
 
 

THESIS 
 
 
 

A STATISTICAL PREDICTION MODEL FOR EAST PACIFIC AND ATLANTIC 

TROPICAL CYCLONE GENESIS 

 
 

 
 

Submitted by 
 

Stephanie A. Slade 
 

Department of Atmospheric Science 
 
 

 
 
 

In partial fulfillment of the requirements 
 

For the Degree of Master of Science 
 

Colorado State University 
 

Fort Collins, Colorado 
 

Spring 2012 
 

 
Master’s Committee: 
 
 Advisor:  Eric D. Maloney 
  
 David Thompson 
 Edwin Chong 
  

 

 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

Copyright by Stephanie A. Slade 2012 

All Rights Reserved



 
 

ii 
 

ABSTRACT 

 

A STATISTICAL PREDICTION MODEL FOR EAST PACIFIC AND ATLANTIC 

TROPICAL CYCLONE GENESIS 

 

A statistical model is developed via multiple logistic regression for the prediction 

of weekly tropical cyclone activity over the East Pacific and Atlantic Ocean regions using 

data from 1975 to 2009.  The predictors used in the model include a climatology of 

tropical cyclone genesis for each ocean basin, an El Niño-Southern Oscillation (ENSO) 

index derived from the first principal component of sea surface temperature over the 

Equatorial East Pacific region, and two indices representing the propagating Madden-

Julian Oscillation (MJO).  These predictors are suggested as useful for the prediction of 

East Pacific and Atlantic cyclogenesis based on previous work in the literature and are 

further confirmed in this study using basic statistics.  Univariate logistic regression 

models are generated for each predictor in each region to ensure the choice of prediction 

scheme.  Using all predictors, cross-validated hindcasts are developed out to a seven 

week forecast lead.  A formal stepwise predictor selection procedure is implemented to 

select the predictors used in each region at each forecast lead. 

Brier skill scores and reliability diagrams are used to assess the skill and 

dependability of the models.  Results show a significant increase in model skill at 

predicting tropical cyclogenesis by the inclusion of the MJO out to a three week forecast 

lead for the East Pacific and a two week forecast lead for the Atlantic.  The importance of 

ENSO for Atlantic genesis prediction is highlighted, and the uncertain effects of ENSO 
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on East Pacific tropical cyclogenesis are re-visited using the prediction scheme. Future 

work to extend the prediction model with other predictors is discussed.  
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1. Introduction 

1.1 Motivation 

 A hurricane is a rotating low pressure oceanic weather system in the Atlantic or 

East Pacific with 1-minute sustained winds of at least 64 knots (~ 74 mph).  Hurricanes 

have alternate names in other regions such as typhoons, Severe Tropical Cyclones, and 

Severe Cyclonic Storms.  Worldwide, they are among the most destructive natural 

phenomena in recorded history.  Typhoons stopped the Mongolian attempt to invade the 

Japanese twice; once in 1274, killing almost 13,000 men and destroying many of their 

ships, and again in 1281, with further devastating losses (Emanuel, 2005).  Even though 

the Mongols lacked the knowledge and technology of today that could have foreseen 

these losses, more recent hurricanes have still caused staggering destruction.  In 2005, 

Hurricane Katrina directly caused about 1000 deaths (Brunkard et al., 2008) and cost 

approximately 81 billion dollars worth of damage, normalized to today’s inflation, 

wealth, and population (Pielke et al., 2008).  In 2008, Cyclone Nargis made landfall over 

Myanmar resulting in over 138,000 deaths and over $10 billion in damages, making it the 

eight most lethal cyclone on record (Fritz et al., 2009).  All hurricanes evolve from 

tropical storms (sustained winds of at least 35 knots but less than 64 knots), but not all 

tropical storms become hurricanes (Emanuel, 2005).  In 2001, Tropical Storm Allison hit 

southeast Texas, resulting in the deaths of 43 people and causing 5.1 billion dollars in 

damages (Ross and Lott, 2003).  For this reason, not only hurricanes but also tropical 
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storm prediction improvements are vital to ensure adequate evacuations and safety 

procedures.  

 This study develops an intraseasonal statistical model for tropical cyclone 

formation over the East Pacific and North Atlantic Ocean basins similar to the Southern 

Hemisphere model of Leroy and Wheeler (2008).  The following sections provide 

relevant background information on the development of the model. 

 

1.2 Tropical Cyclogenesis 

1.2.1 An Initial disturbance 

The prominent lower and upper level tropospheric flow signature observed prior 

to tropical disturbance intensification into a tropical cyclone was first noted by Herbert 

Riehl.  Riehl (1948a, 1948b, 1950) describes the process which brings about the 

development of a tropical storm, or tropical cyclogenesis, as the evolution of a moving 

wave or disturbance within the trade winds occurring under a favorable environment of 

upper-level divergence.  Since the early work of Riehl, the mechanisms which bring 

about tropical cyclogenesis have been studied but are still poorly understood.   

Tropical cyclones in the Atlantic and East Pacific can form via tropical easterly 

waves.  Tropical cyclones tend to form along low surface pressure associated with a 

tropical wave-trough.  While a large amount of wave-troughs occur during a given 

hurricane season, only 20% of those which form in the east and central regions of the 

Atlantic via African easterly waves actually lead to cyclogenesis (Frank, 1970).    Studies 

have theorized that this may be due to the initial lack of surface cyclonic circulation in a 

mesoscale convective vortex (MCV; Bister and Emanuel, 1997; Ritchie and Holland, 
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1997).  An MCV in the Atlantic or East Pacific basins can be generated via mesoscale 

convective systems (MCSs) that develop in a wave-trough within easterly waves (Bister 

and Emanuel, 1997; Molinari et al., 1997; Dunkerton et al., 2009).  

Using RAMS, a non-hydrostatic cloud model, Montgomery et al. (2006) looked at 

the case of an MCV with a weak ocean surface cyclonic circulation developing into a 

warm-core tropical depression vortex.  The study found a possible upscale organization 

mechanism leading to the evolution of a self-sustaining vortex.  Given a high-vorticity 

MCV, the primary coherent structure in the model simulations consists of vortical hot 

towers (VHTs).  VHTs are cumulonimbus convection cores with a small horizontal scale 

and extend to at least the tropopause.  The VHTs were found to give rise to powerful 

vertical cyclonic vorticity via stretching and tilting of the preexisting vorticity found in 

the MCV.  This mechanism led to a surface concentrated rotary system within realistic 

time scales and was shown to precede the axisymmetric wind-induced surface heat 

exchange (WISHE; Rotunno and Emanuel, 1987) believed to be the principal mechanism 

of the intensification of a surface-concentrated vortex (Montgomery et al., 2006).  

The mechanism behind cyclone genesis occurring within an easterly wave trough 

is hypothesized by the marsupial paradigm in Dunkerton et al. (2009).  The marsupial 

paradigm describes the ideal region for vortex development as a “pouch” that is provided 

by the wave.  The center of the pouch, defined as the intersection between the critical 

layer (the region where the wave phase speed equals the mean flow) and the trough axis 

of the easterly wave, is the most favorable region for tropical cyclogenesis.  The pouch 

acts as a protective layer against cyclone development inhibitors such as dry air from the 

Sahara Air Layer.  The vortex can exist outside of this pouch once it has gathered 
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sufficient spin to develop its own propagation; the strength of the vortex can be increased 

via convective intensification and the merging of vortices within the pouch. 

Various other mechanisms leading to tropical cyclogenesis have been theorized.  

Given a large-scale vortex, smaller-scale regions of vorticity have been observed to fuse 

with and energize the larger-scale vortex flow (Montgomery and Enagonia, 1998; Moller 

and Montgomery, 1999, 2000).  Other routes exist such as cyclogenesis via baroclinic 

development (Bosart and Bartlo, 1991), wave energy accumulation (Shapiro, 1977; Sobel 

and Bretherton, 1999), and low-level disturbance interaction with upper-level 

disturbances (Sadler, 1976; Montgomery and Farrell, 1993).   

1.2.2 A Favorable Environment 

Tropical cyclones are composed of a tropospheric warm core which obtains its 

energy primarily from ocean evaporation and condensation in convection (Emanuel, 

1988).  This warm core is what allows for intense winds to form near the surface 

(Holland, 1993).  Favorable environmental conditions are essential to allow for sufficient 

accumulation of condensational heat at the core to be used for sensible warming. 

Gray (1979) statistically related cyclogenesis to six climatological environmental 

conditions which he uses to define a seasonal genesis parameter: 

i. Adequate surface to 400-mb vorticity and convergence. 

ii. A large enough coriolis parameter for large scale rotation.  The latitudinal 

distance from the equator is generally a minimum of 5˚ to allow for a sufficient 

coriolis force to generate cyclonic rotation (Gray, 1979; Lighthill et al., 1994). 

iii. Low vertical shear of the horizontal winds.  High vertical wind shear inhibits 

tropical cyclone formation due to the detrainment of heat from the disturbance.  
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Interference of formation due to wind shear would make it difficult for the 

storm’s required thermal energy to become concentrated at its core (Gray, 1968; 

Gray, 1979).  Vertical shear has also been shown to negatively impact cyclone 

genesis and growth through vertical stability (DeMaria, 1996) and secondary 

circulation effects (Bender, 1997). 

iv. Surface to 60 meter ocean temperatures above 26⁰C.  This ocean thermal energy 

component with a deep thermocline is essential to compensate for turbulent 

mixing within the mixed layer that entrains cold water from below. 

v. Deep atmospheric conditional instability.  A sufficient decrease in temperature 

with height must be present so saturated parcels can continue to rise along moist 

adiabats (Lighthill et al., 1994).  This component deals with the vertical gradient 

of the equivalent potential temperature, or the moist buoyancy potential, between 

the surface and 500-mb.  Gray (1979) observed that cyclogenesis cannot occur if 

there is a lack of upper-lower tropospheric vertical coupling brought on by 

cumulonimbus convection. 

vi. High values of low-mid level tropospheric relative humidity.  As dry air is 

entrained into convecting parcels, evaporative cooling occurs that can cause 

buoyancy loss.  Sufficiently high levels of relative humidity would prevent such 

effects (Lighthill et al., 1994).  Larger values of relative humidity make the 

tropospheric column more conductive to deep convection and enhance the surface 

to mid-level vertical coupling (Gray, 1979). 

In addition to the favorable conditions listed, an initial pre-existing disturbance is 

also necessary (Emanuel, 1989; Rotunno and Emanuel, 1987).  Given an initial tropical 
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disturbance with high values of concentrated vorticity, a low-level wind surge must 

penetrate for tropical cyclogenesis to be favorable (Gray, 1998; Zehr, 1992).  The 

presence of all these components greatly depends on the large-scale flow.  Various 

components of tropical cyclogenesis have been found to be affected by large-scale 

variability such as the Madden-Julian Oscillation and the El Niño-Southern Oscillation.  

A description of these oscillations and how they affect tropical cyclogenesis is discussed 

in the following sections. 

 

1.3 The Madden-Julian Oscillation 

1.3.1 Description 

The Madden-Julian Oscillation (MJO) is the dominant mode of tropical 

intraseasonal variability in the atmosphere.  The MJO was initially observed as a 

significant 40-50 day spectral peak in the zonal wind, temperature, and surface pressure 

fields with wave-like characteristics (Madden and Julian, 1971, 1972).  It is characterized 

as a large-scale eastward propagating convectively-coupled phenomenon which travels at 

a phase speed of approximately 5 m/s east of the dateline and propagates uncoupled to 

convection west of dateline at approximately 10-15 m/s.  The MJO has a 30-90 day 

period and maximum variance at roughly 50 days (Zhang, 2005).  Figure 1 captures this 

MJO life cycle via the propagation of outgoing longwave radiation (OLR) and 850-mb 

level winds (MJO Working Group).   

An MJO event is characterized by eastward propagating anomalous deep 

convection (represented by negative OLR values in figure 1) typically initiated over the 

equatorial Indian Ocean.  The MJO is composed of out of phase upper and lower level  
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winds and enhanced convection which is preceded and followed by suppressed 

convection.   Over the Indian Ocean, the convective region tends to coincide with upper 

(lower) level westerly (easterly) anomalies.  As the MJO progresses into the Pacific, the 

region of convection shifts so that it occurs within upper (lower) level easterly (westerly) 

anomalies (Salby and Hendon, 1994).  Within an event, the area of deep convection and 

related surface flow anomalies cool sea surface temperatures (SST) by more than 1⁰C 

through reductions in surface shortwave radiation and enhanced latent heat fluxes 

Fig 1: November-April life cycle composite of the MJO.  Shown are 
OLR and 850-mb wind vectors.  From the MJO Working Group. 
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(Shinoda et al., 1999).  Cyclonic gyres form behind the areas of strong suppressed 

convection in the upper-troposphere due to the upper-level divergence created by the 

rising air of the convective cloud.  Likewise, anti-cyclonic gyres follow the areas of 

enhanced convection.  Opposing weaker gyres occur at the surface.  These gyres 

characterize an equatorial Rossby wave response to the slowly-evolving MJO heating.  

East of the convective core region, the MJO flow resembles a Kelvin wave with upper-

level westerlies and low-level easterlies (Salby and Hendon, 1994).   

The associated circulation pattern to the MJO resembles that proposed in the Gill 

(1980) model detailing the atmospheric response to an equatorial heat anomaly on an 

equatorial β-plane.  In this case, the heat source is the latent heat release due to enhanced 

convection in the MJO.  The MJO resembles a slowly-propagating heat source coupled to 

a Rossby-Kelvin wave response.  Low-level Rossby gyres form on both sides of the 

equator west of the convective core.  East of the convection is an equatorially symmetric 

Kelvin wave response.  The heating anomaly evolves more slowly than the time it takes 

the large-scale circulation response to establish itself (Gill, 1980; Heckley and Gill, 

1984).  After generation in the Indian Ocean, the MJO convective signal dissipates near 

the dateline while an uncoupled Kelvin wave continues to propagate east at phase speeds 

of 10-15 m/s (Rui and Wang 1990; Salby and Hendon, 1994).   

The MJO convective extent is concentrated at zonal wave numbers 1-3, while 

circulation effects peak at zonal wave number 1.  The MJO-induced anomalous surface 

pressure and wind anomalies extend past the dateline in the form of faster uncoupled 

equatorial waves.  The tropospheric low-level MJO signal in the winds is mostly blocked 

by the Andes Mountains of South America, which inhibits eastward propagation, 
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therefore the MJO’s equatorial circumferential signal is most prominent in upper-level 

fields (Hendon and Salby, 1994; Madden and Julian, 1994; Zhang, 2005).  However, 

significant MJO signals are observed over the East Pacific and Atlantic basins (Maloney 

and Hartmann, 2000a, b), including some at low-levels which propagate to the Atlantic 

via the Isthmus of Panama (Yu et al., 2011). 

The MJO has a seasonal cycle with two primary peak seasons.  The primary peak 

corresponds with the Australian summer monsoon.  This occurs when the strongest MJO 

signal is immediately south of the Equator during Australia’s summer/fall seasons.  The 

second peak is associated with the Asian summer monsoon when the strongest MJO 

signal is immediately north of the Equator during boreal summer (Zhang, 2005).   

1.3.2 The MJO and East Pacific Tropical Cyclogenesis 

Gray (1979) noted the tendency for tropical cyclones to be clustered in space and 

time.  Studies have shown that this tendency may be partially due the MJO.  Molinari et 

al. (1997) observed a reversal of the meridional potential vorticity (PV) gradient over the 

Caribbean, which met the Charney-Stern necessary conditions for instability (Charney 

and Stern, 1962).  A strengthening of the PV reversal was hypothesized to produce 

stronger easterly waves and therefore enhance tropical cyclone activity over the East 

Pacific.  This relationship varied on timescales of the MJO, suggesting that MJO activity 

over the Caribbean and corresponding shear variations are a likely cause for the observed 

clustering of cyclone activity in the East Pacific (Molinari et al., 1997, 2000).   

Molinari and Vollaro (2000) suggested the role of the MJO on East Pacific 

tropical cyclogenesis as follows:   

1) Convectively active MJO activity enters the East Pacific and Caribbean. 
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2) A strong PV gradient reversal develops over the western Caribbean and 

East Pacific regions. 

3) Unstable waves propagate downstream from the Caribbean into the East 

Pacific and grow via modal instabilities (Molinari et al., 1997).  Unstable 

waves have also been shown to grow over the East Pacific via nonmodal 

growth (Sobel and Bretherton, 1999). 

4) Tropical depressions are generated in correspondence with stronger 

precursor waves. 

To study the effects of the MJO on tropical cyclogenesis Maloney and Hartmann 

(2000a) use an MJO index based on the first two empirical orthogonal functions (EOFs) 

of the 20-80 day bandpass-filtered May-November 850-mb zonal wind over the averaged 

equatorial tropics (index detailed in Maloney and Hartmann, 1998).  The EOFs 

demonstrate an eastward propagating signal; positive values of EOF 1 denote low-level 

westerlies over the Indian Ocean becoming easterly over the Pacific, while EOF 2 

appears as strong low-level westerlies which are often observed to accompany MJO 

events over the western portion of the Pacific (Lau et al., 1989).   MJO phase composites 

generated from this index indicate an East Pacific zonal wind anomaly maximum near 

10˚N that varies as a function of MJO phase.   

Maloney and Hartmann (2000a) found that when the MJO produces strong low-

level westerly anomalies over the East Pacific just north of the Equator, meridional shear 

of the zonal flow generates cyclonic relative vorticity anomalies to the north of the 

strongest wind anomalies, associated with increased precipitation.  This increase in 

convection works to amplify the westerly anomalies (Maloney and Esbensen, 2005).  The 
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increase in cyclonic relative vorticity and meridional shear creates favorable conditions 

for tropical cyclone formation (Gray, 1979).  Frictional convergence in this region of 

horizontal low-level wind shear can produce rising motion; also favorable conditions for 

tropical cyclone formation.  In addition, Maloney and Hartmann (2000a) found low 

vertical wind shear over the genesis region in association with MJO westerly wind 

anomalies.  The findings in Maloney and Hartmann (2000a) were further confirmed by 

Frank and Roundy (2006), who found through wave filtering that given a genesis point, 

the MJO frequency band consists of negative OLR (indicating a region of enhanced 

convection) and westerly wind anomalies over the East Pacific, which act to increase 

low-level rotation and convergence. 

Furthermore, MJO-induced westerly wind anomalies enhance eddy kinetic energy 

(EKE) generation from mean low-level flow via barotropic conversion.  The resulting 

eddies form strong precursor disturbances for tropical cyclones over the North Pacific 

basin. When there are strong westerly anomalies present over the Northeast Pacific, 

barotropic EKE conversion allows eddies to grow, which supports favorable cyclogenesis 

conditions given climatologically favorable conditions (Maloney and Hartmann, 2001).   

In contrast to periods of MJO westerly wind anomalies and enhanced convection, 

anomalous MJO easterly winds are associated with anticyclonic vorticity anomalies.  The 

anticyclonic vorticity anomalies are accompanied by suppressed precipitation, low-level 

divergence, and high vertical wind shear, inhibiting cyclone development (Maloney and 

Hartmann, 2000a).  Associated with strong easterly anomalies is negligible eddy 

generation through barotropic conversion over the Pacific, further suppressing 

cyclogenesis (Maloney and Hartmann, 2001).       
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1.3.3 The MJO and Atlantic Tropical Cyclogenesis 

The majority of Atlantic tropical cyclones form off the coast of Africa in 

association with African easterly waves.  Easterly waves and their effects on cyclogenesis 

have therefore been the focus of many studies (Frank and Clark, 1980; Landsea, 1993; 

Thorncroft and Hodges, 2001).  While tropical disturbance (TD) type waves, such as 

African easterly waves, are primarily responsible for the formation of tropical cyclones 

over the Atlantic, the MJO has been shown to affect the environmental conditions, 

making genesis favorable or unfavorable.  Frank and Roundy (2006) observed that when 

the MJO frequency band is isolated there is often a reduction of the July-September 

central Atlantic westerly shear near a given point of cyclone genesis.   

Maloney and Shaman (2008) analyzed the relationship between the MJO and the 

30-90 day precipitation variability over the West African monsoon region (West Africa 

and eastern Atlantic) and how this relationship affects tropical cyclones.  The study found 

that positive regional precipitation events are associated with an enhancement of eddy 

kinetic energy in the Main Development Region (MDR; Goldenberg and Shapiro, 1996) 

and a weakening of the Atlantic trade winds.  The strongest enhancement in eddy kinetic 

energy is observed 5 days after the precipitation event maximum.  Approximately 5-10 

days after a maximum in regional precipitation, tropical cyclone activity over the MDR is 

enhanced.  In contrast, about 5-10 days before a maximum in precipitation tropical 

cyclone activity is suppressed over the MDR.  About 5 times more tropical cyclones are 

associated with the enhanced cyclone phase than the suppressed. 

Focusing on the MDR, Klotzbach (2010) looked at various field differences per 

phase of the MJO and found a 99% significance level difference in mean zonal wind, sea 
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level pressure, and relative humidity between phases 1 and 2 compared to phases 6 and 7 

based on the RMM indices of Wheeler and Hendon (2004).  Phases 1 and 2 represent 

convection over Eastern Africa and the Indian Ocean, while phases 6 and 7 are 

characterized by a convective signal over the western Pacific.  Klotzbach (2010) found 

the largest differences between phases 1 and 2 and phases 6 and 7 to be in the 700-mb 

relative humidity and the 200-mb to 850-mb zonal wind shear.  Wind shear differences 

are observed to be around 4 m/s, which is similar to the August-October averaged wind 

shear value difference between very active and inactive seasons.  During phases 1 and 2 

there is reduced vertical wind shear, lower surface pressure, and increased middle 

atmosphere humidity over the MDR region.  These factors along with cyclonic vorticity 

anomalies off the coast of Africa make conditions more favorable for tropical cyclone 

formation and intensification.     

 In order to quantify the effects of the MJO on tropical cyclone activity, Klotzbach 

(2010) separated all North Atlantic basin tropical cyclones by values of named storms, 

named storm days, hurricanes (≥64 kt), hurricane days, major hurricanes (≥96 kt), major 

hurricane days, and accumulated cyclone energy by all cyclones.  Each cyclone category 

was separated by phase of the MJO and was found to have statistically significant 

differences at the 95% level between phases 1-2 and phases 6-7 for all cyclone categories 

except for named storms.  During phases 1 and 2, more than twice as many hurricane 

days and more than 3 times as many major hurricane days occur than during phases 6 and 

7.  Moreover, phases 6 and 7 see far less major hurricane strength storm days than phases 

1 and 2, a difference significant at the 99% level.  Not only are there less major 

hurricanes observed during phases 6 and 7, but they also tend to have shorter tracks. 
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Maloney and Hartmann (2000b) investigated the easterly and westerly wind 

anomalies over the East Pacific due to the MJO and their effects on tropical cyclones 

over the Gulf of Mexico and Caribbean regions of the Atlantic.  During the westerly 

phase (low-level westerly wind anomalies), low-level cyclonic vorticity over the Gulf of 

Mexico creates favorable conditions for tropical cyclones.  Mo (2000) analyzed a 

complementary signal in upper-level streamfunction; in association with positive MJO 

OLR anomalies (suppressed convection) from the western Pacific to the dateline, positive 

200-mb streamfunction anomalies form over the eastern tropical Pacific.  These 

anomalies travel over the Gulf of Mexico and western Caribbean regions of the Atlantic.  

Upper-level easterly wind anomalies are enhanced in these regions resulting in a 

reduction of vertical wind shear, making conditions more favorable for cyclogenesis.  

Furthermore, Maloney and Shaman (2008) noted that the MJO accounts for 

approximately 50% of the amplitude in vertical shear variations over the MDR region 

during the 30-90 day precipitation events over the West African monsoon region. 

In contrast, during the MJO easterly phase there is low-level anticyclonic vorticity 

over the Gulf of Mexico and the western side of the Caribbean, suppressing tropical 

cyclone formation and intensification (Maloney and Hartmann, 2000b).  Once MJO 

convection is enhanced over the Indian Ocean, negative streamfunction anomalies at 

upper levels are observed in the MDR.  Upper-level westerlies and vertical wind shear is 

increased over the MDR, creating unfavorable conditions for storm genesis and 

intensification (Mo, 2000).  Cyclone genesis during low-level westerly periods is shown 

to outnumber that during easterly periods by about 4 to 1 (Maloney and Hartmann, 

2000b).  Klotzbach (2010) further confirmed this relationship by performing statistical 
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analysis on the Gulf of Mexico and northwest Caribbean regions.  He found that during 

the westerly phases, when the MJO amplitude is greater than 1, approximately 4-5 times 

more tropical storms form than in significant MJO easterly phases.  

 

1.4 El Niño-Southern Oscillation 

1.4.1 Description 

El Niño-Southern Oscillation (ENSO) is an ocean-atmosphere coupled mode in 

the tropical Pacific.  The Southern Oscillation (SO), the atmospheric component of 

ENSO, is characterized by a fluctuation in atmospheric pressure between the maritime 

continent and tropical eastern Pacific, often represented by the pressure difference 

between Tahiti and Darwin (Rasmusson and Wallace, 1983).  These pressure variations 

are associated with fluctuations in SST, rainfall, and the trade winds.  Under normal or 

neutral ENSO conditions, the tropical Pacific experiences northeasterly (southeasterly) 

trade winds in the northern hemisphere (southern hemisphere).  These trade winds are 

enhanced in the tropical Pacific associated with the Walker circulation.  The Walker 

circulation is associated with low pressure and deep cumulus convection over the West 

Pacific warm pool, upper-tropospheric westerly winds, and high pressure over the 

equatorial eastern Pacific.  During neutral ENSO conditions, the trade winds produce 

upwelling in the equatorial Pacific and off the coast of South America and a deepening of 

the thermocline in the western Pacific relative to the east (Halpern, 2002).  This is 

manifest in cool SSTs in the East Pacific equatorial waveguide known as the cold tongue, 

and warmer (by up to 3 to 6 K) SSTs in the West Pacific warm pool.  During a La Niña 
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event, or the cold phase of ENSO, the conditions observed during a normal or neutral 

phase are amplified (Rasmusson and Wallace, 1983; Chu, 2004).   

A warm ENSO event occurs approximately every 2-6 years.  It is characterized by 

tropical Pacific changes relative to normal conditions in various atmospheric and oceanic 

components.  During an El Niño, or warm phase of ENSO, the trade winds are weakened 

or reversed, becoming westerly.  The eastern half of the Equatorial Pacific experiences an 

increase in SST while west of the dateline SSTs remain near or slightly below neutral 

conditions (Rasmusson and Wallace, 1983).  The low pressure normally occurring over 

the Pacific warm pool shifts east so that regions in the warm pool such as Indonesia 

experience drought; meanwhile, islands in the central Equatorial Pacific experience large 

amounts of rainfall.  

Preceding an El Niño event there is a buildup of ocean heat content associated 

with a deepening of the Pacific thermocline (Meinen and McPhaden, 2000).  SST 

anomalies in the East Pacific induced by the changes in thermocline depth force wind 

stress anomalies from the west; in turn, the wind stress anomalies support a flattened 

thermocline across the Pacific and relaxation of the zonal temperature gradient along the 

Equatorial Pacific that exists under normal conditions.  This results in anomalous 

convection in the East Pacific and associated relaxation of the Walker circulation.  Kelvin 

waves, excited by periodic westerly wind bursts over the western and Central Pacific, 

may contribute to East Pacific thermocline deepening resulting in anomalously warm 

SSTs in the East and Central Pacific Equatorial regions (Battisti and Hirst, 1989; Chu, 

2004; Rasmusson and Wallace, 1983).  The MJO can often produce these Kelvin waves 

via such westerly wind episodes (McPhaden, 1999). 



 
 

17 
 

In conjunction with ENSO-enduced SST changes, tropospheric temperature shifts 

and corresponding fluctuations in tropospheric flow are observed in various parts of the 

globe (Halpert and Ropelewski, 1992; Horel and Wallace, 1981; Rasmusson and 

Carpenter, 1981).  Various studies have linked ENSO-induced changes in tropospheric 

flow to tropical cyclogenesis, especially in the Atlantic basin. 

1.4.2 ENSO and East Pacific Tropical Cyclogenesis 

No conclusive relationship has been found between ENSO and tropical storm 

frequency in the East Pacific basin.  During El Niño and La Niña years, there is no clear 

distinction in cyclone numbers.  However, a relationship was found between ENSO and 

intense hurricanes (Saffir-Simpson scale cat 3+; Simpson, 1974).  Approximately twice 

as many intense hurricanes are observed during El Niño years compared to La Niña years 

(Gray and Sheaffer, 1991; Whitney and Hobgood, 1997).  A change in tropical cyclone 

(TC) genesis average longitude is also evident.  Tropical storms forming during El Niño 

events tend to form 5.7˚ west of the mean origin location when compared to La Niña 

storm genesis.  Storms are more likely to form near the coast of Mexico during a La Niña 

event (Irwin and Davis, 1999).   

Collins and Mason (2000) found that sub-dividing the East Pacific region into two 

sections clarifies some of the uncertainty in the ENSO-East Pacific relationship.  

Differences in TC activity environmental parameters between west and east of 116˚ 

suggest sub-regional differences due to ENSO.  East of 116˚ environmental conditions 

tend to be climatologically favorable for cyclogenesis regardless of ENSO phase.  West 

of 116˚ this is not always the case, hence a significant relationship was found between 

ENSO and hurricane strength storms in the western region (Collins, 2007; Collins and 
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Mason, 2000).  Collins and Mason (2003) found via multiple regression analysis that this 

is largely due to variations in relative humidity over the western region.  During La Niña 

events, mid-troposphere dry air associated with the trade-wind inversion (Kloesel and 

Albrecht, 1989) along with cooler SSTs in the western region of the East Pacific suppress 

tropical cyclone activity.  During El Niño events, the trade-wind inversion is shifted 

further north.  Warm SSTs and deep convection over the equatorial Pacific spreads 

further north into the western region, allowing for the increase in relative humidity and 

making conditions more favorable for tropical cyclone activity.  

1.4.3 ENSO and Atlantic Tropical Cyclogenesis 

The enhanced convection brought on by an El Niño event produces upper-

tropospheric anomalous westerly winds over the equatorial Atlantic and the Caribbean 

regions.  Since low-level tropospheric ENSO effects over the Atlantic are small, the 

upper-level westerly anomalies induce an increase in vertical wind shear, suppressing 

tropical cyclone activity (Goldenberg and Shapiro, 1996; Gray, 1984a; Gray and 

Sheaffer, 1991; Landsea et al., 1999; Shapiro, 1987).  Furthermore, El Niño events 

engender subsidence over the western Atlantic, also unfavorable for cyclogenesis.  In 

contrast, during La Niña events there is an enhancement of convection over the western 

Atlantic which aids in tropical cyclone development (Wyrtki, 1982; Chu, 2004).  

Generally an overall increase in Atlantic TC activity is observed during La Niña events 

(Gray et al., 1993). 

Atlantic cyclogenesis primarily arises from easterly waves that propagate off the 

west coast of northern Africa.  The main development region of these easterly waves, and 

hence of Atlantic tropical cyclones, is near the entrance of the North African-Asian 
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(NAA) jet.  In order to understand the mechanisms by which ENSO affects tropical 

cyclones in the Atlantic basin, it is important to understand how ENSO affects the NAA 

jet.  An El Niño-induced increase in deep convection over the equatorial Pacific allows 

for westward-propagating long stationary barotropic Rossby waves that generate vorticity 

anomalies and upper-level anomalous westerly winds in the NAA jet region.  The 

westerly wind anomalies increase zonal wind vertical shear, suppressing tropical cyclone 

formation over the MDR.  During boreal autumn, El Niño upper-tropospheric changes 

induce eastward-propagating stationary barotropic Rossby waves.  By October, these 

eastward-propagating waves generate vorticity anomalies over the Atlantic which disrupt 

the vorticity anomalies produced by the westward-propagating waves (Shaman et al., 

2009).   

The maximum ENSO-induced wind shear occurs in July.  As the season 

progresses the vorticity effects due to the autumn eastward-propagating waves along with 

an observed southward shift of the NAA jet works to suppress westerly anomalies over 

the MDR region.  This southward shift of the jet means the vorticity anomalies produced 

within the jet, and therefore westerly anomalies, occur south of the MDR.  These effects 

are depicted by a large minimum in wind shear during October, suggesting ENSO effects 

on tropical cyclone formation are smallest in October.   

Even though the largest ENSO-induced wind shear occurs in July, the largest 

suppression of tropical cyclones for the Atlantic occurs in September due to a large 

maximum in zonal wind over most of the Atlantic.  This September increase in westerly 

anomalies results from the NAA jet sitting over the northern edge of the larger MDR.  

This location allows for positive vorticity anomalies due to the westward-propagating 
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barotropic stationary Rossby waves to form along the core of the NAA jet.  The 

strengthening of the westerly wind greatly constrains tropical cyclone formation (Shaman 

et al., 2009).   

 

1.5 Medium-Long Lead Cyclogenesis Prediction 

1.5.1 Seasonal Prediction 

Gray (1979) developed a genesis index using the six climatological genesis 

components described in section 1.2.2.  This seasonal genesis parameter is obtained by 

multiplying the dynamic potential components by the thermal potential components: 
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where   is the absolute vorticity at 850-mb,   is the 600-mb relative humidity 

percentage,     is the potential intensity, and        represents the 850-200 mb vertical 

wind shear.  The main difference between the two indices deals with the thermodynamic 

components.  Unlike the Gray (1979) genesis parameter which limits the SST threshold 

for genesis at 26⁰C, the new index would allow variations in this threshold so that it may 

be used in a changing climate.  The potential intensity component of the new index 

depends on the difference between the outflow temperature at the neutral buoyancy level 

and SST, along with the air-sea disequilibrium.  This index is also shown to do a decent 

job of depicting the total number of cyclones per basin (Camargo et al., 2007).   

Statistical research in hurricane prediction began as correlations were found 

between possible predictors and hurricane activity.  These predictors are based on 

predictable changes in hurricane-favorable conditions, such as those used in the Gray 

(1979) seasonal genesis index and later the Emanuel and Nolan (2004) index.  Gray 

(1984b) developed a seasonal forecasting method for the Atlantic basin based on ENSO, 

the Quasi-Biennial Oscillation (QBO; stratospheric equatorial zonal wind fluctuations 

between westerly and easterly phases), and spring/early summer Caribbean basin mean 

monthly sea-level pressure anomalies.  His forecast scheme included the number of 

hurricanes per season, the number of tropical storms plus hurricanes per season, and the 

number of hurricane days per season.  A hurricane destruction potential based on the 

square of a hurricane’s maximum wind speed was later added.  Hastenrath (1990) 

verified the performance of the early forecasts, and found them remarkable.  The model 

was later expanded by adding two additional predictors: 200-mb zonal wind and the 

June-September western Sahel predicted rainfall (Gray et al., 1992; Landsea and Gray, 
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1992).  The model forecasts were issued just prior to December 1st (Gray et al., 1992), 

June 1st (start of the Atlantic hurricane season; Gray et al., 1994) and August 1st (start of 

the most active part of the hurricane season; Gray et al., 1993).  Forecasts are found using 

a least absolute deviation (LAD) multiple regression model and include number of named 

storms, hurricanes, and intense hurricanes (Saffir-Simpson category 3+), along with 

number of hurricane days, named storm days, and intense hurricane days.   

Various advancements in statistical seasonal prediction have been made possible 

in other studies (Elsner and Schmertmann, 1993; Hess and Elsner, 1994).  As noted by 

Lehmiller et al. (1997), a seasonal forecast informs of the overall amount of seasonal 

activity expected, knowing only that it will occur sometime during the hurricane season.  

Lehmiller et al. (1997) developed a seasonal statistical model specifying the presence of 

TC activity as a function of time within coastal subregions of the Atlantic basin, a useful 

tool for landfalling hurricane preparedness.  Such a model helps solve some of the 

mystery of tropical cyclone activity within seasonal forecasts, however not in terms of 

genesis prediction.   

1.5.2 Intraseasonal Prediction 

Intraseasonal (from 10-60 days; Vitart et al., 2010) prediction is an ideal forecast 

range for temporal genesis prediction.  Leroy and Wheeler (2008) generated an 

intraseasonal multiple logistic regression model to predict southern hemispheric weekly 

tropical cyclone activity.  This model included 5 possible predictors: two real-time MJO 

indices (RMM1 and RMM2) developed by Wheeler and Hendon (2004), two leading 

VARIMAX rotated principal components of monthly standardized SST anomalies where 

the first EOF depicts ENSO, and lastly the climatological seasonal cycle of tropical 
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cyclones.  All predictors are lagged to their real-time availability in order to ensure a real-

time model.  They divide the study region into four zones and use the model to predict 

the probability that at least one cyclone will form in each zone at any given week.  

Hindcasts were generated as a form of cross-validating the model, and Brier skill scores 

and reliability diagrams were used to assess the skill and reliability of the model (Leroy 

and Wheeler, 2008).  Since the development of the Leroy and Wheeler (2008) southern 

hemisphere model, the model has been expanded by including a gridded framework of 

overlapping regions in the Southern Hemisphere, allowing for spatial variability in the 

predictors.  Furthermore, the Indian dipole mode index (Saji et al., 1999) and the Trans-

Niño index (Trenberth and Stepaniak, 2001) have been included as predictors in the 

model (Vitart et al., 2010).  This real-time prediction model is currently operational for 

southern hemisphere cyclones. 

An empirical method of intraseasonal statistical prediction of TC probabilities 

was developed by Paul Roundy (see http://www.atmos.albany.edu/facstaff/roundy/ 

tcforecast/tcforecast.html).  The model predicts tropical cyclone activity in all major 

basins, including the East Pacific and Atlantic, and is based on the relationship between 

TCs and various wave modes as discussed in Frank and Roundy (2006).  The predictors 

include Kelvin waves, mixed Rossby-gravity waves, convectively coupled equatorial 

Rossby waves, easterly waves, the MJO, and ENSO.  These are generated via the filtering 

of the wavenumber-frequency spectrum of OLR and the implementation of EEOF 

(Extended EOF) analysis (Roundy and Schrek, 2009).  A caveat in generating the 

predictors from OLR, as noted by Frank and Roundy (2006), is that there are instances in 

which waves will affect TC genesis without significantly altering the OLR pattern but 
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rather through fluctuations in low-level vorticity and/or vertical shear.  An example of 

this is the MJO effects on the East Pacific and Atlantic basins, as discussed in section 1.3.  

Dynamical forecasting models of TC activity in intraseasonal time scales have 

also been developed.  An issue with dynamical general circulation models (GCMs) is that 

they often poorly simulate the MJO (Slingo et al., 1996; Lin et al., 2006).  Furthermore, 

TC representation tends to vary between numerical models (Vitart, 2006).  The European 

Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System 

(IFS) has been show to do a relatively adequate job simulating the MJO and its effects on 

TCs (Vitart, 2009), although it has a tendency to produce MJO events that propagate too 

slowly and are about 25% too strong after the day 10 forecast (Vitart and Molteni, 2009).   

Vitart et al. (2010) provides a comparison between the ECMWF forecast system 

over the Southern Hemisphere and the statistical model developed by Leroy and Wheeler 

(2008), including the gridded framework and predictor improvements to the statistical 

model as previously discussed in this section.  The models are compared for November-

April hindcasts, concurring with the season and region of highest MJO activity.  

Hindcasts are generated out to a 3 week lead.  ECMWF 46-day hindcasts from 1989 to 

2008 are generated consisting of 15 ensemble members (one being a control run) with 62 

vertical levels and a T399 resolution (~50km grid).  The ensembles are integrated for 10 

days and are forced by persisted SST anomalies.  The model is coupled to an ocean GCM 

(HOPE; Wolff et al., 1997) every 3 hours and the resolution is lowered to T255 (~80km) 

after 10 days.  Initial conditions are taken from the ERA-40 reanalysis dataset (Uppala et 

al., 2005) until 2001 and from the ECMWF operational analysis thereafter.  For more 

details see (Vitart et al., 2010).  
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Forecast reliability and skill over equal grid spaces are compared between the 

statistic and dynamical model.  Reliability diagrams found that the ECMWF hindcasts 

had a tendency to overproduce high probabilities of TCs for all 3 week leads, a common 

issue among dynamical models.  This is depicted by a flatter reliability curve, whereas a 

perfect forecasting model lies along the 45˚ diagonal line.  Reliability curves are further 

discussed in section 5.2.  Vitart et al. (2010) noted this overestimation is likely because 

the model had a tendency to produce approximately 30% more TCs than was observed in 

the time period of the study.  In terms of skill, the statistical model was shown to have a 

higher Brier skill score than ECMWF for week leads 2 and 3; however, ECMWF had a 

higher Brier skill score at a week 1 forecast lead.  Brier skill scores are discussed in more 

detail in sections 2.5 and 5.1.   

The statistical model was found more reliable and showed higher skill past a week 

1 forecast lead, however there are caveats.  For example, the sharpness (the capability of 

the model to deviate from its mean climatology) of the dynamical model is better than 

that of the statistical model.  Vitart et al. (2010) found that the ECMWF forecasted 

probabilities between 0% and 100%, even at the week 3 forecast lead.  The statistical 

model, however, rarely predicts a 0% probability and probabilities only range up to 70% 

in the time frame of the study.  It is common amongst statistical models to not predict 

very low or very high probabilities.   

Vitart et al. (2010) did find improvements to the dynamical ECMWF model by 

calibrating it to reduce the overestimation of TC occurrences over the Southern 

Hemisphere.  Furthermore, the study found that combining the statistical and calibrated 

dynamical forecasts by averaging the forecasted probabilities increased the skill of the 
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week 2 and 3 forecasts by an amount significant at the 95% level.   ECMWF forecasts 

past week 3 are also shown to be less skillful likely because of the model’s difficulty to 

properly propagate the MJO across the Maritime Continent (Vitart and Molteni, 2009).  

Improvements to the ECMWF since the version of the model in the Vitart et al. (2010) 

study include an improvement in the model’s tendency to produce MJO events that are 

too strong, although the issue has not been fully resolved (Vitart and Molteni, 2009). 

The Climate Prediction Center (CPC) provides the Global Tropics Hazards and 

Benefits Outlook for a week 1 and week 2 forecast lead to forecast the likelihood of 

rainfall and tropical cyclone formation globally.  The model uses tropical atmospheric 

waves such as those described in Frank and Roundy (2006), extratropical interactions 

such as frontal systems in the lower mid-latitudes, and other climate variability modes 

such as ENSO and the MJO.  The product utilizes both statistical and dynamical 

forecasts, including statistical MJO forecasts, the Global Forecast System (GFS), and the 

Climate Forecast System (CFS).  Implications of the model include issues simulating a 

realistic MJO in the dynamical models.  Furthermore, the model currently lacks a 

quantification of hazard probabilities (it currently forecasts qualitative likelihoods such as 

“high” and “moderate”), which they hope to implement via multi-model approaches 

(CPC, see http://www.cpc.ncep.noaa.gov/products/precip/CWlink/ghazards/index.php; 

US CLIVAR, see www.usclivar.org/Organization/MJO WorkingGroup/MJO-

Hazards.html).   
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1.6 Overview of Study 

Using a similar multiple logistic regression method as Leroy and Wheeler (2008), 

a model for the prediction of weekly tropical cyclone genesis probabilities is created for 

both the East Pacific and Atlantic basins.  Section 2 describes the data sets used and 

includes a methodology.  The methodology explains the predictor selection and 

development, along with logistic regression and forecast verification methods.  Section 3 

focuses on predictor and model justification.  Section 4 details the hindcasted results 

based on the full model.  Section 5 discusses the skill and reliability of the model.  Lastly, 

section 6 summarizes the model results, and future work is discussed. 
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2.  Data and Methodology 

 

2.1 Data 

2.1.1 HURDAT 

The National Hurricane Center (NHC) Hurricane best track (HURDAT) is an 

ideal tropical cyclone archive for this study as it contains 6 hourly latitude and longitude 

information for tropical cyclones in the East Pacific and Atlantic dating back to 1851, 

along with minimum central pressure and maximum sustained 1-minute surface winds 

(Neumann et al., 1999).  This study uses data from 1975-2009, which is available as 

observations from the HURDAT archive at 0000, 0600, 1200, and 1800 GMT.   The year 

1978 is excluded from all analysis due to a lack of RMM data (discussed in section 

2.1.3), and hereafter assumed in any mention of the period 1975-2009. For the time 

period of this study, the cyclone data is predominantly collected from organized aircraft 

reconnaissance and weather satellites containing infrared and visible sensors (Jarvinen et 

al., 1984).   

This study primarily focuses on the probability of cyclogenesis occurrence within 

a given week.  For the East Pacific Ocean basin, the official hurricane season of May 15-

November 30 is used.  For the North Atlantic Ocean basin, a more restrictive subset of 

the official hurricane season, July 1-October 31, is used.  These subsets of the data were 

selected to remove possible anomalous outliers which could distort the results.  In the 
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case of the Atlantic, better results were yielded using a more active subset.  To exclude 

weaker systems, only storms that reach a minimum of 34 knots, or tropical storm 

strength, are considered.  The model of choice, discussed further in section 2.3, allows 

input observations to be dichotomous; since the desired probabilities are weekly, a 0 is 

assigned for any week where no storm formed and a 1 if at least one storm formed.  

Figure 2 illustrates all cyclogenesis points used in this study for both the East Pacific and 

North Atlantic basins.  The East Pacific domain is bounded by 90˚W-120˚W, 5˚N-25˚N; 

the Atlantic is bounded by 15˚W-100˚W, 5˚N-50˚N.  The East Pacific is bounded at 

120˚W in accordance with the Collins and Mason (2000) findings of separating the 

western and eastern regions of the East Pacific, as discussed in section 1.4.2. 

 

    

 

 

 

2.1.2 HADISST 

The Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) re-analysis 

dataset is used to develop an ENSO index via use of East Pacific SSTs.  HadISST is a 

globally-complete 1˚ gridded dataset including SSTs and sea ice concentration data 

Fig 2:  Tropical cyclogenesis locations for 1975-2009 for the East Pacific ocean basin (left) 
bounded by 90˚W-120˚W, 5˚N-25˚N, and the North Atlantic ocean basin (right) bounded 
by 15˚W-100˚W, 5˚N-50˚N.   
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(Rayner et al., 2003).  The dataset is available from 1871-present, where the data is 

obtained from a combination of satellite AVHRR (Advanced Very High Resolution 

Radiometer) and in-situ observations.  SST data available up to 1981 is based on in-situ 

observations, and is therefore more inhomogeneous in terms of coverage.  Oceanic data 

sparse regions are interpolated using a reduced space optimal interpolation (RSOI) 

forming a 4˚ grid from 1871-1948, and a 2˚ grid thereafter.  The RSOI method, which 

utilizes EOF analysis, is applied to a combination of satellite and in-situ data from 1982 

onward. This interpolated dataset using RSOI is then combined with the bias-adjusted, 

gridded, non-interpolated in-situ data to reestablish some of the smaller scale variance.   

The satellite data utilizing AVHRR SSTs use a regression of brightness temperatures 

from infrared channels onto buoy SST data and is then gridded to have a 1˚ resolution.  

Biases associated with aerosols and clouds are adjusted by calculating a smoothed biased 

field and subtracting it from the data.   In this study, only a region of the Equatorial East 

Pacific SSTs is used (5.5˚S - 4.5˚N, 89.5˚W - 149.5˚W) from 1975-2009 to calculate an 

El Niño index.   

2.1.3 NOAA Interpolated OLR 

An OLR dataset constructed from the National Oceanic and Atmospheric 

Administration (NOAA) polar-orbiting satellites is used by Wheeler and Hendon (2004) 

in the construction of two indices, which are used in this study, representing the eastward 

propagation of the MJO.  The dataset includes OLR data from daytime and nighttime 

orbits in 2.5˚ x 2.5˚ global grids (Liebmann and Smith, 1996).  To ensure values do not 

unrealistically deviate too far from neighboring grids, a grid point is set to missing if 

there is a difference greater than 49 W/m2 between the grids; this criterion is altered if the 
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grid point is surrounded by any missing values.  Furthermore, any data likely to be in 

error is removed.  These include values less than 50 W/m2; between 90˚N-60˚N and 

45˚S-90˚S: daytime values greater than 325 W/m2 and nighttime values greater than 300 

W/m2; between 57.5˚N-42.5˚S: daytime values greater than 400 W/m2 and nighttime 

values greater than 300 W/m2.   

Missing values are interpolated in space and time for daytime and nighttime 

values separately.  First, temporal linear interpolation is used on 1-day gaps.  Second, a 

spatial interpolation of missing values is computed by averaging the non-diagonal 

neighboring values if at least 3 are non-missing.  This procedure follows another 1-day 

interpolation in time.   Next, another spatial interpolation is calculated given 2 or more 

non-missing neighboring values.  Spatial and temporal interpolations continue until all 

missing values are filled. Following the interpolation procedure, the data is once again 

checked to ensure values not unrealistically deviate too far from neighboring grids.  

Lastly, the daytime and nighttime values are averaged into daily averages.  Values from 

March 17-December 31, 1978 are missing from the dataset. 

2.1.4 NCEP/NCAR 40-Year Reanalysis 

The National Centers for Environmental Prediction (NCEP) and the National 

Center for Atmospheric Research (NCAR) produced a global 40-year reanalysis dataset 

consisting of various atmospheric fields with data beginning in 1957 (Kalnay et al., 

1996).  The upper and lower level wind fields in the dataset are used in the calculation of 

the Wheeler and Hendon (2004) MJO indices used in this study.  Data used in the 

reanalysis includes the Comprehensive Ocean-Atmosphere Data Set (COADS; includes 

data from fixed and drifting buoys, ships, and ocean station data), global rawinsonde, 
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aircraft, land surface, satellite, and pibal (pilot balloon) data.  The satellite data includes 

Special Sensing Microwave/Imager (SSM/I) surface wind speed data and cloud drift 

winds from the Geostationary Meteorological Satellite (GMS). A consistent method of 

data assimilation utilizing a global NCEP spectral model and a complex quality control 

scheme is used throughout the dataset.  Zonal and meridional winds are available for 17 

vertical levels in 2.5˚ global grids and are classified as A in the renanalysis, meaning the 

fields are well defined by observations and statistical interpolation allows for a better 

estimate of the field than via observations alone; this is compared to classification B, 

which are fields well defined by the observations but have been greatly influenced by the 

model parameters used in data assimilation, and classification C, which are fields fully 

determined by the model during data assimilation.  For more details see Kalnay et al. 

(1996). 

 

2.2 Predictor Development 

2.2.1 Climatology 

The first predictor developed for the model is a climatology of tropical cyclone 

genesis.  A raw climatology is made by taking the weekly stratified dichotomous genesis 

observations and averaging each week over all years.  This results in a weekly probability 

that is then multiplied by 100 to depict a climatological percent probability of genesis.  

The raw climatology is smoothed by applying a weighted running average with a 1-2-1 

filter four times for the Atlantic and twice for the East Pacific.  The climatology of each 

basin is plotted in figure 3, where the dashed black curve represents the raw weekly 
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climatology and the smoothed version is in solid red.  The smoothed climatology is used 

as the predictor in the finalized prediction model. 

The East Pacific climatology is less filtered than the Atlantic in order to preserve 

the probability minimum in late July and early August.  This minimum is likely due to 

the midsummer drought (Magaña et al., 1999).  In late July and early August, a decrease  

 

       

 

 

 

in tropical cyclone activity is observed due to a deep convective activity minimum in 

Mexico and adjacent regions of the East Pacific.  This midsummer drought causes 

changes in low-level flow such that low-level winds become easterly, making 

environmental conditions less favorable for cyclogenesis (Magaña et al., 1999). 

2.2.2 Leading Modes of SST 

The next two predictors considered in this study are the first two principal 

components (PCs) of tropical East Pacific SST.  To formulate the predictor indices, a 3-

point running mean average is applied to the monthly SST data to reduce intraseasonal 

influence.  The annual cycle and long term mean are removed and the data is detrended.  

Fig 3:  Climatology of tropical storm cyclogenesis probability (%) for 1975-2009 for the 
East Pacific Ocean (left), and the Atlantic Ocean (right).  The black dashed curve is a raw 
weekly stratified climatology.  The red solid curve is a smoothed climatology, smoothed 
with a 1-2-1 filter.  The x-axis ranges from March-February.  Vertical lines represent time 
range boundaries used in the data.    
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The monthly data is then linearly interpolated to daily resolution and cosine weighted 

according to latitude.  The first two EOFs are calculated via the covariance matrix for 

5.5°S- 4.5°N, 89.5˚W - 149.5˚W.  Figure 4 illustrates the first 2 EOFs calculated but over 

a larger domain (30˚S- 30˚N, 70˚W-110˚E).  This is done to show a more coherent 

picture of the leading modes of SST variability over the Equatorial East Pacific.  Hatched 

over EOF1 in figure 4 is the El Niño 3 region used for the index calculation.  Also 

discussed is the El Niño 4 region hatched over EOF2 (5.5˚S-4.5˚N, 150˚E-160˚W). 

The first EOF of SST shown in figure 4 represents the leading mode in SST variability 

over the Equatorial East Pacific.  This mode is representative of ENSO, characterized by 

the Equatorial East Pacific warming of SSTs coinciding with SST cooling over the 

western Pacific.  The second EOF is representative of the El Niño Modoki, or Central 

Pacific El Niño.  This event is characterized by Central Pacific warming events and is a 

fairly recent topic of study.  El Niño Modoki events are believed to be a result of recent 

global warming; this theory was hypothesized because El Niño Modoki events were first 

observed in the 1990s (Yeh et al., 2009).  Kim et al. (2009) found that during these 

Central Pacific warming events (defined using an index derived from SSTs over the El 

Niño 4 region), there is an increase in Atlantic basin tropical cyclone activity.   However, 

since 1950 only 5 years of the Kim et al. (2009) study were representative of Central 

Pacific warming events.  Due to the rarity of the event, the Central Pacific warming event 

is not used in the final statistical model developed in this study.   

In the development of an El Niño 3 index, the first PC is standardized and 

analyzed to be a possible predictor.  PC1 represents the time series of EOF1, in this case 

the temporal variability of ENSO.  To ensure that a proper El Niño 3 index has been 



 
 

35 
 

 

 

 

 

 

 

developed, a correlation between PC1 and the Climate Prediction Center (CPC) Optimum 

Interpolation (OI) Niño 3 SST index is computed (for index documentation, see Reynolds 

et al., 2002).  Since the CPC OISST is available beginning in 1982 and is provided as a 

monthly average, this correlation uses only data from 1982-2009 and the CPC OISST 

index is interpolated to daily values.  We find that the correlation between the two daily 

indices for the given time period is 0.96.  The second PC over the El Niño 3 region is also 

Fig 4:  Leading modes of SST over the Equatorial East Pacific.  Over the full domain, EOF1 (top) 
explains 51% of the total variance and EOF2 (bottom) explains 13% of the variance.  An El Niño 
3 region is used for the calculation of the predictor indices and is hatched in blue (5.5°S- 4.5°N, 
89.5˚W - 149.5˚W) in the EOF1 plot.  EOF analysis over the El Niño 3 region is calculated 
separately and used in the index calculations; in this smaller domain EOF1 explains 89% of the 
variance while EOF2 explains 6% of the variance. The hatched region over EOF2 represents an 
El Niño 4 region (5.5˚S-4.5˚N, 160˚E-150˚W). 
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tested for a possible relationship with East Pacific and Atlantic TC activity, although not 

used in the finalized model. 

2.2.3 RMM Indices 

Wheeler and Hendon (2004) developed two real-time multivariate MJO (RMM) 

indices used to represent the eastward propagation of the MJO.  These indices are derived 

from the first two EOFs of the near-equatorially (15˚S - 15˚N) averaged and normalized 

200-mb and 850-mb zonal wind fields and satellite OLR.  Values are normalized by 

dividing by the field’s global variance prior to EOF analysis.  Preceding EOF analysis the 

fields are detrended, the seasonal cycle is removed, a daily measure of ENSO is 

subtracted from the fields, and to remove any other aspects of interannual variability, a 

120-day average of the preceding 120 days is subtracted from the fields.  The EOFs, 

shown in figure 5 (figure 1 in Wheeler and Hendon, 2004), represent the propagation of 

the MJO; EOF 1 depicts low-level easterly winds, upper-level westerly winds, and 

enhanced convection (negative OLR) over the Maritime Continent.  EOF2 winds are in 

approximate quadrature to those in EOF1, with enhanced convection over the Pacific.  

The daily observed data is projected onto the computed EOFs to yield the two PCs, or 

time series, of the EOFs.  These PCs, called RMM1 and RMM2, mostly vary on the 

timescale of the MJO.   

The daily OLR data used to construct the multivariate EOFs are averaged values 

ranging from 1979-2001.  These values, obtained from the NOAA interpolated OLR 

dataset, along with the NCEP/NCAR 40-year reanalysis of upper and lower wind field 

data for the same time period, are used to calculate the EOFs.  Real-time OLR data is 

acquired directly from NCEP.  The RMM indices are available from June 1974 to March   
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16, 1978, and January 1979 to present, by projecting onto the calculated EOFs.  The 

discontinuity in 1978 is due to the availability of the OLR satellite data.  For this reason, 

1978 is not used in this study and is excluded from all datasets.  The RMM indices 

developed by Wheeler and Hendon (2004) are used in this study and are available at 

http://cawcr.gov.au/staff/mwheeler/maproom/RMM/. 

 

2.3 Logistic Regression 

The prediction model developed in this study employs multiple logistic 

regression.  Regression methods are ideal for distinguishing the relationship between an 

independent variable (the predictor) and an outcome variable (the response).  According 

to Hosmer and Lemeshow (2000), the idea is to find the best possible fit while reducing 

Fig 5: EOF 1 (top) and EOF 2 (bottom) spatial structures calculated from 
the combination of OLR, 850-mb wind (denoted u850 in legend), and 200-
mb wind (denoted u200).  Values are plotted as a normalized magnitude.  
From Wheeler and Hendon (2004).  
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the number of parameters.  Multiple logistic regression allows for the use of various 

independent predictor variables to find the ideal fit.  The model is formulated as follows: 

 ̂( )   ( | )  
                    

                      
                                          (2.1) 

Equation (2.1) represents the conditional probability that the dichotomous 

variable   occurs given the independent variables,    , where   is the number of 

independent variables.  The regression coefficients are represented by   .  This form of 

regression is unique in that its output yields a probability between 0 and 1.  The first step 

to finding the outcome probabilities is calculating the regression coefficients.   This is 

done using a least squares approach via a maximum likelihood function defined by: 

 ( )  ∏  ̂(  )
  [   ̂(  )]

     
                                               (2.2) 

where    and    indicate the dependent and independent variables, respectively, at time 

step   for   total time steps.  In maximum likelihood the idea is to select the regression 

coefficients which maximize the value of  ( ).  For simplicity, the log of this equation is 

calculated and given by: 

 ( )    [ ( )]  ∑ {    [ ̂(  )]  (    )   [   ̂(  )]}
 
                     (2.3) 

To maximize the value of  ( ), the derivative of equation 2.3 with respect to    

is calculated and set equal to zero.  This results in the non-linear likelihood equations, 

expressed as: 

∑ [    ̂(  )]   
 
                                                      (2.4) 

∑   [    ̂(  )]   
 
                                                      (2.5)   

These equations are generally solved with an iterative weighted least squares 

scheme (McCullagh and Nelder, 1989).  The results yield the maximum likelihood 
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estimates for the regression coefficients.  The regression coefficients can then be used to 

find the probability that the dichotomous variable   occurs given new values of the 

predictors (Hosmer and Lemeshow, 2000). 

In this study, probability hindcasts using equation 2.1 are generated independently 

for each year from 1975-2009.  Hindcasts are a form of cross-validation, utilizing 

regression coefficients calculated using the full time range while excluding the 

hindcasted years.  The regression coefficients are then used to “forecast” the excluded 

year (Elsner and Schmertmann, 1994).  Hindcasts are generated out to a seven week lead 

(i.e., a four week lead would use today’s predictor data to predict the probability of a 

storm developing four weeks from now).  Probability hindcasts generated are further 

discussed in section 4.   

In order to eliminate any possible bias in the model with a storm forming within a 

certain day of the week, a week is defined beginning on every day, resulting in 

overlapping weekly probabilities.  No communication between weeks (i.e. stratified 

weeks) would allow the possibility of tropical cyclone probabilities less than one week 

long.  For example, given overlapping weeks (as done in this model), if a cyclone was to 

form on a given Wednesday, this would be observed beginning 7 days before the actual 

event (the previous Thursday).  This represents a cyclogenesis occurrence observed in the 

week beginning Thursday and ending the next Wednesday.  However, if, say, Monday is 

defined as the beginning of each stratified week and a cyclone forms on Wednesday, a 

cyclone would not be observed until that Monday; this results in a 3 day week of an 

observed cyclogenesis event, beginning Monday and ending Wednesday.  Given weekly 
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overlapping tropical cyclone genesis observations, relationships between the observations 

and the predictors are observed in full one week intervals.   

 

2.4 Sequential Forward Selection 

Stepwise selection schemes are commonly used in regression as a basis for 

determining the importance of a variable, including it only if significant given a specific 

criterion (Hosmer and Lemeshow, 2000).  In this study a sequential forward selection 

scheme is used.  Variables are sequentially included to an initially empty set until the 

addition of further variables no longer improves prediction, meaning it no longer 

decreases the criterion.  Typically this test for significance, called the likelihood ratio test, 

is done by comparing the log likelihood (equation 2.3) of the model with and without a 

particular variable.  It’s represented by: 

      (
 ( )

 ( ) 
)                        (2.6) 

where  ( ) denotes the likelihood of the fitted model and  ( )  is the likelihood of the 

saturated model, or the model which includes all the predictors.  Substituting equation 2.3 

into 2.6 yields: 

    ∑       [
 ̂(  )

  
 (    )   (

   ̂ 

    
)] 

                             (2.7) 

 Equation 2.7 is known as the deviance, analogous to the residual sum of squares 

in linear regression, and follows a chi-square distribution (Hosmer and Lemeshow, 2000).  

In the model developed here, deviance is used as the criterion in the forward selection 

scheme.  The forward selection scheme stops once deviance can no longer be reduced, so 

there is no advantage in including the other predictors.  Using an inverse chi-square 

cumulative distribution function at 1 degree of freedom, the 95% significance critical 
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value is found, meaning there is a 5% chance that the deviance between the model with 

and without a variable came by chance.  One degree of freedom is used because a single 

variable is being added at a time in stepwise regression.  This critical value is the 

minimum deviance difference value allowed in the selection scheme; if the value 

becomes less than the critical level the iterations terminate (MATLAB, 2011b, The 

MathWorks). 

  

2.5 Forecast Verification 

The most common method for verification of dichotomous events is the Brier 

score (BS), defined by the equation:   

   
 

 
∑ (     )

  
                       (2.8) 

where    represents the forecasted probability between 0 and 1 for event   out of a total of 

  events (Wilks, 2006).   The observations,   , are dichotomous where      if the event 

occurred and      if it did not occur.  The Brier score calculation in essence calculates 

the mean-squared error of the forecasted probability.  Since both the forecasts and 

observations are bounded by 0 and 1, so is the Brier score.  A Brier score of 0 denotes a 

perfect forecast, meaning    always equals   .  In contrast, a Brier score of 1 indicates 

that the forecast is wrong for every event.  Using the Brier score calculated, a Brier skill 

score is then computed: 

    
        

       
   

  

     
                     (2.9) 

where    is the Brier score calculated from the forecasts and       represents a 

reference forecast Brier score.  This study utilizes a seasonal mean climatology to 

calculate the reference Brier score (discussed in section 5).  The Brier skill scores are 
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multiplied by 100 to denote a percentage.  This is ideal as it allows the Brier skill score to 

represent a percent decrease in mean squared error (by the forecasts) over a mean 

seasonal climatology.  A Brier skill score of 100% is achieved when every forecasted 

probability is perfect.  A BSS of 100% is not possible with this statistical model due to 

the low sharpness limitation associated with the use of statistical models as mentioned in 

the introduction. 
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3. Predictors 

 

3.1 Predictor Justification 

The predictors considered in this study includes a smoothed climatology of 

tropical cyclone genesis for each basin, two MJO indices (RMM1 and RMM2), and two 

indices based on the first two EOFs of SST in the El Niño 3 region.  While physical 

reasoning between the possible predictors and tropical cyclone genesis are discussed in 

the introduction, it is possible that a predictor will either not show a strong enough 

relationship with TC genesis to be used for prediction or not be a good fit for logistic 

regression.  In this section statistical analysis is used to determine if each predictor is a 

good fit for the finalized model. 

3.1.1 Climatology 

Climatology is based on the tropical cyclone genesis data, so there is a natural 

strong relationship between genesis and its climatology.  To determine if logistic 

regression is a good fit for climatology, univariate logistic regression models are 

calculated for each basin and illustrated in figure 6.  The smoothed, stratified climatology 

(red curve in figure 3) is interpolated from weekly probabilities to daily to allow the 

univariate models to begin each week on every day.  Climatology is the only predictor 

not lagged out to a 7 week lead because it is based on all other years excluding the 

forecasted year, meaning it is always known and is therefore the same for all forecast 

leads.  The x-axis in figure 6 represents the smoothed, stratified climatology values from 
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Fig 6:  Univariate logistic regression curves fitted for tropical cyclogenesis climatology for 
the a) East Pacific Ocean and b) Atlantic Ocean.  Genesis observations are binned according 
to their corresponding climatological value and averaged (dots).  Logistic regression models 
(solid curves) are calculated independently. 

figure 3, while the y-axis is the probability of a tropical cyclone observation occurring 

within a certain climatological probability range.  The East Pacific (Atlantic) tropical 

cyclone observations are binned into 20 (17) bins of approximately 340 (246) values each 

and averaged.  For example, the probability of an East Pacific cyclogenesis event in June 

is between 25% and 45% according to figure 3, therefore that event would be binned 

according to its climatological probability (between 25 and 45 in the x-axis of figure 6).  

The logistic regression models (solid curves) are calculated independently of the 

averaged probabilities (dots).       

 

             

 

 

 

Sensitivity tests found that the relationship between the averaged probabilities and 

the logistic curves is not a factor of the number of bins; increasing the number of values 

in each bin results in less averages (dots) about the fitted line while decreasing the 

number of values in each bin results in more averages about the fitted line, however the 

a) b) 
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Fig 7:  Tropical cyclone genesis locations per phase of the MJO for 1975-2009 for a) East Pacific, 
using May 15-Nov 30 data, and b) North Atlantic, using July 1-Oct 31 data.  Only storms reaching a 
minimum of 34 kt (tropical storm strength) are considered.  Genesis points are plotted only if the 
amplitude of the corresponding MJO is greater than 1. 

deviation of the averages from the curve is unchanged.  The fit appears to support the 

choice of model.  The goodness of fit (the strength of the relationship) between the 

logistic curves and the binned averages is discussed in section 3.1.4.   

3.1.2 The MJO 

In order to illustrate the relationship between the MJO and cyclogenesis, genesis 

locations are binned according to MJO phase as defined by Wheeler and Hendon (2004) 

and plotted in figure 7.  Weak MJO events, denoted when √(           )   , 

are excluded.  North Pacific results are shown from May 15 to Nov 30 data (fig 7a), 

while the Atlantic basin results are displayed for July 1 to Oct 31 data (fig 7b).    

 
a) 

 

b) 
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Table 1:  Shown are phase of the MJO of amplitude > 1, number of days in each phase for 
May 15 - Nov 30, East Pacific number of storms (≥34 kt) formed per phase (463 total 
storms), East Pacific ratio of storms per phase to total storms, number of days in each phase 
for July 1 - Oct 31, Atlantic number of storms per phase (388 total storms), and Atlantic 
ratio of storms per phase to total storms 

Table 1 quantifies the findings in figure 7.  Shown are the phase, the number of 

days in each phase from May 15-Nov 30 for the East Pacific (column 2) and July-Oct 31 

for the Atlantic (column 5), the number of cyclones formed in each phase out of a total of 

463 (388) for the East Pacific (Atlantic) basin, and the fraction of TC genesis to total 

cyclones per RMM phase per basin.   

 

 

 

 

In agreement with Pegion et al. (2008), most cyclones over the East Pacific tend 

to form during RMM phases one, two, and eight, while cyclone genesis is less likely 

during phases three, four, five, and six.  For the East Pacific, cyclogenesis is more likely 

when convection is suppressed over the East Indian Ocean and Maritime continent 

(Maloney and Hartmann, 2000a).  This occurs approximately around phases 8 and 1 of 

the RMM MJO index.  In contrast, cyclones are less likely to occur when convection is 

enhanced over the East Indian Ocean and Maritime continent.  This is observed during 

RMM MJO index phase 4.  Approximately 4 times more cyclones were observed in 
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phase 1 than phases 3 and 4.  Normalized to the number of days in each phase (done by 

taking storms formed per phase and dividing by total number of days in each phase), 

approximately twice as many storms form during phases 8 and 1 than during phases 3 

and 4.  

Over the Atlantic basin, most tropical cyclones initiate genesis during phases 1 

and 2 of the MJO, as noted by Klotzbach (2010).  Cyclogenesis is least frequent during 

phase 7.  Normalized to the number of days in each phase, approximately 1/3 more 

cyclones form during phases 1 and 2 than phases 6 and 7.  In the Gulf and Northwest 

Caribbean regions alone, we find that approximately 4 times more cyclones are observed 

during phases 1 and 2 than phases 6 and 7.  While this relationship in the Gulf and 

Caribbean has been previously studied (Maloney and Hartmann, 2000b; Klotzbach, 

2010), the Atlantic model developed in this study focuses on the full Atlantic basin.  This 

is because in logistic regression (and various other statistical techniques), the probability 

of rare events are highly underestimated (King and Zeng, 2001).  In terms of a weekly 

occurrence, it is relative rare to observe a cyclogenesis event in the Gulf and Western 

Caribbean.  

 Univariate logistic regression models are fitted individually for each RMM index 

to confirm the choice of model, shown in figures 8-11.  The same binning process as 

climatology is applied to both indices for each basin.  Both indices are lagged out to a 7 

week lead and models are fitted for each lead.  Although week 0 has no predictability, it 

is shown for comparison. 

 Figure 8 indicates a strong relationship between RMM1 and East Pacific TC 

genesis out to a week 3 lead based on the steepness of the curve and the goodness of fit 
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Fig 8:  East Pacific genesis observations binned according to RMM1 value and 
averaged (dots) out to a week 7 lead.  W(0) denotes a week 0 lag.  Logistic 
regression models (solid curve) are calculated independently.   

Fig 9:  Same as fig. 8 but for RMM2. 
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Fig 10:  Same as fig. 8 but for the Atlantic basin. 

Fig 11:  Same as fig. 9 but for the Atlantic basin. 
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Fig 12:  E ast P acific T C ge nesis pr obability curves based o n a n E l N iño 
index.  Warm events occur when PC1 > 1 (red curve) and cold events occur 
when PC1 < -1 ( blue c urve).  Va lues between -1 a nd 1 de note n eutral 
ENSO conditions (black curve).  The x-axis ranges from March-February. 

about the curve (shown in table 2).  For RMM2 the relationship weakens after a week 1 

lead, the strongest being at a week 1 lead.  For the Atlantic basin it is expected that the 

MJO signal would be weaker than for the East Pacific due to its greater distance from the 

origin of MJO events and weaker dynamical MJO signals.  The relationship between the 

MJO and Atlantic genesis appears to diminish by week 3. 

3.1.3 ENSO and PC2 of Equatorial East Pacific SST 

Probability curves are generated to show the relationship between the El Niño 

index (PC1) and TC genesis in both basins.  Warm (cold) events are defined when the El 

Niño index is greater (less) than 1 (-1).  Neutral ENSO events are defined when PC1 lies 

between -1 and 1.  Weekly probabilities of cyclone genesis are calculated per event and 

smoothed using a 1-2-1 filter.  Probabilities are denoted as a percentage and shown in 

figures 12 and 13.  The probability of cyclogenesis during warm events, cold events, and 

neutral events are shown in red, blue, and black, respectively. 
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Fig 13:  Same as fig. 12 but for the Atlantic. 
 

 

Higher probabilities in figures 12 and 13 signify that a higher number of tropical 

cyclone genesis formations were observed from 1975-2009 within a given phase of 

ENSO relative to the other phases.  A relationship between East Pacific TC genesis and 

the state of ENSO is not evident in figure 12.  There does not appear to be a distinctive 

difference between the probabilities of a storm forming during a certain state of ENSO, 

therefore ENSO may not be useful as a predictor.  This is consistent with the discussion 

in the introduction.   For the Atlantic case, warm ENSO events are associated with a 

reduction in TC activity (Gray, 1984a; Shaman et al., 2009).  Figure 13 demonstrates this 

relationship and supports the use of ENSO as a predictor in the finalized model.   

Univariate logistic regression models are generated in the same method as the 

RMM indices and shown in figures 14-17.  While figure 14 suggests a relationship with 

TC genesis and ENSO in the logistic regression curve, the goodness of fit between the 

logistic curves and the probability averages do not depict a definite relationship (table 2).   

ENSO is kept as a predictor in the finalized East Pacific model due to its previously 

studied relationship with genesis location and storm frequency at higher intensities (Chu,  
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Fig 14:  East Pacific genesis binned according to PC1 (El Niño index) and 
averaged (dots) out to a week 7 lead.  Solid curve - Logistic regression models 

 

Fig 15:  Same as fig. 14 but for PC2 
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Fig 16:  Same as fig. 14 but for the Atlantic 

Fig 17:  Same as fig. 16 but for PC2 

 

 

 

 



 
 

54 
 

2004; Gray and Sheaffer, 1991; Whitney and Hobgood, 1997).  Model results using only 

storms which become hurricanes are later discussed, and ENSO may become an 

important factor for those.  If ENSO does not benefit the finalized model, the forward 

selection scheme discussed previously will not select it; therefore having it in the model 

will not adversely affect the results. 

Despite a relatively high degree of scatter, figure 16 shows logistic regression 

captures the suppression of TC genesis during El Niño events for the Atlantic.  Based on 

previous studies of ENSO’s effects on genesis and the results shown by figure 13, the use 

of ENSO as a predictor for the Atlantic is supported.  The second PC over the El Niño 3 

region is also investigated; however, there does not appear to be a relationship between 

PC2 and genesis in either basin.  Based on this and lack of physical reasoning, PC2 is not 

included in the model.   

3.1.4 Goodness of Fit 

Sections 3.1.1 through 3.1.3 describe univariate logistic regression models 

developed to check the relationship between the predictors investigated and tropical 

cyclogenesis, as well as the fit between the predictors and logistic regression.  

Correlations are calculated between the binned predictor probabilities and the logistic 

regression curves as a measure of the goodness of fit about the regression curves.  While 

correlations are typically used in linear regression schemes, the relationships shown are 

largely linear.  Other verification methods, however, are used for the finalized model 

(section 5).  The correlation values are shown in table 2.  A p-value of each correlation is 

computed using N-2 degrees of freedom to measure the significance of the correlation, 

where N is the number of samples (in this case the number of bins). 
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Table 2:  Correlations between binned averages of the predictor values and the 
corresponding logistic fit per forecast lead for each basin.  Since the same 
climatology is used at all forecast leads, only one correlation is calculated for 
climatology. 

  

 

 

 

As observed in figure 6, the climatology binned averages appear to fit the logistic 

regression curve well, corresponding to a correlation of 0.97 between the averages and  

the logistic fit for both basins, which is significant at the 99% level, signifying a 1% 

chance the correlation is not actually significant.  For the East Pacific, PC1 p-values are 

significant for weeks 5 and 6 at the 95% significance level, meaning there is a 1 in 20 

chance (i.e., 5% chance) that the correlation is not actually significant.  For the PC2 

logistic curve and binned averages, there are no significant correlations at the 95% level.  

RMM1 correlations are significant for week leads 0, 1, 2, 3, and 6 at the 99% level, while 

week 7 is significant at the 95% level.  For RMM2, a 99% level significance exists at 

week 1, while a 95% level significance occurs for weeks 0, 4, 5, and 7. 

For the Atlantic basin, p-values of PC1 are 95% significant for all week leads 

with the exception of week 0, while no significant correlations are observed between the 

PC2 binned averages and logistic curve.  P-values of RMM1 are significant at the 95% 

level during weak leads 1, 3, 5, and 6; the week 2 p-value is significant at the 99% level.  
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Table 3:  Predictor selection rank according to the forward selection scheme for 
each basin from a zero to a seven week forecast lead.  Data from 1975-2009 is used.  
A “1” designates the first predictor chosen by the selection scheme, and so on.  
Spaces left blank indicate the predictor did not meet the criteria and therefore was 
not chosen.   

For RMM2, p-values for weeks 0, 1, and 2 are significant at the 99% level.  A significant 

correlation is not analogous to a useful regression; a high correlation can exist between 

two variables which have a relative horizontal regression curve (i.e., a low regression 

coefficient).  Correlation is only a measure of the goodness of fit about the regression. 

 

3.2 Predictor Selection 

An advantage of using a forward selection scheme is that it ranks the selected 

predictors by level of “importance” based on a significance criterion (Hosmer and 

Lemeshow, 2000).  This provides information on which predictors have the greatest 

statistical influence on tropical cyclogenesis in each basin for each lead.  Using the full 

data set, table 3 lists the ranks given by the forward selection scheme for each basin at 

every lead.  A box is left blank if the predictor is not selected. 

 

 

 

 

 Climatology is the first chosen predictor for both basins at every lead, meaning it 

accounts for the most variability in the tropical cyclone observations.    Not surprisingly, 
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ENSO was chosen second for all forecast leads in the Atlantic basin.  Interestingly, 

ENSO was always chosen as a predictor in the East Pacific basin.  Although always 

chosen last with the exception of week 4, it shows ENSO may have some statistically 

significant influence, although minor, in East Pacific cyclogenesis.  One of the MJO 

indices was typically chosen as the second predictor for the East Pacific out to week 4.  

The selection between RMM1 and RMM2 for both basins agrees with the univariate 

curves shown in figures 8-11; the selection scheme tends to choose first the RMM index 

with the steepest curve, or not at all if there appears to be no relationship (has a “flat” 

logistic curve).  It also “catches” and excludes those predictors which appear to have a 

relationship in the univariate logistic regression curves but have no significant 

relationship when comparing to the TC observations, such as the univariate RMM2 week 

7 model for the Atlantic basin (fig. 11), which is also shown to have an almost-zero 

correlation with the logistic curve (correlation of -0.01; see table 2).    
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4.  Hindcasts 

 

4.1 Probability Hindcasts 

 Probability hindcasts are generated for each year and forecast lead in this study as 

a form of cross-validating the model.  Although week 0 provides no predictability, it is 

shown as a means of comparison.  Regression coefficients utilizing data from the full 

dataset, excluding the hindcasted year, are found and applied to equation 2.1.  These 

coefficients represent the relationship between TC genesis and the predictors.  The 

probability that a cyclone will form, based on the hindcasted year’s predictor values, is 

found for tropical cyclones reaching at least tropical storm strength. 

Tropical storm strength cyclogenesis probability curves are hindcasted and four 

examples per ocean basin are shown in figures 18-25.  Results from all years are shown 

in Appendix I (East Pacific) and Appendix II (Atlantic).  The hindcasted probability 

curves generated by the logistic regression model using a forward selection scheme are 

shown by the black curve.  An independent logistic regression model and forward 

selection scheme is used per forecast lead, so a predictor may be chosen at a certain week 

lead and not another.  Overlaid in red is the climatology of each basin from figure 3 for 

comparison.  This is useful as it allows the probability curves to show a difference from 

the known climatology due to the predictors chosen by the selection scheme.  The gray 
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Fig 18:  East Pacific 2001 probability hindcast (black curve) for a week 0 (top left) to a week 7 
(bottom right) lead.  Climatology is shown in red for comparison.  Gray bars are shown for 
weeks that underwent tropical storm (≥34 kt) cyclogenesis.  The x-axis ranges from May 15 - 
Nov 30. 

bars along the x-axis represent a week which underwent cyclogenesis.  Due to the 

overlapping weeks previously defined, each gray bar is at least one week long.   

4.1.1 East Pacific Hindcasts 

The East Pacific hindcasts range from May 15 (shown as M15 in the x-axis) to 

November 30.  The RMM indices provide the short term variability, in the order of days 

to a week, in the probability hindcasts.  ENSO, on the other hand, is slow varying on the 

order of months; it has the tendency to shift most of the full season hindcast curve.  When 

the hindcasted probability has the shape of climatology (with either a different or the 

same amplitude), there is no small order variability, meaning neither RMM index was 

selected.  East Pacific hindcast probability curves are shown for years 2001, 2002, 2007, 

and 2008 in figures 18-21.   
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Fig 19:  Same as fig. 18 but for 2002 

Fig 20:  Same as fig. 18 but for 2007 
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Fig 21:  Same as fig. 18 but for 2008 
     

 

The 2001 and 2008 East Pacific hurricane seasons are characterized by MJO 

amplitudes typically greater than 1 and neutral ENSO conditions.  In the 2001 hindcast 

probabilities increase above climatology by as much as ~15% due to the MJO; this peak 

in mid-July coincides with an observed cyclogenesis event (gray bars; a more quantitative 

measure of skill is later discussed).   At a week 1 forecasting lead, the probabilities peak 

at the end of phase 6 and beginning of phase 7, consistent with the RMM univariate 

curves (fig. 8-9; see Wheeler and Hendon (2004) for phase definition based on the RMM 

values).  The favorable conditions for genesis during phase 8 are represented in the peaks 

at the week 0 lead.  This is common in the hindcasted years; once the end of phase 6 and 

the beginning of phase 7 occurs, climatologically the following week phase 8 will 

commence, so the week 1 forecast lead shows an increase in cyclogenesis probability.  

The 2002 season consisted of strong MJO variability from the beginning of the 

season through August (with the exception of the last week of July) then again in 
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November, along with moderate El Niño conditions.  Most of the variability in the 

probability hindcasts occurs during the high amplitude MJO variability.  The week 1 

forecast lead shows a probability increase of ~20% in mid-July, escalating the probability 

of cyclogenesis to almost 80%; again as the MJO approaches phase 8.  Observations 

(gray bars) tend to coincide with high peaks in probability.  The moderate El Niño had 

little effect on the probability curves, only slightly increasing probabilities. 

The 2007 season consisted of an early season neutral ENSO followed by a 

moderate La Niña and MJO amplitudes that varied from weak to strong.  The week 1 and 

week 2 forecast leads show a deep decrease from climatology by ~20% (week 1 lead) and 

~15% (week 2 lead) during the midsummer drought (Magaña et al., 1999).  This drop in 

genesis probability is associated with the oncoming phase 3 during a strong MJO event; 

the week 1 lead shows this at phase 2 while the week 2 lead at phase 1; no cyclogenesis 

events occur during this probability minimum.  The moderate La Niña shows little 

consequence, only slightly decreasing mid to late season genesis probabilities.  East 

Pacific hindcast results from other years are shown in Appendix I. 

4.1.2 Atlantic Hindcasts 

Probability hindcasts shown for the North Atlantic basin include 1975, 1997, 

2003, and 2007 in figures 22-25.  The Atlantic hindcasts range from July 1 to October 31.  

A moderate La Niña event in 1975 caused a 5-10% increase in genesis probabilities 

throughout the season.  MJO activity is responsible for the shorter time scale variability 

in probabilities, increasing mid-late July probabilities by an additional 7% during forecast  
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Fig 22:  Atlantic 1975 Probability hindcast (black curve) for a week 0 (top left) to a week 7 
(bottom right) lead.  Climatology is shown in red for comparison.  Gray bars are shown for 
weeks that underwent tropical storm cyclogenesis.  The x-axis ranges from July 1- Oct 31. 

Fig 23:  Same as fig. 22 but for 1997 
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Fig 24:  Same as fig. 22 but for 2003 

Fig 25:  Same as fig. 22 but for 2007 
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lead weeks 1 and 2.  This increase is associated with phase 2 of the MJO, known to create 

favorable conditions for cyclogenesis as previously discussed.  Also observed in the 1975 

season are probability increases in the month of September and in late October 

corresponding to phases 1 and 2 of the MJO.  Furthermore, decreases of 5-7% are 

observed due to the MJO early-mid August and early-mid October.  

A strong El Niño in 1997 decreased cyclogenesis probabilities at every forecast 

lead by as much as 20%.   In agreement with this overall drop in climatology, the 1997 

hurricane season was below average in terms of TC activity (Rappaport, 1997).  This 

suppression of cyclogenesis due to an El Niño event is also consistent with figures 13 and 

16.  Although some modest variations in probabilities were due to the MJO, the hindcast 

is primarily influenced by the strong El Niño.   

 The ENSO-neutral 2003 season is primarily interesting due to the month of July.  

A moderate MJO event early-mid July created favorable conditions for tropical 

cyclogenesis.  This is depicted as a cyclogenesis probability increase in forecast leads 1, 

2, 3, and interestingly (perhaps coincidentally) week 5.  This increase ranges between 5-

10%, with the greatest increase observed at a week 2 lead, and coincides with the 

observed formation of 2 hurricanes.  Additionally, a decrease of ~7% at lead weeks 1 and 

2 is notable in late October due to the suppression of cyclogenesis that occurs during 

phase 6 of the MJO.  Very little change in genesis probability occurred due to ENSO. 

 The last hindcast year shown is 2007, an above-average hurricane season with 15 

tropical storms and 6 hurricane strength storms.  The mid-late season La Niña increases 

probabilities by ~7% in late October.  Most of the variability in the hindcasts, however, is 

due to the MJO.  The late July and early August peak and the late August and early 
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September peak in probabilities are prominent in lead weeks 1 and 2 and are associated 

with phase 2 of the MJO; the latter peak coincides with the formation of Hurricane Felix, 

a catagory 5 hurricane (this does not signify causality, it means that conditions were more 

favorable for genesis).  The late October probability increase is a result of the La Niña, 

increasing probabilities by approximately 7%, and MJO phase 1 conditions increasing 

probabilities by an additional 10%.  In correspondence with the probability increase is the 

formation of a hurricane strength storm.  Atlantic hindcast results from other years are 

shown in Appendix II. 
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5.  Model Skill and Reliability 

5.1 Brier Skill Scores 

 Qualitatively it can be observed from the hindcasts if an increase or decrease in 

probability corresponds to a cyclogenesis event (gray bars) or lack thereof.  In order to 

assess the validity of the hindcasts, a quantitative statistical approach is used.  A Brier 

score using all hindcasted values and corresponding observational values of TCs is 

generated per basin and forecast lead by equation 2.8.  A logistic regression model using 

only a seasonal mean climatology is used to generate reference hindcasted probabilities; 

hence the same value is predicted for every day representing the seasonal average 

probability of cyclogenesis within that basin.  These reference probabilities are then used 

to calculate the reference Brier score in equation 2.9.  

Four separate sets of Brier scores are calculated per basin per week lead and 

plotted in figure 26.  The black dash curve denotes the Brier skill scores for the hindcast 

probabilities generated with all available predictors using the selection scheme.  

Individual hindcast probabilities are calculated using only a set of predictors: MJO + 

climatology only, ENSO + climatology only, and climatology only.  The Brier skill 

scores for these hindcasts are plotted in dashed blue, dashed green, and solid red, 

respectively.  A comparison can then be made to represent the relative importance of the 

predictors and the skill improvement when compared to a mean seasonal climatology.   
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Fig 26:  Brier skill scores (%) for the East Pacific (left) and Atlantic (right) 
tropical storm probability hindcasts.  Shown are Brier skill scores for the 
stepwise scheme selected predictors (dashed black), MJO + climatology 
(dashed blue), ENSO + climatology (dashed green), and climatology only 
(solid red).  Skill scores are calculated using a seasonal mean reference 
climatology; y-axis denotes % improvement over the reference climatology. 

           

 

 

 

  

The East Pacific climatology Brier skill score alone shows over a 15% 

improvement over using a mean seasonal climatology.  The skill does not change over 

lead week since climatology is always known and is therefore the same for each forecast 

week.  Not surprisingly, including ENSO as a predictor adds only an additional small 

fraction of a percent improvement without much change over week lead.  Including the 

MJO to climatology improves the skill by almost an additional 1.5% during weeks 1-2, 

with further slight improvement given the predictor selection scheme; these tend to 

decrease towards the climatology model skill over longer forecast leads.  Overall, 

including all selected predictors improves the skill of the model by almost 17% at the 

shortest leads.  These results are similar to those of Leroy and Wheeler (2008) for the 

Southern Hemisphere; in their study they found Brier skill score improvements of up to 
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9.5% from a mean seasonal climatology due to the inclusion of the seasonal cycle of TCs, 

the MJO, and the leading modes of SST.  The Brier skill score values found in this study 

are of a similar magnitude as those in Leroy and Wheeler (2008). 

 The Atlantic climatology Brier skill score shows an improvement of 

approximately 8.5% over the model using a mean seasonal climatology.  The addition of 

the MJO to climatology shows a skill increase out to forecast lead week 2 of around 

0.5%.  The Brier skill score of the model using ENSO + climatology generates and 

improvement greater than 1% over climatology alone, decreasing only slightly at the 

longest lead times.  Including all selected predictors, there is a skill improvement of 

almost 2% over the model using only climatology, this skill generally decreasing over 

forecast lead.  Overall, the model of the selected predictors improves the skill of the 

model by almost 10.5% at the shortest leads. 

 

5.2 Reliability Diagrams 

 Testing the reliability of a model is commonly done via reliability diagrams.  This 

is done by binning the dichotomous genesis observations and the hindcasted probabilities 

according to the hindcasted probability.  For the East Pacific, observations and hindcasted 

probabilities are binned into 20 groups of approximately 340 values each.  For the 

Atlantic the bins consist of 17 groups of roughly 246 values each.  For each group the 

bins are averaged and plotted to form the reliability curve. 

The perfect forecast, shown by the solid black diagonal lines in figures 27 and 28, 

occurs when the forecasted probability equals the observed probability.  A 10% interval 

about that perfect curve is shown by the blue dotted diagonal lines.  When the reliability 
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Fig 27:  East Pacific reliability diagrams for forecast lead weeks 0 - 7.  Observational and 
hindcasted data used is from 1975-2009.  Hindcasts and observations are binned into 20 groups of 
~340 values based on the hindcasted probabilities.  Each group is averaged and portrayed as a red 
circle.  The line connecting the circles forms the reliability curve.  The perfect forecast and a 10% 
interval about the perfect forecast is shown by the solid black and blue dotted diagonals, 
respectively.  The solid horizontal line indicates the average observed probability.   

curve lies above (below) the perfect diagonal, the forecast is underestimated 

(overestimated).  The mean observed probability is shown by the solid horizontal line.   

 

5.2.1 East Pacific 

 
 

 

 

 

 

 

For every week lead, the East Pacific probability of TC genesis is slightly 

overestimated by 5% for the first two bins (the two lowest probability groups).  
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Reliability diagrams generated using the ENSO + climatology hindcasts and the MJO + 

climatology hindcasts (not shown) also contain this overestimation, suggesting that it is 

likely due to climatology.  Sensitivity tests on the smoothing of climatology found the 

overestimation is not due to the smoothing; rather, figure 6 suggests the logistic fit causes 

the overestimation of the lowest probabilities.   

 A smoothing sensitivity test on the climatology reveals the reason for the 

overestimation observed between the 0.4 and 0.5 observed probability (y-axis).  These 

errors are due to the smoothing of climatology during the midsummer drought, as 

illustrated in figure 3.  Interestingly, this overestimation is most eminent at lead week 0, 

which does not represent a prediction; a weaker overestimation is evident in the 

forecasted values out to forecast lead week 2.   

5.2.2 Atlantic 

The Atlantic basin reliability curves are shown in figure 28.  The use of only July 

1 – October 31 is prominent in the Atlantic reliability diagrams, with the first average 

category (first red circle) near 0.15 probability.  Above the mean horizontal line there 

appears to be less overall deviation from the perfect forecast than the East Pacific.  The 

decrease in deviance is largely due to the greater effects of ENSO on the Atlantic, 

demonstrated by removing the effects of the MJO from the hindcasted values (not 

shown).  While it is difficult to define causality for each deviation from the perfect 

forecast, the addition of other indices as predictors may help to account for some of the 

deviance.   
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Fig 28:  Same as fig. 27 but for the Atlantic.  Hindcasts and observations are binned into 17 
groups of ~246 values based on the hindcasted probabilities prior to averaging.  

 

 

5.3 Hurricane Strength Skill 

 Various studies have analyzed the relationship between hurricane strength storms 

(≥ 64 kt) and the MJO for the Atlantic (Barrett and Leslie, 2009; Maloney and Hartmann, 

2000b; Klotzbach, 2010) and the East Pacific (Chu, 2004; Collins and Mason, 2000).  

Hindcast probabilities are calculated using cyclogenesis observations of only storms 

reaching hurricane strength in the same method as the tropical storm hindcasts.  Brier 

skill scores are found as described in section 2.5.  A hindcast model of mean seasonal 

climatology of hurricane strength genesis is used as a reference brier score.   
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Fig 29:  Brier skill scores (%) for the East Pacific (left) and Atlantic (right) 
hurricane strength probability hindcasts.  Shown are Brier scores for the stepwise 
scheme selected predictors (dashed black), MJO + climatology (dashed blue), 
ENSO + climatology (dashed green), and climatology (solid red).  Calculated 
using a hurricane seasonal mean reference climatology; y-axis denotes % 
improvement over the reference climatology. 

      c  

 

 

 

 

 A primary interest in the inclusion of the ENSO index in the East Pacific model is 

the predictor’s effects given the increase in TC strength.  Studies have theorized the 

influence of ENSO on the East Pacific, noting an increase in intense hurricane frequency 

during an El Niño event (Gray and Sheaffer, 1991; Whitney and Hobgood, 1997) and 

genesis location (Irwin and Davis, 1999).  Although intense and lesser strength hurricanes 

are analyzed in unison, figure 29 does not hint any improvement in skill due to the 

inclusion of ENSO.   

A reason for the lack in skill improvement due to ENSO may be due to the 

separation of the East Pacific basin into subregions, as pointed out by Collins and Mason 

(2000).   Collins and Mason (2000) found that when separating the East Pacific region at 

116˚ longitude, a significant relationship between ENSO and hurricane strength storms is 
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found only for the western region; the eastern region had no significant relationship with 

ENSO at the hurricane or intense hurricane level.  The East Pacific boundary in this study 

lies at 120˚, and hence the region analyzed is similar to the Collins and Mason (2007) 

eastern subregion of the East Pacific and therefore it may not be surprising that we see no 

strong ENSO modulation. 

 The Atlantic hurricane strength brier scores show an improvement in the MJO 

predictor skill, expanding the skill of the MJO + climatology model to a week 3 forecast 

lead.  At week 1 the MJO appears as equally skilled as ENSO.  The impact of the MJO 

on hurricane strength storms has been outlined in studies such as Maloney and Hartmann 

(2000b) and Klotzbach (2010), as discussed in the introduction. 
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6.  Summary and Conclusions 

 This study proposes an intraseasonal prediction model for tropical cyclone genesis 

in the East Pacific and Atlantic Ocean basins based on multiple logistic regression.  

Predictors used include ENSO, the MJO, and a climatology of genesis for each basin.  A 

prediction model for each basin is generated out to a week 7 forecast lead.  After 

undergoing a forward selection scheme process, the predictors selected generate 

regression coefficients which are used to produce hindcasts for each year from 1975-

2009.   

Brier skill scores and reliability diagrams were generated to determine the skill 

and dependability of the models.   Results show a significant increase in model skill at 

predicting tropical cyclogenesis by the inclusion of the MJO out to a three week forecast 

lead for the East Pacific and a two week forecast lead for the Atlantic.  When only 

considering storms that reach hurricane strength, the inclusion of the MJO in the Atlantic 

models show further increase in skill out to a 3 week forecast lead, with similar skill 

improvements above a time-varying climatology as ENSO for a week 1 forecast lead.  

Including ENSO increased the skill of the tropical storm Atlantic model significantly out 

to a 7 week forecast lead, while only slightly improving the skill of the East Pacific 

model.  The model generated by the forward selection scheme showed improvements 

above a mean seasonal climatology of almost 17% for the East Pacific and 10.5% for the 

Atlantic.  
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The results found in this study are similar to those in the Southern Hemisphere 

statistical model of Leroy and Wheeler (2008).  The primary differences between the 

models depend on the strength of the predictor for each basin (e.g., the MJO has a 

stronger influence over the Indian-West Pacific Ocean region than over the Atlantic 

basin).  However, skill improvements due to the inclusion of the selected predictors are 

within the same order of scale as Leroy and Wheeler (2008) and reliability curves show a 

dependable model.  Reliability curves are highly influenced by the tendency of tropical 

cyclone observations to follow climatology, while the other predictors work to increase 

skill and “tighten” the reliability curve about the perfect forecast. 

A caveat to the model is the lower sharpness (the capability of the model to deviate 

from its mean climatology; Vitart et al., 2010) that comes with statistical models.  As 

discussed in the introduction, statistical models rarely predict very low or very high 

probabilities largely because of the great influence of climatology.  Furthermore, the 

model currently requires ENSO and MJO activity to be present to improve skill over the 

time-varying climatology.  ENSO-neutral seasons with weak MJO activity follow the 

known climatological probabilities in the forecasts. 

Future work will focus on improving forecasting skill and forecast lead times.  

The inclusion of other predictors will also be considered.  Predictors under consideration 

include the QBO (Gray, 1984b, 1990), an index of West African monsoon intraseasonal 

variability (Bunting et al., 1975; Gray, 1990; Gray et al.,1993; Landsea and Gray, 1992; 

Maloney and Shaman, 2008), the North Atlantic Oscillation (NAO; Elsner, 2003; Elsner 

et al. 2000, 2001; Molinari and Mestas-Nuñez, 2003), the Atlantic Multi-decadal 
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oscillation (AMO; Trenberth and Shea, 2006) and the Pacific Decadal Oscillation (PDO; 

Lupo et al., 2008).    

Furthermore, additional spatial improvements can be examined.  Differences in 

tropical cyclogenesis mechanisms have been observed in subregions of the Atlantic basin, 

therefore regional-scale prediction might benefit from different predictors (Ballenzweig, 

1959; Goldenberg and Shapiro, 1993; Hess and Elsner, 1994; Hess et al., 1995).  

Sensitivity tests conducted in this study by dividing the Atlantic basin into two and three 

subregions found that the logistic fitted MJO signal was strongest for the full basin.  

Further sensitivity tests may reveal a better definition of subregions that may improve 

forecast skill.  While spatial improvements can benefit predictor selection, it can also 

benefit preparedness.  Knowing more specifically where a cyclone is likely to form will 

benefit those living nearby who may be affected (Lehmiller et al., 1997).   

Ultimately, the goal of this study and the future work discussed is a successful 

operational real-time forecasting model.  Once additional predictors have been 

implemented in the model, further work may also get at a better understanding of the 

physical basis behind some of the forecast relationships shown.  This includes 

relationships between tropical cyclones and the predictors and between the various 

predictors.   
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