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Abstract

Persistent Homology of the Logistic Map:

An Exploration of Chaos

Given a discrete sampling of points, how can one reconstruct the underlying geomet-

ric object? Further, the question arises how can one discern between noise and sampling

distortion and important topological features. Algebraic and topological techniques used

computationally can prove to be powerful and currently unconventional tools to understand

the “shape” of data. In recent years, persistent homology has been explored as a computa-

tional way to capture information regarding the longevity of topological features of discrete

data sets. In this project, the persistent homology of functions is explored specifically as

a way of examining features of functions. Persistent homology tracks the longevity of con-

nected components of level sets in a persistence diagram. By connecting points generated by

a discrete time dynamical system with line segments, this data can be viewed as a (piece-wise

linear) function, persistent homology is used to track features of the data. This provides a

novel and useful tool for computationally examining dynamical systems.

The logistic map is one of the simplest examples of a nonlinear map that displays periodic

behavior for some parameter values, but for others, displays chaotic behavior. When the

persistence diagram is generated for an orbit of the logistic map, all of the points surprisingly

lie approximately on a line. This is not true for a general sequence. This pattern arises not

only after stability has been reached in the periodic case, but also as points approach stability

for parameters in the periodic regime but also perhaps more surprisingly, for parameter values

that lie in the chaotic regime as well. In fact, the slope of this line is fairly similar as the
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parameter values are varied. This arises from the order in which the points pair to form

the persistence diagram and a scaling factor seen in the periodic regime of a class of maps

(including the logistic map). It is interesting that the effects of this scaling are still seen in

the chaotic regime. This pattern not only arises for the logistic map, but for other unimodal

maps and other higher dimensional systems that are “close” to these maps such as the Lorenz

system.
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CHAPTER 1

Introduction

Given a set of data, we often want to be able to understand a general “shape” of the

data from a topological point of view. For example if we consider our data to be a sampling

of an object in three dimensional space, we may ask how many holes does this object have?

Homology provides an algebraic structure to understand this question by characterizing fea-

tures of geometric object. However, when the structure of the underlying object is unknown,

it is useful to consider which features continue, or persist, through dimension reductions of

an ascending chain of overlaid structure. The features that “last” through more reductions

are in some sense more important than ones that only appear for a short time. Persistent

homology is precisely the algebraic tool that allows us to do this. When applied to discrete

data sets, persistent homology gives insight into the topological structure and gives a way to

distinguish between major features, minor features and noise in the data. Here lies beautiful

applications of pure algebraic topology to point cloud data and beyond which has led to

the recent growth of this rich field. It is in the discrete setting that we find out footing for

this project. In this paper we explore what this tool can tell us about discrete dynamical

systems, a direction that has not been considered extensively. Initially, we set out to find an

underlying structure of Liesegang rings that appear in a classical chemistry experiment, but

along the way, we found some surprising results pertaining to chaotic dynamical systems.

We begin our discussion with a brief introduction to simplicial homology to gain context

and foundation for understanding persistent homology. This is offered as an introduction to

persistent homology as a powerful tool in computational topology and this specific version

of persistent homology motivates the computations in the project. We will then proceed to
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the extension of persistent homology to functions. The “data” that is at the core of this

project comes from the logistic map. An introduction to this one dimensional discrete time

dynamical system is given. We then will move into the main results of this project: applying

persistent homology to points in the orbit of the logistic map as the parameter is varied. A

clear line appears in the persistence diagram of the logistic map. This behavior is explored

in both the periodic and chaotic regime. Patterns are noted in the way that the persistence

diagram forms. This allows us to see that a universal scaling constant extends beyond its

original scope. It is hypothesized why this pattern is occurring, specifically in connection

with this scaling constant. We conclude by noting this pattern (or its absence) in several

other maps and higher dimensional chaotic systems. This gives us a way to look at the

“backbone” or governing system for higher dimensional systems.

1.1. Persistent Homology

Figure 1.1. A
small portion of La
Parade by Seurat.
The image of a man
can be seen even
though the image
is composed com-
pletely of colored
dots [1].

In a notice from the AMS entitled “What is...Persistent Homol-

ogy?” Shmuel Weinberger made the following apt analogy to intro-

duce this idea. Consider a painting in the style of post-impressionist

painter Georges-Pierre Seurat, (Fig.1.1) composed completely of

tiny colored dots. The mind of the viewer infers a continuous im-

age from discrete points. For the brain this response is automatic,

but from the perspective of data analysis this is is a difficult prob-

lem, especially in higher dimensions. Given a discrete sampling of

points, how can we reconstruct the underlying geometric object?

Further, the question arises how can one discern between noise and

sampling distortion and important topological features.

2



Figure 1.2. An
object with several
loops on its surface.

From a classic topological perspective, considering the equiva-

lence classes of associated homotopy groups, that is, paths or loops

along the surface of the object that can be continuously deformed

into one another is an effective method for distinguishing between

topological objects. In Figure 1.2 the black loop and blue loop

can be continuously stretched, bent squeezed and wiggled into each

other while remaining on the surface of the object. We can think

of them as being in the same equivalence class. (That is they cap-

ture the same information about the object.) The purple loop cannot be stretched, bent

or wiggled to match the shape of the other two loops without breaking because of the hole

in the center of the loop. This loop is then taken to be in a different equivalence class.

These are in fact the only two classes of loops. The two equivalent loops give us the idea

that there is a hole in our object. Considering equivalence classes of loops and their higher

dimensional version is the rough idea of homotopy groups [2]. However, in higher dimensions

this becomes become extremely computationally expensive if not impossible to compute [3].

Another computable invariant is homology groups, which are computationally much more

friendly than homotopy groups, though intuitively not quite as transparent. Roughly speak-

ing, the equivalence relation on loops is extended: two loops are considered equivalent if

there is a surface whose boundary is equal to the union of these two loops [2]. In this sec-

tion, we will focus on simplicial homology; a restriction of the general theory of homology,

known as singular homology. Most of the time, and especially in low dimensions, simplicial

and singular homology are equivalent.
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Figure 1.3. We be-
gin by considering
a very simple ex-
ample. The green
shows the underlying
object and the five
points show the data
points we are given
to attempt to recon-
struct the basic fea-
tures of the data.

1.1.1. A Quick Introduction to Simplicial Homology.

In this setting, we are after a way to characterize connected compo-

nents, holes and higher dimensional voids of point cloud data, but

to get a computational handle on our object we will need to dis-

cretize our space and give it some structure. Instead of looking at

deforming paths into each other, we will look at interesting bound-

ary cycles of the structure we put on the data. We will assume some

basic notions of algebra, but will take a moment to establish a few

of the more technical building blocks of simplicial complexes. A

(k + 1)-tuple of points (x0, x1, · · · , xk) in Rn is affinely indepen-

dent if the set of vectors given by {x0 − xj|1 ≤ j ≤ k} is linearly

independent. A p-simplex σ is the convex hull of p+1 affinely

independent points and is denoted σ = conv{x0, · · · , xp}. The convex hull is the solid poly-

hedron determined by the p + 1 vertices. For example, a 0-simplex is a vertex, a 1-simplex

is an edge, a 2-simplex is a triangle and a 3-simplex is a tetrahedron [4, 5].

A face of a simplex is a the convex hull of the set of points forming the simplex, minus

one. For example, the faces of a triangle are each of the three edges and the face of an edge

is the set of two vertices that were connected to create that edge.

A simplicial complex K is a finite collection of simplices where any face of a simplex

is then itself a simplex in K. Further the intersection of any two simplices in K is either

empty or a face of both simplices. For example, in Figure 1.4 the object on the left is a

simplicial complex because the face of every simplex is included and when simplices non-

trivially intersect, their intersection is included in the complex and is itself a face of the two
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Figure 1.4. The figure on the left is a simplicial complex, the one on the
right is not.

intersected simplices. However, in the complex on the right, the face of the triangle is not

included in the complex, a quadrilateral is not the convex hull of four points, a tetrahedron

is. The quadrilateral does not even include its vertices. It intersects the triangle on one of

its edges, but this is not a face of the triangle. If we go back to the green object (Figure

1.3), we can build a simplicial complex with these five vertices as shown (Figure 1.5). This

simplicial complex is far from unique, but this will be discussed at length later.

Figure 1.5. One
of the possible sim-
plicial complexes
formed using these
data points.

A p-chain is a subset of p-simplices in a simplicial complex. p-

chains can also be thought of as formal sums, c = Σriσi where ri is

inZ/2Z, σ is a p-simplex inK. For example if our simplicial complex

is a tetrahedron, each of the four triangle faces are 2-simplices. a

2-chain is any subset of these triangles. Similarly subsets of the

edges and vertices form 1-chains and 0-chains respectively.

The set of p-chains of a simplicial complex form a p-chain group,

called Cp. It should be noted that when adding p-chains, the du-

plicate p-simplices cancel out. If we think in terms of formal sums,

our coefficients are in Z/2Z.
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The boundary of a p-simplex is the set of (p − 1)-simplices’ faces and can be thought

of as a formal sum of (p− 1)-simplices in the simplicial complex. For example the boundary

of the tetrahedron is the four triangle faces. The boundary of a p-chain is the sum of the

boundaries of its simplices modulo 2. That is, faces shared by an even number of p-simplices

will cancel out. Taking the boundary of a simplicial complex is a group homomorphism δp

from Cp to Cp−1. In 3-dimensional space, this gives us a mapping like this:

· · · → ∅ → C3
δ3−→ C2

δ2−→ C1
δ1−→ C0

δ0−→ ∅

A p-chain with an empty boundary is called a p-cycle, and is the identity in Cp−1. The

p-chains form a subspace Zp of Cp. Zp is by definition the kernel of δp. The p-chains that

form the boundary of (p+ 1)-chains, are called p-boundary-cycles. These p-chains form Bp,

a subspace of Cp, and Bp ⊂ Zp. Bp is by definition the image of the (p+ 1)-boundary map.

Following a diagram in [6] this can be visualized like this:

∅∅ ∅∅∅ ∅∅

C3 C2
C0=Z0

C1

Z3=B3

B2

Z2 Z1

B1 B0

Figure 1.6. Schematically, the images of chain, cycle and boundary groups under the
boundary operator.

The p-th simplicial homology group of K is the quotient group Hp = Zp/Bp =

ker(δp)/Im(δp+1). The p-th Betti number βp is the rank of Hp and is intuitively the

number of p-dimensional holes in out object.
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It should be noted that if we impose a partial ordering on the vertices, many of these

computations can be done with matrices, exploiting the utility of linear algebra, but this is

outside of the scope of our discussion. See [7] for more information.

1.1.1.1. Building a Simplicial Complex. To apply the above tool to a set of data, we need

to form a simplicial complex. This becomes a combinatorial problem, because a simplicial

complex formed from a set of discrete data points is far from unique. Persistent homol-

ogy provides a useful tool to determine which reasonable complexes for understanding the

underlying structure.

There are several different methods for building a simplicial complex from discrete data

that are commonly used. We will consider the Rips complex with parameter ε. Each set

of k points within ε of each other form a (k-1)-simplex. For example, if two points are

within ε of each other, they form an edge, and three points will form a triangle. This gives

a simplicial complex, but the simplicial complex obviously depends on ε. Now incrementally

increase ε. The simplicial complex created with the smaller ε is contained in the Rips complex

formed with a larger ε. If we continue in this way, we create a nested sequence of simplicial

complexes (that we can parameterize by the real numbers.) Shown in Figure 1.7 is the

simplicial complex formed from a set of points using three different, increasing values of ε.

There is a hole that appears in our complex in the first complex, however it does not seem

to be part of the overall structure and disappears with the next choice of ε.

The question now becomes, which holes in our simplicial complex are really topological

features of our data, and which ones appear “artificially” as a result of our choice of ε?

Persistent homology allows us to examine all ε’s and track how the holes in the simplicial

complex change as the ε’s change. This is precisely the idea of persistence.
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Figure 1.7. Three simplicial complexes formed by
increasing the ε radius around each point.

An increasing sequence of ra-

diuses {ε1, ε2, . . .} gives rise to a

sequence of increasing simplicial

complexes K1 ⊆ K2 ⊆ · · · . If we

start this sequence with the empty

complex and end with the com-

plete complex, this gives a filtra-

tion. From this ascending chain

of “test” complexes, each including

more connections than that of the

previous one, some topological fea-

tures will arise and quickly “die”,

however, other topological features

will last. The features that last

or persist through this process pro-

vide insight into structure of the

sampled object [5].

In Figure 1.8 we can see the result of building a Rips complex from the discrete data

points given in Figure 1.7. ε in increased to form each subsequent simplicial complex. The

first three Betti numbers are tracked in Table 1.1 [7]. β0 corresponds to the number of

connected components, β1 gives the number of 1-dimensional holes and β2 gives the number

of 2-dimensional voids.
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K 0 K 1 K 2

K 6K 5K 4

K 3

K 7

Figure 1.8. A filtration of simplicial complexes formed using the data points.

Table 1.1. The first three Betti num-
bers for the filtration in Figure 1.8.

Simplicial Complex β0 β1 β2

K0 0 0 0

K1 3 0 0

K2 5 0 0

K3 3 0 0

K4 2 0 0

K5 1 1 0

K6 1 1 0

K7 1 0 1

A homology class α is born at Ki if it is

not in the image of the inclusion map from Ki−1

to Ki. This feature then dies entering Kj if the

map induced by the inclusion of Ki−1 ⊆ Kj does

not include α but Ki−1 ⊆ Kj−1 does include α.

The persistence of α gives us some notion of how

“long” this object existed and is given by j − i.

Persistent homology can also be used in the

context of functions [8]. The previous infor-

mation is offered only to give background on

persistent homology as a tool in computational

topology. In this paper, we will consider what

information can be gleaned from the persistent
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homology of a curve or a set of data points generated from a discrete-time series and treated

as a piecewise linear function.

birth

de
ath

(a)

birth
de
ath

(b)

birth

de
ath

(c)

Figure 1.9. The making of the persistence
diagram of a curve.

1.1.2. Persistent Homology of Curves.

We will begin with persistent homology of

single variable functions. Let f : R → R be

a smooth function with critical points when

f ′(x) = 0 with critical values f(x). We will

exclude points of inflection, that is, when

f ′′(x) = 0 so the critical points are local

minimums and maximums [7].

Let f : X → R, where X is a geometric

object and f is smooth. For each t ∈ R the

sublevel set Rt = f−1 (−∞, t]. In finding the

persistent homology of a simplicial complex,

subcomplexes of the complex are analogous

to the level sets in the functional setting per-

sistence is then the amount of “time” that

this component exists through a filtration

[9]. In the same way that ε was varied to

form a filtration of nested subcomplexes, as

t varies, the level sets vary and we are given a filtration. To gain some intuition, we will use

this analogy: for each t ∈ R, we will think of the sublevel set Rt = f−1(−∞, t] as the surface

of water rising under the stiff structure of the curve. The surface of the water is unbroken,
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or is in one piece when it is completely below the graph of the function. As t increases, or

the water rises, it will eventually encounter the smallest minimum value. See Figure 1.9a.

As t increases, or the water rises past this point, there are now two components of the

surface of water. At each local minimum, a new component is added to the surface of the

water (or more precisely, the level set). At each local minimum, a new component is formed

and associated with that minimum value and this is considered the “birth” of a feature

of the function. As the water rises (t increases) the number of components of Rt increases

incrementally as the surface of the water encounters minimums. When the surface encounters

a maximum, and the surface of the water directly under this maximum disappears, (and the

number of surface components decreases by one.) In fact it this maximum value marks the

“death” of the component that was created by the most recent minimum. This method give

us a way to track features of out function and gives us a notion of their “size.” This maximum

is paired with the highest of the two minimums associated with the two components that

merged at this maximum. (Commonly stated “the youngest dies first.”) It should be noted

that the connectivity of the sublevel set only changes when t reaches a critical value [7, 10].

The persistence of the feature is defined to be the difference between the maximum

value and minimum value. We are interested in which features “live” or persist the longest

as they can give us topological information on our data. Persistence is easily encoded in

a persistence diagram, which plots each of these persistence pairs. In this context, the

persistence is often most useful when it is given by f(y) − f(x) [7]. We can think of the

x-axis of this diagram as the birth of new features and the y-axis as when they die. On such

a diagram, the persistence is easily pictures as the vertical distance of the point from the

line y = x. This line is called the bisectrix.
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If we consider, for example, a specific sublevel set, shown above in Figure 1.9c by the

top blue line, the sublevel sets has 4 components, seen by the fact that on the persistence

diagram a line of this height intersects 4 bars. This is also the corresponding Betti number

at this stages. Informally, the kth Betti number is the number of unconnected k-dimensional

components [2]. If two spaces are homotopy equivalent, then all of their Betti numbers are

the same. In this case, we are only considering the first Betti number, β0, which tells us the

number of connected components. β1 is the number of one-dimensional holes and does not

apply to this scenario.

Finding the persistence of a function can be used in higher dimensions where the function

we are considering is the distance function between points in a given measure [10]. This can

give us an idea of what topological features are present in a data set. It is interesting but

beyond the scope of this paper to consider the topological information that could be gathered

from such an approach and the how to perhaps impose a condition on how to determine if

a feature is noise or is a distinguishing feature of a data set.

1.2. Discrete-Time Dynamical Systems

We will focus our attention on discrete-time dynamical systems in one dimension. Let

f : R 7→ R be a real valued function, called a map. Starting from an initial point, x0,

f maps to the sequence {x0, f(x0), f
2(x0), · · · fn(x0) · · · } where fn(x0) represents the nth

composition of f with itself. The sequence {x0, f(x0), f
2(x0), · · · fn(x0) · · · } is called the

orbit of x0 under f . We can also write this map as xn+1 = f(xn) (which is often referred to

as a first order difference equation).

When f(x∗) = x∗, x∗ is called a fixed point. Fixed points play an important role in

understanding the dynamics of the system. Sometimes a system will stabilize to a set of

12



fixed points after a number of iterations displaying periodic behavior. When fn(x0) = x0,

x0 is a periodic point of period n.

x0 z

Figure 1.10. A cobweb diagram with a
fixed point at z.

It is easy to visualize these systems

through graphical iteration using a tool

called cobwebbing. Begin by plotting the

function y = f(x) and the line y = x Start

at the point (x0, x0) on the diagonal line

and move vertically to the graph of f . Now

we are at (x0, f(x0)) which is (x0, x1). Now

move horizontally back toward the diagonal,

to (x1, x1). Repeat this process, moving ver-

tically to (x1, f(x1)) = (x1, x2) and horizontally back to the diagonal at (x2, x2). This

process visually shows the orbit of a point and gives us an intuitive understanding of long

term behavior and can be seen, for example, in Figure 1.10.

The fixed point is clear in this case, starting at x0 when x0 is at the intersection of the

diagonal and the graph of f(x) will remain stationary when iterated. We can see in Figure

1.10 that the point x0 tends towards the fixed point z. We call z an attracting fixed point

for f or a sink since there is some neighborhood U of z such that if x ∈ U then fn(x) ∈ U

for all n and fn(x) → z as n → ∞. Formally if z is a fixed point and |f ′(z)| < 1 then z is

a sink [11]. Notice that under iterates of f , the initial point y0 moves away from the point

z. That is, for z a fixed point The point y0 is called a source or a repelling fixed point if all

orbits leave U under iteration of f . Likewise,a fixed point z can be identified as a source if
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|f ′(z)| > 1. If |f ′(z)| = 1 then z is called indifferent or neutral and is neither attracting nor

repelling [12].

Often discrete dynamical systems depend on a control parameter appearing in the equa-

tion, that is, f(x, a) We will see that varying the control parameter a can have a large effect

on the dynamics of the system [12].

1.3. The Logistic Map

Championed by biologist Robert May in 1976 as clear example that simple non-linear

maps could have very complicated dynamics, the logistic map is one of the simplest and

most well understood examples of a nonlinear discrete dynamical system and displays the

most important features of low dimensional chaotic behavior. It is often used to model and

understand population dynamics. The logistic map, is given by

xn+1 = rxn(1− xn)

for 0 ≤ x0 ≤ 1 and 0 ≤ r ≤ 4. This provides a rich example to explore periodic regions,

complex chaotic behavior and self similarity. The logistic map maps the unit interval I =

[0, 1] into itself for values of r ∈ [0, 4] which means that I is forward invariant. Figure 1.11a

shows behavior in the periodic regime, where after a few iterations, the system settles into

a periodic 4-cycle. Figure 1.11b shows chaotic behavior. This will be more precisely defined

later, but as shown here, there is not a clear repeated pattern.

It should be noted that any quadratic polynomial can be written in the form f(x) = a−x2

under the correct change of variable. Changing variables does not change the qualitative

dynamic behavior of the system. The introduction to the logistic map given in [11] gives

a nice framework for understanding some of the structure of this map. The next section

follows this introduction.
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n

(a) Cobwebbing shows the stability of the period 4-cycle for r =3.52

n

(b) Cobwebbing displays chaotic behavior when r =3.8

Figure 1.11

1.3.1. Bifurcation Diagram. By focusing on long term behavior, we can see where

the logistic map is periodic and where it is chaotic. In general, when there is a qualitative

change in the long term behavior of the map as the control parameter is varied, we say that

the system underwent a bifurcation. In fact, the bifurcation diagram captures the orbit

of points after the system has stabilized. This is the asymptotic behavior represented as a

function of the control parameter. The bifurcation diagram for the logistic map is shown in

Figure 1.12. Notice from the bifurcation diagram, there are different regimes where points
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Figure 1.12. Bifurcation diagram of the logistic map.

behave in a certain way and parameter values at which this behavior undergoes changes. For

example, for 0 < r < 3 the system is stable and the orbit is (asymptotically) a single point.

Fixed points of this map give some insight into the dynamics of the map. The fixed

points satisfy f(x∗) = x∗ and with a little algebra, x∗ = 0 and x∗ = 1− 1
r
. This means that

for all r, the origin is a fixed point x∗ = 1 − 1
r

is in the unit interval if r ≥ 1. Stability is

determined by |f ′(x∗)| = |r − 2rx∗|, which means that the origin is stable for all r < 1 and

unstable for r > 1. For the other fixed point to be stable, |r− 2r(1− 1
r
)| = |2− r| < 1 must

hold, implying that for 1 < r < 3 this fixed point is stable and for r > 3 this fixed point is

unstable.
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At r = 1 we say that the fixed point at the origin splits or bifurcates in a transcriti-

cal bifurcation, that is, one fixed point will lose stability and the other will gain stability.

The second fixed point (shown on the graph as x∗) remains stable as r increases until r

reaches 3, at which point f(x∗) = −1 and the map undergoes another bifurcation called a

saddle-node bifurcation. A saddle node bifurcation occurs when a single, neutral fixed point

instantaneously splits into two fixed points, one attracting, or stable (called the node) and

one repelling, or unstable (called the saddle).

The points that converge to an attracting fixed point are said to lie in the basin of

attraction of this point. Note that the unstable fixed point that occurs on the border

between the basin of attraction of the corresponding stable point and the point at infinity

[13]. We notice from the bifurcation diagram (Fig. 1.12) that for r < 3 up until a certain

point, the logistic map has a stable period 2-cycle.

To understand this better, we consider the fixed points of the second iterate of f , which

can be thought of as either p and q such that f(p) = q and f(q) = p or the two solutions

of f 2(x) = x. This is a quartic polynomial, which can be simplified by noting that the

origin and x∗ = 1 − 1
r

are both solutions, (since in both cases, f(x∗) = x∗) and therefore

f 2(x∗) = x∗) we factor these solutions out of the polynomial and with a little algebra find

that

p, q =
r + 1±

√
(r − 3)(r + 1)

2r

. From this we can see that for r > 3 the solutions are real and so, for any r > 3 the

logistic map has a 2-cycle. Now we will consider stability. The 2-cycle is stable when p and

q are stable fixed points, that is, when | d
dx
f 2(p)| = |f ′(f(p))f(p)| = |f ′(q)f(p)| < 1 which

by symmetry is the same for q. Plugging in for p and q this simplifies to the condition
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| − r2 + 2r + 4| < 1 or 3 < r < 1 +
√

6 (taking into account the domain of r). For values of

r > 1+
√

6 the 2-cycle is unstable, and therefore does not appear in the bifurcation diagram,

however, these unstable areas play an important role in the dynamics of the map. In fact,

at r = 1 +
√

6 there is a saddle node bifurcation to a 4-cycle [11]. It is easy to see that this

bifurcation pattern will continue.

Table 1.2. The parameter values for
onset of the first several period 2n-cycles.
1.8.

Parameter Cycle Value

r1 2 3

r2 4 3.449489728. . .

r3 8 3.544090359. . .

r4 16 3.5644072661. . .

r5 32 3.5687594195. . .

r6 64 3.5696916098. . .

...

r∞ 3.5699456. . .

1.3.2. Chaotic Regime. The logistic map

displays a period doubling cascade to chaos.

If we continue in the same way as above, we

quickly need to rely on numerical techniques.

Denote rn as the r value when a 2n-cycle ap-

pears. From the bifurcation diagram we can

only discern the first few locations of period-

doubling, however, there are infinitely many.

The sequence {rn} is an infinite series called a

period doubling cascade, where a 2n-cycle exist

for every positive integer n. If we compute the

locations of rn numerically, we can see (in Table

1.2) that successive period doubling bifurcations

occur closer and closer together. The location converges geometrically to the accumulation

point r∞ = 3.569946 . . .. It was discovered by Feigenbaum (in 1978) that the distance

between successive bifurcations shrinks by a constant factor:

δ = lim
x→∞

rn − rn−1
rn+1 − rn

= 4.6692016291 . . .
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known as the Feigenbaum constant [14]. δ is a universal constant for the rate of convergence

of bifurcation locations for maps approaching chaos through period doubling. This is in fact

a very large class of systems.

r

x

r1

r2

r3

Figure 1.13. δn as shown above is the dis-
tance between rn and rn+1.

In the literature, the term “chaos” is has

many different definitions, and often is used

to refer to long term unpredictability of be-

havior in a deterministic system, referring

often to a high sensitivity to initial condi-

tions. Relying on a more technical defini-

tion, we say that a map f : I → I is chaotic

if periodic points of f are dense in I, f is

transitive on I, and f has a sensitivity con-

stant γ such that for any x ∈ I and any open neighborhood of x there exists a y ∈ I and

n > 0 such that |fn(x) − fn(y)| > γ [12]. We take transitive to mean that for any two

subintervals U and V there exists an x ∈ U and n > 0 such that fn(x) ∈ V . It is interest-

ing to note that the first two conditions are equivalent topological conditions while the last

condition is a metric condition [11].

This occurs for parameter values greater than r∞ = 3.5699456 . . . in the logistic map,

though there are infinitely many periodic windows between any two periodic windows [13].

The dynamics of this map are quite complicated for r > r∞.

While a sensitive dependence on initial conditions is not sufficient for a system to be

chaotic, transitivity is necessary as well [15], it is useful to consider a measure of the sensi-

tivity to initial conditions. This is given in a Lyapunov exponent which measures the
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Figure 1.14. The initial condi-
tions 0.4 and 0.401 iterated 30
times for the parameter value r
=3.8. The orbits very quickly di-
verge even though the initial con-
ditions were very close.

exponential divergence of initial conditions that are

“near” to each other. That is, if two initial conditions

that are “close” to each other are iterated, soon they

are no longer close to each other.

If there is an infinitesimal perturbation from an

initial condition after n iterations the distance be-

tween those infinitesimally close states will grow ex-

ponentially δxn ∼ enλδx0 where λ is the Lyapunov

exponent. When this exponent is negative, the system is not chaotic. When this number

is positive, the system is chaotic. Conceptually this can be thought of as a generalization

of eigenvalues. Figure 1.15 shows a plot of the Lyapunov exponents. In the chaotic regime,

small periodic windows are seen as negative exponents. (Because the parameter is varied by

0.0001, very few of the periodic orbits actually show up. More and more will appear as the

increment is made smaller.)

There are a wealth of other interesting features arising when r > r∞. At r = 1 +

√
8 ≈ 3.828427 . . . there is a 3-periodic window, that undergoes a period doubling cascade

to periodic behavior. This is the largest such window, and can be seen in the bifurcation

diagram. Remarkably, there is a periodic window of a base k, for any odd k where the period

will double to chaos [16]! Zooming in on the bifurcation diagram in any one of these regions

will produce a bifurcation diagram that is itself similar to the period doubling seen in the full

bifurcation diagram. These regions of self similarity provide a rich, fractal-like structure. In

fact, when this map is conjugated (changing form but not the dynamics) and is considered

in the complex numbers, it gives rise to the fractal pattern of the Mandelbrot set!
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Figure 1.15. The Lyapunov exponents numerically computed from r = 3 to r = 4 with
a step of 0.0001.
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CHAPTER 2

Persistent Homology of the Logistic Map

Since, from the perspective of persistent homology, all necessary information about a

function is encoded in the critical values, it is possible to compute the persistent homology

of the orbit of a one dimensional discrete time dynamical system. In fact, persistent homology

gives a novel way to approach these systems.

When computing the persistence diagram, the only necessary information is the locations

and values of relative maximums or minimums. If the points found through iteration of the

logistic map are connected with line segments in the order in which they occur, a continuous

(though nondifferentiable) graph is created. When thought of in this way, the points are

either a local maximum, a local minimum or some an intermediate point and it is possible to

calculate the persistence diagram. The orbits that happen to fall between a local maximum

and a local minimum are disregarded in the calculation of the persistence diagram (as would

be expected if this were a smooth function).

Originally, the intention of this project was to use persistent homology to better under-

stand a Liesegang ring pattern occurring in the precipitate of the chemical reaction of gaseous

NH3 and HCl. Future investigations will be done with persistent homology of the pattern

in the precipitate to better understand the dynamics of the reaction-diffusion interaction of

these gases. The persistence provides a good way to classify noise in data and a novel way to

compare data. However, in development of this tool, interesting patterns arose persistence

diagram of the Lorenz system (to be discussed later) and the logistic map. These patterns

will be discussed at length in this paper.
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(a) points drawn from uniform distribution
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(b) logistic map r = 3.545; stable 8-cycle
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(c) logistic map r = 3.75; chaotic regime

Figure 2.1. In each row, the left plot is the set of discrete points (connected with line
segments) that results in the given persistence diagram, right.
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2.1. Observations

While clear patterns do not occur for a general set of points, there is a distinct pattern

that appears in the persistence diagram. In fact, when points are drawn from a random

(Gaussian or Normal) distribution and connected in the order in which they were drawn,

there is no apparent pattern or order appearing in the associated persistence diagram. Figure

2.1a shows sampled points drawn from a Uniform distribution on the left and the persistence

diagram on the right. However, when the persistence diagram is computed for the logistic

map, the persistence points all fall very close to a line as seen in Figure 2.1b. Here, r = 3.545

which is a stable periodic 8-cycle. The four darker bars correspond to the stable periodic

behavior and the other bars arise from the transient points that occur at the beginning as

the system reaches stability. This is surprising! Even more interesting is the fact that this

pattern is seen regardless of the initial conditions, before the orbit reaches stability, and in

the chaotic regime. Figure 2.1c shows the persistence diagram for the chaotic regime,where

r = 3.75. The persistence points lie very close to a “line” which appears to bend downward

slightly into the chaotic regime. The next sections will delve further into this phenomena.

2.2. Periodic Regime

We will begin with the periodic regime, first considering orbits after stability has been

attained. Before the bifurcation to a stable period two cycle at r = 3, the system quickly

stabilizes to a fixed point. Once stable this does not afford relative maximums and minimums.

Even if the beginning transient points are included, there are not enough minimums and

maximums to make a persistence diagram with more than one bar.

For 3 < r < 1 +
√

6 the system stabilizes to a 2-cycle. With one minimum value and one

maximum value, this affords one location for a bar in the persistence diagram.In this case,

24



it turns out that the line can still appear in this regime if the transient behavior is included.

In these cases, it has a large effect on the slope (since there are very few points) and it does

not shed much light on why this pattern arises. Through a bifurcation, each bar seems to

split into two bars, one slightly higher and to the left of the original and one slightly down

to the right of the original. So for a 4-cycle, there are 2 bars appearing in the persistence

diagram. (The two lower points are the “births” of features and the two upper points are

the “deaths”.) The bars slowly move apart on the persistence diagram as r is increased.

This is expected from the bifurcation diagram and can be seen as the “tines” widening as r

increases.
1

3

2

4

5

6

8

7

Figure 2.2. The brackets on the left show which minima and maxima pair with each
other, the color of the bracket corresponds to the bar in the persistence diagram. This
pairing is a result of how the persistence is computed, the interesting thing to note here is
the order of iterations of the map.

It should be noted that the minimums and maximums pair in the same way almost

every time(as illustrated in Fig. 2.2) The lowest minimum pairs with the highest maximum,

then the next lowest minimum pairs with the next highest maximum, and this pattern

continues. This is not surprising since it is how the persistence diagram is formed. However,

if we consider the order of iteration, each maximum almost always pairs with point in the

orbit that directly follows it, which is a minimum. If random points (drawn from a normal

or uniform distribution) are ordered from smallest to largest and paired in a similar way,
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the points generally fall so that the left most point is the highest and the rightmost point

is the lowest. However, necessarily so, for if the smallest “minimum” is paired with the

largest “maximum” and the largest “minimum” is paired with the smallest “maximum”, the

persistence diagram will have this general feature. In this case these points very clearly do

not fall in a line. There is something deeper than the order of the pairing that causes this

line to appear.

There are a few occasions when points will pair in a different order. For example for

the parameter value r = 3.5 (which produces a stable 4-cycle) and initial condition 0.715.

For this initial condition, the transient behavior plays a much larger role in the formation

of the persistence diagram. With these specific parameter values, there is a relatively large

amount of transient behavior before the system reaches stability. See Figure 2.3. In these

cases, a relative maximum will pair with the previous iteration of the map (instead of the

next iteration, as is the case for most other maximums.) This appears in the persistence

diagram as a second line in the persistence, to the right of the main one. The slope of this

line is steeper than the pattern including the stable orbit- though it is inconsistent both in

magnitude and position. Sometimes it will appear intermixed with the other line and the

separation is not as drastic. Also the bars that correspond to the periodic behavior are not

very clear (even after 50 iterations) because the system takes so long (compared to nearby

parameters) to stabilize. If more iterations are considered, then their effect decreases until

it hardly exists.

For most initial conditions, there is one major feature and the slope stabilizes fairly

quickly (even when 500 iterations are used). As the orbit is settling into a periodic orbit

from the initial conditions, they occur in such a way that they fall very close to the line
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Figure 2.3. Shown here is an example where the transient behavior is clearly seen in the
persistence diagram. The first set of persistence points is seen as a second steeper line to
the right in the persistence diagram. r = 3.5 and the initial condition is 0.715

formed by the two persistence points. The slope of this line is consistent regardless of the

initial conditions, though there are a few initial conditions for which this temporary switch

in the order of pairing typically appears.
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Figure 2.4. The stability of the slope
as the number of iterations is increased

This occurs for initial conditions between 0.71

and 0.875 and is seen consistently across param-

eter values above the onset of the 4-cycle in the

chaotic and periodic regimes. This causes an in-

crease in the slope when calculated with a lin-

ear fit including all points, but as the number of

iterations increases, their effect decreases (since

there are only a finite number of points in this

second formation.) There is one small blip also

at 0.28 and .085 (regardless of r) for lower num-

bers of iterations. 0.4 appeared to be in the mid-

dle of a section where the slope stabilized very quickly and consistently regardless of r, so
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for much of the numerics, an initial condition of 0.4 was used. Also, 10,000 iterations were

used so that any possible transient behavior did not have a large effect. This can be seen in

Figure 2.4, where the parameter value under consideration is again 3.5.

It should also be noted that occasionally, there are a few persistence points in the region

of transient behavior that do not fall on the line. It is unknown why these points appear,

however it is usually one or possibly two points, so when the total number of iterations is

large, their effect on the pattern is negligible.
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Figure 2.5. The r dependence of the slope of the persistence diagram. The persistence
diagram was built from 10,000 iterations, with an initial condition of 0.4. r was increased
by a step size of 0.001.
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For large enough orbits of points, the slope is consistent across initial conditions (barring

some initial transient behavior). In much of the generation of data, an initial condition of

0.4 was used because the slope consistently stabilized earlier for this initial condition that for

others. The slope seem to slowly and smoothly change as r increases through the periodic

regime. It changes more quickly and in a less smooth and regular way through the chaotic

regime, though the behavior at the beginning of the chaotic regime looks very similar to the

behavior for periodic r’s. It is thought that some of the peaks in the slope in the chaotic

regime correspond to some underlying properties of the map. It should be noted that because

of the computational nature, there may be more detail to how the slope changes with r that

is too fine to be captures at this resolution. The dependence is seen in Figure 2.5.

2.3. Chaotic Regime

It has been pointed out that the points in the periodic regime pair in a specific order.

Similarly (and perhaps surprisingly) the points pair in a specific order in the chaotic regime

as well. A local max is almost always paired with the following point in the iteration, which

happens to be a local minimum. An instance of this failing to be true has not been observed.

In fact, in the chaotic regime, it is postulated that the intermediate points, which are neither

a local maximum nor a local minimum (and thus are not candidates to be paired for the

persistence diagram) always precede a maximum, so they do not affect this pairing pattern.

One might expect the slope of the line formed in the persistence to vary as r is varied.

In fact it does, but not greatly. Regardless of the initial condition in the chaotic regime, this

slope remains between −0.3 and −0.42 .(There are usually a few points that don’t fall on

the line created by the rest of the persistence points. This will change with initial condition

and slightly change the slope. The effect is smaller the more points that are used to compute
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Figure 2.6. The actual slope and the slope calculated with the pairing function, using
the value of the highest stable orbit.

the persistence. At the onset of chaos at r ≈ 3.569945 the slope does not change much as r

is increased.

The observation of the order of pairing can be used to estimate the slope. Because of

this order, the slope can be written in the following way:

f 2(xn)− xn
f 3(xn)− f(xn)

=
1

(xn − 1)(rxn − 1)(−rx2n + r2x2n + rxn + 1)r

given that xn is a local maximum. As expected, this works well in the periodic regime (since

after stability is reached, there are no intermediate points). Figure 2.6 shows the very close

correspondence through the periodic regime. As the period doubles, the actual slope and

the estimate move slightly apart, but are still within ±0.002 In the chaotic regime, since

this function depends on the value of the maximum, two methods were explored. First, the

overall maximum from the first 10,000 iterations was used as the input. The results are seen

in Figure 2.7b. Initially this seems to be a good choice, but as r increases, the predicted
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Figure 2.8

slope quickly becomes far too steep. So local maximums were found from 10,000 iterations

and averaged. This was checked across 50 different initial conditions and 20 r values in the

chaotic regime and the value stabilized across all tested initial conditions for each r value.

This value (for each r) was then used in the pairing function. As seen in Figure 2.7a, this

estimate seems to at least to generally track the shape of the trend of the slope. The large

dip in the predicted slope around 3.828 occurs during the 3-periodic window.

2.4. Random or Stochastic r values

To investigate further, the system was allowed to evolve in such a way that each r value

was randomly selected from either two values for r that were within 0.1 of each other or

from a Normal distribution about a particular r value with a standard deviation of 0.1. The

results of the second method can be seen in Figure 2.8. The line in the persistence diagram

still appears here, though it is a little more “fuzzy.” This means that this technique could

prove to be useful in understanding dynamic structure of real data (which tends to be noisy).
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CHAPTER 3

Where is this Pattern Coming From?

3.1. Feigenbaum’s Scaling Constant

It seems somewhat remarkable that the points in the persistence diagram would lie nicely

on a line in the periodic regime, even before the system has reached an equilibrium but what

is more remarkable is that this pattern is still clearly visible in the chaotic regime, (though

slightly bent downward in this regime). A clue to what is going on here may lie in a

fundamental scaling constant α discovered by Mitchell Feigenbaum in 1978 [17] (much to

his surprise) and later explicitly found [14] and proved by him in 1983 [18]. This is similar

to Feigenbaum’s constant δ discussed earlier, which applied to maps undergoing a period-

doubling cascade to chaos. This next scaling constant applies to unimodal maps, which are

maps of the form xn+1 = λf(xn), scaled so that 0 < λ < 1 and that satisfy the following

conditions [18]:

• f is well-defined, continuous, piece-wise C1, and has a unique differentiable maxi-

mum occurring at x̄ ∈ [0, 1]. (Feigenbaum scaled such a function so that f(x̄) = 1)

• f(x) > 0 on [0,1] and zero at the endpoints. f is strictly increasing on (0, x̄) and

decreasing on (x̄, 1)

• For some Λ < λ < 1, λf(x) has two fixed points that are both repelling fixed points

• In the neighborhood about x̄, |f ′′(x)| < 1, that is f is concave down.

For maps that meet the above conditions, which are remarkably nonrestrictive, Feigen-

baum was able to discover α and δ, two profound quantitative constants of unimodal maps,

regardless of the exact form of f ! This is an example of dynamic universality in these iterated
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maps. That is, even though these maps have a different form, dynamically they behave in a

way that is not only qualitatively similar, but quantitatively similar! In this context we are

most interested in the scaling factor α. We will focus specifically on how it appears in the

logistic map. One should note that the logistic map does indeed meet all of the listed criteria

except that the parameter, r, corresponding to λ above does not fall between 0 and 1. With

a simple re-scaling, (λ = r
4
) all of the theory still applies and so this becomes a matter of

convention. We will, through the course of the discussion, continue to use 0 < r < 4.

In [18] Feigenbaum defines α in the following way. For each periodic cycle, we can find a

unique value of r for which 0.5 is a fixed point. We may do so relying on Newton’s method

to solve f 2n(r, 0.5) = 0.5 for r. It was necessary to use an informed starting point for r,

estimating from the bifurcation diagram for stability of Newtons method. When these r

values were used in the iteration of the logistic map with a starting value of 0.5, if there were

no numerical approximation error, 0.5 would be a fixed point. However it was found that

these parameters produced a fixed point at 0.5 ± 0.000001. This was considered sufficient

for this investigation. Collect such values of in a sequence, {λ1, λ2, λ3, · · · } where λn is the

parameter value for which 0.5 is a fixed point of the 2n-cycle. The calculated values for these

parameters are shown in Table 3.1.

Define dn as the distance from x = 0.5 to the nearest fixed point in the stable periodic

cycle for parameter value λn. Note that this will occur on alternating sides of x = 0.5 from

one stable periodic orbit to the next. On the bifurcation diagram (Figure 3.1) the horizontal

line is at x = 0.5 and the first several d’s are labeled. They quickly become impossible

to discern on the bifurcation diagram because their length is scaled down by α every time

(and recall that the distance between period doubling bifurcations shrinks by Feigenbaum’s
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Table 3.1. Numerical approximations for first five parameters for the logistic
map where Feigenbaum’s scaling occurs.

Parameter Value

λ2 1 +
√

5

λ4 3.498561720357923147

λ8 3.55464086306839

λ16 3.56666748775647465

λ32 3.56924467659

constant δ ≈ 4.66.) If we consider α to be positive, then dn
dn+1
∼ α. As n goes to infinity, this

ratio converges to 2.50290787509957 . . . [18]. This means that the distance between x = 0.5

and the next nearest fixed point shrinks by approximately α for each successive λn. Actually,

α is negative. This will be discussed briefly.

d1

d2

d3

r

x

0.5

Figure 3.1. The width of the tines
of the branches is scaled down by a
factor of approximately α with each
successive period doubling.

The graph of the logistic map lends itself in an

alternate way to visualize α. Recall that fixed points

occur at the intersection of the function and the bi-

sectrix, (given that the magnitude of the slope of

the graph at that point is less than one). Likewise,

to visualize the orbit of a 2n-periodic cycle, we con-

sider where the graph of f 2n intersects the bisectrix.

Consider the graph of f 2n(x) depending on the pa-

rameter λn. Recall that for λn, x = 0.5 is a fixed

point. If we draw a box with one corner at (0.5, 0.5)

and the opposite corner at the intersection of the nearest fixed point and the bisectrix, this

is a square with side length dn. In Figure 3.2, this is the shaded box for the 2-cycle, 4-cycle
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Figure 3.2. The first several boxes shown on plots of iterations of f at λ1, λ2
and λ3 respectively. The shaded box in the center shrinks by approximately
α in each following step.

and 8-cycle. We can add a second box on the graph of the 4-cycle in a similar fashion, where

the corners are fixed points.

When scaled appropriately by α the section of f that falls within the shaded box shown

above with one corner at (0.5, 0.5) and the opposite corner at the nearest fixed point, in the

limit, will approach a specific function [18]. Notice that the function inside this box flips for
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every λn. This is where the negative sign of α comes into play. New “boxes” are formed

after every period doubling bifurcation. These occur in the same manner: as r is increased

the slope of f at a fixed point will grow until the slope reaches a magnitude of one and then

will exceed one and two new fixed points will be formed. The progression is schematically

shown in Figure 3.3.

Figure 3.3. The progression of period doubling and the formation of two
new fixed points. The intersection in the center is not a fixed point since
|f ′(x)| > 1 which causes the point to be unstable.

We are now set to relates this to the slope in the persistence diagram. We will begin with

the stable period-4 case. In this case, there are two local maximums and two local minimums
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Figure 3.4. Shown on the left are 35 iter-
ates of the logistic map in a stable 4-cycle
with r = 3.5 and on the right is the associ-
ated persistence diagram.

and therefore the persistence diagram will

have only two bars as seen in Figure 3.4.

When computing the slope of the persistence

diagram, this is the ratio of the distance be-

tween maximums over the distance between

minimums of the orbit. For the persistence

diagram shown here, the slope is approxi-

mately -0.4070. In the period 4 case, this is

the ratio of the side length of the upper box with the side length of the lower box. It should

be noted that −1
α
≈ −0.39953.

It has been seen previously that the maximums and minimums seem to always pair in

a specific order. Any given maximum will pair with the point in the orbit immediately
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following it, this will be a minimum. Also, the highest maximum pairs with the lowest

minimum, the next highest maximum pairs with the next lowest minimum. The patterns

continues until the smallest maximum is paired with the largest minimum. The slope then

is the ratio of the side lengths of a box formed between maximum values and a box formed

between minimum values. Care must be taken, however, to compare the correct boxes: the

highest one and lowest one, the second highest and second lowest and so on.

Transitioning from a 4-periodic orbit to an 8-periodic orbit, we know that for a specific

r value, the boxes appearing in the diagram of the updating function for the 4-cycle will

be scaled by approximately alpha and two new ones will appear. (We say approximately

because α holds in the limit, and we are considering the first several ratios in this limit.)

This in fact holds for more boxes! As the period doubles, the fixed point at the corner of each

box will bifurcate a new box can be formed with these two new points. One box will become

two boxes at the next λn. One of these boxes will have a side length of approximately 1
α

of

the side length of the original box. An interesting pattern arises when we consider which of

the two new boxes is the one scaled by α!

For these specific parameter values, the scaling of these boxes is shown in Figure 3.5 by

the bold teal arrows. Beginning at λ2, the two boxes split into four (at λ4) and the inner

two boxes of the four new ones are the boxes that are scaled by α. Going from λ4 to λ8,

for every pair of boxes that bifurcates into four boxes, the outer two boxes of the four are

scaled by α. Increasing the parameter to λ16 shows that the inner two boxes of every four

are the boxes that are scaled. This pattern continues, alternating between inner pair and

outer pair of four new boxes every time the parameter increases to the next λi. This creates

a fractal-like pattern and is symmetric about 0.5 past the 2-cycle. If we think of the slope
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Figure 3.5. The bold teal arrows show (schematically) which boxes are
scaled at the next λn.

b1 b2

c1 c2
b2b1

Figure 3.6. The schematic of α-box scal-
ing, the bifurcation diagram, persistence di-
agram with the side lengths of two boxes
shown.

of the persistence diagram as the ratio of

side lengths of the boxes (keeping in mind

that the correct boxes must be compared:

the highest and lowest, the next highest and

next lowest, and so on) then the symme-

try in the way that these boxes scale gives

a good indication why the slope should not

change much in the periodic regime. When

paired correctly, half of the new pairs will

have the same ratio as the previous pairs be-

cause both the upper and lower boxes are 1
α

the size of their original boxes! Focusing for a moment on the transition between λ4 and λ8,
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Figure 3.6 clearly shows the correspondence between the side lengths of the boxes, the width

of tines in the bifurcation diagram and the slope in the persistence diagram. Following the

notation in the figure, the slope of the persistence diagram for λ4 is given by the ratio of

the side lengths of the boxes: ≈ b2
b1

. The slope of the persistence diagram for λ8 is given by

≈ c2
c1
≈

b2
α
b1
α

=
b2
b1

when we take into account the α scaling. Therefore, this scaling constant

at least indicates why the slope does not drastically change in the periodic regime. Recall

that α is defined in the limit, so scaling by α is not exact in every step, and this gives some

reason for the small fluctuation in slope as r increases through the periodic regime.

It seems that this scaling constant would dictate the actual slope of the persistence

diagram, and at first seemed promising that for the logistic map, the slope was close to 1
α

.

However, this does not appear to be the case. α relates the width of “tines” of the bifurcation

diagram at very specific parameter values. As r increases from one λi to the next, λi+1 (as

seen above) the factor of α cancels. The slope of the persistence diagram relates these widths

of “tines” at a single parameter value, not across several parameters.

Further, since α is a universal constant for unimodal maps, then it should be the case

that the slope of a line in the persistence diagrams for these maps is approximately 1
α

as

well. The quadratic map, given by xn+1 = x2n + c, which is topologically conjugate to the

logistic map via a change of variables is qualitatively the same system. Conjugacy preserves

invariants [16], and α is an invariant for these types of maps [18], so if the value of the

slope is given by approximately 1
α

it should be the case for the quadratic map as well. The

persistence diagram of the quadratic map does in fact display the same linear pattern in the

persistence diagram, but the slope is different. This means the value of the slope is not so

clearly connected to this scaling factor for all quadratic maps.
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Figure 3.7. Bifurcation diagram with un-
stable orbits shown in magenta.

3.1.1. Periodic Behavior in the

Chaotic Regime. This give us occasion

to explore some other features of the logis-

tic map and consider their role in the cre-

ation of this slope. Recall that the periodic

cycles exist as unstable cycles after period

doubling occurs, and after r increases past

r∞. The unstable periodic cycles are dense

in the chaotic regime. Figure 3.7 shows some

of the unstable cycles that carry into the chaotic regime. These unstable cycles are dense

[13]. Thus if we start with any point in the, we will be close to some unstable periodic

orbit for a few iterations (though the Lyapunov exponent indicated that we move away at

an exponential rate, so this only holds for a few iterations). When we move away from this

periodic orbit, we will be “close” to another periodic orbit for a few more iterations. In this

way, we are always “close” to some periodic orbit (albeit unstable) and thus the slope

of the persistence diagram follows the same pattern. Also, periodic cycles are dense in the

region r > r∞ so there are infinitely many r values for which the orbit is periodic and the

pairing of points in the persistence diagram follows a similar pairing as discussed previously

(though not precisely the same if the cycle is k-periodic for k odd). This means that remnants

of periodic behavior could be driving the slope in the chaotic regime.

There is an interesting connection with the Lyapunov exponents and the slope of the

persistence. Peaks in the slope often correspond to a periodic window, as seen in Figure

3.8. The large peak in the slope around 3.8284 is the large period-3 window. It should be
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Figure 3.8. Comparison of the Lyapunov exponents and the slope of the persistence.
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noted in this figure that there are infinitely many periodic cycles in the chaotic regime, but

the Lyapunov exponent was calculated by incrementing r by 0.0001 so much of the periodic

behavior is not visible.

3.2. Other Maps

The line in the persistence diagram in fact appears for other maps as well. Another

common one dimensional map is the tent map, given by

xn+1 = µmin(xn, 1− xn)

is topologically conjugate to the logistic map, meaning that there is a homomorphism that

can conjugate one map into the other. The homomorphism is given by h(x) = sin2(π
2
x) So

that if T (x) is the tent map and L(x) is the logistic map, L(x) = h ◦ T ◦ h−1(x) [15]. This

means that these maps behave the same dynamically [13], so quantitatively these maps may

be different, however qualitatively the two maps display the same behavior.

Stable orbits undergo a period doubling bifurcation that, like the logistic map, cascade

to chaos as revealed in the bifurcation diagram of the tent map, Figure 3.9a. At any given

parameter for the logistic map, the tent map at the conjugate parameter has the same number

of unstable periodic orbits [16]. Further, Feigenbaum’s scaling by δ and α still appear.

The tent map is not technically considered a unimodal map because the maximum is not

differentiable, however since this is a single point (a set of measure zero) it does not effect the

dynamics. As seen in Figure 3.9, there is a clear, decreasing line in the persistence diagram

both in the periodic and chaotic regime. Interestingly, as µ the slope of the persistence

increases in a nice, smooth curve (see Figure 3.9b). Stability of the persistence diagram

seems to be reached very quickly in this case.
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(a) Bifurcation of the tent map.
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(b) Slope of the persistence diagram for the
tent map as the parameter is varied.
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Figure 3.9

Another common conjugate of the logistic map is the quadratic map given by

xn+1 = x2n + c

for 0 < c < 2. As seen in Figure 3.10, the quadratic map displays the same dynamics

as the tent and logistic map, however the line in the persistence diagram is a little more

visibly curved than in other maps, and is curved in the opposite direction than the logistic

map. The bifurcation diagram for the quadratic map appears qualitatively identical to the

bifurcation diagram of the logistic map. The sine map, given by xn+1 = sin(λπxn) is also

topologically conjugate to the logistic map for 0 < λ < 1 and displays similar behavior as

does the Gaussian map or Mouse map given by xn+1 = e−αx
2
n + β.
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(a) Bifurcation of the quadratic map.
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(d) Persistence diagram for the quadratic map, c = 1.6

Figure 3.10

It should be noted that not all one dimensional iterated maps display this specific pattern

in their persistence diagrams. For example, circle maps given by xn+1 = xn+α(mod 1) where

α is the rotation number do not display a clear decreasing line in the persistence diagram. If

α = 1+
√
5

2
(the Golden ratio) then the persistence diagram displays sets of points that line up

in an increasing line (in Figure 3.11), with the number of these sets increasing as the number

of iterations increases. In fact, as the number of iterations increases, the number of these
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lines will increase when the number of iterations reaches a Fibonacci number! However, there

seems to be no generalized pattern that appears for a general α. Rational and irrational

rotation numbers will display different behaviors, but even when restricting α in such a way,

there is not a clear general pattern.
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Figure 3.11. Persistence diagram of the circle map with α = 1+
√
5

2
(the Golden ratio) as

the rotation number.

The bimodal tent map is another iterated map for which the persistence diagram displays

interesting behavior. For parameter values µ <
√

2 There is a clear line in the persistence

diagram (see Figure 3.12b), but if one closely examines the bifurcation diagram in Figure

3.12a, it seems that the obit will remain on either the top or bottom “tine” (this actually

depends on the initial condition.) From the perspective of cobwebbing, the orbit remains

under one peak of the bimodal map and so it acts like the tent map in these regions as seen

in Figure 3.12b. However, once µ >
√

2, the shape of the persistence diagram changes as

seen in Figure 3.12c and three distinct regions emerge. There are two lines that seem to

correspond to the two peaks in the bimodal map, and there are points that form a small

cloud in the upper left of the persistence diagram. This pattern remains as µ is increased.
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(a) Bifurcation of the bimodal tent map.
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(c) Persistence diagram for the bimodal tent
map, µ = 1.51

Figure 3.12

3.3. Generalization

The persistence diagram has been computed for many different sets of data arising from

many different maps. When the map is unimodal, a nice line appears in the persistence

diagram. This leads to the following conjecture:

Conjecture: A decreasing line will appear in the persistence diagram of

any one dimensional unimodal map.

A sketch of the proof and a discussion of difficulties that arise is offered. All unimodal

maps have the same qualitative behavior as a dynamical system [17]. This means that they

will undergo a period doubling bifurcation cascading to a chaotic regime as the parameter is

increased. Justification for the appearance of the slope in the periodic regime follows from
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the α-box scaling that occurs as the period doubles. Because α is a universal scaling constant

for all unimodal maps the previous discussion on its connection to the slope of the persistence

diagram for a stable periodic orbit holds here. This accounts for a fairly consistent slope

across very specific parameters, however the pattern appears across all parameters. The

argument should be extended, possibly through continuity, to these parameters. Further, is

not well understood why the transient behavior almost always falls along this line as well.

In the chaotic regime, as discussed earlier, since periodic orbits are dense in the chaotic

regime a point is always “close” to an unstable periodic cycle for a few iterations. The

rate at which trajectories of points that are initially very near to each other depends on

the Lyapunov exponent for that specific parameter. Currently the Lyapunov exponent is

calculated numerically, but will need to computed analytically for use in a proof. It is

thought that the ghost of periodic behavior is appearing in the persistence diagram in the

chaotic regime.

Apart from the line itself appearing, it is not yet understood what causes the value of the

slope itself. It is known that the value of the slope is not universal, for if it were, there would

be no difference across different maps. There is, however, a difference. As a last remark,

the “line” that appears is indeed a clear pattern, however it is not perfectly linear. It is

slightly concave down for the logistic map and slightly concave up for the quadratic map.

The pattern is striking, but the statement of the conjecture needs to be made precise. The

clearest and most stable line in the persistence diagram appears for the tent map. Continuing

work will be done on this proof.
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3.4. Extending to Higher Dimensions

The clear line in the persistence diagram is also seen in continuous ordinary differential

equations in higher dimensions like the Rössler attractor and the Lorenz system! The Lorenz

system, given by

ẋ = σ(y − x)

ẏ = rx− y − xz

ż = xy − bz

(where the dot indicates the time derivative) is a classic example of deterministic chaos [12].

Lorenz was able to construct an approximate one dimensional map from this system by

plotting successive maximums [19, 20]. When this is done for the z variable, this gives rise

to a single peaked map. Lorenz was able to use this to convincingly argue that the system

was chaotic [15]. This is exciting because it is precisely in the variable z in the persistence

diagram that we see the clear decreasing slope! (see Figure 3.13) In general, if the Lorenz

map of a system is nearly unimodal, much of the universality theory applies [21].

The Rössler system , given by

ẋ = −y − z

ẏ = x+ ay

ż = b+ z(x− c)
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Figure 3.13. The persistence diagram for each variable of the Lorenz system
with σ = 10, b = 8

3
, r = 28, parameters at which the system is a strange

attractor.

contains several of the familiar features of the logistic map. If we let a = b = 0.2 and let c

vary, projecting the attractor’s behavior into the xy plane allows us to a single limit cycle

for c = 2.5 as c increases, the limit cycle must go around twice to close, then 4 times, ect.

This is in fact period doubling in a continuous system. After the infinite cascade of period

doubling, chaos arises. In this case it is referred to as a strange attractor (with a few more

technical details added to our previous understanding of chaos). This map cannot be reduced

to something as simple as the logistic map, however plotting successive maximums for the

x variable will give rise to a single hump, which indicates deterministic chaos in the system.

The same can be seen in the y variable [22]. This means that underneath the continuous
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(a) Persistence diagram for each variable of the Rössler attractor. a = b = 0.2, c = 5.26.
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(b) Persistence diagram for each variable of the Rössler attractor. a = b = 0.2, c = 4.5

Figure 3.14

system, there is a simple one dimensional map, which is unimodal [21]. In fact, if we restrict

our attention to the trajectory of this map in a single variable, and look at the persistence
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diagram, we can see the same decreasing linear pattern for both the x and y variables! Figure

3.14b shows the persistence broken down for each variable. The persistence diagram clearly

shows the one dimensional deterministic chaos that is the backbone of this system. The top

example is a periodic limit cycle and the second example is a strange attractor.

We were able to apply the theory of universality to both of these maps, but it should

be noted that this requires the system to be highly dissipative, that is, there are only a few

degrees of freedom that are active, the others follow passively [22].
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CHAPTER 4

Conclusions

The appearance of a clear pattern in the persistence diagram for both the periodic and

chaotic regime of the logistic map is unexpected. While it is not surprising that this pattern

appears in the stable regime, it is quite surprising that the transient behavior at the beginning

conforms to this pattern as well. What is even more remarkable is the clarity and consistency

of this pattern in the chaotic regime regardless of the initial condition. In the chaotic regime

a tiny change in the initial condition grows exponentially as the orbit is traced, a feature of

chaos that can make it difficult to study. The pattern in the persistence diagram stabilizes in

the chaotic regime regardless of initial condition! It it thought that the density of unstable

periodic orbits in the chaotic regime lends a clue as to why this behavior might arise.

This pattern in the persistence diagram is not exclusive to the logistic map. It is hy-

pothesized that this clear pattern appears in the persistence diagram for any unimodal map,

regardless of the parameters or whether or not the behavior is chaotic. It is interesting that

even though the quantitative slope changes, the qualitative pattern remains even though the

orbits of points changes dramatically as r is increased or as the form of the map is changed.

The conjecture is compelling, though stands to be made precise and proven rigorously.

The clear line in the persistence diagram even appears in single variables of three di-

mensional ODE’s that have a unimodal map (or two) as a backbone. This is a new way to

detect this type of structure in an ODE system. This method gives rise to clear patterns in

systems of deterministic chaos, which could be used in applications to understand governing

systems of sets of data. This could prove to be more useful than the peak-to-peak method
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used commonly (first by Lorenz [19]) to uncover a governing map from the set of points in

a chaotic orbit because a few missing points will have a smaller overall effect.

Persistent homology is a novel and powerful tool to study and hopefully better understand

discrete time dynamical systems and ordinary differential equations. It could give us a better

way to discuss and compare topological features of a dynamical system. Persistent homology

seems to be able to pull out some deep qualitative behavior of the system, in this case,

deterministic chaos.

Persistent homology has a history of applications to a wide variety of problems, using

simplicial homology to better understand complex networks [3] to the structure of stories [4].

Persistent homology is particularly useful for real data sets because of its ability to classify

and see past noise and sampling distortion in a system, highlighting the more prominent

features. Beyond this project, persistent homology is yet to be studied as a tool to understand

dynamics. This area is rich and there are many avenues yet to be walked down. The

persistence allows us to “see” sets of data in a unconventional way. There is much to be

explored here!
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