
This research was supported by the Colorado State University Center for Robustness in Computer
Systems (funded by the Colorado Commission on Higher Education Technology Advancement
Group through the Colorado Institute of Technology), by the DARPA Information Exploitation
Office under contract No. NBCHC030137, and by the Colorado State University George T. Abell
Endowment. Needs to be approved for public release; distribution unlimited.

Dynamic Resource Management Heuristics for Minimizing Makespan

while Maintaining an Acceptable Level of Robustness in an Uncertain

Environment

Ashish M. Mehta1, Jay Smith3, H. J. Siegel1,2, Anthony A. Maciejewski1,

Arun Jayaseelan1, and Bin Ye1

Colorado State University

1Department of Electrical & Computer Engineering

2Department of Computer Science

Fort Collins, CO 80523-1373

{ammehta, hj, aam, arunj}@engr.colostate.edu

binye@simla.colostate.edu

3IBM

6300 Diagonal Highway

Boulder, CO 80301

bigfun@us.ibm.com

January 2006

Submitted to the 12th International Conference on Parallel and Distributed Systems

 (ICPADS 2006)

Abstract

 Heterogeneous parallel and distributed computing systems may operate in an

environment where certain system performance features degrade due to unpredictable

circumstances. Robustness can be defined as the degree to which a system can function correctly

in the presence of parameter values different from those assumed. An important research problem

in resource management is how to determine a resource allocation and scheduling of tasks to

machines that optimizes a system performance feature while delivering acceptable level of

robustness. Makespan (defined as the time required to complete all tasks in a resource allocation)

is often the performance parameter that is optimized in such systems. This paper presents a

robustness metric for dynamic resource allocations where task execution times are uncertain. The

goal of this research is to develop heuristics capable of dynamically mapping tasks to machines

such that makespan is minimized and a specified level of robustness is maintained. This research

proposes, evaluates, and compares ten different dynamic heuristics for their ability to maintain or

maximize the proposed dynamic robustness metric in an uncertain environment. In addition, the

makespan results of the proposed heuristics are compared to a lower bound.

Keywords: resource management, robustness, dynamic mapping, resource allocation,

makespan.

 1

1. Introduction and Problem Statement

Heterogeneous parallel and distributed computing is the coordinated use of various compute

resources of different capabilities to optimize certain system performance features. An important

research problem (i.e., resource management) is how to determine a resource allocation and

scheduling of tasks to machines (i.e., a mapping) that optimizes a system performance feature

while maintaining an acceptable level of quality of service. This research focuses on a dynamic

mapping environment where task arrival times are not known a priori. A mapping environment is

considered dynamic when tasks are mapped as they arrive, e.g., in an on-line fashion [MaA99].

The general problem of optimally mapping tasks to machines (resource management) in

heterogeneous parallel and distributed computing environments has been shown in general to be

NP-complete (e.g., [Cof76, Fer89, IbK77]). Thus, the development of heuristic techniques to find

a near-optimal solution for the mapping problem is an active area of research (e.g., [AlK02,

BaS01, BaV01, BrS01, Esh96, FoK99, LeW94, MaA99, MiF00, WuS00]).

Dynamic mapping heuristics can be grouped into two categories: immediate mode and batch

mode [MaA99]. In immediate mode, when a task arrives (i.e., a mapping event) it is immediately

mapped to some machine in the suite for execution. In batch mode, tasks are accumulated until a

specified condition is satisfied (e.g., a certain number of tasks have accumulated, or some amount

of time has elapsed); whereupon the entire batch of accumulated tasks and the previously

enqueued but not executing tasks are considered for mapping. A pseudo-batch mode can be

defined where the batch of tasks considered for mapping is determined upon the arrival of a new

task (i.e., a mapping event) and consisting of all tasks in the parallel and distributed system that

have not yet begun execution on some machine. Both immediate mode and pseudo-batch mode

heuristics were considered for this research.

The pseudo-batch mode heuristics can allow some tasks to be starved of machines. Some

tasks may be remapped at each successive mapping event without actually being executed, i.e.,

the task is starved for a machine. In this environment, once the mappable tasks have been re-

mapped by a pseudo-batch mode mapper they may be reordered, according to their arrival order,

 2

in the input queues of their respective machines. This is possible because tasks in this

environment are independent, i.e., the environment does not mandate their order of execution.

Reordering tasks according to their arrival order ensures that task starvation does not occur.

Heterogeneous parallel and distributed systems may operate in an environment where certain

system performance features degrade due to unpredictable circumstances and inaccuracies in

estimated system parameters. Robustness is defined as the degree to which a system can function

correctly in the presence of parameters different from those assumed [AlM04]. For a given set of

tasks, the makespan is defined as the completion time for the entire set of tasks. For this research,

makespan is required to be robust against errors in the estimated execution time of each task. For

a given application domain, the estimated time to compute (ETC) each task i on each machine j is

assumed known, denoted ETC(i, j). However, these estimates may deviate from the actual

computation times; e.g., the actual times may depend on characteristics of the input data to be

processed. The tasks considered in this research are taken from a frequently executed predefined

set, such as exists in a lab or business environment. This research focuses on determining a

dynamic mapping for a set of tasks that minimizes the predicted makespan (using the provided

ETC values) while still being able to tolerate a quantifiable amount of variation in the ETC values

of the mapped tasks. Hence, the goal is to obtain a mapping that has the minimum makespan and

can still guarantee a certain level of robustness at each mapping event.

In this study, T independent tasks (i.e., there is no intertask communication) arrive at a

mapper dynamically, where the arrival times of the individual tasks are not known in advance.

Arriving tasks are each mapped to one machine in the set of M machines that comprise the

heterogeneous computing system. Each machine executes a single task at a time (i.e., no

multitasking). In this environment, the robustness of a resource allocation must be determined at

every mapping. Let T(t) be the set of tasks either currently executing or pending execution on any

machine at time t (T(t) does not include the tasks that have already completed execution). Let

()jF t be the predicted finishing time of machine j for a given resource allocation based on the

 3

given ETC values. Let ()jMQ t denote the subset of T(t) that has been mapped to machine j and

let ()jscet t denote the starting time of the currently executing task on machine j. Mathematically,

given some machine j

()

() (,) ().
j

j
i MQ t

F t ETC i j scet t
∀ ∈

= + j∑

Let ()tβ denote the maximum of the finishing times at each time t over all machines. This

is the predicted makespan at time t. Mathematically,

()jF t

 { }() max () .jj M
t Fβ

∀ ∈
= t

The robustness metric for this work has been derived using the procedure defined in

[AlM04]. In our current study, given uncertainties in the ETC values, a resource allocation is

considered robust if, at a mapping event, the actual makespan is no more thanτ seconds greater

than the predicted makespan. Thus, given a resource allocationµ the robustness radius ()(jr F tµ

of machine j can be quantitatively defined as the maximum collective Euclidean error in the

estimated task computation times that can occur and still have the actual finishing times be within

τ plus the predicted makespan. Mathematically, building on a result in [AIM04],

 () () ()
() .

()
j

j

j

t F t
r F t

MQ t
µ

τ β+ −
=

()tµρThe robustness metric for a given mapping µ is simply the minimum of the robustness

radii over all machines [AIM04]. Mathematically,

 (){ }() min () .jj M
t r F tµ µρ

∀ ∈
=

With the robustness metric defined in this way, ()tµρ corresponds to the collective deviation

from assumed circumstances that the resource allocation can tolerate and still ensure that system

performance will be acceptable.

 4

This work is directly applicable to resource allocation in enterprise systems designed to

support transactional computations sensitive to response time constraints, e.g., time sensitive

business processes [NaS03]. Often, the service provider in these types of systems is contractually

bound through a service level agreement to deliver on promised performance. The dynamic

robustness metric can be used to measure a resource allocation’s ability to deliver on a

performance agreement. Further, the heuristics of Section 2 will use the dynamic robustness

metric as a constraint during mapping.

To define the dynamic robustness metric as a constraint letα be the minimum acceptable

robustness of a resource allocation at any mapping event; i.e., the constraint requires that the

robustness metric at each mapping event be at least .α Thus, the goal of the heuristics in this

research is to dynamically map incoming tasks to machines such that the total makespan is

minimized, while maintaining a robustness of at least ,α i.e., ()tµρ α≥ for all mapping events.

The larger α is, the more robust the resource allocation is.

The contributions of this paper include:

• a model for quantifying dynamic robustness in this environment,

• heuristics for solving the above resource management problem, and

• simulation results for the proposed heuristics.

The remainder of the paper is organized as follows. Section 2 briefly discusses the heuristics

studied in this research including the definition of a lower bound on the total makespan of the

mapping problem. Section 3 outlines the simulation setup. The simulation results are presented

and discussed in Section 4. The related work is considered in Section 5.

 5

2. Heuristics

2.1. Overview

Five immediate mode and five pseudo-batch mode heuristics were studied for this

research. For the task under consideration, a feasible machine is defined to be a machine that

will satisfy the robustness constraint if the considered task is assigned to it. This subset of

machines is referred to as the feasible set of machines.

2.2. Immediate Mode Heuristics

The following is a brief description of the immediate mode heuristics. Pseudocode for

each heuristic is also given.

Feasible robustness minimum execution time (FRMET) (Figure 1) is based on the

MET concept in [BrS01, MaA99, YAD00]. For each incoming task, FRMET first identifies

the feasible set of machines. From the feasible set of machines the incoming task is assigned

to its minimum execution time machine.

Feasible robustness minimum completion time (FRMCT) (Figure 2) is based on the

MCT concept in [BrS01, MaA99, YAD00]. For each incoming task, FRMCT first identifies

the feasible set of machines for the incoming task. From the feasible set of machines the

incoming task is assigned to its minimum completion time machine.

Feasible robustness k-percent best (FRKPB) (Figure 3) is based on the KPB concept in

[KiS03, MaA99]. FRKPB first finds the feasible set of machines for the newly arrived task.

From this set, FRKPB identifies the k-percent that have the smallest execution times for the

task. The task is then assigned to the machine in the set with the minimum completion time

for the task. For a given α the value of k was varied between 0 and 100, in steps of 12.5, for

sample training data to determine the value that provided the minimum makespan. A value of

50 was found to give the best results.

 6

Feasible robustness switching (FRSW) (Figure 4) is based on the SW concept in

[KiS03, MaA99]. As applied in this research, FRSW combines aspects of both the FRMET

and the FRMCT heuristics. A load balance ratio is defined to be the ratio of the minimum

number of tasks enqueued on any machine to the maximum number of tasks enqueued on any

machine. FRSW then switches between FRMET and FRMCT based on the value of the load

balance ratio. The heuristic starts by mapping tasks using FRMCT. When the ratio raises

above a defined set point highT FRSW switches to the FRMET heuristic. When the ratio falls

below a defined set point lowT FRSW switches to the FRMCT heuristic. The values for the

switching set points were determined experimentally using sample training data.

Maximum robustness (MaxRobust) (Figure 5) has been implemented for comparison

only, trying to greedily maximize robustness without considering makespan. MaxRobust

calculates the robustness radius of each machine for the newly arrived task, assigning the task

to the machine with the maximum robustness radius.

2.3. Pseudo-Batch Heuristics

The pseudo-batch mode heuristics implement two sub-heuristics, one to map the task as it

arrives, and a second to remap pending tasks. For the pseudo-batch mode heuristics, the

initial mapping is performed by the previously described FRMCT heuristic (except for the

MRMR heuristic). The remapping heuristics each operate on a set of mappable tasks; a

mappable task is defined as any task pending execution that is not next in line to begin

execution(to avoid idle machines). The following is a brief description of the pseudo-batch

mode re-mapping heuristics.

Feasible robustness minimum completion time-minimum completion time

(FMCTMCT) (Figure 6) uses a variant of Min-Min defined in [IbK77]. For each mappable

task, FMCTMCT finds the feasible set of machines, then from this set determines the

machine that provides the minimum completion time for the task. From these task/machine

 7

pairs, the pair that gives the overall minimum completion time is selected and that task is

mapped onto that machine. This procedure is repeated until all of the mappable tasks have

been remapped.

Feasible robustness maximum robustness-minimum completion time (FMRMCT)

(Figure 7) builds on concept of the Max-Min heuristic [IbK77]. For each mappable task,

FMRMCT first identifies the feasible set of machines, then from this set determines the

machine that provides the minimum completion time. From these task/machine pairs, the pair

that provides the maximum robustness radius is selected and the task is assigned to that

machine. This procedure is repeated until all of the mappable tasks have been remapped.

Feasible minimum completion time-maximum robustness (FMCTMR) (Figure 8) For

each mappable task, FMCTMR first identifies the feasible set of machines, then from this set

determines the machine with the maximum robustness radius. From these task/machine pairs,

the pair that provides the minimum completion time is selected and the task is mapped to that

machine. This procedure is repeated until all of the mappable tasks have been remapped.

Maximum weighted sum-maximum weighted sum (MWMW) (Figure 9) builds on a

concept in [ShC06]. It combines the Lagrangian heuristic technique [CaS04, LuZ00] for

deriving an objective function with the concept of Min-Min heuristic [IbK77] here to

simultaneously minimize makespan and maximize robustness. For each mappable task, the

feasible set of machines is identified and the machine in this set that gives the maximum

value of the objective function (defined below) is determined. From this collection of

task/machine pairs, the pair that provides the maximum value of the objective function is

selected and the corresponding assignment is made. This procedure is repeated until all of the

mappable tasks have been remapped.

When considering assigning a task i to machine j, let () () (,).j jF t F t ETC i j= +' for all

tasks currently in the machine queue and the task currently under consideration. Let ()tβ ' be

maximum of the finishing times ()jF t' at time t for all machines. Let ()()jr F tµ
' ' be the

 8

robustness radius for machine j. Let ()maxrob t be the maximum of the robustness radii at

time t. Given η , an experimentally determined constant using training data, the objective

function (,)s j t for the Simplified Lagrangian is defined as

()()()
() = 1 + (1)

()
jj r F tF t

s j,t
t maxrob(t)

µη η
β

⎛ ⎞⎛ ⎞
⎜ ⎟− −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

'

' ''

.

Maximum robustness-maximum robustness (MRMR) (Figure 10) is provided here for

comparison only as it optimizes robustness without considering makespan. As a task arrives it

is initially mapped using the MaxRobust heuristic. Task remapping is performed by a variant

of the Max-Max [IbK77] heuristic. For each mappable task, the machine that provides the

maximum robustness radius is determined. From these task/machine pairs, the pair that

provides the maximum overall robustness radius is selected and the task is mapped to that

machine. This procedure is then repeated until all of the mappable tasks have been remapped.

2.4. Lower Bound

A lower bound on makespan for the described system can be found by identifying the

task whose arrival time plus minimum execution time on any machine is the greatest. More

formally, given the entire set of tasks T where each task i has an arrival time of ()arv i , the

lower bound is given by

()lower bound () min (,) .
j Mi T

= max arv i ETC i j
∀ ∈∀ ∈

+

This is a lower bound on makespan. Thus, no heuristic can achieve a smaller makespan.

However, it is possible that this lower bound is not achievable even by an optimal mapping.

3. Simulation Setup

The simulated environment consists of T = 1024 independent tasks and M = 8 machines. This

number of tasks and machines was chosen to present a significant mapping challenge for each

 9

heuristic and to prevent an exhaustive search for an optimal solution (however, our techniques

can be applied to different numbers of tasks and machines). As stated earlier, each task arrives

dynamically and arrival times are not known a priori. For this study, 100 different ETC matrices

were generated, 50 with high task heterogeneity and high machine heterogeneity (HIHI) and 50

with low task heterogeneity and low machine heterogeneity (LOLO) ([BrS01]). All of the ETC

matrices generated were inconsistent (i.e., machine A being faster than machine B for task 1 does

not imply machine A is faster than machine B for task 2) [BrS01]. All ETC matrices were

generated using the gamma distribution method presented in [AlS00]. The arrival time of each

task was generated according to a Poisson distribution.

 In the gamma distribution method of [AlS00], a mean task execution time and coefficient of

variation (COV) are used to generate the ETC matrices. In the high-high case, the mean task

execution time was set to 100 seconds and a COV of 0.9 (task heterogeneity) was used to

calculate the values for all elements in a vector of task execution times. Then using the ith element

of the vector as the mean and a COV of 0.9 (machine heterogeneity), the ETC values for task i on

all machines are calculated. The low-low heterogeneity case uses a mean task execution time of

100 seconds and a COV of 0.3 for task heterogeneity and a COV of 0.3 for machine

heterogeneity.

The value of τ chosen for this study was 120 seconds. The performance of each heuristic was

studied across all 100 different trials (ETC matrices).

4. Results

In Figures 11 and 12, the average makespan results (with 95% confidence interval bars) are

plotted, along with a lower bound on makespan, for the immediate mode and pseudo-batch mode

heuristics, respectively. Each of the heuristics was simulated using multiple values for the

robustness constraint .α For each ,α the performance of the heuristics was observed over 100

trials—50 for each HIHI and LOLO heterogeneity trials. In Figure 11, the number of failed trials

(out of 50) is indicated above the makespan results for each heuristic, i.e., the number of trials for

 10

which the heuristic was unable to successfully find a mapping for every task given the robustness

constraint α . Unlike the immediate mode heuristics, the pseudo-batch mode heuristics did not

fail for any of the considered cases. The average execution time of each heuristic over all

mapping events in all 100 trials is shown in Table 1. For the immediate mode heuristics, this is

the average time for a heuristic to map an incoming task. For the pseudo-batch mode heuristics,

this is the average time for a heuristic to map an entire batch of tasks.

For FRSW, for HIHI was set to 0.6 and was set to 0.9, and for LOLO was set to

0.3 and was set to 0.6. The MWMW heuristic used a value of

lowT highT lowT

highT 0.7η = for HIHI and

0.6η = for LOLO.

For the immediate mode heuristics, FRMET performed the best for HIHI, and FRMET and

FRSW performed the best for LOLO. The immediate mode FRMET heuristic for both HIHI and

LOLO heterogeneity performed better than anticipated given prior studies including a minimum

execution time (MET) heuristic in other environment (that do no involve robustness and had

different arrival rates and ETC matrices). It has been shown, in general, that the minimum

execution time heuristic is not a good choice for minimizing makespan for both the static and

dynamic environments [BrS01, MaA99], because it ignores machine loads and machine available

times when making a mapping decision. The establishment of a feasible set of machines by the

FRMET heuristic indirectly balances the incoming task load across all of the machines. Table 2

shows the maximum and average number of mapping events (out of a possible 1024) over

successful trials (out of 50) for which the MET machine was not feasible. That is, the table values

were calculated based on only the subset of the 50 trials for which FRMET could determine a

mapping that met the constraint. For each of these trials, there were 1024 mapping events. The

FRMET heuristic is able to achieve a better makespan than any of the heuristics studied and can

even maintain a higher robustness constraint than MaxRobust heuristic for LOLO heterogeneity.

For the HIHI case all the heuristics (except MaxRobust) failed for at least 4% (20% on average)

of the trials (out of 50) for the robustness constraint achieved by MaxRobust heuristic. An

 11

interesting observation was that the FRMCT heuristic was able to achieve a robustness constraint

of α =27 for the 50 trials used in this study, but only for 48 trials for α =26 (for HIHI

heterogeneity). This could be attributed to the volatile nature of the greedy heuristics. The looser

robustness constraint (α =26) allowed for a paring of task to machine that was disallowed for a

tighter robustness constraint (α =27). That is, the early greedy selection proved to be a poor

decision because it ultimately led to a mapping failure. Among the pseudo-batch mode heuristics,

for the HIHI heterogeneity trials, FMRMCT performed the best on average, while FMCTMCT

gave comparable results. For the LOLO heterogeneity trials, all of the heuristics performed

comparably. For the robustness constraint achieved by MRMR heuristic (i.e., 36.18α = for HIHI

and 28.28α = for LOLO) all the heuristics failed for at least 4% (10% on average) of the trials

(out of 50).

5. Related work

The work presented in this paper was built on the four step FePIA procedure described in

[AIM04]. A number of papers in the literature have studied the issue of robustness in distributed

systems (e.g., [BeB91, BoHo4, DaC97, DoK95, Gho96, Pol05, SuS05]). A brief comparison of

the studies is presented below.

The research in [BeB91] considers rescheduling of operations with release date and multiple

resources when disruptions prevent the use of a preplanned schedule. The overall strategy is to

follow a preschedule until a disruption occurs. After a disruption, part of the schedule is

reconstructed to match up with the preschedule at some future time. Our work considers a

dynamic environment and thus there will be no preplanned schedule, and hence [BeB91] is not

usable in our work.

The research in [BoH04] proposes two heuristics, Dynamic Adaptive Random scheduler

(DARS) and a new Load Balancing algorithm to dynamically schedule dependent tasks with

imprecise execution time estimates. This research, unlike in [BoH04], considers independent set

of tasks and is thus different form the above work.

 12

The research in [DaC97] considers a single machine scheduling environment where the

processing times of individual jobs are uncertain. Given the probabilistic information about

processing time for each job, the authors in [DaC97] determine the normal distribution that

approximates the flow time associated with a given schedule. The risk value is calculated by

using the approximate distribution of flow time (i.e., sum of completion times of all jobs). The

robustness of a given schedule is then given by 1 minus the risk of achieving substandard flow

time performance. In our work, no such stochastic specification of the uncertainties is assumed.

Furthermore, our environment involves multiple machines.

The research in [DoK95] considers reactive scheduling to unexpected events that may cause a

performance constraint violation in a shop floor environment. They define repair steps so that the

new performance would either improve or remain unchanged. Our work explores robust resource

allocation techniques to maximize the cumulative allowable errors in ETCs so that the specified

performance is guaranteed in a heterogeneous parallel or distributed computing environment;

thus, our problem differs in many ways from scheduling machines in a shop.

The study in [Gho96] explores slack-based techniques to achieve robust schedules in a job-

shop environment. The main idea is to provide each task with extra time (defined as slack) to

execute so that it can tolerate some level of uncertainty without having to relocate. It uses slack as

a measure of robustness which is simpler and different from our measure.

The study in [Pol05] defines a robust schedule in terms of identifying a Partial Order

Schedule (POS). A POS is defined as a set of solutions for the scheduling problem that can be

compactly represented within a temporal graph. However, the study considers the Resource

Constrained Project Scheduling Problem with minimum and maximum time lags, (RCPSP/max),

as a reference, which is different problem domain from the environment considered here.

In [SuS05], the robustness is derived using the same FePIA procedure used here. However

the environment considered is static (off-line), as opposed to dynamic (on-line) in our work.

Hence, the robustness metrics and heuristics employed differ.

 13

6. Summary

This research establishes a method for defining the robustness of a resource allocation in a

dynamic environment. Ten different heuristics were designed, developed, and simulated for the

presented parallel and distributed environment. The results of the heuristics were compared with a

theoretical lower bound. The immediate mode heuristics described here can be used when the

individual guarantee for the submitted jobs is to be maintained (as there is no reordering of the

submitted jobs), while the pseudo-batch heuristics can be used when the overall system

performance is of importance. Future work may include designing heuristics capable of

maximizing robustness, but with makespan as a constraint.

 14

Acknowledgment: The authors thank Jennifer Hale for her valuable comments.

References

[AlK02] S. Ali, J.-K. Kim, Y. Yu, S. B. Gundala, S. Gertphol, H. J. Siegel, A. A.

Maciejewski, and V. Prasanna, “Utilization-based techniques for statically mapping

heterogeneous applications onto the HiPer-D heterogeneous computing system,”

Parallel and Distributed Computing Practices, Special Issue on Parallel Numerical

Algorithms on Faster Computers, Vol. 5, No. 4, Dec. 2002.

[AlM04] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim, “Measuring the robustness of

a resource allocation,” IEEE Transactions on Parallel and Distributed Systems, Vol.

15, No. 7, July 2004, pp. 630–641.

[AlS00] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali, “Representing task and

machine heterogeneities for heterogeneous computing systems,” Tamkang Journal of

Science and Engineering, Special 50th Anniversary Issue, Vol. 3, No. 3, Nov. 2000,

pp. 195–207 (invited).

[BaS01] H. Barada, S. M. Sait, and N. Baig, “Task matching and scheduling in heterogeneous

systems using simulated evolution,” 10th IEEE Heterogeneous Computing Workshop

(HCW 2001), 15th International Parallel and Distributed Processing Symposium

(IPDPS 2001), Apr. 2001.

[BaV01] I. Banicescu and V. Velusamy, “Performance of scheduling scientific applications

with adaptive weighted factoring,” 10th IEEE Heterogeneous Computing Workshop

(HCW 2001), 15th International Parallel and Distributed Processing Symposium

(IPDPS 2001), Apr. 2001.

[BeB91] J. Bean, J. Birge, J. Mittenthal, C. Noon, “Matchup scheduling with multiple

resources, release dates and disruptions,” Journal of the Operations Research Society

of America, Vol. 39, No. 3, June. 1991, pp. 470–483.

[BoH04] W.F. Boyer and G.S. Hura, ”Dynamic scheduling in distributed heterogeneous

systems with dependent tasks and imprecise execution time estimates,” 16 IASTED th

 15

International Conference on Parallel and Distributed Computing and Systems

(PDCS 2004), Nov. 2004.

 [BrS01] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, R. F. Freund, D. Hensgen, M.

Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, and Bin Yao, “A

comparison of eleven static heuristics for mapping a class of independent tasks onto

heterogeneous distributed computing systems,” Journal of Parallel and Distributed

Computing, Vol. 61, No. 6, June 2001, pp. 810–837.

[CaS04] R. Castain, W. W. Saylor, and H. J. Siegel, “Application of lagrangian receding

horizon techniques to resource management in ad-hoc grid environments,”13th

Heterogeneous Computing Workshop (HCW 2004), in the proceedings of the 18th

International Parallel and Distributed Processing Symposium (IPDPS 2004), Apr.

2004.

[Cof76] E. G. Coffman, Jr. ed., Computer and Job-Shop Scheduling Theory, John Wiley &

Sons, New York, NY, 1976.

[DaC97] R. L. Daniels and J. E. Carrilo, “β-Robust scheduling for single-machine systems

with uncertain processing times,” IIE Transactions, Vol. 29, No. 11, Nov. 1997, pp.

977–985.

[DoK95] J. Dorn, R. M. Kerr, and G. Thalhammer, “Reactive scheduling: Improving the

robustness of schedules and restricting the effects of shop floor disturbances by fuzzy

reasoning,” International Journal on Human-Computer Studies, Vol. 42, No. 6, June

1995, pp. 687–704.

[Esh96] M. M. Eshaghian, ed., Heterogeneous Computing. Norwood, MA, Artech House,

1996.

[Fer89] D. Fernandez-Baca, “Allocating modules to processors in a distributed system,”

IEEE Transaction on Software Engineering, Vol. SE-15, No. 11, Nov. 1989, pp.

1427–1436.

 16

[FoK99] I. Foster and C. Kesselman, eds., The Grid: Blueprint for a New Computing

Infrastructure, San Fransisco, CA, Morgan Kaufmann, 1999.

[Gho96] S. Ghosh, Guaranteeing Fault-tolerance through Scheduling in Real-time Systems,

PhD thesis, Faculty of Arts and Sciences, University of Pittsburgh, 1996.

 [IbK77] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling independent tasks

on non-identical processors,” Journal of the ACM, Vol. 24, No. 2, Apr. 1977, pp.

280–289.

[KiS03] J. -K. Kim, S. Shivle, H. J. Siegel, A. A. Maciejewski, T. Braun, M. Schneider, S.

Tideman, R. Chitta, R. B. Dilmaghani, R. Joshi, A. Kaul, A. Sharma, S. Sripada, P.

Vangari, and S. S. Yellampalli, “Dynamic mapping in a heterogeneous environment

with tasks having priorities and multiple deadlines,” 12th Heterogeneous Computing

Workshop (HCW 2003), in the proceedings of the 17th International Parallel and

Distributed Processing Symposium (IPDPS 2003), Apr. 2003.

[LeW94] V. J. Leon, S. D. Wu, and R. H. Storer, “Robustness measures and robust

 scheduling for job shops,” IIE Transactions, Vol. 26, No. 5, Sep. 1994, pp. 32–43.

[LuZ00] P. Luh, X. Zhao, Y. Wang, and L. Thakur, “Lagrangian relaxation neural networks

for job shop scheduling,” IEEE Transactions on Robotics and Automation, Vol. 16,

No. 1, Feb. 2000, pp. 78-88.

[MaA99] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, “Dynamic

mapping of a class of independent tasks onto heterogeneous computing systems,”

Journal of Parallel and Distributed Computing, Vol. 59, No. 2, Nov. 1999, pp. 107–

121.

[MiF00] Z. Michalewicz and D. B. Fogel, How to Solve It: Modern Heuristics, New York,

NY, Springer-Verlag, 2000.

[NaS03] Naik, V. K., Sivasubramanian, S., Bantz, D., and Krishnan, S., “Harmony: A desktop

grid for delivering enterprise computations,” Fourth International Workshop on Grid

Computing (GRID ’03), Nov. 2003.

 17

[Pol05] N. Policella, Scheduling with uncertainty, A proactive approach using partial order

schedules, PhD thesis, Dipartimento di Informatica e Sistemistica “Antonio Ruberti”

Universit`a degli Studi di Roma “La Sapienza”, 2005.

[ShC06] S. Shivle, H. J. Siegel, A. A. Maciejewski, P. Sugavanam, T. Banka, R. Castain, K.

Chindam, S. Dussinger, P. Pichumani, P. Satyasekaran, W. Saylor, D. Sendek, J.

Sousa, J. Sridharan, and J. Velazco, “Static allocation of resources to communicating

subtasks in a heterogeneous ad hoc grid environment,” Journal of Parallel and

Distributed Computing, Special Issue on Algorithms for Wireless and Ad-hoc

Networks, accepted, to appear.

[SuS05] P. Sugavanam, H. J. Siegel, A. A. Maciejewski, M. Oltikar, A. Mehta, R. Pichel, A.

Horiuchi, V. Shestak, M. Al-Otaibi, Y. Krishnamurthy, S. Ali, J. Zhang, M. Aydin, P.

Lee, K. Guru, M. Raskey, and A. Pippin, “Robust static allocation of resources for

independent tasks under makespan and dollar cost constraints,” Journal of Parallel

and Distributed Computing, accepted, to appear.

[WuS00] M.-Y. Wu, W. Shu, and H. Zhang, “Segmented min-min: A static mapping algorithm

for meta-tasks on heterogeneous computing systems,” 9th IEEE Heterogeneous

Computing Workshop (HCW 2000), May 2000, pp. 375–385.

[YaD00] V. Yarmolenko, J. Duato, D. K. Panda, P. Sadayappan, “Characterization and

enhancement of dynamic mapping heuristics for heterogeneous systems,”

International Conference on Parallel Processing Workshops (ICPPW ’00), Aug.

2000, pp. 437-444.

 18

1.

2.

3.

4.

Figu

1.

2.

3.

4.

Figu

1.

2.

3.

4.

5.

Figu

1.

2.

3.

4.

Figu
for the new incoming task find the feasible set of machines

from the above set, find the minimum execution time machine

assign the task to the machine

repeat steps 1-3 until all T incoming tasks are mapped
re 1: Pseudocode for FRMET heuristic.
for the new incoming task find the feasible set of machines

from the above set find the minimum completion time machine

assign the task to the machine

repeat steps 1-3 until all T incoming tasks are mapped
re 2: Pseudocode for FRMCT heuristic.

for the new incoming task find the feasible set of machines

from the above set, find the top m = 4 machines based on execution time

from the above find the minimum completion time machine

assign the task to the machine

repeat steps 1-3 until all T incoming tasks are mapped
re 3: Pseudocode for FRKPB heuristic.

for the new incoming task find the feasible set of machines

calculate the load balance ratio (LBR)

Initial mapping heuristic – FeasibleMCT
 If LBR > Thigh map using FeasibleMET
 If LBR < Tlow map using FeasibleMCT
 If Tlow ≤ LBR ≤ Thigh map using previous mapping heuristic

repeat steps 1-3 until all T incoming tasks are mapped

re 4: Pseudocode for FRSW heuristic.

 19

1. for the new incoming task find the robustness radius for each machine, considering the
previous assignments

2. assign task to maximum robustness radius machine

3. repeat steps 1-2 until all T incoming tasks are mapped

Figure 5: Pseudocode for MaxRobust heuristic.

1.

2.

3.

Figu

1.

2.

3.

Figu
map the new incoming task using FRMCT

if set of mappable tasks is not empty
a) for each task find the feasible machine that minimizes computation time (first Min),

ignoring other tasks in the currently mappable set
b) from the above task/machine pairs, find the pair that gives the minimum completion

time (second Min)
c) assign the task to the machine and remove it from the set of mappable tasks
d) repeat a-c until all tasks are remapped

repeat steps 1-2 until all T incoming tasks are mapped
re 6: Pseudocode for FMCTMCT heuristic.

map the new incoming task using FRMCT

if set of mappable tasks is not empty
a) for each task find the feasible machine that minimizes computation time (Min),

ignoring other tasks in the currently mappable set
b) from the above task/machine pairs, find the pair that gives the maximum robustness

radius (Max)
c) assign the task to the machine and remove it from the set of mappable tasks
d) repeat a-c until all tasks are remapped

repeat steps 1-2 until all T incoming tasks are mapped
re 7: Pseudocode for FMRMCT heuristic.

 20

1. map the new incoming task using FRMCT

2. if set of mappable tasks is not empty

a) for each task find the feasible machine that gives maximum robustness radius (Max),
ignoring other tasks in the currently mappable set

b) from the above task/machine pairs, find the pair that gives the minimum completion
time (Min)

c) assign the task to the machine and remove it from the set of mappable tasks
d) repeat a-c until all tasks are remapped

3. repeat steps 1-2 until all T incoming tasks are mapped

Figure 8: Pseudocode for FMCTMR heuristic.

1. map the new incoming task using FRMCT

2. if set of mappable tasks is not empty

a) for each task find the feasible machine that gives maximum value of the objective
function (s(j,t)), ignoring other tasks in the currently mappable set

b) from the above task/machine pairs, find the pair that gives the maximum value of
s(j,t)

c) assign the task to the machine and remove it from the set of mappable tasks
d) repeat a-c until all tasks are remapped

3. repeat steps 1-2 until all T incoming tasks are mapped

Figure 9: Pseudocode for MWMW heuristic.

1. map the new incoming task using MR

2. if set of mappable tasks is not empty

a) for each task find the machine that gives maximum robustness radius (first Max),
ignoring other tasks in the currently mappable set

b) from the above task/machine pairs, find the pair that gives the maximum value
(second Max)

c) assign the task to the machine and remove it from the set of mappable task
d) repeat a-c until all tasks are remapped

3. repeat steps 1-2 until all T incoming tasks are mapped

Figure 10: Pseudocode for MRMR heuristic.

 21

HIHI

2000

4000

6000

8000

10000

12000

14000

16000

22.00 24.00 25.00 26.00 27.00 29.10

robustness constraint (α)

m
ak

es
pa

n

FRMET FRMCT FRKPB FRSW MaxRobust Lower bound

0

0
0

0

000

2

2

0
0

0

1

0 0
0

5

0
21

(a)

LOLO

2000

4000

6000

8000

10000

12000

14000

18.00 19.00 20.00 21.00 21.21 23.00

robustness constraint (α)

m
ak

es
pa

n

FRMET FRMCT FRKPB FRSW MaxRobust Lower bound

 0 0 0
 0

 0 0

0 0
 0

 0 20

0 0
3

5

0 0
0

 3

 13

(b)

Figure 11: Simulation results for immediate mode heuristics for (a) HIHI heterogeneity,
and (b) LOLO heterogeneity.

 22

HIHI

5000

7000

9000

11000

13000

22 24 26 30 36.18

robustness constraint (α)

m
ak

es
pa

n

FMCTMCT FMRMCT FMCTMR MWMW MRMR Lower bound

(a)

LOLO

5000

6000

7000

8000

9000

10000

11000

20 23 24 28.28

robustness constraint (α)

m
ak

es
pa

n

FMCTMCT FRMCT FMCTMR MWMW MRMR Lower bound

(b)

Figure 12: Simulation results for pseudo-batch mode heuristics for (a) HIHI
heterogeneity, and (b) LOLO heterogeneity.

 23

Table 1: Average execution times, in seconds, of a mapping event for the proposed
heuristics.

heuristic average execution time

FRMET 0.0010

FRMCT 0.0019

FRKPB 0.0019

FRSW 0.0015

MaxRobust 0.0059

FMCTMCT 0.023

FMRMCT 0.28

FMCTMR 0.28

MWMW 0.211

MRMR 0.563

 24

Table 2: Maximum and average number of mapping events for which the MET machine
was not feasible for HIHI and LOLO heterogeneity.

HIHI

robustness

constraint (α)

maximum

 (over successful trials)

average

(over successful trials)

22.00 41 14

24.00 54 22

25.00 73 30

26.00 79 36

27.00 88 42

LOLO

robustness

constraint (α)

maximum

(over successful trials)

average

(over successful trials)

18.00 5 0

19.00 10 1

20.00 14 3

21.00 26 6

21.21 26 6

23.00 56 17

 25

	Dynamic Resource Management Heuristics for Minimizing Makesp
	References

