the other parameters were set to the standard values as discussed above. For example

when considering the variability introduced by the range of values of the parameter 'a'
(0 ::; a ::; 2), D m and p were held fixed at 800 f.£m and 5 respectively. Then the average

and RMS difference of the equivalent radar reflectivity factor (mm6m-3 ) was computed

for this range of a. We considered cylinders, hexagonal plates, and two sets of equal vol­

ume spheres. One set of spheres possessed volumes equal to the cylinders and the other

had volumes equal to the plates. The radar observables computed were the horizontal

and vertical effective radar reflectivities (Zhh and Zvv) and the main and cross, circularly

polarized, effective radar reflectivities (Zm and Zo). The results are presented in Table

4.3 and are expressed as the fraction of the RMS difference to the range average (in %).

We considered the RMS difference for each parameter of the distribution as a function

of the polarization, radar elevation angle (e), wavelength, and shape. It was observed that

the differences amongst the various polarizations were negligible, therefore the numbers

presented in the table can be considered as being representative of all of the polarizations

(for most cases this is true to within 1%, in the few remaining cases it was less than

10%). The RMS difference tends to increase with decreasing e for cylinders, whereas

the difference exhibits the opposite and slightly more significant trend for plates. The

symmetry of spheres precludes any dependence on e. The RMS difference at the two

wavelengths are comparable, the difference between them ranging from a few tenths of a

percent to approximately twenty percent. It can also be seen that the differences between

the various shapes are relatively small for a given parameter in the distribution.

The most significant features observed in Table 4.3 are the differences between the

various parameters of the distribution. The RMS differences introduced by varying both a
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u D m (J.Lm) p
1 Shape e ). : 3.16 ). : 8.66 ). : 3.16 ). : 8.66 ). : 3.16 ). : 8.66
. Cylinder 90 4.4 4.5 101 100 3.1 3.0

60 5.0 4.6 96 99 2.6 3.0
30 5.4 4.7 88 97 2.1 2.8
0 5.3 4.8 88 97 2.0 2.7

Hex. plate 90 6.0 5.8 105 105 5.3 5.2
60 3.5 5.4 100 104 4.0 5.0
30 0.9 4.7 84 103 1.9 4.7
0 2.5 4.3 78 102 1.1 4.4

Sphere (H.P.) 90 0.1 0.7 83 86 6.7 8.6
Sphere (Cyl.) 90 0.1 1.4 84 88 5.2 8.1

Table 4.3: RMS difference analysis of the variability introduced by the range of values in
the parameters u, D m , andp of the modified gamma distribution. Expressea as a percent
of the average equivalent radar reflectivity factor.

and p are on the order of 5% to 10% of the average, while the RMS differences introduced

by varying Dm is in excess of 100%. Clearly D m is the most significant parameter in

the modified gamma distribution. In the remaining calculations of this chapter we were

careful to consider a range of values for the parameter D m .

4.2.3 Cumulative Analysis

We now pose the question 'Which part of the distribution contributes most to the total

reflectivity?' This is an important question from the perspective of modeling and for the

development ofremote sensing teclmiques. Given the tulcertainty of our in situ detection of

the smallest crystals, it is important to ascertain how much of a contribution the smallest

crystals make. This information is also useful to the selection of the appropriate scattering

model in accordance with the conclusions of Chapter 3.

As was described above, the scattering properties of ensembles of particles was dis­

cretized into 14 bins. In any given bin there are two, sometimes competing, factors which

make up the contribution of a given bin to the total reflectivity; the number of particles in

the bin and the backscattering cross section of each particle. It was both interesting and

useful to look at the contribution to the total reflectivity of an ensemble of ice crystals on

a bin-by-bin basis. We examined these features for two morphologies, hexagonal plates

and cylinders, because they represent two of the three general shapes fotuld in cirrus (Le.

planar, columnar and spatial). The six particle size distributions which were used for

this section are presented graphically in Figure 4.2. This figure will be of assistance in

interpreting the remaining figures of this section.

In the following series of figures we offer two related views of the relative contribution

of each bin to the total reflectivity: cumulative reflectivity ratios and biIllled fractional

reflectivities. Their mathematicaJl definition will make meaning of these two quantities
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Figure 4.2: The six ice crystal size distributions used in the cumulative analysis.



58

Cylinder: 8= 0
0

Dm =50 [pm]
r-----~-~--~-~--~-~--~-~-____, 0.4

0.05

0.1

0.3

D.25'J
......

0.2 al
l'l

0.15~

0.35

-- A=3.16mm;cumulative
x _. - A= 8.66 mm; cumulative

- - - A= 3.16 mm; bimJed
X - - - A= 8.66 mm; bimJed

x··~··· ->E •••• :I<- ••••• ·x-········ *·············)IE··················x
x.0.2' ;.

1.0 x""*""*'"""*'"----*--*'---""*'"----*'-------+<

iT
(a)

0.0 L
1 ~----~--~-~--~-~--~-~--~-----'o.o
MUM M M U U U U U U

Major Dimension [mm]

Dm = 200 [pm]
r-----~-~--~-~--~-~--~-~-____.0.4

(b) 1.0

0.2

,

\"
\

'.
\~

I,,
X",,,

... "' ......~ ......... - ............ -)(- - - - - - - - - - - - -)(_ ......... - - - - - - - - - - _......... ~

0.35

0.3

D.25~

~
0.2 1l

l'l

D.15~

0.1

0.05

0.0'-*:::-~--~-~--~-~--~-~--~-~-----JO.O
MUM M M W U U U U U

Major Dimension [=]

Dm =800 [pm]
r-----~----~----~-~--~-~-____,0.4

(c) 1.0

~0.8

~
e
~ 0.6

~
]
::! 0.4
o

0.2

... .
' ..

0.35

0.3

0.25-'"'::;.

cl
0.2 al

§
0.15 i:E

0.1

0.05

0.0 .......**"-=-~-~----~--~-~--~-~-----'0.0
M M M W U U U U U

Major Dimension [=]
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more clear (which shall be referred to as the cumulative and binned reflectivities for

simplicity) :

Binned

Cumulative

Where Ztot = L:t~l NiZi. These quantities were computed for the polarized reflectivities

Zhh, Zvv, Zm and Zoo The calculations demonstrated that for any particular combination

of 0, .\ and D m , the differences between the various polarizations were small from both the

binned and cumulative perspectives. Therefore we only presented plots of Ze to simplify

matters.

Before characterizing the relative contributions for the various bins we made the fol­

lowing general observations. There were four factors to consider, the wavelength (.\), the

radar elevation (0), D m , and the ice crystal morphology. The other parameters of the

distribution were set to their standard values. The single greatest factor was D m , as would

be anticipated of such plots. The plates were more sensitive to variations in wavelength

and 0 than were the cylinders. The effects of 0 were small for Dm = 50 and 200 J.Lm,

but were more significant when D m = 800 J.Lm. For small particles changing the eleva­

timl did not significantly alter the contribution of a given bin but as the number of large

particles increases the differences caused by changing the radar elevation becomes impor­

tant. It was also evident that there was very little difference between the two wavelengths

for small elevations and the lesser two values of D m . As 0 decreases (approaching edge

on incidence), however, the differences between the two curves representing each wave­

length became important when D m = 800 J.Lm. We conclude that the presenoe of large

crystals was the overriding factor in determining the bin-by-bin contribution to the total

reflectivity.

In Figures 4.3 and 4.4 we present the cumulative and binned responses for 0 = 0°, ,\ =
3.16 and 8.66 mm, and for three values of D m (50,200,800 J.Lm). Plots at other elevations

were of a similar character but differences between wavelengths were less pronounced as

will be shown in the next series of figures. For particles greater than approximately 450

J.Lm, A = 3.16 mm was much more responsive to the smaller crystals.

Panel (a) in both Figures 4.3 and 4.4 shows that particles which have dimensions

less than 100 J.Lm (bins 1 ---t 4) account for'" 90% of the total reflectivity. This is due

to the large numbers of these crystals and the very rapid decrease in concentration with

size (see Figure 4.2). For D m = 200 J.Lm (panel (b)), particles for which D < 100 J.Lm

account for virtually none of the total reflectivity even though there are still quite a few

of them. The major contribution to the total reflectivity is now given by crystals in the

range of 200 ~ D ~ 600 J.Lm, which is due to the rapidly growing reflectivity of the
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individual particles (<x y2, for volume Y). For D m = 800 pm, the greatest contribution

is from particles in the range 600 ::; D ::; 1400 pm even though there were particles

in the 2000 pm bin. The relatively small contribution of the 14th bin was due to the

decaying concentration. At this value of D m , cylinders smaller than '" 200 pm and plates

smaller than '" 300 pm contribute virtually nothing to the total reflectivity which can be

attributed to both the distribution and the reflectivity of the individual scatterers.

Figures 4.5 and 4.6 show how the two wavelength curves evolve with changing eleva­

tion. The parameter D m was fixed at 800 pm. Both wavelengths become more sensitive

to smaller crystals as e -+ 0°. The effect is much more pronounced for A = 3.16 mm.

Because the wavelength dependencies begin to moderate and eventually disappear for

Dm < 800 pm it may be possible to use a dual wavelength radar mounted on an air­

craft to ascertain this parameter in cirrus. The presence of spatial particles may dampen

this difference as is indicated by analogous calculations for equal volume spheres (not

presented). Under these circumstances, there is very little difference between the two

wavelengths even at D m = 800 pm.

From these figures we can characterize the size dependent scattering as follows. Even

though the scattering cross section can become quite large, the number concentration tends

to be the dominating factor. For distributions dominated by small crystals, wavelength

and shape are irrelevant. As such this makes the parameter Dm the most important

consideration in the modeling of radar reflectivities with the modified gamma distribution.

Since it is also the least understood parameter, efforts should be made at determining

its value via multi-parameter radar observations and/or other remote sensing and in situ

methods. We have also shown in this section that the contribution to the total scattering is

nearly identical at both wavelengths. Only for distributions with relatively large numbers

of large ice crystals and at the lesser radar elevations did we begin to see a wavelength

dependence. Under these conditions A = 3.16 mm was more responsive to the smaller

crystals. The overall character of the cumulative reflectivities was similar for the two

morphologies, but the small cylinders have a slightly more significant effect than their

planar counterparts.

Given that Dm = 50 J.Lm is the lower boundary of the range of expected values,

the uncertainty in the concentration of small particles is not an issue of concern for our

understanding of radar measurements of cirrus. This conclusion is valid even at A =

3.16 mm. Under all of the circumstances considered, the polarization of the reflectivity

was a small but insignificant factor. This conclusion is valid in the cumulative sense but

says nothing about the differences induced on the various polarizations by variations of

D m • It remains for this issue to be addressed.
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CASE
Shape 1 2 3 4 5
Cle,Cl! 100'70 0'70 50'70 37.5'70 0'70
PIa 0% 100% 50% 25% 0%
C2a 0% 0% 0% 37.5% 0%

Sphere ~~1~~ 0% 0% 0% 0% 50%
Sphere PIa 0% 0% 0% 0% 50%

Table 4.4: The five cases used in the determination of the IWC - Ze relations. Note
that the hexagonal columns are being modeled as a 50-50 mixture of cylinders and hollow
cylinders and that the C2a are planar rosettes with 3 spines.

4.3 IWC-Ze RELATIONS

In this section we seek a relationship between the IWC and the effective radar re­

flectivity factor (Ze). Our methodology was to compute Ze as a function of the IWC for

various ice crystal morphologies. For each morphological case, Ze(IWC) was Iwmputed

for D m = 50, 200, and 800 /lm. The morphological cases are defined in Table 4.4. The

calculations were done at >. = 8.66 mm and e = 900
• The data are presented in Figure

4.7.

In practice IWC - Ze relationships are expressed in a power-law relation of the form

(4.7)

In Figure 4.7 we have also plotted two curves representing the IWC - Ze power-law

relations of Sassen (1987) and Liao and Sassen (1993). In a composite of several field

measurements Sassen (1987) determined

IWC = 0.037Z9·696 •
'/. (4.8)

We will refer to this equation as Sassen-87. In Sassen's paper, he makes the distinction

between Zi and Ze which are related through the dielectric properties (IKi,w 1
2 ) of ice and

water. In this work our definition of Ze is equivalent to Sassen's Zi. The relation of

Liao and Sassen (1993) was determined theoretically through calculations very similar to

those used in this research. Their method utilized a collection of actual ice crystal size

distributions from which they estimated the IWC. Their scattering calculations employed

a combination of Rayleigh and conjugate gradient-FFT models and complex morphologies.

Their nonlinear least squares fit yielded the relation

IWC = 0.0749Z9·78
•

'/.
(4.9)

The agreement between these two equations is good considering the disparate means of

determining them. The results obtained from our calculations poorly relate to the two

equations just discussed. We shall now examine why.
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There are two very striking features which can be seen in Figure 4,,7. The first is

that the slope of the points representing our calculations is drastically different than the

two other relations. In fact for our calculations b = 1.0, exactly. This is independent

of morphology and Dm • The second very striking feature is that the family of curves

representing D m = 200 J.Lm and the other family of curves representing D m = 800 J.Lm

tends to bracket the empirical curve of Sassen (1987). Since Sassen's empirical relation

represents numerous cirrus cloud types it is reasonable to conclude that the range of values

presented in Section 4.1 should be refined. It should be noted that the theoretical relation

of Liao and Sassen (1993) are also bracketed by these two values of D m • Based on these

observations, we propose that 100 J.Lm ~ D m ~ 1000 J.Lm constitutes a more realistic set

of general limits of D m for cirrus. This conclusion should be taken as a starting point for

independent validation and additional field work and not be accepted as definitive.

Since 'a' is simply a constant multiplier which shifts the curves up and down, it can

be argued that the most important parameter in the power-law relation is the exponent

'b'. From the figure it is evident that both the ice crystal shape and Dm effect 'a'. What

determines the parameter 'b' is less obvious. As it was in the slope that our results were

in the greatest error, it behooved us to seek an explanation. We hypothesized that there

was a functional relationship between the the parameter D m and the IWC. To test this

hypothesis we proposed the relation

Dm = 0.669IWeO.162• (4.10)

This relation was obtained by noting that the lower limit of the Sassen-87 curve falls

approximately in the Dm = 150 J.Lm regime, and the upper limit of the Sassen-87 curve falls

within the D m = 800 J.Lm regime. Using case 4, the most diverse mixture of morphologies

which were considered, we recomputed the reflectivity data where D m was parameterized

as we have just indicated. The results are presented in Figure 4.8 along with the empirical

Sassen (1987) relation and the theoretical relation given by Liao and Sassen (1993). For

comparison, the nonlinear least squares fit of our data is given by (R2 = 100.00%)

Iwe = 0.032Zo.703•e (4.11)

Although these results are quite intriguing, care must be take not to read too much

into them. The fundamental weakness lies in the fact the theoretical calculations have

little basis in observation. There was no a priori motive for parameterizing the D m -IWe

relation in this particular way, and in effect the answer was obtained by 'tuning' the re­

sults. What is needed is an independent method of linking the Dm to the IWe as is

suggested by these results. Such a method may prove feasible through multi-parameter

radar measurements or by utilizing other remote sensing techniques which rely on a fun­

damentally different interaction of radiation with cirrus particles. As one example of such
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a possibility consider the work of Matrosovet al. (1992), in which they combined an

infrared radiometer and an 8 mm radar to retrieve cirrus cloud parameters. Neverthe­

less, equations 4.10 and 4.11 curve can serve as a crude means of estimating D Tn from

reflectivity measurements.

Because the physical process ofnucleation places an inherent limit on the total number

of ice crystals under a given set of conditions, it is reasonable to expect some sort of

functional dependence between the IWC and DTn • Variations in nucleation rate and

mechanism can work to increase the total number of ice crystals at the expense of crystal

size, or conversely, can limit the total number in favor of larger crystals (see DeMott

et al., 1994). For example, crystals can begin to grow rapidly, consuming the available

moisture, thereby limiting the total number of crystals and causing a greater number of

large crystals. Therefore a parameterization such as (4.10) is not entirely unfounded. This

argument does not suggest that 4.10) is correct, merely possible, and on a case-by-case

basis significant deviations are expected.

An identical procedure was carried out for .x = 3.16 mm yielding the nonlinear least

squares power-law fit (R2 = 100.00%)

IWC = 0.030Z~·696. (4.12)

The data are presented in Figure 4.9. There is virtually no difference between the 8

mm and 3 mm results which indicate that reflectivities obtained from radars of either

wavelength can be used to retrieve the IWC and DTn with the same equations. This

conclusion is in agreement with the results of the previous section. The results of the

previous section, however, suggest that the difference should be evident for radar elevation

angles other than 90°.

A morphological dependence of the IWC - Ze is quite evident in Figure 4.7. We note

that spheres (case 5) over-estimate the more realistic collection of C1e, C1f, P1a and C2a

(case 4) by 2 to 15 dB depending upon the IWC and DTn • To estimate the effect of this

variability on the derived coefficients of the power-law IWC - Ze relation, we computed

the nonlinear least square power-law fit for case 4 and case 5 combined. The error was

significant at R2 = 60.4%.
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Figure 4.7: Plots of equivalent radar reflectivity factor as a function of the IWe for various
combinations of shape and D m at >. = 8.66 mm. The empirical relation of Sassen(1987)
and the theoretical relation of Liao and Sassen (1993) are presented for comparison.
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Chapter 5

SUMMARY &: CONCLUSIONS

The proper role of modeling is to both elucidate and guide our physical picture to

a more profound understanding of nature. In practice modeling is based on observations

of natural phenomena, which is then input into our models. This is then one limiting

factor of modeling; how good is our present view of the facts. The quality of our models

is a second limiting factor. The answer is a reflection of both our understanding of the

phenomena and our technological prowess.

The work presented in this study examined issues about how we model the phenomena

of backscattering by ice crystals found in cirrus clouds. Our model, the discrete dipole

approximation (DDA) has been validated against exact theories, is founded on sound

physical principles which have withstood the test of time, and can readily be improved.

Presently there is no end in sight for Dyson's technological revolution and in improved

numerics. Thus, at this point it may be concluded that the fundamental weakness is in

our microphysical understanding of cirrus clouds. In the following sections we summarize

what was learned about our ability to model scattering by nonspherical cirrus ice particles

at millimeter wavelengths, and where this work will lead to further this understanding.

5.1 WHAT WAS LEARNED

The discrete dipole approximationis an ideal vehicle for exploring some of the complex

issues regarding backscattering at millimeter wavelengths. A simple version of the discrete

dipole approximation was developed and used to provide insight into the theory and

to explore issues such as sensitivity to scattering in the backward direction. Complex

behavior was exhibited for the most simple case of only two dipoles.

The DDA was used to determine the minimum number of azimuthal angles which

needed to be averaged to simulate a randomly oriented particle. The required number

strongly depends on the radar elevation angle, particle morphology, and optical size. There

was a weaker dependence on the polarization. It was shown that averaging over 3 to 5

azimuthal angles was required to simulate randomly oriented particles depending on the

degree of symmetry (less symmetry implies more angles).

A Rayleigh model was also developed to explore the limitations of the Rayleigh ap­

proximation in conjunction with DDA. From the analysis of scattering by single particles,
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it has been learned that the assumptions of the Rayleigh theory are most sensitive at

the lowest radar elevation angles. The same conclusion applies to the use of spheroidal

shapes to represent particles with more complex shapes. Since most applications of radar

to cirrus involve high elevation angles, this is not too restrictive. As millimetric radars

are mounted on airplanes (e.g. Pazmanyet al., 1993), however, such issues become im­

portant. The validity of the Rayleigh theory was demonstrated to be sound for modeling

cirrus particles at wavelengths of 8 mm and beyond, except for small elevations and large

ice crystals (D 2:'" 1400/-Lm). For wavelengths under 8 mm the Rayleigh approximation

broke down well within the range of expected cirrus particle dimensions. The ability of

spheroids to represent backscattering by more realistic shapes is sound for cirrus particles

at wavelengths of 3.16 and 8.66 mm.

Utilizing semi-realistic shapes, we used the DDA to model scattering by ensembles

of ice crystals. Our current understanding of cirrus clouds indicate the presence of ice

crystals possessing complex morphologies with sizes which range from 10 /-Lm to 2000 /-Lm.

Their distribution is described well by the modified gamma distribution. Our calculations

have indicated that the most important and least understood aspect is the value of the

median diameter of the third moment of the distribution (Dm ).

For most of the ice crystal distributions considered, ice crystals with major dimensions

less then 100 /-Lm contribute virtually nothing to the total scattering. We do not need to

worry about our difficulty in counting particles smaller than 100 /-Lm from this perspective.

The distribution tends to be the dominant factor in our scattering calculations. This

underscores the need to accurately determine the value of Dm . Polarization dependence

is small and the differences at the two wavelengths considered is miniscule for all but

D m = 800 /-Lm and at the lesser angles.

Calculations of reflectivity as a function of IWC indicate that it may be possible to

estimate Dm , and a crude retrieval was developed based on a comparison with empirically

determined relations. These calculations suggest a refined set of limits for the parameter

Dm . Although the agreement is outstanding and highly suggestive, these results should

be viewed as tentative in light of further work, especially additional observations.

5.2 SUGGESTIONS FOR FURTHER RESEARCH

There are several directions in which this work should proceed. The first direction

is along the lines of validation. Two recent field experiments offer the opportunity to

test some of our theoretical results. The first data set was obtained during the First

International Satellite Cloud and Climatology Experiment, Phase II (FffiE II) held over

the continental United States. This is a rich data set which includes measurements with

various radiometric instruments including 3 and 8 mm radars. There were also numerous

in situ microphysical measurements made. The second data set was obtained at the Uni­

versity of Wyoming's Elk Mountain Observatory in 1992. A 3 mm radar was collocated
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with a wind turmel outfitted with microphysical instruments, allowing them to both mi­

crophysically sample and interrogate with the radar, the same volume of an orographic

ice cloud.

.Another area in which we should proceed is improved modeling. Most importantly

we suggest the addition of spatial rosettes, and further consideration of the issue of target

orientation. The latter should be attempted after careful consideration of the literature

(see Section 2.1), as this is a numerically intensive procedure. In this respect improvements

in the DDA model itself may be of assistance. hnplementing an improved version of the

FFT (non-power of two) would reduce memory requirements and improve the speed.

We have not yet fully addressed all of the issues of polarization. It may be possible to

use polarization to provide the second piece of information required to unambiguously

determine Dm and IWe. This work has emphasized the sensitivity of the backscattered

signal by ensembles of ice crystals to the nature of the particle size spectra. Recent

measurements (e.g. Arnott et al., 1993) suggest that bi-modal distributions may be an

accurate representation of cirrus ice particle spectra. Thus, further investigation into the

effects of the particle size distributions on simulated radar returns are necessary. We must

consider the effects which bi-modal distributions would have on computed effective radar

reflectivity factors.

We should also note that it has been proposed to place a 3 mm radar on a satel­

lite (Graeme Stephens, personal communication 1993). Thus, there are issues such as

attenuation through high ice clouds which should be addressed. The data obtained from

these calculations could be processed into propagation observables such as attenuation,

differential phase shift and differential attenuation with little numerical effort; the data

already exists in the form of forward-scattering Mueller matrices.

Finally we should explore the relation between a radar view of cirrus and the picture

which is seen by other instruments. This would be achieved through radiative transfer

modeling and may provide some insight into the relation of radar observables and optical

properties of interest to radiative transfer modeling.
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Appendix A

RADAR POLARIZATION PARAMETERS

This appendix seeks to illustrate how radar observables are related to the elements of

the Mueller matrix. In doing so it will shed some light on the what the radar observables

physically mean; that is how to interpret them. There are many different radar parameters

which can be derived depending on the polarization basis used and the application, either

bistatic or monostatic. We were not concerned with bistatic implications despite their

import. As an example we note that the telecommunications industry is concerned with

the effect of clouds on the propagation of microwave radiation along earth to satellite

paths. In such propagation studies it is useful to compute parameters such as differential

attenuation and differential phase shift from the extinction matrix. However we were

interested in the use of polarization diversity radars to obtain information about cirrus

clouds in the traditional monostatic fashion, and limited ourselves to parameters derived

from backscattered radiation. Because the scattering models output the extinction matrix

as well as the forward and backward scattering matrices, this information is available for

future analysis.

The most general state of polarization basis of a radar can be described in terms of

an ellipse (e.g. Bringi and Hendry, 1990). Matrosov (1991a) theoretically examines the

applicability of elliptical polarization in anticipation of measurements at 35 GHz. In this

work we computed parameters based on the special cases of linear and circular polarization

bases. The details of how to obtain the elements of the Mueller matrix from the scattering

models were given in section 2.2.2. In the following two sections we will reiterate the

meaning of the scattering amplitude and Mueller matrices and then give explicit formulae

for the radar observables which are used in this report.

A.I THEORY

From a physical standpoint, the scattering amplitude matrix describes how a given

particle with a specified orientation relative to an impinging electromagnetic plane wave

will directionally alter the field (temporal dependence is assumed). That is, it relates the

scattered electromagnetic field to the incident electromagnetic field (cf. equation 2.8)

[
Ev,s ] = exp (-ikr) ( F vv F vh ) [ Ev,i ] .
Eh,s ikr Fhv Fhh Eh,i

(A.i)
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The subscripts (h and v) indicate the polarization of the incident and scattered polariza­

tions in that order. Thus F vh relates the component of the horizontally polarized scattered

field to the vertically polarized incident field.

In practice we do not usually measure the electromagnetic fields. What is measured

are intensities. The preferred way in which the intensity ofpolarized radiation is expressed

is in terms of the stokes vector (with elements I, Q, u, V) and the Mueller matrix S. The

elements of S are expressed in terms of IFI2 according to equation 2.10.

A.2 FROM MUELLER ELEMENTS TO RADAR OBSERVABLES

Radar observables are quantities such as linear reflectivities (horizontal, Zhh; vertical,

Zvv; differential, ZDR), circular reflectivities (main channel, Zm; orthogonal channel Zo),

and depolarization ratios (linear, LDR; and circular, CDR). These radar observables can

be expressed in terms of the elements of the Mueller matrix, which have been incoherently

averaged over the ensemble of ice crystals as indicated in equation 2.10. The relations for

radar observables will be defined with consideration being given to the physical meaning.

Please observe that the use of the word orientation should be interpreted as meaning the

orientation of the particles with respect to elevation angle of the incident radiation.

We will first define the parameters which, in and of themselves, yield no information

about particle shape or orientation although they are inherently sensitive to both shape

and orientation. The primary and direct response of these parameters is to size and

concentration of the ice crystals. In the literature the following parameters are generally

called effective (or equivalent) radar reflectivity factors and are denoted by Ze. For a

linear polarization basis we have

Zhh = c(511 - 5S12 - 521 + 522),

Zvv = c(511 + 5s12 + 521 + 522 ),

(A.2)

(A.3)

As before, the subscripts indicate the polarization of the incident and scattered radiation

which can be either horizontally (h) or vertically (v) polarized. The unpolarized, radar

reflectivity factor is given by Ze = ~(Zhh + Zvv). For a circular polarization basis

Zm = c(511 - 544),

Zo = c(511 +544),

(A.4)

(A.5)

Here the subscripts denote the main (m) and orthogonal (0) channels. The main channel

is defined to be the channel of the transmitted wave. For reasons discussed below, it is

generally true that Zo ~ Zm. The constant c is given by



81

This constant is different than the constant which appears in the traditional definition of

equivalent radar reflectivity by the factor 47r, and was expressed in this unreduced form

to emphasize this. The 47r/2 is an artifact of the Mueller matrix representation of particle

scattering. The factor 109 converts to units of mm6 /m3 assuming that all units have been

given in mm (particle size, number concentration and wavelength).

To use polarization to understand the joint effects of particle shape .and orientation

we must consider the relationship between the various components of ea.ch polarization

basis. This is achieved by taking ratios of the various polarizations. In principle any

parameter sensitive to shape will also be sensitive to orientation. In this work the crystals

were assumed to be lying perfectly horizontal (Le. the major dimension). Consequently

we need not concern ourselves with orientation. This is not the case in reality and careful

consideration of the effects of orientation must be given.

To understand the mechanism of depolarization for the linear polarization basis we

shall enlist the aid of a Rayleigh spheroid with major and minor axes a and b, respectively.

What is true for spheroids can be generalized to any arbitrary shapes. We observe that

a vertically or horizontally polarized incident wave can be projected onto these axes. For

a spheroid with an arbitrary orientation some of the energy of the incident wave will be

projected onto an axis with a component which is orthogonal to the incident wave. This

energy will then be scattered back to the source as cross-polarized radiation. Thus we say

that some of the wave has been depolarized and we quantify the amount of depolarization

via the linear depolarization ratio. For spheroids the vertically polarized incident wave

will 'see' a different amount of the particle than will the horizontally polarized radiation.

The consequence of this is that the vertical co-polarized radiation will he different than

the horizontal co-polarized radiation. This difference, which depends upon the ratio of

the minor to the major axis, is measured through the differential reflectivity. For a sphere

under any condition or plate at broadside incidence we would expect the cross terms to

be zero (Le. hv and vh) and the perpendicular terms to be equal (i.e. hh and vv). Under

other circumstances these terms will deviate yielding interesting values of ZDR and LDR.

For linear polarization

ZDR = (511 - 5S12 - 521 + 522)/(511 + 5s12 + 521 + 522 ),

LDR = (511 - 5S12 +521 - 522)/(511 - 5s12 - 521 +522),

(A.6)

(A.7)

An alternative definition of the linear depolarization ratio has been proposed by Bob Kelly

(personal communication, 1993):

LDR' = ((511 + 5S12 - 521 - 522 ) + (511 - 5 S12 + 521 - 522)) (A.8)
((511 - 5S12 - 521 + 522 ) + (511 + 5 S12 + 521 + 522 ))

It is hoped that this parameter will be more sensitive particle shape than the more tradi­

tional definition given above. The prime is used to delineate these two definitions.
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We now turn to circular depolarization. For a perfect sphere, we expect Zm = 0

and all of the returned signal to be in Zo which can be understood as follows (for the

sake of argument we have assumed left hand circular (LHC) polarization as opposed to

right hand circular (RHC), without any loss of generality): A particle excited by a LHC

polarized wave will scatter radiation with the same polarization. The source of the wave

can now be considered to be the particle, however, and a wave propagating back to the

source of the original wave will appear to have RHC polarization from the point of view

of an observer at that location. For aspherical particles this is no longer true, some of the

energy is returned as RHC and some as LHC; consequently Zm > O. Thus for the circular

circular polarization basis:

(A.9)

Units for the shape dependent parameters are expressed as dB.
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