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ABSTRACT

EFFECTIVE TRANSMISSIVITY IN TRANSIENT STREAM DEPLETION

Quantifying the timing of streamflow depletion caused by groundwater pumping wells is
a central issue in the conjunctive management of groundwater and surface-water resources. Itis
an important consideration in regions where water supplies and demands are offset annually by
season and interannually through variable wet and dry years. kuatvester demands,
regulatory policy shifts, and aquifer changes have brought scrutiny to this type of stream-aquifer
interaction. From this, analytical models of stream depletion have received renewed attention
and numerous refinements which have focused primarily on a variety of complex boundary
conditions. The question of representing aquifer heterogeneity through simplified input
parameters in analytical models has not been directly examined for transient stream depletion.

The objective of this researehto identify upscaled transmissivities that effectively
model transient stream depletion rates caused by pumping groundwater wells in heterogeneous
aquifers. To-dimensional heterogeneity is considered, with horizontal anisotropy in spatial
correlation ranges as a primary independent variable. The subject aquifer is relatively narrow,
with an impermeable boundary parallel to a fully connected river boundary.

Using numerical flow simulation and the Monte Carlo approach, stream depletion rate
curves were computed for transmissivity fields constructed under various geostatistical models
of heterogeneity. Effective (expected) and equivalent transmissivitegerring to stochastic
ensemble-mean behavior and to individual realizations, respectiwadye interpreted from the

depletion curves using the Glover analytical solution for stream depletion in a homogeneous,



bounded aquifer. The interpreted effective and equivalent transmissivities were related to
statistical moments of the heterogeneous fields through power averaging.

Effective transmissivity results ranged between the bounding arithmetic and harmonic
means, varying with the spatial correlation structure of the transmissivity field, paatly as
function of geometric statistical anisotropy. Notably, the shape of that function was similar to
what has been derived analytically for steady-state, mean-parallel flow conditions in unbounded
domains. Additionally, there was no apparent difference in effective transmissivity results
between transient stream depletion conditions and steady-state, mean-parallel flow conditions
simulated in the same test domain. Also, unlike some studies on effective permeability under
various transient conditions, no time dependency was observed in effective transmissivity for the
transient stream depletion case.

Results were sensitive to including a nugget effect in the spatial correlation model and to
non-stationarity of the transmissivity field. Results were only mildly sensitive to field variance.
Ensemble-mean behavior was mildly sensitive to correlation scale, but ensemble variance was
strongly sensitive to correlation scale. The latter is to be expected, but is notable for stream
depletion considering that transmissivity correlation is often regional in scale and thus often
large relative to the scale of the pumping well depletion problem. In such cases, the equivalent
transmissivity for a given field and well location was often case-specific and not well-predicted

by the expected transmissivity.
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CHAPTER 1 INTRODUCTION

1.1 Research Motivation

Quantifying the timing of streamflow depletion caused by pumping wells is a central
issue in the conjunctive management of groundwater and surface-water resources. This delay
between pumping operations and consequent stream depletion is an important consideration
where natural resource management policies may limit depletions seasonally and where water-
rights systems may restrict out-of-priority depletion. It can be a crucial factor in regions where
water supplies and demands are offset annually by season and interannually through variable wet
and dry years. Likewise, this timing between aquifer changes and stream respadssgis
and management tool in aquifer recharge projects created for streamstioving and
augmentation.

Increasing water demands, regulatory policy shifts, and aquifer water-level changes have
brought renewed scrutiny to stream depletion mechanics and depletion estimation methods.
This has led to many refinememtsa wide array of stream depletion modela both analytical
solutions and numerical methedbut the refinements have primarily focused on alternative
boundary conditions and more-detailed treatments of complex boundary ca@i@erHuang
et al. 2014). The issue of representing heterogeneous aquifer characteristics as simplified inputs
to such models has not received as much attention. Upscaling local permeability egtimates
heterogeneous aquifers for use in transient stream depletion models has not been directly

examined in the literature.

1.2 Problem Basics
Pumping a groundwater well initially removes water only from aquifer storage, lowering

water leveldo create &o-calledcone of depression in water levels around the well (Freeze and



Cherry 1979). Over time, the depression expands radially from the well and may interact with
hydraulic and hydrogeologic boundaries in the area. If the aquifer is hydraulically connected to
a surface-water boundary such as a river, then the rate of water removed from aquifer storage
(volume/time) will decrease over time as water is increasingly derived from the river. If the river
is the only head-dependent aquifer bouggaesent in the area, then the stream depletion rate
() will eventually approach the pumping ra@)( Stream depletion will also continue for a
period after the cessation of pumping while the cone of depression is filled by water derived
from the river (e.g., Jenkins 1968).

In the Glover analytical solution for stream depletion by wells, the depletioq rate
(volume/time) as a function of time depends on the aquifer transmisJiyity¢ storage
coefficient or specific yieldS), the distance between the well and the river, and the location and
shape of other flow boundaries (Glover and Balmer 1954; Glover 1977). For higher
transmissivities, the time lag between pumping and deplasaimorter, withg/Q = 1 being

approached more quickly, including post-pumping depletion rates that decrease more quickly.

1.3 Research Context

The Glover solution assleshomogenous aquifer transmissivity. A large body of
literature has been devoted to the estimation of single-valued permeabilities that can effectively
represent heterogeneous porous media in analytical models that assume homogeneity or that
otherwise must simplify or upscale heterogeneity. Wen and Gomez-Hernandez (1996), Renard
and Marsily (1997), and Sanchez-Vila et al. (2006) provide extensive reviews of that literature.

In the effective transmissivity concept, the goal is to replace a medium that has spatial
variability in transmissivity by a medium with a single value of effective transmissigy (

while preserving selected hydraulic behavior(s) of the original medium (Smith and Freeze 1979;



El-Kadi and Brutsaert 1985, and others). A complete definitidisofequires specification of

which hydraulic behavior is intended to be preserved (El-Kadi and Brutsaert 1985; Sanchez-Vila
et al. 2006). For example, targeted behavior could include average head over the flow domain,
drawdown near pumping wells, flux at hydrogeologic boundaries, etc. Specification of the
targeted behavior is necessary sifigeis not necessarily an intrinsic property of the medium
rather, it may depend on the type of targeted behavior plus flow and boundary conditaons for
given application. In this research, the targeted behavior is the rate of stream deg)latmn (

the flux rate at the river boundary.

The body of available research has shown that effective permeability behavior is
complex. In addition t@ being a function of certain geostatistical characteristics of the
heterogeneous mediunjs also a function of flow-domain dimensionality (i.e., one-, two-, or
three-dimensional), of whether the flow regime is generally mean-parallel or convergent, and
whether the flow is transient or steady-state. Effective permeability can also be a function of
boundary conditions and location within the domain with respect to boundaries (Sanchez-Vila et
al. 2006; Gomez-Hernandez and Gorelick 1989; Sanchez-Vila 1997; Riva et al. E601
example, for a pumping well in a bounded domain and steady-state flow, Riva et al. (2001)
found effective transmissivity to be a non-monotonic function dependant on location between the
well and the boundary. In summary, estimating an effective transmissivity that represents
heterogeneous aquifer conditions is not simply a function of the heterogeneous medium
characteristics; it can be specific to the flow scenario being considered.

Effective permeability estimates for various flow regimes and boundary scenarios are
discussed in the literature review (Chapter 2). Despite some cases with general sinsilatity

as three studies of steady-state flow and pumping wells in bounded derwaih® author’s



knowledge, the effective permeability literature does not inchiudieect analogy for the case of

transient stream depletion from pumping wells.

1.4 Objective

The primary objective of this researigio identify effective transmissivities for the case
of transient stream depletion caused by pumpiggpundwater well in a heterogeneous aquifer
that is hydraulically connected to a river. A secondary objective is to evaluate the sensitivity of
that effective transmissivity behavior over a range of geostatistical model assumptions and

conditions.

15 Scope

As noted previously, transient stream depletion refers to the change in the depletion ra
over time. This refers to thetal rate of river depletion at a given time. The depletion rate is
also variable spatially and is distributed over a river reach that is several times longer than the
distance between the well and the river (Glover 1977). Stream depletion is, therefore,
relatively large-scale phenomenon.

Spatial variations in the depletion rate along a ris@nbe relevant in certain applications
(e.g., Fleckenstein et al. 2006), and such local-scale spatial variability may be quite high due to
heterogeneities along the river. Considering spatial variations is not within the scope of this
work. The spatially variable local depletion rates are aggregated into a total depletion rate that is
the subject of this research and the interest of many water management applications. The goal is
to identify an appropriate averaging process for heterogeneous aquifer transmissivity such that
the upscaled (averadgtransmissivity effectively predicts the timing of that total depletion rate.

The flow regime and boundary-condition scenario considered in this research is a

relatively narrow, two-dimensional aquifer bounded on one side by a straight constant-head



boundary representing a river, and on the other side by a zero-flux boundary, oriented parallel to
the river, representing an impermeable aquifer boundary such as the edge of a valley-fill aquifer.
Changes in saturated thickness due to pumping are assumed to be small relative to the initial
saturated thickness. The problem domain scale considered, and more importantly the
correlation scale of the heterogeneous field relative to the domainiscajgresentative of the
typically large correlation scales reported for transmissivity (Rubin 2003; Anderson 1997; Dagan
et al. 2009).

Simulations are limited to the case where the pumped groundwater volume is equal to the
sum of changes in aquifer storage plus induced leakage from a single straight river boundary,
i.e., there are no other head-dependant flux boundaries present. Thetreated as fully
penetrating the aquifer depth and with a permeable riverbed, or otherwise sufficiently connected
to the aquifer to function as a constant-head boundary.

This research applies equally to stream accretions (i.e., streamflow gains) caused by
localized aquifer recharge, such as managed aquifer recharge operations. To be concise, the term
stream depletion or the more general termsponse curve is used herein to refer to both stream

depletion and accretion.

1.6 Methods Synopsis

Geostatistics offers tools to characterize, quantify, and model subsurface heterogeneity.
It does this by accounting for the spatial continuity that is an identifiable feature of many natural
phenomena (Isaaks and Srivastava 1989; Anderson 1997). Geostatistical modeling supports the
stochastic approach to characterizing groundwater behavior, in which parameter variability and
uncertainty are acknowledged and accounted for by specifying an assumed or estimated mean

and variance of aquifer parameters (Anderson 1987oal of the stochastic approach is to



identify effective behavier-meaning the outcome expected on averaged to consider
uncertainty around that expected behavior.

An effective transmissivity models expected behavior, and as such is an average over
probability space, referring to the stochastic view of aquifer characteriz&gunval ent
transmissivity refers to a transmissivity that models response behaviargigen aquifer
realization. Invoking ergodicity, at large enough domain scales the equivalent and effective
transmissivities are expected to be similar (Sanchez-Vila et al. 2006).

Effective transmissivity for transient stream deplei®examined in this research
through a Monte Carlo numerical simulation approach. Aquifer transmissiwgatedasa
statistically anisotropic, spatially correlated, random variable. Approximately 11,000
realizations of synthetic heterogeneous transmissivity fields were generated using unconditional
sequential Gaussian sinaibn (Deutsch and Journel 1998). The primary cases considered are
stationary fields with different degrees of heterogeneity and geometric anisotropy in the spatial
correlation patterns. Fields with non-stationarity, zonal anisotropy, and other geostatistical
model variations are also evaluated.

Equivalent transmissivity, again referring to a single realization, is an average over
physical space, such as averaging local transmissivity values over the domain of a given aquifer.
In this research, however, that equivalent transmissivity is first identified through interpreting
observed (simulated) response behavior for each realization. Indeed, the motivation for this
research is the absence of literature on estimating equivalent or effective transmissivity from the
local field properties for the specific case of transient stream depletion. The goal herein is to
address that limitation empirically by simulating and interpreting the depletion rate response and

relating those results to the spatial statistics of the transmissivity field.



A transient finite-difference numerical model simulation of each heterogeneous aquifer
realization was used to determine depletion rates from the river boundary occurring in response
to aspecified-flux boundary condition (well pumping) started in the aquifer at time zero. The
equivalent transmissivity for each field realization was identified from the simulated response as
that transmissivity that results in a best fit between the heterogenguoifss’s depletion rate
curve and the Glover analytical solution for stream depletion in a bounded homogenous aquifer
(Glover and Balmer 1954; Glover 1977; Knight et al. 2005). Statistical moments of the
ensemble simulation results then identify effective (expected) transmisSiaityhez-Vila et al
2006).

In this research, effective and equivalent transmissivities are related to the first and
second statistical moments of the transmissivity fields through the power-average or power-mean
function (Gomez-Hernandez and Gorelick 1989; Desbarats 1992b; Wen and Gomez-Hernandez
1996 Ronayne and Gorelick 2006; de Dreuzy 2010). Ensemble and individual realization
results are presented in the form of power-mean exponents which yield the effective and
equivalent transmissivities when applying the power-mean function to the heterogeneous
transmissivity fields. In essence, the ensembles of power-mean exponents produced in this
research indicate, as a function of certain geostatistical properties of heterogeneous
transmissivity fields, what form of average to use for an effective transmissivity in models of

transient stream depletion.

1.7 Organization
Chapter 2 reviews the literature on effective permeability estimation for different
groundwater flow regimes. degent publications on stream depletion modeling are also noted.

Chapter 3 describes the methodology used in performing the Monte Carlo simulatioms and



interpreting and quantifying simulation output. Chapter 4 presents the primary results of this
research. Those results are relationships observed between effective transmissivity (expressed as
effective power-mean exponents) and various geostatistical models of aquifer heterogeneity.
Chapter 5 provides a sensitivity analysis of some of the geostatistical conditions assumed for the
simulakdheterogeneous fields. Chapter 6 presents field case examples that were analyzed for

comparison to the synthetic aquifer results. Last, Chapter 7 presents discussion and conclusions.



CHAPTER 2 LITERATURE REVIEW

A few recent publications on stream depletion by pumping wells are highlighted in
Section 2.1. Earlier stream depletion publications and a general history of analytical stream
depletion models are notadMiller et al. (2007).

A review of effective permeability literature is presented in Section 2.2, organized by
type of groundwater flow regime. Presentation of the power average, a key part of the methods
presented in Chapter 3, is also included (Section 2.2.4). The literature available for effective
permeability in statistically anisotropic, heterogeneous porous media under steady-state mean-
parallel flow is discussed in Section 2.2.5. That flow regime provides an import point of

reference for the results presented in Chapter 4 for transient stream depletion.

2.1 Recent Publicationson Stream Depletion by Pumping Wells

2.1.1 General Reviews and Analytical Solution Developments

A general overview and background on natural resource management issues and
groundwater concepts involvadthe topic of stream depletion by pumping groundwater wells
can be found in Barlow and Leake (2012). Kendy and Bredehoeft (2006), Bredehoeft and Kendy
(2008), and Bredehoeft (2011) discussed the transient nature of stream depletion by pumping
wells and associated implications on water management.

Hunt (2014) reviewdthe capabilities of most of the recent advancenalytical stream
depletion models. Butler et al. (2007) and Zlotnik and Tartakovksy (2008) present analytical
modeling that includes induced leakage from an underlying aquitard. They note such leakage can
significantly impact stream depletion rates at certain scales. Huang et al. (2014) have also

presenéd new analytical solutions generalized for a few different aquifer and boundary



configurations. It is noteworthy, considering part of the motivation for this dissertation (Section
1.1), that Huang et al. compiled tables listing 25 variants of analytical models of stream

depletion, 22 of which were published within the last 16 years.

2.1.2 Stream-Aquifer Interactions with Heterogeneity

Fleckenstein et al. (2006) showed that intermediate-scale heterogemsgning in
their case the arrangement of hydrofacies underneath and near thecenerreate significant
spatial differences in the stream seepage (loss) rate on the Cosumnes River in California. Such
spatial variability was significant for low-flow management by leading to variability in which
sections of the river were hydraulically connected to water table changes, a complexity that a
homogenous model failed to capture. They found total-river annual net depletions to be
generally similar in their six different hydrogeologic model realizations, but variability in the
location and rates of seepage loss led to different estimates about how many days the river would
be open for salmon migration runs. Their work has implications for parameter upscaling in such
applications (see also Fleckenstein and Fogg 2008) and for questions about data sufficiency in
characterizing stream-aquifer interactions at their scale of focus.

Engdahl et al. (2010) constructed numerical groundwater flow models of the Rio Grande
alluvial aquifer in New Mexico, with one homogeneous model and six heterogeneous conditional
realizations. They simulated steady-state river losses under different river stages. Among other
things, they found a decrease in stream loss with increasing heterogeneity and that a homogenous

model of that system may over-predict stream loss.

2.2 Effective Permeability Literature
The estimation of single-valued effective or equivalent parameters that can be

representative of heterogeneous porous media has been considered repeatedly in the literature.
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Research has included specific yield and unsaturated-flow parameters, among other things, but
the largest body of research has focused on hydraulic conduddyity(en and Gomez-

Hernandez (1996) and Renard and Marsily (1997) provided general reviews of the\topic.

variety of specific aspects are found in numerous works (e.g., Vermeulen et al. 2006; Neuman
and Federico 2003; Gelhar 1993). Sanchez-Vila et al. (2006) provided an extensive review on
representative hydraulic conductivities, including discussion of the concepts and methods
commonly used in that body of research. At 46 pages and containing around 270 citations, their

review is a testament to the breadth and depth of the subject.

2.2.1 Steady-State Uniform Flow

Cardwell and Parsons (1945) showed, analytically and with electric-analog experiments,
that equivalent permeability, conceptualized for a heterogeneous oil sand in their case, was
bounded by the arithmetic and harmonic means of the volume-weighted permeabilities in the
formation. Actual values were noted to lie between the bounds. These are sometimes referred to
as the Wiener bounds in hydrogeology (Renard and Marsily 1997) and in fields such as
composite materials engineering.

Many groundwater textbooks demonstrate where the Weiner bounds are precisely
correct: the arithmetic mean for steady, uniform, one-dimensional (1D) flow oriented parallel to
lithologic layering, and the harmonic mean for such flow oriented perpendicular to the layers.
Those bounds are strictly correct only if the layers are laterally extensive or flow is constrained
from lateral flow around lowk layers by boundaries (e.g., permeameter tube walls). For other
flow regimes and heterogeneity types, such as a series of lenses instead of extensjteclayer
averaged permeability falls between the bounds (Gelhar and Axness 1983; Sanchez-Vila et al

2006).
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Warren and Price (1961) showed through statistical analiydigital modeling
experiments that “the most probable behavior of a heterogeneous system with single-phase flow
approaches that of a homogeneous system having a permeability equal to the geometric mean of
the individual permeabilitie’s Matheron (1967) is frequently cited (e.g., Lachassagne et al.

1989; Wen and Gomez-Hernandez 1996) for demonstrating mathematically that the effective
permeability lies between the harmonic and arithmetic means and that the average permeability
in two dimensions (2D) is equal to the geometric mean under certain restrictions.

Equivalent permeability has been shown to vary below and above the geometric mean for
one and three dimensions, respectively, but in 2D the geometric mean has been frequently
observed to reasonably represent average behavior in heterogeneous systems (Dagan 1979;
Gomez-Hernandez and Gorelick 1989; Lachassagne et al. 1989; Wen and Gomez-Hernandez
1996; Sanchez-Vila 1997). For effective hydraulic conductiWiy)(in unbounded domains
undern-dimensional flow, the following relationships were developed by Gutjahr (1978) and

Dagan (1979):

Ken =[exp(uy)](1—"—gj n=1 (2-1)
Ker =eXP(24) n=2 (2-1b)
Ker =[exp (uY)][1+ %YZ] n=3 (2-1c)
Or, equivalently:
Ker =[0X0 (18,)] (1{1 —ﬂa&] 22)
2 n
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wherepy ando? are the mean and variance, respectively, of the natural-log-transfétify of

In(K)) (Gomez-Hernandez and Gorelick 1989; Sanchez-Vila et al)2006e relationship given

for 2D yields the geometric mean. These relationships were developed for low variance. Gelhar
and Axness (1983) conjectured the following as an extrapolation valid forofarges written by

Sanchez-Vila et al. (2006):

Kar =[ex0(1,)] exp([%—%jo&) (2-3)

2.2.2 Steady-State Radial Flow

Cardwell and Parsons (1945) reported that the arithmetic and harmonic bounds also
applied to the radial case with the addition of weighting permeability values by their inverse
square distance from the well. For drawdown at a well, Desbarats (1992a, 1993) suggested a
geometric mean of point (local)values weighted by the inverse square distance from the well
and found agreement with a numerical model. According to Renard and Marsily (1997),
Matheron (1967) noted that his proof for using the geometric mean in heterogeneous media does
not necessarily hold for radial flow.

Sanchez-Vila (1997), using an analytical approach, found for steady-state radial flow in a
statistically isotropic field that apparent effective transmissivigy) \Wwasa monotonically
increasing function of distance from the well. It was approximately the harmonic nedhene
pumping well and asymptotically approached the geometric mean with distance from the well. It
was stressed thats is not a value solely defined by the statistical properties of the

heterogeneous field, but “rather it depends on the choice of boundary conditions”.
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Riva et al. (2001) used analytical methods, supported by numerical Monte Carlo
simulations, to consider apparent transmissivity under steady-state radial flow to a well in a
radially bounded heterogeneous aquifer. Their apparent transmissivity, which was defined as the
ratio of expected flux to head gradient as a function of radial distance from the well, was a non-
monotonic function of distance found to be the harmonic mean at the well, to trend toward the
geometric meanT() at intermediate radial distances, and then to increase to ahovar the
boundary.

Not all studies have found consistent conclusiond §gfor flow toward wells (Sanchez-

Vila et al. 2006). The results of Sanchez-Vila (1997) noted above, and the spatial variability of
apparent transmissivity found by Riva et al. (2001) highlight that effective permeability in
porous media may be specific to the particular location and boundary conditions considered.

Desbarats (1992dound “that the expected block transmissivity decreased from the
ensemble arithmetic mean to the ensemble geometric mean as the field size became large
compared to the range of transmissivity spatial correlation.” Desbarats (1993) considered
steady-state interwell transmissivity between an injection well and a pumping well in a
heterogeneous aquifer and found good agreement with a harmonic average of the effective
conductivity around each well via the averaging scheme of Desbarats (1992a), the latter being a
radial-distance-weighted geometric average around each well.

On the surface, Desbarats (1993) looks to be a perfect analogy for stream depletion since
it uses the same dipole image well configuration as, for example, the Theis and Glover solutions
for stream depletion (Theis 1941; Glover and Balmer 1954). However, Desbarats (1993) was

relating steady-state flow between the wells to drawdown at the wells, while the stream depletion

14



case is interested in the transient flux evaluated at the stream boundary which would be mid-way

between the two wells of the Desbarats analysis.

2.2.3 Transient Flow and Other Conditions

Numerous researchers have reported effective hydraulic conductivity values that vary
with time, distance from the well, or other scale effects (Freeze 1975; Vandenberg 1977; El-Kadi
and Brutsaert 1985; Indelman and Dagan 2004; Sanchez-Vila et al. 1996; Sanchez-Vila 1997;
Desbarats 1992&babou and Wood 1990; Naff 1991; Dagan 1982; Riva et al. 2001). Freeze
(1975) was an early and influential paper using stochastic modeling to demonstrate the
significant impacts of heterogeneity (Anderson 1997). Among other things, Freeze reported that
effective hydraulic conductivity for transient flow changed with time. Vandenberg (1977) found
through a numerical modtiat effective transmissivity varied with time and distance from the
well and that, for the normally distributed transmissivity field used, an arithmetic average closely
matched the Theis curve for transient drawdown in an equivalent homogeneous aquifer.
Desbarats (1992aoted that it isn’t clear if Vandenberg’s arithmetic average accounted for his
progressively finer model grid spacing near the pumping well. The result, therefore, was
possibly an arithmetic average effectively weighted by distance from the well.

Meier et al. (1998) foundies to be close tds for several numerically modeled cases of
transient radial flow, although cases with well-connected high transmissivity zones Vigided
greater thas. Meier et al. also observed tHat; estimated from late-time drawdown data at
monitoring wells in simulated pumping tests was generally close th.4lexpected for parallel
flow. This was viewed as an encouraging result due to it partly validating the commonTuse of
derived from radial-flow pumping tests to uniform flow applications. Similarly, Indelman

(2003), using analytical methods and considering three-dimensional heterogeneity, reportedly
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showed transmissivity from late-time pumping test drawdown to be precisely the effective
conductivity for uniform horizontal flow.

In a transient analysis, Dagan (1982) found Thatvas time dependent, dropping from
the arithmetic mean initially tanexpected steady-state value (e.g., Equations 2-1 to 2-3) during
a relaxation time. Dagan found this relaxation time to be small in 3D under certain realistic
aquifer parameters, but cautioned that for 2D it could be large due to the typically large
correlation scales of transmissivity.

El-Kadi and Bruseert (1985) also observéd; to vary with time in transient numerical
simulations, with this temporal variation increasing with increased heterogeneity. They
evaluateK¢ for transient discharge to a river boundary under gravity drainage of an adjacent,
connected, and bounded aquifer (i.e., no pumping, just natural drainage to the river under a
falling water table condition, such as after a sudden river stage change). Theldptmbde
greater thats and close to the arithmetic mean for early time, and approximately edGal to
for late time. El-Kadi and Brutsaert noted that in their studies this relaxation time was shorter for
smaller variance iK.

It appears to ik author that the El-Kadi and Brutsaert (1985) observation of a high
(arithmetic) early-timdeq may have been a consequence of their flow domain and relatively
coarse model discretization. At early time, most flow was taking place from drainage of, and
flow across, the first one or two columns of their model, the columns along the river boundary.
That flow would have been similar in nature to 1D flow across a parallel set of resistances and
not through a series of resistances, thus behaving as an arithmetic meax bloitlevalues in

the first one or two columns.
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2.2.4 The Power Average

Thepower mean or power average has been used in many works to upscale or otherwise
characterize effective permeability (e.g., Gomez-Hernandez and Gorelick 1989; Desbarats
1992b; Ronayne and Gorelick 2006; de Dreuzy 2010; and other examples listed in Wen and
Gomez-Hernandez 1996 and de Dreuzy 2010). The power average can be written as:

| (2-4)

K@) =|=ZNE)?

in whichK(p) is the power-averagd€land the exponemtis used in the range -1p< 1.

The power average includes the following classical means: the arithmetic mean Xor
the harmonic mean fqgr=-1, and the geometric mean in the limitpot zero (Gomez-
Hernandez and Gorelick 1989, and others). But, it is not limited to those;niedss provides
a continuum of intermediate values. The following inequality holds between the three means:
harmonic < geometric < arithmetic. Note that power averaging is done wkKhahE data
values in real space, even though some of the mathematical relationships of the power average
are based on normality of the log-transformed data.

The power average is sometimes referred to as a generalized mean, and also as the power
norm yielding the p-norm of the input data (e.g., Gomez-Hernandez and Gorelick 1989).
However, since the p-norm term appears to have a specific meaning in vector mathematics, the
function is discussed herein as a power average or power mean and notegyatid T(p).
The power-average exponepj yielding the appropriat&es or Teq from theT-field data is

referred to as an effectiye(perr) or an equivalenp (peg), respectively.
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Ababou and Wood (1990) and Sanchez-Vila et al. (2006) note the following
relationships apply when the distributionkofor T) is log-normal: K(p) = Kg(Ko/Kn)°?, K(p) =

Kg(KA/KG)p and:

K(p) = Kg exp(p a*12). (2-5)

A power mean can therefore be computed simply from knowing the statistical moments
of the datad’y andKg), rather than empirically computing it from the field data of a given
realization (Ababou and Wood 1990). The former approach can provide a lower computational
burden in cases such as Monte Carlo simulations.

It is useful to characteriZBq andTes by the power-mean function. First, it allows for
intermediate values between the discreet classical Pythagorean means (arithmetic, geometric, and
harmonic), a capability which is needed for media that is correlated but not perfectly stratified
(Gelhar and Axness 1983; Sanchez-Vila et al. 2006). Another advantageatis¢hbds for
varianceg?. In characterizing effective permeability relationshig,andKe are commonly
normalized by the geometric mean of the heterogeneous field, but thisTgatitsf increases
with increasing variance’y even with all other things equal. (For examplgTe = 1.649 for
02y = 1.0, andla/Tg = 2.718 forc? = 2.0. ThisTx/Tg ratio is illustrated in Figure 2 of Sanchez-
Vila et al. (2006) as a function ofy and as a function gf ando?, in Chapter 3 heie.) In
contrast, the arithmetic mean is givendy 1 no matter the variance level, allowing for a more
direct comparison of averaging processes for fields of different variance. On the other hand, use
of the power average could lead one to overlook the fact that for low heterogeneisf{low
there may be little practical difference betw@anTgs, andTy.

Gomez-Hernandez and Gorelick (1989) determined bgsefiponents from a numerical

model that generally corresponded with a heterogeneous field site. Their model of an
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unconfined aquifer included 10 pumping wells, zoned heterogeneity potentially representing
different geologic zones, and a riverbed with spatially variable leakance. Theypfound
exponents of -0.4 and -0-2values between the harmonic and geometric metmbest match
modeled heads on the average. However, this was noted as being influenced by the behavior
near the wellskKs was reported as appropriate away from the wells@pdor their overall

system reverted (increased)dg when the wells were turned off. Ababou and Wood (1990)
commengdthat GomezZdernandez and Gorelick’s model may have also behaved partly as a 1D
system, thus lowerin@es below the geometric mean expected for a 2D system (Equation 2-1).

Ronayne and Gorelick (2006) used power averaging and numerical simulation to
characterize effective permeability in two-dimensional, binary-media systems of branching
channel networks. They examined dependence of the effective power-average exponent on
certain metrics that characterize the structure of the channel network. The purpose was to
facilitate predictive modeling that didn’t require numerical modeling.

The focus of de Dreuzy et al. (2010) was to evaluate the validity of power averaging for
permeability upscaling. They considered a variety of lattice percolation networks. Their work
did not include anisotropy or large-range correlation. A conclusion was that power averaging
was strictly valid only for a limited case, but that it gives an approximation of upsaaéing

precision within a few percent of the possible exponent range.

2.2.5 Steady-State, Mean-Parallel Flow in Statistically Anisotropic Media

Gelhar and Axness (1983) developed an analytical estimate for dire¢tignala
statistically anisotropic, 2D, infinite domain under mean-parallel flow conditions. Mean-parallel
or mean-uniform flow refers to flow lines that are patalle average at the marcro scale, i.e., no

source/sink areas with convergent flow, but flow lines are not necessarily parallel at the local
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scale in heterogeneous media. Sanchez-Vila et al. (2006) state that Gelhar and Axness may have
been the first to address that statistically anisotropic problem, and they wrote Gelhar and

Axness’s 2D result more explicitly as:

Kerpi = Ke [1 + oy (% B /11?12)] (2-6)

wherei,j = 1,2;i #j; and\; and\; are the correlation scales in the principal directions. The

following generalization was proposed to extend Equation 2-6 to the dom&in>ot (Gelhar

and Axness 1983; Paleologos 1994; Sanchez-Vila et al. 2006):

Kops = s exno? (- 25)

Ababou (1991) conjectured the following estimate for the power-average exponent
(Equation 2-4) for the case of steady-state mean-parallel (SSMP) flow in statistically anisotropic

aquifers (Ababou 1991; Sanchez-Vila et al. 2006):

: -1\"1
pi=1- n Ay = (% Yt A ) (2-8)
wheren is the dimensionality of the problem, akidis the harmonic average of thelirectional

correlation scale$,. For the two-dimensional case this can be written as:

(2-9)
If Equation 2-5 is rewritten as:

Pert = 2 IN(Ker!Ka)/ 6% (2-10)

and Equation 2-7 is substituted #u/Kgin Equation 2-10, then it is seen that Equations 2-9
and 2-7 are equivalent. Desbarats (1992b) noted they are equivalent for the three dimensional

case as well. These functions are plotted in Chapter 4.
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2.2.6 Existence ob Comprehensive Effective Permeability

In a summary paper, Anderson (1997) noted that many researchers have questioned the
existence of a unique value for effective hydraulic conductivity, including Smith and Freeze
(1979), El-Kadi and Brutsaert (1985), Gomez-Hernandez and Gorelick (1989), Neuman and Orr
(1993), and Williams (1988). Williams (1988) was a qualitative critique, including questioning
the validity of treating heterogeneities such as fractured rock zones as random processes. Others
based their conclusions on the results of Monte Carlo simulations of hypothetical aquifers.

In light of the sensitivity oKes to pumping well operations, boundary conditions, and
other aspects specific to their simulations, Gomez-Hernandez and Gorelick (1989) concluded
there was not a unique best-fit effective conductivity for their modeled scenario. Ababou and
Wood (1990) concurred and added that different possible fit-assessment criteria (e.g., overall
head distribution, drawdown at wells, or flux) also complicate the concept of a single best-fit
effective conductivity.

Sanchez-Vila et al. (2006), Fogg (1986), Meier et al. (1998), and others have noted that
the degree of connectivity of the transmissivity field strongly influences effective parameters and
that stochastic theory has not been able to characterize this connectivity outside of using
numerical experiments. Wen and Gomez-Hernandez (1996) cite several studies which conclude
the effectivep exponent to be case specific (e.g., Desbarats 1992b).

A summary point is that one can find, with theoretical and physical basis, various
estimates of the expected relationships between an upscaled or a¥eegkd stochastic
representation of heterogeneity, but caution is in order when using those relationships. The

relationships, including those presented in Chapter 4, are not solely a characteristic of the media
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but, rather, are also a function of the flow and boundary conditions. The degree of applicability

will also depend on how well a given heterogeneous field can be characterized stochastically.

2.2.7 Evaluation Methods and Conceptual Assumptions

Analytical approaches on estimating effective parameters are often restricted to low
degrees of heterogeneity (low variance in the log-transfokrfezld) and domains that are
unbounded or with idealized boundary conditions. For less restrictive approaches, or to test the
analytical derivations, numerical simulations and Monte Carlo methods are commonly used.
Anderson (1997) provides this discussion:

“...a number of researchers have used numerical models to calculate an effective
hydraulic conductivity (or transmissivity) and then to compare the result with the value
expected fromtheory. The approach isto generate a hydraulic conductivity field and
then cal culate flow rates through the system under an imposed head gradient. Most of
these experiments use a hydraulic conductivity field generated by a random-field
generator using a Gaussian model. Multiple versions of the hydraulic conductivity field

may be produced using Monte Carlo simulations, or a single realization may be used.”

At least one researcher used a physical experiment, a heterogeneously packed sand tank
with one realization, for testing equivalent hydraulic conductiiy)(and compaedthe result
to theoretically expected values (Danquigny et al 2004

The result of a pumping test is an upscdlgahat is in reality comprised of sme
scale vertical and horizontal heterogeneity. Given that the pumping test is fundamental in
hydrogeology, the meaning ®, obtained from pumping tests has been explored in the
literature for heterogeneous conditions (e.g., Meier et al. 1998, and)othéssnoted that the
validity of treatingTes simply asKess multiplied by saturated thickness appears to be an open
guestion in some cases (Tartakovsky et al. 2000; Dagan et al. 2009), but for this work it is

assumed the point-scale or model grid-sdakalues have been determined (upscabgd)
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pumping tests and therefore are valid loGglestimates. Numerous investigations in effective
permeability have worked on the 2D flow case and have tr@adsd large-scale, spatially

correlated random variable as is done in this work (Dagan et al. 2009; Sanchez-Vila et al. 2006).

2.2.8 Summary Points from Effective Permeability Literature Review

The following summary is made from the preceding literature review:

e The geometric mean of local-scale transmissivity has been frequently shown to
approximate larger-scale system behavior in heterogeneous isotropic fields, away
from flow boundaries, in steady-state mean-parallel flow (e.g., Gutjahr 1978;
Dagan 1979; Wen and Gomez-Hernandez 1996; Sanchez-Vila et al. 2006).

e Drawdown near wells may be best approximated by mezalues lower than the
geometric mean, but, with increasing distance from the well in isotropic
unbounded conditions, the apparent transmissivity has been reported to approach
the geometric mean, and to show non-monotonic changes with increasing distance
from the well in a bounded domain (Sanchez-Vila 1997; Riva et al. 2001)

e Based on early stochastic research, it had been proposed that there may be no
comprehensively applicables in transient cases since effective parameters were
reported to vary with time. In several caskg,was reported to start near the
arithmetic mean and then approach a loWwgivalue expected for steady-state
(e.g., Dagan 1982; El-Kadi and Brutsaert 1985).

e Estimates oK andTes are specific to given boundary conditions, flow regime
(i.e., convergent or mean-parallel), and dimensionality of the domain (Sanchez-
Vila et al. 2006). Even within a given flow regime and boundary scenario,
apparent transmissivity has been reported to vary with location between a

pumping well and a domain boundary (Sanchez-Vila 1997; Riva et al. 2001).

Estimating stream depletion rates during the transient phase of the stream-aquifer
pumping response is the interest of this dissertation since, at later time, the depletion rate

approaches the pumping rate. Spatially, it is a relatively large portion of the aquifer that
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influences the transient response. The stream depletion flow regime is a mix of radial and near-
uniform flow (mean-parallel) conditions, and a stream boundary and pumping well are inherent
problem conditions. The literature suggests effective transmissivity is potentially a function of
all these conditions.

As stated by Sanchez-Vila et al. (2006), the concept of representative hydraulic
conductivities, including the existence atthal values of these parameters, “depend on the
flow regime, boundary conditions, and assumptions regarding the underlying structure of the
spatial random function hydraulic. This has led to a large variety of methods and’results.

Of the published theoretical and experimental evaluations of effective hydraulic
conductivity and transmissivity, the case of transient stream depletion induced by groundwater
pumping in an adjacent aquifer, or conditions directly analogous to that case, have not been

addressed.
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CHAPTER 3 METHODS

3.1 Scaleand Behavior of Interest

This research considers the case of transient stream depletion caused by initiating a point
stress (e.g., pumping well or recharge facility) in a bounded, heterogeneous aquifer that is
hydraulically connected to a river. Transient stream depletion refers to the change in the total
rate of depletion to a river over tim&he depletion rate also varies spatially along the river, but
in the realm of conjunctive use and stream-flow management, one impact of interest is the total
reduction in stream flow, i.e., integration of the spatially variable depletion rate over the length
of the river.

The length of the impacted river reach is proportional to, and several times longer than,
the distance between the well and the river (Glover 1977). Stream degetiwrefore, a
relatively large-scale phenomenon. For wells far from the river, it may be regional in scale.

Transmissivity T) typically exhibits spatial correlation at scales of hundreds to thousands
of feet (Rubin 2003; Dagan et al. 2009). The correlation scale relative to the scale of the flow
problem is relevant in stochastic work as it affects ergodic behavior, i.e., how well deterministic
spatial averaging approaches probabilistic averages as the flow area or averaging area increases
(Deutsch and Journel 1998). For this reason, absolute problem dimensions are relevant in this

work and are described in the following section.

3.2 Key Conceptsin Stream Depletion M echanics
A contour map of simulated groundwater drawdown around a pumping well, in an
aquifer bounded by a river and an impermeable boundary, is shdwguire 3-1. This

illustrates a pumping well’s cone of depression reaching and interacting with the river and
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aquifer boundaries. This could equally be contours of groundwater mounding around a recharge
facility. Examples of drawdown patternsamomogeneous aquifer (top) and a heterogeneous

aquifer (bottom) are included.
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Figure 3-1. Contour map of drawdown around a pumping well illustratingactean with a river boundary.
Included are examples of drawdown patterns in homogenous (peserogeneous (bottom) aquifers.

Pumping creates a perturbation in the aquifer (the cone of depression) which expands
radially from the well with time. Interaction between the perturbation and the river creates a
change in the rate of water exchange between the river and the aquifer. The total stream
depletion rate increases, and a longer river reach is affected, as time increases (Glover 1977).
The perturbation expands until a new equilibrium with the river is reached.

The change in the preexisting river-aquifer exchange rate occurs due to the groundwater

level and gradienthanges created along the river by the well. Stream depletion is a reduction in
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the streamflow from that which would have been present absent the groundwater pumping. For
example, streamflow depletion occurs if theraiisduction in the rate of groundwater discharge

to the river, even if the river is still gaining groundwater discharge. Depletion can also be an
increased loss rate ariver that was already losing water to the aquifer.

Since the behavior of interest is the change in exchange rate and not the absolute
exchange rate, and since the governing differential equations are linear, this permits
superposition of depletion patterns in time and space, such as for multiple wells and intermittent
pumping schedulest permits assessing depletion location and rates generally without regard
for the prior regional gradient and the prior gain/loss patte@radient changes caused by
pumping can be superimposed on a prior regional gradient, or, as in the simulations herein, they
can be imposed on an initially flat water table that has zero river-aquifer exchange as the pre-

pumping baseline condition.

3.3 Heterogeneous Behavior of Interest

As a cone of depression expands around a pumping well and reaches a river (F)gure 3-1
the portion of the river closest to the well is first affected. Over time, the loss rate at that point
increases and an increasingly wider reach of the river is also affected. This is illustrated in
Figure 3-2 andFigure 3-3 which plot local (per unit length) stream depletion rates along the
river for the model simulations depictedFigure 3-1.

In these examples, the river boundary is 45,000 ft long, the aquifer width between the
river boundary and a parallel impermeable aquifer boundary is 10,000 ft, and the pumping well
is located in the middle at 5,000 ft from the river (Figure 3-1). Model output is plotted at two
different simulation times. Time is normalized by the characteristic response tin®éSTg,

wherea is the distance between the well and the riVers the geometric mean of the aquifer
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transmissivity, an®is the storage coefficient. For this examjite=30,000 ff/day,S= 0.2,

anda = 5000 ft, fora’3T = 167 days.
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Figure 3-2. Spatial distribution of stream depletion along river boundary. Cureeshamvn for two normalized
points in time {t’ = 0.5 and 2.0) for both homogeneous and heterogeneous conditions. The heterogeneous cases are
from single realizations with geometric anisotropyX,) equal to 3:1 (top set) and 10:1 (bottom set).
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The smooth curves in Figures 3-2 and 3-3 are for a homogenous aquifer. Similar plots

for homogeneous conditions were construttg&lover (1977). Curves from two

heterogeneous cases are also shown for comparison: one with statistical geometric anisotropy

equal to 3:1 (top plot) and the other at 10:1 (bottom plot). Geometric anisotropy is the ratio of
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transmissivity spatial correlation scales in the two principal axis directions. This is defined
further in the following section. The principal direction of transmissivity correlation in these
simulations was aligned with the x-coordinate direction, thus parallel to the river.
Transmissivity of the homogenous case was set eqidaldbthe heterogeneous case for these
simulations.

The area under a given curve in these figures, i.e., the integration of the spatially variable
depletion rate along the length of the river, gives the total river depletion ratetantal hat
total rate is a single point in time on the depletion rate response curve. Several characteristic
depletion rate response curves are presented by Jenkins (1968) and Miller et al. (2007).

Note that the well was located 5,000 ft from the river in the simulations used to produce
Figures 3-2 and 3-3 and that depletions occur over a reach with a practical length up to about
35,000 ft. The term practical length refers to depletion being non-zero mathematically even at
great distances (Figure 3-3), but being small as a practical matter at a finite distance. This is
analogous to the effective radius of a pumping well being finite when defined by a small
drawdown threshold (McWhorter and Sunada 1977).

The small-scale spatial variability of depletion rates is clearly high for the heterogeneous
case (Figures 3-2 and 3-3). Bkéocal variations are, however, aggregated into the total
depletion rate. The spatial variability is not as important in this work as the question of how
heterogeneity influences the growth of the total depletion rate curve over time. ltis, therefore,
meaningful to work with spatially averaged aquifer parameters even for a spatially
heterogeneous depletion rate if those averaged parameters effectively predict timing of total

depletions. To identify upscaled (spatially averaged) transmissivities that effectively
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approximate the timing of total stream depletion rates in heterogeneous agquifergoal of
this work.

A few interesting behaviors can be s@etheseexamples (Figure 3-2 and Figl8e).

The case with higher spatial correlation (10:1) in aquifer properties has higher spatial correlation

in the local depletion rates. One can also see in the semi-log plots (Figure 3-3) that the 10:1
heterogeneous curve affects a longer river reach than the homogeneous case and the 3:1 case. It
is also the case, although not clear visually in these examples, that the area under each
heterogeneous curve is less than the corresponding homogeneous case and this difference is
greater for the 10:1 case than the 3:1 case. As will be shown in Chapter 4, when the direction of
maximum spatial correlation of a heterogeneous transmissivity field is oriented pargéel

river, the depletion rate is delayed relative to the homogeneous case even with equal mean
transmissivities of the two cases.

Note in Figure 3-1 that the drawdown pattern shown for the heterogeneous case is
different from the homogeneous case in local detail, but the macroscale drawdown pattern is
roughly similar. In contrast, the spatial distribution of groundwater flux at theisivery
different between the homogeneous and heterogeneous cases (Figu&irH2rly, it can be
shown that groundwater flux in the aquifer varies smoothly in the homogeneous case and varies
sharplyin space in the heterogeneous caBlat spatial variability in flux can have important
consequences in water quality transport (i.e., preferential flowpaths) and other applications were
averaging may not be valid. Still, the fact that the drawdown pattern in the heterogeneous case is
distorted locally more than globally supports the validity of using spatially averaged parameters

in the homogenous Glover equation (Glover and Balmer 1954; Glover 1977) to approximate
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macroscale drawdown patterns across a heterogeneous aquifer. The degree of validity depends

on the scale of heterogeneity (Section 3.5.2

3.4 Experimental Design

3.4.1 Generation of Heterogeneous Fields

Isaaks and Srivastava (1989) described geostatsti@m way of describing the spatial
continuity that is an essential feature of many natural phenom&hat description implicitly
acknowledges heterogeneity as a ubiquitous condition, and emphasizes the spatial continuity that
is often identifiable in such systems. Geostatistics provides a way to characterize, quantify, and
model that heterogeneity (Anderson 1997). Geostatistical modeling supports the stochastic
approach to understanding groundwater behavior, in which variability and uncertainty are
accounted for by specifying an inferred or assumed mean and variance of parameters (Anderson
1997). Geostatistical simulation was used in this work to create a variety of synthetic
heterogeneous fields in which stream depletion behavior was examined.

The sequential Gaussian simulator SGSIM (version 3.001) of the geostatistical library
GSLIB (Deutsch and Journal 1998) was used to generate multiple realizations of random,
unconditional, spatially correlated, stationary, log-normal hydraulic conducti)jtiyglds.

SGSIM generates the field values from a standard normal distribution (unit variance and zero
mean) which are then scaled to have the desired mean and variamg&ahsformedK data.
The logK field (natural log)s then back transformed for use in groundwater flow simulations.

One hundredK-field realizations, each generated from the same specified geotstatistical
model, were created for most of the ensembles presented herein. The realizatiginen
ensemble are randomly different locally but are equally probable and exhibit approximately the

same geostatistical characteristics globally (mean, variance, and spatial correlation structure).
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The number of realizations created per ensemble was occasionally adjusted in the range of 30 to
200 depending on the effect of the given geostatistical parameters on variance of the ensemble
results. For example, simulations of fields having larger spatial correlation ranges lead to greater
variance in ensemble results, which was handled by increasing the number of realizations.

The SGSIM program includes the standard variogram models: Gaussian, spherical, and
exponential (Deutsch and Journal 1998). All three are common, with the spherical model
thought to be the most commonly used (Isaaks and Srivastava 1989). These three were tested for
potential influence on the methods and simulation results (Section 4.1). Except where noted
differently, the spherical variogram model with variance of the log-transformed field equal to 1.0
(6% = 1.0) and zero nugget effect is used herein as the default and reference case.

An example variogram, constructed from @&t&eld realization, is provided iRigure
3-4 with a comparison to the specified spherical model. A variogram is defined as one-half the
average squared difference between paired data values (Isaaks and Srivastava 1989), and is a
measure and model of spatial variability as a function of distance (the lag distance) between the
paired data points.

Note: The ternsemivariogram s frequently viewed as more precise language for the
guantity that was defined above and referred to by Isaaks and Srivastava as a variogram, but this
distinctionis inconsistent in the literature. There has been some debate about the actual
mathematical meaning and best semantics in practice, with Bachmaier and Backes (2008, 2011)
arguing the term semivariogram should not be used. In general, the terms are used
synonymously, with variogram commonly chosen for general usage and for conciseness (e.g.,
Gringarten and Deutsch 2001; Remy et al. 2009). That generalized usage is adopted here

well.
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Figure 3-4 Example variogram constructed from one SGSIM-genet&tBeld realization.

At large enough separation distance, the paired data become uncorrelated and the
variogram reaches a plateau calleddhe The sill is equal to the population variance (Barnes
1991). The distance at which the sill is reached is calledahge, beyond which there is no
spatial correlation (Isaaks and Srivastava 1989; Gringarten and Deutsch 2001). For the
exponential and Gaussian models which approach the sill asymptotcedjective range is
defined as the distance at which the variogram reaches 95% of the sill (Deutsch and Journal
1998). The spherical variogram in Figure 3-4 &emnge of 1,500 ft. The range and effective
range are often referred to informally as the correlation range (e.g., Gringarten and Deutsch
200]). That language is also used herein as isatidity in certain contexts.

A nugget effect refers to havingnon-zero variogram value at zero or near-zero lag

distance. This discontinuity arises from measurement error and/or small-scale variability below
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the resolution of the sampling density (Isaaks and Srivastava 1989; Gringarten and Deutsch
2001). This is modeled with a non-zero intercept at zero distance in a model variogram.

The following parameters used in the geostatistical modeling of heterogeneity were
examined as variables affecting stream depletion timing: (i) geometric anisotropy, (ii) the
absolute correlation range relative to the problem sia)ajegree of heterogeneity (as
measured by?), (iv) orientation of princigl directions with respect to the river, and (v) nugget
effects in the variogram model. Additional structural forms of heterogeneity are discussed in
Chapter 5.

In the course of methods development, geometric anisotropy was identifi@diasry
variable influencing stream depletion timing. A heterogeneous field exhibits geometric
anisotropy when the correlation range changes with direction while the sill remains constant
(Isaaks and Svrivastava 1989). The degree of geometric anisotropy is commonly expressed as a
ratio of the correlation scal@)(in the principal directionS\fax:Amin, OF Ax:Aywhen the principal
directions are aligned with the coordinate system).

The SGSIM domain was defined to be 10,000 x 45,000 ft and discretized into 200 rows
and 900 columns of block-centered grid nodes, thus a uniform node spacing of 50 x 50 ft. This
grid was defined to match the flow model grid presented in the next section. Three example
heterogeneous fields generated with SGSIM are showigure 3-5. Other example fields, for
various spatial correlation models, are included in Appendix A. The three fields shown in
Figure 3-5 used a spherical variogram model with= 1.0 and with the direction of maximum
correlation oriented with the grid rows. The minimum correlation range was 500 ft (10 rows) in

all cases. The maximum correlation ranges were set at 500 ft, 1500 ft, and 5000 ft (10, 30, and
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100 columns, respectively), for geometric anisotropy rakps,§ equal to 1:1, 3:1, and 10:1

(top, middle, and bottom images, respectively, in Figurg 3-5
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Figure 3-5. Example realizations generated with SGSIM and used in the groundwatsirfialations. Shown are
K fields having geometric anisotropy ratios of 1:1 (top), 3:1 (middie),10:1 (bottom)Bottom image notes
location of the flow model boundaries.

3.4.2 Flow Model Design

Each SGSIM-generatd¢Hield realization was used to populate a transient groundwater
flow simulation performed with MODFLOW-2005 (Harbaugh 2005). The flow model grid was
constructed with 200 rows and 900 columns with uniform nodal spacing of 50 length units. In
this case, the nodal spacing was 50 feet giving a 45,000 x 10,000 ft model domain. A single
model layer (thus 2D) was used with a uniform aquifer saturated thickness set at 100 ft and

specified to be constant. The storage coeffici®nvas also uniform and set equal to 0.2. The
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orientation of the model domain with respect to the river and aquifer boundaries is shown in
Figure 3-1 and in the bottom image of Figure 3-5.

Model Row 1 was set as a constant-head boundary representing an idealized river
boundary. A zero-flux boundary condition was used for the other three model domain
boundaries. The zero-flux boundary condition in Row 200 represents an impermeable aquifer
boundary oriented parallel to the river, such as the edge of a valley-fill alluvial aquifer.

A pumping well was placed in the middle of the model domain at 5,000 ft from tine rive
in most simulations. The well was represented by a specified-flux boundary condition in one
model cell, Row 101 and Column 450. At this position relative to the two hydrogeologic
boundaries, approximately the lower hajf < 0.5) of the stream depletion response curve is
the same as an unbounded aquifer response (Miller et al. 2007). The second half is influenced by
both boundaries. Other well positions were tested (e.g., 2,500 and 7,500 ft from jhehigier
resulted in earlier and later onset of the bounded-aquifer type response curve. In those sensitivity
tests, the well position and consequent variations in boundary influence did not have an apparent
effect on the methods and primary results. The primary results are the ensemblexsmean
values and trends that are presented in Chapter 4.

Simulating a wider aquiferwidth referring to the distanc®, between the river and the
parallel impermeable aquifer boundargit the same grid resolution would increase simulation
CPU time which was constraint for running several thousand simulations. Simulating
narrower aquifer was not optimal since it would compress the subject transient period and would
decrease the model domain size relative to the range of correlation scales to be tested, which is a

constraint on minimum domain size. In either case, the absolute model dimensions and aquifer
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parameters are arbitrarytr&m depletion response curves are scalable by an aquifer’s
characteristic transient response tim&S(T) and the relative well positiom/i\).

The zero-flux boundary condition in Columns 1 and 900 (oriented perpendicular to the
river) were placed by design to be far enough away from the pumping effects to not significantly
influence results in most simulations. These lateral model distances were based on the length of
the river reach expected to be affected during the transient phaseff &dtedariver length for
homogeneous isotropic conditions is approximately 10 times the distance between the well and
the river at near-steady conditions, and less during the transient phase (Glover 1977), with most
river depletions occurring over a shorter reach nearest the well (Figyre 3-2

The initial condition in all groundwater flow simulations was static, meaning the head
was constant throughout the domain and equal to the river boundary head, thus a baseline
condition of no groundwater flow and no river-aquifer exchange (Anderson and Woessner 2002).
The well began pumping at time zero and pumping rensgiconstant. The model dimensions
and aquifer properties were selected so that in most tesever depletion rateg was greater
than 90% of the pumping rat®) by the end of the simulation. Note thktraalizations and all
ensemble cases would asymptotically appragCh= 1.0 (the steady-state) in longer
simulations, so it is the earlienore-transient portions of the response curve that is of interest
and in which the most variability between different realizatisrseen.

The saturated thickness in all simulations was uniform in space and specified to be
constant in time. Holding saturated thickness constant is a common modeling technique used to
improve model stability and reduce simulation time (Faunt et al.;ZHdets et al. 2015). It
was advisable in this stochastic work siKce the pumped cell and surrounding cells would

vary widely, leading to dry up of the pumped cell and consequent model simulation failure in
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certain realizations. Reducing the computation time was also a consideration for those cases
with high variance which required more time for the solver to converge on a head solution. With
the constant saturated thickness simplification, the simulation results are applicable to confined
aquifers and to the unconfined case when drawdown is small relative to the initial saturated
thickness (Faunt et al. 2011; Sheets et al. 015

The geostatistical parameters used to model and characterize heterogeneity were
identical whether consideringor K since saturated thickness was uniform and constant. The
population variance, spatial correlation functions, and ratios between the harmonic, geometric,
and arithmetic means for a givéror K field were the same. One can therefore refé&t ¢o T
interchangeably in this work when discussing geostatistical parameters or effective permeability
results (i.e., effective power averages). From this point forwarsddiscussed rather th&n
since the grid values used in the flow model are assumed conceptually to Fedsitalates at
the scale of a pumping test (Section 2.2.7). Discussia@lso appropriate given that the flow
simulations are two-dimensional and with correlation scales representafiveCoirrelation
scales simulated in this work ranged from 500 ft to 40,000 ft. Rubin (1993) and Anderson
(1997) include Gelhar’s (1993) table of example correlation scales TaandK.

For context, it is noted that the geometric means of the sim{afiettls used in this
work ranged from 100 to 1,000 ft/day, with most cases hairg 300 ft/day, thus = 30,000
ft?’/day and’ = 167 days. Other parameters were defined previously. The flow simulation
period was 1250 days, for a simulation time/tf= 7.5in most cases.

Though arbitrary, parameter units and model dimensions must be assigned. They were
chosen to represent an aquifer with transmissivity suitable for supplying high-capacity wells and

with transient depletion timing that would be of the greatest interest from a technical and
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conjunctive management perspective. For example, much faster depletion timing, such as for
wells much closer to the river and in narrower aquifers, could be nearly trivial due to that case
having a short and steep response curve that tracks pumping schedules more directly. And for
much slower depletions, such as for wells far from the river in a wide aquifer, intra-annual
depletion-rate fluctuations from seasonal irrigation are smootheasdepletions are delayed

and spread over multiple years. In that latter case, the slow build up in the depletion rate can be
of interest, but it eventually reaches a relatively steady depletion rate equal to the the long-term
annualized extraction rate, even for seasonal pumping (e.g., Bredehoeft 2011; Kendy and
Bredehoeft 2006). Having a characteristic response time on the order of 167 days, as used in
most simulations in this work, represents a case potentially with both interannual and intra-

annual fluctuations in depletion rates due to seasonal irrigation pumping.

3.4.3 Example Flow Model Output

Simulating stream depletion response curves under a variety of heterogeneity types was a
fundamental step. Response curve characterization (Section 3.5) was necessarily automated due
to the thousands of simulations involved, but the shape of individual realizations and the shape
and variability of curve ensembles were directly evaluated as part of methods development. The
curves were periodically inspected again during ensemble production runs. Since the curves are
fundamental, yet ultimately an intermediate step in the analysis, this section is provided to
document the appearance of that model output. Differences between the example response
curve ensembles are highlighted.

Example flow model output is shownkingur e 3-6 where stream depletion response
(¢/Q) is plotted as a function of non-dimensional tirde € tT/a®S). Output is plotted for three

ensembles each comprising 100 realizations. s@$ienulatedT fields had equal geometric
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mean transmissivityli ) as well as equal variance, which together means they also have equal
arithmetic and harmonic means, andTy (Section 2.2.4). The direction of maximum spatial
correlation was oriented parallel to the river with correlation lengths specified at 500, 1,500, and
5,000 feet. The minor-direction correlation length was set at 500 feet (10 model nodes) in all
three cases, giving geometric anisotropy ratgd, of 1:1, 3:1 and 10:1 (top, middle, and
bottom plots, respectively). Fields with these correlation scales and anisotropy ratios were
illustrated in Figure 3-5.

Figure 3-7 compares the timing and distribution of each ensemble shown in Figure 3-6
through histograms of thegQ depletion rates constructed for the four time poififss 1, 2, 3
and 5. Itis apparent in these figures that the depletion timing was delayed, and the ensemble
response variability increased, as geometric anisotropy and correlation scale increased. Note
again that the arithmetic, geometric, and harmonic means for these fields were equal, yet the
depletion timing was different. Characteng these differences in ensemble behavior and
identifying potential relationships between them and heterogeneity strisctugeal of this

work.
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3.5 Characterizing the Smulated Response Curves

3.5.1 Analytical Solution Fit to Simulated Depletion Response

The simulated stream depletion rate response curve for each heterogeneous realization
was fit to the Glover and Balmer (1954) analytical solution for stream depfetionwells ast
is applied for the bounded aquifer case (Glover 1977; Knight et al; ROEr et al. 2007. The

unbounded Glover solution for depletion rates can be written as the following:

a |a’S
q/Q—afC(mJ = erfc{ M—T] (3-1)

where, as previously definegljs the stream depletion rate (volume/tin@)s the pumping rate,
ais the distance between the well and the ri¥as, aquifer transmissivity§is aquifer storage
coefficient or specific yield, ands time since pumping began.

The simulated response curves in this research were fit with the bounded form of the

Glover solution as it was written by Knight et al. (2005):

q_ a e -y 2nW-a | 2nW +a !
6_erfc( \/F/S]ﬁtnz‘[( 1) (erfc[—\/mJ erfc(—\/m)ﬂ (3-2)

whereW s the distance between the river and the impermeable boundary and all other variables
are as defined previously. Knight et al. (2005) present the derivation of Equation 3-2, while
Glover (1977) and Miller et al. (2007) illustrate the image well pattern it represents.

The unknown variable in Equation 3-2 wigsall other parameters were specified in the
numerical model construction. The Glovethat yieldeda match to the simulated depletion

curve identifies the equivalent transmissivity for that realization. Thequivalent label
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indicatesTeq it is obtained for a given realization and is not necessamigxpected (effective)
value stochastically.

The curve fitting was necessarily automated, but the quality of the fit was periodically
verified. For a homogeneous case, chang@&sshift the Glover stream depletion response
curve forward or backward in time, but keep the same curve shape, while changes in aquifer
width (W) reshape the curve (Miller et al. 2007). A decread¥ steepens the curve, mostly in
the late-time response. The characteristic curves are a funca®band well position
relative to the aquifer boundaries\()). In developing and testing the methods, and in checks of
the ensemble production simulations, the characteristic curves for stream depletion in two-
dimensional, homogeneous, bounded aquifers were observed to match, in most cases, the curve
shapes from the simulated heterogeneous fields.

Note thatTyis defined by Sanchez-Vila et al. (2006) and others as being determined by
spatially averaging over a realization, such aslthebtained from the ratio of averaged Darc
velocity to averaged gradient. It is also used to describe an up3aaiiegined from spatially
averaging local values directly. Sanchez-Vila et al. noted the additional category of
interpreted T, which isT deduced from analyzing an observed response such as drawdown from
a pumping test. In the pumping test case, one fits the observed drawdown response to the
characteristic curve for drawdown in a homogeneous 2D aquifer. The pumping test, in effect,
physically averagesmaller-scald variability. In thework hereinTeqis identified from fitting
the simulated observations (the depletion response darttey appropriate Glover curve for
stream depletion in a homogeneous 2D aquifer. In that respettqitentified herein is

comparable to an interpreted transmissivity (Sanchez-Vila et al 2006).
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3.5.2 Ergodicity and Statistical Homogeneity

Response curves for realizations occasionally deviatedthemharacteristic shapes
discussed in the previous section. This occurred more often when simulating large correlation
ranges, a scenario in which the condition of statistical homogeneity is not well met. Although
these shape deviations were generally small, they were investigated during methods
development. The purpose of this section is to discuss the nature of those deviations.
Understanding their nature was also important in making conclusions about the time-invariant
nature ofTex in stream depletion observed in this work.

Statistical homogeneity is related in this case to the concept of ergodicity. aVhen
property averaged over space in one realization coincides with that property averaged over
multiple realizations, the process is said to be ergodic (Sanchez-Vila et al. 2006), i.e., the spatial
average matches the ensemble average. As described more specifically by Deutsch and Journal
(1998), a spatial random function modellas ergodic forT if the realization statistics tend
toward the meaih of the functioras the size of the field increases. If theT field is large enough,
the statistics of the field should match the specified model. The larger the correlation range, the
larger the field must be to achieve ergodicity (Deutcsh and Journal 1998).

Ergodic fluctuations refer to discrepancies between realization statistics and specified-
model statistics (Goovaerts 1997). These are expected. The only match between the model
statistics and realization statistics guaranteed by stochastic simulation theory is an average
(expected value) over a large number of realizations (Deutsch and Journal 1998). The
discrepancies fluctuate around the specified geostatistical model. The longer the correlation
range, the less ergodic are the realizations, and the more realizations are needed to approach the

expected value (Deutsch and Journal 1998). s@&rgodic fluctuations have been viewed as a
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desirable reminder of uncertainty, such as when the model statistics themselves are uncertain due
to being inferred from sample data (Goovaerts 1997; Deutsch and Journel 1998).

As noted, an SGSIM simulation only guarantees that the assigned correlation model,
including mean and variance, is reproduced over the average of multiple realizations and not
necessarily in each realization. This can be ex@talsubareas of the realization domain.

Consider a field with dimensions many times larger than the correlation range. This field could
be sub-divided into areas that are still ergodic, meaning their statistics match the specified model
and match each other. In fact, if the initial field were large enough, the sub-divided areas could
be treated as independent realizations themselves. As that field is further divided into smaller
areas, however, ergodicity is lost and the statistics of the subareas will differ from the model and
from each other. This becomes more pronounced when the subarea of interest is small relative to
the correlation range.

Differences between the statistics of small subareas of a given realization are referred to
herein as statistical inhomogeneity. These differences are a form of ergodic fluctuations as
argued in the preceding paragraph, but the different term is used herein since ergodic fluctuations
are typically discussed in the context of differences between realizations (Goovaerts 1997,
Deutsch and Journel 1998) and not within a given realization.

Departures from the characteristic response curve shapes were observed for some
realizations, particularly when simulating fields having larger correlation ranges. Based on
inspection of thd field in many of those cases, this was attributed to sub-domain-scale spatial
fluctuations in field properties, i.e., statistical inhomogeneity. In those cases, the process of
producing spatially correlated but random fields sometimes resulted inThiesamg distinctly

different for a subarea on one side of the well than the other side, for example. That affects the
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response curve shape. As the cone of depression expands over time, it is affected by different
subareas of the aquifer in shifting proportions. If the subareas have different enediare
large relative to the cone of depression, then the concept of averaging heterogeneity does not
hold up well. A mear that is applicable to the entire cone of depression may not exist in that
case. When that scenario arose in random simulations, it resulted in the response curve not being
well fit by a singleTeq value.

The ensemble-mean response curves were still well matched even for those ensembles
containing realizations that deviated from the characteristic curvat wHs additional evidence
for attributing the shape-deviation of certain realizations to statistical inhomogeneity caused by
local ergodic fluctuations: Even for conditions that are poorly ergodic such as simulations with
large correlation ranges, the ensemble average of those sibangaected to match the
specified-model statistics, giversufficient number of realizations. The fluctuations are
averaged out over the ensemble and the ensemble-meansdinve well-described by single-

valued average.

3.5.3 Potential Transient Effects ify,

Some studies have observed effective permeability to vary with time under transient flow
conditions, such as decreasing from arithmetic means to geometric means as time increased
(Section 2.2.3 Dagan (1982) referred to this as a relaxation time, and noted it was short in 3D
cases, but could be long for the 2D case given the large correlation ranges@biner studies
did not report theill¢q to be time-dependant (Section 2.2.3). With those mixed reports in the
literature in mind, the fit between the characteristic depletion curves for the homogeneous case
and the modeled curves for the heterogeneous case was examined closely during methods

development.
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In short, the simulated depletion curves were well-fit by the characteristic analytical
curves using a time-invariaft, TheTex relationships as identified in this study do not appear
to be time dependant. This conclusion could be made since the curve shape deviations discussed
in the previous section were occasional, were not observed in the ensemble response, and, as

noted, were attribetdto statistical fluctuations in subareas of the random field.

3.5.4 Computing Power-Average Exponents

Power averaging was used to relate egdield realization to thd@eq identified from its
simulated depletion response curve. The power-mean is an upscaling function producing a range
of power-averaged transmissiviti@gp), from a field of local-scal& estimates. The task
described in this section wasidentify the equivalent exponefk, , such thal (peg) = Teq In
more qualitative terms, the resultipg,is an index indicating wheikq lies between the
bounding arithmetic and harmonic means.

The power-mean function used herein is:

T(p) = [Nizm-)p]l/ ’

(3-3)
whereT; are the local, point-scale transmissivity values (grid-cell values in the modep)jsand
the power-mean exponent. The function yields an arithmetic meanr=f@r a harmonic mean
for p=-1, a geometric mean fprnear zero, and yields intermediate averages for non-inpeger
exponents between +1 and -1 (Gomez-Hernandez and GorelickO&8®arats 1992b; Wen and
Gomez-Hernandez 1996; Ronayne and Gorelick 2006; de Dreuzy. 2010

ExampleT(p) curves for four different variance levetsy(= 0.25, 0.5, 1.0, and 2.0) are

illustrated inFigure 3-8. TheT(p) values are normalized Ay, with bothT(p) andTg in real

space. For example, fofy= 1.0 andp =-0.5, T(p)/Te = 0.78.
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Logistically, theT(p) curve andpeq could have been estimated from the statistical
moments of the specified geostatisticaddel of the heterogeneous field, using Equation 2-5
(Ababou and Wood 1990). That approach would have been essentially exact for the ensemble
and reasonably accurate for most realizations. For this work, howé\g),table was
computed directly from each field realization, constructgalincrements of 0.1, between the
theoretical -1 and +1 bounds. Cubic-spline interpolation was used tpeséaa the tables

(Mathworks 2013).
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Figure 3-8. Shape of power-average curves.

3.5.5 Ensemble Behavior

An effective parameter, lik&y, is by definition based on averaging behavior @rer
ensemble of realizations (Sanchez-Vila et al. 2006). Two approaches were tested for producing
Terr. In ONe, the deterministifeq was identified for each realization’s simulated depletion

response curve through numerical modeling, as described in Section 3.5.1, ahg @ash
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characterized throughpower-averaging exponeq, as described in Section 3.5.4. The
statistical moments of th®, ensemble therefore providég: through the power-averaging
exponenpg:. In the other approaches was determined directly from fitting the ensemble
depletion response to the Glover solution &g was determined from the moments of the
specified statistical model @f (Equation 2-5, Page 18), thus skipping the quantification of each
Peq:

Thesetwo approaches were found to produce essentially equal results.it krest,
observed thapey for individual realizations compared favorablyptg of either method when
spatial correlation scales were small compared to domain scales, as is the expectation (Section
3.5.2), i.e., there was lopgq variability when ergodic conditions were well met. More
importantly, it was confirmed that mean and variance opthensembles approached the mean
and variance gbes determined from the ensemble even for the larger correlation scales that
yielded wide variability 0Peq

Although the two methods produced the same results, comggiiogly from ensemble
response curve moments lost certain information aguariability among the realizations.
No information was lost statisticallythe ensemble moments were determined eitherway
it was informative to recorgeq for individual realizations, such as to inspect properties of fields
that produced outligueq values. For most simulations, therefore, the first approach was used in
which apeq was determined and plotted for reach realization, and the statistical moments of that
Peq €NSemble providepks.

Terminology note:Teq andpeq refer to outcomes for individual realizations dngand
Pert to the ensemble behavior. The givieand power-average expongntould be discussed

interchangeably at this point. The general convention hereinafter will be to refer to the power-
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average exponents when discussing specific quantitative results and pldts; amdiT., for
more the general or qualitative concepts of effective and equivalent transmissivity.

Example distributions of ensemlypg, results are illustrated fRigure 3-9. These
correspond to the ensembles shown in Figure 3-7. The curves in F§uepresent the endir
depletion response over time, and the histograms in Figure 3-7 are for responses at four different
points in time. Time is not a factor in Figure 3-9, however, since it was observed that each
response curve could be well-fit with a single time-invanmpt

Thepeq values in Figure 3-9 indicate, essentially, how the heterogeiieield in each
realization would be averaged for use in computsigesponse curve. For example, for the
isotropic caseNc:A, = 1:1), peqranged from 0.15 to -0.15 with an ensemble meanmedl, the
geometric mean. Th®g was lower for the two anisotropic cases, with those indicating an

expected power-average between the geometric and harmonic meapgi(<10x
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Figure 3-9. Equivalent transmissivity (as power mean expar@rior T fields with three different geometric
anisotropy ratios (1:1, 3:1, and 10:1)..
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3.6 Simulation Logistics

3.6.1 Spatial Weighting of the Area of Influence

In the geostatistical simulation of heterogeneous fields, the statistical moments of domain
subareas may not match the specified model exactly; the moments fluctuate around the specified
model (Section 3.5)2 In groundwater hydraulics, domain subareas will be influenced
unequally by a pumping well. If area of influence is defined by magnitude of drawdown, as in
the case of the effective radius of a pumping well, then aaeasvhy from the well have little
influence (Figure 3-1). In the case of stream depletion, if area of influence is defined by
groundwater flux, then a wide area along the river has greater influence than other portions of the
aquifer, and thisnfluence increases with proximity to the well (Figure)3-2

Different spatial weighting methods were tested in the power-averaging process. This
was done out of consideration that certain subareas of the aquifer have greater influence on the
stream-aquifer response and that local statistical moments in those areas could fluctuate. The
intention was to compute aquifer statistics from those areas most influencing the response. This
spatial testing was possible due to the decision to deteraig for each realization artd
relateTeq t0 peq based on power-averaging each field realization directly rather than using the
moments of the specified geostatistical model (Section 3.5.4).

For the theoretical case of pure statistical homogeneity and ergodic realizations, the
averaging area would not matter since the statistical moments and correlation model would be
the same regardless of the size and location of the averaging area. In practice, however, whether
in the field or in stochastic simulation, there are spatial differences unless the correlatias range

small relative to the area of concern (Deutsch and Journel 1998; Sanchez-Vila et al. 2006).
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It was found in methods-testing simulations that the varianc@gfessemble was
reduced when th&(p) curve used to determimg, (Section 3.5.4) was computed from a limited
region along the river reach where most of the depletion occurs, instead of coriujtingm
the entire domain. This observation supported the reasoning that sedpatiaeweighting
better captured local fluctuations in mean transmissivity in the area of influence.

Ensemble variance was also reduced when the pumping well was placed farther from the
river while keeping correlation range and other conditions equal. The area of influence was then
larger relative to the correlation range, which results in a smaller degree of fluctuation in that
area around the specified statistical model. Similarly, and underscoring the point, ensemble
variability was most reduced for steady-state mean-parallel flow simulations (Secjion 4.2
because the area of influence was then the entire domain with all areas contributinge@qually
Teqandpeq The only relevant statistical fluctuations in that case would be from theloveral
ergodic fluctuations between realizations and not spatial fluctuations.

Energy dissipation analogies were initially tested by assigning weights to the spatial
averaging process in proportion to an expected flow velocity at each location (e.g., Molz et al.
2005). Velocity-weighting schemes, however, put nearly all the weight in the high-velocity,
convergent-flow zone near the well. This introduced extreme variability in the weilfitdd
statistics since the moments in such small subareas do not reflect the statistics of the wider area.
Transmissivity is essentially random at that highly local scale. That method introduced
apparently random variability i, Since the averaging area used to compaiterasa small
part of the aquifer zone influencing the depletion response. This remained the case when testing
various uppetimit velocity cut-off thresholds to exclude the high-velocity areas near the well.

Proportional velocity weighting was therefore not used.
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Positive results, indicated by reduced ensemble variance, were found with a simpler
averaging area having uniform weights witftiand zero weight outside iThe averaging area
is shown inFigure 3-10. It was based on covering that portion of the aquifer along the river
reach that contribesmore than 9% of depletion during the transient period from time zero
through#t’ = 6. Fort/t’ < 1, nearly 100% of the depletion occurs within the highlighted reach.
The zone covers a river reach length equal to five times thaawaller distance (thusd). This
depletion-reach length criterion was assessed using the Glover (1977) analytical solution for the

spatial distribution of depletion along a river for pumping in an isotropic homogeneous aquifer.
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Figure 3-10. Spatial averaging area with its river reach length based on Glover (48d)s width and shape as
suggested by groundwater flux maps (hatylaggroximated with a semi-ellipse (heavy line).

As a strict matter, this averaging area would not be unchanging. It wordsidaéed for
aquifer anisotropy anidl would also expand along the river with increadinte (see Glover
1977 or Figure 3-2). However, even at later time, the majority of depletion still occurs within
the reach length equal t@.5 For isotropic conditions and’ = 10, more than 85% of the
depletions occur within this zone. For a few test realizations of fields with a statistical geometric
anisotropy of 10:1 with the principal direction originated parallel to the-rh@econdition which

spreads the depletions over a wider reach and corresponds approximately to a hydraulic
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anisotropy of 2:1 (Section 5:5)approximately 80% of depletion occurred within tlzer&ach
during the transient period up through albait= 3.

The % length of the selected averaging zone along the river has a clear physical and
mathematical basis, and is reasonably robust in time and to aquifer anisotropy. A clear basis for
the width (perpendicular to the river) and shape of the zone, however, was not identified. An
indication of the width of an area of influence was taken from groundwater seepage velocity
maps produced during the initial velocity-weighting tests. Those maps indicated an elliptical
area of influence, especially in statistically anisotropic fields, that covered the affected river
reach length and the pumping well. An example of a velocity-based area is shown as the hatched
area in Figure 3-10. A similar shape is obtained by drawing a flow net on the drawdown contour
maps provided in Figure 3-1, with flow lines originating within the affected reach |6agth

Considering that the affected reach length as identified by Glover (1977) is a function of
the wellto-river distance, an ellipse provides a simple definition, even if somewhat arbitrary, for
an averaging area. The averaging area in Figure 3-10 is a semi-ellipse with its major axis
positioned along the river boundary, its semi-major axis positioned and defined by the distance
between the well and the rivex)( and its major axis length being five times that of semi-major
axis ().

The precise shape of the averaging zone was not significant in this work. Ensemble
variance outcomes were insensitive to changes in the averaging area as long as it was near this
scale or slightly larger (Figure 3-10). Additionally, it is stressed that the primary results of this
research were not affected by the decision to use a weighting area or by the shape of the
weighting area. The ensemble meansptheesults, were consistent with or without spatial

weighting. Indeed, ensemble-mean restlitsildn’t be affected since the subarea statistita
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fluctuations addressed by this spatial weighting are expected to average-out over the ensemble to
match the specified geostatistical model, given sufficient realizations.

A caveat to the above is that when the weighting area was very small, such as
immediately around the well or weighted highly toward the center of the river reach, then it
failed to capture the relevant aquifer area and thereby incrpasatiability. In those cases, it
was not clear if running additional realizations would converge on an expected value.

Although it did not affect ensemble-mean behavior, usiagelective averaging area did
appear to provide a more accurate link between the modeled depletion curve and the statistics of
the portion of the aquifer most influencing that curve. It reduced ensemble variance and
narrowed the confidence interval around the ensemble means. Again, this was done by taking
actualT statistics in the area of influence into account, rather than assuming they were consistent

with the overall aquifer or the specified geostatistical model.

3.6.2 Interblock Transmissivity in the FimgDifference Formulation

In the finite-difference method, as used in MODFLOW, the flow between model nodes in
response to a head difference is proportional to a computed interblock transmissivity (IBT)
between the nodes. A comnhpuised IBT scheme is the block-size-weighted harmonic mean
of the transmissivity at each nodddqDonald and Harbaugh 1988; Goode and Appel 1992;

Romeu and Noetinger 1995). This is theoretically appropriate for steady-state one-dimensional
flow and when it is assumed thits constant within the given cell block, changing abruptly at

the interface between cell blocks. Goode and Appel (1992) proposed what thew called
logarithmic mean to be theoretically correct for IBT for the case whEraries linearly between
model nodes. The logarithmic mean and other IBT options have been added to post-1992

versions of MODFLOW.
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Goode and Appel (1992), Romeu and Noetinger (1995), and others have shown how the
IBT scheme choice is consequential when the model discretization is coarse relative to the scale
of heterogeneity. Both found the harmonic IBT to be biased low in that case. Romeu and
Noetinger (1995) reported that:) (he geometric, logarithmic, and arithmetic IBT schemes were
each biased highii] all schemes converged on the theoretically correct result as the grid
resolution was refined; andi] the harmonic scheme may converge slightly faster with
increagd grid refinement.

These same results were found when testing simulation design herein. IBT bias was
tested in the flow model domain described previously, primarily by using an isotrépld
under steady-state mean-parallel (SSMP) flow conditions. SSMP flow was used since the
expected valu€les, is well established to be closeTig for that case (Section 2.2).

The bias-testing results are illustratedrigure 3-11. The simulated effective power-
average exponenes, is plotted as function of the correlation range in the minor direction. The
correlation range is normalized by the node spacing. The constraint identified was the minimum
correlation range that could be simulated in the minor principal direction, relative to the fixed
nodal spacing, without introducing bias from the choice of the IBT scheme.

The harmonic and logarithmic IBT schemes were tested (labeled LogIBT and HarIBT in
Figure 3-11) since they are standard options in MODFLOW-2005 (Harbaugh 2005) and since
they are reported to be biased low and high, respectively. Three different variance levels were
tested (labeled var0.5, varl, and var2,ofgr= 0.5, 1.0, and 2.0, respectively), along with three
different geometric anisotropy ratios (1:1, 3:1, and 10:1) each with the major principal axis

oriented parallel to the river.
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Bias inTe was significant with either of the IBT choices for isotropic fields with nodal
spacing set at 1/5the correlation range (Figure 3-11). Nodal spacing refined to at leabt 1/10
the correlation range was needed to reduce bias in that case, and the harmonic IBT converged
faster. For the two higher anisotropy ratios (3:1 and 10:1), the harmonic mean was not strongly
sensitive to grid refinement, and was less sensitive to logarithmic IBT overall. Based on these
results, all simulations used a minimum correlation range equal to 10 grid nodes or higher, and
all used the harmonic IBT scheme, except where noted differently.

Note: For the isotropic cas& converged slightly above the geometric mean, pear
+0.05. This deviation from theory is possibly due to having a bounded domain (e.g., Paleologos
et al. 1996), though sensitivity tests were inconclusive. This deviation is small relative to the

range ofper trends of interest in this research.
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Figure 3-11. Plot illustrating sensitivity of effective power mean exponent to gfilement and interblock
transmissivity scheme.
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3.6.3 Correlation Range Constraints

A minimum correlation range constraint, as established in the previous section, leads to
other simulation constraints, which is why the minimum was not set higher. For example, to
reduce influence from the arbitrary lateral boundaries (Columns 1 and 900), it is suggested that
the correlation scale not be much more than one-third the domain size to reduce edge effects in
the SGSIM simulations (Xu and Dowd 2012), and perhaps smaller to reduce flow-boundary
effects (Rubin and Dagan 1989; Paleologos et al. 1996). In this model, that limitation would be
about 300 nodes when the principal correlation direction is parallel to the river. Combining that
with the minimum-range constraint of 10 nodes limits maximum geometric anisotropy to 30:1.

Fortunately, the constraint on maximum correlation range noted above is mostly a
concern for SSMP simulations, becausa tlow field covers the entire domain. For the
transient stream depletion case, the active flow area is smaller than the domain and focused away
from the lateral boundaries, so lateral boundary effects are less significant. Additionally, having
aT correlation scale larger tharettriansient stream depletion flow area is a realistic scenario.
Rubin (1993) and Anderson (1997) include Gelhar’s (1993) table of example correlation scales
for T andK, which notes large transmissivity correlation scales.

The constrairgsuggested by Xu and Dowd (2012), Rubin and Dagan (1989) and
Paleologos et al. (1996) would be relatively severe when simulating a principal correlation
direction oriented perpendicular to the river, since that model dimension is 200 nodes. The one-
third guidance in that orientation would put the maximum range at 66 nodes, constraining
anisotropy to under 1:7An SGSIM edge-effeavas not apparent ofieq results, however, based
on a few test simulations performed with a 900 x 800 node domain. Furthermore, it is proposed

that flow-boundary effects under that perpendicular orientation are acceptable since the
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boundaries in Row 1 and Row 200 are not arbitrary domain boundaries. Those boundaries have
physical meaning and are fundamental to the flow regime being tested.

In summary, the lateral model-domain boundaries may introduce bias to results for
anisotropy ranges greater than aboufl 3® the SSMP flow simulations. &hpotential bias was

not quantified since SSMP flow beyond that anisotropic limit was not a focus of this research.
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CHAPTER 4 PRIMARY RESULTS

4.1 Dependenceon Statistical Anisotropy

Range of Results

Figure 4-1is a plot of effective power-mean exponeis)(determined for
transmissivity fields constructed with various geometric anisotropy ratds) (ranging from
0.01 to 100. The plot includes ensemble sets with variance of &f(Bqual to 0.25, 0.5, 1.0,
and 2.75. Anisotropy ratios less than aké\( < 1) indicate the principal direction of
correlation was oriented perpendicular to the river, while ratios greater thaki/ape (1)
indicate the orientation was parallel to the river. The 95% confidence intervals of the ensemble
means are shown.

The heavy black curve in Figure 4-1 is Equation 2-9 (page 20), the estimate proposed by
Ababou (1991) fopes under steady-state mean-parallel flow conditions. It is included for
reference. As discussed in Section 2.&.8pincides with Equation 2-7, the derivation by Gelhar
and Axness (1983) also for steady-state mean-parallel conditions (Sanchez-Vila et al. 2006).

For all casepes Wwas near the geometric megn=0) for fields with statistically
isotropic correlation structura A, = 1) andt asymptotically approached the bounding
arithmetic p = 1) and harmonig(=-1) means as geometric anisotropy increased. For the four
heterogeneity levels testesfy = 0.25, 0.5, 1.0, and 2.7%) exhibited a shift toward the
geometric mean with increased heterogeneity. That sensitivity to field variance is examined
more closely in Section 4.3.

Spatial Weighting

For one set of ensemBlplotted in Figure 4-1, the statistical moments of the realized

transmissivity fields, and thus also the idenitfggresults, were computed using the entire
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realized fields. That set is labeledwveighted. Analysis of all other ensemble runs was based on
transmissivity statistics limited to the main area of influence (see Section 3.6.1). A direct
comparison between unweighted and weighted ensemble runs can be made using the weighted
case that had field variancedd = 1, which was the same as the unweighted set. The 95%
confidence interval of the mean was generally smaller for the weighted case, but no statistical
difference in the ensemble means was found between the comparable weighted and unweighted

cases.
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Figure4-1. Empirical relationship between effective transmissivdtypower mean) and statistical geometric
anisotropy for approximately 110 ensemble simulations of transtiesstm depletion in spatially correlated
heterogeneous transmissivity fields.
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Correlation Scale Effects

Two pefi results shown in Figure 4-1, both witiiA, = 4 and 5, were based on
transmissivity fields that had large-scale correlation ranges relative to the other simulations. For
example, on@,/Ay = 5 ensemble had correlation ranges s&tatl5,000 ft andy = 3,000 ft,
whereas the othég/Ay = 5 ensembles had = 2,500 ft andy = 500 ft. The two large-scale
correlation cases exhibited greater ensemble variance, as \pgflrasults shifted toward the
geometric mean, relative to the other cases. This scale effect is discussed further in Chapter 6.

Insensitive Simulation Parameters

The following simulation variables were also examined for their potential influence on
the effective power-mean exponents: (i) using different spatial correlation models in generating
the transmissivity fieldl(i.e., spherical, Gaussian, and exponential model variograms); (ii)
placing the pumping well at different distances from the rig&vE 0.5 and/W = 0.75); and
(iii) using 15 nodes in the minimum correlation direction instead of using the 10-node minimum
discussed in Section 3.6.2. Those simulations are not plotted since the results were the same as
the other cases, i.e., no significant influence on the ensemble means was observed for those
variables.

Placing the pumping well at greater distance from the river under the same transmissivity
field correlation range resulted in lower ensemble variance, but no effect on ensemble means was
observed. As discussed further in Chapter 6, the change in ensemble variance but not ensemble
mean with well position arises from the change in the relative scales of the area of influence and
the correlation range of heterogeneity.

It has been shown analytically thig can depend in part on the correlation function

shape, referring to the spherical, Gaussian, or exponential models for example (e.g., Indelman
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and Abramovich 1994). Those studies also indicate the effect is small relative to other factors
such as degree of statistical anisotropy. The choice of correlation model was not observed to
affectpess results in this study. Such an effect, if present, may be smaller than was
distinguishable by the numerical approach used in this study.

Ensemble Variability

The ensemble means plotted in the prior figure are shown adaigure 4-2 along with
the peq resuls from each ensemble. This type of density plot may overemphasize outliers
visually, bu it is included to illustrate the distribution of the approximately 11,000 realizations
completed and to document certain outliers. The Gaussian distribution of most ensembles is

seen in Figure 3-9 (Page 52) and considered further in Chapter 6.
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Figure4-2. Same ensemble-mean results as previous figure, with realizations included
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Certain caveats should be noted when considering individual realizations and Figure 4-2.
As discussed in Chapter 3, the SGSIM method doesn’t guarantee that each realization meets the
assigned geostatistical model; it guarantees only that the geostatistical model is reproduced over
the ensemble (Deutsch and Journel 1998§legree of error is therefore expected between the
statistical anisotropy as plotted and what was actually realized in the SGSIM field construction.

Statistical moments of each field realization were checked against the intended statistical
model and were found to be very close. But, it was computatianghactical to construct an
empirical variogram for each realizatitmcheck the correlation range and anisotropy for each
case.Like Sarris and Paleologos (2004) and others, the realized correlation range and anisotropy
characteristics were assumed to reasonably match the conditions specified in SGSIM. Th
assumption applies best to fields with smaller correlation ranges. Random checks of several
realizations supported that assumption. Sarris and Paleologos (2004) also provide justification.

The realized transmissivity fields for a few outlpgg results were reviewed visugknd
by constructing variograms. Some fields with outlier results appeared to reasonably match the
assigned geostatistical correlation model, while others showed moderate deviations. No
comprehensive conclusions were made about field properties of the outliers, but certain cases
had a clear explanation. For example, one extreme outlier was a case with high vafiance (
2.75) andalarge correlation scale with the principle direction oriented perpendicular to the river.
A narrow zone with high transmissivity and high contrast with the surrounding media édppen
to be located directly at the pumping well and aligned between the pumping well and the river,
(see Appendix A, Figure A-5, for illustration). This led to a fast depletion response that was not
captured by Teq averagdover a wider area. The response in that case was, presumably, more

like conduit flow.
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Approximately 9% of the realizations hageq outside the theoretical <1p <+1 bounds.
Nearly all such instances occurred in ensembles with geometric anisotropy ratios outside the
intervalAJA, = [0.1, 10]. Assumptions of statistical homogeneity and ergodicity are most
strongly violated for fields with larger-scale correlation ranges. In those casegatexqtpat
subareas had a dominant influence on the depletion timing due to having a local-average
transmissivity that was significantly different than the statistics of the overall field. For example,
in the outlier discussed in the previous paragraph, the transmissivity of the controlling high-
permeability channel was much higher than the arithmetic average of a wider zone. That

scenario produceapeq greater than +1.

4.2 Comparison to Steady-State M ean-Parallel Flow

Thepes results obtained from transient stream depletion simulations were compared to
results from steady-state, mean-parallel (SSMP) flow simulations. The same simulation
procedures were used for the SSMP case except for the necessary configuration changes. The
pumping well was removed and Model Row 200 was changed from an impermeable boundary to
a specified-head boundary. The specified-head boundary applied a fixed giadiemtss the
domain in they direction. The resulting steady-state fldQgdup) across the model domain was
evaluated with the Darcy equatioQghve = Teqi), WhereTe was the unknown.

As shown inFigure 4-3, pess results for SSMP simulations were not significantly
different from the transient stream depletion cases. The ensemble variance wad@mall
comparable SSMP simulations, seen as smaller 95% confidence intervals of the mean, but the
ensemble means were not statistically different.

Ensembles for the transient stream depletion and SSMP comparisons were generated

independently. They were equivalent geostatistically, but did not comprise exactly the same set
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of realizations. For an additional comparison, a few individual field realizations were run under
both transient stream depletion and SSMP flow. [Ehdifference found between transient

stream depletion and SSMP flow for those field realizations was not zero, but it was small. The
small differences were attributed to the SSMP flow being influenced by the entire transmissivity
field while stream depletiois influenced by a smaller subarea of the field. As discussed in

Chapter 3, the geostatistical properties of a field sub-area can be different than that of the wider

field.
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Figure 4-3. Comparison of effective transmissivity for transient stream depletion (@&D3}teady-state mean-
parallel (SSMP) flow simulations.

Except for cases with mild geometric anisotropy (025/%, < 2), per results for SSMP

flow did not precisely match the Ababou (1991) and Gelhar and Axness (1983) analytical

estimate (Figure 4-3). Modeled results were closer to the analytical estimate for fields with low
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variance than those with high variance, but even the lowest-variance cases converged on an
apparenpes curve that was sheét away from the analytical estimate toward the geometric
mean.

Spector and Indelman (1998) presented a higher-order estim#ig:fas a function of
geometric anisotrap that coincides well with thpe trend modeled herein fafy = 1.0.
Additionally, their derivation departs most significantly from the Gelhar and Axness (1983) and
Ababou (1991) estimate in the anisotropy range of 3 to 10, which is sioile modeled
results (Figure 4-3). I& further noted that the Spector and Indelman estimate predicts roughly
similar behavior as was moeelfor increasing varianeepes shifts away from the Weiner
bounds toward the geometric mean with increasing variamdele the Ababou and Gelhar and
Axness estimates are insensitive to variance (Wheis normalized throughes). However,
the Spector and Indelman estimate does not match the modeled resifits-for25 or 0.5, with
their estimate being very close to Gelhar and Axness (1983) in those cases. Nonmonotic
behavior was encountered with their estimatesfor 1.25. Since the matchafy = 1.0 may

therefore be coincidentat,was not included in the plots herein.

4.3 Influenceof Field Variance

The previous figures indicated some sensitivitpgfto the degree of heterogeneity
(6%). Modeled trends fope as a function of% are plotted irFigure 4-4 for 0.1 <o? < 3.25.
Results for both transient stream depletion and SSMP flow are included for comparison. Most
simulations used a correlation range in the minimum principal direction equal to 10 grid nodes.
Two ensembles shown in Figure 4-4 used 15 nodes.

Low sensitivity tos’y was observed for the statistically isotropic casepesemained

near the geometric meap £ 0) for 0.5 <6’ < 3.25. For th@,/Ay = 10 casepess increased from
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about -0.7 to -0.5 over the tested variance rangeA\RQr= 3, pers increased from about -0.4 to

-0.25.
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Figure 4-4. Effective transmissivity (as power mean) as a function of naturaldogrtissivity variancesty) and
geometric anisotropy ratid{A, = 1, 3, and 10)Results shown for both transient stream depletion (TSD) and
steady-state mean-parallel (SSMP) flow simulations.

The nonmonotonic trend starting arowfd < 0.4 is not understood (Figure 4-4). Itis
noted, however, that the field is relatively homogerinukat range. For example,af, = 0.25,
TeqChanges by less than 1% fop ahange of 0.07. The methods used to ideptifynay
exhibit small error at lows?, due to interpolating froradiscretizedT(p) curve that is relatively
flat for low o (Section 3.5%4

Interestingly pess estimates obtained from the Gelhar and Axness (1983) equation that
was derived only for low variance®( < 1, Equation 2-6, page 20) did roughly match the

modeled behavior shown in Figure 4-4 for 0.5°<< 3.25, while the Gelhar and Axness
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generalization for higher variance’( > 1, Equation 2-7, page 20) produpasthatis invariant
with changes i?,.

Hydraulic conductivity can span several orders of magnitude in a given aquifer, but
variance of In{) is generally much lower than variance olMhginceT is itself an up-scaled
parameter. In other words, while the portion of an aquifer influencing a given pumping test may
include lenses of clay, silt, sand, and graviius highK-variance in the pumping test domain
apumping test produces a singlestimate. Compilations of transmissivity data provided by
Gelhar (1993), Hoeksema and Kitanidis (1985), and Rubin (2003) suggest, isatommonly
near 1.0 and lower (with several exceptions noted). For this reason, heterogeneity was
represented in most simulationssat= 1.0, and the range used in the sensitivity runs was
limited to 0.1< ¢° < 3.25.

It is noted that in aquifers with high hydraulic conductivity contrasts (thus high variance)
it can be theonnectivity of high-permeability zones, acting as channels, that influences effective
macroscale permeability (e.g., Ronayne and Gorelick;Zofg 1986). Channel connectivity is

acondition not accounted for with the SGSIM approach usedrhere

4.4  Nugget Effect

The influence omes Of @ nugget effect in the spatial correlation model was examifsed.
nugget effect refers to having non-zero variance among points at zero or near-zero lag distance.
Variance between essentially adjacent samples may be from measurement error and thus not
have physical meaning, biitcan also represent local-scale variability below the resolution of
the sampling density (Isaaks and Srivastava 1989; Gremgand Deutsch 2001). Itis modeled
with a non-zero intercept in a variogram. With an increasing nugget effect, the simulated

transmissivity field looks increasingly grainy, due to having an increasing degree of
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discontinuity locally, even when larger-scale organization is still evident (see Appendix A,
Figure A-5).

Figure 4-5illustrates the effect observedpg: when simulated transmissivity fields
includedanugget effect in the variogram. The two different nugget cases tested here had scaled
nugget contributions equal to 0.33 and 0.5, where 1.0 is the scaled total variance. The results are
compared to thpess results shown previously in Figure 4-3 which had no nugget included.
Relative to those prior casq®s appears to level off further from the Weiner bounds with an
asymptote shifted toward the geometric mean. In these examples, the asymptote appears to be
aboutp =-0.7 andp = -0.6 for nuggets equal to 0.33 and 0.5, respectively.

The nugget-effect trend seen in Figure 4-5 might be explained, qualitatively, by
considering that the Weiner bounds are approached with increased organization of the
transmissivity field. In the stream depletion case, increased organization refers to increased
stratification (in plan view) of correlated transmissivity zones. With a nugget effect, however,
even with significant large-scale correlation, the continuity of the stratification is limited locally.

If the nugget contribution approaches the total variance, then there would be little structural
organization and the effective mean would remain close to the effective mean for uncorrelated
media, which is the geometric mean.

The sensitivity opess to a wider range of nugget contributions is illustrateHigur e 4-6
for three cases of geometric anisotropyA, = 1, 3, and 10. Modelqus for the three cases
converged to a single valueostensibly the effective mean for uncorrelated media the

scaled nugget contribution approached 1.0.
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Figure 4-5. Effective transmissivity when including a nugget effect in the transritisspatial correlation model.
Results are shown from transient stream depletion (TSD) and steady-stateanadi@h{$SMP) flow simulations.
One ensemble set used the logarithmic interblock transmissivity schemeT{j@dilBthers used the harmonic
scheme.

The choice of interblck-transmissivity averaging scheme in the finite-difference model
affectedpest when a nugget effect was present in the spatial correlation function for
transmissivity. As discussed previously (Section 3.6.2), the interblock-transmissivity scheme
was found to bias simulation results when the transmissivity correlation scale was less than
approximately 10 model grid nodes. The logarithmic scheme created a high-bias and the
harmonic scheme created a low-bias in that case. Similashvase apparent with the nugget
effect (Figure 4-6). Thper converged for the different anisotropy cases as the media became
uncorrelated (i.e., as the nugget contribution appraoched the total variance, 1.0) but the cases
converged below the theorectical geometric m@an (@) for the harmonic interblock

transmissivity scheme and above the geometric mean for the logirthmic scheme.
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Figure 4-6. Sensitivity of effective transmissivity to a nugget effect in the transntissorrelation model and to
the logarithmic and harmonic interblock transmissivity schemes (logIBT atlTharTrends are shown for
geometric anisotropy ratioa,(\,) equal to 1, 3, and 10.

Figure 4-6 includes results from steady-state mean-parallel flow simulations. It is well
established thaie« should approach the geometric mears Q) under that flow regime for two-
dimensional, isotropic, randomly heterogeneous media (Section 2.2). Combining that fact with
the established nature of the interblock-transmissivity bias, it is reasonably assumed that the
trends shown in Figure 4-6 bracket the actual trend which woulddagepproaching = 0 with
the increasing nugget contribution.

In simulations without a nugget effect in the correlation model, the interblock
transmissivity bias was avoided by using an appropriate minimum correlation scale, but with a
nugget present therea degree of uncorrelated spatial variability even between adjacent grid
nodes. The interblock transmissivity bias that arises from a nugget effect might be reduced by

using a MODFLOW grid with substantially higher resolution than the SGSIM grid. Refining the
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MODFLOW grid was not explored, however, since the general result of a nugget effect was
adequately establishdéxy the simulations presented herein.

If a nugget in the transmissivity spatial correlation function is indeed just an artifact of
measurement error or limited data density, rather than representing actual local-scale
discontinuity, then the nugget impacts illustrated in Figure 4-5 may have limited physical
meaning. In that case, model-derived power means associated with a nugget effect may not be
appropriate for use in analytical models.

Aside from potential uncertainties about its physical meaning, a nugget is sometimes
used in spatial correlation models. If a numerical groundwater flow model is used to simulate
depletion timing, and if that fl® model’s transmissivity field is populated using a geossditial
model that includes a nugget effect, then the simulated depletion timing may be impacted.

The nugget-effect simulations support a general observation from the other simulated
cases The bounding arithmetic and harmonic meandfgrare approached only with an
increasingly strong degree of structural organization of the transmissivity field. If that degree of
organization is limited, eithen the large-scale correlation structsgtistical anisotropy) or by
local-scale variability embedded within the overall correlation structure (nugget effecfe¢hen

is limited from approaching the bounding arithmetic and harmonic snean

45 Effect of River Angle
Paleologos (1994) presented the following estimat&§gin two-dimensional,
anisotropic media under steady-state mean-parallel flow, when the direction of mean flow and

the principal axis of correlation are not aligned:

0'5, 2 Ajcosze+/1isin29
Kep, = Ke |1+~ — oy |—F—— (4-1)
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in which 6 is the angle between the direction of mean flow and the principal axis of correlation.
When the flow direction and principal correlation axis are aligned, this reduces to Equation 2-6.
Equation 4-1 was outlined by Gelhar and Axness (1983), but Paleologos (1994) noted that this
more explicit and closed form had noebgresented in the literature.

Equation 4-1 was evaluated in this work for the case of transient stream depletion when the
river boundary orientation is not aligned with the princifiadctions of the aquifer’s correlation
structure. In an alluvial aquifer, the principal direction of transmissivity correlation and the river
may both be aligned, generally, with the longitudinal axis of the aquifer, but there are exceptions.
For example, a tributary stream may cross the alluvial valley at an oblique angle, and certain
reaches of a meandering river may cut across the valley at different angles. Furthermore, strea
depletion concerns are not limited to pumping from alluvial aquiéher types of river-aquifer
systems are of interest as well.

Modeled results are compared to Equationid-igure 4-7. The simulations included
both transient stream depletion and steady-state, mean-parallel flow conditions, under a range of
river-aquifer alignments, and for cases with geometric anisotropy tguaB, and 10.

Directional alignment was not expected to be relevant for the isotropic cageyastincluded
as a reference case.

When theaquifer’s principle direction of correlation was aligned at angles near 0° and 90°
with respect to the rivethe simulations were the same as the cases plotted previously (e.g.,
Figure 4-1, Figure 4-3). At intermediate angl&ag,shifted away from the bounding means
toward the geometric mean. @At 45°, all three cases hpgk equal to the geometric megn<

0).
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A discrepancy was observed between the modgieesults and the analytical estimate,
with the modeled output exhibiting a small shift away from the estimate toward the geometric

mean. This appears to be the same behavior observed in the primary simulations (Figure 4-1,

Figure 4-3.
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Figure 4-7. Effective transmissivity when theansmissivity field’s principal direction of spatial correlation is
oriented at an angkefrom the principal flow direction in steady-state, mean-parallel (SSMR)dtmditions.
Included are transient stream depletion simulations where the river orientation-i9Gtt Trends are shown for
geometric anisotropy ratio&,(A,) equal to 1, 3, and 10.

The modeled trend fquer in theA /Ay = 10 case exhiletdla degree of asymmetry as the
alignment was rotated away frdiv= 45°. The asymmetry is most easily seethe divergence
from the symmetric analytical estimate, a divergence that was observed to be ladged§sr
than for6 < 45° (Figure 4-7). This is possibly caused by the aspect ratio of the bounded model
domain, which could lead to stronger boundary effect8 fggproaching 0° than fér

approaching 90°, due to the smaller domain width irbthé° direction (see Appendix A,
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Figure A-3). An asymmetry caused by boundary effects would also explain why it is prominent
only in theA/Ay = 10 case, the case with the longest correlation range.

The trends illustrated in Figure 4-7 could be relevant for the case of a pumping well
located near the confluence of a river artidbutary stream. Stream depletion from the
pumping well would accrue to both streams. If the aquifer exhibits geometric anisotropy, then
the effective transmissivity governing the depletion timing would be different for each stream
due to their different relative orientations. If the aqusferincipal correlation direction were
oriented parallel to the main stem of the river, and if the tributary stream approaches at a right
angle, then the expected stream depletion timing would be descrilpegli®low a geometric
mean for impacts to the main stem of the river and above a geometric mean for the tributary.
This two-valueduess Scenario may have applications in the analytical model presented by Yeh et

al. (2008) for stream depletion from a pumping well located at the confluence of two rivers.

78



CHAPTERS5 - LIMITATIONS for NON-STATIONARITY and OTHER CASES

Stochastic approaches to analyzing groundwater flow in heterogeneous fields usually
assume stationarity of the field (Rubin and Seong 1994; Renard and Marsily 1997; Chang and
Yeh 2012). Likewise, the effective transmissivity behavior presented in Chapter 4 was simulated
under the condition of stationarity. Sanchez-Vila et al. (2006) stated that field data suggest
stationarity is commonly not a property of the medium but rather is an artifact of the scale of
observation. Stationarity has also been characterized as a decisiom maalgsis,
emphasizing it is a condition of the method and not necessarily a property of the data distribution
(Deutsch and Journel 1908

The effective transmissivity relationships identified in Chapter 4 are tested in this chapter
for sensitivity to the stationarity condition. In particular, the case of mean transmissivity
decreasing linearly with increasing distance from the river is simulated. Sensitivities to
hydraulic anisotropy and zonal anisotropy, the latter being a different form of statistical

anisotropy, are also evaluated.

5.1 Block-WiseVariable Mean

To support interpretation of depletion response behavior from an aquifer that has a
smoothly varying trend in mean transmissivity, a simplified case was first simulated. The
simpler case had two homogenous aquifer zones with dissimilar transmissivity. Transmissivity
zoneT; was located in the half of the aquifer between the river and the well (model rows 1 to
100), with zon€T, located between the well and the impermeable boundary (model rows 101 to
200). Transmissivity of zon& was varied by factors di/T; = 0.125, 0.25, 0.5 and 2.0.

Consider thatfizoneT, hasatransmissivity near zero, then it would act as an

impermeable boundary that in effect narrows the aquifer. One would expect a steeper depletion
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curve in that case over the homogeneous case (Miller et al. 2007). Inslégdiaa decreased
in these simulations, the early-time depletions were increased relative to the homogenous case in

which To/T; = 1 (Figure 5-1).
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Figure 5-1. Depletion response curves for block-wise heterogeneity with transityisgiwetween the well and the
impermeable aquifer boundary scaled relative to the transmis§ivitgtween the well and the river. Time is scaled
based off; (t’ = a’STy).

In turn, late-time depletions were slightly slower than the homogenous case.
Mathematically, the slower late-time depletions are required because the area under the depletion
curve must approach the pumped volume over time. The pumped volume was the same for all
cases shown in Figure 5-1. A physical explanation is thafi;thene would drain more slowly
toward the steady-state condition, due to its lower transmissivity, thereby slowing the rate at
which equilibrium between pumping and stream depletion is reached, i.e., slowing the rate at

whichg/Q = 1 is approached.

80



A pertinent observation was that the standard analytical Glover model, whether applied in
bounded or unbounded form, did not match the shape of the depletion response curves from this
block-wise-heterogeneous aquifer. The curve shapes could be matched if boundary distances
were adjusted-invoking an effective boundary distance coneeput they could not be
matched using the known geometry of the system. The shape error was modeshiioiethe

transmissivity contrasts.

5.2 Trending Mean Transmissivity in Steady-State M ean-Parallel Flow

5.2.1 Framework for Sensitivity Test

A framework for evaluating the sensitivity ©f; to a non-stationary transmissivity in the
stream depletion casepresented in this section by first examining sensitivity in the steady-
state, neantparallel flow case. The basis for choosing the magnitude of the tested transmissivity
trend is also described.

For valley-fill alluvial aquifers, transmissivity values often increase toward the middle of
the valley, and thus often increase with proximity to the river, due simply to greater aquifer
thickness toward the middle of the river valley. Such non-stationary problems are not trivial to
analyze. For one issue, the block-wise heterogeneous scenario in the prior section showed that
an increase iif toward the river will alter the shape of the transient stream depletion response
such that current analytical modehay not be strictly applicable. However, those simulations
also suggested that the shape change was reasonably sraafioiderate spatial changein

In further test simulations, response curves from a non-stationary transmissivity field
were observed to have a maximum deviation from the stationary case by about 5% when
increagdby a factor of three across the model domdinose simulations used a homogenous

hydraulic conductivity field with saturated thickness that increased linearly by a factor of three
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from the impermeable aquifer boundary (Row 200) to the river (Row 1). Based on that result
indicating modest error in the curve shape, a three-fold increaseanT across the model
domain was selected for testing the heterogeneous non-stationary case.

The magnitude and direction of that selected trend is realistit, alswed
interpretation of the depletion response with acceptable accuracy using the Glover analytical
model. More to the point, even while the response still reasonahl@lfitver response curve,
this trend was found to strongly affélGk results.

It is common to model a non-stationary heterogeneous field as a deterministic trend
component combined withstochastic residuals component, the latter being a stationary random
function representing heterogeneity (Deutsch and Journel 1998). The deterministic treatment
makes particular sense when there is an independent, even if qualitative, understanding of the
nature of the trend (Isaaks and Srivistava 1989). For the simulations presented herein, a non-
stationary heterogeneous field was created by first generating a stationary heterogeneous field
and then adding the deterministic trend (Appendix A, Figure A-6). This can be viewed as a
stationary heterogeneolsfield with a deterministic trend in aquifer thickness, thus a non-
stationary heterogeneotidield.

Indelman and Rubin (1996) examined effective transmissivity for steady-state mean-
parallel flow in a heterogeneous field with a linear spatial trend in mean transmissivity. They
showed:

“when the trend is parallel to the gradient, the equivalent conductivity is bounded by the
effective conductivity of the stationary medium on one hand and the harmonic mean
conductivity on the other, with the harmonic mean pertaining to the case of a very large
trend?”
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Similarly, when the trend is perpendicular to the gradient, effective conductivity is bounded by
the stationary effective conductivity and the arithmetic mean (Indelman and Rubin 1996; Rubin
and Seong 1994).

The Indelman and Rubin statemé&ndjualitative and the trend’s significance was
described through its impact on the outcome. For this research, significance of the trend was
gauged separately from its impact on the outcomes by considering the vdr@ontebuted to a
given heterogeneous field. By comparing the variafgef the trended transmissivity field to
that of the de-trended field, it was found that the three-fold increase in mean transmissivity
across the domain contributed approximatély= 0.11 to the total variance of the field,
regardless of the scale &% of the de-trended field, i.e., regardless of the degree of stationary
heterogeneity as measureddy . This held within the tested range, which wassfgrof the
de-trended field ranging from 0.1 to 0.9. For example, when the stationary field varianc® was
= 0.10, the field variance with the trend included was 0.21. For stationary field variancg

= 0.89, the field variance with the trend included was a&ar 1.0.

5.2.2 Sensitivity for Steady-State, Mean-Parallel Flow

In steady-state mean-parallel flow simulations, the influence of a trend in transmissivity
was found to be minor when the field was strongly heterogeneous relative to the variance added
by the trend. For example, in that minor-impact case, the de-trended field variandewas
0.89 and the total field variance wafs = 1.0. The trend contributed about 10% of the total
variance andes remained primarily a function of the geometric anisotropy relationship shown
previously in Chapter 4. However, when the field was only mildly heterogeneous, such as with

de-trended variana&’y = 0.11 and with the trend contributing about half of the total field
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variances?y = 0.22, then there was a significant shiffin toward the harmonic mean. Results
from these two cases are showrkigure 5-2. This is apparently similar to Indelman and Rubin
(1996) which noted a significant trend leadJ¢pbeing closer the harmonic mean than would

expected from the stationary component offiblel’s properties.
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Figure 5-2. Power-mean exponents for two cases with non-stationary fields thatlimegr trend in local-mean
transmissivity. One case of zonal anisotropy is also included. Statiosas/sfzown in the prior figures are
included again here for reference.

The framework described above could be used to further develop empirical relationships
between stronger trends, trended and de-trended variangazdadSSMP flow. However,
the cases shown in Figure 5-2 were sufficient for the current objective, which was to assess
whether the chosen linear trend was large enough to infliepe@lues, and to know what that
effect would be in the steady-state mean-parallel case, before advancing to transient stream

depletion simulations in the same non-stationary fields.
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5.3 Trending Mean Transmissivity in Transient Stream Depletion

Up to this point, no cases have been presented with significant differeriged&havior
between transient stream depletion and steady-state mean-parallel flow cases. Such comparison
is problematic, however, for a field with a spatial trend in transmissivity. A strictly defined
effective transmissivity value does not exist for the non-stationary case (Sanchez-Vila et al
2006). Instead, a pseudoeffective value must be defined that depends on location within the flow
domain.

Defining the area of influence, and therefore the transmissivity averaging area, is
straightforward in the non-stationary SSMP flow simulatieftss the entire area between the
two head boundaries, and all sub-areas of the transmissivity fiedcefjaal influence on global
flow behavior. In contrastt is not straightforward for the transient stream depletion case.
Hydraulic analysis and empirical tests sugegeste area of primary influence in the transient
stream depletion simulatiomsnear the well along the river boundary (Section 3.6), @iitea
does not have sharp or specific extents. Influence decreases with increasing distance from the
well and river.

The precise shape and location of the chosen weighting area (Figuwea8-iot
significant in the simulations presented so far. In principle, this is because the fields were
stationary and relatively homogenous statistically. And in practice, this was confirmed through
sensitivity simulations which showed the weighting area only affected the ensemble variance and
not the ensemble mean, i.e., gt itself.

In contrast, the choice of weighting area was found to dominate results for transient
stream depletion when a non-stationary mean transmissivity was present. This was found

through a series of non-stationary stream depletion simulations. First, if the weighting area used
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previously (Figure 3-1) was expanded to include a small portion of the area between the well and
the impermeable boundary, where the mean transmissivity was lower, then the rpsiitiag
greater than +1.0, meaning it was greater than the arithmetic avéithge expanded weighting
zone. Exceeding the arithmetic bound is in conflict with theory in general and specifically with
analytical work on other non-stationary cases (e.g., Rubin and Seong 1994; IndelIman and Rubin
1996). That suggests the expanded averaging area reached too far beyond the relevant area
and/or should be weighted more toward the region between the well and the river where mean
transmissivity was higher.

Next, when the weighting area was the same as used in the prior stationary cases (Figure
3-1), thenpess was slightly above the trend established for those stationary cases. For example,
pers Was slightly but distinctly above the geometric mean under mild geometric anisotropy.
Finally, if the averaging zone was narrowed slightly such that the semi-minor axis of the
averaging-area ellipse included 90% of the distance between the river and the wplk then
corresponded more closely to the trend for the stationary cases shown in Figure 5-2, such as
close to the geometric mean for cases with mild geometric anisotropy.

It is worth reviewing that an equivalent transmissivily, was identified from the
depletion response curve and related to the distribution of the realized transmissivity field
through the power-mean function exponent (Section 3.9Hat response curve, the
correspondingeq value, and the transmissivity field is the same in each of these test cases; only
the power-mean exponent was changing. The power-mean exponent corresponding to the
interpretedTeq changed as the averaging area changed because the non-statioriary field

properties changed in space.
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To approach thipe sensitivity to the weighting area differently, one could presume that
Pett fOr both steady-state mean-parallel (SSMP) flow and transient stream depletion might still be
similar in a non-stationary fielda presumption based on the similarity in the stationary
simulations—and therefore adjust the weighting area until the non-statigaargsults are
similar between stream depletion and SSMP simulations. When taking that appggach,
behavior for non-stationary stream depletion simulations was close to the non-stationary SSMP
casesvhen the weighting area’s semi-minor axisvas decreased to include about 80 to 85% of
the distance between the river and the well.

The non-stationary stream depletion scenarios described above are not included in Figure
5-2 since they were so sensitive to arbitrary teSthe area of influence. These observations
may not be directly transferrable, quantitatively, to cases with trends of different magnitudes or
fields with different variance levels. However, even with these limitations, the results clearly
illustrate the strong sensitivity pts to how the pseudo-effective transmissivity area is defined
when there is a realistic spatial trend in mean transmissivitit.islaccepéd that thepess must
lie between the arithmetic and harmonic bounds for this case, tlemrdhals bracket the

outside extent of the averaging zone under the simulated trend and variarge level

5.4 Zonal Anisotropy

With geometric anisotropy, the correlation range varies with direction, but the variogram
sill, i.e., the uncorrelated variance, is isotropic. With zonal anisotropy, the sill level is
anisotropic. Zonal anisotropy may represent distinct lithologic layering, which would be
common in a vertical profile, such as an alternating sand, clay, and silt depositional sequence.
Zonal anisotropy is conceivable in a horizontal profile where strata have been deformed and

exposed. Zonal anisotropy can also be an artifact of a trending mean transmissivity, an artifact
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which may fade once the data have been de-trended (Gringarten and Deutsch 2001). That latter
situation was apparently the case for several locations considered in Section 6.2.

Four ensembles with zonal anisotropy were simulated. Transmissivity fields exhibiting
zonal anisotropy were generated by using two nested spatial correlation functions (Deutsch and
Journal 1998 The variogram sills for orientations parallel and perpendicular to the river were
approximately 0.25 and 0.75, respectively. That case is shown in Appendix A.

Results from the four ensembles are plotted in Figure 5-2. As shaymy tlesults were
insensitive to the degree of geometric anisotropy, remainingogear0.75 for geometric
anisotropy ratiosN/Ay) ranging from 1 to 10. Afour ensembles therefore behaved as strongly

“stratified’ cags, including those with isotropic correlation ranges.

5.5 TheHomogeneous Anisotropic Case

Geometric anisotropy i@geostatistical anisotropy that is used to describe the structure
of aquifer heterogeneity. It is based on a directionally dependant correlation of local-scale
transmissivity zones, even when those zones may be isotropic locally. As suggested by Gelhar
and Axness (1983), geometric anisotropy leads to hydraulic anisotropy at a larger scale, but it is
not the same physical phenomena as local hydraulic anisotropy.

There are interesting differences to consider between these two forms of anisétropy.
regional-scale anisotropic transmissivity is not necessarily feasible to measure or test. At the
spatial scale that is assessed by a typical aquifer test, the testedrdreasotropic, yet the
larger spatial structure of the collection of isotropic zones can lead to anisotropy in regional-scale
transmissivity. It is also possible in principle to have regional-scale hydraulic anisotropy that is
the combined result of local-scale hydraulic anisotropy plus overall geometric anisotropy. In that

case, the two behaviors would be superimposed (Sanchez-Vila et al. 2006).
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If it cannot be directly tested, regional-scale anisotropic transmissivity attributable to
geometric anisotropy might be estimated only by: (i) a numerical model populated with a
transmissivity field interpreted from local-scale estimates or (ii) estimated from geometric
anisotropy that is inferred from constructing variograms (Sanchez-Vila et al. 2006). The second
case would likely be combined with geologic interpretation, such as considering depositional
history.

Regional-scale hydraulic anisotropy is a nonlinear function of geometric anisotropy.
Using the directional effective permeability estimate of Gelhar and Axness (1983), which was

based on geometric anisotropy, Sanchez-Vila et al. (2006) noted the following relationship:

X = exp (E o ) (5-1)
Ty e+1
in whicheis a geometric anisotropy ratio defined\@a, (< 1). Note that this ratio is inverted
from the convention used elsewhere herein. A plot of this relationship is shé&vguie 5-3.

The regional-scale hydraulic anisotropy rafig/{y) that develops from geometric
anisotropy is a function of varianaegy (Equation 5-1). Logically, as the contrast between local-
scale transmissivity zones increases, which increases the field vari@GgT{ contrast that
arises from the structural organization of those contrasting zones will also increase. Or, to
approach the dependence on variance from another perspective: It can be shown with Equations
5-1 and 2-5 that, as geometric anisotropy increases,fhgratio approaches the ratio between

the arithmetic and harmonic means of the local transmissivity values. The ratio between the

arithmetic and harmonic means is a function of field variance (Section 2.2.4).
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Figure 5-3. Nonlinear relationship between hydraulic anisotropy and geometric statistica@pys

The power-mean function partly normalizes for field variance (Section 2.2.4)pedfise
therefore a function only of the system flow behavior. Considering¢hédr stream depletion
timing has been shown to have only a mild dependence on field variance (Figure 4-4), while
Equation 5-1 shows hydraulic anisotropy to be a function of field variance, this raises the
guestion if hydraulic anisotropy a factor in stream depletion timing.

The shape of the cone of depression around a pumping well is distorted by hydraulic
anisotropy T/Ty). It may seem intuitive that a depression distorted to be wider in the direction
parallelto the river (which arises in thHi > T, case) would interact more slowly with the river
relative to the isotropic case. And, vice versa, that it would interact more quickly with the river
if distorted toward the river (thg, > T casg@. This concept was tested through model runs in
which only homogeneous anisotropy was simulated.

In the homogeneous anisotropic simulations, stream depletion timing was dependent only

on the transmissivity in the direction perpendicular to the riligr (It wasinsensitive to
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transmissivity in the parallel directiofi, and thus insensitive to hydraulic anisotropy ratios
(TW/Ty). It was therefore concluded that stream depletion timing is sensitive to geometric
anisotropy due only to the fact that geometric anisotropy influenges the y-direction.

Transmissivity in th@ direction did indeed influence the width of the cone of
depression and thereby influenced xgth of the affected river reach, even while the total-
river depletion timing was not affected. That spatial distribution of stream depletion can be
relevant in conjunctive water management, sucim astimating the portion of a well’s
depletions that impact the river above a critical point like an intervening water right, or
protected habitat zone, etc.

Figure 5-4 compares spatial depletion rates along the river for two cases of homogenous
anisotropy and an isotropic reference case. In the simulations used to produce this plot, it was
apparent that the shape of the cone of depression was depentigandnas shown, the length
of the affected river was influenced by However, the total area under each spatial depletion
curve (Figure 5-4), and thus the total depletion rate at a given time, was the same in each case.
The depletion was simply concentrated nearer the wellfdy < 1 and was more diffuse for
TdTy > 1. It was also found that the length of the affected river reach, which can be computed
analytically for the isotropic case (Glover 1977), can be successfully scaled by the square root of

the hydraulic anisotropy ratiol,{Ty) , as is donén other applications for anisotropic

conditions.
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curve) is identical for each case.
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CHAPTER 6 FIELD EXAMPLE and APPLICATION LIMITATIONS

6.1 Example Geometric Anisotropy Ranges

Extensive lists of correlation ranges for various aquifers have been compiled in
publications, including examples of horizontal correlation ranges at the regional scale (e.g.,
Gelhar 1993; Hoeksema and Kitanidis 1985). Statistical anisotropy for the vertical plane
(horizontal to vertical correlation ratit,/A,) can be found in many reports as well. In contrast,
published data about statistical anisotropy in the horizontal plairg @ppears to be
uncommon.

One publication noting statistical anisotropy in the horizontal plane was a regional-scale
geostatistical study by Welhan and Reed (1997) around the Idaho National Energy and
Environmental Laboratory (INEEL) in the Snake River Plain aquifer. They reporégional-
scale correlation (up to 6 km) with a horizontal statistical anisotropy ratio of 4/1, oriented
southeast towd the river plain. The scale of correlation and the orientation toward the river
were attributed to lava flows and volcanic structural featufés. INEEL site is in a complex
geologic setting where groundwater flow is suggested by Welhan anddise=dominated by
connectivity of high-contrast permeability zones, so the applicability of the Gaussian fields used
in this study to the INEEL site may be limited. Still, the INEEL studydiladge spatial scale,
giving it some relevance ashorizontal geostatistical anisotropy example.

In further geostatistical work for INEEL, Welhan et al. (2002) commented that although
the siteis primarily a volcanic aquifer system, the spatial distribution and architecture of
interflow zones, referring to relatively thin but laterally extensive and highly permeable zones
between stacked lava flow lobé&bgear a resemblance to the distribution of coarse fluvial facies

in sedimentary aquifers.” Their 2002 study was focused on smaller-scale correlations (e.g., 100
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m correlation lengths) and used indicator variogram analysis. At that scale, they reported
horizontal statistical anisotropy at 1/1 for sediments and 7/1 for the interflow zones, with an east-
west orientation.

Due to finding only one published study documenting large-scale horizontal statistical
anisotropy, geostatistical correlation structures for five areas of the South Platte River alluvial
aquifer in Colorado are examined in this chapter.

The headwaters of the South Platte River are located in the Rocky Mountains southwest
of Denver, Colorado. The river exits the mountains near Denver and flows north and east
roughly 200 miles across the plains to the northeast corner of Colorado. It meets the North Platte
River in west-central Nebraskalt is generally a shallow, braided river with a sand and gravel
streambed (Lindsey et al. 2005; SPDSS 2006a).

The South Platte River alluvial aquifer is a valley-fill aquifer lying in paleochannels
eroded into the Pierre Shale for much of its length in Colorado, with western reaches of the
alluvium in buried valleysn the Fox Hills sandstone, the Laramie Formation, and other units of
the Denver basin. The aquifer is composed of unconsolidated gravels, sands, silts, and clays.
Significant portions consist primarily of glaciofluvial sand and gravel deposits (Bjorklund and
Brown 1957; Smith et al. 1964; Tweeto 1979; Aikin et al. 2000; Topper and Wilson 2003;
Lindsey et al. 2005).

The aquifer’s saturated thickness is typically in the 20 to 40 ft range near Denver, and up
to 200 ft thick in northeast Colorado. The aquifer’s width varies between roughly two to six
miles. Typical transmissivity is around 15,008d&y in the thinner reaches near Denver, and

over 100,000 fiday in the thicker deposits in northeast Colorado (Hurr et al. 1972a, 1972b,
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1972c). High-capacity groundwater wells are used extensively in the South Platte basin for
irrigated agriculture.

Transmissivity maps for five areas selected for geostatistical evaluation are shown in
Figures 6-1 through 6-5These maps were constructed from the GIS fdeisl1106 and
tgrido309 which were developed by the South Platte Decision Support Study (SPDSS) using the
Hurr and Schneider work (1972a, 1972b, 1972c, and others in the series), combined with other
data sources, and interpolated into a 100-meter-grid data file (SPDSS 2006b, 2006¢, 2009, 2013).
The river configuration is from a GIS file digitized by Colorado State University from USGS

maps (CSU 2006; Hurr and Schneider 1972a, 1972b, 1972c, and others in the series).
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Figure6-1. Transmissivity of the South Platte River alluvial aquifer near Fgtdry Colorado.
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Figure6-2. Transmissivity of the South Platte River alluvial aquifer near Gre€laiprado.
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Figure 6-3. Transmissivity of the South Platte River alluvial aquifer near RiveR&kervoir, Colorado.
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Figure 6-4. Transmissivity of the South Platte River alluvial aquifer around Cosek, Colorado.
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Two programs were uséd construct and analyze experimental variograms for the five
South Platte areasurfer (version 11.6) by Golden Software, Golden, Colorado; and the
Stanford Geostatistical Modeling SoftwaB&seMS (Remy et al. 2009)Table 6-1 lists
statistical anisotropy ratios and principal directions estimated from the experimental variograms
for the five South Platte areas shown in Figures 6-1 through Bable 6-2 lists the same

information for when the fields were detrended.

Table6-1. Estimated spatial correlation parameters and modeled power-mean exfami@rgsareas along the
South Platte RiverPower-mean exponents are shown for both transient stream depletion (HSiDgady-state
mean-parallel (SSMP) flow.

A river
General max . TSD SSM P
Area Amax/ Amin azimuth Amax (ft) azimuth S

(from north) (from north) Peg Peq
Fort Lupton 4to0 7, greatef 10° 10,000 0° inconclusive 0.3
Greeley 2 to 4, greate 45° 13,000 45° -05t00.5| -0.4t00.9
Riverside >3 110° >domain 110° -0.1 0.1
Lost Creek 3to4 20° 15,000 90° 0.1t00.4 0.1
liff >10 45° >domain 12° >1.0 0.5

Table 6-2. Estimated spatial correlation parameters for the five areas along the SoutRiRéatdter detrending.

; A
Approximate e
ppArea Amax! Amin azimuth Ay (ft)

(from north)

Fort Lupton - - -

Greeley near 1 45° 13,000
Riverside - - -
Lost Creek 2t03 10° 15,000
. o 5,000 to
liff 15to4 35 9,000
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Caveats

It is noted that experimental variograms, meaning those that are created from site data
and not mathematical models of correlation, can be sensitive to construction decisions, such as
choosing data-pair lag distances, data search criteria, etc. The development of representative
variograms is not a straightforward process for some data sets, with solutions that may not be
unique (Isaaks and Srivistava 1989). And, there are no robust or objective measures of validity
for a given variogram (Goovaerts 1997). With those concepts in mind, the following
observations were made during variogram construction. No obvious sensitivity to the lag search
parameters was found when different tolerances were tested for both lag distance and search
angles, but visual assessment of the transmissivity maps suggest there are irregular-shaped,
large-scale correlation patterns at some locations (e.g., Figure 6-3) that might not be well-
captured in directional variograms that have a standard type of search window. The constructed
variograms also suggested short-scale correlation patterns nested within patterns at a scale larger
than the domains tested. Additionally, different degrees of influence from non-stationarity in
transmissivity were apparent among the five cases. For these reasons, the geostatistical
correlation parameters produced for the selected South Platte areas may not be fully
representative of those areas and are not the only possible interpretation.

A few other observations were noted for the results shown in Tables 6-1 and 6-2. Milder
statistical anisotropy was found in some of the variograms than might beeskipastd on a
visual assessment of the transmissivity maps. The Fort Lupton area transmissivity field was not
detrended due to the relative homogeneity of the area and since there wasn’t a clear trend except
near the aquifer margins. A clear variogram was not identified for the Greeley area once the

field was detrended. The Riverside area appears highly correlated (Figure 6-3), but the
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sinusoidal pattern is likely not captured by the typical directional variogram used. The Riverside
area was not de-trended due to the change in trend direction near th&arregrams for the

Lost Creek area exhibited zonal anisotropy, for which detrending had a minor effect.

6.2 Site Application of Equivalent Transmissivity

Five numerical groundwater flow models, and several variants of those five, were built
with the MODFLOW-2000 code (Harbaugh et al. 2000) for the areas shown in Figures 6-1
through 6-5. Transient stream depletion rate response curves were simulated for pumping well
placed generally near the middle of the domains shown in the figures. Steady-state mean-
parallel (SSMP) flow conditions were also simulated for these domains by placing an artificial
straight head boundary near the impermeable aquifer boundary to impose a fixed gradient across
the aquifer toward the river. The SSMP simulations were performed since the transmissivity
averaging area for that case would be less ambiguous than for the pumping well depletion case,
and because the SSMP test would influence a larger portion of the aquifer, giving a more
comprehensivedimate ofpgq for the area.

The modeled depletion response for the transient pumping simulations, and the total flow
rates induced under the SSMP tests, were used with the Glover equation and a simple Darcy
calculation, respectively, to computdg& for each simulation. As was done in the synthetic-
case simulations, B was related to the powetean statistics from each region’s transmissivity
field to obtain geq The averaging area for the stream depletion case was based on the area
expected to be most influenced by the pumping well (Section 3.6.1). For the SSMP case, it was
the entire area between the artificial head boundary and the river.

The model-estimatepk results for the five South Platte areas are listed in Table 6-1.

The results were highly variable, and without a clear relationslgpometric anisotropy ratios
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of the fields. Factors contributing to the lack of correlation with geocreetrsotropy are
discussed in the next section. Observations made during the evaluation process are noted first.

For the Fort Lupton area, a clgafwas indeterminable for the transient stream depletion
case due to the relative homogeneity of the region. For several tested subareas, there was only a
2% difference between harmonic and arithmetic means such that a pggbditween the two
bounding means could not bsolved, and wouldn’t have practical meaning anyway.

Qualitatively, the Greeley area (Figure pk@ks to be the least statistically anisotropic
of the five areas examined. Quantitatively, its variogram did indeed indicate relatively mild
anisotropy. The mild anisotropy may explain why the stream depletion results were generally
around the geometric megm{=-0.5to 0.5). However, the results were also sensitive to the
location tested and the size of the averaging area, in both the TSD and SSMP tests. In particular,
the higher-transmissivity zone located toward the northeast appeared to influence the depletion
response for wells placed near that area, even if the wells were not directly within the zone. That
high-transmissivity zone similarly influenced the SSMP case, as was noted when the size of the
stressed area was varied.

That zone of higher transmissivity in the Greeley area is located where the Beebe Draw
alluvium merges with the South Platte alluvium. The Beebe Draw is thought to be an ancestral
route of the South Platte River (Smith et al. 1964). It can also be seen in Figure 6-2 that the
principal direction of anisotropy is oriented toward the river in that area between the end of
Beebe Draw and the river, whereas the areas further west have structure orientedqtallel
river. This last observation highlights the spatial variability of aquifer characteristics that

influence appropriat&.q averaging.
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For the Riverside case, considering the irregular shape of visually apparent corriélation,
is likely that the anisotropy ratio was not well-captured in the variogram modeling. Riverside is
also a case with a strong trend toward the river, a trend which also reverses before the river.
Such trends introduce sensitivity to the choice of spatial weighting area (Chapter 5). Effective
transmissivity results were very close to the geometric mean (-0.1 to +0.1) though this was
sensitive to the tested area and the averaging aregs twedefore a low-confidence estimate.

The Lost Creek region is different from the other cases because, for much of the area, the
principal correlation direction is oriented toward the river. For this analysis, the upper reaches of
Lost Creek itself were neglected as a relevant stream boundary. Lost Creek reaches were
assumed to be ephemeral or have head-invariant leakage rates, leaving the South Platte River as
the affected stream boundary. Tdagresults for the Lost Creek case are roughly consistent
with a correlation axis oriented toward the river, as results were above the geometripdrean (
0.1to 0.4).

The region southwest of lliff was chosen because, unlike the other cases, a reach of the
river there is oriented at an oblique antgi¢he princi@l axis of correlation. Based orettangle
and the results of Section 4k, was expected to be close to the geometric mean. That,
however, was not the outcome of the lliff flow simulations. The model-estirpatas high,
between the arithmetic and geometric means for the SSMP simulation, and above the arithmetic
mean for the TSD case. The pumping well in that case was located slightly south of the high
transmissivity zone in the middle of the aquifer. Further examination of both the TSD and
SSMP flow simulations suggestthe high transmissivity zone near the middle of the simulated
area strongly influenced the stream response, a characteristics that was not well-cgptured b

averaging transmissivity over a wider area.
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6.3 Issueswith Site Application for Transient Stream Depletion

There are at least two limitationmsapplying the results of Chapter 4 to the five South
Platte areas modeled hergi) the large scale of correlation relative to the scale of the problem
and (ii) the spatial trends in mean transmissivity. The relationships bepaegmd geometric
anisotropy presented in Chapter 4 apply to expected (mean) behavior, but it is also clear that
there is significant variability among individual field realizations (Figure 4-2). That variability
increases as the correlation scale becomes large relative to scale of the flow problem.

The effect of large correlation scales is showRigure 6-6 which comparegeq
histograms for two ensembles that have the same geometric anisotropy (5/1) but different
correlation scales. Example field realizations for these two cases are illustrigitguar :6-7.
One case has a correlation length equal to 50 model nodes (2,500 ft) and the other equal to 200
model nodes (10,000 ftMean behavior from the two ensembles were roughly similar to each
other P« at -0.54 versus -0.38) and similar to the curves shown in Chapter 4. (Note the large-
scale correlation cases plotted in Figure 4-1.) Yet, Figure 6-6 shows there is poor probabilistic
predictability for individual realizations the case with the large correlation scale.

The standard deviations of equivalent power-mean exponggtérém various
ensemble simulations are plottedHigur e 6-8 andFigure 6-9 and as a function of correlation
scale. The correlation range was scaled by the distance between the well and the river. Figure
6-8 is for ensembles with the principal correlation direction oriented parallel to the river, and
Figure 6-9 is for the principal direction oriented perpendicular to the rivensidering thape
ranges only fron -1.0 to +1.0 for the bounding harmonic andhaniétic means, respectively, it is
clear that when the correlation range is large relative to the scale of the problem then there is

significant variability relative to the bounding means for individual realizations.
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A few other observations can be made from these figures. As noted in Chapter 3,
applying the spatial weighting area did not affggtresults but it did reduce ensemble
variability. The reduced variability is apparent in Figure 6-8 which shows the larger ensemble
standard deviations in the unweighted cases compared to the weighted cases, particularly for the

ensembles with,/a > 2.
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Figure 6-6. Distribution of power-mean exponents for two ensembles withahme statistical geometric anisotropy
(A/ A, =5/1) but different absolute correlations scales relative to the sameowier distance.
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model column

Figure 6-7. Example transmissivity field realizations for the same statistical gdorartsotropy (5/1) but

different absolute correlation scales. Pumping well is at center (450, Co@elation scale is 50x10 nodes in the

top field and 200x40 nodes in the bottom field.

Standard Deviation of Effective Power-Mean Exponent

Figure 6-8. Standard deviations of power-mean exponent ensembles as a functorelzttion scale. Plotted
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Standard Deviation of Effective Power-Mean Exponent
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Figure 6-9. Standard deviations of power-mean exponent ensembles as a functioelatioorscale. Plotted
cases have principal correlation direction oriented perpendicular to river.

Two cases are plotted in Figure 6-8 for which the correlation scale in the minimum

principal direction Xy) was increased relative to the other cases. These are the two large-scale

correlation cases also plotted in Figure 4-1 and Figure 4-2, and includes the large-scale case

shown in Figure 6-6. The other simulations in Figure 6-8 had equal correlation ranges in the

minimum principal direction, which was the 10-node minimum range allowable to avoid grid

discretization bias (Section 3.6.2). For the two large-scale cases, the minor direction correlation

range was increased to 40 nodes, thus from 10% to 40% of the distance between the well and the

river. As seen in Figure 4-1, Figure 4-2, Figure 6-6, and Figure 6-8, the increase in correlation

scale in the minor direction significantly increased ensemble variability.
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An increase in ensemble variability with increased correlation scale is not novel (Deutsch
and Journel 1998). What is notable is that transmissivity correlation scales are commonly quite
large (Rubin 2003; Anderson 1997; Dagan et al. 2009), which leads to correlation commonly
being large relative to the scale of the problem in transient stream depletion.

This issue of predictive uncertainty being a function of problem scale and correlation
scale was a clear differentcethe steady-state mean-parallel (SSMP) simulations with synthetic
fields. For SSMP flow, the entire domain was the relevant flow field, rather than only that
portion affected by the pumping well. Variability, such as that shown in Figure 6-8 and Figure
6-9, was much reduced for the SSMP cases, due to the larger relative scale of the flow problem.
Variance ofpeq did increase as the correlation scale increased even for the SSMP caises, but
remained minor. For example, the SSpiRstandard deviations raegfrom only 0.02 to 0.04
over the same range in correlation scales as shown for the transient stream depletion cases in the
previous figures.

In the South Platte River alluvial aquifer examples considered in this chapter, the
transmissivity correlation range was generally larger than the scale of the problem as measured
by the distance between the well and the river fiz@{a > 1). In that case, it appears ergodicity
cannot be reliably assumed, meaning that overall expected behavior may not be a good predictor
of individual site behavior. Large-scale correlation was not the only limitation to applying the
stochastic approaehstatistical inhomogeneity and non-stationarity were also complicating
factors for these non-synthetic transmissivity fieldsit the transmissivity correlation scée

an important consideration.
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CHAPTER 7 DISCUSSION and SUMMARY

7.1 Research Summary

The goal of this research was to evaluate effective transmissivity for the particular case of
transient stream depletion caused by pumping a groundwater well in two-dimensional,
heterogeneous aquifers. The results apply equally to streamflow gains caused by managed
aquifer recharge. Quantifying the timing of such hydraulic interactions between rivers and
groundwater pumping and recharge is necessary in the conjunctive management of groundwater
and surface-water resources.

The scenario examined was an aquifer bounded on one side by a straight constant-head
boundary representing a river and on the other side by a parallel zero-flux boundary representing
an impermeable boundary such as the edge of a valley-fill aquifer. The effect of heterogeneous
transmissivity on the timing of stream depletions was the focus. Numerical flow simulation and
Gaussian geostatistical models of heterogeneity were used with the Monte Carlo approach and
power averaging to identify effective transmissivities for a variety of heterogeneous conditions.

Geometric anisotropy was the primary geostatistical parameter evaluated for its influence
on effective transmissivity. Other factors assessed were field variance (i.e., degree of
heterogeneity), correlation model shape, nugget effect, correlation scale, and the orientation of
principal correlation directions with respect to the river. Sensitivity to zonal anisotropy and field

non-stationarity were also tested.

7.2 Primary Findings
In this study, effective transmissivity for transient stream depletion simulations spanned
nearly the full range between the bounding arithmetic and harmonic means, varying with the

spatial correlation structure of the transmissivity field. For cases with low to moderate
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heterogeneity, the shape of the effective power-mean exponent curve as a function of geometric
anisotropy was roughly similar to analytical estimates developed by Gelhar and Axness (1983)
and Ababou (1991) for steady-state, mean-parallel flow in unbounded domains. And, no
statistical difference was observed between effective transmissivity for transient stream depletion
simulations and for simulations of steady-state, mean-parallel flow conducted with the same
model domain and methods, although ensemble variability was notably larger for stream
depletion compared to steady-state mean-parallel flow simulations.

The depletion response curve realizations, and the ensemble-mean curves in particular,
were well-fit with a sintg-valued, time-invariant effective transmissivity. This is in contrast to
studies that have found transient changes in effective transmissivity for transient flow conditions.

The similarity observed in this research between effective transmissivities for steady-
state, mean-parallel flow and transient stream depletion is notable considering that different flow
regimes were involved. Itis also a potentially useful result given the large body of literature
available analyzing steady-state, mean-parallel flow conditions for various domain and boundary
configurations. For example, the Paleologos (1994) coordinate-direction transform for effective
transmissivity in geometrically anisotropic fields under steady-state, mean-parallel flow
conditions was found to also reasonably approximate effective transmissivity for transient stream
depletion when the fields’ principal correlation directions were oriented at oblique angles with
respect to the river boundary (Figure 4-7, Page 77).

Despite general similarity to the analytical curves, there were differences in the simulated
effective transmissivities. In certain anisotropy ranges, effective transmissivity was markedly
shifted toward the geometric mean relative to the analytical curves, and overall results

approached the bounding means more slowly than the analytical functions. The effective power-
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average exponents compiled in this work in Figure 4-1 (Page 63) can be used to refine effective

transmissivity estimates to be used in analytical models of stream depletion.

7.3 Sengitivity to the Geostatistical M odel

The choice of which of the standard spatial-correlation models to use (spherical,
Gaussian, or exponential) had no apparent effect on effective transmissivity results. It is
concluded that the effect, if present, was too small to be significant within the experimental
methods used for this work. The sensitivity of effective transmissivity to higher field variance
was mild, but was clear for cases with moderate to high geometric anisotropy.

Usinganugget effect in the spatial correlation function had a significant impact. An
increasing nugget shifted effective transmissivity away from the Weiner bounds and away from
otherwise-expected values toward the geometric mean. The impact was proportional to the scale
of the nugget relative to the total field variance. Regardless of whether a nugget in the spatial
correlation model is a real property of a given transmissivity field, or merely an artifact of
measurements and a tool of geostatistical models, this work demonstrated that a decision to
include a nugget effect in the field model is consequential.

Stationarity was a condition for most of the transmissivity fields simulated in this work.
The non-stationary cases that were tested had a linear trend in mean transmissivity oriented
toward the river boundary. For fields with strong heterogeneity, the stationary-field results still
provided a reasonable estimate for the effective transmissivity. For mildly heterogeneous fields,
however, the presence of the trend skewed results partly toward a harmonic mean. Results in
those cases were also highly sensitive to the choice of spatial averaging area.

Simulations were conducted in which field variance was anisotropic in addition to the field

having an anisotropic correlation range (i.e., zonal anisotropy). Effective transmissivity in those
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cases was shifted toward a harmonic mean and was independent of the geometric anisotropy

ratio.

7.4  Other Findings

Ensemble variability increased with increasing scale of spatial correlation. Such behavior
is expected in stochastic simulation, but considering that aquifer transmissivity typically exhibits
regional-scale correlation ranges, this scale-dependant variability has particular significance for
stream depletionExpected behavior in a stochastic approach may frequently be a poor predictor
of site-specific behavior for transient stream depletion cases when the correlation scale, in any
direction, is large relative to the distance between the well and the river.

Geostatistical evaluation and groundwater flow modeling were performed for five areas
of an alluvial valley-fill aquifer in northeast Colorado. For various locations within these five
regions, equivalent transmissivity results varied widely, ranging anywhere between, and beyond,
the arithmetic and harmonic means of local transmissivities. Equivalent transmissivity was close
to the geometric mean in several locations, but results were highly sensitive to well location, and
to the selected averaging area around those locations, such that a typical value was not identified.
Overall, this research suggests that equivalent transmissivity may be quite location-specific due

to the large correlation scales and statistical inhomogeneity of those fields.

7.5 General Applications

Groundwater hydrologists commonly use analytical models of stream depletion timing.
Given a set of local-scale transmissivity values, i8earch helps address the basic question of
how to best upscale (i.e., average) that data. It also suggests that the averaging process needs to

represent a relatively large portion of the aquifer along the depleted stream reach.
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At a higher level, the research results ask if spatial structure of the aquifer transmissivity
is characterized sufficiently to support a choice of one type of average over another. In that
respect, this work also provides a guide to the scale of uncertainty involved in choosing the
appropriate transmissivity. For example, for the scenario where an aquifer’s structure may not
be well understood, but perhaps the aquifer is characterized well enough to estimate the
arithmetic and harmonic means, and by knowing those means are the bounds of the effective
transmissivity (given certain assumptions), then the hydrologist may decide whether further
structural characterization is warranted to refine the effective transmissivity estimate.

The variability observed among statistically equivalent realizations in some cases
highlights that averaging heterogeneity may not be reliable when the correlation scale of
heterogeneity is large relative to the flow problem. The use of effective transmissivity values
and analytical models in that case involves significant uncertainty even when there is knowledge
of the aquifer’s structure. This should factor into the decision of when to use numerical models.

Applications are not limited to analytical modeling. Even when a numerical model is
used that can explicitly represent heterogeneity, this work shows how the representation of
aquifer structure in the numerical model is consequential to the results. For example, even
ostensibly small decisions made in the geostatistical modeling, such as including a nugget effect,
can impact the numerically modeled results.

Finally, improving our understanding of how to account for heterogeneity under different
circumstances is a fundamental topic in groundwater hydrology that has numerous and perhaps
intangible benefits. For example, in ideal practice, a numerical model should merely be a
calculator and not a so-called black box, meaning the model user has an informed expectation of

the groundwater behavior they are simulating. Such knowledge aids in the development of
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conceptual models, aids in the construction of a numerical model, and aids in reviews and

critiques of numerical modeling results.

7.6 A Regional Example of Potential | mpacts

Quantitative assessments of stream depletion timing are conducted frequently in the
South Platte River basin of Colorado. This is not unique to Colertttmneed exists and is
increasing in several states in the western U.S.A., as well as in other semi-arid regions around the
world. But, the South Platte basin provides an example with potentially large-scale impacts, and
with an emphasis on depletion timing, given the large extent of irrigated agriculture and aquifer
recharge in that basin, both of which are regulated under Colorado’s relatively long and evolved
history of managing streamflow depletions caused by groundwater pumping.

Impacts of groundwater pumping on surface water rights have been regulated in Colorado
since the 1970s. To pump a groundwater well for irrigation from the South Platte River alluvial
aquifer, the user must compute the timing, location, and amount of surface water depletions
caused by their pumping, and replace those streamflow depletions that occur out-of-priority in
the context of Colorado’s prior-appropriation water rights system.

The out-of-priority stream depletions are typically covered by constructing recharge
ponds that are operated outside of the irrigation season or when surface water supplies are more
available, such as in winter and during spring runoff from the Rocky Mountain snowpack. This
system takes advantage of the time delay between recharge operations at the pond and
consequent flow accretions to the river.

Managed aquifer recharge in the South Platte basin has increased over the last 30 years
approximately from 20,000 acre-feet/yéaover 200,000 acre-feet/year. Hundreds of recharge

facilities now cover depletions from several thousand irrigation wells. Analytical stream
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depletion models are frequently used to plan and operate these recharge systems, both to assess
the timing of pumping depletions to be covered and to choose the locations and operating
schedules for the recharge ponds. Often, hydrologists use reference transmissivity maps to
compute a harmonic mean transmissivity along a narrow line between the well (or recharge
pond) and the river and use this value in analytical models.

The stochastic treatment of heterogeneity, as is used in this research, acknowledges that
the effective transmissivity will have a degree of error at any particular location, but the goal is
to identify an expected-average transmissivity that is the most probable value over a large
number of locations given the characteristics of the aquifer and the flow problem. Considering
the large volumes of water pumped from and recharged to the South Platte alluvial aquifer
annually, a seemingly small bias in the averaging method used in water management models
might have significant cumulative impacts if that bias is applied uniformly across the basin. The
results of this research (e.g., Figure 4-1, Page 63) could be used to improve those effective
transmissivity estimates and to evaluate uncertainties and potential biases in water management

practices for the basin.

7.7 Considerationsfor Future Research

Non-Stationarity Effective transmissivity was demonstrated to be sensitive to the

stationarity condition. This raises questions about applying the effective transmissivity trends
identified in this research to certain stream-aquifer systems. Defining a transmissivity averaging
area is a necessary step for tackling non-stationarity, but defining the area of influence in the
case of transient stream depletion is a complex problem, with the affected area being at least

partly dependent on the configuration of the transmissivity field.
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Spatial Weighting for Averaging Transmissivityit was observed in this research that

the choice of spatial averaging area could reduce ensemble variability even though it did not
influence ensemble-mean behavior. Further work on defining an area of influence and on
spatial weighting within that area may further reduce ensemble variability and thereby improve
utility of the effective transmissivity concept in stream depletion applications. As noted above,
however, this appears to be a complex problem given that the area of influence is itself a function
of the aquifer configuration.

In non-stationary fields, simulations suggested that computing a valid equivalent
transmissivity may require greater spatial weighting in the areas near the river, with less weight
near the pumping well. A similar indication for more general heterogeneous conditions may
come from the derivation of the Glover solution (Glover and Balmer 1954). The first derivation
steps involve diffusivity T/S) of the wider aquifer which governs the rate of expansion of the
drawdown cone. The final steps involve multiplying the pumping-induced gradient at the river,
and only in the direction perpendicular to the river, by the transmissivity at the river. Although
the Glover solution assumes a homogenous aquifer, the latter step suggests potential utility in
identifying an effective transmissivity in the perpendicular direction near the river separately
from the effective transmissivity of the wider area of influence.

Analytical Curves.The differences observed between simulations and the analytical

curves plotted in this work are an avenue for additional study. The differences were greatest
under anisotropies in the 10:1 range, and were larger for higher field variance. The overall shape
of the relationship between geometric anisotropy and effective transmissivity was notably
different for the higher variance cases. The differences may arise due to effects fromahaving

bounded domain (e.g., Paleologos et al. 1996) or due to approximations in the analytical
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estimates. Practical impacts are that the bounding means are approached more slowly than
estimated by the analytical functions, and that even with relatively distinct anisotropy oriented
parallel to the river (such as the 10:1 to 20:1 range) the effective transmissivity remained highe
than a harmonic mean.

Non-Gaussian SimulatarsThis research was conducted using Gaussian simulators of

heterogeneity which have the trait of connecting mid-range transmissivity values and leaving the
higher and lower transmissivity zones with lower connectivity (Deutsch and Journel 1998). It
may be of interest to repeat these simulations using geostatistical models that provide
preferential connectivity of high-transmissivity zones. Path connectivity has been examined for
other flow regimes and has been a notable direction of stochastic simulation research, but to this
author’s knowledge such scenarios have not been examined for transient stream depletion from a
pumping well in a Glover-type analysis. Applicability of the Glover analytical solution,

however, should be carefully reconsidered for cases with channelized heterogeneity.
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APPENDIX - EXAMPLE REALIZATIONS OF HETEROGENEOUS ELDS
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Figure A-1. Comparison of geometrically anisotropic (10:1) transmissivity figltserated with spherical (top),
exponential (middle) and Gaussian (bottom) correlation functions. Correfatige is 100 columns x 10 rows.
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Figure A-2. Comparison of geometrically anisotropic (10:1) transmissivity figtgerated with zero nugget effect
(top), and nugget contributions of 33% (middle) and 50% (bottomjrefation range is 100 columns x 10 rows.
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Figure A-3. Comparison of geometrically anisotropic (10:1) transmissivity figktserated with principal
correlation direction at azimuth equal to 90° (top) -60° (middle), and -30°@pttGorrelation range set equivalent
to 100 x 10 model grid nodes.
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Figure A-4. Transmissivity field with zonal anisotropy. Isotropic correlation rangrletp 15 model grid nodes,
but with variogram sill in the y-direction (along columns) three timegetathan in the x-direction.
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Figure A-5. Example ofatransmissivity realization producing an extreme-oupigresult. A high-contrast, high-
transmissivity zone (red) functioned as a distinct channel by directhecting a pumping well in the center (Row
101, Column 450) to the river (Row 1). The resulting depletion respwas fast and described by an effective
transmissivity much higher than obtained by spatial averaging of mdir¢s/over an area wider than the channel.
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Figure A-6. Example of stationary field (top) and that same field with a trend in in@asmissivity added
(bottom).
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