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Correspondence

A New Time Delay Estimation in Subbands
for Resolving Multiple Specular Reflections

M. R. Azimi-Sadjadi, S. Charleston, J. Wilbur, and G. J. Dobeck

Abstract—In this correspondence, a new time delay estimation proce-
dure is proposed using the multiresolution analysis framework through a
discrete wavelet transform (DWT). Once the signals are decomposed, the
time delays are estimated iteratively in each sub-band using two different
adaptation mechanisms that minimize the mean squared error (MSE)
between the reference and primary signals in the corresponding sub-band
and level. The localization of the minima of the MSE curves at different
levels and subbands is used in order to arrive at the time delay estimates.
The proposed scheme is then applied to a real-life problem of underwater
target detection from the acoustic backscttered data.

Index Terms—Adaptive filtering, sonar, time delay estimation, under-
water target detection, wavelets.

I. INTRODUCTION

In underwater target detection, the presence of a target can be
determined by extracting certain clues in the acoustic backscattered
signal. However, to extract these clues that are usually dependent on
the physical properties of the target and the type of insonification,
specular returns must be identified in the backscattered signal [1].
This can only be made possible if the time delays associated with
the specular returns can accurately be estimated, especially in the
presence of high-level clutter and noise. Depending on the target
geometry, beam width, and surrounding environment, the acoustic
backscattered signal may contain several closely spaced specular
returns. Surface and volume reverberation, competing clutter with
similar returns, and other factors such as nonrepeatability of the target
signatures and lack ofa priori information about the targets can also
add to the complexity of this problem.

Time delay estimation (TDE) has been a problem of interest for
several decades and has found applications in other areas including
radar, speech processing, and biomedical signal processing. The
conventional TDE methods such as generalized cross-correlation-
based methods [2]–[4] have been shown to have only limited success
when applied to real-life problems, especially in the presence of high-
level noise and clutter. Bell and Ewart [5] developed a generalized
“n-dimensional matched filtering” approach in which the time delays
and amplitudes of the paths are determined by maximizing the output
of the matched filter. The efficiency and robustness performance of
the algorithm in comparison with the standard matched filter was
demonstrated on the simulated ocean acoustic data that contained
multipath and noise. In [6], a least-squares (LS)-based method for
estimating the amplitudes and time delays of multiple reflections in
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ocean acoustic backscattered signal is developed. The TDE problem
is first converted to the frequency estimation in the frequency domain.
The LS method is then applied to provide estimates of the amplitudes
associated with each path in the multipath environment. Once the
amplitudes are estimated, the time delays are computed using the
Gauss–Newton minimization approach. In this TDE method, the
number of paths is assumed to be known.

This correspondence presents a new sub-band adaptive filtering
scheme that uses DWT and two different adaptation processes for
multiple time delay estimation. The estimated delays at different
levels/subbands can be validated against each other to provide fairly
accurate estimates of the time delays. In addition, as a result of
decimation and filtering in the filter bank, signal decorrelation and
improved signal-to-noise ratio (SNR) are achieved in each sub-band.

II. M ODELLING OF ACOUSTIC BACKSCATTERED SIGNAL

Let us consider the following model for the acoustic backscat-
tered signal, which consists of the target specular returns, multipath
reflections, and additive background noise, i.e.,

y(n) =

M

i=1

zi(n��i) + e(n) (1)

where

y(n) collected backscattered signal;
zi(n��i) ith reflection with time delay�i;
e(n) additive ambient noise.

Note that these reflections may or may not be overlapping in time.
The above model is arrived at based on the assumption that the
target returns and the multipath/reverberation effects have similar
signal characteristics. The returns can be modeled as the distorted
or modified version of the incident signal, i.e.,

zi(n��i) = si(n) � x(n��i) (2)

where

� convolution operation;
x(n) incident signal
si(n) impulse response of the unknown time-varying system rep-

resenting the effects of propagating media on the incident
signal.

Having modeled the process using (1) and (2), now, in order to
identify the specular returns in the backscattered signal, the associated
time delays must be accurately estimated. This may be done by using
an adaptive transversal filter to undo the effects of the media by
approximating the inverse response of the unknown linear system
si(n) and then estimating the time delays. However, since the
backscattered signal is quite noisy, DWT can be employed prior to
the sub-band adaptive filtering to perform more accurate time delay
estimation. This is described in the next section.

III. T IME-DELAY ESTIMATION IN SUBBANDS

A. TDE Process

The proposed TDE process in each sub-band is demonstrated in
Fig. 1. The basic principle behind the proposed scheme is that due
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Fig. 1. TDE in subbands.

to the multiresolution property of the DWT, signals in the subbands
provide complementary information about the time delays between
the reference and desired signals. Consequently, this enables us to
gain multiple “looks” of the same signal at different scales/subbands.

Let us assume that the square summable incident signalx(n); n 2
ZZZ is decomposed using an iterated filter bank [7], [8] consisting of
N levels. If the lowpass and highpass filters in each analysis bank
are denoted byg1(n) andh1(n), respectively, then the final lowpass
approximation sequence, after subsampling by two in each level, can
be written in terms of the impulse response of the halfband lowpass
filter as

cN;k =
n

x(n)gN (2
N
k � n) (3)

where gN (n) is

gN (n) =
k

gN�1(k)g1(n� 2k): (4)

In a similar way, the “added details” sequences at different level
j 2 [1; N ] can be written in terms of the halfband highpass filters as

bj;k =
n

x(n)hj(2
j
k � n) (5)

wherehj(n) is given by

hj(n) =
k

gj�1(k)h1(n� 2k); j 2 [2; N ]: (6)

We assume that the filters are of FIR type of orderL and the impulse
responsesh1(n) andg1(n), and their shifted versions by even shift
form orthogonal sets [7], [8]. Note thatL has to be even in order
for the filters to form orthogonal sets. Additionally, we assume that
the lowpass and highpass filters are related by the alternating flip,
i.e., h1(n) = (�1)ng1(L � 1 � n) as the modulation by(�1)n

indeed transforms a lowpass to a highpass filter [8]. Consequently,
the orthogonality ofh1(n) and g1(n) with respect to even shifts
follows.

The original sequencex(n) can be recovered by upsampling by 2 in
each level followed by convolution with filters with impulse responses
~g1(n) and ~h1(n) that these are time reversed [7], [8] versions of
g1(n) and h1(n); respectively, i.e.,~h1(n) = h1(L � 1 � n) and
~g1(n) = g1(L � 1 � n): Then, the synthesis equation in terms of
these sequences and the corresponding impulse responses of the filters
in the associated bands is given by

x(n) =

N

j=1 k

bj;k~hj(n� 2jk) +
k

cN;k~gN (n� 2Nk): (7)

Note that the above DWT analysis and synthesis equations (3), (5),
and (7) are obtained based on the assumption that the signals are

of infinite extent. In practice, however, only finite extent signals are
encountered, in which case, in order to avoid border problems, we
assume that the original signal is symmetrically extended [7], [8].

Once the signals are decomposed, the time delays are estimated in
each sub-band iteratively using two adaptive learning mechanisms,
as shown in Fig. 1. In this figure,cxN;k and cyN;k represent the final
lowpass approximation ofx(n) and y(n), respectively, andbxj;k
and b

y

j;k; j 2 [1; N ] correspond to the added details in different
sub-band forx(n) and y(n), respectively. The delayli is updated
to provide an estimate of�i, i.e., the time delay associated with
the ith return. Note that the final lowpass approximation and the
added detail approximations for a delayed sequencex(n � �),
with � = 2N l and l an integer are, respectively,cxN;k�l and
bx
j;k�2 l

; j 2 [1; N ]: The updating rule forli is based on the
Levenberg–Marquart (LM) algorithm [9]. For every newli, the
function of the adaptive transversal filter is to generate an output
signal that minimizes the MSE or maximizes the correlation or
similarity between the outputs of the delay unit and the adaptive
filter. The original block fast transversal filter (BFTF) [10] algorithm
is used to update the weights of the adaptive filter. The process is
repeated for estimates of the delayli, and the MSE curve is examined
for its minima. The positions at which these minima occur correspond
to the locations where the maximum correlation between the outputs
is found, which in turn correspond to the estimates of the delays�i:

To account for the time lag introduced by the FIR adaptive filter at
these positions, the lag associated with the largest weight is subtracted
from the delay estimate in each level. The final delay value is then
calculated using�i = 2j(li � q), wherej is the level index,li is
the estimated delay, andq is the lag associated with the weight of
the largest magnitude.

The procedure for the selection of the time delays in different
levels is based on the following two principles. As a result of
the multiresolution decomposition, a) the lower levels (finer scales)
offer increased accuracy in comparison with the upper levels (lower
scales), and b) the correlation among samples in the upper levels is
weaker than those in the lower levels, thus improving the convergence
behavior of the LM method as we go down in the decomposition
hierarchy. Based on these principles, a decision rule was arrived at
in order to select the time delays between two levels. If the number
of minima is the same in two consecutive levels, the time delay
information is generally extracted from the lower level due to its
increased accuracy. The discrepancy in the number of minima is
generally caused by high-level noise and clutter in which case, the
time-delay information is extracted from the next level due to the
improved SNR. A simple thresholding operation of the MSE curve
can then result in the estimates of the time delays. It must be pointed
out that the minimum delay separation that can be resolved using
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this TDE method is greatly dependent on the incident signal and its
length, the decomposition level, and the power of noise and clutter.

It is evident that since the signals at subbands are only periodically
time invariant, some inaccuracies in the time delay estimates are
inevitable. However, the hierarchical structure of this sub-band TDE
method can be exploited to improve the accuracy. That is, once the
time delays are estimated at a particular decomposition level, the
estimates can be fine-tuned by repeating the process at the previous
level only in the vicinity of the detected delays. This process can be
continued for several consecutive levels.

B. Adaptation Processes

Consider, for the sake of simplicity, only the final lowpass ap-
proximations for the sequencesx(n) andy(n), i.e., cxN;k and cyN;k,
respectively. The same procedure can also be applied to all the other
subbands. In addition, the lowpass approximationcxN;k�l for the
ith specular component will be used as the desired signal for the
adaptation mechanisms. In this case, the cost function to be minimized
with respect to both the adaptive filter weights and the delayli is
given by

�N =
k

(cxN;k�l �wwwt
kccc

y

k)
2 (8)

wherewwwk = [w0(k) � � �wP�1(k)]
t and cccyk = [cyN;k � � � c

y

N;k�P+1]
t

are the weight vector for the adaptive filter of orderP and its input
vector at timek, respectively. As mentioned before,li is updated
in each sub-band, using a nonlinear adaptation process via the LM
algorithm [9], whereas for every newli, the minimization of (8) with
respect towwwk is performed using the BFTF algorithm [10].

For the time-delay adaptation, the goal is to find, iteratively, the
values ofli that lead to the minimum of the cost function (8). This
is done using the adaptation rule as in

li(t) = li(t� 1) + �li; (9)

wheret is the iteration index, and�li is the updating step. The updat-
ing step�li can be generated using different adaptation approaches
[10]. The LM algorithm is a nonlinear LS-based method that provides
a mean for interpolating between the Gauss–Newton and the steepest-
descent steps. The algorithm possesses quadratic convergence close
to a minimum, where it approximates the Gauss–Newton method,
whereas, when the initial estimates are relatively poor, it converges
like the method of steepest descent [10].

The LM step�li that minimizes�N is given [10] by

�li = Int[(JJJt(li)JJJ(li) + �)�1 � g(li)] (10)

where Int[x] represents the integer part ofx, and the gradient and the
elements of the Jacobian are defined by

g(li) =JJJt(li)��� = 2
k

(cxN;k�l �wwwt
kccc

y

k)
@cxN;k�l

@li
(11)

Jk(li) = 2
@cxN;k�l

@li
= 2N+1

n

x(n)g0N(2N(k � li)� n) (12)

andg0N (�) is computed using the forward difference method [10]. The
parameter� prevents the possibility of singularity ofJJJt(li)JJJ(li)+�:
If this parameter is close to zero, then (10) is reduced to that of the
Gauss–Newton method, whereas if� is greater thanJJJt(li)JJJ(li), then
(10) provides the steepest-descent step. Note that��� represents the
error vector with elementsek := (cxN;k�l � wwwt

kccc
y

k): The selection
of the parameter� in (10) is a crucial step in the application of the
LM algorithm. One method for the selection of this parameter is to
decide whether the cost function at hand is adequately represented by

TABLE I
ACTUAL AMPLITUDES AND DELAYS FOR

THE SIMULATED BACKSCATTERED SIGNALS

a quadratic model so that the convergence of the algorithm to a local
minimum is guaranteed [10]. The criterion can be written as the ratio

v =
�N(li)� �N (li +�li)

JJJt(li)��� ��li + 1=2(JJJt(li)JJJ(li) + �) ��2li
(13)

where the numerator represents the actual change in the value of
the cost function (8), whereas the denominator represents the ideal
change provided by a quadratic model of the cost function. A value
of v equal to or greater than 1 represents an acceptable model
representation, whereas a value less than 1 represents an inadequate
model representation. The value of� is not modified ifv is inside
the admissible modeling region, which is between 0.25 and 0.75 [10].
However, outside this interval, the strategy is to select an initial value
of � and then increase (or decrease) it until the acceptable interval
of v is satisfied.

The second adaptive process considered in (8) involves updating
of the filter weights using the BFTF algorithm [10]. This algorithm
is selected over all the other adaptive schemes because of its
unique features including convergence speed, low computational
requirements, and its suitability for processing the data in blocks.
The weight adaptation is performed once per block of data instead
of per sample of the desired and reference signals. This makes the
algorithm very efficient computationally, compared with other LS-
based schemes. The algorithm consists of two steps. In the first step,
an order update rule is used intrablockwise to successively increase
the order of the filter with the exact solution obtained at theP th
iteration, whereP is the order of the transveral filter. Once the final
weight vector is obtained, the filtering is implemented on the data
within the whole block in one pass.

IV. RESULTS AND DISCUSSION

The TDE scheme was examined on two data sets for simulated and
real backscattered signals. The goal of the first case was to test the
effectiveness of this scheme in resolving multispecular returns with
known locations and amplitudes. Different conditions such as low
amplitude and closely spaced specular components in the simulated
backscattered were considered under different SNR’s. The goal of the
second experiment was to investigate the performance of the TDE on
actual backscattered signals for broad-beam insonification.

A. Results on Synthesized Data

The synthesized backscattered signaly(n) was generated using the
model in (1) with a linear FM incident signal, andsi(n) = Ai�(n),
wheref�ig and fAig; i 2 [1;M ] represent theith delay and the
associated amplitude for theith specular component. Six simulated
backscattered signals were generated. Table I shows the actual delays
and the corresponding amplitudes of each of the components as well
as the SNR values. The sub-band or multiresolution decomposition
using the DWT was first carried out on both signals for three levels
of decomposition using Daubechies (Db6) wavelets [7]. Precautions
were taken to avoid edge effects in computing DWT coefficients
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(a) (b)

(c)

Fig. 2. (a) Linear FM incident signal. (b) Synthesized backscattered signal for the sixth case of Table I (SNR= 2 dB). (c) MSE curve for the sixth case.

for finite length signals by considering symmetric extension of the
original signals. An eighth-order adaptive filter was employed in all
the cases, and the original BFTF was used for adaptation of the
transversal filter weights. The time delay updating steps in the LM
algorithm are determined based on the gradient of the cost function
according to (10). Table I shows the estimated delay values generated
using the TDE scheme for the lowest order approximation in the DWT
decomposition. The backscattered signals in cases 1 and 3 contained
four components with time separation of more than 100 samples,
even though the amplitudes of the third case were small. Case 2
contained components with only 40 samples separation, and case 4
contained three components with more than 100 samples apart, but
the first delay was not at zero. For cases 5 and 6, the delays and
their associated amplitudes are exactly the same as those in case
4, but the SNR values are 10 and 2 dB, respectively. Fig. 2(a) and
(b) present the incident signal and the simulated backscattered signal
corresponding to the sixth case of Table I, respectively.

For the first case, the estimated delay valuesli at the second level
were l1 = 1; l2 = 36; l3 = 72; and l4 = 113 corrected by the
lag corresponding to the maximum weight of the BFTF filter, i.e.,
q1 = 1; q2 = 0; q3 = 0; and q4 = 6; respectively. The results were
then multiplied by2N , i.e., whereN = 2, to provide the estimate
�i’s, as given in Table I. The first delay at zero was estimated
accurately in this case, whereas the second, third, and fourth delays
were estimated with an error of� 2 samples compared with the
actual values at the second level. The inaccuracy in the second delay
estimate may be attributed to the fact that the actual delay was not
divisible by 4. For the second and third cases in Table I, it was
necessary to use the third level of decomposition since the number
of minima did not agree with the number of minima at the second
level. The first delay was estimated accurately. The estimates of the
third and fourth delays have an inaccuracy of one sample compared
with the actual delay values at the third level. This was also true for
the delays in case 3. The third component with the actual delay of
270 was not detected in this case due to its low amplitude. For the
fourth case in Table I, the MSE curves at the second and third levels
agreed in the number of minima detected. The first and second delays
were estimated accurately at 60 and 300 samples at the second level.

For the third delay, the TDE scheme provided an estimated value of
420. The result of this case verifies this important property that the
proposed TDE scheme does not require time alignment of the incident
and backscattered signals. The fifth and sixth cases in Table I show
the robustness of the TDE scheme under low SNR, while the number
of specular components was kept fixed. Both cases were generated
using the actual delays of the fourth case in Table I but with SNR’s
of 10 and 2 dB, respectively. Fig. 2(c) presents the MSE curve for
the sixth case. This curve shows three well-defined minima providing
the estimated delays values ofl1 = 21; l2 = 83; and l3 = 109 at
the second level of decomposition with the corresponding lags of
q1 = 6; q2 = 6; and q3 = 2, respectively. These values lead to the
time delay estimates given in the last row of Table I. The computation
time was measured to be approximately 20 s for each case.

For comparison purposes, a generalized matched filter in [2] was
also implemented on the backscattered signal associated with the last
case of Table I. The estimated delays in this case were found to be
61 and 417. The delay at 300 was not picked up by this method, due
to its relatively low amplitude and the high level of noise.

Finally, to show the ability of the adaptive filter in removing
the effects of the unknown channel, a synthesized backscattered
signal was generated with two components at time lags 0 and
100. These components were then highpass filtered using two fifth-
order Butterworth filters with different cutoff frequencies. This first
component at zero lag was filtered using a filter that passes less than
half of the signal bandwidth, whereas the second component was
only slightly filtered. Fig. 3(a) shows this synthesized backscattered
signal after noise was added to achieve SNR= 2 dB. The proposed
sub-band TDE method was then applied to this signal. The order of
the adaptive filter was five in this case. Fig. 3(b) shows the plot of
the MSE curve at the third level of decomposition and for the lowest
order approximation sub-band. Using the proposed TDE method, the
estimated time delays and the corresponding filter lags were found
to be l1 = 0; l2 = 17; with q1 = 0; q2 = 4; respectively, leading
to the final time delay estimates at 0 and 104. Using the generalized
matched filter, the first delay at zero lag was not detected due to
the severe distortion in the first component and the fact that the
matched filter is not capable of compensating for this distortion. The
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(a) (b)

(c)

Fig. 3. (a) Synthesized backscattered signal with highpass filtering. (b) MSE curve for this case. (c) MSE curve for the no-channel effect case.

(a) (b)

(c) (d)

Fig. 4. (a), (c) Backscattered signals at aspect 0 and 200�. (b) and (d) MSE curves for aspect angles 0 and 200�, respectively.

estimate of the second time delay was found to be 117. The same
experiment was also repeated when the unknown channel effects were
absent. Fig. 3(c) shows the plot of the MSE curve at the third level
of decomposition for this case. All other conditions were the same as
before. The estimated delays using the sub-band TDE method were
found to be 0 and 96. The matched filter method, on the other hand,
provided the estimate of the second delay of 110, whereas the first
one was missed again.

B. Results on Real Data

The proposed TDE scheme was also examined on the actual broad-
beam acoustic backscattered data. This data set consisted of an
incident signal and the backscattered for a submerged elastic target.
The target had the form of a tapered, notched cylinder with flattened
ends and rivets and an aspect ratio of 4 to 1. The target was attached
to a support mounted on a rotator. The transducer and hydrophone
were fixed, and the acoustic backscatter for various target aspect
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angles were measured by pivoting the target lengthwise. Becuase of
the broadbeam nature of the incident, which was a wideband linear
FM, the presence of multispecular returns is inevitable. Fig. 4(a)
and (b) presents the actual backscattered signal at aspect angles
of 0 and 200�, respectively. Note that 0� corresponds to broadside
incidence. Fig. 4(c) and (d) shows the corresponding MSE curves
obtained at the second level for these cases. Two minima are shown
in the MSE curves, indicating two main specular returns with the
first one being the more prominent one. The estimated delays were
found to be 1964 and 2484 for the 0� case and 1376 and 2484 for
the 200� case. The changes in the location of the main specular
return from the target correspond geometrically to the target rotation.
That is, as the target is rotated off broadside (0�), the total round
trip travel time from the transducer to the target and target to the
hydrophone becomes smaller. The delay corresponding to test facility
reverberation, however, remains invariant to target aspect because the
transducer and hydrophone are fixed.

V. CONCLUSIONS

As is evident from the simulation results for several synthesized
and real backscattered signals, the proposed TDE scheme provides
a promising tool for estimating time delays, particularly in a noisy
and cluttered environment. Performing TDE in subbands provides
multiple estimates for the time delays, which are generated inde-
pendently based on the data of each sub-band. This provides a
mechanism for validating the estimates of the time delays in different
levels/subbands. Additionally, as a result of filtering and decimation
processes in each level, the sequences at upper levels are less
correlated than the sequences at the lower levels. Consequently, noise
and other disturbances will be less prominent in the upper levels
than in the original signal domain; moreover, since the signals in the
upper levels are less correlated, the estimates of the gradients in the
LM algorithm will be less noisy. In addition, due to the decimation
process, the signals at upper levels are considerably shorter in
size; hence, the operations in each sub-band can be accomplished
substantially faster than those in the finest scale. A parallel processor
may be used to perform all the sub-band operations simultaneously.
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Rational Sampling Filter Banks Based on IIR Filters

Fabrizio Argenti and Enrico Del Re

Abstract—In this correspondence, the problem of splitting the spectrum
of a digital signal by using nonuniform infinite impulse response (IIR)
filter banks is addressed. Near perfect reconstruction (NPR) is considered.
The method uses the modulation of different IIR prototypes. The cancel-
lation of the main aliasing components constrains the prototypes to be
dependent on each other. By using this approach, linear-phase prototypes
are needed, and noncausal filtering is required. Numerical examples
of filter bank design are given, and the computational complexity is
compared with the finite impulse response (FIR) case.

Index Terms—IIR filter banks, nonuniform filter banks.

I. INTRODUCTION

Filter banks [1] are used in several applications in the field of digital
signal processing to split the spectrum of a signal. A uniform width
subband splitting is usually considered. In some cases, however, a
nonuniform splitting can be preferable. Designing nonuniform filter
banks is more complex than uniform ones. The problem is addressed,
for example, in [2]–[7], where examples of FIR filter bank design
are shown. Here, we investigate the effectiveness of using cosine-
modulated IIR filters to design nonuniform NPR filter banks. The
method is an extension to the IIR case of results presented in [8].
Cosine modulation is widely used to design NPR or PR FIR filter
banks [9], and recently, uniform PR IIR cosine-modulated filter banks
have been proposed in [10]. In most of the cases, the modulation of a
linear-phase prototype is assumed. Since we will exploit some results
based on the linear-phase property of the prototypes, we will impose
this constraint on the IIR case as well so that we will refer, in this
study, to noncausal filter banks. The application of noncausal filter
banks has been discussed in some recent papers, such as [11] and
[12]. Some numerical examples of filter bank design are shown, and
the computational complexity is compared with the FIR case [8].

II. PSEUDO-QMF RATIONAL SAMPLING FILTER BANKS

Consider the scheme shown in Fig. 1, where analysis/synthesis
rational sampling filter banks are shown. In themth branch, a fraction
of the input spectrum equal toRm=Mm is extracted (we will consider
maximally decimated filter banks, i.e.,�m Rm=Mm = 1). The
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