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ABSTRACT 

 
 

EFFECTIVE TRANSMISSIVITY IN TRANSIENT STREAM DEPLETION 
 
 
 

Quantifying the timing of streamflow depletion caused by groundwater pumping wells is 

a central issue in the conjunctive management of groundwater and surface-water resources.  It is 

an important consideration in regions where water supplies and demands are offset annually by 

season and interannually through variable wet and dry years.   Increased water demands, 

regulatory policy shifts, and aquifer changes have brought scrutiny to this type of stream-aquifer 

interaction.  From this, analytical models of stream depletion have received renewed attention 

and numerous refinements which have focused primarily on a variety of complex boundary 

conditions.  The question of representing aquifer heterogeneity through simplified input 

parameters in analytical models has not been directly examined for transient stream depletion. 

 The objective of this research is to identify upscaled transmissivities that effectively 

model transient stream depletion rates caused by pumping groundwater wells in heterogeneous 

aquifers.  Two-dimensional heterogeneity is considered, with horizontal anisotropy in spatial 

correlation ranges as a primary independent variable.  The subject aquifer is relatively narrow, 

with an impermeable boundary parallel to a fully connected river boundary.  

Using numerical flow simulation and the Monte Carlo approach, stream depletion rate 

curves were computed for transmissivity fields constructed under various geostatistical models 

of heterogeneity.  Effective (expected) and equivalent transmissivities—referring to stochastic 

ensemble-mean behavior and to individual realizations, respectively—were interpreted from the 

depletion curves using the Glover analytical solution for stream depletion in a homogeneous, 
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bounded aquifer.   The interpreted effective and equivalent transmissivities were related to 

statistical moments of the heterogeneous fields through power averaging. 

Effective transmissivity results ranged between the bounding arithmetic and harmonic 

means, varying with the spatial correlation structure of the transmissivity field, partly as a 

function of geometric statistical anisotropy.  Notably, the shape of that function was similar to 

what has been derived analytically for steady-state, mean-parallel flow conditions in unbounded 

domains.  Additionally, there was no apparent difference in effective transmissivity results 

between transient stream depletion conditions and steady-state, mean-parallel flow conditions 

simulated in the same test domain.   Also, unlike some studies on effective permeability under 

various transient conditions, no time dependency was observed in effective transmissivity for the 

transient stream depletion case. 

Results were sensitive to including a nugget effect in the spatial correlation model and to 

non-stationarity of the transmissivity field.  Results were only mildly sensitive to field variance.   

Ensemble-mean behavior was mildly sensitive to correlation scale, but ensemble variance was 

strongly sensitive to correlation scale.  The latter is to be expected, but is notable for stream 

depletion considering that transmissivity correlation is often regional in scale and thus often 

large relative to the scale of the pumping well depletion problem.  In such cases, the equivalent 

transmissivity for a given field and well location was often case-specific and not well-predicted 

by the expected transmissivity. 

  



iv 

ACKNOWLEDGEMENTS 

 

First, I offer sincere thanks to my advisor, Dr. Deanna Durnford.   Through two graduate 

degrees, now spread over two decades, I have benefited from her instruction and guidance. This 

included high standards for the knowledge one in our profession should have, but tempered with 

sharp cautions about thinking one can ever have the answers in groundwater.  Her expectations 

were sometimes intimidating, but rightfully motivating.  I have deeply appreciated her extended 

patience with me as I took detours along the way. 

I credit Dr. Durnford, along with the overall CSU water programs (both times!), for my 

interest in the groundwater field and the professional career I enjoy from it.   I thank my graduate 

committee:  Drs. Luis Garcia, Bill Sanford, and John Stednick, for their positive support, interest, 

and patience.  I also would like to acknowledge the late Dr. James Warner for his kind personal 

support, his instruction on numerical modeling, and for telling some good stories along the way. 

I thank Jon Altenhofen, Mary Halstead, and Bruce Kroeker, among others, for their 

openness to work with me on the Tamarack Project and extended endeavors.  They helped 

introduce me to interesting questions and issues in conjunctive water management. 

I offer particular acknowledgment and gratitude to Dr. Ayman Alzraiee.  His optimistic 

spirit, intelligence, and diligence have often inspired me over the years.   On a more tangible 

note, Ayman provided great help with scripting my simulation approach in MATLAB.  That was 

enormously valuable.   Without that help and the extra kick it provided, this work might not have 

been completed.    



v 

DEDICATION 

 

To my wife Katrina 

and my daughter Madeleine 

without whom this work might have been completed years earlier! 

Or, perhaps never completed at all. 

Either way, their encouragement and patience have been appreciated 

and they have made life rich along the way. 

  



vi 

TABLE OF CONTENTS 
 

 

ABSTRACT ……………………………………………………………………………………...ii  

ACKNOWLEDGEMENTS ........................................................................................................... iv 

DEDICATION ................................................................................................................................ v 

LIST OF TABLES ......................................................................................................................... ix 

LIST OF FIGURES ........................................................................................................................ x 

LIST OF SYMBOLS and ABBREVIATIONS ........................................................................... xiii 

CHAPTER 1  INTRODUCTION ................................................................................................... 1 

1.1 Research Motivation ............................................................................................ 1 
1.2 Problem Basics..................................................................................................... 1 
1.3 Research Context ................................................................................................. 2 
1.4 Objective .............................................................................................................. 4 
1.5 Scope .................................................................................................................... 4 
1.6 Methods Synopsis ................................................................................................ 5 
1.7 Organization ......................................................................................................... 7 

CHAPTER 2  LITERATURE REVIEW ........................................................................................ 9 

2.1 Recent Publications on Stream Depletion by Pumping Wells ............................. 9 
2.1.1 General Reviews and Analytical Solution Developments .................... 9 
2.1.2 Stream-Aquifer Interactions with Heterogeneity ............................... 10 

2.2 Effective Permeability Literature ....................................................................... 10 
2.2.1 Steady-State Uniform Flow ................................................................ 11 
2.2.2 Steady-State Radial Flow ................................................................... 13 
2.2.3 Transient Flow and Other Conditions ................................................ 15 
2.2.4 The Power Average ............................................................................ 17 
2.2.5 Steady-State, Mean-Parallel Flow in Statistically Anisotropic Media 19 
2.2.6 Existence of a Comprehensive Effective Permeability ...................... 21 
2.2.7 Evaluation Methods and Conceptual Assumptions ............................ 22 
2.2.8 Summary Points from Effective Permeability Literature Review ...... 23 

CHAPTER 3  METHODS ............................................................................................................ 25 

3.1 Scale and Behavior of Interest ........................................................................... 25 
3.2 Key Concepts in Stream Depletion Mechanics ................................................. 25 
3.3 Heterogeneous Behavior of Interest ................................................................... 27 
3.4 Experimental Design .......................................................................................... 32 

3.4.1 Generation of Heterogeneous Fields .................................................. 32 



vii 

3.4.2 Flow Model Design ............................................................................ 36 
3.4.3 Example Flow Model Output ............................................................. 40 

3.5 Characterizing the Simulated Response Curves ................................................ 44 
3.5.1 Analytical Solution Fit to Simulated Depletion Response ................. 44 
3.5.2 Ergodicity and Statistical Homogeneity ............................................. 46 
3.5.3 Potential Transient Effects in Teq ........................................................ 48 
3.5.4 Computing Power-Average Exponents .............................................. 49 
3.5.5 Ensemble Behavior ............................................................................. 50 

3.6 Simulation Logistics .......................................................................................... 53 
3.6.1 Spatial Weighting of the Area of Influence ........................................ 53 
3.6.2 Interblock Transmissivity in the Finite-Difference Formulation........ 57 
3.6.3 Correlation Range Constraints ............................................................ 60 

CHAPTER 4 PRIMARY RESULTS ........................................................................................... 62 

4.1 Dependence on Statistical Anisotropy ............................................................... 62 
4.2 Comparison to Steady-State Mean-Parallel Flow .............................................. 67 
4.3 Influence of Field Variance ............................................................................... 69 
4.4 Nugget Effect ..................................................................................................... 71 
4.5 Effect of River Angle ......................................................................................... 75 

CHAPTER 5 - LIMITATIONS for NON-STATIONARITY and OTHER CASES ................... 79 

5.1 Block-Wise Variable Mean ................................................................................ 79 
5.2 Trending Mean Transmissivity in Steady-State Mean-Parallel Flow ................ 81 

5.2.1 Framework for Sensitivity Test .......................................................... 81 
5.2.2 Sensitivity for Steady-State, Mean-Parallel Flow .............................. 83 

5.3 Trending Mean Transmissivity in Transient Stream Depletion ......................... 85 
5.4 Zonal Anisotropy ............................................................................................... 87 
5.5 The Homogeneous Anisotropic Case................................................................. 88 

CHAPTER 6 FIELD EXAMPLE and APPLICATION LIMITATIONS .................................... 93 

6.1 Example Geometric Anisotropy Ranges ............................................................ 93 
6.2 Site Application of Equivalent Transmissivity ................................................ 103 
6.3 Issues with Site Application for Transient Stream Depletion .......................... 106 

CHAPTER 7 DISCUSSION and SUMMARY .......................................................................... 111 

7.1 Research Summary .......................................................................................... 111 
7.2 Primary Findings .............................................................................................. 111 
7.3 Sensitivity to the Geostatistical Model ............................................................ 113 
7.4 Other Findings ................................................................................................. 114 
7.5 General Applications ....................................................................................... 114 
7.6 A Regional Example of Potential Impacts ....................................................... 116 
7.7 Considerations for Future Research ................................................................. 117 



viii 

REFERENCES ........................................................................................................................... 120 

APPENDIX - EXAMPLE REALIZATIONS OF HETEROGENEOUS FIELDS..................... 129 

  



ix 

LIST OF TABLES 
 
 
 

Table 6-1.  Estimated spatial correlation parameters and modeled power-mean exponents for 

five areas along the South Platte River.  Power-mean exponents are shown for both 

transient stream depletion (TSD) and steady-state mean-parallel (SSMP) flow. ........... 101 

Table 6-2.  Estimated spatial correlation parameters for the five areas along the South Platte 

River after detrending. .................................................................................................... 101 

 

  



x 

LIST OF FIGURES 
 
 
 

Figure 3-1.  Contour map of drawdown around a pumping well illustrating interaction with a 

river boundary.  Included are examples of drawdown patterns in homogenous (top) and 

heterogeneous (bottom) aquifers....................................................................................... 26 

Figure 3-2.  Spatial distribution of stream depletion along river boundary.  Curves are shown for 

two normalized points in time (t/t’ = 0.5 and 2.0) for both homogeneous and 
heterogeneous conditions.  The heterogeneous cases are from single realizations with 

geometric anisotropy (ʄx:ʄy) equal to 3:1 (top set) and 10:1 (bottom set). ....................... 28 

Figure 3-3.  Same as previous figure, semi-log scale. ................................................................. 29 

Figure 3-4  Example variogram constructed from one SGSIM-generated K-field realization. ... 34 

Figure 3-5.  Example realizations generated with SGSIM and used in the groundwater flow 

simulations.  Shown are K fields having geometric anisotropy ratios of 1:1 (top), 3:1 

(middle), and 10:1 (bottom).  Bottom image notes location of the flow model boundaries.

........................................................................................................................................... 36 

Figure 3-6.  Stream depletion rate (q/Q) as a function of time (t/t’) for three ensemble 
simulations of T fields that have the same TG, TA, and TH but with different geometric 

anisotropy ratios equal to 1:1 (top), 3:1 (middle) and 10:1 (bottom). .............................. 42 

Figure 3-7.  Stream depletion rate histograms at time t/t’ = 1, 2, 3, and 5 for the three ensembles 
shown in Figure 3-6, comparing differences in depletion response for T fields with 

geometric anisotropy ratios equal to 1:1 (top), 3:1 (middle) and 10:1 (bottom). ............. 43 

Figure 3-8.  Shape of power-average curves. ............................................................................... 50 

Figure 3-9.  Equivalent transmissivity (as power mean exponent, p) for T fields with three 

different geometric anisotropy ratios (1:1, 3:1, and 10:1).. .............................................. 52 

Figure 3-10.  Spatial averaging area with its river reach length based on Glover (1977), and its 

width and shape as suggested by groundwater flux maps (hatched) approximated with a 

semi-ellipse (heavy line). .................................................................................................. 55 

Figure 3-11.  Plot illustrating sensitivity of effective power mean exponent to grid refinement 

and interblock transmissivity scheme. .............................................................................. 59 



xi 

Figure 4-1.  Empirical relationship between effective transmissivity (as power mean) and 

statistical geometric anisotropy for approximately 110 ensemble simulations of transient 

stream depletion in spatially correlated heterogeneous transmissivity fields. .................. 63 

Figure 4-2.  Same ensemble-mean results as previous figure, with realizations included. ......... 65 

Figure 4-3. Comparison of effective transmissivity for transient stream depletion (TSD) and 

steady-state mean-parallel (SSMP) flow simulations. ...................................................... 68 

Figure 4-4. Effective transmissivity (as power mean) as a function of natural-log transmissivity 

variance (σ2
Y) and geometric anisotropy ratio (ʄx/ʄy = 1, 3, and 10).  Results shown for 

both transient stream depletion (TSD) and steady-state mean-parallel (SSMP) flow 

simulations. ....................................................................................................................... 70 

Figure 4-5. Effective transmissivity when including a nugget effect in the transmissivity spatial 

correlation model.   Results are shown from transient stream depletion (TSD) and steady-

state mean-parallel (SSMP) flow simulations.  One ensemble set used the logarithmic 

interblock transmissivity scheme (logIBT) all others used the harmonic scheme. .......... 73 

Figure 4-6. Sensitivity of effective transmissivity to a nugget effect in the transmissivity 

correlation model and to the logarithmic and harmonic interblock transmissivity schemes 

(logIBT and harIBT).  Trends are shown for geometric anisotropy ratios (ʄx/ʄx) equal to 

1, 3, and 10. ....................................................................................................................... 74 

Figure 4-7. Effective transmissivity when the transmissivity field’s principal direction of spatial 
correlation is oriented at an angle θ from the principal flow direction in steady-state, 

mean-parallel (SSMP) flow conditions.   Included are transient stream depletion 

simulations where the river orientation is at θ = 90°.  Trends are shown for geometric 

anisotropy ratios (ʄx/ʄy) equal to 1, 3, and 10. .................................................................. 77 

Figure 5-1. Depletion response curves for block-wise heterogeneity with transmissivity T2 

between the well and the impermeable aquifer boundary scaled relative to the 

transmissivity T1 between the well and the river.  Time is scaled based on T1 (t’ = a2S/T1).

........................................................................................................................................... 80 

Figure 5-2. Power-mean exponents for two cases with non-stationary fields that had a linear 

trend in local-mean transmissivity. One case of zonal anisotropy is also included.  

Stationary cases shown in the prior figures are included again here for reference. .......... 84 

Figure 5-3. Nonlinear relationship between hydraulic anisotropy and geometric statistical 

anisotropy. ......................................................................................................................... 90 



xii 

Figure 5-4.  Spatial distribution of depletion along river at time t/t’ = 1 for three different 
hydraulic anisotropy ratios (Tx/Ty).  Position along river (x) scaled by well-to-river 

distance (a).  The total river depletion rate (area under the curve) is identical for each 

case. ................................................................................................................................... 92 

Figure 6-1.  Transmissivity of the South Platte River alluvial aquifer near Fort Lupton, 

Colorado. ........................................................................................................................... 96 

Figure 6-2.  Transmissivity of the South Platte River alluvial aquifer near Greeley, Colorado. . 97 

Figure 6-3.  Transmissivity of the South Platte River alluvial aquifer near Riverside Reservoir, 

Colorado. ........................................................................................................................... 98 

Figure 6-4.  Transmissivity of the South Platte River alluvial aquifer around Lost Creek, 

Colorado. ........................................................................................................................... 99 

Figure 6-5.  Transmissivity of the South Platte River alluvial aquifer near Iliff, Colorado. ..... 100 

Figure 6-6. Distribution of power-mean exponents for two ensembles with the same statistical 

geometric anisotropy (ʄx/ ʄy =5/1) but different absolute correlations scales relative to the 

same well-to-river distance. ............................................................................................ 107 

Figure 6-7.  Example transmissivity field realizations for the same statistical geometric 

anisotropy (5/1) but different absolute correlation scales.  Pumping well is at center (450, 

100).  Correlation scale is 50x10 nodes in the top field and 200x40 nodes in the bottom 

field. ................................................................................................................................ 108 

Figure 6-8.  Standard deviations of power-mean exponent ensembles as a function of correlation 

scale.  Plotted cases have principal correlation direction oriented parallel to river. ....... 108 

Figure 6-9.  Standard deviations of power-mean exponent ensembles as a function of correlation 

scale.  Plotted cases have principal correlation direction oriented perpendicular to river.

......................................................................................................................................... 109 

 

  



xiii 

LIST OF SYMBOLS and ABBREVIATIONS 

 

a  distance between pumping well and river 

K  hydraulic conductivity 

Keff  effective hydraulic conductivity 

KA  arithmetic mean K 

KG  geometric mean K 

KH  harmonic mean K 

ʄi   correlation scale in the i-direction 

p  exponent of the power-average function 

peq, peff  equivalent p and effective p 

S  storage coefficient 

SSMP  steady-state, mean-parallel 

t’  non-dimensional characteristic response time, a2S/T 

T  transmissivity 

Teff  effective transmissivity 

Teq  equivalent transmissivity 

TA  arithmetic mean T 

TG  geometric mean T 

TH  harmonic mean T 

TSD  transient stream depletion 

Y  natural-log-transformed T or K 

σ2
Y  variance of Y 

q  depletion rate from stream (volume/time) 

Q  well pumping rate (volume/time) 

W  aquifer width (on one side of river) 

 

  



1 

CHAPTER 1    INTRODUCTION 
 

1.1 Research Motivation 

Quantifying the timing of streamflow depletion caused by pumping wells is a central 

issue in the conjunctive management of groundwater and surface-water resources.  This delay 

between pumping operations and consequent stream depletion is an important consideration 

where natural resource management policies may limit depletions seasonally and where water-

rights systems may restrict out-of-priority depletion.  It can be a crucial factor in regions where 

water supplies and demands are offset annually by season and interannually through variable wet 

and dry years.   Likewise, this timing between aquifer changes and stream responses is a design 

and management tool in aquifer recharge projects created for streamflow re-timing and 

augmentation. 

Increasing water demands, regulatory policy shifts, and aquifer water-level changes have 

brought renewed scrutiny to stream depletion mechanics and depletion estimation methods.   

This has led to many refinements in a wide array of stream depletion models—in both analytical 

solutions and numerical methods—but the refinements have primarily focused on alternative 

boundary conditions and more-detailed treatments of complex boundary conditions (see Huang 

et al. 2014).  The issue of representing heterogeneous aquifer characteristics as simplified inputs 

to such models has not received as much attention.  Upscaling local permeability estimates in 

heterogeneous aquifers for use in transient stream depletion models has not been directly 

examined in the literature. 

1.2 Problem Basics 

Pumping a groundwater well initially removes water only from aquifer storage, lowering 

water levels to create a so-called cone of depression in water levels around the well (Freeze and 
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Cherry 1979).  Over time, the depression expands radially from the well and may interact with 

hydraulic and hydrogeologic boundaries in the area.   If the aquifer is hydraulically connected to 

a surface-water boundary such as a river, then the rate of water removed from aquifer storage 

(volume/time) will decrease over time as water is increasingly derived from the river.  If the river 

is the only head-dependent aquifer boundary present in the area, then the stream depletion rate 

(q) will eventually approach the pumping rate (Q).   Stream depletion will also continue for a 

period after the cessation of pumping while the cone of depression is filled by water derived 

from the river (e.g., Jenkins 1968). 

In the Glover analytical solution for stream depletion by wells, the depletion rate q 

(volume/time) as a function of time depends on the aquifer transmissivity (T), the storage 

coefficient or specific yield (S), the distance between the well and the river, and the location and 

shape of other flow boundaries (Glover and Balmer 1954; Glover 1977).  For higher 

transmissivities, the time lag between pumping and depletions is shorter, with q/Q = 1 being 

approached more quickly, including post-pumping depletion rates that decrease more quickly. 

1.3 Research Context 

 The Glover solution assumes homogenous aquifer transmissivity.  A large body of 

literature has been devoted to the estimation of single-valued permeabilities that can effectively 

represent heterogeneous porous media in analytical models that assume homogeneity or that 

otherwise must simplify or upscale heterogeneity.  Wen and Gomez-Hernandez (1996), Renard 

and Marsily (1997), and Sanchez-Vila et al. (2006) provide extensive reviews of that literature. 

In the effective transmissivity concept, the goal is to replace a medium that has spatial 

variability in transmissivity by a medium with a single value of effective transmissivity (Teff) 

while preserving selected hydraulic behavior(s) of the original medium (Smith and Freeze 1979; 
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El-Kadi and Brutsaert 1985, and others).  A complete definition of Teff requires specification of 

which hydraulic behavior is intended to be preserved (El-Kadi and Brutsaert 1985; Sanchez-Vila 

et al. 2006).  For example, targeted behavior could include average head over the flow domain, 

drawdown near pumping wells, flux at hydrogeologic boundaries, etc.  Specification of the 

targeted behavior is necessary since Teff is not necessarily an intrinsic property of the medium; 

rather, it may depend on the type of targeted behavior plus flow and boundary conditions for a 

given application.   In this research, the targeted behavior is the rate of stream depletion (q), i.e., 

the flux rate at the river boundary. 

The body of available research has shown that effective permeability behavior is 

complex.  In addition to it being a function of certain geostatistical characteristics of the 

heterogeneous medium, it is also a function of flow-domain dimensionality (i.e., one-, two-, or 

three-dimensional), of whether the flow regime is generally mean-parallel or convergent, and 

whether the flow is transient or steady-state.   Effective permeability can also be a function of 

boundary conditions and location within the domain with respect to boundaries (Sanchez-Vila et 

al. 2006; Gomez-Hernandez and Gorelick 1989; Sanchez-Vila 1997; Riva et al. 2001).  For 

example, for a pumping well in a bounded domain and steady-state flow, Riva et al. (2001) 

found effective transmissivity to be a non-monotonic function dependant on location between the 

well and the boundary.  In summary, estimating an effective transmissivity that represents 

heterogeneous aquifer conditions is not simply a function of the heterogeneous medium 

characteristics; it can be specific to the flow scenario being considered. 

Effective permeability estimates for various flow regimes and boundary scenarios are 

discussed in the literature review (Chapter 2).  Despite some cases with general similarity—such 

as three studies of steady-state flow and pumping wells in bounded domains—to this author’s 
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knowledge, the effective permeability literature does not include a direct analogy for the case of 

transient stream depletion from pumping wells. 

1.4 Objective 

The primary objective of this research is to identify effective transmissivities for the case 

of transient stream depletion caused by pumping a groundwater well in a heterogeneous aquifer 

that is hydraulically connected to a river.  A secondary objective is to evaluate the sensitivity of 

that effective transmissivity behavior over a range of geostatistical model assumptions and 

conditions. 

1.5 Scope 

As noted previously, transient stream depletion refers to the change in the depletion rate 

over time.  This refers to the total rate of river depletion at a given time.  The depletion rate is 

also variable spatially and is distributed over a river reach that is several times longer than the 

distance between the well and the river (Glover 1977).   Stream depletion is, therefore, a 

relatively large-scale phenomenon. 

Spatial variations in the depletion rate along a river can be relevant in certain applications 

(e.g., Fleckenstein et al. 2006), and such local-scale spatial variability may be quite high due to 

heterogeneities along the river.  Considering spatial variations is not within the scope of this 

work.  The spatially variable local depletion rates are aggregated into a total depletion rate that is 

the subject of this research and the interest of many water management applications.   The goal is 

to identify an appropriate averaging process for heterogeneous aquifer transmissivity such that 

the upscaled (averaged) transmissivity effectively predicts the timing of that total depletion rate.   

The flow regime and boundary-condition scenario considered in this research is a 

relatively narrow, two-dimensional aquifer bounded on one side by a straight constant-head 
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boundary representing a river, and on the other side by a zero-flux boundary, oriented parallel to 

the river, representing an impermeable aquifer boundary such as the edge of a valley-fill aquifer.  

Changes in saturated thickness due to pumping are assumed to be small relative to the initial 

saturated thickness.   The problem domain scale considered, and more importantly the 

correlation scale of the heterogeneous field relative to the domain scale, is representative of the 

typically large correlation scales reported for transmissivity (Rubin 2003; Anderson 1997; Dagan 

et al. 2009). 

Simulations are limited to the case where the pumped groundwater volume is equal to the 

sum of changes in aquifer storage plus induced leakage from a single straight river boundary, 

i.e., there are no other head-dependant flux boundaries present.  The river is treated as fully 

penetrating the aquifer depth and with a permeable riverbed, or otherwise sufficiently connected 

to the aquifer to function as a constant-head boundary. 

This research applies equally to stream accretions (i.e., streamflow gains) caused by 

localized aquifer recharge, such as managed aquifer recharge operations.  To be concise, the term 

stream depletion or the more general term response curve is used herein to refer to both stream 

depletion and accretion.  

1.6 Methods Synopsis 

Geostatistics offers tools to characterize, quantify, and model subsurface heterogeneity.  

It does this by accounting for the spatial continuity that is an identifiable feature of many natural 

phenomena (Isaaks and Srivastava 1989; Anderson 1997).  Geostatistical modeling supports the 

stochastic approach to characterizing groundwater behavior, in which parameter variability and 

uncertainty are acknowledged and accounted for by specifying an assumed or estimated mean 

and variance of aquifer parameters (Anderson 1997).  A goal of the stochastic approach is to 
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identify effective behavior—meaning the outcome expected on average—and to consider 

uncertainty around that expected behavior. 

An effective transmissivity models expected behavior, and as such is an average over 

probability space, referring to the stochastic view of aquifer characterization.  Equivalent 

transmissivity refers to a transmissivity that models response behavior for a given aquifer 

realization.  Invoking ergodicity, at large enough domain scales the equivalent and effective 

transmissivities are expected to be similar (Sanchez-Vila et al. 2006).  

Effective transmissivity for transient stream depletion is examined in this research 

through a Monte Carlo numerical simulation approach.  Aquifer transmissivity is treated as a 

statistically anisotropic, spatially correlated, random variable.  Approximately 11,000 

realizations of synthetic heterogeneous transmissivity fields were generated using unconditional 

sequential Gaussian simulation (Deutsch and Journel 1998).  The primary cases considered are 

stationary fields with different degrees of heterogeneity and geometric anisotropy in the spatial 

correlation patterns.  Fields with non-stationarity, zonal anisotropy, and other geostatistical 

model variations are also evaluated. 

Equivalent transmissivity, again referring to a single realization, is an average over 

physical space, such as averaging local transmissivity values over the domain of a given aquifer.  

In this research, however, that equivalent transmissivity is first identified through interpreting 

observed (simulated) response behavior for each realization.  Indeed, the motivation for this 

research is the absence of literature on estimating equivalent or effective transmissivity from the 

local field properties for the specific case of transient stream depletion.  The goal herein is to 

address that limitation empirically by simulating and interpreting the depletion rate response and 

relating those results to the spatial statistics of the transmissivity field. 
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A transient finite-difference numerical model simulation of each heterogeneous aquifer 

realization was used to determine depletion rates from the river boundary occurring in response 

to a specified-flux boundary condition (well pumping) started in the aquifer at time zero.  The 

equivalent transmissivity for each field realization was identified from the simulated response as 

that transmissivity that results in a best fit between the heterogeneous-aquifer’s depletion rate 

curve and the Glover analytical solution for stream depletion in a bounded homogenous aquifer 

(Glover and Balmer 1954; Glover 1977; Knight et al. 2005).  Statistical moments of the 

ensemble simulation results then identify effective (expected) transmissivity (Sanchez-Vila et al 

2006). 

In this research, effective and equivalent transmissivities are related to the first and 

second statistical moments of the transmissivity fields through the power-average or power-mean 

function (Gomez-Hernandez and Gorelick 1989; Desbarats 1992b; Wen and Gomez-Hernandez 

1996; Ronayne and Gorelick 2006; de Dreuzy 2010).  Ensemble and individual realization 

results are presented in the form of power-mean exponents which yield the effective and 

equivalent transmissivities when applying the power-mean function to the heterogeneous 

transmissivity fields.  In essence, the ensembles of power-mean exponents produced in this 

research indicate, as a function of certain geostatistical properties of heterogeneous 

transmissivity fields, what form of average to use for an effective transmissivity in models of 

transient stream depletion. 

1.7 Organization 

Chapter 2 reviews the literature on effective permeability estimation for different 

groundwater flow regimes.   Recent publications on stream depletion modeling are also noted.  

Chapter 3 describes the methodology used in performing the Monte Carlo simulations and in 
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interpreting and quantifying simulation output.  Chapter 4 presents the primary results of this 

research.  Those results are relationships observed between effective transmissivity (expressed as 

effective power-mean exponents) and various geostatistical models of aquifer heterogeneity.  

Chapter 5 provides a sensitivity analysis of some of the geostatistical conditions assumed for the 

simulated heterogeneous fields.  Chapter 6 presents field case examples that were analyzed for 

comparison to the synthetic aquifer results.  Last, Chapter 7 presents discussion and conclusions. 
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CHAPTER 2  LITERATURE REVIEW 

 
A few recent publications on stream depletion by pumping wells are highlighted in 

Section 2.1.  Earlier stream depletion publications and a general history of analytical stream 

depletion models are noted in Miller et al. (2007). 

A review of effective permeability literature is presented in Section 2.2, organized by 

type of groundwater flow regime.   Presentation of the power average, a key part of the methods 

presented in Chapter 3, is also included (Section 2.2.4).   The literature available for effective 

permeability in statistically anisotropic, heterogeneous porous media under steady-state mean-

parallel flow is discussed in Section 2.2.5.  That flow regime provides an import point of 

reference for the results presented in Chapter 4 for transient stream depletion. 

2.1 Recent Publications on Stream Depletion by Pumping Wells 

2.1.1 General Reviews and Analytical Solution Developments 

A general overview and background on natural resource management issues and 

groundwater concepts involved in the topic of stream depletion by pumping groundwater wells 

can be found in Barlow and Leake (2012).  Kendy and Bredehoeft (2006), Bredehoeft and Kendy 

(2008), and Bredehoeft (2011) discussed the transient nature of stream depletion by pumping 

wells and associated implications on water management. 

Hunt (2014) reviewed the capabilities of most of the recent advances in analytical stream 

depletion models.  Butler et al. (2007) and Zlotnik and Tartakovksy (2008) present analytical 

modeling that includes induced leakage from an underlying aquitard. They note such leakage can 

significantly impact stream depletion rates at certain scales.  Huang et al. (2014) have also 

presented new analytical solutions generalized for a few different aquifer and boundary 
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configurations.  It is noteworthy, considering part of the motivation for this dissertation (Section 

1.1), that Huang et al. compiled tables listing 25 variants of analytical models of stream 

depletion, 22 of which were published within the last 16 years. 

2.1.2 Stream-Aquifer Interactions with Heterogeneity 

Fleckenstein et al. (2006) showed that intermediate-scale heterogeneity—meaning in 

their case the arrangement of hydrofacies underneath and near the river—can create significant 

spatial differences in the stream seepage (loss) rate on the Cosumnes River in California.  Such 

spatial variability was significant for low-flow management by leading to variability in which 

sections of the river were hydraulically connected to water table changes, a complexity that a 

homogenous model failed to capture.   They found total-river annual net depletions to be 

generally similar in their six different hydrogeologic model realizations, but variability in the 

location and rates of seepage loss led to different estimates about how many days the river would 

be open for salmon migration runs.  Their work has implications for parameter upscaling in such 

applications (see also Fleckenstein and Fogg 2008) and for questions about data sufficiency in 

characterizing stream-aquifer interactions at their scale of focus. 

Engdahl et al. (2010) constructed numerical groundwater flow models of the Rio Grande 

alluvial aquifer in New Mexico, with one homogeneous model and six heterogeneous conditional 

realizations.  They simulated steady-state river losses under different river stages.  Among other 

things, they found a decrease in stream loss with increasing heterogeneity and that a homogenous 

model of that system may over-predict stream loss. 

2.2 Effective Permeability Literature 

The estimation of single-valued effective or equivalent parameters that can be 

representative of heterogeneous porous media has been considered repeatedly in the literature.  
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Research has included specific yield and unsaturated-flow parameters, among other things, but 

the largest body of research has focused on hydraulic conductivity (K).  Wen and Gomez-

Hernandez (1996) and Renard and Marsily (1997) provided general reviews of the topic.  A 

variety of specific aspects are found in numerous works (e.g., Vermeulen et al. 2006; Neuman 

and Federico 2003; Gelhar 1993).  Sanchez-Vila et al. (2006) provided an extensive review on 

representative hydraulic conductivities, including discussion of the concepts and methods 

commonly used in that body of research.  At 46 pages and containing around 270 citations, their 

review is a testament to the breadth and depth of the subject.  

2.2.1 Steady-State Uniform Flow 

Cardwell and Parsons (1945) showed, analytically and with electric-analog experiments, 

that equivalent permeability, conceptualized for a heterogeneous oil sand in their case, was 

bounded by the arithmetic and harmonic means of the volume-weighted permeabilities in the 

formation.  Actual values were noted to lie between the bounds.  These are sometimes referred to 

as the Wiener bounds in hydrogeology (Renard and Marsily 1997) and in fields such as 

composite materials engineering. 

Many groundwater textbooks demonstrate where the Weiner bounds are precisely 

correct:  the arithmetic mean for steady, uniform, one-dimensional (1D) flow oriented parallel to 

lithologic layering, and the harmonic mean for such flow oriented perpendicular to the layers.  

Those bounds are strictly correct only if the layers are laterally extensive or flow is constrained 

from lateral flow around low-K layers by boundaries (e.g., permeameter tube walls).  For other 

flow regimes and heterogeneity types, such as a series of lenses instead of extensive layers, the 

averaged permeability falls between the bounds (Gelhar and Axness 1983; Sanchez-Vila et al 

2006). 
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Warren and Price (1961) showed through statistical analysis of digital modeling 

experiments that “the most probable behavior of a heterogeneous system with single-phase flow 

approaches that of a homogeneous system having a permeability equal to the geometric mean of 

the individual permeabilities.”  Matheron (1967) is frequently cited (e.g., Lachassagne et al. 

1989; Wen and Gomez-Hernandez 1996) for demonstrating mathematically that the effective 

permeability lies between the harmonic and arithmetic means and that the average permeability 

in two dimensions (2D) is equal to the geometric mean under certain restrictions.   

Equivalent permeability has been shown to vary below and above the geometric mean for 

one and three dimensions, respectively, but in 2D the geometric mean has been frequently 

observed to reasonably represent average behavior in heterogeneous systems (Dagan 1979; 

Gomez-Hernandez and Gorelick 1989; Lachassagne et al. 1989; Wen and Gomez-Hernandez 

1996; Sanchez-Vila 1997).  For effective hydraulic conductivity (Keff) in unbounded domains 

under n-dimensional flow, the following relationships were developed by Gutjahr (1978) and 

Dagan (1979): 
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where ʅY and σ2
Y are the mean and variance, respectively, of the natural-log-transform of K (Y = 

ln(K)) (Gomez-Hernandez and Gorelick 1989; Sanchez-Vila et al. 2006).   The relationship given 

for 2D yields the geometric mean.  These relationships were developed for low variance.  Gelhar 

and Axness (1983) conjectured the following as an extrapolation valid for large σ2
Y, as written by 

Sanchez-Vila et al. (2006):  




 


  21

2

1
exp)]([exp YYeff n

K      (2-3) 

 

2.2.2 Steady-State Radial Flow 

Cardwell and Parsons (1945) reported that the arithmetic and harmonic bounds also 

applied to the radial case with the addition of weighting permeability values by their inverse 

square distance from the well.  For drawdown at a well, Desbarats (1992a, 1993) suggested a 

geometric mean of point (local) T values weighted by the inverse square distance from the well 

and found agreement with a numerical model.  According to Renard and Marsily (1997), 

Matheron (1967) noted that his proof for using the geometric mean in heterogeneous media does 

not necessarily hold for radial flow. 

Sanchez-Vila (1997), using an analytical approach, found for steady-state radial flow in a 

statistically isotropic field that apparent effective transmissivity (Teff) was a monotonically 

increasing function of distance from the well.  It was approximately the harmonic mean near the 

pumping well and asymptotically approached the geometric mean with distance from the well.  It 

was stressed that Teff is not a value solely defined by the statistical properties of the 

heterogeneous field, but “rather it depends on the choice of boundary conditions”. 
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Riva et al. (2001) used analytical methods, supported by numerical Monte Carlo 

simulations, to consider apparent transmissivity under steady-state radial flow to a well in a 

radially bounded heterogeneous aquifer.  Their apparent transmissivity, which was defined as the 

ratio of expected flux to head gradient as a function of radial distance from the well, was a non-

monotonic function of distance found to be the harmonic mean at the well, to trend toward the 

geometric mean (TG) at intermediate radial distances, and then to increase to above TG near the 

boundary.   

Not all studies have found consistent conclusions for Teff for flow toward wells (Sanchez-

Vila et al. 2006).  The results of Sanchez-Vila (1997) noted above, and the spatial variability of 

apparent transmissivity found by Riva et al. (2001) highlight that effective permeability in 

porous media may be specific to the particular location and boundary conditions considered.  

Desbarats (1992a) found “that the expected block transmissivity decreased from the 

ensemble arithmetic mean to the ensemble geometric mean as the field size became large 

compared to the range of transmissivity spatial correlation.”  Desbarats (1993) considered 

steady-state interwell transmissivity between an injection well and a pumping well in a 

heterogeneous aquifer and found good agreement with a harmonic average of the effective 

conductivity around each well via the averaging scheme of Desbarats (1992a), the latter being a 

radial-distance-weighted geometric average around each well. 

On the surface, Desbarats (1993) looks to be a perfect analogy for stream depletion since 

it uses the same dipole image well configuration as, for example, the Theis and Glover solutions 

for stream depletion (Theis 1941; Glover and Balmer 1954).  However, Desbarats (1993) was 

relating steady-state flow between the wells to drawdown at the wells, while the stream depletion 
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case is interested in the transient flux evaluated at the stream boundary which would be mid-way 

between the two wells of the Desbarats analysis. 

2.2.3 Transient Flow and Other Conditions 

Numerous researchers have reported effective hydraulic conductivity values that vary 

with time, distance from the well, or other scale effects (Freeze 1975; Vandenberg 1977; El-Kadi 

and Brutsaert 1985; Indelman and Dagan 2004; Sanchez-Vila et al. 1996; Sanchez-Vila 1997; 

Desbarats 1992a; Ababou and Wood 1990; Naff 1991; Dagan 1982; Riva et al. 2001).   Freeze 

(1975) was an early and influential paper using stochastic modeling to demonstrate the 

significant impacts of heterogeneity (Anderson 1997).  Among other things, Freeze reported that 

effective hydraulic conductivity for transient flow changed with time.  Vandenberg (1977) found 

through a numerical model that effective transmissivity varied with time and distance from the 

well and that, for the normally distributed transmissivity field used, an arithmetic average closely 

matched the Theis curve for transient drawdown in an equivalent homogeneous aquifer.  

Desbarats (1992a) noted that it isn’t clear if Vandenberg’s arithmetic average accounted for his 

progressively finer model grid spacing near the pumping well.  The result, therefore, was 

possibly an arithmetic average effectively weighted by distance from the well. 

Meier et al. (1998) found Teff to be close to TG for several numerically modeled cases of 

transient radial flow, although cases with well-connected high transmissivity zones yielded Teff 

greater than TG.  Meier et al. also observed that Teff estimated from late-time drawdown data at 

monitoring wells in simulated pumping tests was generally close to the Teff expected for parallel 

flow.  This was viewed as an encouraging result due to it partly validating the common use of T 

derived from radial-flow pumping tests to uniform flow applications.   Similarly, Indelman 

(2003), using analytical methods and considering three-dimensional heterogeneity, reportedly 
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showed transmissivity from late-time pumping test drawdown to be precisely the effective 

conductivity for uniform horizontal flow. 

In a transient analysis, Dagan (1982) found that Teff was time dependent, dropping from 

the arithmetic mean initially to an expected steady-state value (e.g., Equations 2-1 to 2-3) during 

a relaxation time.  Dagan found this relaxation time to be small in 3D under certain realistic 

aquifer parameters, but cautioned that for 2D it could be large due to the typically large 

correlation scales of transmissivity. 

El-Kadi and Brutsaert (1985) also observed Keff to vary with time in transient numerical 

simulations, with this temporal variation increasing with increased heterogeneity.  They 

evaluated Keff for transient discharge to a river boundary under gravity drainage of an adjacent, 

connected, and bounded aquifer (i.e., no pumping, just natural drainage to the river under a 

falling water table condition, such as after a sudden river stage change).   They found Keff to be 

greater than KG and close to the arithmetic mean for early time, and approximately equal to KG 

for late time.  El-Kadi and Brutsaert noted that in their studies this relaxation time was shorter for 

smaller variance in K. 

It appears to this author that the El-Kadi and Brutsaert (1985) observation of a high 

(arithmetic) early-time Teq may have been a consequence of their flow domain and relatively 

coarse model discretization.   At early time, most flow was taking place from drainage of, and 

flow across, the first one or two columns of their model, the columns along the river boundary.   

That flow would have been similar in nature to 1D flow across a parallel set of resistances and 

not through a series of resistances, thus behaving as an arithmetic mean of the K block values in 

the first one or two columns. 
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2.2.4 The Power Average  

The power mean or power average has been used in many works to upscale or otherwise 

characterize effective permeability (e.g., Gomez-Hernandez and Gorelick 1989; Desbarats 

1992b; Ronayne and Gorelick 2006; de Dreuzy 2010; and other examples listed in Wen and 

Gomez-Hernandez 1996 and de Dreuzy 2010).  The power average can be written as: 

 

                            (2-4) 

in which K(p) is the power-averaged K and the exponent p is used in the range -1 < p < 1. 

The power average includes the following classical means: the arithmetic mean for p = 1, 

the harmonic mean for p = -1, and the geometric mean in the limit of p → zero (Gomez-

Hernandez and Gorelick 1989, and others).  But, it is not limited to those means; it also provides 

a continuum of intermediate values.  The following inequality holds between the three means:  

harmonic < geometric < arithmetic.   Note that power averaging is done with the K or T data 

values in real space, even though some of the mathematical relationships of the power average 

are based on normality of the log-transformed data.   

The power average is sometimes referred to as a generalized mean, and also as the power 

norm yielding the p-norm of the input data (e.g., Gomez-Hernandez and Gorelick 1989).  

However, since the p-norm term appears to have a specific meaning in vector mathematics, the 

function is discussed herein as a power average or power mean and noted with K(p) and T(p).  

The power-average exponent (p) yielding the appropriate Teff or Teq from the T-field data is 

referred to as an effective p (peff) or an equivalent p (peq), respectively. 
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   Ababou and Wood (1990) and Sanchez-Vila et al. (2006) note the following 

relationships apply when the distribution of K (or T) is log-normal:   K(p) = KG(KG/KH)p
 ,  K(p) = 

KG(KA/KG)p  and: 

K(p) = KG  exp(p σ2
Y /2).     (2-5) 

A power mean can therefore be computed simply from knowing the statistical moments 

of the data (σ2
Y and KG), rather than empirically computing it from the field data of a given 

realization (Ababou and Wood 1990).  The former approach can provide a lower computational 

burden in cases such as Monte Carlo simulations. 

It is useful to characterize Teq and Teff by the power-mean function.  First, it allows for 

intermediate values between the discreet classical Pythagorean means (arithmetic, geometric, and 

harmonic), a capability which is needed for media that is correlated but not perfectly stratified 

(Gelhar and Axness 1983; Sanchez-Vila et al. 2006).  Another advantage is that it scales for 

variance, σ2
Y.  In characterizing effective permeability relationships, Teff and Keff are commonly 

normalized by the geometric mean of the heterogeneous field, but this ratio (Teff /TG) increases 

with increasing variance σ2
Y even with all other things equal.  (For example, TA/TG = 1.649 for 

σ2
Y = 1.0, and TA/TG = 2.718 for σ2

Y = 2.0.  This Teff/TG ratio is illustrated in Figure 2 of Sanchez-

Vila et al. (2006) as a function of σ2
Y and as a function of p and σ2

Y in Chapter 3 herein.)  In 

contrast, the arithmetic mean is given by p = 1 no matter the variance level, allowing for a more 

direct comparison of averaging processes for fields of different variance.   On the other hand, use 

of the power average could lead one to overlook the fact that for low heterogeneity (low σ2
Y) 

there may be little practical difference between TA, TG, and TH. 

Gomez-Hernandez and Gorelick (1989) determined best-fit p exponents from a numerical 

model that generally corresponded with a heterogeneous field site.  Their model of an 
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unconfined aquifer included 10 pumping wells, zoned heterogeneity potentially representing 

different geologic zones, and a riverbed with spatially variable leakance.   They found p 

exponents of -0.4 and -0.2—values between the harmonic and geometric means—to best match 

modeled heads on the average.  However, this was noted as being influenced by the behavior 

near the wells: KG was reported as appropriate away from the wells and Keff for their overall 

system reverted (increased) to KG when the wells were turned off.  Ababou and Wood (1990) 

commented that Gomez-Hernandez and Gorelick’s model may have also behaved partly as a 1D 

system, thus lowering Teff below the geometric mean expected for a 2D system (Equation 2-1). 

Ronayne and Gorelick (2006) used power averaging and numerical simulation to 

characterize effective permeability in two-dimensional, binary-media systems of branching 

channel networks.  They examined dependence of the effective power-average exponent on 

certain metrics that characterize the structure of the channel network.  The purpose was to 

facilitate predictive modeling that didn’t require numerical modeling. 

The focus of de Dreuzy et al. (2010) was to evaluate the validity of power averaging for 

permeability upscaling.  They considered a variety of lattice percolation networks.  Their work 

did not include anisotropy or large-range correlation.   A conclusion was that power averaging 

was strictly valid only for a limited case, but that it gives an approximation of upscaling at a 

precision within a few percent of the possible exponent range. 

2.2.5 Steady-State, Mean-Parallel Flow in Statistically Anisotropic Media 

Gelhar and Axness (1983) developed an analytical estimate for directional Keff in a 

statistically anisotropic, 2D, infinite domain under mean-parallel flow conditions.  Mean-parallel 

or mean-uniform flow refers to flow lines that are parallel on average at the marcro scale, i.e., no 

source/sink areas with convergent flow, but flow lines are not necessarily parallel at the local 
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scale in heterogeneous media.  Sanchez-Vila et al. (2006) state that Gelhar and Axness may have 

been the first to address that statistically anisotropic problem, and they wrote Gelhar and 

Axness’s 2D result more explicitly as: 

                                  (2-6) 

where i,j = 1,2; i ≠ j; and ʄ1 and ʄ2 are the correlation scales in the principal directions.  The 

following generalization was proposed to extend Equation 2-6 to the domain of σ2
Y > 1 (Gelhar 

and Axness 1983; Paleologos 1994; Sanchez-Vila et al. 2006):  

                                    (2-7) 

Ababou (1991) conjectured the following estimate for the power-average exponent 

(Equation 2-4) for the case of steady-state mean-parallel (SSMP) flow in statistically anisotropic 

aquifers (Ababou 1991; Sanchez-Vila et al. 2006):             ;                    
   (2-8) 

where n is the dimensionality of the problem, and ʄH is the harmonic average of the n directional 

correlation scales, ʄi.  For the two-dimensional case this can be written as: 

                    (2-9) 

If Equation 2-5 is rewritten as: 

peff = 2 ln(Keff/KG)/ σ2
Y      (2-10) 

and Equation 2-7 is substituted for Keff/KG in Equation 2-10, then it is seen that Equations 2-9 

and 2-7 are equivalent.  Desbarats (1992b) noted they are equivalent for the three dimensional 

case as well.  These functions are plotted in Chapter 4. 
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2.2.6 Existence of a Comprehensive Effective Permeability 

In a summary paper, Anderson (1997) noted that many researchers have questioned the 

existence of a unique value for effective hydraulic conductivity, including Smith and Freeze 

(1979), El-Kadi and Brutsaert (1985), Gomez-Hernandez and Gorelick (1989), Neuman and Orr 

(1993), and Williams (1988).  Williams (1988) was a qualitative critique, including questioning 

the validity of treating heterogeneities such as fractured rock zones as random processes.   Others 

based their conclusions on the results of Monte Carlo simulations of hypothetical aquifers.  

  In light of the sensitivity of Keff to pumping well operations, boundary conditions, and 

other aspects specific to their simulations, Gomez-Hernandez and Gorelick (1989) concluded 

there was not a unique best-fit effective conductivity for their modeled scenario.  Ababou and 

Wood (1990) concurred and added that different possible fit-assessment criteria (e.g., overall 

head distribution, drawdown at wells, or flux) also complicate the concept of a single best-fit 

effective conductivity.   

Sanchez-Vila et al. (2006), Fogg (1986), Meier et al. (1998), and others have noted that 

the degree of connectivity of the transmissivity field strongly influences effective parameters and 

that stochastic theory has not been able to characterize this connectivity outside of using 

numerical experiments.  Wen and Gomez-Hernandez (1996) cite several studies which conclude 

the effective p exponent to be case specific (e.g., Desbarats 1992b). 

A summary point is that one can find, with theoretical and physical basis, various 

estimates of the expected relationships between an upscaled or averaged K and a stochastic 

representation of heterogeneity, but caution is in order when using those relationships.  The 

relationships, including those presented in Chapter 4, are not solely a characteristic of the media 
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but, rather, are also a function of the flow and boundary conditions.  The degree of applicability 

will also depend on how well a given heterogeneous field can be characterized stochastically. 

2.2.7 Evaluation Methods and Conceptual Assumptions 

Analytical approaches on estimating effective parameters are often restricted to low 

degrees of heterogeneity (low variance in the log-transformed K field) and domains that are 

unbounded or with idealized boundary conditions.  For less restrictive approaches, or to test the 

analytical derivations, numerical simulations and Monte Carlo methods are commonly used.  

Anderson (1997) provides this discussion:  

“…a number of researchers have used numerical models to calculate an effective 
hydraulic conductivity (or transmissivity) and then to compare the result with the value 

expected from theory.  The approach is to generate a hydraulic conductivity field and 

then calculate flow rates through the system under an imposed head gradient.  Most of 

these experiments use a hydraulic conductivity field generated by a random-field 

generator using a Gaussian model.  Multiple versions of the hydraulic conductivity field 

may be produced using Monte Carlo simulations, or a single realization may be used.” 

 

At least one researcher used a physical experiment, a heterogeneously packed sand tank 

with one realization, for testing equivalent hydraulic conductivity (Keq) and compared the result 

to theoretically expected values (Danquigny et al 2004). 

The result of a pumping test is an upscaled Teq that is in reality comprised of smaller-

scale vertical and horizontal heterogeneity.   Given that the pumping test is fundamental in 

hydrogeology, the meaning of Teq obtained from pumping tests has been explored in the 

literature for heterogeneous conditions (e.g., Meier et al. 1998, and others).  It is noted that the 

validity of treating Teff simply as Keff multiplied by saturated thickness appears to be an open 

question in some cases (Tartakovsky et al. 2000; Dagan et al. 2009), but for this work it is 

assumed the point-scale or model grid-scale T values have been determined (upscaled) by 
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pumping tests and therefore are valid local Teq estimates.   Numerous investigations in effective 

permeability have worked on the 2D flow case and have treated T as a large-scale, spatially 

correlated random variable as is done in this work (Dagan et al. 2009; Sanchez-Vila et al. 2006). 

2.2.8 Summary Points from Effective Permeability Literature Review 

The following summary is made from the preceding literature review: 

 The geometric mean of local-scale transmissivity has been frequently shown to 

approximate larger-scale system behavior in heterogeneous isotropic fields, away 

from flow boundaries, in steady-state mean-parallel flow (e.g., Gutjahr 1978; 

Dagan 1979; Wen and Gomez-Hernandez 1996; Sanchez-Vila et al. 2006). 

 Drawdown near wells may be best approximated by mean-T values lower than the 

geometric mean, but, with increasing distance from the well in isotropic 

unbounded conditions, the apparent transmissivity has been reported to approach 

the geometric mean, and to show non-monotonic changes with increasing distance 

from the well in a bounded domain (Sanchez-Vila 1997; Riva et al. 2001) 

 Based on early stochastic research, it had been proposed that there may be no 

comprehensively applicable Teff in transient cases since effective parameters were 

reported to vary with time.  In several cases, Teff was reported to start near the 

arithmetic mean and then approach a lower Teff value expected for steady-state 

(e.g., Dagan 1982; El-Kadi and Brutsaert 1985). 

 Estimates of Keff and Teff are specific to given boundary conditions, flow regime 

(i.e., convergent or mean-parallel), and dimensionality of the domain (Sanchez-

Vila et al. 2006).   Even within a given flow regime and boundary scenario, 

apparent transmissivity has been reported to vary with location between a 

pumping well and a domain boundary (Sanchez-Vila 1997; Riva et al. 2001). 

Estimating stream depletion rates during the transient phase of the stream-aquifer 

pumping response is the interest of this dissertation since, at later time, the depletion rate 

approaches the pumping rate.  Spatially, it is a relatively large portion of the aquifer that 
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influences the transient response.   The stream depletion flow regime is a mix of radial and near-

uniform flow (mean-parallel) conditions, and a stream boundary and pumping well are inherent 

problem conditions.  The literature suggests effective transmissivity is potentially a function of 

all these conditions. 

As stated by Sanchez-Vila et al. (2006), the concept of representative hydraulic 

conductivities, including the existence and actual values of these parameters, “depend on the 

flow regime, boundary conditions, and assumptions regarding the underlying structure of the 

spatial random function hydraulic.  This has led to a large variety of methods and results.” 

 Of the published theoretical and experimental evaluations of effective hydraulic 

conductivity and transmissivity, the case of transient stream depletion induced by groundwater 

pumping in an adjacent aquifer, or conditions directly analogous to that case, have not been 

addressed.  
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CHAPTER 3  METHODS 
 
 

3.1 Scale and Behavior of Interest 

This research considers the case of transient stream depletion caused by initiating a point 

stress (e.g., pumping well or recharge facility) in a bounded, heterogeneous aquifer that is 

hydraulically connected to a river.  Transient stream depletion refers to the change in the total 

rate of depletion to a river over time.  The depletion rate also varies spatially along the river, but 

in the realm of conjunctive use and stream-flow management, one impact of interest is the total 

reduction in stream flow, i.e., integration of the spatially variable depletion rate over the length 

of the river.  

The length of the impacted river reach is proportional to, and several times longer than, 

the distance between the well and the river (Glover 1977).  Stream depletion is, therefore, a 

relatively large-scale phenomenon.  For wells far from the river, it may be regional in scale. 

Transmissivity (T) typically exhibits spatial correlation at scales of hundreds to thousands 

of feet (Rubin 2003; Dagan et al. 2009).   The correlation scale relative to the scale of the flow 

problem is relevant in stochastic work as it affects ergodic behavior, i.e., how well deterministic 

spatial averaging approaches probabilistic averages as the flow area or averaging area increases 

(Deutsch and Journel 1998).  For this reason, absolute problem dimensions are relevant in this 

work and are described in the following section. 

3.2 Key Concepts in Stream Depletion Mechanics 

A contour map of simulated groundwater drawdown around a pumping well, in an 

aquifer bounded by a river and an impermeable boundary, is shown in Figure 3-1.  This 

illustrates a pumping well’s cone of depression reaching and interacting with the river and 
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aquifer boundaries.  This could equally be contours of groundwater mounding around a recharge 

facility.  Examples of drawdown patterns in a homogeneous aquifer (top) and a heterogeneous 

aquifer (bottom) are included. 

 

 

Figure 3-1.  Contour map of drawdown around a pumping well illustrating interaction with a river boundary.  
Included are examples of drawdown patterns in homogenous (top) and heterogeneous (bottom) aquifers. 

 

Pumping creates a perturbation in the aquifer (the cone of depression) which expands 

radially from the well with time.  Interaction between the perturbation and the river creates a 

change in the rate of water exchange between the river and the aquifer.  The total stream 

depletion rate increases, and a longer river reach is affected, as time increases (Glover 1977).  

The perturbation expands until a new equilibrium with the river is reached. 

The change in the preexisting river-aquifer exchange rate occurs due to the groundwater 

level and gradient changes created along the river by the well.  Stream depletion is a reduction in 
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the streamflow from that which would have been present absent the groundwater pumping.  For 

example, streamflow depletion occurs if there is a reduction in the rate of groundwater discharge 

to the river, even if the river is still gaining groundwater discharge.  Depletion can also be an 

increased loss rate in a river that was already losing water to the aquifer. 

Since the behavior of interest is the change in exchange rate and not the absolute 

exchange rate, and since the governing differential equations are linear, this permits 

superposition of depletion patterns in time and space, such as for multiple wells and intermittent 

pumping schedules.  It permits assessing depletion location and rates generally without regard 

for the prior regional gradient and the prior gain/loss patterns.  Gradient changes caused by 

pumping can be superimposed on a prior regional gradient, or, as in the simulations herein, they 

can be imposed on an initially flat water table that has zero river-aquifer exchange as the pre-

pumping baseline condition. 

3.3 Heterogeneous Behavior of Interest 

As a cone of depression expands around a pumping well and reaches a river (Figure 3-1), 

the portion of the river closest to the well is first affected. Over time, the loss rate at that point 

increases and an increasingly wider reach of the river is also affected.  This is illustrated in 

Figure 3-2 and Figure 3-3 which plot local (per unit length) stream depletion rates along the 

river for the model simulations depicted in Figure 3-1. 

In these examples, the river boundary is 45,000 ft long, the aquifer width between the 

river boundary and a parallel impermeable aquifer boundary is 10,000 ft, and the pumping well 

is located in the middle at 5,000 ft from the river (Figure 3-1).  Model output is plotted at two 

different simulation times.  Time is normalized by the characteristic response time, t’ = a2S/TG, 

where a is the distance between the well and the river, TG is the geometric mean of the aquifer 
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transmissivity, and S is the storage coefficient.  For this example, TG =30,000 ft2/day, S = 0.2, 

and a = 5000 ft, for a2S/T = 167 days.   

 

Figure 3-2.  Spatial distribution of stream depletion along river boundary.  Curves are shown for two normalized 
points in time (t/t’ = 0.5 and 2.0) for both homogeneous and heterogeneous conditions.  The heterogeneous cases are 
from single realizations with geometric anisotropy (ʄx:ʄy) equal to 3:1 (top set) and 10:1 (bottom set). 
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Figure 3-3.  Same as previous figure, semi-log scale. 

 

The smooth curves in Figures 3-2 and 3-3 are for a homogenous aquifer.  Similar plots 

for homogeneous conditions were constructed by Glover (1977).   Curves from two 

heterogeneous cases are also shown for comparison: one with statistical geometric anisotropy 

equal to 3:1 (top plot) and the other at 10:1 (bottom plot).  Geometric anisotropy is the ratio of 

0.001

0.01

0.1

1

10

0 5 10 15 20 25 30 35 40 45

D
e

p
le

ti
o

n
 r

a
te

 p
e

r 
u

n
it

 r
iv

e
r 

le
n

g
th

  
(f

t3
/d

a
y

-f
t)

model easting (feet, in thousands)

t/t'= 2; homog.

t/t'= 2; ʄx:ʄy=3:1

t/t'= 0.5; homog.

t/t'= 0.5; ʄx:ʄy=3:1

0.001

0.01

0.1

1

10

0 5 10 15 20 25 30 35 40 45

D
e

p
le

ti
o

n
 r

a
te

 p
e

r 
u

n
it

 r
iv

e
r 

le
n

g
th

  
(f

t3
/d

a
y

-f
t)

model  easting (feet, in thousands)

t/t'= 2; homog.

t/t'= 2; ʄx:ʄy=10:1

t/t'= 0.5; homog.

t/t'= 0.5; ʄx:ʄy=10:1



30 

transmissivity spatial correlation scales in the two principal axis directions.  This is defined 

further in the following section.  The principal direction of transmissivity correlation in these 

simulations was aligned with the x-coordinate direction, thus parallel to the river.    

Transmissivity of the homogenous case was set equal to TG of the heterogeneous case for these 

simulations. 

The area under a given curve in these figures, i.e., the integration of the spatially variable 

depletion rate along the length of the river, gives the total river depletion rate at that time.  That 

total rate is a single point in time on the depletion rate response curve.  Several characteristic 

depletion rate response curves are presented by Jenkins (1968) and Miller et al. (2007). 

Note that the well was located 5,000 ft from the river in the simulations used to produce 

Figures 3-2 and 3-3 and that depletions occur over a reach with a practical length up to about 

35,000 ft.    The term practical length refers to depletion being non-zero mathematically even at 

great distances (Figure 3-3), but being small as a practical matter at a finite distance.   This is 

analogous to the effective radius of a pumping well being finite when defined by a small 

drawdown threshold (McWhorter and Sunada 1977). 

The small-scale spatial variability of depletion rates is clearly high for the heterogeneous 

case (Figures 3-2 and 3-3).  These local variations are, however, aggregated into the total 

depletion rate.  The spatial variability is not as important in this work as the question of how 

heterogeneity influences the growth of the total depletion rate curve over time.  It is, therefore, 

meaningful to work with spatially averaged aquifer parameters even for a spatially 

heterogeneous depletion rate if those averaged parameters effectively predict timing of total 

depletions.  To identify upscaled (spatially averaged) transmissivities that effectively 
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approximate the timing of total stream depletion rates in heterogeneous aquifers is the goal of 

this work. 

A few interesting behaviors can be seen in these examples (Figure 3-2 and Figure 3-3).  

The case with higher spatial correlation (10:1) in aquifer properties has higher spatial correlation 

in the local depletion rates.  One can also see in the semi-log plots (Figure 3-3) that the 10:1 

heterogeneous curve affects a longer river reach than the homogeneous case and the 3:1 case.  It 

is also the case, although not clear visually in these examples, that the area under each 

heterogeneous curve is less than the corresponding homogeneous case and this difference is 

greater for the 10:1 case than the 3:1 case.  As will be shown in Chapter 4, when the direction of 

maximum spatial correlation of a heterogeneous transmissivity field is oriented parallel to the 

river, the depletion rate is delayed relative to the homogeneous case even with equal mean 

transmissivities of the two cases.    

Note in Figure 3-1 that the drawdown pattern shown for the heterogeneous case is 

different from the homogeneous case in local detail, but the macroscale drawdown pattern is 

roughly similar.  In contrast, the spatial distribution of groundwater flux at the river is very 

different between the homogeneous and heterogeneous cases (Figure 3-2).  Similarly, it can be 

shown that groundwater flux in the aquifer varies smoothly in the homogeneous case and varies 

sharply in space in the heterogeneous case.  That spatial variability in flux can have important 

consequences in water quality transport (i.e., preferential flowpaths) and other applications were 

averaging may not be valid.  Still, the fact that the drawdown pattern in the heterogeneous case is 

distorted locally more than globally supports the validity of using spatially averaged parameters 

in the homogenous Glover equation (Glover and Balmer 1954; Glover 1977) to approximate 
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macroscale drawdown patterns across a heterogeneous aquifer.   The degree of validity depends 

on the scale of heterogeneity (Section 3.5.2). 

3.4 Experimental Design 

3.4.1 Generation of Heterogeneous Fields 

Isaaks and Srivastava (1989) described geostatistics as “a way of describing the spatial 

continuity that is an essential feature of many natural phenomena.”  That description implicitly 

acknowledges heterogeneity as a ubiquitous condition, and emphasizes the spatial continuity that 

is often identifiable in such systems.  Geostatistics provides a way to characterize, quantify, and 

model that heterogeneity (Anderson 1997).  Geostatistical modeling supports the stochastic 

approach to understanding groundwater behavior, in which variability and uncertainty are 

accounted for by specifying an inferred or assumed mean and variance of parameters (Anderson 

1997).  Geostatistical simulation was used in this work to create a variety of synthetic 

heterogeneous fields in which stream depletion behavior was examined. 

The sequential Gaussian simulator SGSIM (version 3.001) of the geostatistical library 

GSLIB (Deutsch and Journal 1998) was used to generate multiple realizations of random, 

unconditional, spatially correlated, stationary, log-normal hydraulic conductivity (K) fields.  

SGSIM generates the field values from a standard normal distribution (unit variance and zero 

mean) which are then scaled to have the desired mean and variance of log-transformed K data.  

The log K field (natural log) is then back transformed for use in groundwater flow simulations. 

One hundred K-field realizations, each generated from the same specified geotstatistical 

model, were created for most of the ensembles presented herein.  The realizations in a given 

ensemble are randomly different locally but are equally probable and exhibit approximately the 

same geostatistical characteristics globally (mean, variance, and spatial correlation structure).   
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The number of realizations created per ensemble was occasionally adjusted in the range of 30 to 

200 depending on the effect of the given geostatistical parameters on variance of the ensemble 

results.  For example, simulations of fields having larger spatial correlation ranges lead to greater 

variance in ensemble results, which was handled by increasing the number of realizations. 

The SGSIM program includes the standard variogram models: Gaussian, spherical, and 

exponential (Deutsch and Journal 1998).  All three are common, with the spherical model 

thought to be the most commonly used (Isaaks and Srivastava 1989).  These three were tested for 

potential influence on the methods and simulation results (Section 4.1).  Except where noted 

differently, the spherical variogram model with variance of the log-transformed field equal to 1.0 

(σ2
Y = 1.0) and zero nugget effect is used herein as the default and reference case. 

 An example variogram, constructed from one K-field realization, is provided in Figure 

3-4 with a comparison to the specified spherical model.   A variogram is defined as one-half the 

average squared difference between paired data values (Isaaks and Srivastava 1989), and is a 

measure and model of spatial variability as a function of distance (the lag distance) between the 

paired data points. 

 Note:  The term semivariogram is frequently viewed as more precise language for the 

quantity that was defined above and referred to by Isaaks and Srivastava as a variogram, but this 

distinction is inconsistent in the literature.  There has been some debate about the actual 

mathematical meaning and best semantics in practice, with Bachmaier and Backes (2008, 2011) 

arguing the term semivariogram should not be used.   In general, the terms are used 

synonymously, with variogram commonly chosen for general usage and for conciseness (e.g., 

Gringarten and Deutsch 2001; Remy et al. 2009).  That generalized usage is adopted herein as 

well. 
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Figure 3-4  Example variogram constructed from one SGSIM-generated K-field realization. 

 

At large enough separation distance, the paired data become uncorrelated and the 

variogram reaches a plateau called the sill. The sill is equal to the population variance (Barnes 

1991).  The distance at which the sill is reached is called the range, beyond which there is no 

spatial correlation (Isaaks and Srivastava 1989; Gringarten and Deutsch 2001).  For the 

exponential and Gaussian models which approach the sill asymptotically, an effective range is 

defined as the distance at which the variogram reaches 95% of the sill (Deutsch and Journal 

1998).   The spherical variogram in Figure 3-4 has a range of 1,500 ft.  The range and effective 

range are often referred to informally as the correlation range (e.g., Gringarten and Deutsch 

2001).  That language is also used herein as it adds clarity in certain contexts.  

A nugget effect refers to having a non-zero variogram value at zero or near-zero lag 

distance.  This discontinuity arises from measurement error and/or small-scale variability below 
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the resolution of the sampling density (Isaaks and Srivastava 1989; Gringarten and Deutsch 

2001).  This is modeled with a non-zero intercept at zero distance in a model variogram.  

The following parameters used in the geostatistical modeling of heterogeneity were 

examined as variables affecting stream depletion timing:  (i) geometric anisotropy, (ii) the 

absolute correlation range relative to the problem scale, (iii) degree of heterogeneity (as 

measured by σ2
Y), (iv) orientation of principal directions with respect to the river, and (v) nugget 

effects in the variogram model.  Additional structural forms of heterogeneity are discussed in 

Chapter 5. 

In the course of methods development, geometric anisotropy was identified as a primary 

variable influencing stream depletion timing.   A heterogeneous field exhibits geometric 

anisotropy when the correlation range changes with direction while the sill remains constant 

(Isaaks and Svrivastava 1989).  The degree of geometric anisotropy is commonly expressed as a 

ratio of the correlation scale (ʄ) in the principal directions (ʄmax:ʄmin, or ʄx:ʄy when the principal 

directions are aligned with the coordinate system).   

The SGSIM domain was defined to be 10,000 x 45,000 ft and discretized into 200 rows 

and 900 columns of block-centered grid nodes, thus a uniform node spacing of 50 x 50 ft.   This 

grid was defined to match the flow model grid presented in the next section.  Three example 

heterogeneous fields generated with SGSIM are shown in Figure 3-5.  Other example fields, for 

various spatial correlation models, are included in Appendix A.   The three fields shown in 

Figure 3-5 used a spherical variogram model with σ2
Y = 1.0 and with the direction of maximum 

correlation oriented with the grid rows.  The minimum correlation range was 500 ft (10 rows) in 

all cases.   The maximum correlation ranges were set at 500 ft, 1500 ft, and 5000 ft (10, 30, and 
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100 columns, respectively), for geometric anisotropy ratios (ʄx:ʄy) equal to 1:1, 3:1, and 10:1 

(top, middle, and bottom images, respectively, in Figure 3-5). 

 

Figure 3-5.  Example realizations generated with SGSIM and used in the groundwater flow simulations.  Shown are 
K fields having geometric anisotropy ratios of 1:1 (top), 3:1 (middle), and 10:1 (bottom).  Bottom image notes 
location of the flow model boundaries. 

 

3.4.2 Flow Model Design 

Each SGSIM-generated K-field realization was used to populate a transient groundwater 

flow simulation performed with MODFLOW-2005 (Harbaugh 2005).   The flow model grid was 

constructed with 200 rows and 900 columns with uniform nodal spacing of 50 length units.  In 

this case, the nodal spacing was 50 feet giving a 45,000 x 10,000 ft model domain.  A single 

model layer (thus 2D) was used with a uniform aquifer saturated thickness set at 100 ft and 

specified to be constant.  The storage coefficient (S) was also uniform and set equal to 0.2.  The 
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orientation of the model domain with respect to the river and aquifer boundaries is shown in 

Figure 3-1 and in the bottom image of Figure 3-5. 

Model Row 1 was set as a constant-head boundary representing an idealized river 

boundary.   A zero-flux boundary condition was used for the other three model domain 

boundaries.    The zero-flux boundary condition in Row 200 represents an impermeable aquifer 

boundary oriented parallel to the river, such as the edge of a valley-fill alluvial aquifer. 

A pumping well was placed in the middle of the model domain at 5,000 ft from the river 

in most simulations.  The well was represented by a specified-flux boundary condition in one 

model cell, Row 101 and Column 450.  At this position relative to the two hydrogeologic 

boundaries, approximately the lower half (q/Q < 0.5) of the stream depletion response curve is 

the same as an unbounded aquifer response (Miller et al. 2007).  The second half is influenced by 

both boundaries.  Other well positions were tested (e.g., 2,500 and 7,500 ft from the river) which 

resulted in earlier and later onset of the bounded-aquifer type response curve.  In those sensitivity 

tests, the well position and consequent variations in boundary influence did not have an apparent 

effect on the methods and primary results.  The primary results are the ensemble-mean Teff 

values and trends that are presented in Chapter 4. 

Simulating a wider aquifer—width referring to the distance, W, between the river and the 

parallel impermeable aquifer boundary—at the same grid resolution would increase simulation 

CPU time which was a constraint for running several thousand simulations.  Simulating a 

narrower aquifer was not optimal since it would compress the subject transient period and would 

decrease the model domain size relative to the range of correlation scales to be tested, which is a 

constraint on minimum domain size.   In either case, the absolute model dimensions and aquifer 
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parameters are arbitrary.  Stream depletion response curves are scalable by an aquifer’s 

characteristic transient response time (a2S/T) and the relative well position (a/W). 

The zero-flux boundary condition in Columns 1 and 900 (oriented perpendicular to the 

river) were placed by design to be far enough away from the pumping effects to not significantly 

influence results in most simulations.  These lateral model distances were based on the length of 

the river reach expected to be affected during the transient phase.  The affected river length for 

homogeneous isotropic conditions is approximately 10 times the distance between the well and 

the river at near-steady conditions, and less during the transient phase (Glover 1977), with most 

river depletions occurring over a shorter reach nearest the well (Figure 3-2).   

The initial condition in all groundwater flow simulations was static, meaning the head 

was constant throughout the domain and equal to the river boundary head, thus a baseline 

condition of no groundwater flow and no river-aquifer exchange (Anderson and Woessner 2002).  

The well began pumping at time zero and pumping remained constant.  The model dimensions 

and aquifer properties were selected so that in most cases the river depletion rate (q) was greater 

than 90% of the pumping rate (Q) by the end of the simulation.   Note that all realizations and all 

ensemble cases would asymptotically approach q/Q = 1.0 (the steady-state) in longer 

simulations, so it is the earlier, more-transient portions of the response curve that is of interest 

and in which the most variability between different realizations is seen.    

The saturated thickness in all simulations was uniform in space and specified to be 

constant in time.  Holding saturated thickness constant is a common modeling technique used to 

improve model stability and reduce simulation time (Faunt et al. 2011; Sheets et al. 2015).  It 

was advisable in this stochastic work since K in the pumped cell and surrounding cells would 

vary widely, leading to dry up of the pumped cell and consequent model simulation failure in 
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certain realizations.  Reducing the computation time was also a consideration for those cases 

with high variance which required more time for the solver to converge on a head solution.  With 

the constant saturated thickness simplification, the simulation results are applicable to confined 

aquifers and to the unconfined case when drawdown is small relative to the initial saturated 

thickness (Faunt et al. 2011; Sheets et al. 2015). 

 The geostatistical parameters used to model and characterize heterogeneity were 

identical whether considering T or K since saturated thickness was uniform and constant.   The 

population variance, spatial correlation functions, and ratios between the harmonic, geometric, 

and arithmetic means for a given T or K field were the same.  One can therefore refer to K or T 

interchangeably in this work when discussing geostatistical parameters or effective permeability 

results (i.e., effective power averages).   From this point forward, T is discussed rather than K 

since the grid values used in the flow model are assumed conceptually to be local T estimates at 

the scale of a pumping test (Section 2.2.7).  Discussing T is also appropriate given that the flow 

simulations are two-dimensional and with correlation scales representative of T.  Correlation 

scales simulated in this work ranged from 500 ft to 40,000 ft.  Rubin (1993) and Anderson 

(1997) include Gelhar’s (1993) table of example correlation scales for T and K. 

For context, it is noted that the geometric means of the simulated K fields used in this 

work ranged from 100 to 1,000 ft/day, with most cases having KG = 300 ft/day, thus TG = 30,000 

ft2/day and t’ = 167 days.   Other parameters were defined previously.   The flow simulation 

period was 1250 days, for a simulation time of t/t’ = 7.5 in most cases. 

Though arbitrary, parameter units and model dimensions must be assigned.  They were 

chosen to represent an aquifer with transmissivity suitable for supplying high-capacity wells and 

with transient depletion timing that would be of the greatest interest from a technical and 
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conjunctive management perspective.   For example, much faster depletion timing, such as for 

wells much closer to the river and in narrower aquifers, could be nearly trivial due to that case 

having a short and steep response curve that tracks pumping schedules more directly. And for 

much slower depletions, such as for wells far from the river in a wide aquifer, intra-annual 

depletion-rate fluctuations from seasonal irrigation are smoothed out as depletions are delayed 

and spread over multiple years.  In that latter case, the slow build up in the depletion rate can be 

of interest, but it eventually reaches a relatively steady depletion rate equal to the the long-term 

annualized extraction rate, even for seasonal pumping (e.g., Bredehoeft 2011; Kendy and 

Bredehoeft 2006).  Having a characteristic response time on the order of 167 days, as used in 

most simulations in this work, represents a case potentially with both interannual and intra-

annual fluctuations in depletion rates due to seasonal irrigation pumping. 

3.4.3 Example Flow Model Output 

Simulating stream depletion response curves under a variety of heterogeneity types was a 

fundamental step.   Response curve characterization (Section 3.5) was necessarily automated due 

to the thousands of simulations involved, but the shape of individual realizations and the shape 

and variability of curve ensembles were directly evaluated as part of methods development.  The 

curves were periodically inspected again during ensemble production runs.  Since the curves are 

fundamental, yet ultimately an intermediate step in the analysis, this section is provided to 

document the appearance of that model output.   Differences between the example response 

curve ensembles are highlighted. 

Example flow model output is shown in Figure 3-6 where stream depletion response 

(q/Q) is plotted as a function of non-dimensional time (t/t’ = tT/a2S).   Output is plotted for three 

ensembles each comprising 100 realizations.   These simulated T fields had equal geometric 
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mean transmissivity (TG ) as well as equal variance, which together means they also have equal 

arithmetic and harmonic means, TA and TH (Section 2.2.4).  The direction of maximum spatial 

correlation was oriented parallel to the river with correlation lengths specified at 500, 1,500, and 

5,000 feet.  The minor-direction correlation length was set at 500 feet (10 model nodes) in all 

three cases, giving geometric anisotropy ratios (ʄx:ʄy) of 1:1, 3:1 and 10:1 (top, middle, and 

bottom plots, respectively).  Fields with these correlation scales and anisotropy ratios were 

illustrated in Figure 3-5. 

Figure 3-7 compares the timing and distribution of each ensemble shown in Figure 3-6 

through histograms of the q/Q depletion rates constructed for the four time points, t/t’ = 1, 2, 3 

and 5.  It is apparent in these figures that the depletion timing was delayed, and the ensemble 

response variability increased, as geometric anisotropy and correlation scale increased.  Note 

again that the arithmetic, geometric, and harmonic means for these fields were equal, yet the 

depletion timing was different.   Characterizing these differences in ensemble behavior and 

identifying potential relationships between them and heterogeneity structure is a goal of this 

work. 
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Figure 3-6.  Stream depletion rate (q/Q) as a function of time (t/t’) for three ensemble simulations of T fields that 
have the same TG, TA, and TH but with different geometric anisotropy ratios equal to 1:1 (top), 3:1 (middle) and 10:1 
(bottom). 
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Figure 3-7.  Stream depletion rate histograms at time t/t’ = 1, 2, 3, and 5 for the three ensembles shown in Figure 3-
6, comparing differences in depletion response for T fields with geometric anisotropy ratios equal to 1:1 (top), 3:1 
(middle) and 10:1 (bottom). 
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3.5 Characterizing the Simulated Response Curves 

3.5.1 Analytical Solution Fit to Simulated Depletion Response  

The simulated stream depletion rate response curve for each heterogeneous realization 

was fit to the Glover and Balmer (1954) analytical solution for stream depletion from wells as it 

is applied for the bounded aquifer case (Glover 1977; Knight et al. 2005; Miller et al. 2007).  The 

unbounded Glover solution for depletion rates can be written as the following: 
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    (3-1) 

where, as previously defined, q is the stream depletion rate (volume/time), Q is the pumping rate, 

a is the distance between the well and the river, T is aquifer transmissivity, S is aquifer storage 

coefficient or specific yield, and t is time since pumping began. 

  The simulated response curves in this research were fit with the bounded form of the 

Glover solution as it was written by Knight et al. (2005): 

 

(3-2) 

 

where W is the distance between the river and the impermeable boundary and all other variables 

are as defined previously.  Knight et al. (2005) present the derivation of Equation 3-2, while 

Glover (1977) and Miller et al. (2007) illustrate the image well pattern it represents. 

The unknown variable in Equation 3-2 was T; all other parameters were specified in the 

numerical model construction.  The Glover T that yielded a match to the simulated depletion 
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indicates Teq it is obtained for a given realization and is not necessarily an expected (effective) 

value stochastically. 

The curve fitting was necessarily automated, but the quality of the fit was periodically 

verified.    For a homogeneous case, changes in T shift the Glover stream depletion response 

curve forward or backward in time, but keep the same curve shape, while changes in aquifer 

width (W) reshape the curve (Miller et al. 2007).  A decrease in W steepens the curve, mostly in 

the late-time response.  The characteristic curves are a function of a2S/T and well position 

relative to the aquifer boundaries (a/W).  In developing and testing the methods, and in checks of 

the ensemble production simulations, the characteristic curves for stream depletion in two-

dimensional, homogeneous, bounded aquifers were observed to match, in most cases, the curve 

shapes from the simulated heterogeneous fields. 

Note that Teq is defined by Sanchez-Vila et al. (2006) and others as being determined by 

spatially averaging over a realization, such as the Teq obtained from the ratio of averaged Darcy 

velocity to averaged gradient.  It is also used to describe an upscaled T obtained from spatially 

averaging local T values directly.    Sanchez-Vila et al. noted the additional category of 

interpreted T, which is T deduced from analyzing an observed response such as drawdown from 

a pumping test.  In the pumping test case, one fits the observed drawdown response to the 

characteristic curve for drawdown in a homogeneous 2D aquifer.  The pumping test, in effect, 

physically averages smaller-scale T variability.  In the work herein, Teq is identified from fitting 

the simulated observations (the depletion response curve) to the appropriate Glover curve for 

stream depletion in a homogeneous 2D aquifer.  In that respect, the Teq identified herein is 

comparable to an interpreted transmissivity (Sanchez-Vila et al 2006). 
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3.5.2 Ergodicity and Statistical Homogeneity 

Response curves for realizations occasionally deviated from the characteristic shapes 

discussed in the previous section.  This occurred more often when simulating large correlation 

ranges, a scenario in which the condition of statistical homogeneity is not well met.  Although 

these shape deviations were generally small, they were investigated during methods 

development.  The purpose of this section is to discuss the nature of those deviations.   

Understanding their nature was also important in making conclusions about the time-invariant 

nature of Teff in stream depletion observed in this work. 

Statistical homogeneity is related in this case to the concept of ergodicity.  When a 

property averaged over space in one realization coincides with that property averaged over 

multiple realizations, the process is said to be ergodic (Sanchez-Vila et al. 2006), i.e., the spatial 

average matches the ensemble average.  As described more specifically by Deutsch and Journal 

(1998), a spatial random function model of T is ergodic for T if the realization statistics tend 

toward the mean T of the function as the size of the field increases.  If the T field is large enough, 

the statistics of the field should match the specified model.  The larger the correlation range, the 

larger the field must be to achieve ergodicity (Deutcsh and Journal 1998). 

Ergodic fluctuations refer to discrepancies between realization statistics and specified-

model statistics (Goovaerts 1997).  These are expected.  The only match between the model 

statistics and realization statistics guaranteed by stochastic simulation theory is an average 

(expected value) over a large number of realizations (Deutsch and Journal 1998).  The 

discrepancies fluctuate around the specified geostatistical model.   The longer the correlation 

range, the less ergodic are the realizations, and the more realizations are needed to approach the 

expected value (Deutsch and Journal 1998).   These ergodic fluctuations have been viewed as a 
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desirable reminder of uncertainty, such as when the model statistics themselves are uncertain due 

to being inferred from sample data (Goovaerts 1997; Deutsch and Journel 1998). 

As noted, an SGSIM simulation only guarantees that the assigned correlation model, 

including mean and variance, is reproduced over the average of multiple realizations and not 

necessarily in each realization.  This can be extended to subareas of the realization domain.   

Consider a field with dimensions many times larger than the correlation range.   This field could 

be sub-divided into areas that are still ergodic, meaning their statistics match the specified model 

and match each other.  In fact, if the initial field were large enough, the sub-divided areas could 

be treated as independent realizations themselves.    As that field is further divided into smaller 

areas, however, ergodicity is lost and the statistics of the subareas will differ from the model and 

from each other.  This becomes more pronounced when the subarea of interest is small relative to 

the correlation range. 

Differences between the statistics of small subareas of a given realization are referred to 

herein as statistical inhomogeneity.   These differences are a form of ergodic fluctuations as 

argued in the preceding paragraph, but the different term is used herein since ergodic fluctuations 

are typically discussed in the context of differences between realizations (Goovaerts 1997; 

Deutsch and Journel 1998) and not within a given realization. 

Departures from the characteristic response curve shapes were observed for some 

realizations, particularly when simulating fields having larger correlation ranges.   Based on 

inspection of the T field in many of those cases, this was attributed to sub-domain-scale spatial 

fluctuations in field properties, i.e., statistical inhomogeneity.  In those cases, the process of 

producing spatially correlated but random fields sometimes resulted in mean T being distinctly 

different for a subarea on one side of the well than the other side, for example.  That affects the 
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response curve shape.   As the cone of depression expands over time, it is affected by different 

subareas of the aquifer in shifting proportions.  If the subareas have different mean T and are 

large relative to the cone of depression, then the concept of averaging heterogeneity does not 

hold up well.  A mean T that is applicable to the entire cone of depression may not exist in that 

case.  When that scenario arose in random simulations, it resulted in the response curve not being 

well fit by a single Teq value. 

The ensemble-mean response curves were still well matched even for those ensembles 

containing realizations that deviated from the characteristic curve.   That was additional evidence 

for attributing the shape-deviation of certain realizations to statistical inhomogeneity caused by 

local ergodic fluctuations: Even for conditions that are poorly ergodic such as simulations with 

large correlation ranges, the ensemble average of those subareas is expected to match the 

specified-model statistics, given a sufficient number of realizations.  The fluctuations are 

averaged out over the ensemble and the ensemble-mean curve is thus well-described by single-

valued average T. 

3.5.3 Potential Transient Effects in Teq 

Some studies have observed effective permeability to vary with time under transient flow 

conditions, such as decreasing from arithmetic means to geometric means as time increased 

(Section 2.2.3).  Dagan (1982) referred to this as a relaxation time, and noted it was short in 3D 

cases, but could be long for the 2D case given the large correlation ranges for T.   Other studies 

did not report their Teq to be time-dependant (Section 2.2.3).  With those mixed reports in the 

literature in mind, the fit between the characteristic depletion curves for the homogeneous case 

and the modeled curves for the heterogeneous case was examined closely during methods 

development.  
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In short, the simulated depletion curves were well-fit by the characteristic analytical 

curves using a time-invariant Teq.  The Teff relationships as identified in this study do not appear 

to be time dependant.  This conclusion could be made since the curve shape deviations discussed 

in the previous section were occasional, were not observed in the ensemble response, and, as 

noted, were attributed to statistical fluctuations in subareas of the random field.   

3.5.4 Computing Power-Average Exponents 

Power averaging was used to relate each T-field realization to the Teq identified from its 

simulated depletion response curve.  The power-mean is an upscaling function producing a range 

of power-averaged transmissivities, T(p), from a field of local-scale T estimates.  The task 

described in this section was to identify the equivalent exponent, peq , such that T(peq) = Teq.  In 

more qualitative terms, the resulting peq is an index indicating where Teq lies between the 

bounding arithmetic and harmonic means. 

The power-mean function used herein is: 

                     
     (3-3) 

where Ti are the local, point-scale transmissivity values (grid-cell values in the model), and p is 

the power-mean exponent.  The function yields an arithmetic mean for p = 1, a harmonic mean 

for p = -1, a geometric mean for p near zero, and yields intermediate averages for non-integer p 

exponents between +1 and -1 (Gomez-Hernandez and Gorelick 1989; Desbarats 1992b; Wen and 

Gomez-Hernandez 1996; Ronayne and Gorelick 2006; de Dreuzy 2010). 

Example T(p) curves for four different variance levels (σ2
Y = 0.25, 0.5, 1.0, and 2.0) are 

illustrated in Figure 3-8.  The T(p) values are normalized by TG, with both T(p) and TG in real 

space.   For example, for σ2
Y = 1.0 and p = -0.5,  T(p)/TG = 0.78. 
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Logistically, the T(p) curve and peq could have been estimated from the statistical 

moments of the specified geostatistical model of the heterogeneous field, using Equation 2-5 

(Ababou and Wood 1990).  That approach would have been essentially exact for the ensemble 

and reasonably accurate for most realizations.   For this work, however, a T(p) table was 

computed directly from each field realization, constructed in p increments of 0.1, between the 

theoretical -1 and +1 bounds.  Cubic-spline interpolation was used to read peq from the tables 

(Mathworks 2013). 

 
Figure 3-8.  Shape of power-average curves. 
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characterized through a power-averaging exponent, peq, as described in Section 3.5.4.   The 

statistical moments of the peq ensemble therefore provided Teff through the power-averaging 

exponent peff.  In the other approach, Teff was determined directly from fitting the ensemble 

depletion response to the Glover solution and its peff was determined from the moments of the 

specified statistical model of T (Equation 2-5, Page 18), thus skipping the quantification of each 

peq. 

These two approaches were found to produce essentially equal results.  First, it was 

observed that peq for individual realizations compared favorably to peff of either method when 

spatial correlation scales were small compared to domain scales, as is the expectation (Section 

3.5.2), i.e., there was low peq variability when ergodic conditions were well met.  More 

importantly, it was confirmed that mean and variance of the peq ensembles approached the mean 

and variance of peff determined from the ensemble even for the larger correlation scales that 

yielded wide variability of peq. 

Although the two methods produced the same results, computing peff only from ensemble 

response curve moments lost certain information about peq variability among the realizations.  

No information was lost statistically—the ensemble moments were determined either way—yet 

it was informative to record peq for individual realizations, such as to inspect properties of fields 

that produced outlier peq values.  For most simulations, therefore, the first approach was used in 

which a peq was determined and plotted for reach realization, and the statistical moments of that 

peq ensemble provided peff. 

Terminology note:  Teq and peq refer to outcomes for individual realizations and Teff and 

peff to the ensemble behavior.  The given T and power-average exponent p could be discussed 

interchangeably at this point.   The general convention hereinafter will be to refer to the power-
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average exponents when discussing specific quantitative results and plots, and Teff and Teq for 

more the general or qualitative concepts of effective and equivalent transmissivity. 

Example distributions of ensemble peq results are illustrated in Figure 3-9.  These 

correspond to the ensembles shown in Figure 3-7.  The curves in Figure 3-6 represent the entire 

depletion response over time, and the histograms in Figure 3-7 are for responses at four different 

points in time.  Time is not a factor in Figure 3-9, however, since it was observed that each 

response curve could be well-fit with a single time-invariant peq. 

The peq values in Figure 3-9 indicate, essentially, how the heterogeneous T field in each 

realization would be averaged for use in computing its response curve.   For example, for the 

isotropic case (ʄx:ʄy = 1:1),  peq ranged from 0.15 to -0.15 with an ensemble mean near p = 0, the 

geometric mean.   The peff was lower for the two anisotropic cases, with those indicating an 

expected power-average between the geometric and harmonic means (-1 < peff < 0). 

 

 

Figure 3-9.  Equivalent transmissivity (as power mean exponent, p) for T fields with three different geometric 
anisotropy ratios (1:1, 3:1, and 10:1).. 
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3.6 Simulation Logistics 

3.6.1 Spatial Weighting of the Area of Influence 

In the geostatistical simulation of heterogeneous fields, the statistical moments of domain 

subareas may not match the specified model exactly; the moments fluctuate around the specified 

model (Section 3.5.2).   In groundwater hydraulics, domain subareas will be influenced 

unequally by a pumping well.  If area of influence is defined by magnitude of drawdown, as in 

the case of the effective radius of a pumping well, then areas far away from the well have little 

influence (Figure 3-1).  In the case of stream depletion, if area of influence is defined by 

groundwater flux, then a wide area along the river has greater influence than other portions of the 

aquifer, and this influence increases with proximity to the well (Figure 3-2). 

Different spatial weighting methods were tested in the power-averaging process.  This 

was done out of consideration that certain subareas of the aquifer have greater influence on the 

stream-aquifer response and that local statistical moments in those areas could fluctuate. The 

intention was to compute aquifer statistics from those areas most influencing the response.    This 

spatial testing was possible due to the decision to determine a Teq for each realization and to 

relate Teq to peq based on power-averaging each field realization directly rather than using the 

moments of the specified geostatistical model (Section 3.5.4). 

For the theoretical case of pure statistical homogeneity and ergodic realizations, the 

averaging area would not matter since the statistical moments and correlation model would be 

the same regardless of the size and location of the averaging area.  In practice, however, whether 

in the field or in stochastic simulation, there are spatial differences unless the correlation range is 

small relative to the area of concern (Deutsch and Journel 1998; Sanchez-Vila et al. 2006). 
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It was found in methods-testing simulations that the variance of a peq ensemble was 

reduced when the T(p) curve used to determine peq (Section 3.5.4) was computed from a limited 

region along the river reach where most of the depletion occurs, instead of computing T(p) from 

the entire domain.   This observation supported the reasoning that selective spatial weighting 

better captured local fluctuations in mean transmissivity in the area of influence. 

Ensemble variance was also reduced when the pumping well was placed farther from the 

river while keeping correlation range and other conditions equal.  The area of influence was then 

larger relative to the correlation range, which results in a smaller degree of fluctuation in that 

area around the specified statistical model.  Similarly, and underscoring the point, ensemble 

variability was most reduced for steady-state mean-parallel flow simulations (Section 4.2) 

because the area of influence was then the entire domain with all areas contributing equally to 

Teq and peq.  The only relevant statistical fluctuations in that case would be from the overall 

ergodic fluctuations between realizations and not spatial fluctuations. 

Energy dissipation analogies were initially tested by assigning weights to the spatial 

averaging process in proportion to an expected flow velocity at each location (e.g., Molz et al. 

2005).  Velocity-weighting schemes, however, put nearly all the weight in the high-velocity, 

convergent-flow zone near the well.  This introduced extreme variability in the weighted T-field 

statistics since the moments in such small subareas do not reflect the statistics of the wider area.   

Transmissivity is essentially random at that highly local scale.  That method introduced 

apparently random variability in peq, since the averaging area used to compute peq was a small 

part of the aquifer zone influencing the depletion response.  This remained the case when testing 

various upper-limit velocity cut-off thresholds to exclude the high-velocity areas near the well.  

Proportional velocity weighting was therefore not used. 
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Positive results, indicated by reduced ensemble variance, were found with a simpler 

averaging area having uniform weights within it and zero weight outside it.  The averaging area 

is shown in Figure 3-10.  It was based on covering that portion of the aquifer along the river 

reach that contributes more than 90% of depletion during the transient period from time zero 

through t/t’ = 6.  For t/t’ < 1, nearly 100% of the depletion occurs within the highlighted reach.  

The zone covers a river reach length equal to five times the well-to-river distance (thus 5a).  This 

depletion-reach length criterion was assessed using the Glover (1977) analytical solution for the 

spatial distribution of depletion along a river for pumping in an isotropic homogeneous aquifer. 

 

 

Figure 3-10.  Spatial averaging area with its river reach length based on Glover (1977), and its width and shape as 
suggested by groundwater flux maps (hatched) approximated with a semi-ellipse (heavy line).  

 

As a strict matter, this averaging area would not be unchanging.  It would be rescaled for 

aquifer anisotropy and it would also expand along the river with increasing time (see Glover 

1977 or Figure 3-2).   However, even at later time, the majority of depletion still occurs within 

the reach length equal to 5a.   For isotropic conditions and t/t’ = 10, more than 85% of the 

depletions occur within this zone.  For a few test realizations of fields with a statistical geometric 

anisotropy of 10:1 with the principal direction originated parallel to the river—a condition which 

spreads the depletions over a wider reach and corresponds approximately to a hydraulic 
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anisotropy of 2:1 (Section 5.5)—approximately 80% of depletion occurred within the 5a reach 

during the transient period up through about t/t’ = 3. 

The 5a length of the selected averaging zone along the river has a clear physical and 

mathematical basis, and is reasonably robust in time and to aquifer anisotropy.  A clear basis for 

the width (perpendicular to the river) and shape of the zone, however, was not identified.  An 

indication of the width of an area of influence was taken from groundwater seepage velocity 

maps produced during the initial velocity-weighting tests.  Those maps indicated an elliptical 

area of influence, especially in statistically anisotropic fields, that covered the affected river 

reach length and the pumping well.  An example of a velocity-based area is shown as the hatched 

area in Figure 3-10.  A similar shape is obtained by drawing a flow net on the drawdown contour 

maps provided in Figure 3-1, with flow lines originating within the affected reach length 5a. 

Considering that the affected reach length as identified by Glover (1977) is a function of 

the well-to-river distance, an ellipse provides a simple definition, even if somewhat arbitrary, for 

an averaging area.  The averaging area in Figure 3-10 is a semi-ellipse with its major axis 

positioned along the river boundary, its semi-major axis positioned and defined by the distance 

between the well and the river (a), and its major axis length being five times that of semi-major 

axis (5a). 

The precise shape of the averaging zone was not significant in this work.   Ensemble 

variance outcomes were insensitive to changes in the averaging area as long as it was near this 

scale or slightly larger (Figure 3-10).  Additionally, it is stressed that the primary results of this 

research were not affected by the decision to use a weighting area or by the shape of the 

weighting area.  The ensemble means, the peff results, were consistent with or without spatial 

weighting.  Indeed, ensemble-mean results shouldn’t be affected since the subarea statistical 
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fluctuations addressed by this spatial weighting are expected to average-out over the ensemble to 

match the specified geostatistical model, given sufficient realizations. 

A caveat to the above is that when the weighting area was very small, such as 

immediately around the well or weighted highly toward the center of the river reach, then it 

failed to capture the relevant aquifer area and thereby increased peq variability.  In those cases, it 

was not clear if running additional realizations would converge on an expected value. 

Although it did not affect ensemble-mean behavior, using the selective averaging area did 

appear to provide a more accurate link between the modeled depletion curve and the statistics of 

the portion of the aquifer most influencing that curve.  It reduced ensemble variance and 

narrowed the confidence interval around the ensemble means.  Again, this was done by taking 

actual T statistics in the area of influence into account, rather than assuming they were consistent 

with the overall aquifer or the specified geostatistical model. 

3.6.2 Interblock Transmissivity in the Finite-Difference Formulation 

In the finite-difference method, as used in MODFLOW, the flow between model nodes in 

response to a head difference is proportional to a computed interblock transmissivity (IBT) 

between the nodes.   A commonly used IBT scheme is the block-size-weighted harmonic mean 

of the transmissivity at each node (McDonald and Harbaugh 1988; Goode and Appel 1992; 

Romeu and Noetinger 1995).   This is theoretically appropriate for steady-state one-dimensional 

flow and when it is assumed that T is constant within the given cell block, changing abruptly at 

the interface between cell blocks.   Goode and Appel (1992) proposed what they called a 

logarithmic mean to be theoretically correct for IBT for the case where T varies linearly between 

model nodes.  The logarithmic mean and other IBT options have been added to post-1992 

versions of MODFLOW. 
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Goode and Appel (1992), Romeu and Noetinger (1995), and others have shown how the 

IBT scheme choice is consequential when the model discretization is coarse relative to the scale 

of heterogeneity.  Both found the harmonic IBT to be biased low in that case.  Romeu and 

Noetinger (1995) reported that:  (i) the geometric, logarithmic, and arithmetic IBT schemes were 

each biased high; (ii ) all schemes converged on the theoretically correct result as the grid 

resolution was refined; and (iii ) the harmonic scheme may converge slightly faster with 

increased grid refinement. 

These same results were found when testing simulation design herein.  IBT bias was 

tested in the flow model domain described previously, primarily by using an isotropic T field 

under steady-state mean-parallel (SSMP) flow conditions.  SSMP flow was used since the 

expected value, Teff, is well established to be close to TG for that case (Section 2.2). 

The bias-testing results are illustrated in Figure 3-11.  The simulated effective power-

average exponent, peff, is plotted as function of the correlation range in the minor direction.  The 

correlation range is normalized by the node spacing.   The constraint identified was the minimum 

correlation range that could be simulated in the minor principal direction, relative to the fixed 

nodal spacing, without introducing bias from the choice of the IBT scheme. 

The harmonic and logarithmic IBT schemes were tested (labeled LogIBT and HarIBT in 

Figure 3-11) since they are standard options in MODFLOW-2005 (Harbaugh 2005) and since 

they are reported to be biased low and high, respectively.  Three different variance levels were 

tested (labeled var0.5, var1, and var2, for σ2
Y = 0.5, 1.0, and 2.0, respectively), along with three 

different geometric anisotropy ratios (1:1, 3:1, and 10:1) each with the major principal axis 

oriented parallel to the river. 
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 Bias in Teff was significant with either of the IBT choices for isotropic fields with nodal 

spacing set at 1/5th the correlation range (Figure 3-11).  Nodal spacing refined to at least 1/10th 

the correlation range was needed to reduce bias in that case, and the harmonic IBT converged 

faster.  For the two higher anisotropy ratios (3:1 and 10:1), the harmonic mean was not strongly 

sensitive to grid refinement, and was less sensitive to logarithmic IBT overall.  Based on these 

results, all simulations used a minimum correlation range equal to 10 grid nodes or higher, and 

all used the harmonic IBT scheme, except where noted differently. 

Note:  For the isotropic case, Teff converged slightly above the geometric mean, near p = 

+0.05.  This deviation from theory is possibly due to having a bounded domain (e.g., Paleologos 

et al. 1996), though sensitivity tests were inconclusive.  This deviation is small relative to the 

range of peff trends of interest in this research. 

 

Figure 3-11.  Plot illustrating sensitivity of effective power mean exponent to grid refinement and interblock 
transmissivity scheme. 
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3.6.3 Correlation Range Constraints 

A minimum correlation range constraint, as established in the previous section, leads to 

other simulation constraints, which is why the minimum was not set higher.  For example, to 

reduce influence from the arbitrary lateral boundaries (Columns 1 and 900), it is suggested that 

the correlation scale not be much more than one-third the domain size to reduce edge effects in 

the SGSIM simulations (Xu and Dowd 2012), and perhaps smaller to reduce flow-boundary 

effects (Rubin and Dagan 1989; Paleologos et al. 1996).  In this model, that limitation would be 

about 300 nodes when the principal correlation direction is parallel to the river. Combining that 

with the minimum-range constraint of 10 nodes limits maximum geometric anisotropy to 30:1. 

Fortunately, the constraint on maximum correlation range noted above is mostly a 

concern for SSMP simulations, because that flow field covers the entire domain.  For the 

transient stream depletion case, the active flow area is smaller than the domain and focused away 

from the lateral boundaries, so lateral boundary effects are less significant.   Additionally, having 

a T correlation scale larger than the transient stream depletion flow area is a realistic scenario.  

Rubin (1993) and Anderson (1997) include Gelhar’s (1993) table of example correlation scales 

for T and K, which notes large transmissivity correlation scales. 

The constraints suggested by Xu and Dowd (2012), Rubin and Dagan (1989) and 

Paleologos et al. (1996) would be relatively severe when simulating a principal correlation 

direction oriented perpendicular to the river, since that model dimension is 200 nodes.  The one-

third guidance in that orientation would put the maximum range at 66 nodes, constraining 

anisotropy to under 1:7.  An SGSIM edge-effect was not apparent on Teq results, however, based 

on a few test simulations performed with a 900 x 800 node domain.  Furthermore, it is proposed 

that flow-boundary effects under that perpendicular orientation are acceptable since the 
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boundaries in Row 1 and Row 200 are not arbitrary domain boundaries.  Those boundaries have 

physical meaning and are fundamental to the flow regime being tested. 

In summary, the lateral model-domain boundaries may introduce bias to results for 

anisotropy ranges greater than about 30:1 in the SSMP flow simulations.  That potential bias was 

not quantified since SSMP flow beyond that anisotropic limit was not a focus of this research.  
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CHAPTER 4   PRIMARY RESULTS 

4.1 Dependence on Statistical Anisotropy 

Range of Results 

Figure 4-1 is a plot of effective power-mean exponents (peff) determined for 

transmissivity fields constructed with various geometric anisotropy ratios (ʄx/ʄy) ranging from 

0.01 to 100.  The plot includes ensemble sets with variance of ln(T), σ2
Y,equal to 0.25, 0.5, 1.0, 

and 2.75.  Anisotropy ratios less than one (ʄx/ʄy < 1) indicate the principal direction of 

correlation was oriented perpendicular to the river, while ratios greater than one (ʄx/ʄy > 1) 

indicate the orientation was parallel to the river.   The 95% confidence intervals of the ensemble 

means are shown. 

The heavy black curve in Figure 4-1 is Equation 2-9 (page 20), the estimate proposed by 

Ababou (1991) for peff under steady-state mean-parallel flow conditions.  It is included for 

reference.  As discussed in Section 2.2.5, it coincides with Equation 2-7, the derivation by Gelhar 

and Axness (1983) also for steady-state mean-parallel conditions (Sanchez-Vila et al. 2006). 

For all cases, peff was near the geometric mean (p = 0) for fields with statistically 

isotropic correlation structure (ʄx/ʄy = 1) and it asymptotically approached the bounding 

arithmetic (p = 1) and harmonic (p = -1) means as geometric anisotropy increased.  For the four 

heterogeneity levels tested (σ2
Y = 0.25, 0.5, 1.0, and 2.75), peff exhibited a shift toward the 

geometric mean with increased heterogeneity.  That sensitivity to field variance is examined 

more closely in Section 4.3. 

Spatial Weighting 

For one set of ensembles plotted in Figure 4-1, the statistical moments of the realized 

transmissivity fields, and thus also the idenitfied peff results, were computed using the entire 
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realized fields.  That set is labeled unweighted.  Analysis of all other ensemble runs was based on 

transmissivity statistics limited to the main area of influence (see Section 3.6.1).  A direct 

comparison between unweighted and weighted ensemble runs can be made using the weighted 

case that had field variance at σ2
Y = 1, which was the same as the unweighted set.  The 95% 

confidence interval of the mean was generally smaller for the weighted case, but no statistical 

difference in the ensemble means was found between the comparable weighted and unweighted 

cases. 

 

 

 

Figure 4-1.  Empirical relationship between effective transmissivity (as power mean) and statistical geometric 
anisotropy for approximately 110 ensemble simulations of transient stream depletion in spatially correlated 
heterogeneous transmissivity fields. 
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Correlation Scale Effects 

Two peff results shown in Figure 4-1, both with ʄx/ʄy = 4 and 5, were based on 

transmissivity fields that had large-scale correlation ranges relative to the other simulations.   For 

example, one ʄx/ʄy = 5 ensemble had correlation ranges set at ʄx = 15,000 ft and ʄy = 3,000 ft, 

whereas the other ʄx/ʄy = 5 ensembles had ʄx = 2,500 ft and ʄy = 500 ft.   The two large-scale 

correlation cases exhibited greater ensemble variance, as well as peff results shifted toward the 

geometric mean, relative to the other cases.   This scale effect is discussed further in Chapter 6. 

Insensitive Simulation Parameters 

The following simulation variables were also examined for their potential influence on 

the effective power-mean exponents: (i) using different spatial correlation models in generating 

the transmissivity fields (i.e., spherical, Gaussian, and exponential model variograms); (ii) 

placing the pumping well at different distances from the river (a/W = 0.5 and a/W = 0.75); and 

(iii) using 15 nodes in the minimum correlation direction instead of using the 10-node minimum 

discussed in Section 3.6.2.  Those simulations are not plotted since the results were the same as 

the other cases, i.e., no significant influence on the ensemble means was observed for those 

variables.   

Placing the pumping well at greater distance from the river under the same transmissivity 

field correlation range resulted in lower ensemble variance, but no effect on ensemble means was 

observed.   As discussed further in Chapter 6, the change in ensemble variance but not ensemble 

mean with well position arises from the change in the relative scales of the area of influence and 

the correlation range of heterogeneity. 

It has been shown analytically that Teff can depend in part on the correlation function 

shape, referring to the spherical, Gaussian, or exponential models for example (e.g., Indelman 
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and Abramovich 1994).  Those studies also indicate the effect is small relative to other factors 

such as degree of statistical anisotropy.  The choice of correlation model was not observed to 

affect peff results in this study.  Such an effect, if present, may be smaller than was 

distinguishable by the numerical approach used in this study. 

Ensemble Variability 

The ensemble means plotted in the prior figure are shown again in Figure 4-2 along with 

the peq results from each ensemble.  This type of density plot may overemphasize outliers 

visually, but it is included to illustrate the distribution of the approximately 11,000 realizations 

completed and to document certain outliers.  The Gaussian distribution of most ensembles is 

seen in Figure 3-9 (Page 52) and considered further in Chapter 6. 

 

 

Figure 4-2.  Same ensemble-mean results as previous figure, with realizations included. 
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Certain caveats should be noted when considering individual realizations and Figure 4-2. 

As discussed in Chapter 3, the SGSIM method doesn’t guarantee that each realization meets the 

assigned geostatistical model; it guarantees only that the geostatistical model is reproduced over 

the ensemble (Deutsch and Journel 1998).  A degree of error is therefore expected between the 

statistical anisotropy as plotted and what was actually realized in the SGSIM field construction. 

Statistical moments of each field realization were checked against the intended statistical 

model and were found to be very close.  But, it was computationally impractical to construct an 

empirical variogram for each realization to check the correlation range and anisotropy for each 

case.  Like Sarris and Paleologos (2004) and others, the realized correlation range and anisotropy 

characteristics were assumed to reasonably match the conditions specified in SGSIM.  This 

assumption applies best to fields with smaller correlation ranges.  Random checks of several 

realizations supported that assumption.  Sarris and Paleologos (2004) also provide justification. 

The realized transmissivity fields for a few outlier peq results were reviewed visually and 

by constructing variograms. Some fields with outlier results appeared to reasonably match the 

assigned geostatistical correlation model, while others showed moderate deviations.  No 

comprehensive conclusions were made about field properties of the outliers, but certain cases 

had a clear explanation.  For example, one extreme outlier was a case with high variance (σ2
Y = 

2.75) and a large correlation scale with the principle direction oriented perpendicular to the river.   

A narrow zone with high transmissivity and high contrast with the surrounding media happened 

to be located directly at the pumping well and aligned between the pumping well and the river, 

(see Appendix A, Figure A-5, for illustration).  This led to a fast depletion response that was not 

captured by a Teq averaged over a wider area.  The response in that case was, presumably, more 

like conduit flow. 
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Approximately 9% of the realizations had a peq outside the theoretical -1 < p < +1 bounds.  

Nearly all such instances occurred in ensembles with geometric anisotropy ratios outside the 

interval ʄx/ʄy = [0.1, 10].  Assumptions of statistical homogeneity and ergodicity are most 

strongly violated for fields with larger-scale correlation ranges.  In those cases, it appeared that 

subareas had a dominant influence on the depletion timing due to having a local-average 

transmissivity that was significantly different than the statistics of the overall field.  For example, 

in the outlier discussed in the previous paragraph, the transmissivity of the controlling high-

permeability channel was much higher than the arithmetic average of a wider zone.  That 

scenario produced a peq greater than +1. 

4.2 Comparison to Steady-State Mean-Parallel Flow 

The peff results obtained from transient stream depletion simulations were compared to 

results from steady-state, mean-parallel (SSMP) flow simulations.   The same simulation 

procedures were used for the SSMP case except for the necessary configuration changes.  The 

pumping well was removed and Model Row 200 was changed from an impermeable boundary to 

a specified-head boundary.  The specified-head boundary applied a fixed gradient (i) across the 

domain in the y direction.   The resulting steady-state flow (QSSMP) across the model domain was 

evaluated with the Darcy equation (QSSMP = Teq i), where Teq was the unknown. 

As shown in Figure 4-3, peff results for SSMP simulations were not significantly 

different from the transient stream depletion cases.  The ensemble variance was smaller for 

comparable SSMP simulations, seen as smaller 95% confidence intervals of the mean, but the 

ensemble means were not statistically different. 

Ensembles for the transient stream depletion and SSMP comparisons were generated 

independently.   They were equivalent geostatistically, but did not comprise exactly the same set 
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of realizations.  For an additional comparison, a few individual field realizations were run under 

both transient stream depletion and SSMP flow.  The peq difference found between transient 

stream depletion and SSMP flow for those field realizations was not zero, but it was small. The 

small differences were attributed to the SSMP flow being influenced by the entire transmissivity 

field while stream depletion is influenced by a smaller subarea of the field.  As discussed in 

Chapter 3, the geostatistical properties of a field sub-area can be different than that of the wider 

field. 

 

Figure 4-3. Comparison of effective transmissivity for transient stream depletion (TSD) and steady-state mean-
parallel (SSMP) flow simulations. 
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variance than those with high variance, but even the lowest-variance cases converged on an 

apparent peff curve that was shifted away from the analytical estimate toward the geometric 

mean. 

Spector and Indelman (1998) presented a higher-order estimate for Keff, as a function of 

geometric anisotropy, that coincides well with the peff trend modeled herein for σ2
Y = 1.0.  

Additionally, their derivation departs most significantly from the Gelhar and Axness (1983) and 

Ababou (1991) estimate in the anisotropy range of 3 to 10, which is similar to the modeled 

results (Figure 4-3).  It is further noted that the Spector and Indelman estimate predicts roughly 

similar behavior as was modeled for increasing variance—peff shifts away from the Weiner 

bounds toward the geometric mean with increasing variance—while the Ababou and Gelhar and 

Axness estimates are insensitive to variance (when Teff is normalized through peff).   However, 

the Spector and Indelman estimate does not match the modeled results for σ2
Y = 0.25 or 0.5, with 

their estimate being very close to Gelhar and Axness (1983) in those cases.  Nonmonotic 

behavior was encountered with their estimate for σ2
Y > 1.25.  Since the match at σ2

Y = 1.0 may 

therefore be coincidental, it was not included in the plots herein.    

4.3 Influence of Field Variance 

The previous figures indicated some sensitivity of peff to the degree of heterogeneity 

(σ2
Y).  Modeled trends for peff as a function of σ2

Y are plotted in Figure 4-4 for 0.1 < σ2
Y < 3.25.  

Results for both transient stream depletion and SSMP flow are included for comparison.  Most 

simulations used a correlation range in the minimum principal direction equal to 10 grid nodes.  

Two ensembles shown in Figure 4-4 used 15 nodes. 

 Low sensitivity to σ2
Y was observed for the statistically isotropic case; its peff remained 

near the geometric mean (p = 0) for 0.5 < σ2
Y < 3.25.  For the ʄx/ʄy = 10 case, peff increased from 
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about -0.7 to -0.5 over the tested variance range.  For ʄx/ʄy = 3, peff increased from about -0.4 to  

-0.25. 

 

Figure 4-4. Effective transmissivity (as power mean) as a function of natural-log transmissivity variance (σ2
Y) and 

geometric anisotropy ratio (ʄx/ʄy = 1, 3, and 10).  Results shown for both transient stream depletion (TSD) and 
steady-state mean-parallel (SSMP) flow simulations. 

 

The nonmonotonic trend starting around σ2
Y < 0.4 is not understood (Figure 4-4).  It is 

noted, however, that the field is relatively homogenous in that range.  For example, at σ2
Y = 0.25, 

Teq changes by less than 1% for a p change of 0.07.  The methods used to identify peq may 

exhibit small error at low σ2
Y due to interpolating from a discretized T(p) curve that is relatively 

flat for low σ2
Y (Section 3.5.4).  
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generalization for higher variance (σ2
Y > 1, Equation 2-7, page 20) produces peff that is invariant 

with changes in σ2
Y. 

Hydraulic conductivity can span several orders of magnitude in a given aquifer, but 

variance of ln(T) is generally much lower than variance of ln(K) since T is itself an up-scaled 

parameter.  In other words, while the portion of an aquifer influencing a given pumping test may 

include lenses of clay, silt, sand, and gravel—thus high K-variance in the pumping test domain—

a pumping test produces a single T estimate.  Compilations of transmissivity data provided by 

Gelhar (1993), Hoeksema and Kitanidis (1985), and Rubin (2003) suggest that σ2
Y is commonly 

near 1.0 and lower (with several exceptions noted).  For this reason, heterogeneity was 

represented in most simulations at σ2
Y = 1.0, and the range used in the sensitivity runs was 

limited to 0.1 < σ2
Y < 3.25. 

It is noted that in aquifers with high hydraulic conductivity contrasts (thus high variance) 

it can be the connectivity of high-permeability zones, acting as channels, that influences effective 

macroscale permeability (e.g., Ronayne and Gorelick 2006; Fogg 1986).  Channel connectivity is 

a condition not accounted for with the SGSIM approach used herein. 

4.4 Nugget Effect 

The influence on peff of a nugget effect in the spatial correlation model was examined.  A 

nugget effect refers to having non-zero variance among points at zero or near-zero lag distance.  

Variance between essentially adjacent samples may be from measurement error and thus not 

have physical meaning, but it can also represent local-scale variability below the resolution of 

the sampling density (Isaaks and Srivastava 1989; Gringarten and Deutsch 2001).   It is modeled 

with a non-zero intercept in a variogram.  With an increasing nugget effect, the simulated 

transmissivity field looks increasingly grainy, due to having an increasing degree of 
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discontinuity locally, even when larger-scale organization is still evident (see Appendix A, 

Figure A-5).   

Figure 4-5 illustrates the effect observed in peff when simulated transmissivity fields 

included a nugget effect in the variogram.  The two different nugget cases tested here had scaled 

nugget contributions equal to 0.33 and 0.5, where 1.0 is the scaled total variance.  The results are 

compared to the peff results shown previously in Figure 4-3 which had no nugget included.  

Relative to those prior cases, peff appears to level off further from the Weiner bounds with an 

asymptote shifted toward the geometric mean.  In these examples, the asymptote appears to be 

about p = -0.7 and p = -0.6 for nuggets equal to 0.33 and 0.5, respectively. 

The nugget-effect trend seen in Figure 4-5 might be explained, qualitatively, by 

considering that the Weiner bounds are approached with increased organization of the 

transmissivity field.  In the stream depletion case, increased organization refers to increased 

stratification (in plan view) of correlated transmissivity zones.   With a nugget effect, however, 

even with significant large-scale correlation, the continuity of the stratification is limited locally.  

If  the nugget contribution approaches the total variance, then there would be little structural 

organization and the effective mean would remain close to the effective mean for uncorrelated 

media, which is the geometric mean. 

The sensitivity of peff to a wider range of nugget contributions is illustrated in Figure 4-6 

for three cases of geometric anisotropy:  ʄx/ʄy = 1, 3, and 10.  Modeled peff for the three cases 

converged to a single value—ostensibly the effective mean for uncorrelated media—as the 

scaled nugget contribution approached 1.0. 
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Figure 4-5. Effective transmissivity when including a nugget effect in the transmissivity spatial correlation model.   
Results are shown from transient stream depletion (TSD) and steady-state mean-parallel (SSMP) flow simulations.  
One ensemble set used the logarithmic interblock transmissivity scheme (logIBT) all others used the harmonic 
scheme. 

 

The choice of interblock-transmissivity averaging scheme in the finite-difference model 

affected peff when a nugget effect was present in the spatial correlation function for 

transmissivity.  As discussed previously (Section 3.6.2), the interblock-transmissivity scheme 

was found to bias simulation results when the transmissivity correlation scale was less than 

approximately 10 model grid nodes.  The logarithmic scheme created a high-bias and the 

harmonic scheme created a low-bias in that case.  Similar biases were apparent with the nugget 

effect (Figure 4-6).  The peff converged for the different anisotropy cases as the media became 

uncorrelated (i.e., as the nugget contribution appraoched the total variance, 1.0) but the cases 

converged below the theorectical geometric mean (p = 0) for the harmonic interblock 

transmissivity scheme and above the geometric mean for the logirthmic scheme.  
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Figure 4-6. Sensitivity of effective transmissivity to a nugget effect in the transmissivity correlation model and to 
the logarithmic and harmonic interblock transmissivity schemes (logIBT and harIBT).  Trends are shown for 
geometric anisotropy ratios (ʄx/ʄx) equal to 1, 3, and 10. 
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MODFLOW grid was not explored, however, since the general result of a nugget effect was 

adequately established by the simulations presented herein.   

If a nugget in the transmissivity spatial correlation function is indeed just an artifact of 

measurement error or limited data density, rather than representing actual local-scale 

discontinuity, then the nugget impacts illustrated in Figure 4-5 may have limited physical 

meaning. In that case, model-derived power means associated with a nugget effect may not be 

appropriate for use in analytical models. 

Aside from potential uncertainties about its physical meaning, a nugget is sometimes 

used in spatial correlation models.  If a numerical groundwater flow model is used to simulate 

depletion timing, and if that flow model’s transmissivity field is populated using a geostatistical 

model that includes a nugget effect, then the simulated depletion timing may be impacted. 

The nugget-effect simulations support a general observation from the other simulated 

cases:  The bounding arithmetic and harmonic means for Teff are approached only with an 

increasingly strong degree of structural organization of the transmissivity field.  If that degree of 

organization is limited, either in the large-scale correlation structure (statistical anisotropy) or by 

local-scale variability embedded within the overall correlation structure (nugget effect), then Teff 

is limited from approaching the bounding arithmetic and harmonic means. 

4.5 Effect of River Angle 

Paleologos (1994) presented the following estimate for Keff in two-dimensional, 

anisotropic media under steady-state mean-parallel flow, when the direction of mean flow and 

the principal axis of correlation are not aligned: 

                                               (4-1) 
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in which θ is the angle between the direction of mean flow and the principal axis of correlation.   

When the flow direction and principal correlation axis are aligned, this reduces to Equation 2-6.  

Equation 4-1 was outlined by Gelhar and Axness (1983), but Paleologos (1994) noted that this 

more explicit and closed form had not been presented in the literature. 

Equation 4-1 was evaluated in this work for the case of transient stream depletion when the 

river boundary orientation is not aligned with the principal directions of the aquifer’s correlation 

structure.  In an alluvial aquifer, the principal direction of transmissivity correlation and the river 

may both be aligned, generally, with the longitudinal axis of the aquifer, but there are exceptions.  

For example, a tributary stream may cross the alluvial valley at an oblique angle, and certain 

reaches of a meandering river may cut across the valley at different angles.  Furthermore, stream 

depletion concerns are not limited to pumping from alluvial aquifers; other types of river-aquifer 

systems are of interest as well. 

Modeled results are compared to Equation 4-1 in Figure 4-7.   The simulations included 

both transient stream depletion and steady-state, mean-parallel flow conditions, under a range of 

river-aquifer alignments, and for cases with geometric anisotropy equal to 1, 3, and 10.  

Directional alignment was not expected to be relevant for the isotropic case, but it was included 

as a reference case. 

When the aquifer’s principle direction of correlation was aligned at angles near 0° and 90° 

with respect to the river, the simulations were the same as the cases plotted previously (e.g., 

Figure 4-1, Figure 4-3).  At intermediate angles, peff shifted away from the bounding means 

toward the geometric mean.   At θ = 45°, all three cases had peff equal to the geometric mean (p = 

0).  
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A discrepancy was observed between the modeled peff results and the analytical estimate, 

with the modeled output exhibiting a small shift away from the estimate toward the geometric 

mean.   This appears to be the same behavior observed in the primary simulations (Figure 4-1, 

Figure 4-3). 

 

 

Figure 4-7. Effective transmissivity when the transmissivity field’s principal direction of spatial correlation is 
oriented at an angle θ from the principal flow direction in steady-state, mean-parallel (SSMP) flow conditions.   
Included are transient stream depletion simulations where the river orientation is at θ = 90°.  Trends are shown for 
geometric anisotropy ratios (ʄx/ʄy) equal to 1, 3, and 10. 

 

The modeled trend for peff in the ʄx/ʄy = 10 case exhibited a degree of asymmetry as the 

alignment was rotated away from θ = 45°.  The asymmetry is most easily seen in the divergence 

from the symmetric analytical estimate, a divergence that was observed to be larger for θ > 45° 

than for θ < 45° (Figure 4-7).   This is possibly caused by the aspect ratio of the bounded model 

domain, which could lead to stronger boundary effects for θ approaching 0° than for θ 

approaching 90°, due to the smaller domain width in the θ = 0° direction (see Appendix A, 
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Figure A-3).   An asymmetry caused by boundary effects would also explain why it is prominent 

only in the ʄx/ʄy = 10 case, the case with the longest correlation range. 

The trends illustrated in Figure 4-7 could be relevant for the case of a pumping well 

located near the confluence of a river and a tributary stream.   Stream depletion from the 

pumping well would accrue to both streams.  If the aquifer exhibits geometric anisotropy, then 

the effective transmissivity governing the depletion timing would be different for each stream 

due to their different relative orientations.  If the aquifer’s principal correlation direction were 

oriented parallel to the main stem of the river, and if the tributary stream approaches at a right 

angle, then the expected stream depletion timing would be described by peff below a geometric 

mean for impacts to the main stem of the river and above a geometric mean for the tributary.   

This two-valued peff scenario may have applications in the analytical model presented by Yeh et 

al. (2008) for stream depletion from a pumping well located at the confluence of two rivers. 
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CHAPTER 5 - LIMITATIONS for NON-STATIONARITY and OTHER CASES 

 
Stochastic approaches to analyzing groundwater flow in heterogeneous fields usually 

assume stationarity of the field (Rubin and Seong 1994; Renard and Marsily 1997; Chang and 

Yeh 2012).  Likewise, the effective transmissivity behavior presented in Chapter 4 was simulated 

under the condition of stationarity.  Sanchez-Vila et al. (2006) stated that field data suggest 

stationarity is commonly not a property of the medium but rather is an artifact of the scale of 

observation.  Stationarity has also been characterized as a decision made in analysis, 

emphasizing it is a condition of the method and not necessarily a property of the data distribution 

(Deutsch and Journel 1998). 

The effective transmissivity relationships identified in Chapter 4 are tested in this chapter 

for sensitivity to the stationarity condition.  In particular, the case of mean transmissivity 

decreasing linearly with increasing distance from the river is simulated.  Sensitivities to 

hydraulic anisotropy and zonal anisotropy, the latter being a different form of statistical 

anisotropy, are also evaluated. 

5.1 Block-Wise Variable Mean 

To support interpretation of depletion response behavior from an aquifer that has a 

smoothly varying trend in mean transmissivity, a simplified case was first simulated.   The 

simpler case had two homogenous aquifer zones with dissimilar transmissivity.  Transmissivity 

zone T1 was located in the half of the aquifer between the river and the well (model rows 1 to 

100), with zone T2 located between the well and the impermeable boundary (model rows 101 to 

200).  Transmissivity of zone T2 was varied by factors of T2/T1 = 0.125, 0.25, 0.5 and 2.0. 

Consider that if zone T2 has a transmissivity near zero, then it would act as an 

impermeable boundary that in effect narrows the aquifer.  One would expect a steeper depletion 
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curve in that case over the homogeneous case (Miller et al. 2007).   Indeed, as T2 was decreased 

in these simulations, the early-time depletions were increased relative to the homogenous case in 

which T2/T1 = 1 (Figure 5-1). 

 

 

Figure 5-1. Depletion response curves for block-wise heterogeneity with transmissivity T2 between the well and the 
impermeable aquifer boundary scaled relative to the transmissivity T1 between the well and the river.  Time is scaled 
based on T1 (t’ = a2S/T1). 

 

In turn, late-time depletions were slightly slower than the homogenous case.  

Mathematically, the slower late-time depletions are required because the area under the depletion 

curve must approach the pumped volume over time.  The pumped volume was the same for all 

cases shown in Figure 5-1.  A physical explanation is that the T2 zone would drain more slowly 

toward the steady-state condition, due to its lower transmissivity, thereby slowing the rate at 

which equilibrium between pumping and stream depletion is reached, i.e., slowing the rate at 

which q/Q = 1 is approached. 
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A pertinent observation was that the standard analytical Glover model, whether applied in 

bounded or unbounded form, did not match the shape of the depletion response curves from this 

block-wise-heterogeneous aquifer.  The curve shapes could be matched if boundary distances 

were adjusted—invoking an effective boundary distance concept—but they could not be 

matched using the known geometry of the system.  The shape error was modest for the milder 

transmissivity contrasts. 

5.2 Trending Mean Transmissivity in Steady-State Mean-Parallel Flow 

5.2.1 Framework for Sensitivity Test 

A framework for evaluating the sensitivity of Teff to a non-stationary transmissivity in the 

stream depletion case is presented in this section by first examining sensitivity in the steady-

state, mean-parallel flow case.  The basis for choosing the magnitude of the tested transmissivity 

trend is also described. 

For valley-fill alluvial aquifers, transmissivity values often increase toward the middle of 

the valley, and thus often increase with proximity to the river, due simply to greater aquifer 

thickness toward the middle of the river valley.  Such non-stationary problems are not trivial to 

analyze.   For one issue, the block-wise heterogeneous scenario in the prior section showed that 

an increase in T toward the river will alter the shape of the transient stream depletion response 

such that current analytical models may not be strictly applicable.  However, those simulations 

also suggested that the shape change was reasonably small for a moderate spatial change in T. 

In further test simulations, response curves from a non-stationary transmissivity field 

were observed to have a maximum deviation from the stationary case by about 5% when T 

increased by a factor of three across the model domain.  Those simulations used a homogenous 

hydraulic conductivity field with saturated thickness that increased linearly by a factor of three 
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from the impermeable aquifer boundary (Row 200) to the river (Row 1).   Based on that result 

indicating modest error in the curve shape, a three-fold increase in mean T across the model 

domain was selected for testing the heterogeneous non-stationary case.   

The magnitude and direction of that selected trend is realistic, yet it allowed 

interpretation of the depletion response with acceptable accuracy using the Glover analytical 

model.  More to the point, even while the response still reasonably fit a Glover response curve, 

this trend was found to strongly affect Teff results. 

It is common to model a non-stationary heterogeneous field as a deterministic trend 

component combined with a stochastic residuals component, the latter being a stationary random 

function representing heterogeneity (Deutsch and Journel 1998).  The deterministic treatment 

makes particular sense when there is an independent, even if qualitative, understanding of the 

nature of the trend (Isaaks and Srivistava 1989).  For the simulations presented herein, a non-

stationary heterogeneous field was created by first generating a stationary heterogeneous field 

and then adding the deterministic trend (Appendix A, Figure A-6).  This can be viewed as a 

stationary heterogeneous K field with a deterministic trend in aquifer thickness, thus a non-

stationary heterogeneous T field. 

Indelman and Rubin (1996) examined effective transmissivity for steady-state mean-

parallel flow in a heterogeneous field with a linear spatial trend in mean transmissivity.  They 

showed: 

 “when the trend is parallel to the gradient, the equivalent conductivity is bounded by the 
effective conductivity of the stationary medium on one hand and the harmonic mean 
conductivity on the other, with the harmonic mean pertaining to the case of a very large 
trend.”  
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Similarly, when the trend is perpendicular to the gradient, effective conductivity is bounded by 

the stationary effective conductivity and the arithmetic mean (Indelman and Rubin 1996; Rubin 

and Seong 1994). 

The Indelman and Rubin statement is qualitative and the trend’s significance was 

described through its impact on the outcome.  For this research, significance of the trend was 

gauged separately from its impact on the outcomes by considering the variance it contributed to a 

given heterogeneous field.  By comparing the variance σ2
Y of the trended transmissivity field to 

that of the de-trended field, it was found that the three-fold increase in mean transmissivity 

across the domain contributed approximately σ2
Y = 0.11 to the total variance of the field, 

regardless of the scale of σ2
Y of the de-trended field, i.e., regardless of the degree of stationary 

heterogeneity as measured by σ2
ln(K).  This held within the tested range, which was for σ2

Y of the 

de-trended field ranging from 0.1 to 0.9.  For example, when the stationary field variance was σ2
Y 

= 0.10, the field variance with the trend included was σ2
Y = 0.21.  For stationary field variance σ2

Y 

= 0.89, the field variance with the trend included was near σ2
Y = 1.0. 

5.2.2 Sensitivity for Steady-State, Mean-Parallel Flow  

In steady-state mean-parallel flow simulations, the influence of a trend in transmissivity 

was found to be minor when the field was strongly heterogeneous relative to the variance added 

by the trend.   For example, in that minor-impact case, the de-trended field variance was σ2
Y = 

0.89 and the total field variance was σ2
Y = 1.0.  The trend contributed about 10% of the total 

variance and Teff remained primarily a function of the geometric anisotropy relationship shown 

previously in Chapter 4.  However, when the field was only mildly heterogeneous, such as with a 

de-trended variance σ2
Y = 0.11 and with the trend contributing about half of the total field 
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variance σ2
Y = 0.22, then there was a significant shift in Teff toward the harmonic mean.  Results 

from these two cases are shown in Figure 5-2.  This is apparently similar to Indelman and Rubin 

(1996) which noted a significant trend leads to Teff being closer the harmonic mean than would 

expected from the stationary component of the field’s properties. 

 

 

Figure 5-2. Power-mean exponents for two cases with non-stationary fields that had a linear trend in local-mean 
transmissivity. One case of zonal anisotropy is also included.  Stationary cases shown in the prior figures are 
included again here for reference. 

 

The framework described above could be used to further develop empirical relationships 

between stronger trends, trended and de-trended variance, and peff for SSMP flow.   However, 

the cases shown in Figure 5-2 were sufficient for the current objective, which was to assess 

whether the chosen linear trend was large enough to influence Teff values, and to know what that 

effect would be in the steady-state mean-parallel case, before advancing to transient stream 

depletion simulations in the same non-stationary fields. 
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5.3 Trending Mean Transmissivity in Transient Stream Depletion 

Up to this point, no cases have been presented with significant differences in Teff behavior 

between transient stream depletion and steady-state mean-parallel flow cases.  Such comparison 

is problematic, however, for a field with a spatial trend in transmissivity.  A strictly defined 

effective transmissivity value does not exist for the non-stationary case (Sanchez-Vila et al 

2006).  Instead, a pseudoeffective value must be defined that depends on location within the flow 

domain. 

Defining the area of influence, and therefore the transmissivity averaging area, is 

straightforward in the non-stationary SSMP flow simulations—it is the entire area between the 

two head boundaries, and all sub-areas of the transmissivity field have equal influence on global 

flow behavior.  In contrast, it is not straightforward for the transient stream depletion case.  

Hydraulic analysis and empirical tests suggested the area of primary influence in the transient 

stream depletion simulations is near the well along the river boundary (Section 3.6), but that area 

does not have sharp or specific extents.  Influence decreases with increasing distance from the 

well and river. 

The precise shape and location of the chosen weighting area (Figure 3-1) was not 

significant in the simulations presented so far.  In principle, this is because the fields were 

stationary and relatively homogenous statistically.  And in practice, this was confirmed through 

sensitivity simulations which showed the weighting area only affected the ensemble variance and 

not the ensemble mean, i.e., not Teff itself. 

In contrast, the choice of weighting area was found to dominate results for transient 

stream depletion when a non-stationary mean transmissivity was present.   This was found 

through a series of non-stationary stream depletion simulations.   First, if the weighting area used 
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previously (Figure 3-1) was expanded to include a small portion of the area between the well and 

the impermeable boundary, where the mean transmissivity was lower, then the resulting peff was 

greater than +1.0, meaning it was greater than the arithmetic average of that expanded weighting 

zone.  Exceeding the arithmetic bound is in conflict with theory in general and specifically with 

analytical work on other non-stationary cases (e.g., Rubin and Seong 1994; Indelman and Rubin 

1996). That suggests the expanded averaging area reached too far beyond the relevant area 

and/or should be weighted more toward the region between the well and the river where mean 

transmissivity was higher. 

Next, when the weighting area was the same as used in the prior stationary cases (Figure 

3-1), then peff was slightly above the trend established for those stationary cases.  For example, 

peff was slightly but distinctly above the geometric mean under mild geometric anisotropy.  

Finally, if the averaging zone was narrowed slightly such that the semi-minor axis of the 

averaging-area ellipse included 90% of the distance between the river and the well, then peff   

corresponded more closely to the trend for the stationary cases shown in Figure 5-2, such as 

close to the geometric mean for cases with mild geometric anisotropy. 

It is worth reviewing that an equivalent transmissivity, Teq, was identified from the 

depletion response curve and related to the distribution of the realized transmissivity field 

through the power-mean function exponent (Section 3.5.4).  That response curve, the 

corresponding Teq value, and the transmissivity field is the same in each of these test cases; only 

the power-mean exponent was changing.  The power-mean exponent corresponding to the 

interpreted Teq changed as the averaging area changed because the non-stationary field’s 

properties changed in space. 
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To approach this peff sensitivity to the weighting area differently, one could presume that 

peff for both steady-state mean-parallel (SSMP) flow and transient stream depletion might still be 

similar in a non-stationary field—a presumption based on the similarity in the stationary 

simulations—and therefore adjust the weighting area until the non-stationary peff results are 

similar between stream depletion and SSMP simulations.  When taking that approach, peff 

behavior for non-stationary stream depletion simulations was close to the non-stationary SSMP 

cases when the weighting area’s semi-minor axis was decreased to include about 80 to 85% of 

the distance between the river and the well. 

 The non-stationary stream depletion scenarios described above are not included in Figure 

5-2 since they were so sensitive to arbitrary tests of the area of influence.  These observations 

may not be directly transferrable, quantitatively, to cases with trends of different magnitudes or 

fields with different variance levels.  However, even with these limitations, the results clearly 

illustrate the strong sensitivity of peff to how the pseudo-effective transmissivity area is defined 

when there is a realistic spatial trend in mean transmissivity.   If it is accepted that the peff must 

lie between the arithmetic and harmonic bounds for this case, then these results bracket the 

outside extent of the averaging zone under the simulated trend and variance levels. 

5.4 Zonal Anisotropy 

With geometric anisotropy, the correlation range varies with direction, but the variogram 

sill, i.e., the uncorrelated variance, is isotropic.  With zonal anisotropy, the sill level is 

anisotropic.  Zonal anisotropy may represent distinct lithologic layering, which would be 

common in a vertical profile, such as an alternating sand, clay, and silt depositional sequence.   

Zonal anisotropy is conceivable in a horizontal profile where strata have been deformed and 

exposed.  Zonal anisotropy can also be an artifact of a trending mean transmissivity, an artifact 
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which may fade once the data have been de-trended (Gringarten and Deutsch 2001).  That latter 

situation was apparently the case for several locations considered in Section 6.2. 

Four ensembles with zonal anisotropy were simulated.  Transmissivity fields exhibiting 

zonal anisotropy were generated by using two nested spatial correlation functions (Deutsch and 

Journal 1998).  The variogram sills for orientations parallel and perpendicular to the river were 

approximately 0.25 and 0.75, respectively.  That case is shown in Appendix A. 

Results from the four ensembles are plotted in Figure 5-2.  As shown, the peff results were 

insensitive to the degree of geometric anisotropy, remaining near peff = -0.75 for geometric 

anisotropy ratios (ʄx/ʄy) ranging from 1 to 10. All four ensembles therefore behaved as strongly 

“stratified” cases, including those with isotropic correlation ranges. 

5.5 The Homogeneous Anisotropic Case 

Geometric anisotropy is a geostatistical anisotropy that is used to describe the structure 

of aquifer heterogeneity.  It is based on a directionally dependant correlation of local-scale 

transmissivity zones, even when those zones may be isotropic locally.  As suggested by Gelhar 

and Axness (1983), geometric anisotropy leads to hydraulic anisotropy at a larger scale, but it is 

not the same physical phenomena as local hydraulic anisotropy. 

There are interesting differences to consider between these two forms of anisotropy.  A 

regional-scale anisotropic transmissivity is not necessarily feasible to measure or test.   At the 

spatial scale that is assessed by a typical aquifer test, the tested area can be isotropic, yet the 

larger spatial structure of the collection of isotropic zones can lead to anisotropy in regional-scale 

transmissivity.  It is also possible in principle to have regional-scale hydraulic anisotropy that is 

the combined result of local-scale hydraulic anisotropy plus overall geometric anisotropy.  In that 

case, the two behaviors would be superimposed (Sanchez-Vila et al. 2006). 
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If it cannot be directly tested, regional-scale anisotropic transmissivity attributable to 

geometric anisotropy might be estimated only by: (i) a numerical model populated with a 

transmissivity field interpreted from local-scale estimates or (ii) estimated from geometric 

anisotropy that is inferred from constructing variograms (Sanchez-Vila et al. 2006).  The second 

case would likely be combined with geologic interpretation, such as considering depositional 

history. 

Regional-scale hydraulic anisotropy is a nonlinear function of geometric anisotropy.  

Using the directional effective permeability estimate of Gelhar and Axness (1983), which was 

based on geometric anisotropy, Sanchez-Vila et al. (2006) noted the following relationship:                             (5-1) 

in which e is a geometric anisotropy ratio defined as ʄy/ʄx (≤ 1). Note that this ratio is inverted 

from the convention used elsewhere herein.   A plot of this relationship is shown in Figure 5-3. 

The regional-scale hydraulic anisotropy ratio (Tx/Ty) that develops from geometric 

anisotropy is a function of variance, σ2
Y (Equation 5-1).  Logically, as the contrast between local-

scale transmissivity zones increases, which increases the field variance, the Tx/Ty contrast that 

arises from the structural organization of those contrasting zones will also increase.  Or, to 

approach the dependence on variance from another perspective:  It can be shown with Equations 

5-1 and 2-5 that, as geometric anisotropy increases, the Tx/Ty ratio approaches the ratio between 

the arithmetic and harmonic means of the local transmissivity values.  The ratio between the 

arithmetic and harmonic means is a function of field variance (Section 2.2.4). 
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Figure 5-3. Nonlinear relationship between hydraulic anisotropy and geometric statistical anisotropy. 

 

 

The power-mean function partly normalizes for field variance (Section 2.2.4).  The peff is 

therefore a function only of the system flow behavior.  Considering that peff for stream depletion 

timing has been shown to have only a mild dependence on field variance (Figure 4-4), while 

Equation 5-1 shows hydraulic anisotropy to be a function of field variance, this raises the 

question if hydraulic anisotropy is a factor in stream depletion timing. 

 The shape of the cone of depression around a pumping well is distorted by hydraulic 

anisotropy (Tx/Ty).  It may seem intuitive that a depression distorted to be wider in the direction 

parallel to the river (which arises in the Tx > Ty case) would interact more slowly with the river 

relative to the isotropic case.  And, vice versa, that it would interact more quickly with the river 

if distorted toward the river (the Ty > Tx case).  This concept was tested through model runs in 

which only homogeneous anisotropy was simulated. 

In the homogeneous anisotropic simulations, stream depletion timing was dependent only 

on the transmissivity in the direction perpendicular to the river (Ty).  It was insensitive to 
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transmissivity in the parallel direction (Tx) and thus insensitive to hydraulic anisotropy ratios 

(Tx/Ty).  It was therefore concluded that stream depletion timing is sensitive to geometric 

anisotropy due only to the fact that geometric anisotropy influences Teff in the y-direction. 

Transmissivity in the Tx direction did indeed influence the width of the cone of 

depression and thereby influenced the length of the affected river reach, even while the total-

river depletion timing was not affected.  That spatial distribution of stream depletion can be 

relevant in conjunctive water management, such as in estimating the portion of a well’s 

depletions that impact the river above a critical point like an intervening water right, or a 

protected habitat zone, etc. 

Figure 5-4 compares spatial depletion rates along the river for two cases of homogenous 

anisotropy and an isotropic reference case.  In the simulations used to produce this plot, it was 

apparent that the shape of the cone of depression was dependent on Tx and, as shown, the length 

of the affected river was influenced by Tx.  However, the total area under each spatial depletion 

curve (Figure 5-4), and thus the total depletion rate at a given time, was the same in each case.  

The depletion was simply concentrated nearer the well for Tx/Ty < 1 and was more diffuse for 

Tx/Ty > 1.  It was also found that the length of the affected river reach, which can be computed 

analytically for the isotropic case (Glover 1977), can be successfully scaled by the square root of 

the hydraulic anisotropy ratio, (Tx/Ty)
½, as is done in other applications for anisotropic 

conditions. 
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Figure 5-4.  Spatial distribution of depletion along river at time t/t’ = 1 for three different hydraulic anisotropy ratios 
(Tx/Ty).  Position along river (x) scaled by well-to-river distance (a).  The total river depletion rate (area under the 
curve) is identical for each case. 
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CHAPTER 6   FIELD EXAMPLE and APPLICATION LIMITATIONS 

6.1 Example Geometric Anisotropy Ranges 

Extensive lists of correlation ranges for various aquifers have been compiled in 

publications, including examples of horizontal correlation ranges at the regional scale (e.g., 

Gelhar 1993; Hoeksema and Kitanidis 1985).  Statistical anisotropy for the vertical plane 

(horizontal to vertical correlation ratio, ʄh/ʄv) can be found in many reports as well.  In contrast, 

published data about statistical anisotropy in the horizontal plane (ʄx/ʄy) appears to be 

uncommon. 

One publication noting statistical anisotropy in the horizontal plane was a regional-scale 

geostatistical study by Welhan and Reed (1997) around the Idaho National Energy and 

Environmental Laboratory (INEEL) in the Snake River Plain aquifer.  They reported a regional-

scale correlation (up to 6 km) with a horizontal statistical anisotropy ratio of 4/1, oriented 

southeast toward the river plain.  The scale of correlation and the orientation toward the river 

were attributed to lava flows and volcanic structural features.  The INEEL site is in a complex 

geologic setting where groundwater flow is suggested by Welhan and Reed to be dominated by 

connectivity of high-contrast permeability zones, so the applicability of the Gaussian fields used 

in this study to the INEEL site may be limited.  Still, the INEEL study had a large spatial scale, 

giving it some relevance as a horizontal geostatistical anisotropy example. 

In further geostatistical work for INEEL, Welhan et al. (2002) commented that although 

the site is primarily a volcanic aquifer system, the spatial distribution and architecture of 

interflow zones, referring to relatively thin but laterally extensive and highly permeable zones 

between stacked lava flow lobes, “bear a resemblance to the distribution of coarse fluvial facies 

in sedimentary aquifers.”  Their 2002 study was focused on smaller-scale correlations (e.g., 100 
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m correlation lengths) and used indicator variogram analysis.  At that scale, they reported 

horizontal statistical anisotropy at 1/1 for sediments and 7/1 for the interflow zones, with an east-

west orientation.   

Due to finding only one published study documenting large-scale horizontal statistical 

anisotropy, geostatistical correlation structures for five areas of the South Platte River alluvial 

aquifer in Colorado are examined in this chapter. 

The headwaters of the South Platte River are located in the Rocky Mountains southwest 

of Denver, Colorado.  The river exits the mountains near Denver and flows north and east 

roughly 200 miles across the plains to the northeast corner of Colorado.  It meets the North Platte 

River in west-central Nebraska.   It is generally a shallow, braided river with a sand and gravel 

streambed (Lindsey et al. 2005; SPDSS 2006a).  

The South Platte River alluvial aquifer is a valley-fill aquifer lying in paleochannels 

eroded into the Pierre Shale for much of its length in Colorado, with western reaches of the 

alluvium in buried valleys in the Fox Hills sandstone, the Laramie Formation, and other units of 

the Denver basin.  The aquifer is composed of unconsolidated gravels, sands, silts, and clays.  

Significant portions consist primarily of glaciofluvial sand and gravel deposits (Bjorklund and 

Brown 1957; Smith et al. 1964; Tweeto 1979; Aikin et al. 2000; Topper and Wilson 2003; 

Lindsey et al. 2005). 

The aquifer’s saturated thickness is typically in the 20 to 40 ft range near Denver, and up 

to 200 ft thick in northeast Colorado.  The aquifer’s width varies between roughly two to six 

miles. Typical transmissivity is around 15,000 ft2/day in the thinner reaches near Denver, and 

over 100,000 ft2/day in the thicker deposits in northeast Colorado (Hurr et al. 1972a, 1972b, 
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1972c).  High-capacity groundwater wells are used extensively in the South Platte basin for 

irrigated agriculture.   

  Transmissivity maps for five areas selected for geostatistical evaluation are shown in 

Figures 6-1 through 6-5.  These maps were constructed from the GIS files tgrid1106 and 

tgrid0309  which were developed by the South Platte Decision Support Study (SPDSS) using the 

Hurr and Schneider work (1972a, 1972b, 1972c, and others in the series), combined with other 

data sources, and interpolated into a 100-meter-grid data file (SPDSS 2006b, 2006c, 2009, 2013).  

The river configuration is from a GIS file digitized by Colorado State University from USGS 

maps (CSU 2006; Hurr and Schneider 1972a, 1972b, 1972c, and others in the series). 
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Figure 6-1.  Transmissivity of the South Platte River alluvial aquifer near Fort Lupton, Colorado. 
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Figure 6-2.  Transmissivity of the South Platte River alluvial aquifer near Greeley, Colorado. 
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Figure 6-3.  Transmissivity of the South Platte River alluvial aquifer near Riverside Reservoir, Colorado. 
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Figure 6-4.  Transmissivity of the South Platte River alluvial aquifer around Lost Creek, Colorado. 
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Figure 6-5.  Transmissivity of the South Platte River alluvial aquifer near Iliff, Colorado. 
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Two programs were used to construct and analyze experimental variograms for the five 

South Platte areas:  Surfer (version 11.6) by Golden Software, Golden, Colorado; and the 

Stanford Geostatistical Modeling Software, SGeMS (Remy et al. 2009).  Table 6-1 lists 

statistical anisotropy ratios and principal directions estimated from the experimental variograms 

for the five South Platte areas shown in Figures 6-1 through 6-5.   Table 6-2 lists the same 

information for when the fields were detrended.  

 

Table 6-1.  Estimated spatial correlation parameters and modeled power-mean exponents for five areas along the 
South Platte River.  Power-mean exponents are shown for both transient stream depletion (TSD) and steady-state 
mean-parallel (SSMP) flow. 

General 
Area 

λmax/ λmin 
λmax 

azimuth 
(from north) 

λmax (ft) 
river 

azimuth 
(from north) 

TSD 
peq 

SSMP 
peq 

Fort Lupton 4 to 7, greater 10° 10,000 0° inconclusive 0.3 

Greeley 2 to 4, greater 45° 13,000 45° -0.5 to 0.5 -0.4 to 0.9 

Riverside >3 110° >domain 110° -0.1 0.1 

Lost Creek 3 to 4 20° 15,000 90° 0.1 to 0.4 0.1 

Iliff >10 45° >domain 12° >1.0 0.5 

 

 

Table 6-2.  Estimated spatial correlation parameters for the five areas along the South Platte River after detrending. 

Approximate 
Area 

λmax/ λmin 
λmax 

azimuth 
(from north) 

λmax (ft) 

Fort Lupton - - - 

Greeley near 1 45° 13,000 

Riverside - - - 

Lost Creek 2 to 3 10° 15,000 

Iliff 1.5 to 4 35° 
5,000 to 
9,000 
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Caveats 

It is noted that experimental variograms, meaning those that are created from site data 

and not mathematical models of correlation, can be sensitive to construction decisions, such as 

choosing data-pair lag distances, data search criteria, etc.  The development of representative 

variograms is not a straightforward process for some data sets, with solutions that may not be 

unique (Isaaks and Srivistava 1989).  And, there are no robust or objective measures of validity 

for a given variogram (Goovaerts 1997).  With those concepts in mind, the following 

observations were made during variogram construction.   No obvious sensitivity to the lag search 

parameters was found when different tolerances were tested for both lag distance and search 

angles, but visual assessment of the transmissivity maps suggest there are irregular-shaped, 

large-scale correlation patterns at some locations (e.g., Figure 6-3) that might not be well-

captured in directional variograms that have a standard type of search window.  The constructed 

variograms also suggested short-scale correlation patterns nested within patterns at a scale larger 

than the domains tested.  Additionally, different degrees of influence from non-stationarity in 

transmissivity were apparent among the five cases.   For these reasons, the geostatistical 

correlation parameters produced for the selected South Platte areas may not be fully 

representative of those areas and are not the only possible interpretation.  

A few other observations were noted for the results shown in Tables 6-1 and 6-2.   Milder 

statistical anisotropy was found in some of the variograms than might be expected based on a 

visual assessment of the transmissivity maps.   The Fort Lupton area transmissivity field was not 

de-trended due to the relative homogeneity of the area and since there wasn’t a clear trend except 

near the aquifer margins.  A clear variogram was not identified for the Greeley area once the 

field was detrended.   The Riverside area appears highly correlated (Figure 6-3), but the 
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sinusoidal pattern is likely not captured by the typical directional variogram used.  The Riverside 

area was not de-trended due to the change in trend direction near the river.  Variograms for the 

Lost Creek area exhibited zonal anisotropy, for which detrending had a minor effect. 

6.2 Site Application of Equivalent Transmissivity 

Five numerical groundwater flow models, and several variants of those five, were built 

with the MODFLOW-2000 code (Harbaugh et al. 2000) for the areas shown in Figures 6-1 

through 6-5.  Transient stream depletion rate response curves were simulated for pumping wells 

placed generally near the middle of the domains shown in the figures.  Steady-state mean-

parallel (SSMP) flow conditions were also simulated for these domains by placing an artificial 

straight head boundary near the impermeable aquifer boundary to impose a fixed gradient across 

the aquifer toward the river.  The SSMP simulations were performed since the transmissivity 

averaging area for that case would be less ambiguous than for the pumping well depletion case, 

and because the SSMP test would influence a larger portion of the aquifer, giving a more 

comprehensive estimate of peq for the area. 

The modeled depletion response for the transient pumping simulations, and the total flow 

rates induced under the SSMP tests, were used with the Glover equation and a simple Darcy 

calculation, respectively, to compute a Teq for each simulation.  As was done in the synthetic-

case simulations, a Teq was related to the power-mean statistics from each region’s transmissivity 

field to obtain a peq.  The averaging area for the stream depletion case was based on the area 

expected to be most influenced by the pumping well (Section 3.6.1).  For the SSMP case, it was 

the entire area between the artificial head boundary and the river. 

The model-estimated peq results for the five South Platte areas are listed in Table 6-1.  

The results were highly variable, and without a clear relationship to geometric anisotropy ratios 
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of the fields.  Factors contributing to the lack of correlation with geometric anisotropy are 

discussed in the next section. Observations made during the evaluation process are noted first. 

For the Fort Lupton area, a clear peq was indeterminable for the transient stream depletion 

case due to the relative homogeneity of the region.  For several tested subareas, there was only a 

2% difference between harmonic and arithmetic means such that a best-fit peq between the two 

bounding means could not be resolved, and wouldn’t have practical meaning anyway. 

Qualitatively, the Greeley area (Figure 6-2) looks to be the least statistically anisotropic 

of the five areas examined.  Quantitatively, its variogram did indeed indicate relatively mild 

anisotropy.  The mild anisotropy may explain why the stream depletion results were generally 

around the geometric mean (peq = -0.5 to 0.5).    However, the results were also sensitive to the 

location tested and the size of the averaging area, in both the TSD and SSMP tests.  In particular, 

the higher-transmissivity zone located toward the northeast appeared to influence the depletion 

response for wells placed near that area, even if the wells were not directly within the zone.  That 

high-transmissivity zone similarly influenced the SSMP case, as was noted when the size of the 

stressed area was varied. 

That zone of higher transmissivity in the Greeley area is located where the Beebe Draw 

alluvium merges with the South Platte alluvium.   The Beebe Draw is thought to be an ancestral 

route of the South Platte River (Smith et al. 1964).  It can also be seen in Figure 6-2 that the 

principal direction of anisotropy is oriented toward the river in that area between the end of 

Beebe Draw and the river, whereas the areas further west have structure oriented parallel to the 

river.  This last observation highlights the spatial variability of aquifer characteristics that 

influence appropriate Teq averaging. 
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For the Riverside case, considering the irregular shape of visually apparent correlation, it 

is likely that the anisotropy ratio was not well-captured in the variogram modeling.  Riverside is 

also a case with a strong trend toward the river, a trend which also reverses before the river.  

Such trends introduce sensitivity to the choice of spatial weighting area (Chapter 5).  Effective 

transmissivity results were very close to the geometric mean (-0.1 to +0.1) though this was 

sensitive to the tested area and the averaging area, and is therefore a low-confidence estimate. 

The Lost Creek region is different from the other cases because, for much of the area, the 

principal correlation direction is oriented toward the river.  For this analysis, the upper reaches of 

Lost Creek itself were neglected as a relevant stream boundary.  Lost Creek reaches were 

assumed to be ephemeral or have head-invariant leakage rates, leaving the South Platte River as 

the affected stream boundary.   The peq results for the Lost Creek case are roughly consistent 

with a correlation axis oriented toward the river, as results were above the geometric mean (peq = 

0.1 to 0.4). 

The region southwest of Iliff was chosen because, unlike the other cases, a reach of the 

river there is oriented at an oblique angle to the principal axis of correlation.  Based on that angle 

and the results of Section 4.5, peq was expected to be close to the geometric mean.  That, 

however, was not the outcome of the Iliff flow simulations.   The model-estimated peq was high, 

between the arithmetic and geometric means for the SSMP simulation, and above the arithmetic 

mean for the TSD case.  The pumping well in that case was located slightly south of the high 

transmissivity zone in the middle of the aquifer.  Further examination of both the TSD and 

SSMP flow simulations suggested the high transmissivity zone near the middle of the simulated 

area strongly influenced the stream response, a characteristics that was not well-captured by 

averaging transmissivity over a wider area. 
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6.3 Issues with Site Application for Transient Stream Depletion 

There are at least two limitations in applying the results of Chapter 4 to the five South 

Platte areas modeled herein: (i) the large scale of correlation relative to the scale of the problem 

and (ii) the spatial trends in mean transmissivity.  The relationships between peff and geometric 

anisotropy presented in Chapter 4 apply to expected (mean) behavior, but it is also clear that 

there is significant variability among individual field realizations (Figure 4-2).   That variability 

increases as the correlation scale becomes large relative to scale of the flow problem. 

The effect of large correlation scales is shown in Figure 6-6 which compares peq 

histograms for two ensembles that have the same geometric anisotropy (5/1) but different 

correlation scales.  Example field realizations for these two cases are illustrated in Figure 6-7.  

One case has a correlation length equal to 50 model nodes (2,500 ft) and the other equal to 200 

model nodes (10,000 ft).  Mean behavior from the two ensembles were roughly similar to each 

other (peff at -0.54 versus -0.38) and similar to the curves shown in Chapter 4.  (Note the large-

scale correlation cases plotted in Figure 4-1.)  Yet, Figure 6-6 shows there is poor probabilistic 

predictability for individual realizations in the case with the large correlation scale. 

The standard deviations of equivalent power-mean exponents (peq) from various 

ensemble simulations are plotted in Figure 6-8 and Figure 6-9 and as a function of correlation 

scale.  The correlation range was scaled by the distance between the well and the river.  Figure 

6-8 is for ensembles with the principal correlation direction oriented parallel to the river, and 

Figure 6-9 is for the principal direction oriented perpendicular to the river.  Considering that peff 

ranges only from -1.0 to +1.0 for the bounding harmonic and arithmetic means, respectively, it is 

clear that when the correlation range is large relative to the scale of the problem then there is 

significant variability relative to the bounding means for individual realizations.  
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A few other observations can be made from these figures.  As noted in Chapter 3, 

applying the spatial weighting area did not affect peff results but it did reduce ensemble 

variability.  The reduced variability is apparent in Figure 6-8 which shows the larger ensemble 

standard deviations in the unweighted cases compared to the weighted cases, particularly for the 

ensembles with ʄx/a > 2.  

 

 

 

 

Figure 6-6. Distribution of power-mean exponents for two ensembles with the same statistical geometric anisotropy 
(ʄx/ ʄy =5/1) but different absolute correlations scales relative to the same well-to-river distance. 
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Figure 6-7.  Example transmissivity field realizations for the same statistical geometric anisotropy (5/1) but 
different absolute correlation scales.  Pumping well is at center (450, 100).  Correlation scale is 50x10 nodes in the 
top field and 200x40 nodes in the bottom field. 

 

 

Figure 6-8.  Standard deviations of power-mean exponent ensembles as a function of correlation scale.  Plotted 
cases have principal correlation direction oriented parallel to river. 
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Figure 6-9.  Standard deviations of power-mean exponent ensembles as a function of correlation scale.  Plotted 
cases have principal correlation direction oriented perpendicular to river. 

 

 

Two cases are plotted in Figure 6-8 for which the correlation scale in the minimum 

principal direction (ʄy) was increased relative to the other cases.  These are the two large-scale 

correlation cases also plotted in Figure 4-1 and Figure 4-2, and includes the large-scale case 

shown in Figure 6-6.   The other simulations in Figure 6-8 had equal correlation ranges in the 

minimum principal direction, which was the 10-node minimum range allowable to avoid grid 

discretization bias (Section 3.6.2).  For the two large-scale cases, the minor direction correlation 

range was increased to 40 nodes, thus from 10% to 40% of the distance between the well and the 

river.  As seen in Figure 4-1, Figure 4-2, Figure 6-6, and Figure 6-8, the increase in correlation 

scale in the minor direction significantly increased ensemble variability. 
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An increase in ensemble variability with increased correlation scale is not novel (Deutsch 

and Journel 1998).  What is notable is that transmissivity correlation scales are commonly quite 

large (Rubin 2003; Anderson 1997; Dagan et al. 2009), which leads to correlation commonly 

being large relative to the scale of the problem in transient stream depletion. 

 This issue of predictive uncertainty being a function of problem scale and correlation 

scale was a clear difference in the steady-state mean-parallel (SSMP) simulations with synthetic 

fields.   For SSMP flow, the entire domain was the relevant flow field, rather than only that 

portion affected by the pumping well.  Variability, such as that shown in Figure 6-8 and Figure 

6-9, was much reduced for the SSMP cases, due to the larger relative scale of the flow problem.  

Variance of peq did increase as the correlation scale increased even for the SSMP cases, but it 

remained minor.  For example, the SSMP peq standard deviations ranged from only 0.02 to 0.04 

over the same range in correlation scales as shown for the transient stream depletion cases in the 

previous figures. 

In the South Platte River alluvial aquifer examples considered in this chapter, the 

transmissivity correlation range was generally larger than the scale of the problem as measured 

by the distance between the well and the river (i.e., ʄmax/a > 1).  In that case, it appears ergodicity 

cannot be reliably assumed, meaning that overall expected behavior may not be a good predictor 

of individual site behavior.   Large-scale correlation was not the only limitation to applying the 

stochastic approach—statistical inhomogeneity and non-stationarity were also complicating 

factors for these non-synthetic transmissivity fields—but the transmissivity correlation scale is 

an important consideration. 
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CHAPTER 7  DISCUSSION and SUMMARY 

7.1 Research Summary 

The goal of this research was to evaluate effective transmissivity for the particular case of 

transient stream depletion caused by pumping a groundwater well in two-dimensional, 

heterogeneous aquifers. The results apply equally to streamflow gains caused by managed 

aquifer recharge.  Quantifying the timing of such hydraulic interactions between rivers and 

groundwater pumping and recharge is necessary in the conjunctive management of groundwater 

and surface-water resources. 

The scenario examined was an aquifer bounded on one side by a straight constant-head 

boundary representing a river and on the other side by a parallel zero-flux boundary representing 

an impermeable boundary such as the edge of a valley-fill aquifer.  The effect of heterogeneous 

transmissivity on the timing of stream depletions was the focus.  Numerical flow simulation and 

Gaussian geostatistical models of heterogeneity were used with the Monte Carlo approach and 

power averaging to identify effective transmissivities for a variety of heterogeneous conditions. 

Geometric anisotropy was the primary geostatistical parameter evaluated for its influence 

on effective transmissivity.  Other factors assessed were field variance (i.e., degree of 

heterogeneity), correlation model shape, nugget effect, correlation scale, and the orientation of 

principal correlation directions with respect to the river. Sensitivity to zonal anisotropy and field 

non-stationarity were also tested.  

7.2 Primary Findings 

In this study, effective transmissivity for transient stream depletion simulations spanned 

nearly the full range between the bounding arithmetic and harmonic means, varying with the 

spatial correlation structure of the transmissivity field.   For cases with low to moderate 
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heterogeneity, the shape of the effective power-mean exponent curve as a function of geometric 

anisotropy was roughly similar to analytical estimates developed by Gelhar and Axness (1983) 

and Ababou (1991) for steady-state, mean-parallel flow in unbounded domains.   And, no 

statistical difference was observed between effective transmissivity for transient stream depletion 

simulations and for simulations of steady-state, mean-parallel flow conducted with the same 

model domain and methods, although ensemble variability was notably larger for stream 

depletion compared to steady-state mean-parallel flow simulations. 

The depletion response curve realizations, and the ensemble-mean curves in particular, 

were well-fit with a single-valued, time-invariant effective transmissivity. This is in contrast to 

studies that have found transient changes in effective transmissivity for transient flow conditions.   

The similarity observed in this research between effective transmissivities for steady-

state, mean-parallel flow and transient stream depletion is notable considering that different flow 

regimes were involved.  It is also a potentially useful result given the large body of literature 

available analyzing steady-state, mean-parallel flow conditions for various domain and boundary 

configurations.  For example, the Paleologos (1994) coordinate-direction transform for effective 

transmissivity in geometrically anisotropic fields under steady-state, mean-parallel flow 

conditions was found to also reasonably approximate effective transmissivity for transient stream 

depletion when the fields’ principal correlation directions were oriented at oblique angles with 

respect to the river boundary (Figure 4-7, Page 77). 

Despite general similarity to the analytical curves, there were differences in the simulated 

effective transmissivities.  In certain anisotropy ranges, effective transmissivity was markedly 

shifted toward the geometric mean relative to the analytical curves, and overall results 

approached the bounding means more slowly than the analytical functions.  The effective power-
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average exponents compiled in this work in Figure 4-1 (Page 63) can be used to refine effective 

transmissivity estimates to be used in analytical models of stream depletion. 

7.3 Sensitivity to the Geostatistical Model 

The choice of which of the standard spatial-correlation models to use (spherical, 

Gaussian, or exponential) had no apparent effect on effective transmissivity results.  It is 

concluded that the effect, if present, was too small to be significant within the experimental 

methods used for this work. The sensitivity of effective transmissivity to higher field variance 

was mild, but was clear for cases with moderate to high geometric anisotropy. 

Using a nugget effect in the spatial correlation function had a significant impact.  An 

increasing nugget shifted effective transmissivity away from the Weiner bounds and away from 

otherwise-expected values toward the geometric mean.  The impact was proportional to the scale 

of the nugget relative to the total field variance. Regardless of whether a nugget in the spatial 

correlation model is a real property of a given transmissivity field, or merely an artifact of 

measurements and a tool of geostatistical models, this work demonstrated that a decision to 

include a nugget effect in the field model is consequential. 

 Stationarity was a condition for most of the transmissivity fields simulated in this work.  

The non-stationary cases that were tested had a linear trend in mean transmissivity oriented 

toward the river boundary.  For fields with strong heterogeneity, the stationary-field results still 

provided a reasonable estimate for the effective transmissivity.  For mildly heterogeneous fields, 

however, the presence of the trend skewed results partly toward a harmonic mean.  Results in 

those cases were also highly sensitive to the choice of spatial averaging area. 

Simulations were conducted in which field variance was anisotropic in addition to the field 

having an anisotropic correlation range (i.e., zonal anisotropy).  Effective transmissivity in those 
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cases was shifted toward a harmonic mean and was independent of the geometric anisotropy 

ratio. 

7.4  Other Findings 

Ensemble variability increased with increasing scale of spatial correlation.  Such behavior 

is expected in stochastic simulation, but considering that aquifer transmissivity typically exhibits 

regional-scale correlation ranges, this scale-dependant variability has particular significance for 

stream depletion.  Expected behavior in a stochastic approach may frequently be a poor predictor 

of site-specific behavior for transient stream depletion cases when the correlation scale, in any 

direction, is large relative to the distance between the well and the river. 

Geostatistical evaluation and groundwater flow modeling were performed for five areas 

of an alluvial valley-fill aquifer in northeast Colorado.  For various locations within these five 

regions, equivalent transmissivity results varied widely, ranging anywhere between, and beyond, 

the arithmetic and harmonic means of local transmissivities.  Equivalent transmissivity was close 

to the geometric mean in several locations, but results were highly sensitive to well location, and 

to the selected averaging area around those locations, such that a typical value was not identified.   

Overall, this research suggests that equivalent transmissivity may be quite location-specific due 

to the large correlation scales and statistical inhomogeneity of those fields. 

7.5 General Applications 

Groundwater hydrologists commonly use analytical models of stream depletion timing.   

Given a set of local-scale transmissivity values, this research helps address the basic question of 

how to best upscale (i.e., average) that data.   It also suggests that the averaging process needs to 

represent a relatively large portion of the aquifer along the depleted stream reach. 
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At a higher level, the research results ask if spatial structure of the aquifer transmissivity 

is characterized sufficiently to support a choice of one type of average over another.  In that 

respect, this work also provides a guide to the scale of uncertainty involved in choosing the 

appropriate transmissivity.  For example, for the scenario where an aquifer’s structure may not 

be well understood, but perhaps the aquifer is characterized well enough to estimate the 

arithmetic and harmonic means, and by knowing those means are the bounds of the effective 

transmissivity (given certain assumptions), then the hydrologist may decide whether further 

structural characterization is warranted to refine the effective transmissivity estimate. 

The variability observed among statistically equivalent realizations in some cases 

highlights that averaging heterogeneity may not be reliable when the correlation scale of 

heterogeneity is large relative to the flow problem.  The use of effective transmissivity values 

and analytical models in that case involves significant uncertainty even when there is knowledge 

of the aquifer’s structure.  This should factor into the decision of when to use numerical models.  

Applications are not limited to analytical modeling.   Even when a numerical model is 

used that can explicitly represent heterogeneity, this work shows how the representation of 

aquifer structure in the numerical model is consequential to the results.  For example, even 

ostensibly small decisions made in the geostatistical modeling, such as including a nugget effect, 

can impact the numerically modeled results. 

Finally, improving our understanding of how to account for heterogeneity under different 

circumstances is a fundamental topic in groundwater hydrology that has numerous and perhaps 

intangible benefits.  For example, in ideal practice, a numerical model should merely be a 

calculator and not a so-called black box, meaning the model user has an informed expectation of 

the groundwater behavior they are simulating.   Such knowledge aids in the development of 



116 

conceptual models, aids in the construction of a numerical model, and aids in reviews and 

critiques of numerical modeling results. 

7.6 A Regional Example of Potential Impacts 

Quantitative assessments of stream depletion timing are conducted frequently in the 

South Platte River basin of Colorado.   This is not unique to Colorado—the need exists and is 

increasing in several states in the western U.S.A., as well as in other semi-arid regions around the 

world.  But, the South Platte basin provides an example with potentially large-scale impacts, and 

with an emphasis on depletion timing, given the large extent of irrigated agriculture and aquifer 

recharge in that basin, both of which are regulated under Colorado’s relatively long and evolved 

history of managing streamflow depletions caused by groundwater pumping. 

Impacts of groundwater pumping on surface water rights have been regulated in Colorado 

since the 1970s.  To pump a groundwater well for irrigation from the South Platte River alluvial 

aquifer, the user must compute the timing, location, and amount of surface water depletions 

caused by their pumping, and replace those streamflow depletions that occur out-of-priority in 

the context of Colorado’s prior-appropriation water rights system. 

The out-of-priority stream depletions are typically covered by constructing recharge 

ponds that are operated outside of the irrigation season or when surface water supplies are more 

available, such as in winter and during spring runoff from the Rocky Mountain snowpack.  This 

system takes advantage of the time delay between recharge operations at the pond and 

consequent flow accretions to the river. 

Managed aquifer recharge in the South Platte basin has increased over the last 30 years 

approximately from 20,000 acre-feet/year to over 200,000 acre-feet/year.  Hundreds of recharge 

facilities now cover depletions from several thousand irrigation wells.  Analytical stream 
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depletion models are frequently used to plan and operate these recharge systems, both to assess 

the timing of pumping depletions to be covered and to choose the locations and operating 

schedules for the recharge ponds.  Often, hydrologists use reference transmissivity maps to 

compute a harmonic mean transmissivity along a narrow line between the well (or recharge 

pond) and the river and use this value in analytical models. 

The stochastic treatment of heterogeneity, as is used in this research, acknowledges that 

the effective transmissivity will have a degree of error at any particular location, but the goal is 

to identify an expected-average transmissivity that is the most probable value over a large 

number of locations given the characteristics of the aquifer and the flow problem.  Considering 

the large volumes of water pumped from and recharged to the South Platte alluvial aquifer 

annually, a seemingly small bias in the averaging method used in water management models 

might have significant cumulative impacts if that bias is applied uniformly across the basin.  The 

results of this research (e.g., Figure 4-1, Page 63) could be used to improve those effective 

transmissivity estimates and to evaluate uncertainties and potential biases in water management 

practices for the basin. 

7.7 Considerations for Future Research 

Non-Stationarity.   Effective transmissivity was demonstrated to be sensitive to the 

stationarity condition.  This raises questions about applying the effective transmissivity trends 

identified in this research to certain stream-aquifer systems.   Defining a transmissivity averaging 

area is a necessary step for tackling non-stationarity, but defining the area of influence in the 

case of transient stream depletion is a complex problem, with the affected area being at least 

partly dependent on the configuration of the transmissivity field. 
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Spatial Weighting for Averaging Transmissivity.   It was observed in this research that 

the choice of spatial averaging area could reduce ensemble variability even though it did not 

influence ensemble-mean behavior.   Further work on defining an area of influence and on 

spatial weighting within that area may further reduce ensemble variability and thereby improve 

utility of the effective transmissivity concept in stream depletion applications.   As noted above, 

however, this appears to be a complex problem given that the area of influence is itself a function 

of the aquifer configuration. 

In non-stationary fields, simulations suggested that computing a valid equivalent 

transmissivity may require greater spatial weighting in the areas near the river, with less weight 

near the pumping well.  A similar indication for more general heterogeneous conditions may 

come from the derivation of the Glover solution (Glover and Balmer 1954).  The first derivation 

steps involve diffusivity (T/S) of the wider aquifer which governs the rate of expansion of the 

drawdown cone.  The final steps involve multiplying the pumping-induced gradient at the river, 

and only in the direction perpendicular to the river, by the transmissivity at the river.  Although 

the Glover solution assumes a homogenous aquifer, the latter step suggests potential utility in 

identifying an effective transmissivity in the perpendicular direction near the river separately 

from the effective transmissivity of the wider area of influence. 

Analytical Curves.  The differences observed between simulations and the analytical 

curves plotted in this work are an avenue for additional study.  The differences were greatest 

under anisotropies in the 10:1 range, and were larger for higher field variance. The overall shape 

of the relationship between geometric anisotropy and effective transmissivity was notably 

different for the higher variance cases.  The differences may arise due to effects from having a 

bounded domain (e.g., Paleologos et al. 1996) or due to approximations in the analytical 
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estimates.  Practical impacts are that the bounding means are approached more slowly than 

estimated by the analytical functions, and that even with relatively distinct anisotropy oriented 

parallel to the river (such as the 10:1 to 20:1 range) the effective transmissivity remained higher 

than a harmonic mean. 

 Non-Gaussian Simulators.  This research was conducted using Gaussian simulators of 

heterogeneity which have the trait of connecting mid-range transmissivity values and leaving the 

higher and lower transmissivity zones with lower connectivity (Deutsch and Journel 1998).  It 

may be of interest to repeat these simulations using geostatistical models that provide 

preferential connectivity of high-transmissivity zones.  Path connectivity has been examined for 

other flow regimes and has been a notable direction of stochastic simulation research, but to this 

author’s knowledge such scenarios have not been examined for transient stream depletion from a 

pumping well in a Glover-type analysis.  Applicability of the Glover analytical solution, 

however, should be carefully reconsidered for cases with channelized heterogeneity. 
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APPENDIX - EXAMPLE REALIZATIONS OF HETEROGENEOUS FIELDS 
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Figure A-1.  Comparison of geometrically anisotropic (10:1) transmissivity fields generated with spherical (top), 

exponential (middle) and Gaussian (bottom) correlation functions.  Correlation range is 100 columns x 10 rows. 
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Figure A-2.  Comparison of geometrically anisotropic (10:1) transmissivity fields generated with zero nugget effect 

(top), and nugget contributions of 33% (middle) and 50% (bottom).  Correlation range is 100 columns x 10 rows. 
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Figure A-3.  Comparison of geometrically anisotropic (10:1) transmissivity fields generated with principal 

correlation direction at azimuth equal to 90° (top) -60° (middle), and -30°(bottom).  Correlation range set equivalent 

to 100 x 10 model grid nodes. 
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Figure A-4.  Transmissivity field with zonal anisotropy.  Isotropic correlation range equal to 15 model grid nodes, 

but with variogram sill in the y-direction (along columns) three times larger than in the x-direction. 
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Figure A-5.  Example of a transmissivity realization producing an extreme-outlier peq result.   A high-contrast, high-

transmissivity zone (red) functioned as a distinct channel by directly connecting a pumping well in the center (Row 

101, Column 450) to the river (Row 1). The resulting depletion response was fast and described by an effective 

transmissivity much higher than obtained by spatial averaging of point values over an area wider than the channel. 
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Figure A-6.  Example of stationary field (top) and that same field with a trend in mean transmissivity added 

(bottom). 

 

 


