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Abstract 

 Heterogeneous parallel and distributed computing systems may operate in an 

environment where certain system performance features degrade due to unpredictable 

circumstances. Robustness can be defined as the degree to which a system can function correctly 

in the presence of parameter values different from those assumed. An important research problem 

in resource management is how to determine a resource allocation and scheduling of tasks to 

machines that optimizes a system performance feature while delivering acceptable level of 

robustness. Makespan (defined as the time required to complete all tasks in a resource allocation) 

is often the performance parameter that is optimized in such systems. This paper presents a 

robustness metric for dynamic resource allocations where task execution times are uncertain. The 

goal of this research is to develop heuristics capable of dynamically mapping tasks to machines 

such that makespan is minimized and a specified level of robustness is maintained. This research 

proposes, evaluates, and compares ten different dynamic heuristics for their ability to maintain or 

maximize the proposed dynamic robustness metric in an uncertain environment. In addition, the 

makespan results of the proposed heuristics are compared to a lower bound. 

 

Keywords: resource management, robustness, dynamic mapping, resource allocation, 

makespan. 
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1. Introduction and Problem Statement 

Heterogeneous parallel and distributed computing is the coordinated use of various compute 

resources of different capabilities to optimize certain system performance features. An important 

research problem (i.e., resource management) is how to determine a resource allocation and 

scheduling of tasks to machines (i.e., a mapping) that optimizes a system performance feature 

while maintaining an acceptable level of quality of service. This research focuses on a dynamic 

mapping environment where task arrival times are not known a priori. A mapping environment is 

considered dynamic when tasks are mapped as they arrive, e.g., in an on-line fashion [MaA99]. 

The general problem of optimally mapping tasks to machines (resource management) in 

heterogeneous parallel and distributed computing environments has been shown in general to be 

NP-complete (e.g., [Cof76, Fer89, IbK77]). Thus, the development of heuristic techniques to find 

a near-optimal solution for the mapping problem is an active area of research (e.g., [AlK02, 

BaS01, BaV01, BrS01, Esh96, FoK99, LeW94, MaA99, MiF00, WuS00]).  

Dynamic mapping heuristics can be grouped into two categories: immediate mode and batch 

mode [MaA99]. In immediate mode, when a task arrives (i.e., a mapping event ) it is immediately 

mapped to some machine in the suite for execution. In batch mode, tasks are accumulated until a 

specified condition is satisfied (e.g., a certain number of tasks have accumulated, or some amount 

of time has elapsed); whereupon the entire batch of accumulated tasks and the previously 

enqueued but not executing tasks are considered for mapping. A pseudo-batch mode can be 

defined where the batch of tasks considered for mapping is determined upon the arrival of a new 

task (i.e., a mapping event) and consisting of all tasks in the parallel and distributed system that 

have not yet begun execution on some machine. Both immediate mode and pseudo-batch mode 

heuristics were considered for this research.   

The pseudo-batch mode heuristics can allow some tasks to be starved of machines. Some 

tasks may be remapped at each successive mapping event without actually being executed, i.e., 

the task is starved for a machine. In this environment, once the mappable tasks have been re-

mapped by a pseudo-batch mode mapper they may be reordered, according to their arrival order, 
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in the input queues of their respective machines. This is possible because tasks in this 

environment are independent, i.e., the environment does not mandate their order of execution. 

Reordering tasks according to their arrival order ensures that task starvation does not occur.  

Heterogeneous parallel and distributed systems may operate in an environment where certain 

system performance features degrade due to unpredictable circumstances and inaccuracies in 

estimated system parameters. Robustness is defined as the degree to which a system can function 

correctly in the presence of parameters different from those assumed [AlM04]. For a given set of 

tasks, the makespan is defined as the completion time for the entire set of tasks. For this research, 

makespan is required to be robust against errors in the estimated execution time of each task. For 

a given application domain, the estimated time to compute (ETC) each task i on each machine j is 

assumed known, denoted ETC(i, j). However, these estimates may deviate from the actual 

computation times; e.g., the actual times may depend on characteristics of the input data to be 

processed. The tasks considered in this research are taken from a frequently executed predefined 

set, such as exists in a lab or business environment. This research focuses on determining a 

dynamic mapping for a set of tasks that minimizes the predicted makespan (using the provided 

ETC values) while still being able to tolerate a quantifiable amount of variation in the ETC values  

of the mapped tasks. Hence, the goal is to obtain a mapping that has the minimum makespan and 

can still guarantee a certain level of robustness at each mapping event.  

In this study, T independent tasks (i.e., there is no intertask communication) arrive at a 

mapper dynamically, where the arrival times of the individual tasks are not known in advance. 

Arriving tasks are each mapped to one machine in the set of M machines that comprise the 

heterogeneous computing system. Each machine executes a single task at a time (i.e., no 

multitasking). In this environment, the robustness of a resource allocation must be determined at 

every mapping. Let T(t) be the set of tasks either currently executing or pending execution on any 

machine at time t (T(t) does not include the tasks that have already completed execution). Let 

( )jF t be the predicted finishing time of machine j for a given resource allocation based on the 
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given ETC values. Let ( )jMQ t denote the subset of T(t) that has been mapped to machine j and 

let ( )jscet t denote the starting time of the currently executing task on machine j. Mathematically, 

given some machine j 

 
( )

( ) ( , ) ( ).
j

j
i MQ t

F t ETC i j scet t
∀ ∈

= + j∑   

Let ( )tβ  denote the maximum of the finishing times  at each time t over all machines. This 

is the predicted makespan at time t. Mathematically, 

( )jF t

 { }( ) max ( ) .jj M
t Fβ

∀ ∈
= t   

The robustness metric for this work has been derived using the procedure defined in 

[AlM04]. In our current study, given uncertainties in the ETC values, a resource allocation is 

considered robust if, at a mapping event, the actual makespan is no more thanτ seconds greater 

than the predicted makespan. Thus, given a resource allocationµ the robustness radius ( )(jr F tµ  

of machine j can be quantitatively defined as the maximum collective Euclidean error in the 

estimated task computation times that can occur and still have the actual finishing times be within 

τ  plus the predicted makespan. Mathematically, building on a result in [AIM04],  

 ( ) ( ) ( )
( ) .

( )
j

j

j

t F t
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( )tµρThe robustness metric for a given mapping µ  is simply the minimum of the robustness 

radii over all machines [AIM04]. Mathematically, 

 ( ){ }( ) min ( ) .jj M
t r F tµ µρ

∀ ∈
=   

With the robustness metric defined in this way, ( )tµρ corresponds to the collective deviation 

from assumed circumstances that the resource allocation can tolerate and still ensure that system 

performance will be acceptable.  
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This work is directly applicable to resource allocation in enterprise systems designed to 

support transactional computations sensitive to response time constraints, e.g., time sensitive 

business processes [NaS03]. Often, the service provider in these types of systems is contractually 

bound through a service level agreement to deliver on promised performance. The dynamic 

robustness metric can be used to measure a resource allocation’s ability to deliver on a 

performance agreement. Further, the heuristics of Section 2 will use the dynamic robustness 

metric as a constraint during mapping.  

To define the dynamic robustness metric as a constraint letα  be the minimum acceptable 

robustness of a resource allocation at any mapping event; i.e., the constraint requires that the 

robustness metric at each mapping event be at least .α  Thus, the goal of the heuristics in this 

research is to dynamically map incoming tasks to machines such that the total makespan is 

minimized, while maintaining a robustness of at least ,α i.e., ( )tµρ α≥  for all mapping events. 

The larger α is, the more robust the resource allocation is. 

 

The contributions of this paper include: 

• a model for quantifying dynamic robustness in this environment, 

• heuristics for solving the above resource management problem, and  

• simulation results for the proposed heuristics. 

The remainder of the paper is organized as follows. Section 2 briefly discusses the heuristics 

studied in this research including the definition of a lower bound on the total makespan of the 

mapping problem. Section 3 outlines the simulation setup. The simulation results are presented 

and discussed in Section 4. The related work is considered in Section 5. 
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2. Heuristics 

2.1. Overview 

Five immediate mode and five pseudo-batch mode heuristics were studied for this 

research. For the task under consideration, a feasible machine is defined to be a machine that 

will satisfy the robustness constraint if the considered task is assigned to it. This subset of 

machines is referred to as the feasible set of machines. 

2.2. Immediate Mode Heuristics 

The following is a brief description of the immediate mode heuristics. Pseudocode for 

each heuristic is also given. 

Feasible robustness minimum execution time (FRMET) (Figure 1) is based on the 

MET concept in [BrS01, MaA99, YAD00]. For each incoming task, FRMET first identifies 

the feasible set of machines. From the feasible set of machines the incoming task is assigned 

to its minimum execution time machine.  

Feasible robustness minimum completion time (FRMCT) (Figure 2) is based on the 

MCT concept in [BrS01, MaA99, YAD00]. For each incoming task, FRMCT first identifies 

the feasible set of machines for the incoming task. From the feasible set of machines the 

incoming task is assigned to its minimum completion time machine. 

Feasible robustness k-percent best (FRKPB) (Figure 3) is based on the KPB concept in 

[KiS03, MaA99]. FRKPB first finds the feasible set of machines for the newly arrived task. 

From this set, FRKPB identifies the k-percent that have the smallest execution times for the 

task. The task is then assigned to the machine in the set with the minimum completion time 

for the task. For a given α  the value of k was varied between 0 and 100, in steps of 12.5, for 

sample training data to determine the value that provided the minimum makespan. A value of 

50 was found to give the best results. 
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Feasible robustness switching (FRSW) (Figure 4) is based on the SW concept in 

[KiS03, MaA99]. As applied in this research, FRSW combines aspects of both the FRMET 

and the FRMCT heuristics. A load balance ratio is defined to be the ratio of the minimum 

number of tasks enqueued on any machine to the maximum number of tasks enqueued on any 

machine. FRSW then switches between FRMET and FRMCT based on the value of the load 

balance ratio. The heuristic starts by mapping tasks using FRMCT. When the ratio raises 

above a defined set point highT FRSW switches to the FRMET heuristic. When the ratio falls 

below a defined set point lowT FRSW switches to the FRMCT heuristic. The values for the 

switching set points were determined experimentally using sample training data. 

Maximum robustness (MaxRobust) (Figure 5) has been implemented for comparison 

only, trying to greedily maximize robustness without considering makespan. MaxRobust 

calculates the robustness radius of each machine for the newly arrived task, assigning the task 

to the machine with the maximum robustness radius. 

2.3. Pseudo-Batch Heuristics 

The pseudo-batch mode heuristics implement two sub-heuristics, one to map the task as it 

arrives, and a second to remap pending tasks. For the pseudo-batch mode heuristics, the 

initial mapping is performed by the previously described FRMCT heuristic (except for the 

MRMR heuristic). The remapping heuristics each operate on a set of mappable tasks; a 

mappable task is defined as any task pending execution that is not next in line to begin 

execution(to avoid idle machines). The following is a brief description of the pseudo-batch 

mode re-mapping heuristics. 

Feasible robustness minimum completion time-minimum completion time 

(FMCTMCT) (Figure 6) uses a variant of Min-Min defined in [IbK77]. For each mappable 

task, FMCTMCT finds the feasible set of machines, then from this set determines the 

machine that provides the minimum completion time for the task. From these task/machine 
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pairs, the pair that gives the overall minimum completion time is selected and that task is 

mapped onto that machine. This procedure is repeated until all of the mappable tasks have 

been remapped. 

Feasible robustness maximum robustness-minimum completion time (FMRMCT) 

(Figure 7) builds on concept of the Max-Min heuristic [IbK77]. For each mappable task, 

FMRMCT first identifies the feasible set of machines, then from this set determines the 

machine that provides the minimum completion time. From these task/machine pairs, the pair 

that provides the maximum robustness radius is selected and the task is assigned to that 

machine. This procedure is repeated until all of the mappable tasks have been remapped. 

Feasible minimum completion time-maximum robustness (FMCTMR) (Figure 8) For 

each mappable task, FMCTMR first identifies the feasible set of machines, then from this set 

determines the machine with the maximum robustness radius. From these task/machine pairs, 

the pair that provides the minimum completion time is selected and the task is mapped to that 

machine. This procedure is repeated until all of the mappable tasks have been remapped. 

Maximum weighted sum-maximum weighted sum (MWMW) (Figure 9) builds on a 

concept in [ShC06]. It combines the Lagrangian heuristic technique [CaS04, LuZ00] for 

deriving an objective function with the concept of Min-Min heuristic [IbK77] here to 

simultaneously minimize makespan and maximize robustness. For each mappable task, the 

feasible set of machines is identified and the machine in this set that gives the maximum 

value of the objective function (defined below) is determined. From this collection of 

task/machine pairs, the pair that provides the maximum value of the objective function is 

selected and the corresponding assignment is made. This procedure is repeated until all of the 

mappable tasks have been remapped.  

When considering assigning a task i to machine j, let ( ) ( ) ( , ).j jF t F t ETC i j= +'  for all 

tasks currently in the machine queue and the task currently under consideration. Let ( )tβ '  be 

maximum of the finishing times ( )jF t'  at time t for all machines. Let ( )( )jr F tµ
' '  be the 

 8



robustness radius for machine j. Let ( )maxrob t  be the maximum of the robustness radii at 

time t. Given η , an experimentally determined constant using training data, the objective 

function ( , )s j t for the Simplified Lagrangian is defined as 

( )( )( )
( ) = 1 + (1 )

( )
jj r F tF t

s j,t
t maxrob(t)

µη η
β

⎛ ⎞⎛ ⎞
⎜ ⎟− −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

'

' ''

.  

Maximum robustness-maximum robustness (MRMR) (Figure 10) is provided here for 

comparison only as it optimizes robustness without considering makespan. As a task arrives it 

is initially mapped using the MaxRobust heuristic. Task remapping is performed by a variant 

of the Max-Max [IbK77] heuristic. For each mappable task, the machine that provides the 

maximum robustness radius is determined. From these task/machine pairs, the pair that 

provides the maximum overall robustness radius is selected and the task is mapped to that 

machine. This procedure is then repeated until all of the mappable tasks have been remapped. 

2.4. Lower Bound 

A lower bound on makespan for the described system can be found by identifying the 

task whose arrival time plus minimum execution time on any machine is the greatest. More 

formally, given the entire set of tasks T where each task i has an arrival time of ( )arv i , the 

lower bound is given by 

( )lower bound ( ) min ( , ) .
j Mi T

= max arv i ETC i j
∀ ∈∀ ∈

+  

This is a lower bound on makespan. Thus, no heuristic can achieve a smaller makespan. 

However, it is possible that this lower bound is not achievable even by an optimal mapping. 

3. Simulation Setup 

The simulated environment consists of T = 1024 independent tasks and M = 8 machines. This 

number of tasks and machines was chosen to present a significant mapping challenge for each 
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heuristic and to prevent an exhaustive search for an optimal solution (however, our techniques 

can be applied to different numbers of tasks and machines). As stated earlier, each task arrives 

dynamically and arrival times are not known a priori. For this study, 100 different ETC matrices 

were generated, 50 with high task heterogeneity and high machine heterogeneity (HIHI) and 50 

with low task heterogeneity and low machine heterogeneity (LOLO) ([BrS01]). All of the ETC 

matrices generated were inconsistent (i.e., machine A being faster than machine B for task 1 does 

not imply machine A is faster than machine B for task 2) [BrS01]. All ETC matrices were 

generated using the gamma distribution method presented in [AlS00]. The arrival time of each 

task was generated according to a Poisson distribution. 

 In the gamma distribution method of [AlS00], a mean task execution time and coefficient of 

variation (COV) are used to generate the ETC matrices. In the high-high case, the mean task 

execution time was set to 100 seconds and a COV of 0.9 (task heterogeneity) was used to 

calculate the values for all elements in a vector of task execution times. Then using the ith element 

of the vector as the mean and a COV of 0.9 (machine heterogeneity), the ETC values for task i on 

all machines are calculated. The low-low heterogeneity case uses a mean task execution time of 

100 seconds and a COV of 0.3 for task heterogeneity and a COV of 0.3 for machine 

heterogeneity. 

The value of τ chosen for this study was 120 seconds. The performance of each heuristic was 

studied across all 100 different trials (ETC matrices). 

4. Results 

In Figures 11 and 12, the average makespan results (with 95% confidence interval bars) are 

plotted, along with a lower bound on makespan, for the immediate mode and pseudo-batch mode 

heuristics, respectively. Each of the heuristics was simulated using multiple values for the 

robustness constraint .α  For each ,α  the performance of the heuristics was observed over 100 

trials—50 for each HIHI and LOLO heterogeneity trials. In Figure 11, the number of failed trials 

(out of 50) is indicated above the makespan results for each heuristic, i.e., the number of trials for 
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which the heuristic was unable to successfully find a mapping for every task given the robustness 

constraint α . Unlike the immediate mode heuristics, the pseudo-batch mode heuristics did not 

fail for any of the considered cases.  The average execution time of each heuristic over all 

mapping events in all 100 trials is shown in Table 1. For the immediate mode heuristics, this is 

the average time for a heuristic to map an incoming task. For the pseudo-batch mode heuristics, 

this is the average time for a heuristic to map an entire batch of tasks.  

For FRSW, for HIHI was set to 0.6 and  was set to 0.9, and for LOLO   was set to 

0.3 and  was set to 0.6. The MWMW heuristic used a value of 

lowT highT lowT

highT 0.7η =  for HIHI and 

0.6η =  for LOLO. 

For the immediate mode heuristics, FRMET performed the best for HIHI, and FRMET and 

FRSW performed the best for LOLO. The immediate mode FRMET heuristic for both HIHI and 

LOLO heterogeneity performed better than anticipated given prior studies including a minimum 

execution time (MET) heuristic in other environment (that do no involve robustness and had 

different arrival rates and ETC matrices). It has been shown, in general, that the minimum 

execution time heuristic is not a good choice for minimizing makespan for both the static and 

dynamic environments [BrS01, MaA99], because it ignores machine loads and machine available 

times when making a mapping decision. The establishment of a feasible set of machines by the 

FRMET heuristic indirectly balances the incoming task load across all of the machines. Table 2 

shows the maximum and average number of mapping events (out of a possible 1024) over 

successful trials (out of 50) for which the MET machine was not feasible. That is, the table values 

were calculated based on only the subset of the 50 trials for which FRMET could determine a 

mapping that met the constraint. For each of these trials, there were 1024 mapping events. The 

FRMET heuristic is able to achieve a better makespan than any of the heuristics studied and can 

even maintain a higher robustness constraint than MaxRobust heuristic for LOLO heterogeneity. 

For the HIHI case all the heuristics (except MaxRobust) failed for at least 4% (20% on average) 

of the trials (out of 50) for the robustness constraint achieved by MaxRobust heuristic. An 
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interesting observation was that the FRMCT heuristic was able to achieve a robustness constraint 

of α =27 for the 50 trials used in this study, but only for 48 trials for α =26 (for HIHI 

heterogeneity). This could be attributed to the volatile nature of the greedy heuristics. The looser 

robustness constraint (α =26) allowed for a paring of task to machine that was disallowed for a 

tighter robustness constraint (α =27). That is, the early greedy selection proved to be a poor 

decision because it ultimately led to a mapping failure. Among the pseudo-batch mode heuristics, 

for the HIHI heterogeneity trials, FMRMCT performed the best on average, while FMCTMCT 

gave comparable results. For the LOLO heterogeneity trials, all of the heuristics performed 

comparably. For the robustness constraint achieved by MRMR heuristic (i.e., 36.18α = for HIHI 

and 28.28α = for LOLO) all the heuristics failed for at least 4% (10% on average) of the trials 

(out of 50). 

 

5. Related work 

The work presented in this paper was built on the four step FePIA procedure described in 

[AIM04]. A number of papers in the literature have studied the issue of robustness in distributed 

systems (e.g., [BeB91, BoHo4, DaC97, DoK95, Gho96, Pol05, SuS05]). A brief comparison of 

the studies is presented below. 

The research in [BeB91] considers rescheduling of operations with release date and multiple 

resources when disruptions prevent the use of a preplanned schedule. The overall strategy is to 

follow a preschedule until a disruption occurs. After a disruption, part of the schedule is 

reconstructed to match up with the preschedule at some future time. Our work considers a 

dynamic environment and thus there will be no preplanned schedule, and hence [BeB91] is not 

usable in our work. 

The research in [BoH04] proposes two heuristics, Dynamic Adaptive Random scheduler 

(DARS) and a new Load Balancing algorithm to dynamically schedule dependent tasks with 

imprecise execution time estimates. This research, unlike in [BoH04], considers independent set 

of tasks and is thus different form the above work. 

 12



The research in [DaC97] considers a single machine scheduling environment where the 

processing times of individual jobs are uncertain. Given the probabilistic information about 

processing time for each job, the authors in [DaC97] determine the normal distribution that 

approximates the flow time associated with a given schedule. The risk value is calculated by 

using the approximate distribution of flow time (i.e., sum of completion times of all jobs). The 

robustness of a given schedule is then given by 1 minus the risk of achieving substandard flow 

time performance. In our work, no such stochastic specification of the uncertainties is assumed. 

Furthermore, our environment involves multiple machines. 

The research in [DoK95] considers reactive scheduling to unexpected events that may cause a 

performance constraint violation in a shop floor environment. They define repair steps so that the 

new performance would either improve or remain unchanged. Our work explores robust resource 

allocation techniques to maximize the cumulative allowable errors in ETCs so that the specified 

performance is guaranteed in a heterogeneous parallel or distributed computing environment; 

thus, our problem differs in many ways from scheduling machines in a shop. 

The study in [Gho96] explores slack-based techniques to achieve robust schedules in a job-

shop environment. The main idea is to provide each task with extra time (defined as slack) to 

execute so that it can tolerate some level of uncertainty without having to relocate. It uses slack as 

a measure of robustness which is simpler and different from our measure. 

The study in [Pol05] defines a robust schedule in terms of identifying a Partial Order 

Schedule (POS). A POS is defined as a set of solutions for the scheduling problem that can be 

compactly represented within a temporal graph. However, the study considers the Resource 

Constrained Project Scheduling Problem with minimum and maximum time lags, (RCPSP/max), 

as a reference, which is different problem domain from the environment considered here. 

In [SuS05], the robustness is derived using the same FePIA procedure used here. However 

the environment considered is static (off-line), as opposed to dynamic (on-line) in our work. 

Hence, the robustness metrics and heuristics employed differ.  
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6. Summary 

This research establishes a method for defining the robustness of a resource allocation in a 

dynamic environment. Ten different heuristics were designed, developed, and simulated for the 

presented parallel and distributed environment. The results of the heuristics were compared with a 

theoretical lower bound. The immediate mode heuristics described here can be used when the 

individual guarantee for the submitted jobs is to be maintained (as there is no reordering of the 

submitted jobs), while the pseudo-batch heuristics can be used when the overall system 

performance is of importance. Future work may include designing heuristics capable of 

maximizing robustness, but with makespan as a constraint.   
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Figu
for the new incoming task find the feasible set of machines 

from the above set, find the minimum execution time machine

assign the task to the machine 

repeat steps 1-3 until all T incoming tasks are mapped 
re 1: Pseudocode for FRMET heuristic. 
for the new incoming task find the feasible set of machines 

from the above set find the minimum completion time machine 

assign the task to the machine 

repeat steps 1-3 until all T incoming tasks are mapped 
re 2: Pseudocode for FRMCT heuristic. 

 

for the new incoming task find the feasible set of machines 

from the above set, find the top m = 4 machines based on execution time

from the above find the minimum completion time machine 

assign the task to the machine 

repeat steps 1-3 until all T incoming tasks are mapped 
re 3: Pseudocode for FRKPB heuristic. 

for the new incoming task find the feasible set of machines 

calculate the load balance ratio (LBR)  

Initial mapping heuristic – FeasibleMCT 
 If  LBR > Thigh map using FeasibleMET 
 If  LBR < Tlow map using FeasibleMCT  
 If Tlow ≤ LBR ≤ Thigh map using previous mapping heuristic 

repeat steps 1-3 until all T incoming tasks are mapped 

re 4: Pseudocode for FRSW heuristic.
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1. for the new incoming task find the robustness radius for each machine, considering the 
previous assignments 

 
2. assign task to maximum robustness radius machine 
    
3. repeat steps 1-2 until all T incoming tasks are mapped 

Figure 5: Pseudocode for MaxRobust heuristic. 
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Figu
map the new incoming task using FRMCT 

if set of mappable tasks is not empty  
a) for each task find the feasible machine that minimizes computation time (first Min), 

ignoring other tasks in the currently mappable set 
b) from the above task/machine pairs, find the pair that gives the minimum completion

time (second Min) 
c) assign the task to the machine and remove it from the set of mappable tasks 
d) repeat a-c until all tasks are remapped 

repeat steps 1-2 until all T incoming tasks are mapped
re 6: Pseudocode for FMCTMCT heuristic. 

 

map the new incoming task using FRMCT 

if set of mappable tasks is not empty  
a) for each task find the feasible machine that minimizes computation time (Min), 

ignoring other tasks in the currently mappable set 
b) from the above task/machine pairs, find the pair that gives the maximum robustness

radius (Max) 
c) assign the task to the machine and remove it from the set of mappable tasks 
d) repeat a-c until all tasks are remapped 

repeat steps 1-2 until all T incoming tasks are mapped 
re 7: Pseudocode for FMRMCT heuristic. 
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1. map the new incoming task using FRMCT 
 
2. if set of mappable tasks is not empty  

a) for each task find the feasible machine that gives maximum robustness radius (Max), 
ignoring other tasks in the currently mappable set 

b) from the above task/machine pairs, find the pair that gives the minimum completion 
time (Min) 

c) assign the task to the machine and remove it from the set of mappable tasks 
d) repeat a-c until all tasks are remapped 

 
3. repeat steps 1-2 until all T incoming tasks are mapped

Figure 8: Pseudocode for FMCTMR heuristic. 

 

 

 

 

 

 

 
 

1. map the new incoming task using FRMCT 
 
2. if set of mappable tasks is not empty     

a) for each task find the feasible machine that gives maximum value of the objective 
function (s(j,t)), ignoring other tasks in the currently mappable set 

b) from the above task/machine pairs, find the pair that gives the maximum value of 
s(j,t) 

c) assign the task to the machine and remove it from the set of mappable tasks 
d) repeat a-c until all tasks are remapped 

 
3. repeat steps 1-2 until all T incoming tasks are mapped 

Figure 9: Pseudocode for MWMW heuristic. 

 

 

 

 

 

 

 

 

1. map the new incoming task using MR 
 
2. if set of mappable tasks is not empty   

a) for each task find the machine that gives maximum robustness radius (first Max), 
ignoring other tasks in the currently mappable set 

b) from the above task/machine pairs, find the pair that gives the maximum value 
(second Max) 

c) assign the task to the machine and remove it from the set of mappable task 
d) repeat a-c until all tasks are remapped 

 
3. repeat steps 1-2 until all T incoming tasks are mapped   

Figure 10: Pseudocode for MRMR heuristic. 
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(b) 
 

Figure 11: Simulation results for immediate mode heuristics for (a) HIHI heterogeneity, 
and (b) LOLO heterogeneity. 
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(b) 

Figure 12: Simulation results for pseudo-batch mode heuristics for (a) HIHI 
heterogeneity, and (b) LOLO heterogeneity. 
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Table 1: Average execution times, in seconds, of a mapping event for the proposed 
heuristics. 
 

heuristic average execution time  

FRMET 0.0010 

FRMCT 0.0019 

FRKPB 0.0019 

FRSW 0.0015 

MaxRobust 0.0059 

FMCTMCT 0.023 

FMRMCT 0.28 

FMCTMR 0.28 

MWMW 0.211 

MRMR 0.563 
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Table 2: Maximum and average number of mapping events for which the MET machine 
was not feasible for HIHI and LOLO heterogeneity. 
 

HIHI 

robustness 

constraint (α) 

maximum 

 (over successful trials) 

average  

(over successful trials) 

22.00 41 14 

24.00 54 22 

25.00 73 30 

26.00 79 36 

27.00 88 42 

 

LOLO 

robustness 

constraint (α) 

maximum 

(over successful trials) 

average  

(over successful trials) 

18.00 5 0 

19.00 10 1 

20.00 14 3 

21.00 26 6 

21.21 26 6 

23.00 56 17 
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