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ABSTRACT 
 
 
 

PUTTING MICROBIAL POLYPHENOL METABOLISM ON THE MAP:  

USING MICROBIOME SCIENCE TO REVISE SOIL CHEMICAL PARADIGMS 

 
 
 

Polyphenols are chemically diverse natural products found in virtually all higher 

plants. Polyphenols are important modulators of ecosystems, for example in the human 

gut and in terrestrial systems, with these functionalities governed by the microbiome. 

However, there are contradictory views regarding microbiome-polyphenol interactions. 

For example, in the gut, microbiota anoxically degrade or transform dietary polyphenols 

to release bioactive metabolites that confer health benefits to the host. In soils, while 

microbial communities can use polyphenols under oxic conditions, anoxia is thought to 

prevent their biodegradation. The enzyme latch hypothesis describes how accumulated 

polyphenols preserve soil carbon in anoxic systems via inhibition of a key enzyme, 

polyphenol oxidase. The overarching aim of this dissertation was to elucidate the 

microbial metabolism of polyphenols under anoxic conditions. 

 In Chapter 1, I summarize the prevailing views about polyphenols in anoxic soils. 

In particular, I focus on the enzyme latch and the existing knowledge gaps surrounding 

microbial polyphenol metabolism. My review of the literature revealed that the 

controversial enzyme latch theory is largely supported by low-resolution methods, and 

that the current paradigms do not fit with what we know about microbial metabolism in 

gut ecosystems.  
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 In Chapter 2, I tested a basic premise of the Enzyme Latch: that soil microbial 

communities cannot degrade polyphenols under anoxic conditions. To test this, I 

conducted a laboratory study where anoxic microcosms were constructed using soil 

from a wetland. This experiment had three microcosms treatments: (i) live soils 

amended with a model polyphenol, a condensed tannin (CT), (ii) live soils unamended 

as a control, and (iii) autoclaved soil amended with CT to account for potential abiotic 

reactions between the CT and soil matrix. To describe the microbial interactions with the 

CT, over 20 days these microcosms were tracked with genome-resolved 

metaproteomes and a variety of metabolomics approaches. The metabolite data 

provided chemical evidence that the CT was depolymerized, and ultimately degraded to 

small compounds. Importantly, comparison of the live and autoclaved metabolomes 

suggested that abiotic processes contributed to CT degradation. Overlaying 

metaproteome data, it was inferred that 3 bacterial taxa were involved in this 

degradation. One, a Kosakonia, likely depolymerized the CT while the other two, a 

Holophaga and a novel lineage in the Sporomusales, degraded the CT monomer and 

degradation products. Analysis of the overall microbial community functions showed 

that CT addition did not restrict carbon or nitrogen cycling as current soil theory 

assumes, and in fact may have enhanced them. Chapter two of my thesis provided a 

proof-of-concept that soil microbial communities degrade polyphenols under anoxic 

conditions, in contrast to the enzyme latch. 

 Building from Chapter 2, I next investigated what is known about microbial 

polyphenol metabolism across all systems. Chapter 3 describes a computational tool I 

designed for annotating polyphenol metabolism in microbial genomes, Curated 
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Annotations for Microbial Polyphenol Enzymes and Reactions (CAMPER). Chapter 3 

provides the rationale for this tool, the installation and usage, and the outputs. This is a 

publicly available tool, and my hope is that it makes it easier for the broader scientific 

community to track polyphenol metabolism in their own datasets. 

 Armed with CAMPER and with the evidence from Chapter 2 that soil microbes 

can use polyphenols under anoxic conditions, I went on to investigate microbial 

polyphenol metabolism at the ecosystem level. In Chapter 4, I couple genome-resolved 

metatranscriptomes, metabolomes, and geochemistry from an arctic peatland to 

describe polyphenol metabolism across this site. First, I refute the major assumptions of 

the Enzyme Latch using multiple methods. Then, I apply CAMPER to the microbial 

genomes and metatranscriptomes to identify the active polyphenol metabolizers in the 

site, supporting findings with metabolite data. Finally, I showed the metatranscriptome 

expression of CAMPER modules can predict important geochemistry. Overall, this work 

suggests polyphenols must be considered as potential carbon sources in terrestrial 

systems, regardless of the redox conditions in soils. 

 The final chapter of this dissertation (Chapter 5) summarizes the key findings 

from the lab and field investigations of microbial polyphenol metabolism and offers 

perspective on other systems where polyphenol metabolism should be studied. In 

summary, the aims of this dissertation were to summarize the views of microbial 

polyphenol metabolism and the enzyme latch (Chapter 1), to investigate these in the lab 

and in the field (Chapter 2-4), and to summarize how this dissertation has revised our 

knowledge of microbial polyphenol metabolism (Chapter 5). Ultimately, this dissertation 
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shows microbial polyphenol metabolism is a diverse, dynamic, and active part of soil 

carbon cycles.  
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Chapter 1: Introduction 
 
 

 
1.1 Polyphenols 

 Polyphenols are a diverse class of plant natural products that are important 

across ecosystems. Historically, polyphenols were defined by their biochemical roles as 

antioxidants, and more recently have been structurally defined as compounds 

containing more than one phenolic ring1. However, in the scientific literature and in 

practice, this definition has been relaxed to include compounds with a single phenolic 

ring bearing more than one hydroxyl group. There are more than 10,000 known 

structures for polyphenols following this broader definition. Here, we will consider 

polyphenols following phenol-explorer database classifications2, spanning 5 families: 

the flavonoids, the lignans, the stilbenes, the phenolic acids, and the broad “other” 

family. These structures can be modified by glycosylation or methoxylation, or 

polymerized into macromolecules like lignin and hydrolysable or condensed tannins 

(Figure 1.1).  

While recent studies have shown that fungi3,4 and bacteria5,6 can produce 

polyphenols, plants are likely the predominant source of these compounds. Plants 

produce polyphenols for a variety of purposes, for example in the case of lignin, they 

can serve structural roles7. Some plants produce and exude flavonoids to induce 

nitrogen-fixing soil microorganisms to form root nodules8. They are also suggested to 

protect plants against pathogens9 and herbivores10. Therefore, ecosystems affected by 

plants and plant biomass are likely impacted by polyphenols.  
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1.2 Microbial interactions with polyphenols 

Polyphenols represent a large and diverse carbon pool. Estimates from food data 

suggest humans consume over 1g polyphenols daily11, while in soils concentrations can 

be found up to 100mg/g soil12. Owing to their abundance, the ways that microbiomes in 

these systems interact with polyphenols, and how these interactions influence the 

overall system, is of interest. These interactions can be classified as either microbial 

inhibiting or benefitting. 

Some polyphenols are antimicrobials towards specific microorganisms, with 

several potential modes of action. One commonly inferred mechanism is cell membrane 

disruption, wrecking cell structure13. Besides being directly toxic, polyphenols are also 

thought to indirectly impede microbial metabolism. One example of this is chelation of 

metals needed as cofactors14, while it is also suggested that polyphenols bind 

extracellular organic matter like proteins or carbohydrates, preventing access to these 

substrates15,16. By binding proteins, they can also bind and inactivate extracellular 

enzymes17,18. It’s important to note that these claims of antimicrobial effects largely 

originate from in vitro experiments on clinically relevant microorganisms14. Further, it 

has been noted that polyphenols exhibit heterogeneous and unpredictable inhibition 

trends across compounds and organisms19. Therefore, it is not accurate to assume 

polyphenols will always be inhibitory to microbial communities.  

Conversely, polyphenols are also thought to serve as microbial carbon and or 

energy sources. Substantial attention has been paid to microbial lignin degradation in 

the context of biofuel development20,21. However, most knowledge of microbial 

polyphenol metabolism is derived from gut microbial isolates. This research targets the 
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health benefits associated with human gut microbiota processing of dietary 

polyphenols22. For instance, soy products contain the polyphenolic isoflavone daidzin. 

Roughly 30% and 60% of Western and Asian populations, respectively, possess gut 

microbes capable of converting daidzin to equol, a metabolite proposed to be protective 

against hormone-based diseases23. Illustrating the importance of understanding 

microbial polyphenol metabolism, the increased relative abundance of daidzin-

converting gut microbes in Asian populations relative to Western populations mirrors the 

relative decreased incidence of hormone-based diseases23. It should be noted that 

while examples like daidzin metabolism are appreciated, given the chemical diversity of 

polyphenols there is still much to learn about microbial polyphenol metabolism across 

systems. 

Polyphenols enter soil systems from decaying leaves and bark, from nuts and 

fruits, and via rain throughfall in the canopy. In oxic soils, polyphenols are regarded as 

microbial carbon and energy sources, however under anoxic conditions, these same 

compounds are thought to be “recalcitrant” to degradation24. This idea directly 

contradicts knowledge from gut systems that include examples of microbes 

metabolizing polyphenols under anoxic conditions. Despite knowledge in gut 

ecosystems, this idea has been propagated in the soil literature for decades24 by a 

theory called the enzyme latch.   

1.3 The enzyme latch and quadruple lock 

 The enzyme latch is a biogeochemical theory that originated to explain why 

peatlands, and specifically bogs, store substantial amounts of carbon. In this theory, it 

was assumed that anaerobic conditions in peatlands limit the activity of the enzyme 



 4 

polyphenol oxidase (PPO), leading to accumulated polyphenols binding hydrolase 

enzymes, ultimately limiting decomposition24,25. These ideas have been expanded 

beyond bogs and wetlands into systems like mangrove forests26, and even into 

seagrass rhizospheres27. 

 While several studies have supported the enzyme latch model, others have 

challenged the findings. Specifically, conflicting support was found in some studies for 

relationships between polyphenols and respiration rates28, between oxygen availability 

and enzyme activity29, and between polyphenols and enzyme activity30,31. In response, 

the enzyme latch was refined in the ‘quadruple lock’ model to expand the impacts of 

polyphenols beyond enzymes to also include direct microbial toxicity, iron limitation, and 

substrate deprivation32. 

 Critically, the development of and support for the enzyme latch and quadruple 

lock hypotheses has largely relied on low-resolution geochemical assays, masking 

complexity in polyphenol content and microbial activity. For example, polyphenol 

content has traditionally been inferred through the Folin-Ciocalteu assay, which is not 

specific for polyphenols but instead measures the total oxidizable substrates33,34. When 

considering the chemical diversity of polyphenols, and the diversity of other oxidizable 

substrates in soils, the need for methods that specifically examine polyphenol identity 

and content is clear. Beyond this, soil enzyme activity assays are noisy and hard to 

interpret35. In addition, from a microbial perspective, soil enzyme assays are not 

representative of all carbon metabolic strategies. Furthermore, the negative correlation 

of polyphenols with carbon dioxide (CO2) emissions in recent studies32 may not be due 

to causality, as there are many other biotic and abiotic interactions in soils that 
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contribute to CO2 production. Thus, the existing body of literature calls into question 

whether the enzyme latch is supported at all, and if it is, then mechanisms underpinning 

the latch and their ecosystem consequences warrant further clarification.  

Finally, the assumption that polyphenol oxidase is the only enzyme capable of 

degrading polyphenols in soils is not compatible with knowledge of polyphenol 

metabolism in other systems. Many examples from the human gut microbiome 

demonstrate metabolic routes for polyphenol turnover  in anoxic systems, with potential 

for these metabolic functions to include diverse ecosystems including soils36. 

Collectively, the methods and lack of microbial knowledge behind the enzyme latch 

have created blind spots for how microbial communities are perceived to act with 

polyphenols in terrestrial systems. This is not inconsequential, as the authors behind the 

enzyme latch are now suggesting polyphenol supplementation in climatically-vulnerable 

systems to promote carbon sequestration37. Therefore, understanding the microbial 

interactions with polyphenols in anoxic soil systems is critical to predict if these 

compounds indeed lock carbon in soils, or are active participants in nutrient cycling in 

soils.  

1.4 A microbiome-centric view of the enzyme latch 

  I used multi-omic methods across laboratory and field systems to interrogate the 

microbial assumptions of the enzyme latch. At the heart of this work, I address the 

microbial metabolism of polyphenols under anoxic conditions. Specifically, the three 

objectives of my dissertation research were to: 

1. Test the assumption that soil microbial communities cannot degrade polyphenols 

under anoxic conditions (Chapter 2) 
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2. Identify microbial polyphenol metabolic enzymes and develop a tool to annotate 

these genes in microbial genomic data (Chapter 3) 

3. Examine the enzyme latch and describe microbial polyphenol metabolism in an 

arctic peatland (Chapter 4) 

Together, this work reframes the paradigm that polyphenols are recalcitrant to soil 

microbial communities and provides groundwork for future research to identify the 

biogeochemical impacts of microbial polyphenol metabolism. 
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Chapter 1 Figures 
 
 
 

 
Figure 1.1 The structural diversity of polyphenols. The five major families of 
polyphenols are shown, followed by their subfamilies. Grey numbers indicate ring 
positions. These structures can be polymerized to form lignin, hydrolyzable tannins, or 
condensed tannins, which are shown in boxes. 
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Chapter 2 – Decrypting bacterial polyphenol metabolism in an anoxic wetland soil1 
 
 
 

2.1 Summary 

Microorganisms play vital roles in modulating organic matter decomposition and 

nutrient cycling in soil ecosystems. The enzyme latch paradigm posits microbial 

degradation of polyphenols is hindered in anoxic peat leading to polyphenol 

accumulation, and consequently diminished microbial activity. This model assumes that 

polyphenols are microbially unavailable under anoxia, a supposition that has not been 

thoroughly investigated in any soil type. Here, we use anoxic soil reactors amended with 

and without a chemically defined polyphenol to test this hypothesis, employing 

metabolomics and genome-resolved metaproteomics to interrogate soil microbial 

polyphenol metabolism. Challenging the idea that polyphenols are not bioavailable 

under anoxia, we provide metabolite evidence that polyphenols are depolymerized, 

resulting in monomer accumulation, followed by the generation of small phenolic 

degradation products. Further, we show that soil microbiome function is maintained, and 

possibly enhanced, with polyphenol addition. In summary, this study provides chemical 

and enzymatic evidence that some soil microbiota can degrade polyphenols under 

anoxia and subvert the assumed polyphenol lock on soil microbial metabolism. 

2.2 Introduction 

Polyphenols are one of the most abundant types of plant secondary metabolites. 

This prevalent chemical group is heterogeneous, consisting of over 10,000 structurally 

 
1 This chapter was reproduced verbatim from “McGivern, et al. Decrypting bacterial polyphenol 
metabolism in an anoxic wetland soil. Nature Communications (2021)”. The text benefitted from writing 
and editing contributions from contributing authors and reviewers selected by the publisher. The ordering 
of the materials in this dissertation are consistent with the content available online but have been 
renumbered to reflect incorporation into this dissertation. 
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divergent compounds1.  These compounds are abundant in differing habitats: they enter 

the soil systems through litter decay or leaching2, while in gut systems these plant-

derived metabolites are consumed in high concentrations from polyphenol-rich foods 

like berries and cocoa3. In the human gut, it is recognized that the gut microbiome plays 

an integral role in the anaerobic processing of dietary polyphenols to enable host 

absorption3. Similarly, in ruminants, microbial interactions with polyphenols in feed have 

ramifications for animal nutrition and husbandry4. Despite the prevalence and 

recognized importance of polyphenol compounds, the mechanisms underlying 

anaerobic microbial polyphenol metabolism are just being unveiled in gut systems5,6, 

and remain largely enigmatic in soil systems. 

Despite knowledge from gut systems, in soils, and especially in polyphenol-rich 

peatlands7, it is widely assumed that microbial polyphenol degradation is an obligately 

aerobic metabolism, and thus cannot occur under anoxia. Consequently, the “enzyme 

latch”8,9 hypothesis states that polyphenols accumulate under anoxic soil conditions and 

further control soil microbial carbon cycling as these compounds (1) are toxic to 

microorganisms, (2) inactivate microbial extracellular enzymes, and/or (3) bind 

substrates, thus depriving microorganisms of nutrients and limiting microbial activity10 

(Figure 2.1A). According to this model, polyphenols serve as a “lock”10 to stabilize soil 

carbon in anoxic soils (Figure 2.1B). Based on these assumptions, it has been 

proposed that polyphenol amendment can be a tool for slowing rates of soil organic 

matter decomposition to mitigate carbon loss from peatlands7–9,11. However, the studies 

supporting these assertions in peat, or in any soil system, have not directly interrogated 

microbial metabolism in anoxic soils, instead inferring microbial community activity from 
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bulk level properties like respiration rate12–14, enzyme assays7–9, inferred biomass12,15, 

or cellular morphology10. These poorly defined interactions between soil microbiota and 

polyphenols must be elucidated to resolve the role of these compounds in soil carbon 

sequestration, especially in the face of changing climate.   

Recent developments in genome sequencing technology coupled to improved 

computational methods make historically complex soil communities more tractable with 

multiple ‘omics approaches16–18. These methodological advances afford a renewed 

opportunity to discover the biochemistry underpinning microbial-polyphenol responses 

in soils16,17. Here our research goals include (i) investigating the possibility of 

microbially-mediated polyphenol transformations in anoxic soils, and (ii) determining the 

impact of polyphenols on overall microbial community function. To resolve these fates of 

polyphenols in anoxic soils, we use a structurally defined, model polyphenol substrate—

a condensed tannin—as an amendment to our controlled, anoxic soil reactors. 

Periodically over 20 days, we probe this model soil microbiome with a variety of 

metabolomic methods and genome-resolved metaproteomics to discern the biotic and 

abiotic responses to the model polyphenol under anoxia. Collectively, our findings 

provide multi-omics evidence for polyphenol degradation and maintenance of overall 

microbial community function. These results represent a critical step in describing 

microbial polyphenol metabolism in an anoxic soil, refining the presumed metabolic 

roles of soil microbiota in long-held soil biogeochemical paradigms. 
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2.3 Results 

2.3.1 Establishing laboratory microcosms to explore polyphenol fate in anoxic soils 

To date many studies of the effects of polyphenols on soil microbiota have 

focused on boreal peat soils7,12. Yet in these soils, temperature (<20˚C) was suggested 

to be a possible kinetic controller on microbial growth and enzyme activity, thus limiting 

polyphenol metabolism19. To extend these prior studies, we selected plant-covered, 

mineral soils from a microbially well-studied temperate, freshwater wetland18,20, thereby 

eliminating kinetic constraints and expanding our search for these metabolisms across a 

broader range of soil types. These wetland surface soils contained polyphenols (Figure 

2.2) and have been shown to be tractable using multi-omics methods18,20, and thus 

were used as a model soil for evaluation of anaerobic polyphenol metabolism.  

Using these surface soils as the inoculum, we amended anoxic laboratory 

microcosms with and without a model polyphenol. Owing to the known chemical 

heterogeneity among polyphenols, a structurally-characterized condensed tannin21 (CT, 

Figure 2.1B) was selected as a model polyphenol substrate. CT are generally 

recognized as recalcitrant in diverse soils22,23, and were recently described as a 

significant inhibitor of microbial activity in a riparian peatland7. The CT polymer is 

comprised of oligomers of epicatechin with a terminal catechin unit, all of which are 

connected by interflavan bonds (Figure 2.1B). The average degree of polymerization is 

16, yielding an average molecular weight of 4600 Da21. Reactors were amended with a 

CT loading of 375 mg CT/g soil, which is on par with reports of polyphenols in soils (up 

to 100 mg/g soil12), and consumption in the human diet (500 mg/day3). Importantly, our 

selected concentration exceeded the sorption limit for mineral soils (5-10 mg 
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polyphenol/g soil24), ensuring bioavailability for our microbially focused studies. From 

the triplicate, anoxic soil reactors, 16S rRNA genes, metabolites, and genome-resolved 

metaproteomes were sampled on days 1, 3, 7, 10, 14, and 20 (Figure 2.1C).   

Our experimental design included two control treatments to (i) discern 

polyphenol-stimulated responses from native, background soil microbial activity and (ii) 

differentiate microbially-mediated CT degradation from abiotic CT degradation resulting 

from reactions with the soil matrix. First, to separate the impacts of polyphenols from 

background soil microbial processes, we performed parallel, temporal analyses on CT-

amended and unamended control soil reactors (unamended control, -CT). Second, 

given that CT is known to abiotically react with components in soils22, we also amended 

autoclaved soil with CT (autoclaved soil, +CT). This latter control did not contain 

amplifiable DNA over the course of the experiment, supporting microbial-inactivation 

during the time course monitored in this treatment (Appendix A). While we recognize 

the potential for autoclaving to alter soil chemistry25, we show at inoculation there was 

little difference in the soil chemical landscape between autoclaved and unautoclaved 

CT-amended soil microcosms (Figure 2.3). Together these findings support the utility of 

autoclaved soils as a comparative metabolite control to identify microbial and soil abiotic 

transformations of the CT polymer. Collectively, this experimental design, analyzed with 

integrated high-resolution techniques, offered a new platform to resolve soil microbiota 

responses to polyphenols under anoxic conditions.  

2.3.2 Metabolomic evidence supports abiotic and biotic polyphenol degradation 

Our primary goal was to monitor chemical transformations of a model polyphenol 

between active and inactive soil communities to discover evidence for microbiological 
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degradation products under anoxic conditions. Prior to this research, low-resolution 

chemical assays (e.g. Folin–Ciocalteu for polyphenols or acid butanol for CTs) were 

commonly used to assess polyphenol content in soils12. However, the Folin-Ciocalteu 

method suffers from a lack of specificity because it measures oxidizable substrates, 

such as polyphenols, but also including a variety of organic and inorganic constituents 

of biological systems including soils26,27. Further, the acid butanol method is highly 

specific for CT, but responds poorly to CT in soils or other complex matrices because of 

interfering interactions between CT and protein or particulates28,29. It is also not possible 

to detect structural changes to the CT polymer using the acid butanol assay, as for 

example it does not respond differentially based on degree of polymerization30. Beyond 

analytical methods, most earlier studies amended soils with crude mixtures of 

polyphenols (e.g. leaf extracts31) with these mixtures likely obscuring identification of 

polyphenol degradation products, while other studies lacked microbially-inactivated 

controls that likely prohibited clear assignment of degradation products to microbial 

processes. Here, we used a structurally-defined CT polymer (Figure 2.1B) and 

employed multiple control treatments, while using various high-resolution metabolomic 

techniques to track CT depolymerization and degradation products over time.  

We first wanted to observe changes at the CT-oligomer level over time, with the 

temporal increase in smaller oligomers indicating depolymerization (i.e. interflavan bond 

cleavage, Figure 2.4A) of the larger CT polymer. Our Fourier-Transform Ion Cyclotron 

Resonance Mass Spectrometry (FTICR-MS) analysis captured nearly 90,000 peaks 

across all samples that corresponded to compounds in a specific relatively high 

molecular weight mass range. Within these peaks, we developed a workflow that 
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identified peaks corresponding to CT oligomers and transformation products (Figure 

2.5). We carried out subsequent Kendrick Mass Defect (KMD) analysis on these CT 

peaks using (epi)catechin as the base unit (described in Figure 2.6). This KMD analysis 

resolved CT oligomers and derived compounds without assigning chemical formulas 

(Figure 2.4B). Within a single KMD plot, the distribution of epi(catechin) oligomers and 

derived compounds ranging from monomers to hexamers were visualized (Figure 

2.4B). Clouds of points were separated along a horizontal axis by oligomer size (mass). 

Importantly, Kendrick plots for multiply-charged polymers separate along a vertical axis 

based on an “isotopic split”32. In this phenomenon, Kendrick plots of polymers at charge 

state z exhibit z clear horizontal lines separated by 1/z KMD32 (Figure 2.6). Therefore, 

in our Kendrick plots, the two horizontal lines separated by ~0.5 KMD indicated that we 

had two subpopulations of polymer oligomer species in our spectra with -1 and -2 

charge. The primary horizontal line (KMD ~0) corresponds to the singly- or doubly-

charged 12C monoisotopic species, the singly-charged 13C species,  and the doubly-

charged 13C2, 4, … species. The separated peaks at ~0.5 KMD represent the doubly-

charged 13C1,3,5..-containing species (Figure 2.6). Synthesizing mass data and inferring 

-1 or -2 charge, we identified peaks on the Kendrick plot in oligomer size regions where 

points corresponding to oligomers and their transformation products (ex. degradation 

intermediates) can be found (Figure 2.4B, blue, purple, and pink rectangles). 

The Kendrick plots for live and autoclaved CT-amended reactors show the 

presence of CT oligomers and transformation products ranging in size from monomer-

hexamer at all timepoints. We confirmed the CT polymer did not contain detectable CT 

monomers or other flavonoids (e.g. quercetin) in its pure form prior to amendment 
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(Figure 2.7). Therefore, the appearance of monomer peaks on day zero in both live and 

autoclaved soil microcosms suggests either low levels of monomers were present in the 

soil sample, or that abiotic processes originating in the soil microcosm generated some 

monomers soon after adding the polymer to the soil. In looking at Kendrick plots 

generated for the live, unamended control soils (Figure 2.8B), we recovered negligible 

peaks that could be attributed to CT oligomers or monomers, thus supporting the 

likelihood that abiotic reactions between CT and the soil matrix, and not background soil 

CT concentrations, were sources for these compounds at day 0 in the CT-amended 

samples. 

The Kendrick plots for biotic soils revealed a marked increase in the number of 

peaks corresponding to CT oligomers and transformation products (Figure 2.8D) at 

days 10 and 14. Although the autoclaved soil control reaches the same level of richness 

by day 20, the rate of CT transformation is enhanced in biotic microcosms. Further 

supporting this, in biotic soils there is an increase in smaller CT oligomers (e.g. CT 

tetramers, trimers, dimers, and monomers) over time and particularly at day 10, a trend 

not observed in the autoclaved soils until day 20 (Figure 2.4B, purple rectangles). 

Further supporting the accumulation of smaller oligomers (< 6-mer) in microbially-active 

soils, the peaks detected in the 0.5 KMD region increased in the biotic relative to 

autoclaved soils (Figure 2.4B). Peaks in this region likely derive from naturally-

occurring 13C-containing compounds that are only detected when the parent 12C peaks 

from equivalent compounds are highly abundant33 (Figure 2.4B, Figure 2.6). This latter 

finding further supported that biotic microcosms contained more CT depolymerization 

and transformation products (from monomers to hexamers) than the autoclaved control 
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(Figure 2.4B) at later time points, signifying that microbiota in the soils contributed to 

CT depolymerization. These microbially-enabled depolymerizations were in addition to 

abiotic transformations of the CT polymer that were observed in the autoclaved samples 

within a twenty-day period.   

Given FTICR-MS indicated CT depolymerization to smaller oligomers and 

monomers over time in microbially-active soils, we tracked the production of CT 

phenolic monomers (e.g. epicatechin or catechin) and subsequent degradation of these 

monomers using liquid chromatography-mass spectrometry (LC-MS). The LC-MS data 

supported the FTICR-MS data, providing additional evidence for CT depolymerization, 

as the monomers were detected in the biotic and autoclaved soils at all timepoints 

(Figure 2.4C). Pairwise comparisons of the biotic and abiotic data indicated that C15 

monomers epicatechin and catechin were significantly enriched at day 10 in the biotic 

incubations (Figure 2.4C). In parallel, we also detected the C15 flavonoid quercetin34 in 

both treatments, but like the CT monomers it was also only significantly enriched in 

microbially active reactors at day 10, supporting the biotic production of this compound 

from (epi)catechin as others have postulated34. Thus, consistent with our FTICR-MS 

findings, we see an enrichment of C15 monomers and close derivatives occurring in the 

microbially-active soils midway through the experiment (day 10). Together, our FTICR 

and LC mass spectrometry approaches contributed to a model where the interflavan 

bonds in the CT polymer were broken from a contribution of biotic and abiotic 

processes, yielding shorter CT oligomers and CT monomers catechin and epicatechin. 

This data contradicts the long-standing dogma in soils that the interflavan bonds linking 

monomers in the CT polymer are stable under anoxic conditions5,7,35. 
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Importantly, the C15 flavonoids (epicatechin, catechin, or quercetin) decreased in 

abundance after day 10 only in microbially-active soils, suggestive of further 

biodegradation (Figure 2.4E). Based on our metabolite identifications in the CT-

amended live and autoclaved soils, it is likely these flavonoids underwent heterocyclic 

C-ring fission (position 1 and 4 orange ring, Figure 2.4C-D) to generate a C6 compound 

(phloroglucinol, blue ring) from the A-ring and C6-C3 acid from the B-ring and C-ring 

carbon atoms (Figure 2.4E). The C6-C3 acid can be envisioned as the parent (e.g. by 

loss of CO2) of phenylacetate derivatives (C6-C2, Figure 2.4F) and several putatively 

identified benzoic acids (C6-C1) and simple phenols (Appendix B)36.   

With decreased abundance of C15 flavonoids from microbial degradation, we 

observed a concomitant increase in many downstream phenolic metabolites in the 

microbially-active CT treated soils. Specifically, (i) four phenolic metabolites (C6-C3 and 

C6-C2) were significantly enriched at multiple timepoints (Figure 2.4E-F), (ii) two C6-C1 

and C6 metabolites were significantly enriched at day 20 (possibly 4-methylcatechol, 

hydroquinone; Appendix B), and (iii) another 3 phenolic metabolites were uniquely 

detected via NMR (C6-C3 phenylpropionic acid, C6-C2 3,4-dihydroxyphenylacetic acid, 

C6-C2 3-hydroxyphenylacetic acid; Appendix B). The flavonoids and phenolic 

compounds identified by LC-MS and NMR had differing dynamics between our biotic 

and abiotic controls, indicative of unique production from microbial activity, and they 

were present in relatively negligible amounts in the unamended controls (Figure 2.8), 

further indicating that these products derived from the added CT. Therefore, accounting 

for differences between the biotic samples and both control reactors, we concluded that 
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the smaller phenolic compounds derived from microbial biodegradation of the added CT 

(Figure 2.4A). 

Detection of some phenolic compounds could not be statistically resolved 

between microbially-active and autoclaved treatments, although they were generally 

less abundant in the autoclaved controls (Figure 2.4E). This result pointed to abiotic 

processes as additional transformers of CT monomers in anoxic soils. As the C15 

monomer was transformed, the LC-MS data suggested the 3,4-dihydroxylation pattern 

of the parent flavonoid compound B-ring was retained across biotic and autoclaved soils 

(Figure 2.4E-F). However, in microbially-active microcosms we also detected 

compounds with altered hydroxylation patterns, suggestive of distinctly biotic 

transformations: dehydroxylation yielding 3-hydroxy derivatives (Figure 2.4E), or 

rearrangement to yield a 2-hydroxy derivative37 (Figure 2.4F). Also in these microbially-

active soils, we detected a phenolic amine, 3,4-dihydroxyphenylalanine (DOPA), that 

was enriched significantly at later timepoints (phase 3) (Figure 2.4E). Collectively, this 

variety of phenolic metabolites detected in the later phases reinforced our hypothesis 

that while abiotic transformations of CT occurred in our anoxic soils, there were clear 

signals of microbial CT and monomer biodegradation that occurred on different time 

scales and yielded unique products. 

Broadly, the fate of the CT polymer in microbially-active anoxic soils paralleled 

some polyphenolic transformations reported in mammalian fecal metabolomes38. We 

observed increased caffeic acid (Figure 2.4E) and putative dihydroxybenzoic acids (e.g. 

vanillic acid, Appendix B), which are suggested metabolite biomarkers39 for anoxic 

polyphenol degradation in feces. Yet these proposed biomarkers were also detected in 
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our autoclaved CT-amended soils, further reinforcing the need to partition abiotic and 

biotic processes when working in chemically complex matrices like feces or soil. A more 

detailed analysis of the shared and unique features of polyphenol degradation in soils 

compared to the human gut is provided (Figure 2.9, Appendix A).  

In summary, we provided chemical evidence for polyphenol degradation in soils 

under anoxic conditions. With support from multiple analytical methods, we concluded 

that CT likely underwent abiotic transformations, yet distinct increases in CT oligomers, 

monomers, and putative biodegradation products over time were detected only in 

microbially-active soils. This highly-resolved metabolite data provides a chemical 

framework for microbial polyphenol degradation in anoxic soils, a scaffolding that can be 

leveraged in future, more targeted, research using varied polyphenol substrates, as well 

as across a wider range of soil types and conditions.  

2.3.3 Genome-resolved metaproteomics reveals enrichment of polyphenol responsive 

microbes 

In light of our metabolite data indicating active microbial polyphenol degradation, 

we next explored the impact of polyphenols on the soil microbiome. To uncover the key 

microbial players and functions underlying anoxic polyphenol responses in our soil 

reactors, we constructed a genome database composed of metagenome-assembled 

genomes (MAGs) from CT-amended and unamended samples at various timepoints. 

Specifically, metagenomic sequencing from the microcosms at days five, ten, and 

twenty were obtained (Figure 2.1C), totaling 500 Gbps sequencing (Appendix B). This 

sequencing depth represents 9-fold more sequencing per sample compared to 

published field wetland metagenome studies to date, thereby increasing the sensitivity 
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for detecting the breadth of microbial functions encoded in these soils40 (Figure 2.10). 

From this sequencing, we assembled and reconstructed 294 MAGs, which were 

dereplicated at 99% average nucleotide identity into 155 MAGs (Figure 2.11, Appendix 

B), of which 87% were medium- and high-quality genomes41 (Figure 2.11, Appendix 

B). Based on read mapping to this soil-derived MAG database, the majority (65%, 

n=101) of genomes were present across treatments. Despite the extensive depth of 

sequencing, 17% of genomes (n=26) were only recovered in non-CT reactors, while 

18% (n=28) of genomes were only recovered from CT reactors (Figure 2.12).  

Importantly, of these CT-amendment specific MAGs, just 29% (n=8) were recovered at 

every sampled timepoint, highlighting the need for time-resolved metagenomes to 

capture community MAG composition in soil microcosms. The dereplicated MAG 

database evenly recruited metagenome reads across the samples, indicating there was 

little bias in assembly and binning due to treatment type (Figure 2.13). This dataset 

illustrated the value of targeted amendments, temporal sampling, and deep sequencing 

for bringing to light conditionally rare taxa that may have ecosystem-relevant metabolic 

capabilities42.  

The dereplicated MAG database (n=155) contained genomes from 19 phyla, 

many of which represent the most abundant and cosmopolitan lineages in soils40 

(Figure 2.11). However, using the Genome Taxonomy Database toolkit (GTDB-tk)43, we 

found that a subset of our genomes represented newly sampled lineages (5 orders 

across 3 phyla), and a large proportion of our MAGs belonged to lineages defined only 

by alphanumeric identifiers in the GTDB at the class (17%), order (6%), or family (21%) 

levels (Appendix B). Further stressing the phylogenetic novelty in these soils, less than 
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1% of our soil microcosm 16S rRNA amplicon sequencing variants (ASVs) had similarity 

(>97%) to 16S rRNA genes represented in RefSoil44 (a database of soil isolate 

genomes) (Table 2.1). The discrepancy between genomes uncovered in these soil 

microcosms and those included in public soil genome databases underscores the need 

for establishing study- or site-specific genome databases for uncovering cryptic 

biochemistry in soils.  

To maximize the recovery of functions in our metaproteome analysis, we 

combined genes from all metagenomic assemblies, including binned genes from our 

MAG database and unbinned genes from metagenomic assemblies (Figure 2.14), to 

build a representative dereplicated (100% amino acid identity) gene database. 

Importantly, we verified changes in observed peptide recruitment derived from changes 

at the peptide level rather than a database effect (Figure 2.13, Appendix A). After 

mapping the metaproteomes obtained from CT-amended and unamended microcosms 

at six timepoints to our dereplicated gene database (n=36), we recovered 11,942 

peptides that mapped to 50,446 potential proteins (Appendix B). From here, proteins 

were categorized into three groups based on if the peptides were unique to specific 

genomes (Figure 2.14E, categories detailed in Methods). Nearly 60% of the recovered 

peptides were uniquely recruited to 119 of 155 dereplicated MAGs (known as “binned 

uniques”, see Methods), enabling identification of active community members in our 

genome database over time (Figure 2.15, Figure 2.16). Notably, 47 MAGs recruited 

peptides exclusively in CT-microcosms, while just 3 MAGs were inferred to be active 

exclusively in unamended control soils. Alternatively, the remaining 69 MAGs recruited 
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peptides in both CT and unamended microcosms, hinting at the metabolic plasticity 

harbored in soils.  

Mirroring trends in microbial 16S rRNA gene composition and exometabolite 

changes over time (Figure 2.17), metaproteomes of CT and unamended control 

microcosms diverged temporally (Figure 2.15A, Appendix B). The gene expression of 

members in the unamended control were relatively stable across the experimental 

period (i.e. no temporal clustering, Figure 2.15A-B). MAGs belonging to members of 

Chromatiaceae, Contendobacter, Methanothrix, MBNT15, and Methylomirabilota 

recruited 50% of binned unique peptides in the unamended control reactors. Collectively 

these MAGs accounted for less than 5% of binned unique peptides in the CT treatment, 

indicating the capacity for the polyphenol to shift active populations in soils under our 

study conditions. While this represents one of the first reports on the impacts of 

polyphenols on soil microbial community gene expression, similar temporal shifts in 

microbial community 16S rRNA gene membership have been observed with complex 

and pure polyphenols in soils and guts15,45,46.  

In contrast to the unamended controls, CT-amended soils displayed a multi-

phase gene expression response (Figure 2.15A-C). In phase 1, metaproteomes from 

CT treatments at day 1 could not be differentiated from unamended controls (Figure 

2.15A). In phase 2 (days 3-10), a MAG from the Proteobacterial genus Kosakonia 

(CTSoil_132, dark purple) accounted for 80% of the binned unique peptides from the 

CT-treated samples, with peak gene expression observed on day 3 (Figure 2.15A&C). 

In phase 3 (day 10-20), while Kosakonia expression was still detected, the CT-amended 

reactor metaproteome replicates displayed heterogenous responses (Figure 2.15A&C, 
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Phases 3a and 3b), dominated by either a novel member of the Acidobacterial genus 

Holophaga (CTSoil_7, teal) or three novel MAGs in the Sporomusales undescribed 

family UBA7701 (CTSoil_80, CTSoil_81, & CTSoil_82, dark blue). By genome-wide 

average amino acid identity and ribosomal protein similarity, these three Sporomusales 

MAGs likely represent three different genera (Figure 2.18). Of these three MAGs, 

CTSoil_81 was dominant across the metaproteome data, recruiting four-times more 

peptides than the other two Sporomusales. While we did detect peptides from these 

three dominant MAGs (Kosakonia, Holophaga, or Sporomusales CTSoil_81) in non-CT 

amended controls, these were annotated as primarily housekeeping (e.g. RNA 

polymerase) or hypothetical proteins (Figure 2.15B). Together, this suggested that 

while these microorganisms may have subsisted from metabolisms independent of 

polyphenols, they demonstrated different functionality under polyphenol exposure. 

Based on these findings, we concluded members of these 3 taxa were stimulated by 

polyphenols in anoxic soils. As such, we sought to link the metaproteome functions of 

these taxa and the broader microbial communities to our polyphenol degradation 

metabolite scheme. 

2.3.4 Polyphenol biodegradation occurs through metabolic exchange in anoxic soil 

Metabolite evidence indicated soil microbiota depolymerized CT in the first 10-

days (Figure 2.11), consistent with when Kosakonia was most active via 

metaproteomics (Figure 2.15). Given the size of the CT polymer, we expected any 

microbial depolymerization to be extracellular and thus we were particularly interested in 

the expression of two putatively-secreted enzymes from Kosakonia during this phase. 

One of these enzymes, a peroxidase (AA2) has been biochemically demonstrated to 
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aerobically degrade phenolic-rich lignin polymers47, while the other, a 1-4,benzoquinone 

reductase (AA6), is known to be indirectly involved in lignin degradation47 (Figure 

2.19A). The peroxidase, a predicted katG-type, uses H2O2-derived radicals to carry out 

1-electron oxidations of a chemical mediator—potentially a phenolic compound or Mn2+ 

48. This extracellular low molecular weight mediator can diffuse to react with substrates 

outside the enzyme’s spatial range.  The benzoquinone reductase can participate in 

Fenton cycling to support H2O2 pools47 (Figure 2.19A). Analogous to what is proposed 

for aerobic lignin degradation, these oxidations could generate radical sites within the 

CT that promote depolymerization through cascades of bond scissions47. Further 

supporting this proposed role in anoxic CT depolymerization, these two enzymes (AA2, 

AA6) were recently implicated in pure-culture, anaerobic lignin degrading experiments 

by a close relative of Kosakonia49,50. As lignin is also a complex polyphenolic polymer, it 

is reasonable to extend the roles for these lignin associated enzymes to include CT 

depolymerization. Given these tantalizing shared findings at both the soil microcosm 

and isolate levels, biochemical characterization of these enzymes is warranted to 

expand roles for these canonically aerobic enzymes into anaerobic polyphenol 

degradation.  

Analysis of the Kosakonia genome failed to detect known phenolic compound 

biodegradation pathways, suggesting Kosakonia enrichment is not fueled by phenolic 

catabolism. In support of this, during phase 1 and phase 2 we detected simultaneous 

expression of genes for sugar transport (e.g. maltose, fructose sugar 

phosphotransferase systems), central carbon metabolism, and acetate production 

(Figure 2.20). Thus, it is possible that Kosakonia performed CT transformation for 
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chemical detoxification, not energy-generation, while co-metabolizing sugars 

fermentatively51. In support of this Kosakonia-mediated detoxification, expression of 

genes for two previously observed mechanisms of CT tolerance were detected: RND-

type transporters, to remove toxic phenolics from the cell52, and Spy proteins, thought to 

maintain cell membrane integrity in response to CT-induced environmental stress53. 

Collectively, this time-series expression data paired to high-resolution metabolite 

products during phases 1 and 2 (days 1-10) signified Kosakonia detoxified CT while 

fermenting sugars, ultimately serving as the most likely candidate for CT 

depolymerization in the live soil microcosms. 

Kosakonia is also the most likely candidate for DOPA production, a C6-C3 

phenolic amine metabolite that was significantly produced in the microbially-active soils 

at later time points (Figure 2.11Eand Figure 2.19C, purple arrow). We suggest 

Kosakonia produced DOPA via an aromatic amino acid aminotransferase, that was 

exclusively produced by Kosakonia in phases 2 and 3 when DOPA was produced 

(Figure 2.21). Plant root exudation and litter decay are commonly considered the 

primary source of soil DOPA, where this compound has broadly antagonistic 

allelochemical properties54. As an alternative source of DOPA in soils, our plant-free 

microcosms highlight that microbes could produce this compound from polyphenol-

derived phenolics (Figure 2.11E). Beyond soils, this result may have cross-ecosystem 

ramifications. If similar microbial biochemistry occurs in the gut, DOPA could be 

microbially produced from dietary polyphenols, which could cross the blood-brain barrier 

and be converted to dopamine by host enzymes55,56, providing a plausible rationale for 

the positive gut-brain connection with polyphenol-rich foods (e.g. wine, chocolate)57.  
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Next, we investigated metabolic roles of microorganisms in the latter half of our 

experiment that could support the proposed biodegradation scheme where C15 

flavonoids (epicatechin, catechin, quercetin) were converted to smaller phenolic acids 

(Figure 2.11C-F). During this time, metaproteomic data implicated increased activity of 

a MAG affiliated with Holophaga and three MAGs (CTSoil_80-82) within the 

Sporomusales family UBA7701 (Figure 2.15C). In comparing to known flavonoid 

degrading enzymes, proteome profiles from Holophaga and the Sporomusales 

UBA7701 MAGs showed these MAGs likely carried out the transformations observed in 

our metabolite data.   

The first enzyme in this proposed flavonoid monomer degradation pathway was a 

chalcone isomerase (CHI), which could generate a chalcone58 from opening the C-ring 

(position 1) of quercetin, a C15 flavonoid detected only in our microbially active soils, 

likely from (epi)catechin monomers (Figure 2.19B). This chalcone could be reduced to 

phloretin by a second enzyme, a NADH-dependent flavanone- and flavanonol-cleaving 

reductase36 (FCR, Figure 2.19B). C-ring cleavage is then completed with release of C6 

phloroglucinol and C6-C3 acids by a third enzyme, phloretin hydrolase59,60 (PHY, Figure 

2.19B). While we recovered CHI and FCR from both Holophaga and two Sporomusales 

MAGs (CTSoil_80 & 81), peptides for the last enzyme PHY were only confidently 

detected from Holophaga (Figure 2.19B), however the two Sporomusales MAGs 

encode this gene in their genome (CTSoil_80 & 81, Figure 2.19B dotted line). This 

microbially-produced suite of enzymes likely catalyzed the degradation of the CT-

oligomer derived flavonoids to other phenolic compounds observed after day 10 (Figure 

2.11A).  



 32 

While we note these enzymes (CHI, FCR, PHY) were first uncovered and 

described in flavonoid-degrading gut microbial isolates6, they remain poorly annotated 

in KEGG (and other databases) remaining as “hypothetical”, or non-specific classes like 

“oxidoreductases”. As such, we used non-homology-based annotation approaches, 

including coordinated gene expression-metabolite data combined with structural protein 

modeling, to inform these gene annotations (Figure 2.22, Appendix B). To the best of 

our knowledge, this is the first report of these enzymes in soil-derived microorganisms, 

collectively illustrating the ways that currently cryptic processes in soil can be informed 

by cross-ecosystem analyses from more tractable microbiomes.  

Together these multi-omics data provided evidence for the biodegradation of CT 

monomers and their derivatives to phenolic acids (specifically phloroglucinol and C6-C3 

acids) by Holophaga and members of the Sporomusales. We note, the C6 metabolite 

phloroglucinol was not detected in our exometabolites, but this was consistent with its 

typical rapid entry into primary metabolism5. Moreover, Holophaga and Sporomusales 

MAGs expressed putative phloroglucinol reductases (PGR), the key enzyme for 

phloroglucinol degradation via an energy-generating pathway producing acetate and 

butyrate61 (Figure 2.19C).  

In addition to monomer (C15) degradation, both Holophaga and the 

Sporomusales UBA7701 expressed several enzymes that carry out other phenolic 

transformations (Figure 2.19C). For example, from days 10-20, both Holophaga and 

UBA7701 MAGs expressed indole-pyruvate oxidoreductase, which could reduce C6-C3 

phenylpyruvates to observed C6-C2  phenylacetates62 (IPOR, Figure 2.19C). Further, 

they also produced phenylacetate CoA-ligase (PaaK, Figure 2.19C), the key enzyme 



 33 

for degrading phenylacetate via an anaerobic pathway that feeds to central 

metabolism63. Lastly, and in support of a specialized form of anaerobic respiration, both 

Holophaga and Sporomusales MAGs expressed genes for the Car-system which could 

allow caffeic acid64 reduction (a C6-C3 phenolic metabolite detected in our CT reactors, 

Figure 2.11F). Consistent with prior reports and supported by the metaproteome data, 

we propose these taxa couple sugar and phenolic oxidation (and maybe CO2 fixation, 

Figure 2.20), to the reduction of the abiotically-generated CT metabolite caffeate as an 

electron acceptor, generating 3,4-dihydroxypropionate (Figure 2.19B).  

Our metaproteome results illustrated the vast levels of functional redundancy that 

reside in soils, where members of two different phyla (Acidobacteria and Firmicutes) 

expressed nearly identical metabolic pathways for C15 flavonoid biodegradation and 

phenolic metabolism. Taken together, these late phase dominant members (Kosakonia, 

Holophaga, Sporomusales) expressed enzymes to metabolize a range of CT oligomers 

and their derived metabolites, demonstrating that this model polyphenol was accessible 

to soil microbiota under anoxic conditions. Ultimately, these findings illustrate the latent 

metabolic versatility awaiting discovery within microbiomes across soils.  

2.3.5 Anoxic soil carbon cycling is resistant to polyphenol amendment 

Our metabolite and metaproteome data illustrated that members of the soil 

microbiome can degrade polyphenols under anoxia. Beyond supposed limited 

polyphenol degradation, the enzyme latch paradigm suggests that polyphenols 

suppress microbial activity under anoxic conditions by binding extracellular hydrolase 

enzymes (e.g. CAZymes, peptidases) and substrates (e.g. polysaccharides, proteins)10. 

Our metaproteome data indicated diverse microbial taxa were active under CT-
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amendment (Figure 2.15), and we next wanted to explore the impacts of CT on general 

microbial metabolic activities.  

Additional analyses of the FTICR-MS data revealed polysaccharide-like 

compounds decreased over time in microbially active CT reactors (Figure 2.23), 

findings that would not be expected if microbial activity was halted as expected by the 

polyphenol enzyme latch. However, we note polysaccharide-like compounds were 

higher initially in CT-amended microcosms and thus perhaps more available. Reasons 

for this could include CT amendment priming the liberation of sugars in soils65, or low 

level contamination of CT, yet the latter is not supported by an in depth molecular 

characterization of the pure CT21 (Figure 2.7). Regardless of the origin, our 

metaproteomic data supported increased degradation of polysaccharide-like 

compounds observed in the CT-amendment. We detected expression of 15 different 

carbohydrate-active enzymes (CAZymes) in CT reactors over phases 2 and 3, yet we 

did not recover peptides for CAZymes in the unamended control soils (Figure 2.20). 

Furthermore, we observed a corresponding decrease in LC-MS identified disaccharides 

over time in microbially-active CT reactors that was identical to unamended controls 

(Figure 2.23), suggesting active carbon substrate utilization was unimpeded by CT-

amendment under these anoxic conditions. Taken together, our enzyme and metabolite 

data did not support the enzyme latch model where polysaccharides are inaccessible to 

the anaerobic soil microbial community in the presence of polyphenols (Figure 2.1A)10.   

Consistent with unhindered anaerobic carbohydrate metabolism under 

polyphenol exposure, we observed CT-exclusive expression of sugar 

phosphotransferase systems (PTS, proteins used for transporting sugars into the cell), 
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and unchanged expression of glycolytic enzymes at all timepoints (Figure 2.20). The 

most striking difference between CT and unamended control metaproteomes was 

expression of microbial fermentation pathways only under CT treatment, particularly 

during phase 3 when CT has been depolymerized to fermentable phenolics66 (Figure 

2.23). The CT responsive MAGs (Kosakonia, Holophaga, and 

Sporomusales_UBA7701) were inferred to be the biggest contributors to fermentative 

enzymes, accounting for half of the unique peptides assigned, but other members of the 

Firmicutes and Acidobacteria phyla also expressed these pathways (Figure 2.20). This 

metaproteome data was reinforced at the metabolite level, where the CT-exclusive 

production of formate, butyrate, and acetate was observed over time (Figure 2.23). In 

summary, our genome-resolved metaproteomics enabled a new view of anaerobic soil 

microbial carbon catabolism, where polyphenol amendment did not restrict basal 

microbiome function.   

Based on a handful of studies in the rumen, it was historically assumed that 

methanogens were directly inhibited by polyphenols67, yet recent studies have 

suggested the opposite may be true, as methanogen 16S rRNA genes were enriched in 

rice paddy field soils amended with lignin-derived phenols68. Here, we demonstrated 

that methanogenic gene expression was not impacted by CT treatment relative to 

unamended controls in our anoxic reactors (Figure 2.20). Methane was below 12.5 ppm 

in all samples (CT-amended and unamended) after 20-days. However, there were 

metaproteomic hits for the key methanogenesis gene mcrA maintained across 

treatments, from the acetoclastic Methanothrix that was implicated as the dominant 

methanogen in these soils under field conditions18, and another from a 
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Thermoplasmatota methanogen, which was described as a key contributor to 

methylotrophic (C1-methyl) methanogenesis in these soils20 (Figure 2.20). As 

mentioned above, the methanogenic substrate acetate increased in CT-amended 

reactors over time, while methanol was detected in biotic and autoclaved CT-amended 

reactors across time, but not in unamended controls (Appendix B). Taken together, our 

multi-omic data failed to provide evidence that CT was toxic to these soil methanogens, 

and instead uncovered how abiotic and biotic CT transformations may contribute to 

cross-feeding these climatically relevant microorganisms in anoxic soils.  

2.4 Discussion 

This study provided evidence that the anoxic soil microbiome is capable of 

polyphenol metabolism that includes depolymerization of a condensed tannin polymer 

and subsequent monomer degradation. We offered a new multi-omics enabled view of 

the soil microbiome’s response to a high molecular weight polyphenol under anoxia. 

Together our data support a model in which polyphenols in soils are not as microbially 

inert as previously claimed.  

Importantly, our findings provide a new scaffolding that others can leverage. We 

expanded the definition of soil polyphenol degrading enzymes from solely (poly)phenol 

oxidase9,10, to include at least nine other enzymes (Figure 2.19). Additionally, we 

highlighted canonically aerobic enzymes (i.e. peroxidase) that may play unrecognized 

roles in anoxic transformations of polymeric carbon, as has been recently suggested for 

other historically regarded aerobic enzymes under anoxia49,50,69. Our metaproteomic 

data unveiled the metabolic handoffs and redundancies between three anaerobic, 

polyphenol-responsive taxa in the soil microbial community (Kosakonia, Holophaga, and 
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Sporomusales UBA7701). Finally, we showed that the underlying capacity for anaerobic 

carbon cycling by the soil microbiome was largely unchanged by polyphenol 

amendment. 

We acknowledge our approach used laboratory soil reactors separated from 

environmental factors like fluctuating temperature, continual organic matter inputs, and 

interactions with micro- and macrofauna. Thus, more detailed and field-oriented studies 

are needed to uncover the occurrence and consequences of anoxic polyphenolic 

degradation under native conditions, across a range of soil types, and with different 

polyphenol substrates. However, here we provide initial metabolite and enzyme 

signatures for this process that can now be explored in greater detail in future studies.  

Our study contributes to a growing body of recent research dispelling long-held 

notions of soil microbiomes as being intractable due to their chemical and biological 

hetrogeneity17,70. By employing multiple metabolite approaches, we tracked the 

transformations of a defined polyphenol along a molecular weight gradient and 

biochemical hierarchy: from FTICR-MS-identified oligomers, to LC-MS-identified 

flavonoids and phenolic acids, to NMR-identified fermentation products. Moreover, our 

metabolite findings echoed one another across methods (i.e. mutual detection of 

monomers at day 10 between FTICR-MS and LC-MS), allowing for seamless tracking of 

metabolites in soils. On top of this resolved view of carbon chemistry, we overlaid 

microbial community-wide proteome data, linking transformations of structurally-defined 

metabolites to enzymes that were uniquely assigned to specific genomes. We highlight 

the potential for the tools used here, along with a suite of other emerging 
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technologies71–74, to illuminate soil microbiological and chemical processes historically 

confined to the “black box” of soil biochemistry.   

Beyond the boundaries of these laboratory reactors, polyphenols have long been 

thought to act as controllers of global soil carbon storage75. In fact, several recent 

studies have suggested polyphenol-supplementation as a strategy to prevent carbon 

loss in peatlands7,10,11. However, in light of the genome-resolved metaproteome and 

metabolite evidence from this study, the extent that polyphenols sequester soil carbon 

warrants further investigation. While our study demonstrated that under anoxic 

conditions the soil microbiome in a freshwater wetland can degrade polyphenols and 

bypass proposed polyphenol locks on carbon cycling, translating this finding to climate 

mitigation strategies, especially relevant to peat systems, requires: quantifying the 

kinetics and environmental constraints of these transformations on the overall carbon 

budget, expanding research to other relevant polyphenol substrates, and investigating 

the effects of abiotic and biotic polyphenol transformations associated with diverse soil 

types. Our findings pave a way for these research avenues, providing metabolite and 

enzyme framework for mining these processes from complex systems. Collectively, our 

results highlight the promise of modern soil microbiome technologies for uncovering 

the ecological and biochemical mechanisms underlying long-held soil biogeochemical 

paradigms.  

2.5 Methods 

2.5.1 Soil sample Collection 

We used a soil sample collected from a plant-covered mudflat (August 2015) in 

Old Woman Creek National Estuarine Research Reserve18 (OWC) (41°22′N 82°30′W). 
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The soil sample was stored at −20°C until use. While we recognize that thawing these 

frozen soils for use in the laboratory may have impacted soil carbon availability, these 

soils routinely experience freeze thaw throughout the winter months and thus are 

exposed to fluctuating temperatures. 

2.5.2 Condensed Tannin purification 

The broad class of plant secondary metabolites known as polyphenols includes 

three types of high molecular weight compounds, the lignins, the hydrolysable tannins 

and the condensed tannins76. Lignins are highly methoxylated derivatives of the C6-C3 

phenylpropanoids, and their fate and effects in soils have been extensively examined47. 

The unmodified phenolic moieties of tannins make these compounds more highly 

reactive than lignin, including their ability to serve as antioxidants, as metal binding 

agents, and their quintessential property of protein binding/precipitation77. Of the two 

classes of tannins, the hydrolysable tannins are highly susceptible to chemical and 

enzymatic decomposition via hydrolysis of ester linkages, and their metabolic fate in gut 

and soil microbiomes is well-established5. The condensed tannins, or 

proanthocyanidins, comprise flavan-3-ol subunits connected by chemically stable 

interflavan bonds that are degraded most conveniently with strong acid under oxidizing 

conditions78. Because condensed tannin (CT) appears to be more recalcitrant to 

degradation under biological conditions, it is an excellent substrate for this proof-of-

concept study. Sorghum grain is a unique source for easily purifying hundreds of mg of 

CT as a chemically homogeneous preparation with a simple structure suitable for 

detailed metabolomic tracing. 
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Mature grain from high tannin Sorghum bicolor (L.) Moench grain  (Hi-Tannin 

Sumac NM03-9905, Scott Bean, USDA Manhattan Kansas) was stored at 4˚C. Tannin 

was extracted from ground grain with methanol containing ascorbic acid and purified by 

ethyl acetate extraction to remove small phenolics, followed by Sephadex LH20 

chromatography to isolate the high molecular weight fraction21,79. The freeze-dried 

powder was stored at -20˚C. The tannin was characterized by thiolysis to establish that 

the average degree of polymerization was 16, with a catechin terminal unit and 

epicatechin extenders (Figure 2.1B). The material’s purity was assessed with NMR and 

HPLC (Figure 2.7, Appendix A)21. 

2.5.3 Reactor design and set up 

To establish microcosms, frozen soil was thawed at room temperature for 1 hour. 

5g of soil and the headspace was degassed in a Wheaton serum bottle for 30 minutes 

with 5 psi of N2 gas. A slurry was prepared by anoxically-transferring 125mL anoxic 

sterile water via N2-degassed, sterile syringe to the degassed soil-containing serum 

bottle sealed with a butyl rubber stopper and an aluminum crimp. After inoculating the 

biologically active reactors with soil slurry (both CT amended and unamended), as 

discussed below, the remaining soil slurry was autoclaved three-times for 30min each, 

and then inoculated into reactors as in the live controls. We confirmed we could not 

recover DNA or amplify DNA from the reactors inoculated with autoclaved soil slurry at 

each time point the biologically active samples were taken (Appendix A), supporting 

their microbially inactive status.  

Anoxic reactors were established and sampled using prior methods that were 

demonstrated to support the growth of obligatory anaerobic metabolisms in soils and 
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subsurface samples20,80–82. The medium was basal bicarbonate-buffered20, consisting of 

(per liter): 0.25 g ammonium chloride, 0.60 g sodium phosphate, 0.10 potassium 

chloride, 2.5 g sodium bicarbonate, 10 ml DL-vitamin mixture (Table 2.2), and 10 ml DL-

mineral mixture83 (Table 2.2), and was brought to a pH of 7.0 using 1 mM NaOH. The 

biotic and autoclaved reactors were prepared with 90mL and 45mL, respectively, of 

media in 200mL serum bottles with a N2-CO2 (80:20) headspace using standard 

anaerobic microbiology practices80,84.  The anoxic soil slurry (autoclaved or biotic) was 

added to the reactors in a 1:10 dilution. CT-amended reactors (autoclaved and biotic) 

were established by adding anoxic, sterile CT stock solution in DI water (15 mg/mL), to 

achieve a final dosing of 1.5 mg/mL reactor. Reactors were flushed with N2-CO2 (80:20) 

gas in media-soil slurry and serum bottle head space for 40 minutes to ensure removal 

of trace oxygen before incubation. 

Reactors were incubated in the dark and at 25°C, consistent with field soil 

temperatures20. Here we selected field-relevant temperate operation (25˚C)20 to remove 

kinetic constraints on polyphenolic microbial growth and enzyme activity that were 

previously indicated in low temperature studies from boreal peatland soils7,12,19, as we 

consider it possible this temperature stress may have confounded interpretations of 

microbial polyphenol metabolism. Subsamples were collected over 20-days for 16S 

rRNA gene, metagenomic, metaproteomic, and various metabolomic and geochemical 

analyses (Figure 1B). All subsamples were collected with care for maintaining anoxic 

conditions according to standard anaerobic microbiology protocols80,82,84, briefly, 

sampling was performed using sterile syringes that were degassed completely with N2-

CO2 (80:20, vol/vol) to ensure no oxygen transfer. Subsamples were immediately 
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dispensed into their respective storage tubes, flash frozen, and stored at  -80˚C until 

processing/analysis. 

Methane production was measured after 20-days as in Narrowe et al20. Briefly, 

we used a Shimadzu (GC-2014) gas chromatograph (GC) equipped with a thermal 

conductivity detector and using helium as a carrier gas at 100°C to quantify methane 

from triplicate CT-amended and unamended control microcosms reactors at day 0 and 

at day 20. 

2.5.4 16S rRNA Gene Analyses 

Total nucleic acids were extracted from the microcosms at days 0, 1, 3, 5, 7, 10, 

14, and 20 using the Qiagen DNeasy PowerSoil Kit, and were stored at -20˚C until 

sequencing. Sequencing of the V4 region of the 16S rRNA gene was performed at 

Argonne National Laboratory’s Next Generation Sequencing Facility on the Illumina 

MiSeq using 251-bp paired-end reads and the Earth Microbiome Project primers85. 

Reads were demultiplexed and analyzed within QIIME2 (2017.10) using DADA286 to 

produce an amplicon sequence variant (ASV) by sample table (Appendix B), with 

taxonomy assigned using SILVA classifier (silva132.250). We filtered the feature table 

to contain only ASV’s observed in at least 3 samples. To survey ASV in reference 

databases, we BLASTed ASVs against RefSoil cultivated isolate genomes (of which 

96% (n=882) encode a 16S rRNA gene)44. ASV sequences were considered positive 

hits if they matched a sequence at greater than 97% identity over at least 74bp (Table 

1.1). 
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2.5.5 Metagenomic Sequence and Assembly 

For days 5, 10, and 20, we obtained a CT- and control microcosm metagenome 

from pooled triplicate samples (n=6 metagenomes). For this, genomic DNA was 

prepared for metagenomic sequencing using the Nextera XT Low Input-Illumina library 

creation kit, and was sequenced at the Department of Energy Joint Genome Institute on 

the Illumina NovaSeq 6000. Fastq files were trimmed using Sickle (v 1.33)87, and 

trimmed reads were assembled using IDBA-UD88 using k-mers (40, 60, 80, and 100). 

To maximize assembly, we performed (1) subtractive assemblies, iteratively assembling 

reads that did not map to assembled scaffolds ≥3 kb at 97% identity on all 

metagenomes, and (2) subassemblies using 25% of the combined CT-amended 

metagenome trimmed reads. Information for metagenome statistics, including assembly 

information, are found in Appendix B. For each assembly, scaffolds ≥2.5 kb were 

binned using MetaBAT289 (v2.12.1), and MAG completion was assessed using 

AMPHORA290 and checkM91 (v1.1.2). MAGs were kept in the database if they were 

>50% complete and <10% contaminated by either of these tools, or if it was >35% 

complete with <1% contamination in the event they recruited peptides in 

metaproteomes. MAGs were dereplicated at 99% identity using dRep92 (v2.6.2). MAG 

taxonomy was assigned using GTDB-tk (v1.3.0) R05-RS9543. See Appendix B for 

MAG quality and taxonomy information.  

MAGs and assemblies were annotated using DRAM93. CAZymes were inferred 

from the DRAM hits. Enzymes in Figure 2.19C (except PGR) were mined from DRAM 

raw outputs. To mine C15 flavonoid enzymes (Figure 2.19B and PGR), we constructed 

a custom database using published, characterized proteins6,36,59,60 (Appendix B). Using 
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BLASTp, we searched for these enzymes in the metaproteome and in MAGs and 

putative hits were identified using a bit score cutoff greater than 150. Blast hits that met 

this criterion were further structurally modelled using PHYRE294 web server to support 

putative roles. See Figure 2.22 and Appendix B for structural modelling and BLASTp 

information, and sequences. 

To quantify MAG relative abundance in each temporal sample and condition, 

trimmed metagenomic reads were mapped to the dereplicated MAG set using bbmap95 

(v38.70) at minid=95, and output as sam files which were converted to sorted bam files 

using samtools96 (v1.9). We had two requirements for a MAG to be found in a sample: 

first we required reads to map to at least 75% of a MAG in a given sample, and second 

the MAG had to have at least 3X coverage in that sample. To determine MAGs that had 

reads mapped to at least 75% of the MAG, we used CoverM97 (v0.3.2) in genome mode 

to output MAGs that passed this threshold (--min-covered-fraction 75). To obtain MAG 

coverage, we used CoverM97 (v0.3.2) in genome mode to output reads_per_base 

(reads mapped/genome length), and from this calculated MAG coverage as 

reads_per_base x 151bp. A bin was “present” in CT or in control if it was found with at 

least 3X average coverage across the MAG and had reads mapped to at least 75% of 

the MAG in any of the timepoints, or was “present” in both treatments if these two 

criteria were met in both CT and control metagenomes (ex. Present at day 5 in CT and 

at day 5 in Unamended). This information is given in Appendix B.  

2.5.6 Metaproteomic Extraction and Spectral Analysis 

Liquid culture (5 mL) from each microcosm sample was collected anaerobically, 

centrifuged for 15 min at 10,000 ×g, separated from the supernatant that was used for 
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metabolite characterization and stored at −80 °C until shipment to Pacific Northwest 

National Laboratory. Proteins in the pellet were precipitated and washed twice with 

acetone. Then the pellet was lightly dried under nitrogen. 200µl of an 8M urea solution 

was added to the protein pellet, vortexed into solution. A bicinchoninic acid (BCA) assay 

(Thermo Scientific, Waltham, MA USA) was performed to determine protein 

concentration. Following the assay, 10mM dithiothreitol (DTT) was added to the 

samples and incubated at 60°C for 30 minutes with constant shaking at 2,552 xg. 

Samples were then diluted 8-fold for preparation for digestion with 100 mM NH4HCO3, 

1 mM CaCl2 and sequencing-grade modified porcine trypsin (Promega, Madison, WI) 

was added to all protein samples at a 1:50 (w/w) trypsin-to-protein ratio for 3 h at 37˚C. 

Digested samples were desalted using a 4-probe positive pressure Gilson GX-274 

ASPEC™ system (Gilson Inc., Middleton, WI) with Discovery C18 100 mg/1 mL solid 

phase extraction tubes (Supelco, St.Louis, MO), using the following protocol: 3 mL of 

methanol was added for conditioning followed by 2 mL of 0.1% TFA in H2O. The 

samples were then loaded onto each column followed by 4mL of 95:5: H2O:ACN, 0.1% 

TFA. Samples were eluted with 1mL 80:20 ACN:H2O, 0.1% TFA. The samples were 

concentrated down to ~30µL using a Speed Vac and a final BCA was performed to 

determine the peptide concentration and samples were diluted to 0.1 ug/uL with 

nanopure water for MS analysis.  

All mass-spectrometric data were acquired using an Orbitrap Lumos (Thermo 

Scientific) connected to a nanoACQUITY UPLC M-Class liquid chromatography system 

(Waters) via in-house 30-CM x 75-uM column packed using Reprocil-pur 1.9-μm C18 

particles (Dr. Maisch HPLC GmbH, Germany) and in-house built electrospray 
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apparatus. MS/MS spectra were compared with the custom metagenome and MAG 

database using the search tool MS-GF+98. Contaminant proteins typically observed in 

proteomics experiments were also included in the protein collections searched. The 

searches were performed using ±15-ppm parent mass tolerance, parent signal isotope 

correction, partially tryptic enzymatic cleavage rules, and variable oxidation of 

methionine. In addition, a decoy sequence approach was employed to assess false-

discovery rates. Data were collated using an in-house program, imported into a SQL 

server database, filtered to ∼1% false-discovery rate (peptide to spectrum level), and 

combined at the protein level to provide (i) unique peptide count (per protein) and (ii) 

observation count (spectral count) data. We required at least two unique peptides per 

protein for identification, and for analyses used spectral counts from these identified 

proteins to calculate normalized spectral abundance factor (see below). See Appendix 

B. 

2.5.7 Metaproteomic database creation and analyses  

 The database for our metaproteome analysis was constructed from a 

dereplicated (100% amino acid identity) set of genes that were identified on binned and 

unbinned metagenomic scaffolds (i.e. all scaffolds >2.5 kb) (Fig 4B). The inclusion of 

unbinned genes was done to allow us to account for assembled, expressed genes that 

were not assigned to genomic bins. We verified this Dereplicated Gene Database 

equally recruited metagenome reads from CT amended and CT unamended reactors, 

and thus was not biased by treatment (Figure 2.13, Appendix A). The CT-amended 

and unamended metaproteomes were mapped to this same Dereplicated Gene 

Database (Figure 2.14). 
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When reporting proteins identified in our metaproteome data, we assigned 

protein hits from our Dereplicated Gene Database to three categories (Figure 2.14). 

The first status was reported as “Non-Unique” if peptides identified from the mass 

spectra were assigned to in silico peptides that mapped to multiple genes in our 

Dereplicated Gene Database. The second status was reported as “unbinned unique” if 

peptides identified from the mass spectra were assigned to in silico peptides that 

mapped to a single gene, but this gene was not assigned to one of the reconstructed 

MAGs and was only assigned to an unbinned assembled scaffold. The third status was 

“binned unique”, where peptides identified from the mass spectra were assigned to in 

silico peptides that mapped to a single gene that was contained within a binned genome 

from our MAG database.  

The three-classification system used in this metaproteomic analysis was 

designed to maximize the reporting of any expressed genes in a complex microbial 

community like soils, while also conservatively assigning gene expression to a specific 

genome where appropriate. The non-unique classification accounted for strain 

heterogeneity in soils with (i.e. several near identical genes in our database come from 

very closely related organisms and equally recruit peptides) and for proteins that have 

highly conserved sequences (i.e. ATP synthase). The expression patterns of these 

genes would have been excluded from downstream analyses if we relied only on unique 

peptide recovery. The unbinned-unique classification accounted for the fact some of the 

genes in our Dereplicated Gene Database were from assembled scaffolds that could 

not be assigned to a MAG through the genome binning process. The analyses reported 

in the manuscript used the binned-unique data (unless noted), with all reported 
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proteome classification data shown in the supplementary analyses (Figure 2.16, 

Appendix B). 

We took an untargeted, discovery-based approach to our metaproteomes and 

used label-free quantitation, consistent with many metaproteomic studies in 

environmental microbiomes to date99–102. Specifically, we used spectral counts where 

the number of unique spectra recovered for peptides are assumed to scale with their 

abundance. However, spectral counts are imperfect as they are biased by protein size 

and by sample-to-sample variation103 (Figure 2.14). Therefore, we converted spectral 

counts to normalized spectral abundance factor (NSAF), which includes normalizations 

that account for spectral count bias, making it a preferred method of quantitation from 

untargeted metaproteomes103–106. To calculate NSAF, the spectral count of a protein is 

divided by the protein length to give protein spectral abundance. This value is then 

divided by the sum of all protein spectral abundances to give the normalized spectral 

abundance105. This enabled comparison of a protein’s relative abundance within and 

across samples.  

2.5.8 Integrated metabolomic approaches 

Historically, microbial transformations of polyphenols were inferred using low-

resolution assays for total polyphenol content (i.e. the Folin–Ciocalteu assay) or CT-

specific assays (ie. the acid butanol assay)12. Results from these assays have been the 

basis for theories like the “enzyme latch”, enabling the persistent idea that polyphenols 

are not susceptible to degradation under anoxic conditions9. However, these assays are 

not suitable for quantifying polyphenol content broadly in soils and especially for 

detailing the effects of microbial degradation of polyphenols in soils. For example, the 
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widely-used Folin–Ciocalteu assay has limited quantitative application26,27 as it is 

nonspecific for quantifying polyphenols in complex matrices like soils, as the reagents 

react with a wide variety of compounds (e.g. thiols, vitamins, proteins, and inorganics26) 

contained within the soil matrix, thereby giving error prone concentrations of bulk 

polyphenols. Furthermore, polyphenols are structurally diverse, and “total polyphenol” 

content gives little information on structural changes. Additionally, the acid butanol 

assay for determining CT concentrations was shown to be non-specific for 

differentiating oligomer sizes of polyphenols30, meaning it would not resolve microbial 

depolymerization of the parent polyphenol into oligomers, a process which is a key 

indicator of degradation of condensed tannnins5. Further complicating the scenario, CT 

is highly reactive with protein biomass and soil matrix22, thus  it is difficult to differentiate 

removal of CT by sorption and loss of CT due to biotransformation by microbes28,29. 

Therefore, we used high resolution instrumental approaches instead of chemical assays 

to identify metabolites indicative of (i) increased polymer depolymerization (breakdown 

into smaller oligomers and monomers) over time and (ii) production of further phenolic 

degradation metabolites.  

To determine depolymerization of CT over time and the chemical degradation 

produced from microbial processes, we integrated metabolite data from several 

analytical techniques. Using this data, we specifically looked for metabolite evidence of 

the following fates for the added CT: depolymerization, here defined as breakage of the 

interflavan bond (Figure 2.4), biodegradation, here defined as signals that were unique 

to biologically-active soils relative to autoclaved soil, and transformation, here defined 

as signals that were temporally-distinct but could not be differentiated between 
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biologically-active and autoclaved soils. Furthermore, we used this metabolite data to 

support other metabolisms happening in the reactors.  

2.5.9 FT-ICRMS analysis 

We had two goals with our FTICR-MS analysis: (i) monitor changes in the CT 

polymer over time and (Figure 2.4, Figure 2.5) (ii) monitor changes in biochemical 

classes over time (Figure 2.5, Figure 2.23). Fourier Transform Ion Cyclotron resonance 

mass spectrometry (FTICR-MS) was used to collect high resolution mass spectra of the 

supernatant samples from reactors (microcosms) by direct injection in negative ion 

mode (Appendix A). For peaks that could be attributed to the CT polymer (Figure 2.5, 

Appendix A), Kendrick mass defect (KMD) analysis107 was then used to compare the 

fate of (epi)catechin CT oligomers over time in both biologically active and inactive 

(autoclaved soil) reactors. We used a modified version of KMD commonly used for 

polymer ions, proposed by Sato et al32,108, calculated using equations 1-3.   

KM(ion)=m/z(ion)*(290/290.079038) (1) 

NM_CAT(ion)=roundup(KM(ion)) (2) 

KMD(ion)=NM_CAT(ion)-KM(ion) (3). 

To track changes in biochemical classes over time, putative chemical formulas of all 

peaks were assigned using Formularity (v1.0.0) software109 (Figure 2.5). Biochemical 

compound classes were reported as relative abundance values based on counts of C, 

H, and O for the following H:C and O:C ranges as in Tfaily et al110. For more detailed 

information on FTICR-MS methodology and analyses, see Appendix A. Processed data 

is provided in Appendix B, and raw data provided in archive 

(doi:10.5281/zenodo.4552584.).  
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2.5.10 LC-MS metabolomic analysis 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to 

identify exometabolites across samples over time. Metabolites were extracted into ethyl 

acetate from filtered supernatant samples after acidification with HCl.  Both the aqueous 

and organic phases were dried down, redissolved, and analyzed by LC-MS/MS 

(Appendix A) using an Agilent 1290 UHPLC system connected to a Thermo Q Exactive 

Hybrid Quadrupole-Orbitrap Mass Spectrometer equipped with a Heated Electrospray 

Ionization (HESI-II) source probe. Separation, ionization, fragmentation and data 

acquisition parameters are specified in Appendix B.  Briefly, metabolites were 

separated by gradient elution followed by MS1 and data dependent (top 2 most 

abundant MS1 ions not previously fragmented in last 7 seconds) MS2 collection; 

targeted data analysis was performed by comparison of sample peaks to a library of 

analytical standards analyzed under the same conditions.  Three parameters were 

compared: matching m/z, retention time and fragmentation spectra using Metabolite 

Atlas (https://github.com/biorack/metatlas)111,112. Additional methodological details, 

including LC-MS parameters and MS resolution, are provided in Appendix B. 

Identification and standard reference comparison details are provided in Appendix B. 

For more information on LC-MS analyses, see Appendix A. To determine significantly 

discriminating LC-MS exometabolites, we applied a linear model to the log2-

transformed peak area data using limma113 (v3.42.2) in R on log2-transformed data to 

compare metabolites in live and autoclaved treatments at each timepoint. Limma 

statistics are given in Appendix B.  
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2.5.11 NMR metabolomic analysis 

To follow important organic acids, we used NMR on supernatant samples. 

Supernatant samples (180 µL) were combined with 2,2-dimethyl-2-silapentane-5-

sulfonate-d6 (DSS-d6) in D2O (20 µL, 5 mM) and thoroughly mixed prior to transfer to 3 

mm NMR tubes. NMR spectra were acquired on a Varian 600 MHz VNMRS 

spectrometer equipped with a 5 mm triple-resonance (HCN) cold probe at a regulated 

temperature of 298 K. The 90° 1H pulse was calibrated prior to the measurement of 

each sample. The one-dimensional 1H spectra were acquired using a nuclear 

Overhauser effect spectroscopy (NOESY) pulse sequence with a spectral width of 12 

ppm and 512 transients. The NOESY mixing time was 100ms and the acquisition time 

was 4s followed by a relaxation delay of 1.5 s during which presaturation of the water 

signal was applied. Time domain free induction decays (57472 total points) were zero 

filled to 131072 total points prior to Fourier transform. Chemical shifts were referenced 

to the 1H methyl signal in DSS-d6 at 0 ppm. The 1D 1H spectra were manually 

processed, assigned metabolite identifications and quantified using Chenomx NMR 

Suite 8.3. Metabolite identification was based on matching the chemical shift, J-coupling 

and intensity of experimental signals to compound signals in the Chenomx and custom 

in-house databases. Quantification was based on fitted metabolite signals relative to the 

internal standard (DSS-d6). Signal to noise ratios (S/N) were measured using 

MestReNova 14 with the limit of quantification equal to a S/N of 10 and the limit of 

detection equal to a S/N of 3. Processed data is available in Appendix B, and raw data 

provided in archive (doi:10.5281/zenodo.4552584). 
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Chapter 2 Tables 
 
 
 
Table 2.1. Positive hits from of ASVs BLAST to RefSoil database. 

 
 

AS
V 

RefSoil 
Subject %id 

lengt
h e-value 

Lowest SILVA  
ASV taxonomy level 

1 
SVEN_RS3716
5 100 136 

9.18E-
65 Streptomyces 

2 

SVEN_RS3716

5 100 136 

9.18E-

65 Streptomyces 

3 

SVEN_RS3716

5 100 136 

9.18E-

65 Streptomyces 

4 
SVEN_RS3716
5 100 136 

9.18E-
65 Streptomyces 

5 
SVEN_RS3716
5 

99.26
5 136 

4.27E-
63 Bacillus 

6 

SVEN_RS3716

5 

97.79

4 136 

9.24E-

60 Streptomyces 

7 
SVEN_RS3716
5 

97.05
9 136 

4.30E-
58 Streptomyces 

8 
SVEN_RS3716
5 

97.05
9 136 

4.30E-
58 Bacillus 

9 

BSN5_RS2123

0 100 74 

2.68E-

30 

Oceanobacillus;uncultured 

bacterium 

10 
BSN5_RS2123
0 

97.29
7 74 

5.80E-
27 Streptomyces 

11 
BSN5_RS2123
0 

97.29
7 74 

5.80E-
27 Streptomyces 
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Table 2.2. DL-Vitamins and Minerals in Media according to Lovley et al.83 

 

 Components Mg/L in ddiH2O 

Vitamin Mix 

d-Biotin 2 

Folic Acid 2 

Pyridoxine HCl 10 

Riboflavin 5 

Thiamine 5 

Nicotinic Acid 5 

Pantothenic Acid 5 

Vitamin B12 0.1 

p-Amino benzoic Acid 5 

D,L-6,8-thiotic Acid 5 

Mineral Mix 

NTA Disodium Salt 1.5 

MgSO4  -7H2O 3 

MnSO4  -H2O 0.5 

NaCl 1.0 

FeSO4 -7H2O 0.1 

CaCl2  -2H2O 0.1 

CoCl2 -6H2O 0.1 

ZnCl 0.13 

CuSO4- 5H2O 0.01 

AlK(SO4)2- 12H2O 0.01 

Boric Acid 0.01 
Na2MoO4- 2H2O 0.025 

NiCl2 -6H2O 0.024 

Na2WO4 -2H2O 0.025 

Na2SeO4 0.02 
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Chapter 2 Figures 
 
 
 

 
Figure 2.1. (a) Schematic summarizing the polyphenol lock paradigm24,32, 
demonstrating the ways these compounds may control microbial carbon transformations 
in anoxic soils. The green solid line indicates that in anoxic soils, polyphenols promote 
the lock on dissolved organic carbon (DOC). The dotted-red lines show the three 
commonly proposed mechanisms by which polyphenols restrict the activity of soil 
microorganisms to lock soil carbon, including (1) toxicity to microorganisms, (2) 
inhibiting microbial extracellular enzymes, and (3) binding and depriving 
microorganisms of nutrients.  (b) A purified condensed tannin (CT) was selected as the 
model polyphenol in this study due to its inferred lack of microbial degradation in anoxic 
soils39. This model compound is well characterized chemically40 and has an average 
degree of polymerization of 16, where interflavan bonds (red arrow) connect monomers 
of epicatechin with a single catechin monomer cap. (c) The experimental design 
included soil reactors from three treatments  (i) Biologically-active CT amended (dark 
purple), (ii) Biologically-active unamended control (green), and (iii) CT-amended 
autoclaved control (light purple). Autoclaved soils only included metabolite analyses, 
while microbially-active soils were analyzed with the suite of multi-omics approaches. 
The timepoints of each type of analysis are shown, with the total number (n) of samples 
across treatments denoted on the right in grey.  
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Figure 2.2. Abundance of polyphenol-like compounds in field surface and deep wetland 
soils. Polyphenol-like compound abundance in Fourier-transform ion cyclotron 
resonance mass spectrometry (FTICR-MS) data from the wetland, which was used as 
the soil microbial community inoculum in our microcosms. Here we used the surface soil 
as our inoculum. Barplots of FTICR-MS identified lignin- and tannin-like peak 
abundance in surface (orange) and deep (blue) soils. Error bars show one standard 
deviation (n=3 each). 
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Figure 2.3. Abundance of FTICR-MS identified biochemical classes between live and 
autoclaved soil samples. Peak abundance of biochemical classes identified in FTICR-
MS across biotic CT replicate and autoclaved CT soil microcosms at day 0. Peaks were 
classified as described in Materials and Methods, and the relative abundance is shown 
across each biochemical class for each sample. Raw data is provided in Appendix B. 



 58 

 
Figure 2.4. (a) Model CT polymers have an average degree of polymerization of 16, 
with repeating epicatechin (blue) units capped with a terminal catechin (magenta). 
Depolymerization breaks the interflavan bonds of the polymer backbone, generating 
smaller sized oligomers and monomers. These can be further transformed, by biotic or 
abiotic processes, to phenolic compounds. (b) Kendrick mass defect (KMD) hex plots 
for the peaks detected in replicate C of biologically-active (top) and autoclaved (bottom) 
CT-amended microcosms. KMD is given relative to (epi)catechin. Hex plots divide plot 
area into equal size hexagons, and hexagons are colored according to the number of 
data points that fall in that area. At left, peak information that enabled oligomer 
assignments is shown by colors where 13Co (orange) and 13Ce (green) denote doubly-
charged compounds containing odd and even numbers of 13C, respectively (see Figure 
2.6 for detailed examples). Colored rectangles are shown around regions where CT 
oligomers (blue) and monomers/dimers (pink) and their derived compounds are 
expected to occur, with key regions highlighted in purple. Corresponding colored 
numbers indicate oligomer sizes: monomer (1), dimer (2), trimer (3), tetramer (4), 
pentamer (5), and hexamer (6) peaks. Kendrick plots for all replicates at all timepoints 
are found in Figure 2.8A-C. (c-f) Metabolites detected via LC-MS can be organized into 
(c) CT C15 monomers (epicatechin, catechin), (d) other C15 flavonoids (quercetin),  (e) 
C6-C3 phenolic compounds, and (f) C6-C2 phenolic compounds. Metabolite dynamics 
are shown with lines indicating average peak area (n=3) for CT (purple) microcosms, 
and shaded areas the 95% confidence interval with individual data points plotted. 
Dotted lines show signal from autoclaved CT-amended soil control. Orange circles 
indicate timepoints at which active soil signal significantly differed from autoclaved soil 
signals (LIMMA, p<0.05, log2FC>1.5). Vertical grey lines mark day 10. In the illustration 
of the monomer structure in (c), red letters label flavonoid rings, and red numbers 
correspond to C-ring position. 
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Figure 2.5. FTICR-MS workflow and identification of CT-derived peaks across samples. 
(a) We had two goals for analyzing the FT-ICRMS data: (i) identify peaks that derived 
from CT polymer oligomers and derived compounds (orange box), and (ii) assign 
identified peaks to biochemical classes (green box). This workflow is described in 
Appendix A. (b) CT polymer peaks were identified across all identified peaks by 
Kendrick Mass defect analysis using CH2 as the base unit (Appendix A), and 
comparison across CT-amended samples (purple) and unamended samples (green). 
Peaks that derived predominantly from CT-amended samples (pink ovals) were 
assumed to correspond to CT and CT-derived compounds while majority shared peaks 
(blue oval) were assumed to be soil organic matter (SOM) derived. 
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Figure 2.6. Identification and example Kendrick Mass Defect analysis of variably-
charged CT oligomers. (a) FTICR mass spectrum of a doubly-charged CT pentamer in 
Live Soil +CT replicate A at day 10 (top) compared to the expected mass spectrum for a 
doubly-charged CT pentamer (bottom). Peak masses are indicated, and the formulas 
for peaks in the theoretical spectra are given. (b) The isotope abundances match 
expected abundances (Appendix A). (c) The five experimentally identified peaks (A-E) 
were used in KMD analysis using (epi)catechin as base, and (d) plotted in a Kendrick 
plot. (e-h) This same analysis was repeated with peaks corresponding to a singly 
charged CT trimer identified in Live Soil +CT replicate A at day 10. Comparison of the 
Kendrick plots for the doubly-charged (d) and singly-charged (h) isotopomers reveals 
isotopic splitting where KMD separates isotopes at 1/z as in Fouquet et al41. 
Abbreviations are as follows: Nominal Mass (NM), Nominal Kendrick Mass (NKM), and 
Kendrick Mass Defect (KMD). 
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Figure 2.7. Characterization of the CT substrate used in this study showed minimal 
contamination from phenolics or carbohydrates. (a) Overlaid chromatograms for a 
Sorghum condensed tannin purified sample (blue) and a mixture of commercial 
catechin, epicatechin and quercetin (grey). The Sorghum condensed tannin elutes as a 
broad peak with no resolution of individual polymers or oligomers. Here, we observed 
the CT contained no monomers. (b) A representative 1H-13C HSQC NMR spectrum of 
purified condensed tannin from Sorghum. The blue ovals represent the areas where 
carbohydrate signals are found. The signals in those regions are all assigned to 
condensed tannin structural features as detailed in Reeves et al.40. For chromatography 
and NMR methods, see Appendix A. 
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Figure 2.8. Unamended control soils do not contain appreciable CT oligomers or 
putative CT-degradation products. Kendrick mass defect plots based on (epi)catechin 
as the repeat unit  for (a) live soil +CT replicates, (b) autoclaved soil + CT control, and 
(c) unamended control soil. A red box is shown around the two plots shown in Figure 2. 
Hex plots are used in a and b because of the high number of data points, while 
individual points are plotted in c. Hex plots divide plot area into equal size hexagons, 
and hexagons are colored according to the number of data points that fall in that area. 
(d) The number of CT-associated peaks are shown with lines indicating average 
number of peaks (n=3) for CT (purple) and (n=3) unamended control (green) 
microcosms, and shaded areas the 95% confidence interval. Dotted lines show peaks in 
autoclaved CT-amended soil control. (e) LC-MS identified compounds highlighted in 
Figure 2.4 for all samples. Metabolite dynamics are shown with lines indicating average 
peak area (n=3) for CT (purple) and (n=3) unamended control (green) microcosms, and 
shaded areas the 95% confidence interval. Dotted lines show signal from autoclaved 
CT-amended soil controls. Raw Data is provided in Appendix B. 
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Figure 2.9. Comparison of proposed CT degradation pathways between mammalian 
guts and soil from this study. Metabolomic evidence suggests differing strategies for 
initial steps in CT degradation between mammalian gut and soil systems. In our soil 
system, depolymerization is followed by a C-ring opening to yield the C6-C3 products 
characteristic of our reactors, while in the gut the products point to cleavage of the C-
ring followed by opening of the A-ring to yield C6-C5 products. These C6-C5 products are 
suggested in gut studies to converge at C6-C3 products, suggesting some commonality 
in degradation across systems.  
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Figure 2.10. The depth of metagenomic sequencing in this study exceeds standard 
sequencing depth for wetland soil metagenomes. Distribution in sequencing (as 
Gigabases) for Sequence Read Archive (SRA) runs identified as “WGS” with “Wetland” 
in the metadata. Samples from this study are shown in blue, while other studies from 
our lab conducted on Old Woman Creek (OWC) samples are shown in red. All other 
identified SRA runs are shown in grey. The blue and grey dotted lines and numbers at 
left show the average sequencing per sample for this study and other wetland SRA 
studies, respectively. 
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Figure 2.11. Taxonomy and detection of  the 155 dereplicated metagenome-assembled 
genomes (MAGs) in our soil reactor genome database. To visualize the taxonomy of 
these MAGs, sequential colored rings indicated the most resolved taxonomic level that 
could be assigned by GTDB-tk. Taxonomic level (Domain, Phylum, Class, Order, 
Family, Genus, Species), is denoted in black with a single letter abbreviation. Ring color 
corresponded to phylum assignment, with the phylum listed on the outside with the 
number of dereplicated MAGs in parentheses. Circles at the sunburst edge summarized 
genome completion, while the listed number is the MAG ID (see Appendix B). Colored 
rectangles at the sunburst edge indicate MAG distribution across treatments, with 
MAGs detected (see Materials and Methods for thresholds) only in CT (purple), or only 
in control (green), or from both conditions (orange) denoted.  
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Figure 2.12. Metagenome-assembled genome (MAG) detection across the six 
metagenomes revealed core and treatment specific MAGs. The coverage of the 155 
dereplicated MAGs is shown across metagenomes. Bins highlighted in black did not 
meet “presence” requirement of 75% scaffolds mapped at 95% identity and greater than 
3X coverage. Adjacent colored boxes indicate bin Phylum, with label showing bin 
number. The columns highlighted with green (left) are unamended controls, while the 
columns highlighted with purple (right) are from CT-amended samples. The same data 
is reported as presence and absence in Figure 2.11. 
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Figure 2.13. Metagenomic assembly and binning equivalently captures similar 
proportions of the microbial communities between treatments when accounting for CT-
dominant members. Relative metagenomic read recruitment to the 155 MAGs (black), 
to all assembled scaffolds greater than 2500 bp (green), and to the metaproteome 
dereplicated gene database (blue) for each metagenome. Reads were mapped at 95% 
identity. The fractions of reads recruited to the CT-dominant and exclusive MAGs 
Kosakonia, Holophaga, and the 3 Sporomusales UBA7701 are shown in grey stripes. 
The size of each metagenome is listed in gigabase pairs below sample names. These 
findings show that after removing the dominant lineages (grey stripes), read mapping 
was nearly equivalent and did not appear biased by treatment (CT versus no CT). 
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Figure 2.14. Schematic showing the workflow for paired metagenome sequencing and 
metaproteome analyses. (a) DNA and proteins were sampled from triplicate live soil + 
CT (purple) and unamended soil (green) reactors at days 5, 10, 20 (DNA) and days 1, 
3, 7, 10, 14, 20 (protein). (b) Metagenomes at each timepoint were obtained for both CT 
(purple) and unamended (green) treatments. Metagenomes were assembled and 
binned to obtain metagenome-assembled genomes (MAGs) across all samples. This 
set of MAGs was dereplicated at 99% ANI to obtain a MAG database of 155 
dereplicated MAGs (Figure 2.11). Using amino acid translations of genes derived from 
this dereplicated MAG database and remaining genes from metagenomic assemblies 
(on unbinned scaffolds >2500 bp), we compiled a Dereplicated Gene Database (all 
unique gene sequences) that served as our reference database for our metaproteomes. 
(c) Metaproteomes at each timepoint were obtained as described in Materials and 
Methods. (d) Spectral matching was carried out using obtained spectra and in silico 
spectra derived from the gene database. From this, proteins were classified as “non-
unique” if the recruited peptides could be derived from other proteins in the database. 
Proteins were classified as “unbinned uniques” if they had peptides that could only be 
matched to the amino acid sequence derived from a metagenomic unbinned scaffold in 
our assembly. Proteins were identified as “binned uniques” if they had peptides that 
could only be matched to that amino acid sequence, and were derived from a single 
genome in our MAG database. (e) All identified proteins were quantified with label-free 
spectral counts. This was then corrected for protein length and sample-to-sample 
variation by conversion to normalized spectral abundance factor. 
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Figure 2.15. (a) Hierarchical clustering of MAG-contributions (binned uniques) to 
metaproteome samples. Unamended control metaproteomes are shown in green, while 
the multi-phase response of CT-amended microcosms are highlighted with varying 
shades of purple. (b-c) Genome-resolved metaproteomic dynamics in CT-amended 
microcosms. The relative contribution of MAGs to the binned unique peptide pool is 
shown for the three unamended control (b) and CT (c) microcosm replicates over 20-
days. The most refined GTDB-tk assigned taxonomy is listed by phylum, with our MAG 
ID number in parentheses (Appendix B). The names of the top 5 peptide-recruiting 
MAGs are colored for CT (purple) and control (green) microcosms. Figure 2.16 shows 
this data with the total metaproteome data, including unbinned uniques, binned uniques, 
and non-uniques. 
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Figure 2.16. Relative abundance of all classes of metaproteome hits across CT-
amended and unamended samples. Metaproteomic dynamics in soil microcosms shown 
with the relative peptide recruitment to non-unique (black), unbinned unique (grey) and 
binned uniques (colored) proteins. Data are graphed for CT amended and unamended 
control over 20-days with replicates denoted A-C. For contributions from binned uniques 
alone see Figure 2.15. The color for the binned uniques (as described in Figure 2.15) 
is denoted by the most refined GTDB-tk assigned taxonomy, with our MAG ID number 
in parentheses (Appendix B). The names of the top 5 peptide-recruiting MAGs are 
colored for CT (purple) and control (green) microcosms. 
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Figure 2.17. CT-amended and unamended microbial communities, metabolites, and 
metaproteomes diverge temporally. Non-metric multidimensional scaling (NMDS) of 
Bray-Curtis similarity metric of (a) 16S rRNA gene amplicon sequencing variants 
(stress = 0.09), (b) combined NMR and LC-MS exometabolites (stress=0.08), and (c) 
metaproteome (stress=0.11). Regardless of the data type, all show statistically 
significant (Mrpp, p = 0.001 for all 3) separation by treatment and a time trajectory. Day 
0 samples are white,  and proceed to darker purple (CT-amended) or green 
(unamended). 
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 CTSoil_80 CTSoil_81 CTSoil_82 

CTSoil_80    

CTSoil_81 72.7%, 93.01%   

CTSoil_82 71.09%, 91.27% 72.17%,  93.45%  

Figure 2.18. The three Sporomusales UBA7701 MAGs are likely three different genera. 
Matrix of MAG Average Amino Acid identity (AAI) and ribosomal protein S3 similarity 
between the three Sporomusales UBA7701 MAGs. The first number in the cell is AAI, 
while the second value is ribosomal protein S3 amino acid identity. MAG AAI was 
calculated using http://enve-omics.ce.gatech.edu/aai/.
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Figure 2.19. MAG-resolved, unique peptide evidence for polyphenol degradation. Line 
graphs indicate average % normalized spectral abundance factor (NSAF) for CT 
(purple) and unamended (green) soil microcosms, with shaded areas denoting the 95% 
confidence interval of triplicate measures and individual data points plotted. (a) CT-
depolymerization may be mediated by peroxidase activity from AA2 and indirect activity 
from AA6 expression from Kosakonia, (b) C15 biodegradation may be performed by the 
coordinated activity of three enzymes (CHI, FCR, PHY), these gene sets are expressed 
both by Holophaga and Sporomusales UBA7701 MAGs, and (c) multiple phenolic-active 
enzyme dynamics expressed by MAGs from these two taxa likely yield energy and 
produce acetate and butyrate. Enzyme abbreviations are as follows: peroxidase (AA2, 
EC 1.11.1.21); 1,4-benzoquinone reductase (AA6, EC 1.6.5.6), chalcone isomerase 
(CHI, EC 5.5.1.6), flavanonol-cleaving reductase (FCR), phloretin hydrolase (PHY, EC 
3.7.1.4), phloroglucinol reductase (PGR, EC 1.3.1.57), caffeoyl-CoA reductase (CAR, 
EC 1.3.1.108), indole-pyruvate oxidoreductase (IPOR, EC 1.2.7.8), phenylacetate-CoA 
ligase (PaaK, EC 6.2.1.30), and aromatic amino acid aminotransferase (AAT, EC 
2.6.1.57). Dotted vertical lines are shown to mark day 7 across plots, demarcating 
phase 1 and 2 from phase 3. Phenolic compounds in orange are detected in 
metabolomics, with arrow color corresponding to MAGs expressing detected enzymes. 
Dotted arrows represent metagenome-encoded enzymes. 
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Figure 2.20. Genome-resolved metaproteomic dynamics across biogeochemical 
processes. Processes detected in at least two of three CT (purple) or unamended 
control (green) microcosms at each timepoint are indicated by colored squares. The 
genomic origins of identified functions are indicated by circles in columns corresponding 
to activity in either control or CT microcosms, or activity recovered in both. Proteins that 
could be uniquely assigned to a MAG are colored by MAG, while hits that were unique 
but unable to be traced to a MAG are unfilled (unbinned uniques), while proteins that 
were not unique are black circles (non-uniques).  
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Figure 2.21. Reconstructed metabolite pathway for polyphenol degradation via 3,4-
dihydroxyphenylalanine (DOPA). Metabolites detected via LC-MS and NMR analyses 
are highlighted in orange, with putative enzymes detected via metaproteomics 
highlighted in purple. Known enzymes for tyrosine conversion to DOPA, and DOPA 
conversion to dopamine, are listed with EC numbers. In our metaproteomes, we 
recovered peptides corresponding to Kosakonia aromatic amino acid decarboxylase 
and alcohol dehydrogenase.   
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Figure 2.22. Phyre2 structural models for putative flavonoid active enzymes. Structural 
models are shown for (a) chalcone isomerase, (b) phloretin hydrolase, and (c) 
phloroglucinol reductase. Sporomusales UBA7701 enzymes are shown on the left 
(chalcone isomerase and phloretin hydrolase = CTSoil_81, phloroglucinol reductase = 
CTSoil_82), while Holophaga models are shown on the right. N-terminal residues are 
red, and C-terminal residues are blue. Phyre2 structural model information and gene 
sequences  are found in Appendix B. 
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Figure 2.23 Schematic of CT impacts to soil microbiome function provided by 
metaproteome-informed metabolic networks with overlaid metabolite inputs and outputs. 
Arrows indicate metaproteome gene expression data, with green representing 
unamended and purple indicating CT-amended pathways. Metabolite dynamics are 
shown in boxed graphs, with lines indicating average signal for live CT (n=3, solid 
purple), and unamended control (n=3, green) microcosms with shaded areas including 
the 95% confidence interval and individual data points plotted, and autoclaved CT soil 
(dotted light purple). The methodology used to detect the metabolite is highlighted by 
box color (noted in the graphical legend), with FTICR-MS data given as percent of 
identified peaks, NMR as umol, and LC-MS as log2(peak areas). Nitrogen metabolism 
(blue box) is discussed in Appendix A. 
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Chapter 3 – CAMPER: Curated Annotations for Microbial Polyphenol Enzymes and 

Reactions2 

 
 
 

3.1 Overview 

 Curated Annotations for Microbial (Poly)phenol Enzymes and Reactions 

(CAMPER) is a tool that annotates genes likely involved in transforming polyphenols 

and provides chemical context for these transformations in a summarized form (Figure 

3.1). CAMPER aims to address a blind spot in microbial metabolism. It is currently 

challenging to infer polyphenol metabolism from genomic data because: 

1. Genes encoding biochemically characterized enzymes have not been 

propagated into or labelled in annotation databases 

2. Genes in databases can often be involved in multiple pathways, requiring expert 

knowledge to establish polyphenol context 

These challenges limit widespread understanding of the transformation of 

polyphenolic compounds across environments. 

To facilitate the inference of polyphenol metabolism from genomes, CAMPER 

includes 8 Hidden-Markov Model (HMM) profiles and 33 Basic Local Alignment Search 

Tool (BLAST) searches for (poly)phenol-active genes. The citations and amino acid 

sequences used to generate these homology based annotations are provided 

(Appendix C). We also provide recommended score cut-offs for searches using two 

 
2 This chapter was reproduced verbatim from “McGivern, B, Flynn, R, CAMPER, (2022), GitHub 
repository, https://github.com/WrightonLabCSU/CAMPER”. The text benefited from writing and editing 
contributions from contributing authors. The ordering of the materials in this dissertation are consistent 
with the content available online but have been renumbered to reflect incorporation into this dissertation. 
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ranks: a more stringent, trusted rank (A) and a more relaxed, exploratory rank (B). 

Beyond these 41 newly developed annotations, nearly 300 other known polyphenol 

annotations from other databases (KEGG, dbCAN) are included in the CAMPER 

summary. 

CAMPER summarizes the gene annotations into 101 modules representing 

different polyphenol transformations. These modules can be as small as a single gene, 

or can include up to a maximum of 12 genes in the largest module (Figure 3.2). 

Following Phenol-Explorer categories, these modules are classified by the established 

polyphenol family and sub-family. Then, the modules are classified by the oxygen 

requirements for the reactions encoded: (a) oxic for reactions that are either known to 

require oxygen, or have only been characterized under oxygenic conditions, (b) anoxic 

for reactions characterized under anoxic conditions, or (c) both for reactions reported to 

operate with or without oxygen. It is important to note that as our knowledge of 

biochemistry changes, these oxygen-classifications could change. The complete 

CAMPER road map shows the metabolic reactions encoded (Figure 3.3). There are 

currently three ways to run CAMPER, depending on the end users goals. 

3.2 CAMPER Data 

The CAMPER data set consists of 5 files (Appendix C), each serving a key role 

in reproducibly annotating  gene data: 

1. CAMPER_blast.fa: A fasta file of CAMPER genes used as a target in a BLAST 

style search provided by mmseqs search. 

2. CAMPER.hmm: A HMM file used as the target in an HMM profile search provide 

by MMseqs profilesearch 
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3. CAMPER_blast_scores.tsv: Provides the minimum cut off scores for search 

results and quality ranks with BLAST style searches. 

4. CAMPER_hmm_scores.tsv: Provides the minimum cut off scores for search 

results and quality ranks with HMM Profile searches. 

5. CAMPER_distillate.tsv: A custom distillate, for use with DRAM or with 

CAMPER_DRAMKit, to summarize the annotation results. 

3.3 Using CAMPER with DRAM 

This functionality will be available in next major release of DRAM, so CAMPER 

can be integrated into your regular genome annotation pipeline. The DRAM version will 

have the benefit of summarizing 300 annotations derived from KEGG and dbCAN 

databases, if you have these databases installed, in addition to the 41 CAMPER 

annotations. This will provide curated annotation and summarization of polyphenol 

transformation genes in addition to the regular DRAM databases. 

There are two steps to running CAMPER in DRAM: (1) annotation and (2) 

summarization (distillation, in DRAM terminology). Supply the --use_camper flag during 

the annotation step, like so: 

DRAM.py annotate --use_camper -i 'my_bins/*.fa' -o DRAM_wCAMPER 

DRAM.py distill -i DRAM_wCAMPER/annotations.tsv -o DRAM_wCAMPER_distilled 

The difference in outputs between DRAM with CAMPER and default DRAM is 

that you will find CAMPER-specific columns added to the annotations.tsv and you will 

find a CAMPER tab in your metabolism_summary.xlsx output. For descriptions of the 

content in output files, see the CAMPER Outputs section below. 
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3.4 CAMPER standalone tool: CAMPER_DRAMKit 

If your goal is to only look at CAMPER annotations, we recommend running 

CAMPER_DRAMKit, a standalone tool that provides curated annotation and 

summarization of polyphenol transformation genes. Unless you run with DRAM as 

described below and have KEGG and dbCAN databases, here you will only get the 41 

custom annotations within CAMPER. CAMPER_DRAMKit is really a smaller version of 

DRAM that follows much the same workflow as DRAM and has similar capabilities. 

There are three ways to set up the CAMPER_DRAMKit: 

3.4.1 Set up with Conda 

The simplest way to get started with the CAMPER_DRAMKit is with Conda, 

using the enviroment.yaml provided in this repository. CAMPER_DRAMKit comes with 

the latest version of CAMPER preloaded, so if all you want to do is annotate and distill 

called genes with CAMPER, you only need the following commands. 

wget https://github.com/WrightonLabCSU/CAMPER/main/CAMPER_DRAMKit/environment.yaml 

conda create --name CAMPER -f ./environment.yaml 

However, if you want to have all of CAMPER at your fingertips, you can use the 

following command to both download this repository, including all the CAMPER data 

and install the CAMPER_DRAMKit tool. 

git clone https://github.com/WrightonLabCSU/CAMPER.git 

cd CAMPER/CAMPER_DRAMKit 

conda create --name CAMPER -f ./environment.yaml 

In both cases, you can activate the newly made environments with the command: 

conda activate CAMPER 
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Provided all things have gone smoothly, you will be able to activate this 

environment at any time and use any of the commands outlined in the Usage section 

below. If there are any problems, please open an issue in the GitHub repository. 

3.4.2 Setup with pip 

If you are not able to use Conda, you can still install CAMPER_DRAMKit with pip 

using the command below. Note that first you will need to install manually install scikit-

bio, and MMseqs2, as these tools can't be installed with the other pip dependencies. 

pip install camper_dramkit 

3.4.3 Installing with DRAM 

If you intend to use CAMPER_DRAMKit with DRAM, it may be expedient to 

install them in the same Conda environment. This is easy to do if you have already 

made a DRAM Conda environment with the instructions in the DRAM README, then 

you can add CAMPER with the following commands: 

wget https://github.com/WrightonLabCSU/CAMPER/main/CAMPER_DRAMKit/environment.yaml 

conda env update --name DRAM -f ./environment.yaml 

If you install CAMPER_DRAMKit, you will get the latest version of the CAMPER 

database with it. If you want more control over the database, you can override the 

default data with the instructions in Other Tools and flags. 

3.4.4 Using CAMPER_DRAMKit 

Once installed, CAMPER_DRAMKit will provide three commands: 

camper_annotate, camper_distill and combine_annotations_lowmem. These commands 

alongside DRAM enable a variety of workflows. The simplest workflow is the two-step 

annotation and summarization of a single amino acid fasta file. An example of such a 

workflow is shown below: 
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camper_annotate -i my_genes.faa -o my_output  

camper_distill  -i my_output/annotations.tsv -o my_output/distillate.tsv  

These commands will make two files in the output directory (above named 

my_output, but this is customizable): annotations.tsv and distillate.tsv (or whatever you 

name it in your -o command). For descriptions of these files, see the CAMPER Outputs 

section below. 

An alternative workflow is to use in combination with DRAM. As previously 

stated, DRAM1.4.0 will include CAMPER by default as an easy tool, but it is possible to 

use CAMPER with any version of DRAM after 1.3, with one additional command. First 

follow the instructions above to update your DRAM environment with 

CAMPER_DRAMKit. Then with that environment activated, you should be able to run 

the following commands to make a new raw annotations file with all the DRAM data you 

expect, and the CAMPER data added in. If you are not able to update your DRAM 

environment the environments will need to be switched mid-workflow. 

DRAM.py annotate -i 'my_bins/*.fa' -o dram_output 

camper_annotate -i my_genes.faa -a dram_output_annotation -o camper_dram_output 

This will create a new set of raw annotations with CAMPER data added, in this 

case the path of the new file will be camper_dram_output/annotations.tsv. Then, use the 

camper_distill command to get a distillate with all the key genes from both DRAM and 

CAMPER. 

camper_distill  -i camper_dram_output/annotations.tsv -o 

camper_dram_output/camper_distillate.tsv 

For descriptions of the annotations.tsv and summary file, see the CAMPER 

Outputs section below. 
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3.4.5 Other Tools and flags 

To further customize the analysis workflow, there are a few more options in the 

CAMPER_DRAMKit package: 

1. Combine Annotations With low memory: You may want to re-annotate many 

exisiting DRAM annotation files, possibly from more than one version of DRAM. 

To this end we include the combine_annotations_lowmem command which 

should combine many annotation files quickly and with a small memory footprint, 

even if they come from different versions of DRAM. The command is used like 

so: 

Combine_annotations_lowmem -i /path/to/many/dramfolders/*/annotations.tsv -o 

combined_annotation.tsv 

The input path needs to be a wild card pointing to a set of DRAM annotation files, 

this is passed to the python glob command. This format should be familiar to 

bash formatting and it can be tested  with the ls command. 

2. Manually Specifying the Location of CAMPER Files: The behavior of the 

camper_annotate and camper_distill commands is controlled by the latest 

version of the CAMPER dataset. If you want to use an older version of CAMPER, 

it is suggested you install the older version of the CAMPER_DRAMKit tool, as 

they will be released together and be mutually compatible. However, if you must, 

you can also specify the files to use with camper_annotate and camper_distill 

using the appropriate arguments. An example is shown below. 

camper_annotate -i my_genes.faa -o my_output \ 

--camper_fa_db_loc CAMPER_blast.fa \ 

--camper_fa_db_cutoffs_loc CAMPER.hmm \ 
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--camper_hmm_loc CAMPER_blast_scores.tsv  \ 

--camper_hmm_cutoffs_loc CAMPER_hmm_scores.tsv 

camper_distill  -i my_output/annotations.tsv -o my_output/distillate.tsv \ 

--camper_distillate CAMPER_distillate.tsv 

Remember that running any script with the --help flag will provide more 

information. Also note that if one or more arguments is not specified, the default data 

will be used. 

3.5 I just want to run your BLAST and HMM searches on my own! 

 We get that sometimes this is all you want to do! This is the simplest way to use 

our annotations. See the above CAMPER Data section and download the 

CAMPER_blast.fa and CAMPER.hmm files. These can be run using blast, hmmsearch, 

or mmseqs2 searches of the data, for example: 

makeblastdb -in CAMPER_blast.fa -dbtype prot 

blastp -query my_genes.fa -db CAMPER_blast.fa -out BLAST_my_genes_CAMPER.txt -outfmt 6 

hmmsearch --tblout hmmsearch_my_genes_CAMPER.txt CAMPER.hmm my_genes.faa 

We strongly recommend curating these outputs with the scores given in the 

CAMPER_blast_scores.tsv and CAMPER_hmm_scores.tsv files for each profile search.  

3.6 CAMPER Outputs 

Approaches 1 and 2 output two files: the raw information for given searches 

(annotations.tsv) and the summarized information across searches (the distillate, either 

the metabolism_summary.xlsx if run through DRAM or the distillate.tsv from 

CAMPER_DRAMKit). 
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3.6.1 Raw annotations 

This is either a standalone file, or columns added to a file, depending on search 

approach. This file annotates the genes in your dataset that pass CAMPER score 

thresholds, reports the annotation from the databases, and the CAMPER scores. It 

includes the following columns: 

• camper_hits, A longer ID giving the CAMPER ID, gene abbreviation, and gene 

description. 

• camper_rank, A match quality rank based on the value of the bit score (A or B). 

For BLAST-style searches, an A rank is a bitscore >=200 and B >=120. For 

HMM-style searches, scores are specific to each profile (see 

CAMPER_hmm_scores.tsv). 

• camper_bitScore, The bitscore from the best search result. If more than one 

search meets at least a B-rank for a given gene, the search with the higher score 

is reported. 

• camper_id: Unique CAMPER ID used in the distillation step, of the form D000XX. 

• camper_definition: A short description of the CAMPER match in the database. 

• camper_search_type: Tells you if a HMM profile or blast search found this match. 

3.6.2 Distillate 

This is either a single file, or the CAMPER tab in the metabolism_summary.xlsx 

file. Each row in this file corresponds to a gene in a CAMPER module. This file gives 

you gene counts of genes in CAMPER modules. It includes the following columns: 

• gene_id, the database IDs assigned to this gene. These can be from CAMPER 

(D000XX), KEGG (KXXXX), dbCAN (AAX), or EC numbers. Note, some IDs are 
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included more than once in the sheet if they are involved in more than one 

module! 

• gene_description, A more informative description of the gene in the step 

including gene abbreviation and gene name. 

• module, The CAMPER module that the given gene belongs to. There are 101 

modules in CAMPER. 

• header, The classification for the polyphenol substrate following Phenol-Explorer 

Ontology. In the form: Polyphenol;Family;Sub-Family;Compound. 

• subheader, This contains information about routes, steps, and subunits. 

Sometimes, a given transformation can be accomplished in more than one 

sequence of steps: these are termed 'Routes'. Steps indicate the sequential 

transformations in the module. Subunits denote if the given gene encodes a 

subunit of a larger complex that carries out a step. Sometime steps are labelled 

as "optional" if they are not required. 

• specifc_reaction, This gives examples of reactions when possible. 

• oxygen, This is either "oxic", "anoxic","or "both" for reactions that require oxygen, 

don't require oxygen, or can function with or without, respectively. Note: these 

are largely based on literature reporting and the systems they were characterized 

in, and should be used as guidelines. 

• EC, The EC number (if known) for a reaction. 

• Notes, Any important information to know, for example: should they be 

extracellular etc.  

Happy CAMPER-ing! 
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Chapter 3 Figures 
 
 
 

 
Figure 3.1. Curated Annotations for microbial polyphenol enzymes and reactions 
(CAMPER) logo. 
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Figure 3.2. CAMPER consists of 101 polyphenol transformation modules, organized by 
substrates (Family and Subfamily) and oxygen requirements. Modules can be 
composed of 1-12 reaction steps. 
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Figure 3.3. The CAMPER road map. Reactions encoded within modules are shown, 
with blue, purple, and red arrows corresponding to inferred oxic, both, and anoxic 
reactions, respectively. Grey arrows correspond to steps encoded by unknown 
enzymes. Compounds in boxes are found more than once in the map. The text version 
of this map is found in Appendix C. 
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Chapter 4 – Auditing the enzyme latch unveils polyphenols as unbudgeted microbial 

carbon substrates in northern peatlands 

 
 
 

4.1 Summary 

A prevailing theory in arctic peatlands is that polyphenols and phenolic 

compounds limit microbial decomposition, in effect sequestering soil carbon and limiting 

carbon dioxide (CO2) flux. The theory is founded on the assumption that polyphenol 

degradation is mediated by a single oxygen-requiring enzyme known as polyphenol 

oxidase, though molecular evidence supporting this assertion is lacking. In Chapter 3 I 

described a polyphenol metabolism annotator that I used in this study to assess 

polyphenol biotransformations in multi-omics microbiome data along a permafrost thaw 

gradient. I revealed (i) a positive relationship between soil polyphenols and carbon 

dioxide concentrations, (ii) multiple enzymes and microbial lineages with the ability to 

degrade polyphenols were present and active across thaw and depth gradients, and (iii) 

expressed polyphenol metabolism predicted bog porewater CO2 concentrations 

implicating microbial greenhouse gas production outside traditionally considered 

substrates and redox conditions. Together these findings illustrate that in contrast to 

commonly-held assumptions, polyphenols are not an insurance for carbon 

sequestration in these climate-critical soils. 

4.2 Introduction 

Permafrost stores an estimated 50% of soil carbon1. But with increased arctic 

temperatures, permafrost is thawing thus risking alterations to the global carbon 

economy2. The carbon found in newly thawed soils is decomposed by the microbial 
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communities in these soils, yielding carbon dioxide (CO2) and methane (CH4) that, and 

potentially accelerates climate warming3,4. Thus, understanding the facets of microbial 

carbon processing along these thaw-created habitats is critical to predicting the fate of 

permafrost carbon stores. 

 For decades, the enzyme latch5 and derived theories6,7 have aimed to explain 

controls on carbon mineralization in northern peatlands, targeting polyphenols as the 

primary inhibitors of microbial decomposition. Polyphenols are plant derived 

compounds, spanning more than 10,000 chemical formulas and several structural 

families8. In these theories, the sole microbial polyphenol degrading enzyme is 

polyphenol oxidase (PPO), an oxygen requiring enzyme. Under the anoxic conditions 

that occurs with waterlogging in these habitats, PPO is rendered inactive and 

polyphenols are presumed to accumulate, inhibiting soil carbon mineralization by 

blocking microbial metabolism. However, these theories have never been tested in the 

field using highly-resolved microbiome methods, instead relying on less specific 

chemical and enzyme assays. In light of our recent laboratory demonstration that a soil 

microbial community used non-PPO enzymes to degrade a model polyphenol under 

anoxic conditions 9, we sought to comprehensively curate microbial polyphenol 

transformations active in thawing permafrost and revisit  the fundamental assumptions 

of the enzyme latch in a field setting.  

To test the assertions of enzyme latch, we selected a model arctic permafrost 

peatland, Stordalen Mire3,10. Permafrost thaw at Stordalen Mire has created differing 

habitats, from dry, intact permafrost (palsa) through a partially thawed bog, to a fully 

thawed and saturated fen. To track polyphenol metabolism across these environmental 
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gradients, we obtained genome-resolved metatranscriptomes, metabolomes (FT-

ICRMS, LC-MS, NMR), and other geochemical data from three depths of palsa, bog, 

and fen cores. Leveraging this dataset, we provide a new view of polyphenols in 

microbially-catalyzed carbon cycling in these climate critical habitats.  

4.3 Enzyme latch disproved with multiple methods 

To evaluate enzyme latch in Stordalen Mire we used more traditional methods 

that have long supported the theory, in addition to high-resolution microbial community 

focused methods. If the enzyme latch was controlling soil carbon cycling the following 

suppositions would be expected: (i) a positive relationship between PPO and oxygen 

availability, (ii) a negative relationship between PPO and polyphenol concentrations, (iii) 

negative relationships between polyphenols and microbial carbon processing measures, 

(iv) and negative relationship between polyphenols and CO2 (Figure 4.1A).  For the first 

supposition, our metatranscriptome data supported an oxygen-dependence of PPO, but 

this relationship was not observed using the traditional PPO enzyme assay (Figure 

4.1B-C). This could be due to the convention of conducting the PPO assay under 

normal laboratory conditions instead of the environmentally relevant, potentially anoxic, 

conditions11. For the second supposition, we did not observe a significant negative 

relationship between PPO and polyphenol concentrations using traditional or multi-omic 

methods (Figure 4.1 B-C). For the third supposition, we did not observe any 

relationships between polyphenols and microbial or enzyme activity across data types, 

though we did see a significant negative correlation between polyphenol content and 

different forms of organic matter across habitats (Figure 4.1 B-C). Lastly, and most 

notably, in contrast to the primary tenet of enzyme latch, we showed significant and 
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positive relationships between polyphenol concentration measured several ways, and 

porewater carbon dioxide (CO2) concentrations (Figure 4.1B-C).  

Collectively, our investigation of the enzyme latch hypothesis, that used both 

traditional and modern high-resolution methods, failed to support key steps in the 

biogeochemical cascade. The lack of relationship between PPO and polyphenol 

concentration suggests the oxygen-requiring PPO is not the sole enzyme controlling the 

fate of these compounds in this thaw gradient. This finding is not entirely surprising 

given that it is unlikely that a single enzyme modulates the behavior of this diverse pool 

of substrates. Paired to the positive relationship observed between polyphenol 

concentration and porewater CO2 concentrations, it is probable that currently 

unaccounted microbial metabolisms contribute to polyphenol degradation in situ. Thus, 

we sought to investigate whether other avenues of microbial polyphenol metabolism 

were active in Stordalen Mire.  

4.4 Stordalen Mire polyphenols are diverse and habitat specific 

To more comprehensively profile microbe-polyphenol interactions, we 

characterized the polyphenol landscape in Stordalen Mire. According to the phenol-

explorer classification system, polyphenols span five families: flavonoids, lignans, 

stilbenes, phenolic acids, and other polyphenols. Despite this chemical diversity, 

polyphenols have historically been regarded as a uniform group in many investigations. 

This is likely in part due to analytical limitations that make it difficult to examine 

individual compounds.  Many studies have relied on  methods like the Folin-Ciocalteu 

assay to assess “total phenolics” as a surrogate for compound-specific 

determinations12. At Strodalen Mire, the Folin-Ciocalteu assay reveals the bog has 
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significantly more soluble polyphenols than the fen (p=0.013, Figure 4.2A). However, 

this masks any information on the diversity and identity of the polyphenols in the 

samples. Therefore, we used Fourier Transform mass spectrometry (FT-ICRMS) to 

characterize the high-molecular weight, likely polymeric polyphenols, and Liquid 

Chromatography mass spectrometry approaches (LC-MS) to detect smaller polyphenols 

and phenolic compounds.  

 A FT-ICRMS data analysis convention is assigning identified masses a formula, 

and placing this formula in a biochemical class  (e.g. tannin-like, lignin-like) using the 

ratios of O:C and H:C13. Using compounds with known polyphenol structures we refined 

the boundaries on these biochemical classes, defining  lignin-like, hydrolysable tannin-

like, and condensed tannin-like boundaries (see methods). Metabolites within these 

classes were all enriched in the palsa and bog (Figure 4.2B). We further identified 24 

polyphenol metabolites in our LC-MS data exhibiting habitat-specific abundance 

patterns (Figure 4.2B). We detected different phenolic acids across the site, as well 

some interesting “other” polyphenols. We exclusively detected two stilbenes in the bog. 

Several monomeric and dimeric flavonoids were detected across the palsa and bog, 

while in the fen we detected three different flavonoids that were prenylated14. 

Collectively, this high-resolution view of Stordalen Mire metabolites was an important 

step to identify the prevalent classes of polyphenols microorganisms may encounter.  

4.5 Diverse lineages express polyphenol metabolizing gene in Stordalen Mire 

microbiomes 

 Polyphenol metabolism is challenging to infer from microbial genomes because 

the genes encoding their metabolism are either missing or unlabeled in misannotated in 
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databases. Therefore, to survey the potential for polyphenol metabolism across the 

microbial community at Stordalen Mire, we developed Curated Annotations for Microbial 

Polyphenol Enzymes and Reactions (CAMPER), a tool for annotating and summarizing 

genomic potential for polyphenol transformations. CAMPER can annotate homologs to 

41 biochemically characterized polyphenol-active enzymes (Chapter 3) and nearly 300 

previously recognized polyphenolic-related annotations. CAMPER defines 101 modules 

that describe polyphenol transformations (Figure 4.3A). These modules are first 

organized using the established ontology for polyphenols8, including the structural 

family and subfamily of polyphenols they act upon, then classified by the known oxygen 

requirements for the enzymes. CAMPER also broadly categorizes polyphenol 

metabolism, considering reactions where polyphenols directly (ex. complete 

degradation) or indirectly (ex. conversions, respiration, non-specific reactions) support 

microbial metabolism.  

 To investigate the potential for polyphenol metabolism in Stordalen Mire, we 

used CAMPER to annotate a database of 1,864 medium- and high-quality 

metagenome-assembled genomes (MAGs) recovered from the site. Of the 101 modules 

in CAMPER, we observed 84 in our MAGs. The potential for polyphenol metabolism 

spanned the standardized GTDB15 bacterial and archaeal trees (Figure 4.3B), with 73% 

(n=1,372) of the MAGs encoding at least 5 CAMPER modules. The average and 

median number of modules encoded across the MAGs was 9 and 7, respectively 

(Figure 4.3C). In fact, of the 43 phyla-level lineages in this Stordalen MAG dataset, the 

Patescibacteria (n=58 MAGs) were the only lineage largely devoid of CAMPER 

modules. 



 111 

MAGs from the Acidobacteriota, Proteobacteria, Actinobacteriota, 

Eremiobacteriota, and Desulfobacterota_B were particularly enriched in polyphenolic 

metabolism, encoding over 23 CAMPER modules (Figure 4.3D). Among these are 

MAGs from well characterized polyphenol and aromatic active genera like 

Novosphingobium16 and Herbaspirillum17. Interestingly, of the top 100 CAMPER 

encoding MAGs, 66 belong to new or undescribed lineages, illustrating the power of 

CAMPER to broaden knowledge of microbial polyphenol metabolism.  

4.6 Microbial polyphenol metabolism is active across Stordalen Mire 

 To complement our findings that polyphenol metabolism was widely 

encoded across the Stordalen Mire microbiome, we investigated the prevalence of 

CAMPER modules in field metatranscriptomes. Linking expression to the detected 

polyphenol metabolite pool, CAMPER module expression was significantly related to 

polyphenol metabolite abundance across habitats and depth gradients (Procrustes 

analysis, p=0.026, 999 permutations). Across the habitats and depths we detected 

microbial expression of 39 unique polyphenol transforming genes, which were assigned 

to 30 CAMPER modules. Module expression levels exhibited site and depth specific 

trends (Figure 4.4A). Notably, reflecting soil redox, the deep waterlogged samples (ex. 

20-24 cm bog and fen) were enriched in exclusively anoxic CAMPER modules. This 

refutes all-or-nothing PPO assumptions of the enzyme latch, where polyphenolic 

degradation is only mediated by a single, oxygen requiring enzymes. Instead our data 

depicts microbial communities that are equipped and expressed genes for polyphenol 

metabolism regardless of redox. The vast number of polyphenolic genes, acting on a 
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wide array of polyphenol substrates, exemplifies the many ways polyphenols may 

contribute to microbial metabolism.  

To evaluate this we highlight different polyphenol active metabolisms across the 

mire.  A module highly enriched in the palsa metatranscriptome is chlorogenic acid 

cleavage (Figure 4.4B)., comprised of a single gene encoding the enzyme chlorogenic 

acid esterase (chlE). Across palsa depths, we detected chlE expression from MAGs 

spanning 24 genera. The canonical reaction for this enzyme is cleavage of the ester 

bond in chlorogenic acid to release the phenolic compound caffeic acid and the 

nonphenolic quinic acid that can be further degraded via central aromatic metabolism. 

Chlorogenic acid is a reported metabolite of Sphagnum18, which is a dominant 

vegetation cover at Stordalen19. An alternative reported substrate is propyl-gallate, 

which is cleaved to propanol and gallic acid20. Integrating metabolite and 

metatranscriptome data, both quinic acid and propyl-gallate are detected metabolites 

(Figure 4.2). This module is an example of how polyphenols can be cleaved to release 

other metabolites for degradation.  

Coniferyl alcohol degradation was enriched in the bog metatranscriptomes 

(Figure 4.4C), expressed from MAGs representing 96 genera. In this module, the 

enzymes coniferyl alcohol dehydrogenase (calA) and coniferyl aldehyde dehydrogenase 

(calB) convert coniferyl alcohol to ferulic acid, a compound we detected in bog 

porewaters. However, we also detected the metabolite 4-methoxycinnamaldehyde and 

given reports that these enzymes could also act on cinnamic acids21, the substrates 

cannot be deduced from expression data alone. It is possible that the broad substrate 

range for these enzymes using multiple confirmed substrates in these porewaters could 
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explain the expression across diverse lineages. This module highlights that polyphenol 

metabolism often involves converting one polyphenol to another. 

While pyrogallol was detected across sites (Figure 4.2), expression of pyrogallol 

degradation was enriched in the fen (Figure 4.4D) expressed by 13 different genera. 

The enzyme pyrogallol-phloroglucinol transhydroxylase (pgthAB) converts pyrogallol to 

phloroglucinol, which is then degraded to acetate via the phloglucinol reductase and a 

series of unknown enzymes. The production of acetate from this metabolism is notable, 

as this fen is enriched in acteoclastic methanogenesis22 relative to the other sites. 

Therefore, polyphenol metabolism may also generate substrates that drive other 

biogeochemically important metabolisms.  

Most interestingly, the caffeic acid respiration module is enriched in the bog and 

the fen (Figure 4.4E). In this, caffeic acid serves as an electron acceptor, canonically 

paired to hydrogen as an electron donor. First, caffeic acid is activated to caffeyl-coA 

and subsequently reduced to hydrocaffeyl-coA, which transfers the coA to another 

caffeic acid in an energy saving loop23. The reduction step generates NAD+ and 

reduced ferrodoxin, which fuel the Rnf complex and a hydrogenase23. The car operon 

was characterized in Acetobacterium woodii, and we expand it to 167 active genera. 

This metabolism defies the view that polyphenols can only serve metabolism as a 

carbon source or electron donor, instead supporting anaerobic respiration. 

4.7 Active polyphenol metabolism by undescribed lineages 

We leveraged our genome-resolved metatranscriptome data to identify key 

polyphenol-active lineages in Stordalen Mire. Of the MAGs encoding CAMPER 

modules, 75% (n=1,007) had polyphenol modules that recruited metatranscriptome 
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reads, illustrating that polyphenol metabolism is cosmopolitan across the mire. We 

aggregated our MAGs at the genus level to yield 266 genera and found nearly half of 

these exhibited habitat-specific polyphenolic activity (Figure 4.5A). Reinforcing the 

status of the bog as a transition site in the thaw gradient, 95 genera were either active in 

the bog and palsa, or the bog and fen.  

We used a combination of average CAMPER expression level and average 

number of modules expressed per site to determine top polyphenol metabolizing genera 

(Figure 4.5B). A genus designated Palsa-295, a member of an undescribed order of the 

Acidobacteriota, expressed on average 12 modules in the palsa. In the bog, a putative 

novel genera in the Proteobacterial Steroidobacteraceae, Bog-1198, expressed on 

average 15 modules. A novel genera of the Chloroflexota, Fen-1064, was the top 

lineage in the fen. Therefore, we show polyphenol metabolism as a function for these 

unexplored lineages. Of note, an Acidobacterial genus Terracidiphilus was active across 

all habitats, expressing on average 9 modules in the bog and fen. There is just one 

characterized species of Terracidiphilus24, and here we expand the potential 

metabolisms for this genus to include polyphenol metabolism. Collectively, we illustrate 

the combined power of CAMPER, a rich database of microbial MAGs, and field 

metatranscriptomes for uncovering novel lineages and functions. 

4.8 Polyphenol metabolism predicts porewater carbon dioxide 

We wanted to understand how this refined view of polyphenol metabolism could 

elucidate carbon mineralization. Using a sparse partial least squares regression 

(sPLSR), we predicted bog porewater CO2 concentrations from CAMPER module 

expression (Figure 4.6A, r2=0.55, p=0.028). This model predicted bog porewater CO2 
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concentrations nearly as well as a model constructed from geochemistry variables (ex. 

depth, temperature; Figure 4.6B, r2=0.60, p=0.030). Together, polyphenol module 

expression and geochemistry explained a substantial amount of bog porewater CO2 

concentration variation (Figure 4.6C, r2=0.81, p=0.010). Module expression did not 

explain bog porewater CH4 concentrations possibly because the end products of this 

metabolism may not yield methanogenic substrates or may be toxic to methanogens. 

Module expression was also not explanatory for fen porewater gas concentrations, 

which could be because the polyphenol concentration was significantly higher in the bog 

samples (Figure 4.2) and thus more centrally linked to microbial carbon metabolism. 

Taken together there are many factors beyond a single compound type that likely 

regulate microbial decomposition in these habitats, but our findings do demonstrate 

polyphenol metabolism is broader than a single enzyme and that polyphenols do not 

appear to restrict carbon mineralization in these soils.   

 To better resolve the key components of the combined polyphenol gene 

expression and geochemistry model, we used a Variance in Projection (VIP) score and 

correlations to bog porewater CO2 concentrations to define significance (Figure 4.6D). 

When considering both VIP and correlation significance, depth was the most significant 

variable in the model (VIP=3.81) for predicting CO2 concentrations, while expression of 

several oxic CAMPER modules was also predictive and correlative. We note these 

genes were not PPO, but included modules for stilbene and lignan degradation. 

Interestingly, these modules were all negatively correlated to bog CO2 concentrations, 

which may reflect a depth-dependence due to their oxic nature. This analysis also 

showed that there were predictive CAMPER modules that were both positively and 
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negatively related (not significant correlations) to bog porewater CO2, revealing that 

polyphenol metabolism is a dynamic and complicated part of bog carbon cycles. 

Together, these results illustrate that polyphenol metabolism is an important parameter 

for predicting future CO2 emissions, albeit in a site-specific manner.  

 The centrality of polyphenol metabolism to bog carbon cycles shown here is 

notable, as the enzyme latch was originally developed in bogs. Beyond that, other 

studies have targeted bog polyphenols as being inhibitory and limiting to carbon 

mineralization25. To reconcile our results with those studies, we offer two points: (1) it 

can be true that polyphenols are inhibitory to some microorganisms while also being 

used by others, and (2) that complex webs of microbial metabolisms and environmental 

factors contribute to emitted CO2 and CH4. Towards (1), we showed the bog microbial 

communities found along the depth gradient were actively using polyphenols. As such, 

more targeted studies are needed to understand which polyphenols are inhibitory, under 

which conditions, and what microorganisms they inhibit. Towards (2), we offer these 

findings and CAMPER as a public tool for further understanding how microbial 

polyphenol metabolism is wired into field carbon cycles.  

4.9 Conclusion 

Polyphenols have long been cited as controllers of peatland carbon cycles 

through the enzyme latch mechanism. As the studies proposing and supporting these 

roles have historically measured polyphenol impacts on net outputs of mineralization, 

we sought to focus on the interplay between polyphenols and the microbiome. Here, we 

refuted an enzyme latch mechanism in Stordalen Mire using both traditional and 

genome-enabled methods. We show microbial polyphenol metabolism is more than 
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polyphenol oxidase and that polyphenols can serve a variety of metabolic uses for 

microbial communities. In Stordalen Mire, we illustrated that polyphenol metabolism is 

broadly encoded in the microbial community and expressed across a permafrost thaw 

gradient regardless of redox conditions. Finally, we show that expressed polyphenol 

metabolism could help explain porewater CO2 concentrations in bogs. Future 

assessments of peatland and permafrost microbial carbon cycles should consider the 

myriad ways that polyphenols support microbial metabolism to better understand and to 

predict ecosystem biogeochemistry. 

4.10 Methods 

4.10.1 Field Site and Sampling 

Stordalen Mire is a peatland in Northern Sweden (68 22ʹ N, 19 03ʹ E). The site 

has three main habitats along a permafrost thaw gradient, with distinct vegetation and 

thaw status: (1) palsa, overlaying permafrost, well-drained, and dominated by woody 

plantsand shrubs, (2) bog, intermediate-thaw with variable water table depth, dominated 

by Sphagnum mosses, and (3) fen, fully thawed and waterlogged, dominated by 

Eriophorum sedges. 

 In July 2016, triplicate cores were taken from palsa, bog, and fen sites (all within 

a 120m radius) in Stordalen Mire using an 11-cm diameter push-corer. Cores were 

sectioned in the field at three depths: surface (1-4cm), middle (10-14cm), and deep (20-

24cm).  Core sections were stored at -20˚C until analysis.  

4.10.2 Field Geochemical Analyses 

 Before coring, porewater from each core site was collected using a perforated 

stainless-steel piezometer inserted into the peat to the desired depth, and extracting 
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with an airtight syringe. Due to the dry nature of the palsa, no pore water was collected, 

and often was unable to be collected in bog and fen surfaces. Porewater was used to 

determine pH, and used to measure porewater CO2 and CH4 using a Flame-Ionization-

Detector Gas Chromatography equipped with a methanizer25.  

4.10.3 Metagenome Assembled Genome Taxonomy, Phylogeny, and Annotation 

A database of 13,290 medium- and high-quality metagenome-assembled 

genomes (MAGs) has constructed from 882 Stordalen Mire field and incubation 

metagenomes, from 2011-2017. These 13,290 MAGs were dereplicated at 97% identity 

using dRep26 into 1,864 representative MAGs. MAGs were annotated using DRAM27 

(v1.3.2).  

MAG taxonomy was assessed using the GTDB-tk15 (v2, r207). Phylogenetic 

trees of the MAGs were inferred using the GTDB de_novo_wf workflow for both 

bacterial and archael MAGs, using p__Patescibacteria and p__Micrarchaeota as 

outgroups, respectively. Phylogenetic trees were visualized using the ggtreeEXTRA28 R 

packages.  

4.10.4 RNA Extraction 

DNA and RNA were co-extracted using the Mobio PowerMax Soil DNA/RNA isolation kit 

(cat# 12966-10) with slight modifications. Briefly, sample vials were thawed on ice. After 

thawing, 5-10 g of peat materials (preserved in Lifeguard soil preservation solution, Qiagen) was 

added into the bead tubes in the kit, and the nucleic acids were extracted following the 

manufacturer’s protocol without the addition of beta-mercaptoethanol at the beginning. 

Reagents were proportionally increased to maintain the concentration and strength of solutions. 

An additional ethanol wash of nucleic acids-bound column was performed to further wash out 

impurities. The resulting nucleic acids were eluted with 5ml RNase-free DI water and further 
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concentrated using ethanol precipitation overnight and re-eluted in 100 ul of TE. The resulting 

nucleic acids are then further processed for DNA and RNA separation and purification. Briefly, 

the extracted nucleic acids were aliquoted into two 2ml tubes at a ratio of 1:2. RNase treatment 

and DNase treatment (Roche) were performed following the manufacturers’ instructions on the 

recovery of DNA and RNA. After the treatments, DNA and RNA were further purified by 

phenol:Chloroform purification to remove the enzymes and impurities. DNA and RNA were then 

ethanol precipitated and the pellets were eluted in TE buffer. Final purified DNA and RNA were 

quantified with Qubit 3.0. Quality of extracted RNA was also examined with TapeStation 

analysis at Genome shared resources (GSR) at the Ohio State University. Extracts 

were stored at -80C till downstream sequencing analysis.    

4.10.5 Metatranscriptome Analysis 

 Metatranscriptome libraries were prepared for the 27 samples. Using 10ng RNA 

as input, rRNA was depleted using the QIAseq FastSelect −5S/16S/23S (Qiagen) kit 

following the kit protocol with the following modifications: addition of probes for plant 

and yeast also, and using one-third the probe volumes. Then, the TruSeq Stranded 

Library Preparation kit (Illumina) was used to prepare the sequencing library. Libraries 

were sequenced on an Illumina NovaSeq 6000 system at the Genomics Core at the 

University of Colorado Anschutz Medical Campus. 

 Raw metatranscriptome readds were quality trimmed and adapters removed 

using bbduk29 with the following flags: k=23 mink=11 hdist=1 qtrim=rl trimq=20 

minlength=75. Reads were filtered with rqcfilter2[ref] using the following flags: jni=t rna=t 

trimfragadapter=t qtrim=r trimq=0 maxns=1 maq=10 minlen=51 mlf=0.33 phix=t 

removeribo=t removehuman=t removedog=t removecat=t removemouse=t khist=t 

removemicrobes=t mtst=t sketch kapa=t clumpify=t tmpdir=null barcodefilter=f 
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trimpolyg=5. Filtered and trimmed reads were mapped against the database of 97% 

dereplicated MAGs using bowtie230 using the following settings: -D 10 -R 2 -N 1 -L 22 -i 

S,0,2.50. The output SAM file was converted to BAM using samtools31, and filtered 

using the reformat.sh script in the bbtools29 package using: idfilter=0.95 pairedonly=t 

primaryonly=t. Mapped reads were counted using htseq-count32 using the following 

flags: -a 0 -t CDS -i ID --stranded=reverse. Read counts were filtered to remove counts 

<5, and were converted to geTMM33 in R. 

4.10.6 Enzyme Assays 

Activity of five hydrolytic enzymes β-d-glucosidase, β-d-xylosidase, N-acetyl-β-d-

glucosaminidase, arylsulphatase, and phosphatase was assessed with fluorometric 

enzyme assays following methods adapted from Saiya-Cork et al. 200234 and DeForest, 

200935. Briefly, a soil slurry was prepared for each sample by blending 1 g of soil with 

125 mL of sodium acetate buffer (50 mM; pH 6.2). The soil slurry was then transferred 

to a 96 well flat-bottom black microplate which included a buffer only control column , as 

well as controls containing only soil and standard. Following, 4-methylumbelliferyl 

(MUB) standard solution and fluorescently linked enzyme substrates were added to the 

respective wells and the plates were incubated at 25°C for 45 min for β-d-glucosidase, 

N-acetyl-β-d-glucosaminidase, arylsulphatase, and phosphatase, and 30 min for β-d-

xylosidase. Incubation times and substrate concentrations were chosen based on a V-

max test performed to capture peak enzyme activity. Fluorescence was read in a 

BioTek Synergy HT microplate reader at a wavelength of 460 nm emission and  360 nm 

excitation. Final enzyme activity was reported as µmol activity g-1 dry soil h-1. 
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The oxidative enzyme activity of phenol oxidase was assessed with a 

colorimetric enzyme assay35. A soil slurry was prepared for each sample by blending 1 

g of soil with 125 mL of sodium acetate buffer (50 mM; pH 6.2), and slurries were 

transferred to a 96 deep-well plate. A blank column containing only buffer was included 

in the plate, as well as controls containing only buffer and substrate. L-3,4,-dihydroxy 

phenylalanine (L-DOPA) was chosen as the substrate for measuring phenol oxidase 

activity. After adding 25 mM L-DOPA substrate, plates were incubated at 25°C for 24 

hours. Following incubation, the supernatant was transferred to a 96 well flat-bottom 

clear microplate, and absorbance was read in a BioTek Synergy HT microplate reader 

at 460 nm. Final activity was reported as µmol activity g-1 dry soil h-1. 

4.10.7 Folin-Ciocalteu Assay 

To determine total phenolics, we used the Folin-Ciocalteu assay on the water 

extracts of the soil samples.  Extracts were prepared from all the samples, centrifuged 

to remove the soil, and the extracts were stored at -80 until analysis.  On the day of 

analysis, each extract was thawed and centrifuged briefly (10,000 x g) to remove 

insoluble material, and 25 uL aliquots were transferred to 96 well plates.  The methyl 

gallate standard (0.2 mg/mL) was dispensed into the wells to obtain a series of samples 

containing 0-4.25 ug methyl gallate.  On each plate, both samples and standards were 

run in triplicate.  Each extract was analyzed on two different days..  After adding 50 uL 

of Folin reagent (Sigma), 20 uL of 20% (m/v) Na2CO3, and enough water to bring the 

volume of each well to 95 uL, the plate was briefly mixed and then incubated in the dark 

for 20.  The samples were then read at 750 nm (Biotek Synergy LX, a standard curve 
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was generated, and the total phenolic content of each sample established by 

interpolation.    

4.10.8 Organic Matter metabolite Extraction 

 Water soluble metabolites were extracted from peat by adding 7 mL of 

autoclaved milliQ water to 1g of peat in a sterile 15 mL Eppendorf tube. Tubes were 

vortexed twice for 30 seconds, and then the peat-water mixture was sonicated for 2 

hours at 22˚C. Samples were then centrifuged to separate the supernatant, which 

served as the water extract.  

4.10.9 LC-MS 

 Water extracted metabolites were thawed at room temperature and centrifuged again to 

remove any potential particles that formed after thawing. Next, each sample was split into two 

2ml glass tube vials (1 ml each), one for hydrophilic interaction liquid chromatography (HILIC) 

and the other for reverse-phase (RP) liquid chromatography. Samples in both vials were then 

dried down completely on a Vacufuge plus (Eppendorf, USA).  Samples were resuspended in a 

solution of 50% Acetonitrile and 50% water for HILIC and a solution of 80% water and 20% 

HPLC grade methanol for RP. 

A Thermo Scientific Vanquish Duo ultra-high performance liquid chromatography system 

(UHPLC) was used for the liquid chromatography step. Extracts were separated using a Waters 

ACQUITY HSS T3 C18 column for RP separation and a Waters ACQUITY BEH amide column 

for HILIC separation. 

Samples were injected in a 1 μL volume on column and eluted as follows:  for RP the 

gradient went from 99% mobile phase A (0.1% formic acid in H2O) to 95% mobile phase B 

(0.1% formic acid in methanol) over 16 minutes. For HILIC the gradient went from 99% mobile 

phase A (0.1% formic acid, 10 mM ammonium acetate, 90% acetonitrile, 10% H2O) to 95% 
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mobile phase B (0.1% formic acid, 10 mM ammonium acetate, 50% acetonitrile, 50% H2O).  

Both columns were run at 45 °C with a flowrate of 300 μL/min. 

A Thermo Scientific Orbitrap Exploris 480 was used for spectral data collection with a 

spray voltage of 3500 V for positive mode (for RP) and 2500 V for negative mode (for HILIC) 

using the H-ESI source. The ion transfer tube and vaporizer temperature were both 350 °C. 

Compounds were fragmented using data-dependent MS/MS with HCD collision energies of 20, 

40, and 80. 

The Compound Discoverer 3.2 software (Thermo Fisher Scientific) was used to analyze 

the data using the untargeted metabolomics workflow. Briefly, the spectra were first aligned 

followed by a peak picking step. Putative elemental compositions of unknown compounds were 

predicted using the exact mass, isotopic pattern, fine isotopic pattern, and MS/MS data using 

the built in HighChem Fragmentation Library of reference fragmentation mechanisms. 

Metabolite annotation was performed using spectral libraries and compound databases. First, 

fragmentation scans (MS2) searches in mzCloud were performed , which is a curated database 

of MSn spectra containing more than 9 million spectra and 20000 compounds. 

Second, predicted compositions were obtained based on mass error, matched isotopes, 

missing number of matched fragments, spectral similarity score (calculated by matching 

theoretical and measured isotope pattern), matched intensity percentage of the theoretical 

pattern, the relevant portion of MS, and the MS/MS scan. The mass tolerance used for 

estimating predicted composition was 5 ppm. Finally, annotation was complemented by 

searching MS1 scans on different online databases with ChemSpider (using either the exact 

mass or the predicted formula). Based on the annotation results, metabolites were divided into 

three categories: 1) full match on the three methods used (mzCloud, predicted composition, and 

ChemSpider), 2) full match by two methods (Predicted composition and ChemSpider) and 3) 

annotated only by one method (ChemSpider). 
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4.10.10 FT-ICRMS Analysis  

Water extracts were first purified using solid phase extraction (SPE) to remove 

contaminants (i.e., salts) according to Dittmar et al., 200836.Briefly, water extracts were 

acidified to pH 2 using 1M HCL. Then, extracts were filtered through a 3 mL Bond Elut 

PPE cartridge (Aligient) that was previously activated using methanol. Cartridges were 

washed 3 mL of a 0.01 M HCl solution for five times, then dried using filtered air. Finally, 

extracts were eluted using 1.5 mL of methanol and stored at -80 °C until used. 

Purified extracts were analyzed by direct injection using a 12 Tesla Bruker FTICR 

mass spectrometer located at the Pacific Northwest National Laboratory (PNNL). 

Positive and negative charged molecular ions were generated using a Bruker 

electrospray ionization (ESI) source. The instrument stability was optimized using A 

Suwannee River Fulvic Acid standard (SRFA), obtained from the International Humic 

Substance Society (IHCC). Potential carry-over between samples was monitored by 

injecting HPLC grade methanol. The instrument was flushed between samples using a 

combination of milliQ water and methanol. In order to account for variations in carbon 

concentrations in different samples the ion accumulation (IAT) was varied between 0.03 

and 0.05 s. A total of 144 individual scans per sample were collected, averaged, and 

calibrated using an organic matter homologous series separated by 14 Da (CH2). Mass 

accuracy was < 1 ppm for single charged ions measured across a m/z range of 100–

1,200 m/z, the mass resolution was ~240K at 341 m/z and the transient was 0.8 s. Raw 

spectra collected per sample was transformed into a list of m/z values using the FT-MS 

peak picker module within the BrukerDaltonik version 4.2 software using a signal to 
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noise ratio of 7 and absolute intensity threshold of 100 (default). Formularity37 software 

was used to assign putative chemical formulae following Tfaily et al., 201838. 

4.10.11 Refinement of Tannin and Lignin Van Krevlen classes 

Van Krevlen analyses assign molecular formula to classes using H:C and O:C 

ratios. Two classical regions are the lignin-like and tannin-like region, however these 

mask a huge amount of complexity (ex. Condensed tannins vs. hydrolysable tannins).  

Using an approach similar to that in Laszakovits et al. 202239, we sought to refine these 

classifications using known formula from over 60 characterized natural substrates. We 

determined the following H:C and O:C ratios for hydrolysable tannins (HT), condensed 

tannins (CT), and lignin: 

Lignin: 0.3< O:C < 0.48, 1.08 < H:C<1.28 

Hydrolyzable Tannin: 0.6<O:C<0.7, 0.58<H:C,0.89 

Condensed Tannin: 0.4<O:C<0.5, 0.74<H:C<0.88 

4.10.12 Nuclear Magnetic Resonance (NMR) Analysis 

 To follow bio-available metabolites, we used NMR on the water extracted 

supernatant samples. Supernatant samples (180 µL) were combined with 2,2-dimethyl-

2-silapentane-5-sulfonate-d6 (DSS-d6) in D2O (20 µL, 5 mM) and thoroughly mixed prior 

to transfer to 3 mm NMR tubes. NMR spectra were acquired on a Bruker Neo 

spectrometer operating at 18.8T (1H ν0 of 800.30 MHz) equipped with a 5mm Bruker 

TCI/CP HCN (inverse) cryoprobe with Z-gradient.at a regulated temperature of 298.0 K. 

The 90° 1H pulse was calibrated prior to the measurement of each sample. The one-

dimensional 1H spectra were acquired using a nuclear Overhauser effect spectroscopy 

(noesypr1d) pulse sequence with a spectral width of 20.1 ppm and 2048 transients. The 
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NOESY mixing time was 100ms and the acquisition time was 4s followed by a 

relaxation delay of 1.5 s during which presaturation of the water signal was applied. The 

1D 1H spectra were manually processed, assigned metabolite identifications and 

quantified using Chenomx NMR Suite 9.0. Time domain free induction decays (65536 

total points) were zero filled to 131072 total points prior to Fourier transform, followed by 

exponential multiplication (0.3 Hz line-broadening), and semi-automatic multipoint 

smooth segments baseline correction. Chemical shifts were referenced to the 1H methyl 

signal in DSS-d6 at 0 ppm. Metabolite identification was based on matching the 

chemical shift, J-coupling and intensity of experimental signals to compound signals in 

the Chenomx, HMDB and custom in-house databases. Quantification was based on 

fitted metabolite signals relative to the internal standard (DSS-d6). Signal to noise ratios 

(S/N) were checked using MestReNova 14.1 with the limit of quantification equal to a 

S/N of 10 and the limit of detection equal to a S/N of 3. 

4.10.13 CAMPER Construction  

 CAMPER is comprised of both Hidden-Markov Model (HMM) and Basic Local 

Alignment Search Tool (BLAST) searches. HMMs were created in cases where 

sufficient characterized sequences existed (ex. >3, with some phylogenetic diversity). 

For each gene type, we identified decoy sequences that represented related but 

functionally distinct sequences to the gene of interest. To create the profiles, we 

BLAST’ed the characterized sequences and the decoy sequences against the 

UniProt9040 database and pulled the top 200 hits for each gene. Using the pulled 

sequences, characterized sequences, and decoy sequences, we created a sequence 

alignment using MAFFT41 with the “-auto” flag, and the alignment was trimmed using 
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trimal42 -gappyout. This trimmed alignment was fed to IQTree43 with following flags: -alrt 

1000 -bb 1000 -m MFP -nt AUTO -ntmax 10. The “.tree” file was visualized in iTOL44, 

and rooted on the clade containing all decoy sequences. Then, we identified clades that 

contained all characterized sequences, and pulled the sequences in the clade. 

Importantly, we removed the characterized sequences from this set. Using the 

remaining sequences, we constructed HMMs in graftM45 using the graftm create 

command, and searched them against the sequences in the tree using the graftm graft 

command. HMM bitscores were visualized on the tree. We made two score cutoffs: the 

“A” score is the lowest bitscore assigned to a characterized sequence. The “B” score 

was curated from a combination of tree placement and score distribution. 

 MAGs were annotated for CAMPER genes using CAMPER within DRAM v1.3.2. 

MAGs were said to encode a module if they possessed >50% of the genes in the 

module. MAGs were said to express a module if they encoded >50% of the genes in the 

module, and at least 1 gene recruited metatranscriptome reads.  

4.10.14 Statistics 

 All data analysis and visualization was done in R (v4.2.1). For correlations of 

enzyme latch data types, we used Pearson correlations in R, and p-values were 

adjusted within groups of comparisons using Benjamini-Hochberg adjustment.  

 Procrustes analysis was done in R with vegan protest to compare Bray-Curtis 

Dissimilarity matrices for polyphenol metabolites and CAMPER module expression. 

To predict porewater gas concentrations from geochemistry and CAMPER 

module expression, we used sparse PLS (sPLS)46, as implemented in the R package 
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mixOmics47. Geochemsitry variables were depth, soil temperature, Folin-Ciocalteu 

phenolics, and pH. All VIP scores48 were reported.  
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Chapter 4 Figures 
 
 
 

 
Figure 4.1. Multi-method investigation of the Enzyme Latch. (A) The Enzyme Latch 
cascade. (B) The expected relationships proposed by the Enzyme Latch. (C) Observed 
relationships using ‘Traditional’ assay methods. (D) Observed relationships using 
‘Omics and high-resolution methods. Significant Pearson correlations (Benjamini-
Hochberg adjusted p<0.05) are colored red and orange for positive and negative 
correlations, respectively. Depth is used as a proxy for oxygen, shown moving from 
deep to surface (left to right). Polyphenol content is given by Folin-Ciocalteu phenolics 
(F-C PPs, mg Methyl-Gallate equivalents/dry g soil) and polyphenol-like compounds 
identified in FTICRMS (%PPs). Polyphenol Oxidase activity is given by Phenol Oxidase 
assay (PPO, nmol activity/g/hr) and metatranscriptome expression of polyphenol 
oxidase (AA1, geTMM). Microbial activity is inferred through extracted RNA 
([RNA],ng/µL) and number of taxa that recruited reads in metatranscriptome (metaT 
rich). Extracellular hydrolase enzymes are given by Beta-glucosidase activity (Beta-Glu, 
nmol activity /g/hr) and glycoside hydrolase expression in metatranscriptome (GH, 
geTMM). Soil organic matter (SOM) is given by carbohydrate-like compounds identified 
in FTICRMS (%Carb). 
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Figure 4.2. Polyphenol characterization at Stordalen Mire. (A) The average of Folin-

Ciocalteu phenolics, in mg Methyl-Gallate equivalents per gram dry soil, per 
compartment (n=3). Error bars represent one standard deviation. The bog assay values 
are significantly higher than the fen, marked by an asterisk (*,t-test, p-value=0.013). (B) 
Heatmap showing mass spectrometry detected polyphenols across the habitats, palsa 

(brown), bog (green), fen (blue). Pyrogallol (black box) was detected across all habitats.  
Bottom row corresponds to polyphenol family based on established ontology. 

Prenylated flavonoids (red names) are shown at right.  
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Figure 4.3. Polyphenol metabolic potential encoded in Stordalen Mire. (A) Curated 
Annotations for Microbial Polyphenol Enzymes and Reactions (CAMPER) consists of 
101 polyphenol transformation modules, organized by substrates (Family and 
Subfamily) and oxygen requirements. Modules can be composed of 1-12 reaction steps, 
indicated by black circle size. (B) The 1,864 dereplicated Stordalen mire metagenome 
assembled genomes (MAGs) were placed onto the GTDB backbone trees for bacteria 
and archaea. The inner ring corresponds to phylum and the middle ring corresponds to 
the first unnamed taxonomic level for the MAG (ex. g__Rhodopila;s__ would be a new 
species). The outer ring displays the number of CAMPER modules encoded by each 
MAG, colored according to the polyphenol families in (A). (C) The distribution of the 
number of CAMPER modules encoded per MAG. Each circle corresponds to a MAG, 
and is colored by phylum. (D) The top 100 CAMPER module encoding MAGs are 
plotted, organized by genus. The y-axis displays the number of modules encoded. 
Names colored in red correspond to named genera, while black names represent 
potentially novel or undescribed lineages.  
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Figure 4.4. CAMPER module expression across Stordalen Mire. (A) Heatmap showing 
the standardized expression of CAMPER modules across the habitats, palsa (brown), 
bog (green), fen (blue). The top row displays the oxygen requirements of the modules: 
blue (oxic), red(anoxic), purple (both). Boxes highlight habitat expression trends. 
Modules colored in red are shown in (B-D). Structures shown in orange are detected in 
metabolite data.  
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Figure 4.5. Active CAMPER expressing genera. (A) Upset plot showing the habitat 
distribution of CAMPER-active genera across the habitats and those shared between 
habitats. (B) For each genus, the summed expression of CAMPER modules was 
calculated per habitat depth, then averaged across all depths within a habitat to give an 
average of polyphenol gene expression by habitat. Similarly, the number of modules 
expressed was summed across MAGs per compartment, then averaged across 
compartments in a site. Circles correspond to a given genus in a given site, colored by 
the site. The “top” polyphenol-active genera are labelled. A line connects the 
Terracidiphilus datapoints across habitats.   
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Figure 4.6. CAMPER expression predicts bog porewater carbon dioxide (CO2) 
concentrations. (A) Linear regression of measured and sparse partial least squares 
(sPLS)-predicted bog porewater (PW) CO2 concentrations considering summed 
expression of CAMPER modules. Error bands represent 95% confidence intervals, each 
point is a sample. (B) Linear regression of measured and sparse partial least squares 
(sPLS)-predicted bog porewater (PW) CO2 concentrations considering geochemical 
data. Error bands represent 95% confidence intervals, each point is a sample. (C) 
Linear regression of measured and sparse partial least squares (sPLS)-predicted bog 
porewater (PW) CO2 concentrations constructed from summed expression of CAMPER 
modules and geochemistry. Error bands represent 95% confidence intervals, each point 
is a sample. (D) All explanatory variables from the combined geochemistry-CAMPER 
model are shown. On the y-axis, the Pearson correlation coefficient for that variable to 
bog porewater CO2 is plotted, with significant (p-value <0.05) correlations highlighted in 
green and named in red.  
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Chapter 5 – Conclusion 
 
 
 
5.1 Summary 

 My dissertation research describes microbial polyphenol metabolism under 

anoxic conditions and explores how this metabolism relates to soil carbon cycles. This 

was first accomplished in a lab setting, showing soil microcosm microbial communities 

could degrade a model polyphenol under anoxic conditions (Chapter 2). The known 

microbial genes for degrading polyphenol and phenolic compounds were then assessed 

and used to develop a publicly-available tool for annotating microbial polyphenol 

metabolism in genomic data (Chapter 3). Finally, polyphenol metabolism was surveyed 

in a natural permafrost peatland system, revealing it is broadly encoded across this 

microbiome and actively expressed in field metatranscriptome data. More so, active 

polyphenol metabolism could predict porewater carbon dioxide concentrations in a bog 

system, highlighting the potential for using this metabolism to predict carbon emissions 

(Chapter 4).   

5.2 Future Research Directions  

 Beyond anoxic soils, I believe polyphenol metabolism impacts both crop 

production and the sustainability of livestock practices. 

5.2.1 Polyphenol metabolism in agricultural soils 

 Chemical analyses of crop root exudates have highlighted the presence of 

polyphenols, and particularly flavonoids1. These compounds can serve as signaling 

molecules in the case of attracting nodule-forming diazotrophs in legumes, or be 

exuded in stress response where they are presumably recruiting a beneficial 
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rhizobiome2. However, flavonoids meet abiotic1 and biotic3 fates in agricultural soils, 

which ultimately serve to dampen their signaling efficacy. Therefore, it is important to 

understand the microbial mechanisms controlling polyphenol concentrations in 

agricultural soils to predict and optimize crop fitness. CAMPER can enable some of 

these investigations, but this area offers the opportunity to discover more polyphenol 

metabolizing organisms and their enzymes. 

5.2.2 Polyphenol metabolism in ruminants 

 Ruminants and their enteric fermentation contribute nearly 25% of global 

methane (CH4) emissions4. Previous data suggests addition of the polyphenol catechin 

to cattle feed prevents the emission of CH4. One hypothesized mechanism underlying 

this inhibition is reductive degradation of catechin by ruminant microbes, limiting 

hydrogen available for the ruminant methanogens and preventing their ability to produce 

methane5. However, the identity of catechin degrading microbes in the rumen, and the 

genes and enzymes enabling the degradation, are unknown. This knowledge could help 

in optimizing ruminant nutrition and reducing CH4 outputs by pairing catechin-amended 

diets with a probiotic of catechin degrading microorganisms.   

In summary, there is a lot of potential to better understand and manage our 

agricultural systems if we have a full picture of microbial polyphenol metabolism. While 

my work has endeavored to address this in anoxic soils, I am excited to see what more 

will be learned about the microbes who can use polyphenols and the enzymes they 

possess across systems. 
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Appendices 
 
 
 
Appendix A: Chapter 2 Supplementary Text 

Sterilized Soils 

The soil slurry used to inoculate samples was autoclaved three consecutive 

times on liquid-20 cycles. Unlike the biotic samples, there was no visible biomass pellet 

following centrifugation of the 5mL of this sample at day 20. We attempted to extract 

DNA from these samples at day 20, and failed to obtain Qubit-HS detectable DNA from 

5mL of the of the sample. We attempted to obtain Illumina MiSeq 16S rRNA amplicon 

sequencing from this sample, and we were unable to obtain any amplicons.  

Comparison of CT degradation metabolites between soils and guts 

Many of the metabolites we detected in soils have also been reported in studies 

of gut microbiome metabolism of CT.  However, we did not detect any phenyl valeric 

acids or lactones (C6-C5) that are widely reported as products of flavonoid metabolism 

in the gut1. These compounds are proposed to be formed by transformation of 

diphenylpropanes after ring opening at position 1 of the C-ring2, where we instead 

proposed CT depolymerization is followed by flavonoid transformations involving C-ring 

fission (position 1 and 4) and release of C6-C3 products such as 3-

hydroxyphenylpropanoic acid (Figure 2.4). Regardless of the exact mechanisms, our 

data broadly echo the proposed steps for flavonoid degradation in the gut, with chain 

shortening by loss of CO2 and/or acetate to yield small molecules that could enter 

central metabolic pathways (Figure 2.9). 

Database recruitment 
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Our dereplicated MAG database recruited on average 43% and 12% of 

metagenomic reads for CT-amended and unamended samples, respectively. However, 

we knew the dominant MAGs Kosakonia, Holophaga, and the three UBA7701 MAGs 

were dominant in the CT-amended samples, and nearly absent in unamended samples 

(Figure 2.12). Therefore, we repeated this analysis removing these MAGs and found 

9% and 12% of metagenomic reads mapped to the adjusted MAG database in CT-

amended and unamended samples, respectively (Figure 2.13, black bars), thereby 

confirming we did not observe bias due to preferential assembly and binning with a 

treatment. 

 To assess overall metagenome assembly, we compared metagenomic read 

mapping to assembled scaffolds >2500 bp. We found on average 50% and 25% of 

reads were mapped to assembled scaffolds >2500 bp for CT-amended and unamended 

samples, respectively. Again, removing scaffolds from the dominant MAGs, we found 

18% and 25% of reads were mapped to assembled scaffolds >2500 bp for CT-amended 

and unamended samples, respectively (Figure 2.13, green bars). Therefore, while we 

had very dominant members in our CT amended microcosms, when we quantified read 

recruitment beyond those genomes we recovered similar proportions of the microbial 

community at the MAG and assembly levels.  

To ensure we had equal representation of genes from our microbial communities 

in our metaproteome gene database, we again mapped our metagenomic reads to this 

dereplicated gene database. We found on average 40% and 22% of our reads mapped 

to the database for CT-amended and unamended samples, respectively. When we 

removed genes derived from the five CT-dominant MAGs from this database, we saw 
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21% and 22% of metagenomic reads mapped from CT-amended and unamended 

samples, respectively (Figure 2.13, blue bars). This again reinforced that our database 

captured the same proportion of the microbial communities between treatments. 

Nitrogen Cycling 

While we failed to find evidence that tannins inhibited carbon degradation, we did 

observe lower levels of protein-like compounds by FTICR-MS in live CT-amended 

reactors (Figure 2.23), which could be the result of tannin-bound organic nitrogen as 

has been previously suggested3. Furthermore, while we observed peptidases in both 

treatments, we detected expression of 15 peptidase-classes by 9 members under CT 

treatment, and just one class in the control using our unique (binned and unbinned) 

data. This increased peptidase diversity could reflect nitrogen limitation under CT 

exposure, demonstrating a shared response between our anoxic soils and previously 

reported aerobic soils6. However, we did not observe differences in the expression of 

denitrification enzymes (nitrate reductase, nitrite reductase, and nitrous oxide 

reductase) between treatments (Figure 2.20), suggesting tannins may not repress the 

entire nitrogen cycle in anoxic soils.   

HPLC and NMR Methods for characterizing purified CT 

The separation used an Agilent 1100 quaternary pump system paired with an 

autosampler and a DAD detector collecting data at 220 nm. The column was a 

ThermoFisher Hypersil Gold C8, 160 x 4.6 mm column with 3 micron packing.  The 

sample injection volume was typically 10 uL. The gradient program was controlled with 

ChemStation Rev. A.09.03 software and employed 0.13% (v/v) trifluoroacetic acid (TFA) 

in nanopure water (A) and 0.10% (v/v) TFA in acetonitrile (B) at a flow rate of 0.5 
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mL/min for 48 min duration.  The 28 min separation phase (0-3 min, isocratic at 15% B; 

3-8 min, increase to 20% B; 8-10 min, increase to 30% B; 10-28 min, isocratic at 30% 

B) followed by a wash & re-equilibration phase (28-32 min, increase to 70% B; 37-40 

min, decrease to 15% B and hold isocratic at 15% for 8 min before the next injection). 

1H-13C HSQC NMR spectra were recorded at 27°C on a BrukerBiospin DMX-

500 (1H 500.13 MHz, 13C 125.76 MHz) instrument equipped with TopSpin 3.5 software 

and a cryogenically cooled 5 mm TXI 1H/13C/15N gradient probe in inverse geometry. 

Spectra were recorded in DMSO-d6 and were referenced to the residual signals of 

DMSO-d6 (2.49 ppm for 1H and 39.5 ppm for 13C spectra). For 1H-13C HSQC 

experiments, spectra were obtained using between 200 and 620 scans (depending on 

sample size and instrument availability) obtained using the standard Bruker pulse 

program (hsqcetgpsisp.2) with the following parameters: Acquisition: TD 1024 (F2), 256 

(F1); SW 16.0 ppm (F2), 165 ppm (F1); O1 2350.61 Hz; O2 9431.83 Hz; D1 = 1.50 s; 

CNST2 = 145. Acquisition time: F2 channel, 64 ms, F1 channel 6.17 ms. Processing: SI 

=1024 (F2, F1), WDW = QSINE, LB = 1.00 Hz (F2), 0.30 Hz (F1); PH_mod = pk; 

Baseline correction ABSG = 5 (F2, F1), BCFW = 1.00 ppm, BC_mod = quad (F2), no 

(F1); Linear prediction = no (F2), LPfr (F1). Sample sizes used for these spectra ranged 

from 5-10 mg providing NMR sample solutions with concentrations of 10-20 mg/mL. 

Additional FTICR-MS methods 

A 9.4T Tesla Bruker SolariX FTICR spectrometer located at the University of 

Arizona, was used to collect high resolution mass spectra of the supernatant samples 

from reactors (microcosms) by direct injection in negative ion mode. Samples were first 

desalted and concentrated using solid phase concentration (SPE) according to Dittmar 
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et al. 20084. Briefly, SPE cartridges (PPL, 300 mg, Varian Mega Bond Elut, Varian Inc., 

Palo Alto, CA, USA) were rinsed with one cartridge volume (3 mL) of methanol (p.a.) 

immediately before use. Three milliliters of each of the supernatant samples was 

acidified with hydrochloric acid (p.a.) to pH 2 and pumped through the SPE cartridge, at 

a flow rate of <50 mL/min. Before elution of DOM with methanol, the cartridges were 

rinsed with at least two cartridge volumes of 0.01 M HCl for complete removal of salts. 

Sorbents were then dried under a stream of N2 and DOM then eluted with 1 mL of 

methanol at a flow rate of <10 mL/min. A standard Bruker ESI source was used to 

generate negatively charged molecular ions and then eluted DOM samples were 

introduced directly to the ESI source. The instrument was externally calibrated weekly to 

a mass accuracy of <0.1 ppm using a tuning solution from Agilent, which contains the 

following compounds: C2F3O2, C6HF9N3O, C12HF21N3O, C20H18F27N3O8P3, and 

C26H18F39N3O8P3 with an m/z ranging between 112 and 1333. The instrument 

settings were optimized by tuning on a Suwannee River Fulvic Acid (SRFA) standard. 

Blanks (HPLC grade MeOH) were ran at the beginning and the end of the day to 

monitor potential carry over from one sample to another and the instrument was flushed 

between samples using a mixture of water and methanol. The ion accumulation time 

(IAT) was varied to account for differences in C concentration between samples. Three 

hundred individual scans were averaged for each sample and internally calibrated using 

organic matter and (epi)catechin CT oligomers homologous series separated by 14 Da 

(-CH2 groups). The mass measurement accuracy was <1 ppm across a broad m/z 

range (i.e. 100 < m/z < 1000). The mass resolution was 350,000 at 339.112 Da.  
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The observed spectra contained a mixture of singly and doubly charged ions 

(inferred from KMD analysis), and some remaining salt clusters and background noise 

peaks that were deleted manually. We applied Kendrick Mass Defect analysis using -

CH2 as the base unit to data from all samples. In plotting this data (Figure 2.5), there 

were clear regions that were mainly composed of points from CT-amended samples 

(Figure 2.6, red ovals). We used this to extract peaks that likely corresponded to the 

different oligomers of the CT polymer and derived compounds.  

To verify the presence of doubly and singly charged (epi)catechin CT oligomers 

within our samples, we used a combination of Compass Isotope Pattern calculation and 

isotopic fine structure (IFS) simulation and evaluation using Bruker Data Analysis 

software (Figure 2.6). In mass spectrometry, isotope profiles are displayed dependent 

on the effective resolution of the instrument to resolve the isotope variants. In this 

sense, FTICR-MS differs from lower resolution instruments since its resolving power is 

usually high enough to baseline separate the isotope profile of intact and multiple 

charged ions. Thus, IFS analysis is useful here for identification of (epi)catechin CT 

oligomers since (1) IFS is an exact fingerprint for every possible molecular configuration 

and (2) the high resolving power of the FTICR-MS. 

Kendrick mass defect analysis5 was then used to compare the fate of 

(epi)catechin CT oligomers over time in both biologically active and inactive (autoclaved 

soil) reactors amended with CT. Kendrick plots are generated by plotting nominal mass 

as a function of Kendrick mass defect, most commonly based on a methylene (CH2) 

subunit, although other subunits can be used (e.g., carboxyl), in a single 2D display. 

Thus, compounds whose elemental composition differs by a number of base units only 
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possess the same KMD value and line up horizontally in the associated KMD plot.  Here 

we used a modified version of KMD commonly used for polymer ions, proposed by Sato 

et al6,7 where the repeating unit of a polymer backbone (here (epi)catechin) was used 

as the base unit by arbitrarily setting its mass at the nearest integer and other masses 

are re-calculated based on that. To walk through the orientation of peaks corresponding 

to CT-oligomers within a Kendrick plot based on mass, charge, and isotopic 

composition, see Figure 2.6.  

Putative chemical formulas of the remaining singly charged ions and in-situ soil 

metabolites were assigned using Formularity software7. First, to further reduce 

cumulative errors, all sample peak lists for the entire dataset were aligned to eliminate 

possible mass shifts that would impact formula assignment. Chemical formulas were 

assigned based on the following criteria: S/N > 7, and mass measurement error < 1 

ppm, taking into consideration the presence of C, H, O, N, S and P and excluding other 

elements. Peaks with large mass ratios (m/z values > 500 Da) often have multiple 

possible candidate formulas. These peaks were assigned formulas through propagation 

of CH2, O, and H2 homologous series. Additionally, to ensure consistent choice of 

molecular formula when multiple formula candidates are found the following rules were 

implemented: the formula with the lowest error with the lowest number of heteroatoms 

was consistently picked and the assignment of one phosphorus atom required the 

presence of at least four oxygen atoms.  Biochemical compound classes were reported 

as relative abundance values based on counts of C, H, and O for the following H:C and 

O:C ranges only : lipid-like (0 < O:C ≤ 0.3 and 1.5 ≤ H:C ≤ 2.5), unsaturated 

hydrocarbons-like (0 ≤ O:C ≤ 0.125 and 0.8 ≤ H:C < 2.5), protein-like (0.3 < O:C ≤ 0.55 
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and 1.5 ≤ H:C ≤ 2.3), carbohydrates-like (0.55 < O:C ≤ 0.7 and 1.5 ≤ H:C ≤ 2.2), lignin-

like (0.125 < O:C ≤0.65, 0.8 ≤ H:C < 1.5), tannin-like (0.65 < O:C ≤1.1, 0.8 ≤H:C ≤1.5), 

and condensed hydrocarbon-like (0 ≤O:C ≤0.95, 0.2 ≤H:C < 0.8)8. To identify 

“polyphenol-like” compounds, we grouped lignin-like and tannin-like compounds (Figure 

2.3, Figure 2.23). 

Additional LC-MS methods 

Metabolites were extracted into ethyl acetate from filtered supernatant samples that 

were acidified with HCl.  Both the aqueous and organic phases were analyzed by liquid 

chromatography - tandem mass spectrometry (LC-MS/MS). Sample aliquots were 

stored frozen at -80˚C until extraction. Aliquots were thawed, and filtered through 0.2 

um cellulose acetate to yield 1 mL filtrates that were vortexed, and then acidified by 

addition of 200uL of 1M HCl. The acidified samples were then extracted 3 times with 

addition of 200uL of water-saturated ethyl acetate, each time followed by vortexing, 

sonication for 10 minutes in a water bath and collection of the ethyl acetate layer (ethyl 

acetate layers from the 3 extraction steps were combined). At the end the water layer 

was also collected. The ethyl acetate extracts were dried at room temperature in a 

speed vacuum concentrator; the aqueous layer was frozen at -80C and then dried by 

lyophilization. Dried extracts of both types were resuspended in 50uL of 80% methanol 

containing 1ug/mL 2-Amino-3-bromo-5-methylbenzoic acid (Sigma) as internal 

standard. Resuspended samples were vortexed, centrifuged (2070 RCF for 5 minutes 

at room temperature), then filtered via 0.22um pvdf microcentrifuge filtration tubes. 

Filtrates were then analyzed by LC-MS/MS using an Agilent 1290 UHPLC system 

connected to a Thermo Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer 
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equipped with a Heated Electrospray Ionization (HESI-II) source probe. The filtrates 

from the ethyl acetate extraction were chromatographically separated on a ZORBAX 

RRHD Eclipse Plus C18, 95Å, 2.1 x 50 mm, 1.8 µm column (Agilent) and filtrates from 

the aqueous layer were chromatographically separated on an InfinityLab Poroshell 120 

HILIC-Z, 2.1 × 150 mm, 2.7 µm (Agilent). Separation, ionization, fragmentation and data 

acquisition parameters are specified in Appendix B.  Briefly, metabolites were 

separated by gradient elution followed by MS1 and data dependent (top 2 most 

abundant MS1 ions not previously fragmented in last 7 seconds) MS2 collection; 

targeted data analysis was performed by comparison of sample peaks to a library of 

analytical standards analyzed under the same conditions.  Three parameters were 

compared: matching m/z, retention time and fragmentation spectra using Metabolite 

Atlas (https://github.com/biorack/metatlas)9,10. Identification and standard reference 

comparison details are provided in Appendix B. Data are available for download at the 

JGI Joint Genome Portal under ID 1281268. To determine significantly discriminating 

LC-MS exometabolites, we used limma11 in R on log2-transformed data to compare 

metabolites in live and autoclaved treatments at each timepoint.  
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Appendix B: Chapter 2 Supplementary Files 

See supplemental file AppendixB.zip. 

Supplementary Data 1. (xlsx) Metabolite identification data for LC-MS and NMR, 

including specifics of LC-MS methodology. 

Supplementary Data 2. (xlsx) Information on metagenomes, assemblies, MAGs, and 

16S rRNA gene reads, including accession numbers. 

Supplementary Data 3. (xlsx) Information on metaproteomes including table of MAG 

peptide recruitment by sample, peptide recruitment/functional annotation for detected 

proteins, and enzyme information for flavonoid enzymes.  

Supplementary Data 4. (xlsx) Feature table derived from 16S rRNA gene analyses.  

Supplementary Data 5. (amino acid FASTA) Flavonoid enzymes queried against this 

dataset, with accession numbers in FASTA header. 

Supplementary Data 6. (amino acid FASTA) Amino acid sequences of Flavonoid 

enzyme encoding genes CHI, FCR, PHY, and PGR, and Kosakonia KatG and AA6. 

Supplementary Data 7. (xlsx) FTICR-MS data for all peaks across all samples, including 

formula assignment if applicable and Kendrick Mass defect analysis. 
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Appendix C: Chapter 3 Supplementary Files 

See supplemental file AppendixC.zip. 

CAMPER_blast.fa: A fasta file of CAMPER genes used as a target in a BLAST style 

search provided by mmseqs search. 

CAMPER.hmm: A HMM file used as the target in an HMM profile search provide by 

MMseqs profilesearch 

CAMPER_blast_scores.tsv: Provides the minimum cut off scores for search results and 

quality ranks with BLAST style searches. 

CAMPER_hmm_scores.tsv: Provides the minimum cut off scores for search results and 

quality ranks with HMM Profile searches. 

CAMPER_distillate.tsv: A custom distillate, for use with DRAM or with 

CAMPER_DRAMKit, to summarize the annotation results. 

CAMPER_refs.xlsx: References for the genes behind the 41 custom CAMPER 

annotations. 


