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ABSTRACT OF DISSERTATION

MACHINE LEARNED BOUNDARY DEFINITIONS FOR AN EXPERT'S

TRACING ASSISTANT IN IMAGE PROCESSING

Most image processing work addressing boundary definition tasks embeds the

assumption that an edge in an image corresponds to the boundary of interest in the

world.  In straightforward imagery this is true, however it is not always the case.  There

are images in which edges are indistinct or obscure, and these images can only be

segmented by a human expert.  The work in this dissertation addresses the range of

imagery between the two extremes of those straightforward images and those requiring

human guidance to appropriately segment.  By freeing systems of a priori edge

definitions and building in a mechanism to learn the boundary definitions needed,

systems can do better and be more broadly applicable.  This dissertation presents the

construction of such a boundary-learning system and demonstrates the validity of this

premise on real data.

A framework was created for the task in which expert-provided boundary exemplars

are used to create training data, which in turn are used by a neural network to learn the

task and replicate the expertÕs boundary tracing behavior.  This is the framework for the

ExpertÕs Tracing Assistant (ETA) system.
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For a representative set of nine structures in the Visible Human imagery, ETA was

compared and contrasted to two state-of-the-art, user guided methods Ð Intelligent

Scissors (IS) and Active Contour Models (ACM).  Each method was used to define a

boundary, and the distances between these boundaries and an expertÕs ground truth

were compared.  Across independent trials, there will be a natural variation in an

expertÕs boundary tracing, and this degree of variation served as a benchmark against

which these three methods were compared.  For simple structural boundaries, all the

methods were equivalent.   However, in more difficult cases, ETA was shown to

significantly better replicate the expertÕs boundary than either IS or ACM.  In these

cases, where the expertÕs judgement was most called into play to bound the structure,

ACM and IS could not adapt to the boundary character used by the expert while ETA

could.

Stewart Crawford-Hines
Department of Computer Science

Colorado State University
Fort Collins, Colorado

Summer 2003
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ÐÐÐÐ==  Chapter I  ==ÐÐÐÐ

Overview of Learned Expert Boundary Definitions:

Context and Rationale

The motivation behind the work of this dissertation is to assist human experts in

computer-assisted boundary tracing tasks by reducing the time required and increasing

the accuracy and consistency of the boundaries they generate.  Most systems addressing

this problem to date have embedded in them the assumption that an edge in an image

corresponds to the boundary of interest in the world.  However, this is not always the

case.  There are images in which edges are indistinct or obscure, and these images can

only be segmented by a human expert.  By freeing systems of a priori definitions and

building in a mechanism to learn them as needed, systems can do better and be more

broadly applicable.  This dissertation presents the construction of such a boundary-

learning system and demonstrates the validity of this premise on real data.

The approach developed herein is an application of machine learning techniques to the

definition of boundaries in imagery, as defined by an expert.  Large sets of imagery will

usually have a repetition and redundancy on which machine learning techniques can

capitalize.  A small subset of the imagery can be processed by a human expert, and this

base can be used by systems to learn and semi-automate the processing task.

In this chapter, Section I.1 establishes the overall problem context of defining structural

boundaries in large image sets and reviews the shortcomings of current methods.
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Section I.2 summarizes the objectives, and Section I.3 poses the key issue of learning

definitions from experts.  Section I.4 presents the overall framework of the ExpertÕs

Tracing Assistant (ETA) system used in this study, and Section I.5 summarizes its

comparison to manual tracing and to the state of the automated art.  Section I.6

overviews the remaining chapters of this dissertation.

I.1   The Boundary Delineation Problem

The biomedical domain is a rich source of large, repetitive image sets.  For example, in a

computed tomographic (CT) scan, a common medical imaging modality, cross-sectional

images are generated in parallel planes separated by millimeters.  At a 2mm separation

between transverse image planes, approximately 75 images would be generated in

imaging the complete brain.   Image sets such as this, generated along parallel planes, are

called sectional imagery.  Such sectional imagery abounds in medical practice: X-ray, MRI,

PET, confocal imagery, electron microscopy, ultrasound, and cryosection technologies all

produce series of parallel-plane two-dimensional images (see Mudry, et al., [2003] for

overview and discussion of these imaging modalities).

Often experts are seeking to find, measure and characterize anatomical structures, and

often these structures must be bounded on each of the images on which they occur.  For

example, in the generation of three-dimensional polygonal models from two-dimensional

images, the process, illustrated in Figure IÐ1, follows these four steps:

      1. for a particular structure (in this example, a cervical vertebra), trace the

boundary of the structure on each image in a set;

      2. triangulate between the boundaries defined on adjacent  layers;

      3. generate a polygonal mesh from all the triangulated boundary pairs;
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      4.  then, finally, render the structure.

   

1    

2    

3    

4

Figure IÐ1:  Four steps in generating a polygonal model
from sectional imagery: (1) define boundaries on

individual images; (2) define triangles between adjacent
boundaries that (3) generate an overall polygonal mesh;

and (4) render with standard lighting models.

Steps 2, 3, and 4 are

straightforward

computations (Crawford

and McCracken [2002]) and

proceed without much user

intervention; they require

computation time on the

order of seconds, or possibly

minutes for large models.  Step 1, however, is time intensive, requiring hours or days, or

in the worst case weeks, of an expertÕs time to precisely bound a structure of interest.

One initial motivation of this research is to reduce the amount of time required.

Figure IÐ2:  Two skull models based on image boundaries
created by (at left) automatic boundary detection techniques

and (at right) an expertÕs manual tracing.

Not only is time an

issue, boundary quality

is also.  The final

quality of the three

dimensional model is

highly dependent on

the initial boundary

definitions.  Figure IÐ2

shows a comparison of

two different models.

The rendering on the

left was from a model created by Wang, et al., [1998] using active contour models as a
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tool to automatically define the boundary of the skull in its image set.  The rendering on

the right was created from an expertÕs set of manually traced boundaries.

Durikovic, et al., [1998], note, "Although 3D reconstruction is widely used in CT and MR

imaging, the methods do not fulfill all the needs in anatomy. Anatomists seek information

about the exact overall shape..."  Currently, the reference standard for high-quality

outlining tasks is an expert's delineation of the region, and the state-of-the-practice is

that boundaries are traced manually.  Therefore, a second key motivation of this

research work is to maintain the quality of an expertÕs manual tracing by learning from

the expertÕs examples to better replicate what and how they trace.

I.1.1   PROVIDING EXPERT ASSISTANCE

Generating three dimensional surface models of large structures requires bounding the

structures across an image set, which is a repetitive, tedious, and error-prone process

when totally done manually.  Ozkan, et al., [1998] note the specific motivation of their

work is to relieve physicians of the manual task of tumor tracing when planning a

patient's radiosurgery.  Providing viable assistance for such boundary tracing tasks will

prove beneficial in several regards:

      ¥ the specialistÕs time can be significantly reduced;

      ¥ errors brought on by the tedium of tracing similar boundaries over scores of

similar images can be reduced; and

      ¥ the automated tracing is not subject  to human variability and is thus

reproducible and more consistent across images.
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The system developed, discussed, and studied in this dissertation is named the ExpertÕs

Tracing Assistant (ETA).  The system was motivated and funded by organizations

seeking these benefits.  Among them, Visible Productions is a company generating highly

accurate, three-dimensional polygonal models from two-dimensional sectional imagery

for the educational and biomedical markets.  They are working extensively with the

National Library of Medicine's Visible Human Imagery [NLM 2001], a series of sectional

photographic images (approximately 1600x2000 pixels each, 1850 for the male and

6000 for the female).  Structures of interest must be bounded across a series of these

images.  In each, a precisely located, closed boundary around the structure is needed.

Especially for large, well-defined structures, tracing the structure over many levels in

these collections is both time consuming and error-prone due its tedious nature.

There has been much research directed toward automatic edge detection and image

segmentation, from which a boundary outlines can be extracted.  The following

sections briefly discuss the cost of user adjustments and the assumptions implicit in

these methods.  The assumptions impact the ability of the system to adequately assist

the expert on boundary definition tasks.

I.1.2   COSTS OF ADJUSTMENT

As an example, consider Figure IÐ3, from the Visible Male imagery.  The upper image is a

cross-section through the skull, and the lower two images illustrate standard edge

detection operators on this cross-section.  The lower-left image is tuned for strong edges,

and there is little detail evident within the cortex.  The lower-right image is tuned for

weaker edges, to pick up the finer whiteÐgrey matter boundary; much of that detail is

now visible, but at the expense of cluttering the visualization with all the other edges

within the image.  For this to be useful in capturing the finer detail in the image, the user

must have an effective method to filter the spurious clutter.
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Figure IÐ3:  A raw sectional image (top) through the skull at the level of the eyes.  Edge
detection image, tuned for strong edges (lower-left); same technique, finding  weak as

well as strong edges (lower-right).
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Other user-adjustment costs arise with the active contour models (ACM) proposed by

Kass, et al., [1987].  Briefly stated, an ACM settles into a stable state through an

interactive relaxation algorithm (further details are in Chapters II and IV).  Users have

an opportunity to modify the results by adjusting the position and tension on ÒspringsÓ

which modify the boundary properties.  Problematic situations for ACMs are

boundaries with sharp corners or high curvature; users need to make adjustments similar

to adjusting Bezier curve handles in drawing programs to handle the problems.

Such modifications typify problems of existing methods.  No autonomous technique will

completely give only the desired boundaries, except in the simplest cases.  This implies

that human intervention will be required to adjust intermediate results on images of any

complexity.  As suggested in Figure IÐ3, the task of removing clutter can be more costly

than  manually outlining the region of interest from the start.  When users judge that the

effort of adjustment outweighs the effort of manually running the cursor around the

boundary to define the region, they will not bother with automated methods.  For

example, Cordier and Thalmann [1998] studied boundaries defined by snakes and

shape-constrained deformable models; physicians were the actual system operators.

Cordier noted during his conference presentation that after the study was done and the

physicians knew how to use these tools, they continued to trace boundaries manually

rather than making the adjustments necessary in the automated system.

I.1.3   RELIANCE ON  A PRIORI  DEFINITIONS

An underlying reason why automatic edge detection and segmentation techniques have

not been transferred into general practice for segmenting medical images is the implicit

reliance of these methods on a priori edge definitions.  Absent domain specific

information, the best one can do is to make plausible, mathematically tractable
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assumptions and proceed.  For example, the boundary defined for a ramp edge, an edge

blurred over several pixels, is a priori chosen to be the midpoint of the ramp or its point

of maximal intensity change.  In straightforward or synthetic imagery, techniques with

these embedded assumptions work quite well.  However the real world is rarely so kind.

Real imagery can be confounded with noise, less-than-adequate resolution, and

confounding artifacts of the image itself, such as similar tonal ranges for subject and

background, or visually indistinct boundaries between structures, such as the

connections of white ligament to white bone in anatomy.  Fenster and Kender [2000a]

note, "In medical images, some structures are neither sharp edged nor reliably different in color

from the surrounding structures.  Thus, despite the research, some organ contours must still be

outlined manually."

However, within a limited domain, one can always do better with specific knowledge of

the case at hand.  Konishi and Yuille [2000], after noting that, "Although there has been

recent progress in general purpose image segmentation, it remains an extremely difficult

problem,"  they then demonstrate that simple statistical knowledge of the domain

powerfully aids segmentation.

In the case of sectional imagery, there are a large number of similar images.  In this

situation, one can take a small, representative subset of the imagery and by

understanding it more fully, create domain-specific boundary definitions that will do

better than any generic, general-purpose edge detection scheme.  The redundancy in such

image sets presents the ideal opportunity to use some few images as a learning base, and

then capitalize on that learning to analyze the remainder.

ÐÐ   8   ÐÐ



I.2   Objectives

One overriding problem is that the boundary and edge assumptions limit the range of

applicability of the methods in which they are embedded.  The main premise of this

dissertation is that by freeing systems of a priori definitions and building in a mechanism

to learn them as needed, systems can do better and be more broadly applicable.  This

dissertation presents the construction of such a boundary-learning system and

demonstrates the validity of this premise on real data.

The overall methodology followed is to develop a framework for boundary learning and

tracing, and verify its adequacy on sample imagery (Chapter III).  A comparison study,

discussed in Chapter IV, is designed to compare this framework to other state-of-the-

art, user guided methods.  Each method is used to define a boundary, and the distances

between these boundaries and an expertÕs ground truth were compared (Chapter V) .

There is a natural variation in an expertÕs boundary tracing across independent trials,

and this degree of variation serves as a benchmark against which these methods were

compared.  This work helps bring out the limitations of the framework and avenues for

future work (Chapter VI).

I.3   Learning from the Expert to Improve Boundary Definitions

In beginning to address the problem of a priori definitions, it is important to distinguish

between a boundary of a structure in the world, and an edge in an image of that

structure.  Standard practice is to equate a structural boundary with an image edge,

where an edge is a discontinuity in the image and typically defined through some local

measure of this discontinuity.  In simple and straightforward cases, a boundary is

coincident with an edge.  However, this is not always the case.
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The structure will always have a boundary, but that boundary will not always be

evident as an edge in the image.  There are many reasons why a boundary may not have

an edge.  For instance, the structure may be occluded in the world, the imaging modality

may not capture the boundary as an edge, or the pixel characteristics of the structure

may be identical to its surround and thus indistinguishable.  In these worst case

scenarios, a human can bring general knowledge or domain specific expertise to fill in the

boundary where it is not evident as edge images.

This work acknowledges that there is a broad spectrum of cases between these two

extremes, the straightforward and the deeply problematic, where there is some regularity

in the image that can be used to locate a boundary.  The basic tenet of this thesis is that

this regularity can be learned, and systems which can learn these novel boundary

definition patterns will be superior to those grounded in a priori edge definitions.

I.3.1   EXAMPLE OF A LEARNED BOUNDARY

The following example illustrates the basic idea of how a learned boundary definition

can overcome problematic situations where a priori boundary definitions fail.  The upper

half of Figure IÐ4 shows a raw image with a problematic section highlighted, and the

lower half shows a training sample and a learned boundary definition.  This image is a

detail from a CT through a dogÕs legs, where the image parameters are tuned to highlight

muscle tissue: the brightest area is muscle tissue, the grey surrounding it is skin, and the

darkest untextured grey is the background.

The domain knowledge that humans bring to this situation of basic dog physiology: we

know a dog leg has a mass of muscle surrounded by a layer of skin.  The strongest

boundary in the image is the exterior of the skin, where there is a strong contrast between

the light grey skin and the untextured darker grey background.  But in considering the
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skin-muscle boundary, the boundary

of interest is the less well-defined

edge between skin and muscle that is

several pixels inside the exterior of

the skin.  In the raw image of the

upper leg, a weak edge can be seen a

few pixels to the inside of the

stronger external skin edge.

However, in the circled area of the

raw image, this weak distinction

between skin and muscle is lost;

without any domain knowledge of

the image, one would be hard-

pressed to accurately place any

boundary there.  When manually

tracing the muscle/skin boundary, though, one can adjust for the ill-defined portion of

the image and continue to trace a few pixels to the inside of the skin.

   

raw image

   

manually defined boundary

   

learned from above & autotraced

Figure IÐ4:  Dog leg CT, tuned for muscle (brightest
area) definition; the lower half shows a boundary
segment used for training, and a learned boundary
based on that training.  The boundary is shown as

a black line outlined by a thin  white border.

The key elements that make this highlighted section troublesome to general automatic

methods are (1) a boundary of interest that is weakly defined, (2) an image with

inadequate resolution around that weak boundary, and (3) nearby strong edges, which

confound generalized methodologies relying on local a priori edge definitions.

The lower half of Figure IÐ4 illustrates the benefits of a learned boundary definition for

these muscles.  The upper boundary was manually traced by an anatomist.  Based on

those characteristics, a boundary definition was learned  and then the lower boundary

was automatically traced based on that definition, using the ETA system outlined in
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Chapter III.  Note the learned boundary tracks cleanly through the indistinct area

identified in the raw image, and this learned boundary definition was not confounded

by the stronger, nearby edge.

The main point herein is that integrating learning into boundary definition tasks is crucial

to their flexibility and situational usability.  The choice of a particular learning

methodology is not the focus of this research work, though for any system based on this

work to be successful, the boundary tracing system must learn well, learn quickly, and be

amenable to human override, or it will not be useful.  The main thrust of this system is

learning well.  There is a large body of knowledge on how to learn quickly, which

focuses on the optimization of learning algorithms; that is not a research focus of this

work.  This work also makes no attempt to optimize a human-machine interface that

facilitates easy human interaction to override the automated techniques when needed.

I.4   Framework for an ExpertÕs Tracing Assistant (ETA)

In summary, the basic principles of a system to adequately assist in general boundary

tracing tasks are the following.

      ¥ Learned boundary definitions will lead to more adaptable and more generally

useful systems.  A priori edge definitions are insufficient to precisely handle the

spectrum of boundary contours found over a broad range of digital imagery.

      ¥ No matter how well  a boundary definition might be learned, there will always be

circumstances that will require correction by an expert user.  Humans are good at

perception within a larger context, and machines are good at repetitive work in a

well-characterized domain.  Systems are needed that capitalize on these

disparate strengths: systems that move forward on their own in well defined

territory, but also facilitate easy intervention and correction when needed.
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ETA provides real-time learning and trace-ahead capabilities to assist experts in

defining accurate structural boundaries.  ETA follows these basic steps.

    1) An expert manually defines representative boundary segments along a structure

of interest.

    2) These representative segments are used to construct a set of positive and

negative exemplars, which in turn is used with a supervised learning

methodology to learn the pattern that characterizes the boundary.

   3) The system can then automatically extend a partially defined boundary when it

is statistically confident in its choices.  The user monitors the boundary-in-

progress and corrects any mistakes or takes control when the systemÕs statistical

confidence measures are low.

The framework outlined has had several progressively better software implementations

from 1995 through 2001, starting with a research prototype and then later developed for

biomedical applications through grants from the Colorado Advanced Software Institute

(Anderson [1999]) and from the NSFÕs SBIR program (McCracken [1998] and

McCracken [2001]).  In partnership with Visible Productions, the results of this

approach began to be quantified.

Through application, it was seen that interactive systems that learn boundary

definitions to suit specific situations can both improve an expertÕs tracing speed and

generate more consistent and accurate boundaries. As an example, the Visible MaleÕs

skin boundary is represented on all 1,800 images in the cryosection set.  Due to the large

boundaries required on each image, the uniformity of these boundaries, and the total

number of images, the skin is incredibly tedious to trace manually in its entirety.  Those
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who manually traced the skin the first time estimate it took three to four staff-weeks to

complete.  Because of inconsistencies in the skin model developed from this tracing,

experts retraced the skin of the Visible Male using an ETA implementation integrated

into their production tracing system.   With the automated assist, the skin was retraced

in three staff-days.  These new skin boundary contours are used in Visible ProductionsÕs

current models, since they are of better quality and more globally consistent than the

prior set of skin boundaries.

The details of the issues, considerations, and experimentation that went into the

construction of ETA are presented in Chapter III.  This system makes no claim to be

optimal; it stands as a vehicle to explore the validity of the premises in this thesis.

While comparison study of this dissertation is made within the rich set of Visible

Human imagery, this work is applicable in other domains as well.  Fast outlining of

structures in MRI imagery by an expert can lead to three-dimensional models created in

close to real time.  Imagery in initial experiments was aimed at helping understand

mental illness by delineating brain structures and studying their associated volumes.  It

is are also applicable to aerial imagery, in diverse applications such as road following

and cloud boundary delineation.  And techniques similar to this, specifically the

Intelligent Scissors of Mortensen and Barrett [1995, 1998], have found a home in general

purpose commercial products such as Photoshop.

I.5   Comparing ETA to Experts and Other User-Guided Methods

With this viable framework established, a fundamental issue is how well ETA compares

to the manual boundary tracing of an expert.  A basic hypothesis of this work is that the

system can learn specific peculiarities of an expertÕs boundary tracing behavior and
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replicate that behavior.  To quantify this issue and verify the hypothesis, boundaries

created by both an expert and ETA are directly compared.

Once a boundary definition is learned, ETA is totally deterministic and the tracings it

performs are reproducible.  This stands in contrast to humans, who will exhibit some

variation when manually tracing a boundary.  Brahmi, et al., [1999] note that boundaries

drawn by experts may display substantial variation, especially in areas where contrast

is poor.  Karayiannis and Pai [1999] also note inconsistencies among experts in a

complex segmentation problem.  ETA should thus not be required to exactly replicate an

expertÕs boundary trace to be successful, but the learned boundary should fall within the

range of variation for either a specific user or across a group of users.  Experiments

presented in Section V.1 look at the variation within boundary definitions made by the

same user at different times, and demonstrate that ETA is consistently within the range

of this intra-user variance.

Given that ETA can replicate an expertÕs manual boundary tracing, how does this

compare to the ability of other techniques, already known and realized in image

processing, to assist an expert?  The key hypothesis of this work is that by learning a

representation to match the expert, systems can improve on the state of the art.  This

will be demonstrated in a comparative study of ETA with two methods currently

representing the state of the art and practice.

To briefly summarize an example comparison, consider the user-guided method of the

Intelligent Scissors of Mortensen and Barret [1998].  With this tool, the user places an

initial seed point on a boundary, and a continuous, single-pixel-wide path is formed

from that seed point to the current cursor location.
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Figure IÐ5:  Defining a boundary with Intelligent Scissors (at left)
and with the ExpertÕs Tracing Assistant (at right).

The left half of Figure IÐ5 shows a detail of the boundary defined by this intelligent

scissors tool for an MRI image.  To outline the weak edge just inside the stronger outside

edge, the contrast sensitivity of the tool is set very low (a high setting implies sensitivity

only to strong edges), and the distance parameter is set small (which means the

boundary definition stays close to the cursor as the user loosely traces out the

boundary).  In general, the tool roughly follows the desired boundary, but the boundary

is seen to jitter when a strong edge runs near a weaker edge, which is problematic when

the weaker edge is the boundary of interest.

The right half of Figure IÐ5 shows the same image detail, with the pixels chosen by ETA.

The smoother line in the lower part of this image is a piece of the training segment, while

the line defined by the trained neural network is stair-cased, since the points selected are

on pixel centers.  In this case, the system effectively learned to follow only the weak edge

and ignore the strong neighboring edge.  Note the automatically traced edge is

consistently within one pixel of its training exemplar when it traces over it.

Another user-guided methodology is that of Active Contour Models.  Chapter IV

presents a methodology for comparing Active Contour Models, Intelligent Scissors, and
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the ExpertÕs Tracing Assistant, on a representative set of boundary definition tasks in

the Visible Human imagery.  Measures are derived to quantify the differences between

the boundaries by selecting a tolerance such as one pixel and stating, ÒThe boundary

curves are within one pixel of each other 86% of the timeÓ or by selecting a percentile such as

90% and stating, ÒThe boundary curves are within 1.1 pixel of each other 90% of the timeÓ.

These are the key measures of the differences between the boundaries.  Chapter V

presents the results of the comparison.

I.6   Overview of the Remaining Chapters

Chapter II surveys recent and classical work in boundary definition tasks, organized

along two independent considerations.  The first consideration is whether the work

deals with boundary definitions that are defined a priori or whether the definitions are

learned.  The second consideration is whether the approach is interactive or

autonomous.  Chapter II reviews recent research in the field, based on the extent that the

methodology is either a priori and autonomous (Section II.1), learned and autonomous

(Section II.2), a priori and user-guided (Section II.3), or learned and user-guided

(Section II.4).

Chapter III details the engineering of the ETA system to sufficiently implement the ideas

presented.  The details of sampling a local neighborhood in order to create an adequate

training set are covered.  Experiments used to come up with an appropriate neural

network architecture are presented.  And the question of re-representing the input space

to facilitate better and faster learning is explored.

Chapter IV presents the methodology used to compare Active Contour Models,

Intelligent Scissors, and the ExpertÕs Tracing Assistant, to experts on a representative

set of boundary definition tasks in the Visible Human imagery.  Chapter V details the
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results of that comparison study, and the relative merits of the different approaches.

Finally, Chapter VI provides a summary of this work and its conclusions, and a

discussion of limitations and future work.
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ÐÐÐÐ==  Chapter II  ==ÐÐÐÐ

Background

The basic tenets of this dissertation are:

      ¥  that a priori edge definitions are insufficient to handle the spectrum of contours

found over a broad range of digital imagery, and

      ¥ that no matter how well a boundary definition might be learned, there will

always be exceptional circumstances that will require some correction by an

expert user.

The phrase a priori definition is used specifically here to denote a definition that is based

on assumptions about, rather than driven by data from, an image and the world it

represents.  For example, defining an edge to be the location of the extrema of the first

derivative of an image intensity function is a definition based on tractable mathematics.

It is a definition which can be made a priori, i.e., before consideration of any specific

image.  Research based on a priori edge definitions will first define edges mathematically,

then process imagery to generate edges based on those definitions, and finally (possibly

implicitly) relate those edges to boundaries in the world.

In contrast, research based on learned edge definitions starts with boundaries in the

world which are mapped onto images, then from the labelled imagery edge definitions
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are constructed.  At the risk of oversimplifying, a priori methodologies start with

definitions then move to data, while learned methodologies start with data then move to

definitions.  In practice, these are two ends of a continuum, and there are many possible

methodologies in the middle combining both a priori and learned aspects.

This chapter explores recent and classical published work directed toward identifying

boundaries in images.  Such work is mostly found within the literature of edge detection

or image segmentation.  Since this literature is vast and spans decades, the works

discussed in this chapter were selected either (1) as a sampling of recently published

work or (2) because they are classically cited works.  The research represented is

categorized in regard to two considerations: (1) whether the work relies on a priori edge

definitions, or it incorporates learning of an edge definition; and (2) whether the system

is intended as autonomous, or if user assistance is easily incorporated when the edge

definition becomes insufficient to adequately define boundaries.  This review is

organized into four subsections, based on the extent that the methodology is: a priori and

autonomous (Section II.1); a priori and user-guided (Section II.2); learned and

autonomous (Section II.3); or learned and user-guided (Section II.4).

II.1   A Priori  and  Autonomous Systems

An edge in an image can be characterized by changes in image brightness or color in some

local area of the image.  When brightness (either overall, or in some channel) is

represented as a function, these changes are also represented in the functionÕs

derivatives.  What is referred to here as the ÒclassicalÓ approach to edge detection is the

study of these functions and derivatives, for example locating edges at first derivative

extrema that identify where intensity change is most abrupt, or at zero-crossings of a

second derivative that identify those first derivative extrema.  ChellappaÕs tutorial
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[1992] summarizes these classical ideas.  This section is by no means an exhaustive

review of classical edge operator research.  Rather, its intent is to identify the main

themes of the work, and to identify common assumptions and problems.
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Figure IIÐ1:  First-difference
filters, approximating a first
derivative over an image, are
used to identify vertical edges

(left filter) and horizontal edges
(right filter).

Since image pixels are quantized and usually

represented at integer coordinate values, derivatives

are realized as differences across pixel values.  The

simplest first derivative operator creates a new edge

image E, where each edge pixel is the difference

between neighboring pixels in the original image.

The first difference horizontally, E
x
(x,y) = I(x,y) - I(x+1,y), quantifies the strength of

vertical edges in the image; the analogous difference in y,  E
y
(x,y) = I(x,y) - I(x,y+1),

quantifies the strength of horizontal edges.  These differences are represented graphically

in Figure IIÐ1.  To use these graphical visualizations, the boxes of a filter are

conceptually placed over a corresponding field of pixels, the coefficients in the boxes are

multiplied by the intensity values of the pixels beneath them, and the results are

summed together.  For the horizontal filter on the left side of Figure IIÐ1, +1 is multiplied

by a pixel value at (x,y) and -1 is multiplied by the pixelÕs right neighbor which is

(x+1,y), which yields the above equation E
x
(x,y) = I(x,y) - I(x+1,y) .  These operators are

called by several names: masks, filters, convolutions, or kernels.
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Figure IIÐ2:  Sobel filters will smooth
vertical edges (the left filter) or

horizontal edges (the right filter).

One problem with derivatives is their sensitivity

to noise or texture in an image.  The Sobel

operators, illustrated in Figure IIÐ2, are one

example of a class of operators that attempt to

reduce the effect of noise or texture by averaging
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pixels in a direction parallel to the edge being detected.  These two masks can be thought

of as determining the horizontal and vertical components of an edge going through the

center pixel; standard vector calculations can be used to calculate the edgeÕs orientation

and magnitude.   A pixel is determined to be an edge pixel if the resultant filtered value

is above some threshold.
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Figure IIÐ3:  A simple
second-difference filter
approximates a second

derivative.

Zero-crossings of second derivatives indicate extrema of

first derivatives, and thus also are useful tools for edge

locating.  Figure IIÐ3 shows a prototypical filter of a

second derivative operator, the Laplacian.  This operator

is isotropic, i.e., it is non-directional.  Since it works for

edges at any orientation, it thus avoids the issues of

combining independently determined horizontal and vertical components into a total

edge strength measure.  A pixel is determined to be an edge pixel if it represents (or is

close to) a zero crossing; an edge pixel will have a positive value of the Laplacian

operator to one side and a negative value on the other side.  This criteria is more

complex than the simple thresholding required for a first derivative mask.  Second

derivative measures are also very sensitive to noise and texture in an image.

A Gaussian smoothing of an image is often used in conjunction with the differential

operators to reduce the effects of noise and texture.  Canny [1986] derived a step edge

detector, which is close in form to the first derivative of a Gaussian operator.  Marr and

Hildreth [1980] proposed using the Laplacian of Gaussian (LoG) convolution mask, also

known as the ÒMexican hatÓ function for its distinctive shape.  The LoG can be closely

approximated by a Difference of Gaussian (DoG) functions, using Gaussians with

differing spread parameters.  This DoG mask is computationally more attractive since

the Gaussian is separable and can be realized as successive row and column operations.
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Huertas and Medioni [1986] fit a surface model to the LoG response, and then

interpolated sub-pixel accuracy in identifying edge locations.
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Figure IIÐ4:  A filter designed for
identifying single-pixel-wide structures.

Reichenbach, et al., [1990] studied optimal

small kernels for edge detection.  Their

filter, shown in Figure IIÐ4, is a 5x5 kernel

set to identify structures on the order of

one pixel wide.

Gaussian filtering is a low-pass filtering,

where the larger the spread of the

Gaussian, the lower the pass band of the filter.  Such filtering can minimize the effect

that noise and texture have on derivative operators, since the Gaussian blur removes the

high-frequency components of an image, the characteristic frequencies of noise and

texture.  Unfortunately, the high frequency components of a signal are necessary to

locate an edge precisely in space.  Canny [1986] demonstrated the uncertainty principle

inherent in these classical edge operators Ð the tradeoff in performance between edge

detection and edge localization.  Even Gaussians of modest width may wipe out the

information of interest, for example in a fingerprint image where ridge lines are closely

spaced.

As an alternative to derivatives and their associated noise problems, Wang and Jenkin

[1992] transform the image using complex Gabor filters.  In this complex space, they use

phase, amplitude, and frequency information to identify both edge and bar primitives in

images.  The first four steps they outline provide a classic example of an a priori

methodology: (1) define a mathematical model of a feature (edge or bar); (2) choose a

proper filter; (3) filter for the feature; (4) derive phase properties that identify the

feature.  The tolerances around the properties can be tuned to very specific
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characteristics, for example bars of a particular width can be identified without also

identifying wider or narrower bars.  The basic assumption, however, identified early on

in the paper, is that, Òsignificant scene structure is often associated with sharp changes in

image intensityÓ.

Haralick [1985] approaches edge detection from a signal processing perspective, where

the image is thought of as a signal in combination with additive noise.  He proposes the

use of facet models to filter out noise; a surface is fit to a neighborhood using a least

squares fit, and the characteristics of the (more regular) fitted surface are used instead

of the (noisy) pixel intensities to find edges.  Statistical techniques are then used to

determine, at some degree of confidence, whether a pixel is an edge pixel or not.  While

the mathematics behind this work are strong, so are the assumptions, including uniform

image areas, step edges, Gaussian additive noise, and independent, identically-

distributed noise.

In summary, classical edge operators raise the following issues.

       ¥ Noise or texture in a scene generates high frequency events in an image; derivative

operators are sensitive to this noise and texture, generating clutter in the edge

images.

       ¥ Limiting the effect of noise or texture implies reducing the high frequency

components of the image, which in turn implies a loss of edge localization.

       ¥ There is a natural uncertainty principle between detection and localization of an

edge; the better the detection, the worse the spatial localization.

       ¥ Many of the analytical performance evaluations of these operators were based

on ÒidealÓ edges.
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      ¥ Many operators exist; which is appropriate?

Some key assumptions are implicit in these classical edge operators.  One is that an edge

is identified with the steepest change in the image intensity profile.  This sounds

reasonable for the image alone, but may not map to an actual boundary in the real scene,

due to the imaging process and the interpretation of other viewers and experts.  Also,

the idea of thresholding a first derivative operator reflects the assumption that the most

significant edges in an image are the strongest ones.  This assumption is sometimes

wrong Ð in Figure IÐ3 for example, the grey matter / white matter boundary is

significantly weaker than neighboring skull.  To generally identify crisp, continuous,

single-pixel width boundaries in an image, more assumptions or additional information

beyond pixel intensities is needed.

II.2   A Priori  and  User-Guided Systems

This section covers research where the user is incorporated into the system to interact

and guide a boundary definition process, though still making strong a priori assumptions,

possibly specific to a certain domain.  The Road Followers discussed in Section II.2.1

have a human in the loop, delineating roads in aerial imagery.  Active Contour Models,

discussed in Section II.2.2, involve users in initializations and adjustments.  Intelligent

Scissors, discussed in Section II.2.3, require a user to loosely guide a boundary wire.

Miscellaneous user interventions are covered in Section II.2.4.

II.2.1   ROAD FOLLOWERS

One specialized line of research has focused on the tracking of roads in aerial images.  In

the general methodology, a user starts by identifying an initial road segment and the

automated method ÒfollowsÓ the road from that initial seed.  A comparison study by

ÐÐ   25   ÐÐ



McKeown and Delinger [1988] broadly divides the road-following research into three

categories: region-based followers; correlation trackers;  and edge linkers.

A region-based road following heuristic grows the road along its length based on some

characteristic (e.g., pixel intensity or local texture) of the initially defined segment.  From

its initial seed, a road may be followed in the manner of a flood fill algorithm: areas of

similar intensity or texture bounded by a contrasting edge are assumed to be road, and

added to the existing segment.  Alternatively, areas may be identified across an image

and then linked together.

Region-based followers depend on the fact that a road generally has a relatively uniform

texture and intensity in the aerial imagery, as contrasted to its surround.  This criteria

can potentially be satisfied by selecting an appropriate image modality.  For example,

Bajcsy and Tavakoli [1976] used only one band of LANDSAT-1 imagery, presumably

since the contrast of road and surround in that band was greatest.  Sometimes the image

modality available does not provide a sufficient distinction, however.  For example,

Airault, et al., [1994] show a histogram of their region-homogeneity criterion, where both

roads and fields have a peak at the same value, thus making them hard to distinguish

from each other.

In the best case, when a road is generally distinct from its surround, region-based

followers run into problems whenever the uniformity of road or distinctness of boundary

is interrupted.  Problematic situations include road occlusion (overpasses and

obstructions), shadows crossing a roadway, vehicles on the roadway, changes in road

surface (e.g., a transition of asphalt to cement), and changes in boundary contrast.  Due

to these practical limitations, region-based heuristics are not used in isolation, but

possibly in combination with other methods.
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Figure IIÐ5:  A Correlation Tracker: road at
left and profiles to the right.  (from

McKeown and Delinger [1988])

A correlation tracker heuristic relies on an

intensity profile of the road and its

adjacent area, in a direction perpendicular

to the road, as shown n Figure IIÐ5.

Starting from an initial seed, a road

segment is extended by first projecting the

road ahead, and then adjusting the

placement of the roadÕs center point so

that the new perpendicular intensity profile correlates well with the roadÕs established

profile.  An indistinct edge of a road will cause problems for a region-based follower,

however the correlation tracker uses other information in the profile to establish the best

placement for the road center.  This technique was used by Quam [1978] in SRIÕs

HAWKEYE road expert system.

A surface intensity correlation tracker relies on several assumptions about

characteristics of a road to work well: a constant width, a relatively constant (or

possibly a slowly changing) surface intensity profile, and a slowly-changing direction

over a reasonably predictable path.  To the extent that these assumptions are not met,

other methods need to be employed to follow the road through problematic areas.

Large-scale occlusions and anomalies need to be handled through other procedures.

An edge linker heuristic is based on linking identified edges together to create road-like

objects.  Consider the basic example of a straight, dark road on a light background.  It

has two distinct edges, parallel to each other and equidistant from each other.  A

directional edge operator will label the edges as opposite in direction, and they are thus

called anti-parallel edges.  Generically, an edge linking heuristic involves these steps:

(1) an edge operator is run over an image (or some part of it) and ÒsignificantÓ edges are
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identified; (2) edges are grouped into anti-parallel pairs in accord with some separation

criteria; and (3) pairs are geometrically extended to join other ÒlikelyÓ pairs into longer

road segments.

The work of Nevatia and Babu [1980], Zhu and Yeh [1986], and Vasudevan, et al.,

[1988] follow these lines.  Some problems noted are the difficulty of grouping anti-

parallel lines properly, and the non-consistency of contrast between a road and its

border.  The main difference among them is the methodology used to join independently

identified segments: Vasudevan, et al., detail an intricate sequential algorithm to cluster

the segments; Zhu and Yeh provide a set of production rules implemented in a variant of

OPS5.

There is much to specify in the steps above: how are ÒsignificantÓ edges defined, and

what separation criteria are used?  These parameters may vary, depending on whether

straight, multi-lane highways or twisty, rural roads are the subject of interest.   The same

assumptions about road characteristics, as discussed for correlation trackers, underly

this work; additionally this work relys on the presence of a significant number of straight

road segments to be initially identified.

Attempting to overcome the limitations of these individual methods, the ARF (A Road

Follower) system developed by McKeown and Delinger [1988] used multiple lines of

analysis in parallel.  They surveyed the best heuristics then available, and built a system

using both an edge linker and a correlation tracker working off common data structures.

They demonstrated the ability of the somewhat complementary methods to help

overcome the shortcomings of each.  As a distillation of best-available techniques used

in combination, their work represents a culmination of much of the prior decadeÕs work.

The following paragraphs summarize the key aspects of their system; underlined

phrases indicate tunable parameters of the system.
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 The correlation tracker (which they call a Òsurface trackerÓ) used is taken straight from

QuamÕs SRI work.  The basic procedural steps of this process are:

    1) project the road 1-step ahead; this is based on a quadratic extrapolation from

recent past points (the step size is not the same as the pixel size);

    2) extract a cross section of the road at the projected point perpendicular to the

direction; use bi-linear interpolation for non-integer pixel values;

    3) Òcross-correlateÓ:  evaluate various lateral offsets of this cross-section to the

reference cross section; find the smallest sum-of-squares difference;

    4) generate a mask for the cross-section where actual values differ from expected

values by some threshold;

    5) re-correlate, as in step #3, using only the unmasked elements (to reduce the

effects of non-road elements on the correlation);

    6) if the correspondence is ÒgoodÓ, use the new offset to determine the next road

center point, update the cross-section model (using an exponential decay), and

iterate the process.

When the correspondence is Ònot-goodÓ, the system attempts projections further than 1-

step ahead, based on the assumption that some transient obstruction has caused the

cross-section correspondence to fail.  If the system finds a matching road within some

reasonable look-ahead, it is assumed to be the roadÕs continuation, and missing points

are interpolated.  A change of road-surface may require the system to be restarted with

a new cross-sectional model.

The edge-based tracker they used follows the work of Nevatia and Babu [1980],

tracking the edges of the road by linking points with both high gradient and consistent

orientation.  The basic procedural steps of this process are:
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    1) project the road 1-step ahead using a quadratic extrapolation;

    2) compute a 5x5 Sobel operator (giving both edge strength and orientation) for

points along the perpendicular to the road direction;

    3) score each point (on a [0,1] scale) based on edge strength, orientation, and

difference from neighboring pointÕs edge strength and orientation;

    4) calculate a weighted sum of these component scores;

    5) choose the highest-scoring point (which exceeds some threshold) as the next

edge point;

    6) mark the next road point as the midpoint between the two edges.

If only one edge is successfully found, assume the road width is unchanged and  mark

the next road point.  If no edges are successfully found, guess ahead possible points as

previously noted.

These two road tracking mechanisms are ARFÕs low-level analyses.  An intermediate level

of analysis attempts to automatically restart one mechanism when it fails from the

other.  For example, a change of road surface from asphalt to concrete will generate a

failure in the correlation tracker (which relies on surface characteristics), but if edge

strengths remain strong the edge tracker will provide the continuation needed for the

correlation tracker to automatically restart its road model.  Differences between the

methods and differences between the expected and actual surface models are used in

attempts to identify road width changes, intersections, vehicles, overpasses, surface

changes, and other possible occlusions.

McKeown and Delinger analyzed the viability of this system on a series of aerial imagery

of highways.  Some images were used to tune the system (manually adjusting the

parameters identified above), and others to test it.  The two methods were able to
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compensate for one another to some degree (30% of the confusions were automatically

resolved in their documented test case), many obstructions and intersections were

processed appropriately, and the exponentially-damped road profile was robust to

gradual changes of road character.  System failures were characterized by situations

where a road had:

       ¥ high curvature,

       ¥ similar intensity to its boundary material,

       ¥ severe/sudden width changes,

       ¥ curvature which is not smooth or reverses direction (e.g., an ÒsÓ curve),

       ¥ inconsistent road-surface pattern, or

       ¥ combination effects (e.g., an obstruction on a curve).

These failure modes are certainly not suprising, in light of the key assumptions behind all

these road tracking methods.  Each road follower starts from some a priori definition of

a road, which usually results in these assumptions:

       ¥ road topology: constant width and (anti-) parallel edges,

       ¥ relatively slow changes in direction,

       ¥ separable characteristic of road from boundary material (intensity, texture), and

       ¥ high-contrast road boundary.

Some intervention is expected upon failure, and no further learning is applied to adapt

to exceptions.  The interactive nature of these systems is similar to the ExpertÕs Tracing

Assistant; many of the problems encountered by the road followers will be avoided in

the ETA by minimizing assumptions such as those listed above.
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II.2.2   ACTIVE CONTOUR MODELS

The name Active Contour Models refers to a general set of models, also called Deformable

Models or Snakes, published by Kass, et al. [1987].  An ACM is an energy minimizing

spline, which is initialized close to a structure of interest and then settles into a local

energy minimum over a course of iterations.  The energy function is defined so that

minima correspond to boundaries of interest in the imagery.  Since the initial contour is

closed, the final result will always be a closed, continuous curve.  These methods have

been applied in segmenting, matching, and tracking anatomic structures in medical

imagery.  McInerney and Terzopoulos [1996] summarized the early development and

application of these ideas.

In these deformable models, four basic things need to be defined: (1) a shape model,

either a single continuous curve or a combination of segments; (2) an energy function to

minimize, that combines the shape energy (penalizes undesirable shapes) and image

energy (responds to strength and proximity of edges or gradients); (3) an optimization

technique, such as gradient descent; and (4) an initial, rough boundary specification.

The contour is represented parametrically by a point-valued function and the shape of

the contour is defined to have an energy which is primarily the sum of two terms.  The

first term is a measure of the geometry of the contourÕs shape and the second term is

derived from the character of the image pixels on which the contour is superimposed.

Further details of ACMs are given in Chapter IV.

Active Contour Models are guided by the user in several ways.  An initial contour needs

to be defined in the beginning of the modelling process.  At the end of the process, after

the contour has settled into its equilibrium state, a user may specify adjustments to the

contourÕs final resting position.
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Mao, et al., [1999] studied the robustness of equilibrium states of ACMs with respect to

their initialization.  They used ACMs to outline arterial lumen.  Since lumen are

approximately circular, the contour is initialized with a circle which an operator defines

by specifying the center of the circle.  They use a discrete dynamic contour model which

is a polyline connecting a set of discrete vertices.

The center point is varied over a 15x15 matrix of seed points.  For each seed point, the

active contour converges to a solution, and a binary image is generated with the interior

of the region set to 1 and the exterior set to 0.  These 225 binary images are added

together Ð if they were exactly alike, the summed image would exhibit a sharp edge,

however the summed image has soft edges, with the degree of softness or slope

indicating variation in the final shape. Some of the resultant shapes were dramatically

different.  The variability of the final contour was studied over several images, the mean

difference among contours being within two to four pixels with a standard deviation

between two and three.  This large a standard deviation with respect to the mean

implies a long tailed distribution, thus there were a significant number of places where

the contours differed by ten or more pixels.

Gill, et al., [1999a] did similar work for three-dimensional surfaces rather than two-

dimensional ACMs.  They looked at the variation among equilibrium meshes.  The

variation measure used was the standard deviation of the final surfaces, which ranged

from 0 to 1.3 mm.  Unfortunately, the voxel size is not mentioned in the paper, so thereÕs

no easy way to interpret the surface error  in terms of pixel/voxel dimensions.

To overcome this sensitivity to initialization, Ladak, et al., [2000] used an anatomically-

derived initial shape model specific to the domain.  Problems they note when applied to

prostate ultrasound images are that the contrast between tissues is low and dependent

on the systemÕs transducer and ultrasound frequency, and that speckle, shadowing, and
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refraction artifacts exist.  These problems make the initial contour specification crucial

for the correct convergence of an active contour.  To solve this, the operator specifies

four specific, anatomically defined points on the boundary in the ultrasound image, and

prostate-specific shape info is then used to create the starting outline.  The system may

still settle into a wrong shape.  The user can then drag a point onto the boundary, clamp

it, and let the contour re-deform. In 36% of the cases, the first settling of the contour was

good enough, while 51% required one editing operation, and 13% required two or more

editing operations.

Distance-based and area-based metrics were used to compare the systemÕs results to an

expertÕs tracing.  Distance differences were calculated along rays from a centroid (this

will not evenly sample the contour along its length).  Boundaries averaged around five

pixels difference.

II.2.3   INTELLIGENT SCISSORS

The Intelligent Scissors (IS) of Mortensen and Barrett [1995, 1998], also known in the

literature as the Live-Wire tool, is a user-guided method of boundary definition.  With

an initial mouse click, the user places a starting point on a boundary of interest; the

system then follows the edges in an image to define a path from that initial control point

to the cursorÕs current screen location.  As the cursor moves, this path is updated in real

time and appears to be a wire snapping around on the edges in an image, hence the

terminology "live wire" for this tool.  If the user is satisfied with a segment of the

boundary that is currently defined by the live wire, they click again on the boundary to

lock the segment in place, and the live wire now uses that newly defined control point as

the start for an edge-following path to the cursor.  To complete a boundary, the user

clicks on the starting point when the live wire comes back to it.  This guarantees a
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complete and closed boundary definition.  Eric Mortensen [1999] noted this live-wire

technique was incorporated by Adobe into Photoshop from version 5.5 forward as the

"magnetic" selection tools.

In a preprocessing step, for every image pixel a local cost from that pixel to each of its

eight neighbors is computed.  This local cost is a weighted sum of several features

(discussed in detail in Chapter IV), all scaled so that strong edges result in low values.

The image is recast as a weighted graph, with the pixels as the nodes, and each pixel-

node has weights on the eight graph arcs (edges) connecting that pixel to its eight

adjacent neighbors.  As the user then places control points on boundaries of interest, the

system computes a minimal cost path from the most recent control point to every pixel

in the image by computing an optimal spanning tree of the image using a graph searching

algorithm.  Thus as the cursor is moved from pixel to pixel in the image, the optimal

path can be quickly determined and redrawn at interactive speeds from control point to

cursor as it moves.

Due to its reliance on minimal cost paths, IS favors shorter paths over longer ones.

When used to bound a structure that has a long protuberance with a thin neck, IS will

favor a shortcut across the neck rather than following its full extent around the

protuberance.  This is discussed further in Section V.3.1.  Another artifact occurs when a

weak edge of interest lies near a strong edge.  In this situation, the minimal cost path

pays a small cost to cut over to the strong boundary which is overall cheaper for a long

run of boundary pixels.

The human-machine interface engineered for IS is enviable.  The overall approach is close

in concept to ETA in that IS uses an incremental extension process, always working off a

human supplied reference point.
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II.2.4   MISCELLANEOUS INTERVENTIONS

Heinonen, et al., [1998] deal with isolating and calculating the volume of the lesions of a

brain; thus itÕs a binary labeling task Ð lesion / non-lesion Ð for each pixel.  They note

that due to variable shape, size, and intensity of plaques and different locations near

cerebrospinal fluid spaces, totally automated segmentation techniques are not able to

detect all lesions.  Their process follows these four steps:

         (1) 3x3 low-pass filtering (an optional step, since it does impact the accuracy

of the results);

         (2) thresholding Ð three bitmaps for three intensity ranges, because lesions

vary in intensity;

         (3) manual editing Ð region growing to isolate the lesions, but manually

placed lines (their example) are used to prevent regions from growing into

immediately adjacent similar structures such as ventricles and sulci; and

         (4) combine the three bitmaps and superimpose on the original image for

context; lesion volumes are calculated by summing the regions identified

over all the slices.

To judge their results, they tested with phantoms (i.e., known ground truth objects) and

did inter-observer and intra-observer studies.  The inter-observer study consisted of four

experts and six patients, and the variability across experts was 7%.  In the intra-

observer study, using two experts and six random image sets each four times over two

weeks, the variability was found to be 3-4%.

The time required to process images was 5-20 minutes per image set of 21 slices, when

looking for plaque (the hard task).  The easier task of looking for cerebral infarction took

2-10 minutes per set (with possibly more images).
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II.3  Learned  and  Autonomous Systems

The concept of learning in a system has many different implementations.  This section

reviews a sample of recent research where learning is integrated as a component of the

system.

As discussed in the opening of this chapter, systems which learn will start with the data

and derive boundary definitions based on that observed data.  One pure learning

approach is to create definitions based on statistical properties of system inputs; such

systems are discussed in Section II.3.1.  Between the extremes of pure learning and pure

a priori modelling, a parameterized model may be defined in advance, and the system

ÒlearnsÓ by setting the parameters based on the data; Section II.3.2 reviews research

with this approach.  Training of fuzzy classifiers is also similar in this regard, and is

reviewed in Section II.3.3.

II.3.1  STATISTICAL CHARACTERIZATIONS

Konishi and Yuille [2000] note that, "Although there has been recent progress in general

purpose image segmentation, it remains an extremely difficult problem."  Their goal is to learn

segmentation cues within a particular domain, rather than to rely on a priori assumptions

of color, textures, or other clues in a general case.  Their strategy is to partition a labelled

dataset, statistically characterize one part, and examine how well those statistics

correctly label the pixels in the other part.  In the dataset they use Ð a collection of

images of English county roads Ð all pixels have been manually identified as one of six

classes: edge, vegetation, air, road, building, or other.

Their pixel classifications are based only on local information. The basic set of filters

they used are color intensity, gradient, Nitzberg corner edge detector (Nitzberg,
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et al. [1993]), and LoG (Laplacian of Gaussian).  The filters were used over both

intensity and color values and at a variety of scales.  They report that the most effective

filters were color intensity and the Nitzberg operator, which was originally designed as a

corner detector but is generally good at distinguishing regions of different textures.

Gradient and LoG filterbanks were less effective, though it is noted that they may have

been more effective if sufficient data were available to enable training them at a larger

number of different scales.

Once filters were chosen, the response values were quantized into six possible response

bins.  These bins were selected by running the filter over the image, and evaluating a

histogram of responses to the six different classes; the histograms were normalized to

give the six conditional distributions P(ResponseBin|Class).  Priors are estimated by the

number of pixels in each class computed over the entire dataset, and a Bayesian

classification rule developed based on the conditional and prior distributions.  Six bins

for each dimension of the filter using six coupled filters resulted in 66 (~46,000)

quantized bins overall.  Using more bins leads to overfitting problems and increased

computational cost, while using fewer bins leads to cruder classifications.

Using the best selection of filters and bins for color and texture over several scales, they

found that the probability of correctly classifying pixels as vegetation or air or road is

around 90%, however the probability of correctly classifying edge pixels is 60%-70%,

depending on the prior used.  Besides the ill-defined ÔotherÕ class, the most frequent error

occurred in the ÔedgeÕ class; the texture of vegetation produced a large number of small

edges, which would then confuse the edge detector.

Kim, et al., [1999] present an approach to the problem of supervised texture

segmentation using nonlinear support vector machines (SVMs).  SVMs are well-defined
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for two-class problems, however multi-class SVMs are still an active research area.

They address this issue in the framework of an R-class texture discrimination problem.

For each texture class, a nonlinear SVM is constructed which separates that class from

others in aggregate.  The segmentation is then achieved by using the outputs of the SVMs

as inputs to an arbitration system which determines the correct classification from the

pooled responses.  They propose using SVMs in place of neural networks, because the

SVMs are based on statistical learning theory, they have shown better generalization

performance in some cases, and the number of hidden units and their weights are

optimally and automatically determined.  Interestingly, this arbitration system is a

neural network, trained with standard error backpropagation, to determine the winning

SVM for the R-class problem.

For a 16 class problem, their classification results worked well within the body of the

texture.  However, the majority of misclassifications systematically occurred at the

edges.  Edges are where any texture-recognition system, by its nature, will have

problems, thus texture classifiers will likely not make good edge detectors.

II.3.2   LEARNED MODEL PARAMETERS

The work of Fenster and Kender [2000a]  is aimed at learning a model of shape

likelihood, given an image.  The shapes they use are piecewise cubic polynomials.  The

objective function sums the gradient strengths over the shape boundary.  For their

objective functions, they assume independent, identically-distributed values of intensity

and directional gradient at all points along a shape S.  Their definition of learning is to

recover two Gaussian distributions for the intensity and gradient.  The joint probability

of these at every point around the contour is modeled by the probability of observing

those features on S in image I; the negative log of this product of Gaussians is the image
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energy.  These models assume a uniformity around the shape boundary, which is often

not true, leading to sectored snakes, where the complete S is divided into regions (sectors)

and dealt with independently.

A goal of their work is to characterize the performance of objective functions by

measuring their evaluation of near-correct shapes.  This is done in two real domains,

abdominal CT and echocardiogram (heart ultrasound) imagery.  The ground truth shape

should score better than any other shape, and as the shape approaches the truth its

score should improve (for gradient descent to work).  In studying perturbations to the

ground truth of a shape, they find that traditional ACMs, attracted to the strongest

edges, incorrectly gave 15% of the perturbed shapes a better score, and at higher blurs

(coarser scales) the ACMs did worse.

The following points summarize their work.  ACMs with learned parameters

outperformed the unlearned "traditional ACMs" when homogeneously treated around

the shape.  Of the four statistical methods they used to train ACMs, the best method

was dependent on the domain (CT vs. echocardiograms).  In the echocardiograms, false

positive rates were unacceptable for all functions tested (in other words, none of the

functions worked well).

Durikovic, et al., [1998] note that, "Although 3D reconstruction is widely used in CT and

MR imaging, the methods do not fulfil all the needs in anatomy. Anatomists seek information

about the exact overall shape and try to ascertain the features that build it."  These researchers

are working to define highly accurate boundaries of anatomical structures, similar to the

work at Visible Productions, but at a finer detail by one-to-two orders of magnitude;

they are building embryo models based on slices 7-30 microns thick, while the Visible

Human slices are 300-1000 microns thick.  They face the same problems of registration,

segmentation, and topological reconstruction.
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ACM methods were troublesome in defining a highly concave structure or a structure

whose topology changes (branching/merging) between sections.  In their embryo

reconstructions, ACMs were useful only in reconstructing higher contrast regions, such as

the outer skin.  They developed a user-guided approach and extending ACMs to track

both boundary and topology across sections by (1) using an "area energy" rather than an

energy along the line, (2) assuming structures were expected to maintain an average

texture, (3) adding a contour splitting operation to deal with branching, and (4) setting

initial parameters based on an initial estimation of the structure boundary.  With this

approach, they found that 94% of the contours were correctly connected, and

construction of three-dimensional models was roughly quantified as being reduced from

a few months to only several days.

Working with neural networks, Brahmi, et al., [2000] developed an operational system

devoted to the segmentation of virus-infected areas in images of the retina.  The images

were divided into 16x16 windows, and the task is framed as a window-labeling task Ð

classifying windows as showing infected areas versus healthy areas.  A 128x128 pixel

window was divided into eight rows and columns to produce the 16x16 pixel sub-

windows.  They used principal component analysis to find the first 20 eigenwindows of

the sub-images, and then used the 20 projections onto these eigenwindows as inputs to a

neural network classifier.  In addition to reducing the size of the input space, this

procedure also decorrelates the inputs.  They trained the neural net to discriminate

between healthy and infected retina.  On separate retina images (not in the training set),

they correctly classified 84% of the windows.
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II.3.3   FUZZY CLASSIFIERS

Schalkoff, et al., [1999] describe a general image analysis and segmentation method

using fuzzy set classification and learning.  Their application is part of an autonomous

robot designed to inspect U.S. Department of Energy warehouse waste storage drums

for rust.  Drum surface images are acquired under controlled conditions and subsequent

visual inspection classifies the drum as Òacceptable'Ó or Òsuspect'Ó.   The method uses a

learned fuzzy representation of pixel region characteristics, based upon the conjunction

and disjunction of extracted and derived fuzzy color and texture features.  The problem

is setup as a two class recognition problem, where the two classes are (1) acceptable

image regions, and (2) suspect or flawed surface characteristics.  Color images are

represented in six dimensions for each pixel, using the three standard HSI (hue-

saturation-intensity) planes and three derived texture planes in each of those HSI

dimensions.  The texture measure is the standard deviation over a 3x3 neighborhood.

The learning part of this system follows these steps.  First, the trainer selects positive

and negative exemplars, then training data is calculated for each pixel based on a local

3x3 neighborhood.  Positive and negative data sets are then clustered by k-means (Duda

and Hart [1973]), with a user-defined number of clusters.  Finally, each dimension is

used to generate membership functions for positive and negative sets.

Once the fuzzy membership functions are learned, the classification is done by: (1) using

the six dimensions, AND-ing the fuzzy dimensions for positive and negative

membership; (2) OR-ing the data together for each cluster; and (3) classifying the image

as positive if the fuzzy positive measure exceeds the fuzzy negative measure.  Ninety-

five percent correct classifications were cited.
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One interesting note from their case study: four images with flawed areas were used to

generate positive membership functions, then false-positive classifications using that

positive membership measure were used to generate the negative membership function.

This is an efficient way to develop the negative exemplars, since the false positives are

the cases which need correction, and they are likely to provide the strongest distinctions

between the Òacceptable'Ó or Òsuspect'Ó cases.

Karayiannis and Pai [1999] defined a methodology for learned segmentation using

Fuzzy Algorithms for Learning Vector Quantization (FALVQ).  LVQ, generally, consists

of grouping feature vectors into clusters and representing each cluster by a prototype; a

feature is then determined to be of the type of its closest prototype.  They distinguish

between crisp algorithms, which assign each feature vector to a single cluster, and fuzzy

algorithms, where a membership function is used to assign feature vectors, by degree,

usually to multiple clusters.  Crisp LVQ, characterized by the methodology of Kohonen

[1997], allows the update of only the ÒwinningÓ (i.e. closest) prototype in the

competitive network.  Soft LVQ algorithms, in contrast, allow all the prototypes to be

updated for a given input to the network.  The authors develop a family of FALVQ

algorithms, whose differences are basically in how the competition between prototypes

is regulated during learning.

They test their methodology on brain magnetic resonance (MR) imagery, trying to

identify a tumor in the scan across the three standard MR channels T1, T2, and SD.

After the patient took Gadolinium, the tumor was easily seen in its entirety in a T1 scan,

and this is the ground truth for the task.  The Kohonen LVQ methodology did not

segment the tumor well; however, the FALVQ family has several tunable parameters,

and at appropriate settings, they segmented the tumor very closely to the truth.
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Only four images were used in this study Ð this paper demonstrates the potential of a

technique rather than presenting a detailed analysis.  There are no comparisons to other

methods besides Kohonen.  The authors write that the "use of unsupervised LVQ

algorithms does not rely on a priori information provided by human experts."  However, they

spent considerable effort in tuning the parameters across a family of algorithms to find

settings which gave the result desired.  It is not obvious that this will generalize to

finding tumors in other images, or to identifying other cerebral abnormalities.

II.4   Learned  and  User-Guided Systems

In later variants of the Live Wire / Intelligent Scissors techniques, Mortensen and

Barrett [1998] used a basic statistical characterization of recent boundary history to

ÒtrainÓ some of the edge strength functions used in the overall cost function.  For

example, they tracked a profile of pixel values on the boundary of interest, and then

assigned a low cost for boundary segments consistent with the profile and a high cost

otherwise.  They demonstrated this on one example, preferentially following a weak

rather than strong edge, however, they provided no analysis on the overall effectiveness

of such training.

Falcao, et al. [1998], working independently of Mortensen and Barrett but with the same

basic Live Wire idea, extended the technique in two further ways; first, in a more

sophisticated learned cost assignment, and second, using adaptive neighborhood sizes

dependent on tracing speed.  For the cost assignment, a simple neighborhood of six

pixels around the boundary arc of interest is used.  The pixel values are weighted in

several combinations to form seven features, and these features are converted to cost

functions through six parameterized transformations.  The transformations are either

linear, Gaussian, or modified hyperbolic in form.  The transforms are defined such that
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features indicating a boundary of interest result in low values, consistent with defining

boundaries as minimum cost paths along the graphÕs arcs.

The ÒtrainingÓ of their system consists of the automatic selection of features, transforms,

and parameters for the cost function.  To train their system, the user ÒpaintsÓ a series of

typical boundary segments.  Basic statistics of the painted pixels (minimum, maximum,

mean, and standard deviation) are then used to define parameters of the transforms.

Any of six transforms can be applied to each of the seven features, and they evaluate all

possible feature subsets to find the closest match of their overall evaluation function to

the example segments supplied for learning.  The results of this system compare well to

the richer set of hand-crafted features used in Intelligent Scissors.  This performance

equivalence shows the strength of this method which starts with only six pieces of pixel

data but searches the power set of {{features} X {transformations}} to find the best

evaluative subset for the task.

The second concept Falcao, et al., introduce they call Live Lane.  They define a lane

around the boundary being defined, and the lane limits the extent of the graph search in

seeking the minimal cost boundary path.  The width of the lane can be controlled

dynamically by the user.  For example, the user may move the cursor quickly across an

obvious and well-defined boundary but may slow down their cursor motion for ill-

defined or atypical boundary segments, and the lane width can be adjusted

automatically based on the speed of the cursor motion.  In the extreme case where the

user slows down dramatically for precise boundary placement, the lane width reduces

to zero and the system is effectively in a manual-tracing mode.  In evaluating their

method across several users, the preferred mode of user interaction with this dynamic

lane width was a user-initiated change, by key-stroke or mouse-click, that alternated the
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mode between some wide width for straightforward boundaries and a narrow width for

user-guided precision.

As Falcao, et al., improved Live Wire through additional learning, Cootes, et al. [1994],

add a learned component to ACM methodologies.  They define a statistically based

technique for building compact models of shape and appearance, called Active Shape

Models.  Similarly to ACMs, the shape models are initialized near a structure of interest

and they iteratively converge to the structural boundary, however the shape model is

topologically constrained by prior exemplars.  The shape model is derived from a large

set of boundaries; as an example they use the left ventricle in 66 heart echocardiograms.

The mean shape is calculated, and from the covariance matrix of residuals off that

mean, the leading eigenvectors are used to constrain the variation in shape allowed

during the iterative convergence.  Work by Cootes and Taylor [2001] develops Active

Appearance Models along similar lines, with boundary points being selected based on

local textures rather than edge strengths.

This method is usually user assisted in two aspects  First, an expert is required to bound

the structure on all exemplars.  Second, the user is often involved in the initial placement

of the shape model or identification of key landmarks used by the model.  The authors

propose using a genetic algorithm for finding a suitable initial shape, but in general this is

a hard problem, and one for which humans are appropriately adept, for instance by

roughly setting a bounding box around the structure of interest.  This methodology works

well given a consistent topology across exemplars, as for example with sets of hearts or

sets of faces.  However, this methodology fails on the sulci of brain or the branching of

minor arteries and veins, all of which have a topology that differs from case to case.

The ExpertÕs Tracing Assistant of this disssertation has both strong interactive and

learned components, as in the other systems discussed in this section.  Historically, the
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initial ideas presented by Crawford-Hines and Anderson [1994] framed boundary

definition as the result of learned segmentation.  A neural network was trained to

distinguish structure from non-structure, and standard flood-fill algorithms were used to

create the segmentation using this learned distinction of structure.  The basic boundary

tracing framework and initial experimentation with input and output representations

were published by Crawford-Hines and Anderson [1977a, 1977b]; that work is

thoroughly detailed in Chapter III.  The full ExpertÕs Tracing Assistant system was

detailed by Crawford-Hines [2000] and was placed in the overall context of a three-

dimensional model generation system by Crawford-Hines and McCracken [2002].
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ÐÐÐÐ==  Chapter III  ==ÐÐÐÐ

Building a Viable ExpertÕs Tracing Assistant (ETA)

The ExpertÕs Tracing Assistant (ETA) is a software system developed to validate the

ideas set forth in this dissertation.  The overall framework of the ETA is presented in

Section III.1.  Successive sections discuss experiments that investigate the capabilities

and limitations of this framework and the sensitivity to design choices and parameters.

Section III.2 presents experiments with the viability of different system output

representations.  Section III.3 addresses the issue of balance in the creation of a training

set.  Section III.4 demonstrates the impact of richer input representations on learning

speed.  Experiments in Section III.5 show the path to defining a flexible set of input

primitives for the robust learning of boundary definitions.

III.1 ETA Framework

Presented in this dissertation is a general and flexible formulation for following

boundaries in images.  The general process follows these steps:

               A) sample pixel values through the neighborhood of representative segments

of a user-defined boundary;

               B) build a training set, based on the methodology to be followed in step D;
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               C) learn dynamically an evaluation function to distinguish onÐboundary

versus offÐboundary points;

               D) as new boundary segments are started, evaluate potential next pixels

adding the most likely next pixel to the boundary, and iterate;

               E) and maintain user control of the process, so that the expert can easily

override the system when needed to refine its choices or correct its errors.

The system works from whatever boundary piece has been established and extends it

forward.  This behavior parallels the Òroad followerÓ systems outlined in Chapter II.

Those systems, however, were hardwired with a priori knowledge from their application

domain.  For a more flexible solution, the structural boundary representation is learned

as needed in ETA.  The goal is to develop a flexible system architecture and learning

method so users can begin a tracing task, then have the system learn it and take over the

repetitive parts of that task.

Neural networks are used to learn the boundary character.  The inputs to the network

are features of a local neighborhood around the boundary.  Standard error

backpropagation algorithms are used with a three-layer network (one input, one hidden,

and one output layer).  The output layer is interpreted as an indicator of whether a

candidate pixel is a boundary pixel or not; alternative output representations are

explored in Section II.1.2.

III.1.1    CREATING EXEMPLARS BY SAMPLING A NEIGHBORHOOD

Figure IIIÐ1 illustrates the options for continuing a boundary trace forward.  The figure

shows detail along a grey-white boundary, where each square in the picture represents a

pixel.  A partial  boundary is defined, in a direction from left to right, by the pixels
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marked by X.  Under basic assumptions of an 8-connected boundary that doesnÕt

backtrack on itself, the possible candidates for the next pixel on the boundary are

labelled 1 through 5.
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Figure IIIÐ1:  A partially traced
boundary is marked by XÕs, and options
for the next pixel on the boundary are

numbered 1 through 5.

Clearly in this simple case candidate 4 is the

correct choice for the next pixel along the

boundary, while 1, 2, 3, and 5 are wrong

choices.  Note that the correct next-pixel

choice is not a function of the pixel itself, since

pixels 1 through 4 are all white, yet only pixel

4 is correct.  A decision rule for picking

boundary pixels could be stated as this,

ÒBoundary pixels are those which are white and whose immediate neighbor is grey.Ó  The key

thing to note is that boundary is not a function simply of a pixel itself, but of its local

neighborhood.

A boundary separates things.  To accurately locate a boundary, it is important to

monitor the things that are being separated.  For example, to demarcate the boundary of

a riverÕ flood plain just after a flood, you could find the edge of the floodÕs silt along the

drainage, then walk the boundary by keeping all the silt-covered landscape to one side

of you and the clean higher ground to the other side.  WhatÕs ahead or behind you

doesnÕt so much matter, but what does matter is whatÕs off to your immediate left or

right as you walk, i.e., whatÕs perpendicular to your direction of travel.

Figure III-2 sketches the situation.  A direction for the boundary is arbitrarily chosen,

indicated by the arrowheads.  This direction serves to orient the perpendicular neighbors

so they can be labelled consistently as left or right.  At several spots along the boundary

a point has been circled and labelled C.  The two neighbors perpendicular to the
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boundary at that point, both to the

immediate left and right, are labelled

L1, L2, R1, and R2, respectively.

These neighbors will be used as

reference points in the ETA framework.

    
    

    

L2
    

    
    

L1
    

    
    

C

    
    

    

R1
    

    
    

R2

    
    

    L2
    

    
    L1

    
    

    C
    

    
    R

1
    

    
    R

2

            

L2             

L1             

C             

R1             

R2

Figure IIIÐ2:  Three spots (labelled by ÔCÕ) on a
directed boundary; left and right neighbors to C

are defined perpendicular to the boundaryÕs
tangent at C and with respect to the direction

indicated by the arrows.

Using a boundary direction to

distinguish left from right, the decision

rule for Figure III-1 might now be re-

worded as, ÒFor the next pixel on the

path, choose the white pixel whose immediate right neighbor is greyÓ.  To quantify this rule,

data is needed for each candidate pixel and its immediate neighbors.

   

1

   

4

   

2
   

3

   

5

Figure IIIÐ3:  Five neighbor sets for consideration, based on the direction to the
proposed candidate pixel; the five diagrams correspond to the cases defined in

Figure IIIÐ1.

Figure III-3 shows five diagrams, one corresponding to each of the candidates identified

in Figure III-1.  In each diagram, the five circles show the candidate point with its two

left neighbors and two right neighbors, following the layout of Figure III-2.  The
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orientation direction is established from the previous point to the candidate point,

indicated by the short line segment.

As a basic case, consider using the pixel values at these locations to define a training

vector for each of these candidates.  Representing white with a value of 1.0 and grey

with a value of 0.5, these five candidates yield the five training vectors shown in

Table III-1.  The values of true and false in the table are taken from Figure IIIÐ1, where it

was observed that case 4 represented the desired boundary pixel and the other cases

did not.

Table III-1: The five cases of Figure III-3 produce this training set of exemplars.

case

ÐÐÐ  data  ÐÐÐ ÐÐÐ  response  ÐÐÐ

LLLL2222 LLLL1111 CCCC RRRR1111 RRRR2222 on the boundary ???

1 1.0 1.0 1.0 1.0 1.0 false

2 1.0 1.0 1.0 1.0 1.0 false

3 1.0 1.0 1.0 1.0 0.5 false

4 1.0 1.0 1.0 0.5 0.5 TRUE

5 1.0 1.0 0.5 0.5 0.5 false

The learning procedure takes data such as the five vectors listed here, and learns the

response from the data.  For the simple decision rule stated earlier, ÒChoose the white

pixel whose immediate right neighbor is greyÓ, a quantitative rule could be crafted as:

PixelValue(C) + PixelValue(R1) = 1.5    ==>   C is a boundary pixel

This decision rule would select the white edge pixels when tracing left-to-right in

Figure IIIÐ1, however it would select the grey pixels when tracing right-to-left.
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Section V.3.3 shows this behavior occurring in practice, when the boundary tracer gets

turned around by mistake and continues on, at some offset, in the opposite direction.

III.1.2    NEURAL NETWORK ARCHITECTURE FOR BOUNDARY LEARNING

The choice of a particular learning methodology is not the focus of this research work,

though certainly for any system based on this work to be successful, it must learn

quickly and efficiently to be able to aid the experts in their tracing tasks.  Given

nÐdimensional vectors of data (the training data) and responses (positive or negative),

there are many avenues to learn appropriate responses given the data, such as neural

networks, decision trees, support vector machines, and Bayesian networks.  The choice

was made to use neural networks because they are well understood and straightforward

to implement, their feed-forward calculations are quick, they can learn non-linear

mappings of data to response, and

they are flexible in their configurations

of layers and nodes.  This section

presents the standard exposition of

an error-backpropagation neural

network (Rumelhart, et al. [1995]).

            

inputs
            

hidden
layer

            

output

            

input-to-hidden
layer weights

            

hidden-to-output
layer weights

            

b

            

b

Figure IIIÐ4:  The 5-3-1 neural network
architecture has 5 input units, 3 hidden units,
and one output unit; the bias units are shown

labelled with a ÔbÕ.

Figure IIIÐ4 illustrates the architecture

of a basic three-layer neural network

with several inputs, subscripted by i

and denoted here as x
i
 , one hidden

layer of several hidden units,

subscripted by j with outputs

denoted here as h
j
 , and one output

ÐÐ   53   ÐÐ



unit with output y.  The bias units, labelled ÔbÕ, feed in a fixed signal of one to the

hidden and output layers.  Essentially, the bias unit at the input layer acts as input x
0
,

and subscript i for n inputs run from zero to n; the hidden layer bias unit is treated

analogously.

In the general case, there may be several output units for a neural net, but in ETA only

one output unit is used, so this exposition limits itself to this case.  The notation Ò5-3-1

networkÓ will be used as shorthand for this configuration of five inputs, three hidden

units, and one output.

Doubly-indexed weights w
ij
 denote weights from input unit i to hidden unit j.  Singly-

indexed weights w
j
 denote weights from hidden unit j to the output unit.  The weights

are initialized to small random values, and the network ÒlearnsÓ the mapping of inputs

to outputs by adjusting these weights based on gradient descent of the mean-squared

error function of the network output over its training data with respect to the weights.

For each hidden unit, the inputs are multiplied by the corresponding weights, summed,

and that result is passed through a sigmoid ÒsquashingÓ function f(x) = (1 + e-x)-1 which

remaps the sum to the interval [0,1].  A step size d is calculated in the direction of the

gradient and weights are adjusted by some fraction α of this value.  This value is the

learning rate of the network, and αy is used to adjust the weights w
j
 and αh is used to

adjust the weights w
ij
.  Momentum µ is used to potentially speed up the gradient descent

by adding some fraction of the most recent weight change to the current change.  For a

vector of input values x
i
 and a desired correct value c, the weights evolve through

iterations governed by these equations, computed by this sequence of equations, left-to-

right, top-to-bottom:
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The first pair of equations represent value propagation from the inputs to the hidden

units to the output.  The second pair of equations represent the error gradient

information at the output unit and the weight-proportional propagation of this error

information from the output to the hidden units.  The third equation pair shows the

updating of the hidden unit weights, where w* represents the new value, and the fourth

shows the updating of the input weights.

III.1.3   SINGLE CHANNEL INPUTS

Only a single eight-bit value was used for the raw data associated with each pixel.  This

is a common denominator across many imagery formats and provides a computationally

compact set of inputs.  Inputs are normalized to the range [0,1].

Some imagery data comes in at more than eight bits, for example the DICOM format for

CT imagery has 12 bits per pixel.  For this imagery to be displayed on a conventional

RGB monitor, the data can be pseudo-colored across the three eight-bit color channels,

or a sub-range of values can be re-mapped to eight-bits and then displayed in greyscale.

In practice, the user adjusts a visual display to highlight the portion of the dynamic

range that most accentuates the anatomical structure of interest, these values are

mapped to the interval [0..255], and ETA uses these re-mapped values as it would any

single 8-bit channel.
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For RGB imagery, using three values per pixel would triple the number of inputs, triple

the associated number of weights from input to hidden layers, triple the number of free

parameters thus increasing the needed number of training exemplars, all of which imply

increased computation for training.  Also since the three color channels are highly

correlated, progressively less information is gained, at a higher computational cost, by

adding a second or third channel of data.  For the purposes of this dissertation, it was

decided to use only one channel of data.  For general color imagery, the RGB channels

are averaged to one greyscale channel.  In the Visible Human imagery, the green channel

provides the best contrast and distinction among structures overall as shown in

Figure IIIÐ5, thus the green channel was selected as the single channel of input.

   

Red
Channel

   

Green
Channel

   

Blue
Channel

Figure IIIÐ5:  The red, green, and blue channels for a detail from the Visible Human
imagery are highly correlated, and the green channel provides somewhat better contrast

and distinction among the structures.

III.2 Output Representations

The neural network produces a floating point number on [0,1] as an output, and this

number needs to be related to the application.  In the ETA framework, the output needs

to be used to make the distinction between vectors that represent on-boundary points

and those that represent off-boundary points.  This section presents the results of

experimentation with continuous-valued and discrete output representations.
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III.2.1    CONTINUOUS-VALUED (SEF) OUTPUTS

One representation for the output unit is to use the continuously varying output over the

range [0,1] as a measure of deviation to the left or right of the desired boundary for a

candidate pixel.  Example values for such an output unit are tabulated in Table III-2.

The output values for a candidate and its neighbors are interpreted as a low evaluation

indicating the candidate pixel is off to the left of the boundary, a high evaluation

indicating off to the right, and a value near 0.5 indicating the candidate pixel is on the

desired boundary.   This type of response is suggested from a control-systems

perspective, where an action taken in response to being far-left of target is opposite to

the action taken when far-right of target, and the degree of response is related to the

degree of deviation.

Table III-2: A restatement of Table III-1,
adding quantified responses for SEF outputs.

case

ÐÐÐ  data  ÐÐÐ ÐÐÐ  response  ÐÐÐ

LLLL2222 LLLL1111 CCCC RRRR1111 RRRR2222 boundary? SEF

1 1.0 1.0 1.0 1.0 1.0 far left 0.1

2 1.0 1.0 1.0 1.0 1.0 far left 0.1

3 1.0 1.0 1.0 1.0 0.5 near left 0.3

4 1.0 1.0 1.0 0.5 0.5 YES 0.5

5 1.0 1.0 0.5 0.5 0.5 near right 0.7

The network learns an evaluation function that produces smoothly changing values as a

pixel and its neighbors change from left-of-boundary values, to on-boundary values, and

then to right-of-boundary values.  This output representation is named the Smooth
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Evaluation Function (SEF), since as candidate pixels are considered from left to right

with respect to the established boundary orientation, the single output unit should vary

smoothly from low to high.

Figure IIIÐ6:  The segment indicated by the * was
used as training data to learn the grey/white
matter boundary in this MRI image; the other

boundaries shown were generated automatically.

In an initial demonstration of ETA,

the use of SEF output units proved

promising. Figure III-6 shows an MRI

image from the work of Hyde,

et al., [1995] at the National Institute

of Mental Health.  To define the

boundary between grey and white

matter in this image, a short training

segment of twenty pixels is identified

by the star.  A 5Ð1Ð1 neural network

using inputs of [0,1] normalized

greyscale values and an SEF output unit was trained to learn this grey/white distinction.

The boundaries shown were then traced automatically by the ETA prototype.  Loops in

the boundary followed by gaps indicate where the system lost track of the boundary

and it was manually restarted a few pixels later.  Visually, it can be observed that the

vast majority of the grey/white matter boundary could be well-traced automatically

with this configuration.

III.2.2    FEATURE DETECTOR (FD) OUTPUTS

Another representation for the output unit is as a feature detector: the output goes high

in the presence of a feature and goes low otherwise.  In this case the feature is whether or

not the candidate choice represents a boundary pixel.
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For a trained neural network with a single output unit and sigmoid functions on the

hidden and output layers, Rumelhart [1995] showed that an output unit with this

interpretation can be interpreted as generating a probability Ð the probability of the

feature given the inputs.  In light of this probabilistic interpretation, the networkÕs output

can be thought of as a relative certainty of a pixel being a boundary pixel, and these

boundary tracing actions are defined given a particular range of the networkÕs output:

Output Value Interpretation Action Implied for
Candidate Pixel

[.75, 1.0] Likely to be a
boundary point.

Add it to the boundary
and continue.

[.25, .75] Uncertain.
Pause and ask for user

guidance; use this case for
additional training

[0, .25] Reasonably certain
itÕs not a boundary. DonÕt use it.

As a practical matter, targets of 0.1 and 0.9 are used instead of 0.0 and 1.0 to avoid

saturating the units during training.  Table III-3 shows the quantified target values for

training of FD output units.

Table III-3: A restatement of Table III-1,
adding quantified responses for SEF and FD outputs.

case

ÐÐÐ  data  ÐÐÐ ÐÐÐ  response  ÐÐÐ

LLLL2222 LLLL1111 CCCC RRRR1111 RRRR2222 boundary? SEF FD

1 1.0 1.0 1.0 1.0 1.0 far left 0.1 0.1

2 1.0 1.0 1.0 1.0 1.0 far left 0.1 0.1

3 1.0 1.0 1.0 1.0 0.5 near left 0.3 0.1

4 1.0 1.0 1.0 0.5 0.5 YES 0.5 0.9

5 1.0 1.0 0.5 0.5 0.5 near right 0.7 0.1
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III.2.3    SEF VERSUS FD COMPARISON

To evaluate the relative merits of these two possible output representations, a study

was done to compare the representations.  

            

training segment

Figure IIIÐ7:  Synthetic image for edge and line test
cases, to compare SEF and FD output units.

The blob and the single-pixel-wide line in

Figure III-7 were used to explore

the attributes of these two

different output units in a

controlled image environment.

The two tasks studied were how

well the system could be trained

to follow the blobÕs edge and to

follow the line  The training

segment for the edge-following

task, in black, is identified at the

bottom of the blob, bordering the

yellow shape immediately to its outside.  The sharp aliased edge of the blob and the

boundary defined just to its outside make this case just like the detail shown in

Figure IIIÐ1.

The system, configured with either SEF and FD outputs, learned quickly to follow the

edge of the blob.  The red boundary line shown was traced out automatically, tracking

the blob boundary cleanly, except for missing a few pixels in the areas of high curvature.

Both SEF and FD systems performed comparably on this edge-following task; any slight

difference between them was insignificant compared to the dramatic difference on the

line-following task.  When the system configured with an SEF output was put to the task

of learning to follow the single-pixel-wide line, it failed miserably.
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Figure IIIÐ8:  Error curves for the
SEF output configuration, for the
line and edge tasks; the line task

was not learned.

For the system configured with an SEF output,

Figure IIIÐ8 shows the error for the two tasks

plotted against the number of training epochs.  The

error measured is the difference between the neural

netÕs output and its target; the root mean squared

error is measured across the whole training set.  For

the edge following task, the steep descent of its

error curve shows the task was learned quickly and

well.  For the line following task, however, thereÕs

little change in the overall error.  While this result is

for but one initialization of the neural networkÕs underlying parameters, no matter how

the training  parameters were set, the system did not learn the line-following task.  The

problem is not in the parameters or training regime.  There are serious flaws, both

theoretical and practical, with an SEF output in the line following task.

Consider a white line on a black background.  The lineÕs neighbors off to the far left have

low values as do the neighbors off to the far right.  So the five inputs for the far-off-to-

left-candidate, all black, are driving the network toward low target values and the five

inputs for the far-off-to-right candidate are driving the network toward high target

values.  But far-left-candidateÕs inputs and far-right-candidateÕs inputs are the same,

because the background of the line is the same on each side.  Since a neural network

learns a functional form and this situation is now no longer a function, this is essentially

un-learnable and the neural network weights do not converge onto any useful solution.

In addition to this fundamental limitation on SEF outputs, there is an additional

practical problem.  On the tasks where it is successful, such as the edge following tasks,

the practical problem with SEF units is the interpretation of an output value of 0.5 as
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being onÐboundary.  In following a boundary, it is useful to have some degree of

confidence that a pixel classified as onÐboundary really is a boundary point.  But given

a neural network with a [0,1] output unit and with randomized weights, any input

vector to the network will produce an output of approximately 0.5, just through the

statistics of randomization.  Thus a totally random network, for example a just-

initialized  network, will always report that any input configuration presented to it

represents an onÐboundary point.

When the system was configured with FD output units, it proved able to learn both the

edge-following and the line-following tasks (this can be observed in Figure IIIÐ14).

Additionally, an FD output can be partitioned into three ranges, representing correct,

incorrect, and uncertain responses, which are useful both in characterizing how well a

network has learned its task, and in providing a trigger for an automated system to stop

and ask for user guidance in areas of uncertainty.  For these reasons, FD will be used in

the remainder of this thesis.

III.3 Proportion of Positive and Negative Exemplars

A common problem when learning rules from data is an uneven representation of

exemplars across different responses in the dataset.  For example, LeCun [1997] noted,

when training a hand-written digit recognition system, that it was crucial to balance the

training set with approximately the same number of cases across the different digits.

As a general rule, there are typically far more ways to do something wrong than there are

ways to do it right.  As was shown earlier in Figure III-3, when generating exemplars for

training the network, there can be four times as many negative cases as positive ones.

When the number of negative exemplars is much larger than the number of positive ones,

it is possible that the network will learn well the negative cases and have difficulty
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learning the positive cases.  The following study explores this issue in the context of

ETA and illustrates problems which can arise when the numbers of positive and

negative exemplars are out of balance.

Section III.3.1 illustrates a ÒnormalÓ case, showing a reasonable evolution of the FD

response as training progresses.  Section III.3.2 presents the problematic situation which

can be resolved by balancing the training set, as shown in Section III.3.3.

III.3.1    HISTOGRAM DISTRIBUTIONS OF SUCCESSFUL LEARNING

Figure IIIÐ9 shows four paired histograms which typify the evolution of the FD output

unitÕs response over the course of a neural networkÕs training.  The FD output unit

response is in the range [0,1], and its value is distributed among the eleven bins of each

histogram.  The heights of each set of bars have been scaled so that the largest response

bin in each histogram will be the same, full height.  For these examples, the important

aspect to note is the overall shape and horizontal placement of the bars, not the

absolute number represented by each barÕs height.

In each pair of histograms, the top histogram, labelled HIGH, bins the responses of the

network to the positive training vectors, which are trained to the value 0.9.  The bottom

histogram, labelled LOW, bins the responses to the negative training vectors, which are

trained to the value 0.1.  The first pair of histograms (in the upper-left) shows the

outputs for the network in its untrained state.  When all the weights are randomly set,

the networkÕs output for any given input is approximately 0.5.  Thus all the responses

for both positive and negative cases are in the central [.45 , 0.55) bin.

The following three histogram pairs (upper-right, then lower-left, then lower-right) show

the network responses over the course of training.  The overall responses of the HIGH
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units are seen to spread out and move to the right; similarly the responses of the LOW

units spread and move to the left.  In the final paired histogram, the responses indicate

the network has learned its task reasonably well: the HIGH units are mostly responding

in the range [.75 , 1.0] and the LOW units mostly in the range [0.0 , 0.25).  The few

exceptions on the right-side of the LOW histogram are fairly common.  Since there is

often some variation in the trace used as the training exemplar, some of the data will

inevitably be misleading, and one goal of this statistical learning procedure is to find the

dominant trend in spite of such misleading and possibly contradictory data.
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Figure IIIÐ9:  Histogrammed responses of the FD units as training progresses: upper-left
shows all units all around 0.5 in initial state; as training progresses from early to middle to

late phases, the output units cluster toward their goals.

Also note in the final histogram pair the absence of any responses in the [0.35 , 0.65]

range.  This separation in response values between positive and negative exemplars is
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one indicator of a well-learned case.  Using a probabilistic interpretation of a networkÕs

output, new data that produces a value falling in the [0.35 , 0.65] range is an indicator

of an uncertain response.  Such a response can be used to stop the systemsÕs automatic

tracing and wait for user guidance.  Additionally, as the user then provides a manual

trace through this uncertain area, these manually traced boundary points can be used to

generate further training data, which can then extend the range of the systemÕs valid

responses.

III.3.2    ABNORMAL LEARNING WITH NEGATIVE OVER-REPRESENTATION

The nominal training pattern shown in Figure IIIÐ9 may be disrupted by disproportionate

representation in the training set.  The upper half of Figure IIIÐ10 shows the data for this

study.  Magnified here to show the pixels, a dark line on a light background is corrupted

by Gaussian noise.  The exemplar used as the basis for a training set is shown in the

lower half of Figure III-10, a tracing which basically follows the upper edge of the dark

line.  The trace varies slightly, sometimes with excursions into the light background.  The

corrupting noise and varying trace serve to generate a wider variation in the training set.

Figure IIIÐ10:  An enlarged  view of the pixels used
when learning a noisy line: the raw image data

(above) and the boundary trace, black outlined by
white, superimposed on the image data (below).

The 45-pixel-long trace is

sampled at 22 points, generating

110 training samples in total

(each point generates 4 negative

exemplars and 1 positive one).

Approximately 75% of the

samples are selected for the

training set; these exemplars are used to learn the boundary definition.   The remaining

samples are the validation set, which is used for determining when to stop the iterative
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learning process.  The allocation of samples to validation set and training set is purely a

function of the initial random seed; other random seeds result in similar, though not

exactly the same, behavior as the histograms shown in Figures IIIÐ11 and IIIÐ12.  The

neural network configuration was 5-1-1, thus a total of eight weights were learned (six

plus the two bias weights).

Figure III-11 shows the evolution of learning after 50, 120, 500, and 1,000 epochs of

training when the negative exemplars outweigh positive by 4-to-1.  Thirty samples are in

the validation set (used to stop the training) and 80 samples are in the training set; of

the 80, 16 are positive and 64 are negative cases.  In the first histogram pair of this set,

the whole mass of the histogram has been pulled to the left due to the dominant

presence of negative examples.  In the second histogram pair, some of the positive

exemplars have started moving to the right, a trend that continues as training goes on.  In

the third and fourth histogram pairs, at epochs 500 and 1,000, of the 16 positive

training examples, the left-most 7 will be false negatives, the right-most 6 will be true

positives, and the middle 3 will evaluate in the ÒuncertainÓ range.  Less than half the

training set positives are learned correctly.  Virtually all the negative exemplars evaluate

as true negatives, with a few evaluating as uncertain.

III.3.3    BALANCED EXEMPLAR LEARNING

There are several approaches to mitigating this imbalance.  In this application, there is a

surfeit of training data, and a simple and effective way to bring into balance the number

of positives and negatives is by random sampling and using only one-quarter of the

negative cases.  Figure III-12 shows the evolution of learning when approximately 25% of

the negative exemplars are chosen to be in the training set resulting in an approximately

1-to-1 ratio of positive to negative exemplars.  In this case, there are now 45 samples
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epoch  ~50
   

epoch  ~120

   

epoch  ~500
   

epoch  ~1000

Figure IIIÐ11:  A histogram of FD outputs after 50, 120, 500, and 1,000 epochs of
training with 4:1 ratio of negative to positive exemplars.

   

epoch  ~50
   

epoch  ~120

   

epoch  ~500
   

epoch  ~1000

Figure IIIÐ12:  A histogram of FD outputs after 50, 120, 500, and 1,000 epochs of
training with 1:1 ratio of negative to positive exemplars.
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overall, 13 samples are in the validation set and 32 samples (14 positive and 18

negative) are in the training set.  In the first histogram pair of this case, the HIGH cases

can be seen clustering to the right and the LOW cases clustering to the left.  This trend

continues with the clusters tightening around their goals through the following

histograms.  After epoch 1,000 (not shown here), the outliers continue to get Òreeled-inÓ

to their appropriate corners.

This example illustrates the skewed learning observed in ETA when different classes of

output are represented in grossly different proportions in the training set.  And in this

framework, it is more important to learn correctly the positive cases than the negative

ones, since the system continues automatically only when a candidate pixel evaluates as

ÒonÐboundaryÓ.  Thus, as a general guideline, only a balanced fraction of the negative

exemplars should be used in training.  In practice, this has not been a problem since even

a modest user trace will generate a large number of data vectors; enough vectors so that

some may be discarded with ample remaining to provide well-behaved statistics.

III.4 Input Representations

This section details an experiment designed to evaluate the hypothesis that suitable

transformations of the input space can simplify the structure of the problem and thus

speed the learning of its solution in the ETA.  In the straightforward synthetic imagery

discussed thus far, such as Figure III-7, simple inputs of five normalized pixel values

were used.  Realistic cases are more complicated, however, and require a larger set of

neighborhood inputs to distinguish among the options.

In principle, a large neighborhood of normalized pixel values could be used as inputs,

and the neural network would learn some set of filters on the input space which

provides the best discrimination for the task. Given enough intermediate layers, enough
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training data, and enough time, any filters or masks appropriate for the task could

possibly be learned. While this is certainly a flexible approach, LeCun [1997],

commenting on his hand-written digit recognition system, notes that allowing training to

propagate back through many layers of a neural network took weeks of computation

time.  He also noted that the filters learned were basically those already known from

basic image processing operations.  In an application where the evaluation needs to be

learned in a time scale of minutes rather than weeks, the problem can be avoided by

fixing those weights deep in the network, fixing them based on primitive filtering

operations that have already proven their utility.

In ETA, efficient learning is an issue, since one goal of this system is to keep pace with

human operators.  In these more complicated real-world cases, pre-processing data can

make the problem easier and thus computationally quicker to solve.  For example in

statistics, log-transforming exponential data transforms it to a linear problem space

with simpler solution methods.  To explore this possibility within the ETA framework,

experiments were designed to evaluate the hypothesis that suitable transformations of

the input space can simplify the structure of the problem and thus speed the learning of

its solution  (Crawford-Hines & Anderson [1997a]).

The evaluation criteria used to determine whether one input representation is better than

another is based on performance improvement in learning speed.  System performance

was quantified based on the error measured between the neural netÕs output and its

target.  The root mean square of that error (RMSE) across the training set was followed

as it evolved over the training epochs.  Two criteria for measuring learning speed are: (1)

the number of epochs needed to come to within a percentage of the asymptotic RMSE

value; and (2) the number of epochs needed to reach an RMSE of 0.1.
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III.4.1    PRE-FILTERING THE INPUTS

Rather than simply using five normalized pixel values as inputs, taken at the locations

defined in Figure III-3, a filter centered at each of those five locations uses further

neighboring pixel values to come up with the filtered input values for the five locations.

The experiment studied the learning speed of the task as a function of the input

representation.  The tasks are the edge-learning and line-learning tasks shown in

Figure III-7.  In addition to using single normalized pixel values, two input

representations illustrated in Figure IIIÐ13 were chosen.  These representations are basic

filters common to both image processing and the neurobiology of vision.  While there are

many choices from which to select, these simple filters are sufficient to prove the

hypothesis.

            

+1

            

pixel
values

            

+9

            

- 1
            

- 1

            

- 1
            

- 1
            

- 1

            

- 1

            

- 1
            

- 1

            

center-surround

            

- 1

            

- 1

            

+1
            

+1
            

+1

oriented
gradient

Figure IIIÐ13:  Three input representations: the simple
pixel, a non-directional center-surround filter, and a

gradient filter oriented perpendicular to the boundary.

The center-surround filter is

characteristic of early retinal

processing and is a simple

approximation to the classical

Laplacian filter of image

processing.  This is a filter in

standard usage, and the 3x3

size is the minimal that can be

symmetrically placed.    The oriented gradient is a directional filter, placed

perpendicular to the direction of the boundary.  This 1x5 filter is a simplified version of

filters characteristic of the complex cells in the primary visual cortex (Kandel, et al.,

[1991]). The center weights were set so that coefficients in these three representations all

sum to +1.  All pixel inputs are converted to greyscale by averaging the RGB channels

then normalized to the range [0,1] before any additional processing.
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III.4.2    REPRESENTATIONS IMPROVE LEARNING SPEED

In three separate trials, each of the input representations of Figure IIIÐ13 were used in the

ETA system, and it was run through both learning tasks.  The system was configured

with a 5-10-1 neural network, to maximize the range of possible internal representations,

and a feature-detector output unit.  Parameters held constant across the runs were the

initial training segment used, the pseudo-random network initialization, and the

backpropagation learning and momentum rates.  The learning and momentum rates were

chosen, after trying several possibilities, as those that provided stable and fast learning.
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Figure IIIÐ14:  Progress of the learning tasks for the input
filters from Figure IIIÐ13 ; root mean square error is on the

vertical axis, number of epochs is on the horizontal.

The graphs of Figure IIIÐ14

summarize the results.  The

upper graph illustrates the

learning curves for the edge-

following task, and the lower

curve illustrates the learning

curves for the line-following

task.  For the edge-following

task, the center-surround and

oriented-gradient filters both

reached the 0.1 RMSE criteria

in just under 200 epochs

versus  approximately 900

epochs for raw pixel inputs,

representing a 4.5-fold improvement in learning speed.
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Using the percentage-of-asymptote criteria, visual inspection of the graph shows again a

dramatic win for either filter over simple pixel values.  For the edge-following task

shown in the upper graph of Figure III-14, asymptotes can be approximated for the

oriented-gradient (~.07) and center-surround (~.05) representations.  The oriented-

gradient filtered network came to within 10% of its asymptote (~0.77) at approximately

epoch 400.  The center-surround filtered network came to within 10% of its asymptote

(~0.55) at approximately epoch 800.  The center-surround has better asymptotic

performance, but takes longer to get there.  The asymptote for the raw-value case is not

even on the map for this dataset, so the within-10%-of-asymptote epoch will certainly

exceed both of the other cases.  Quantification of these results depends on the

percentage specified, and on training for many more epochs since the asymptotic value

for the raw pixel learning curve is not obvious within the 2,000 epochs of the graph.

Although the system did learn to follow the line, neither curve reaches the 0.1 RMSE

criteria in the allotted 8,000 epochs shown.  This pre-selected criteria was too tight for

this task, though the task was still learned successfully.  The gradient filter, with a high

asymptotic RMSE value, gets to its asymptote first, in roughly 800 epochs, compared to

the unfiltered input case which more slowly approaches basically the same RMSE

asymptote.  The center-surround filter reaches an overall better result, though at roughly

the same speed as the unfiltered inputs.  While not as clearly an improvement, the

filtered inputs can be said to either get the system to the same (bad) solution much

quicker, or to a better solution at the same rate.  This is still an overall win.

The conclusion is that the filters are better than straight pixel values, since they allow the

system to either find solutions faster or with better accuracy.  Though simplistic in its

constructs, this experiment is an existence proof that in the ETA framework, improving

the input space representation can improve the systemÕs learning speed and lead to
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better solutions.  This now leads to the question,  ÒIf one is going to re-cast the input

space of a problem by somehow transforming the data, what transforms are

appropriate for the task?Ó  This question will be explored further in Section III.5.3.

III.5 Interpreting the Hidden LayerÕs Learning
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Figure IIIÐ15:  Filtering the inputs effectively adds another layer to the network
architecture, with the predefined filters viewed as an ealier set of network weights.

By filtering the raw pixel data, essentially another layer is added to the neural network,

as shown in Figure III-15.  This new layer has a somewhat different character than the

three neural network layers, however, since the weights are fixed in this new layer by the

filtering defined on the inputs.  Also, the transformed inputs are combinations of subsets

of pixels rather than all pixels, as would be the case in a fully connected network with

two hidden layers.
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One general criticism of neural networks is that what they learn is opaque.  This section

details some exploratory work done in an effort to understand what is being learned.

The input representation used was motivated by receptors found in the early visual

cortex that respond most strongly to the visual stimulus of bars at specific orientations.

The Òbar-detectorÓ cells have a preferred response only to a bar of a certain length and

orientation on the visual field.  The visual system thus needs bar detectors at a variety

of orientations since a stimulus might appear at any angle in the visual world.  In the

ETA framework, though, the world is effectively  normalized in advance by the direction

established for the boundary in progress.  Everything is calculated with respect to that

orientation.  Thus in ETA, a bar detector is needed in only one orientation.  For each of

the five standard candidates from Figure III-3, a bar parallel to the direction of the

boundary is used.  This bar is a five-pixel window, where output of the bar filter is the

average over all the pixels in this window.
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Figure IIIÐ16:  The upper left shows a line-continuation
task in progress (the XÕs) and the five candidate next

pixels.   The remaining three graphs  show the coverage
of five 5bar filters (averages over 5 pixels in a row) for

the lower three candidate next-pixels.

Figure III-16 illustrates the

basic input filtering.  In the

upper left, the pixels defined

to be a part of the boundary

are marked with XÕs, and the

five possible next pixels are

show as solid dots, following

the structure laid out in

Figure III-1.  In the upper right

is the ÒtrueÓ, straight-ahead

case; the small arrow indicates

the direction the boundary would be taking in this proposed case, and the five bars are

parallel to that arrow, centered on the candidate point, its two left neighbors and its
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two right neighbors.  The pixel values within the bar are summed and re-normalized to

[0,1].  The lower two diagrams of Figure III-16 illustrate how the bars are aligned for the

two incorrect off-to-the-right candidates; the two off-to-the-left candidates are mirror

images of these bottom two cases.

The bars can be of various dimensions, for example 3x1 or 5x1 or 7x3.  The shorthand

notation for the five windows each averaging 5 pixels in Figure III-16 is Ò5-5barÓ.

III.5.1    READING FILTERS OFF THE HIDDEN LAYER

Using the 5-5bar input representation, the system was trained with a 5-1-1 neural net on

the noisy line of Figure III-10.  Only one hidden unit was used to force the network to

learn its most compact intermediate representation.  After training, the neural networkÕs

weight configuration is graphically represented in Figure III-17.

            

weight on near left neighbor

            

weight on far right neighbor

            

weight on near right neighbor

            

weight on center pixel

            

weight on far left neighbor

            

weight on input layer bias

            

weight on hidden layer bias
            

weight on hidden unit

Figure IIIÐ17:  Weight representation for the noisy
line-following task using 5-5bar inputs.  Light

implies positive, dark implies negative weight;
weights all scaled in proportion to the largest.

The weights resulting from one training session are illustrated in Figure IIIÐ17.  They are

drawn so that the largest weight

will always be the same size, and

other weights are scaled in area

proportionally to the largest.  This

scaling allows for quick visual

scanning of the overall weight

configuration.  Light implies a

positive weight, and dark implies a

negative weight.  The first six

weights shown are the weights

from the five inputs and the one

bias unit to the one hidden unit.
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The two weights shown in the bottom row are the weights from the one hidden unit and

the one bias unit to the one output unit.

Figure IIIÐ18:  Shorthand sketches of
center-surround (left), second order

Gabor (middle), and third order Gabor
(right) filters.

The weights as shown in Figure IIIÐ17 can be

easily linked to a common shorthand notation

for well-known filters.  Filters are often

presented visually by an image of their

intensity function.  Figure IIIÐ18 shows a

shorthand sketch, where, for example, an on-center, off-surround filter would be

sketched as a white circle surrounded by a dark torus.  The other two filters of

Figure IIIÐ18 schematically show oriented second and third order Gabor filters (see their

use, for example, in Freeman & Adelson [1991]).

These filter visualizations help interpret the weight representation of Figure IIIÐ17.

Looking at the top five weights (ignoring the sixth bias weight), visually a roughly

symmetrical, oriented filter can be seen, similar to a third-order Gabor.  In this system,

the hidden layer has a natural interpretation as a filter, whose characteristics can be

read off the network weights.  This stands in

marked contrast to the Òopaque learningÓ of

which neural networks are often critiqued.

            

input
representation

            

hidden
layer

            

output
unit

            

FFFF IIIILLLLTTTTEEEERRRRIIIINNNNGGGG

            

DDDDEEEECCCCIIIIDDDDIIIINNNNGGGG

Figure IIIÐ19:  The neural network
architecture interpreted as filtering and

deciding tasks.

As depicted in Figure IIIÐ19, each hidden

unit, summing the results of the weights

times the inputs, is behaving as a filter. And

the output unit, with its incoming weights on

those filter(s), is making an on-boundary /

off-boundary decision based on the filters.
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Figure IIIÐ20:  Single pixel field, equivalent to
coverage of  Figure IIIÐ16.

To discern whether this learned,

Gabor-like filter was a result of

the 5-bar input representation,

the experiment  was re-run, this

time using the 25 pixel value

inputs that covered the same

area as the five 5-bars.  Figure

III-20 shows this new input

space, which is used for the

same task as before, with a 25-1-1 neural network.  The resulting weight diagram for one

trial is shown here in Figure III-21; other random network initializations resulted in a

similar picture.

Figure IIIÐ21:  Noisy line-learning with
raw pixel inputs and a 25-1-1 network;

weights are grouped in fives to show the
correspondence to Figure IIIÐ17.

Boxes have been placed around the five

weights on the pixels that would have been

aggregated by the 5-bar inputs.  Visually

summing the weights in each of the five

boxes results in a filter consistent with

Figure IIIÐ17.  The same pattern emerges in

both cases, however, the Gabor-like filter

obvious in Figure IIIÐ17 is not immediately

apparent here.  This configuration is less

desirable from a performance standpoint,

as well.  This 25-1-1 network has 28 free

weights to learn as opposed to the 8 free

weights of the 5-1-1 network, which thus

implies both more computations per weight update and network evaluation, and
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correspondingly more data needed in the training set.  The filtered pre-processing is

preferable from both a computational perspective and with a view to easy

interpretation.

III.5.2    BOUNDARY EXTENSION ISSUE FOR DIRECTIONAL INPUTS

Figure IIIÐ22:  A manual trace (blue) and an
automated trace (red) that prefers the

diagonal rather than the boundary;
considering  multiple directions (green)

improves the tracing quality.

When using directional filters, such as the

5bar filter, problematic behaviors were

observed in certain situations.  In imagery

with slowly curving surfaces and at

places where boundaries are close to

horizontal, vertical, or 45-degree

diagonal, sometimes ETA was observed

to trace straight ahead rather than be

drawn to the appropriate edge.  The red

boundary shown in Figure IIIÐ22 shows

such behavior, compared to the manually

traced boundary shown in blue.  The

problem arises, as explained below, due to only considering one orientation for the filter

at each possible new candidate point.   Considering multiple orientations at each

candidate pixel solves the problem, as shown by the green contour.

This trouble arises from the basic extension algorithm.  Figure IIIÐ23 shows the choices

considered for a next point.  A boundary in-progress is illustrated by the shaded pixels,

with the thick vector indicating the direction established by the edge so far.  The five

choices for consideration as the next point, along with the direction such a choice would

imply, are numbered.
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Figure IIIÐ23:  One
direction considered
per candidate pixel.

Consider tracing a nearly diagonal boundary.  When the true

boundary differs only slightly from 45 degrees, the edge is not

truly represented by choice 2, but 2 is a better choice than 1 or

3 which are both further from the truth.  Over several pixels,

though, this slight error accumulates and the behavior

illustrated by the red line in Figure IIIÐ22 results.  For this

specific example, the solution is to also consider pixel 3 with a direction vector of (1,1)

in addition to the choice of pixel 2 with a (1,1) direction.
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Figure IIIÐ24:  Considering
multiple directions per

candidate pixel.

More generally, the solution is to consider more

directions at the possible points.  Instead of only

considering candidate 2 with directional inputs oriented

with respect to (1,1), consider candidate 2 three times,

each time using a different vector of the three shown

associated with candidate 2 in Figure IIIÐ24.  Similarly,

multiple directions are considered at the other candidate

points as well.  All together there are now thirteen distinct choices, each choice a distinct

combination of a candidate point combined with a direction.  Using more directional

options results in a trace much closer to its truth Ð the green boundary in Figure IIIÐ22.

This situation arises only when there is exclusive use of directed filters in the input

space.  When the input features used are non-directional filters (e.g., raw pixel value, or

symmetric center-surround fields), this straying behavior does not arise, since the

direction at a point was irrelevant to the input values used there.
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III.5.3    DEFINING A ROBUST INPUT FILTER SET

Section III.4 showed that re-representing the input space can improve the systemÕs

learning speed.  For this, there is a wealth of prior work in the domains of neural science

and image processing.  From the initial studies of animal visual systems, Kandel, et al.,

[1991] summarized some of the robust primitive transforms performed by mammalian

systems, from the opponent center-surround behaviors of retinal bipolar cells, to the

oriented filter responses characteristic of the ocular dominance columns in the primary

visual cortex.  From the decades of work in image processing, many operators and

techniques have demonstrated their usefulness, from Sobel filters to Fourier analysis to

morphological operators, in defining the boundaries of structures in an image.

If one is going to re-cast the input space of a problem by somehow transforming the

data, what transform, from the large set of transforms available to us, is appropriate

and best for the task?  Since ETA was shown to combine simple filters into more

complex filters as needed, the system can be initialized with a well-rounded set of basic

filters, and the complex filters appropriate for a given task can be assembled from these

building blocks.  The appropriate combination of filters for the task is learned rather

than hard-coded.

Linear combinations of Gaussian kernels at various scales and offsets form a basis for a

wide range of filters.  Malik and Perona [1992] showed these basic filters to be sufficient

for recognition of a broad range textures.  The difference-of-Gaussian (DoG) filter

models the center/surround character of retinal ganglion cells.  Oriented responses

typical of area V1 in the the visual cortex can be modeled as differences-of-offset-

Gaussians (edge detectors) and differences-of-offset-DoGs (bar detectors).  They can be

used at various scales to account for coarse and fine structure.  And linear combinations
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of these functions is exactly the function of the hidden units in the neural network

architecture.  Thus using Gaussian kernels as inputs, at multiple scales for each

candidate point and its neighbors, allows for the flexible combination into higher-order

filters.

A robust input filter set can thus be designed around flexible basic primitives.  For the

comparison experimentation in the following chapters, the following set of filters proved

robust across a wide range of real imagery.  A set of Gaussians were used at different

scales, with σ of 1.0 and 1.5, and at different offsets.  Bar filters of size 5x1 and 7x3 at

different offsets were used as the basic directional filter building blocks.  And the pixel

value itself was used as the most fine-grained input.

III.6   Sensitivity to Hidden Layer Size and Weight Initialization

The sensitivity of these results to

initializations and to the number

of hidden units was examined,

for the example of Section II.5.1.

Similar sensitivity analyses were

done on real imagery with

similar results (Section V.2.3).

Figure IIIÐ25:  Two separate trials differing in only
network initialization of the 25-1-1 noisy line-

learning task shown in Figure III-21.  The weights are
not identical due to the different initialization, but

the overall pattern is the same.

Figure IIIÐ25 illustrates the

difference attributable to two

different weight initializations

for the 25-1-1 noisy line task.

Several different initializations were tried and the same basic pattern emerged

independent of the initial weights.  These two weight sets typify observed differences.
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Figure IIIÐ26:  Weights for a
25-3-1 network on the same
task shows similar weight
behaviors across all hidden

units.

Figure III-26 shows the weights that result when more

than one hidden unit is used.  The first column

represents the weights from the 25 input units to the

first hidden unit, the second column represents the

weights to the second hidden unit, and so on.  Each

hidden unit can be seen to be learning basically the same

filter.  This was similarly observed at several different

initializations.  Since the behavior seen in the hidden

layer is robust to the number of hidden units, this

suggests only one hidden unit is needed for solving this

problem.

Figure IIIÐ27:  Comparing the effect of varying
the number of hidden units for the line

following task (above) and a similar edge-
following task (below).

Figure IIIÐ27 shows a comparison on the

noisy-line task of Figure IIIÐ10  for three

hidden units versus one hidden unit (on

the top) and a similar noisy-edge task

comparison (on the bottom).  In both

cases, five 5bar inputs were used.  Since

the networks are of different sizes, this

implies different network initializations,

as well.

For the line-following task (on the top),

the weight patterns are very similar

across all the hidden units.  For the

edge-following task (on the bottom), the

training exemplar wanders slightly back
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and forth on first the dark side of the edge then the light side.  Because of this, the

middle of the five inputs has little edge-discrimination value (since it is sometimes light

and sometimes dark) and hence the weight on this unit doesnÕt grow.  Within the bounds

of this slight variation, though, the three hidden units appear to be learning the same

edge-filtering behavior.

In these simple, synthetic tasks where there is only one thing to learn, one hidden unit

suffices.  As will be seen in the comparison study on real-world imagery in Chapter V,

when structural boundaries have different characteristics across their lengths, for

example a bone with boundaries against both muscle and ligament, different hidden

units may  learn different behaviors, possibly to help in that discrimination.

III.7   Summary

This section has outlined the basic ETA framework of neural network learning, trained

with inputs from positive and negative exemplars constructed from boundary

neighborhoods.  Experimentation with two output representations led to insights into

their  choice of FD output units.  Studies of the training set proportions led to more

robust procedures for a balanced training regimen and thus better learning.  Explorations

of input representations provided interpretations of what and how the ETA system is

learning, which led to a flexibly configured set of input filters.  As a result of these

experimental findings, the ETA framework used for the comparative studies in the next

two chapters was designed with FD output units, balanced positive and negative

exemplars,  and input filter set as summarized at the end of Section III.5.
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ÐÐÐÐ==  Chapter IV ==ÐÐÐÐ

Comparing Systems and Experts: Methodology

To understand the relative merits of learning boundary contours, the ExpertÕs Tracing

Assistant (ETA) was compared to other user-guided methods representing the current

state-of-the-practice for boundary delineation.  The techniques of Active Contour

Models (ACM) and Intelligent Scissors (IS) were chosen for comparison to ETA because

they have been brought into practice, they have been studied and refined in the

literature, and they represent benchmarks against which other novel methods are

compared.  The ground truth is an expertÕs manual tracing of a structureÕs boundary in

an image.  The GVFsnake software of Xu and Prince [1997] was used to generate the

ACM boundaries in this study.  The IS boundaries were made by Eric Mortensen using

his IS software during a technical visit to BYU.

In medical images, some structures are neither sharp edged nor reliably different in color

from the surrounding structures.  These are the cases where a basic visual judgement or

an expertÕs anatomical knowledge are needed to complete the boundary.  The

hypothesis underlying the ETA is that due to the ambiguities in medical images which

confound the state of the practice, a method designed to align itself to a humanÕs

decisions can be of greater assistance in boundary tracing tasks.  This study is designed

to expose the relative strengths and weaknesses of the methods considered.  This

chapter presents the methodology of the study, and the following chapter presents the

results.
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The structures chosen for comparison were taken from the imagery of the Visible Human

dataset, which is also a benchmark set upon which many image processing  and

visualization methods have been exercised.  Several structures were selected as a

representative cross-section, and for each, the IS, ACM, and ETA methods were used to

define its boundary, and an expert manually delineated the boundary in two

independent trials.  Measures were derived to quantify the inter-curve distances by

selecting a tolerance such as one pixel and stating, ÒThe curves are within one pixel of each

other 86% of the timeÓ or by selecting a percentile such as 90% and stating, ÒThe curves

are within 1.1 pixels of each other 90% of the timeÓ.  These are the key measures of the

differences between the boundaries.

Section IV.1 details the structures and imagery used.  Section IV.2 discusses the IS,

ACM, and ETA methods and how they were configured.  Section IV.3 presents the

statistical methodology used to compare the resultant boundaries.   The results of the

comparison are presented in Chapter V.

IV.1  Comparison Structures and Imagery

Figure IVÐ1 shows an enlarged greyscale image from the visible male dataset of the

cross-section of the thoracic aorta.  The boundaries defined by the ETA (in cyan), ACM

(in yellow), and IS (in magenta) methods are shown superimposed.   The interior wall of

the aorta is straightforward to define in this image, since both the region inside the aorta

and the arterial wall are homogeneous in their pixel characteristics.  A quick visual

comparison shows the three methods are all close to one another, each defining

essentially the same boundary.

In this straightforward example, the boundaries are so similar there is little basis for

favoring one method over another.  Thus, in selecting structures for comparison from the
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Visible Male imagery, the criteria are to select: (1) representative structures of general

interest, and (2) more challenging structures than the simple example in Figure IVÐ1 so as

to better differentiate among the methods.

Figure IVÐ1:    The raw image is shown at left; at right are superimposed contours of ETA
(cyan), IS (magenta) and ACM (yellow), all very close to one another.

Figure IVÐ2:  The three cross-
sectional images studied were

taken where indicated from the
arm, thorax, and leg.

Nine structures were selected on three images, and

the images were cropped to the structures of

interest to minimize the number of extraneous

pixels.  The three images, shown in Figure IVÐ3,

Figure IVÐ4, and Figure IVÐ5, were taken at the

approximate cross-section locations shown in

Figure IVÐ2.  The selected structures of interest are

outlined in blue, with the outline drawn several

pixels to the outside of the structure of interest so

that the pixel character of the boundary itself can

be visually studied in the image.
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Figure IV–3:  The three selected structures outlined are the femur (bone), the biceps femoris
(muscle), and the skin, on transverse image #2186 through the leg.
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Figure IV–4:  The three selected structures outlined are the humerus (bone), the biceps brachii
(muscle), and the skin, on transverse image #1430 through the arm.
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Figure IV–5:  The three selected structures outlined are the esophagus, the right ventricle of the
heart, and the upper lobe of the right lung, on transverse image #1432 through the thorax.
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Spitzer and Whitlock [1998] cataloged the Visible Male sectional imagery, and the image

numbers cited along with the  images are their reference numbers.   Figure IVÐ3, from

transverse image #2186 at the leg, shows the femur (bone), the biceps femoris (muscle),

and the skin.  Figure IVÐ4, from transverse image #1430 at the arm, shows the humerus

(bone), the biceps brachii (muscle), and the skin.  Figure IVÐ5, from transverse image

#1432 at the thorax, shows the esophagus, the right ventricle of the heart, and the upper

lobe of the right lung.  Skin, muscle and bone contours are most common, and both

simple and complex examples of each are included in this set.

The leg image, Figure IVÐ3, represents reasonably straightforward cases.  The leg bone

and skin are shown clearly, without much confusion.  The leg muscle is fairly typical,

surrounded mostly by highly contrasting fatty tissue, however sometimes with only a

thin channel of it between one muscle and the next.  The arm image, Figure IVÐ4,

represents more complicated versions of these structures.  Connective tissue attached to

the bone, at the bottom of the bone as this image is oriented, is difficult to distinguish

from the bone itself.  The armÕs skin includes a very indistinct boundary in the armpit

area, where the arm and chest are touching; this almost straight line is visually apparent,

but progressively harder to distinguish in detail the further it extends toward the top of

the image.  Another indistinct boundary is exemplified by the upper-left of the muscle,

where any boundary drawn is based on little evidence in the image; thereÕs almost no

variation at the pixel level indicating a boundary of any sort.

In the thorax cross-section, Figure IVÐ5, a ventricle of the heart was selected since, as a

crucial body part, it is an often-studied structure in the medical imagery literature.  The

esophagus exemplifies structures with convoluted rather than smooth boundaries.  The

lobe of the lung shows much of the complex variety of soft tissue.  The lung is bounded

by structures each with different visual character Ð heart, fat, rib bone, cartilage, and
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other lung Ð and these distinctions are often visually non-obvious and require expert

judgement to adequately segment.

IV.2  Configuration of the Boundary Methods

On each of the nine structures of interest, the ExpertÕs Tracing Assistant (ETA), Active

Contour Models (ACM) and Intelligent Scissors (IS) were used to define the boundary.

These methods were compared to one another, and to the ground truth of an expertÕs

manual tracing of the boundary.  Section IV.2.1 provides the technical background and

implementation details for IS; Section IV.2.2 provides the technical background and

implementation details for ACM.  The methodology of ETA has been discussed at length

in Chapter III, and Section IV.2.3 adds the specific details of how it was applied in

bounding these nine structures. Section IV.2.4 discusses how the expert manually

delineated the structures.

IV.2.1    INTELLIGENT SCISSORS (IS)

The user-guided ÒIntelligent ScissorsÓ of Mortensen and Barrett was summarily reviewed

in Section II.2.3.  This section adds further detail relevant to the comparison study.

Across the image, a local cost from every pixel to its eight neighbors is pre-computed.

This local cost is a weighted sum of several features, all scaled so that strong edges

result in low values.  As the user places control points on boundaries of interest, the

system computes a minimal cost path from the most recent control point to every pixel

in the image.  As the cursor is moved from pixel to pixel in the image, the optimal path

from control point to cursor is quickly redrawn, providing feedback to the expert on the

boundary definition as it is in progress.
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The local cost function is a weighted sum of component cost functions.  Following the

exposition of Mortensen and Barrett [1998], if p and q are neighboring pixels, the local

cost between them,  l(p,q),  is defined as

l(p,q) = ω
Z

f
Z

(q) +  ω
G

f
G

(q) +  ω
D

f
D

(p,q) +  ω
P
f
P
(q) +  ω

I
f
I
(q) +  ω

O
f
O

(q)  .

Empirically derived weights which, as the authors note, Òwork well in a wide range of

imagesÓ,  are

ω
Z

= 0.3 ,    ω
G

=0.3 ,   ω
D

=0.1 ,   ω
P
=0.1 ,   ω

I
=0.1 ,   ω

O
=0.1  .

The component cost functions are defined as follows.

 f
Z
(q) :  The Laplacian zero-crossing component is taken at several possible scales, from

5x5 to 15x15, to balance the sensitivity to fine detail of small kernels with the

noise suppression of larger kernels.  A zero crossing is defined as a near-zero value

for a pixel whose neighbor has a value larger in magnitude and opposite in sign.  A

binary function is defined at each scale: if a pixel is on a zero-crossing, then that

cost to all neighboring links is zero, otherwise it is one.  The final cost function f
Z
 is

a linear combination of the binary functions.

 f
G

(q) :  The gradient magnitude component is also derived from information at several

scales.  At each scale, the gradient is approximated by the root sum of squares of

partial derivatives in x and y of Gaussian kernels at that scale, then inverted and

normalized to [0,1].  If the pixel has been determined to be a zero crossing, f
Z
 takes

the value of the kernel for which the Laplacian at that same size produces the

steepest slope.  If not a zero crossing, the value for the 3x3 kernel is used.
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f
D

(p,q):  The gradient direction is calculated as the root sum of squares of the gradientÕs

partial derivatives.  This cost feature is set to a low value when the gradient

direction of the two neighboring pixels are similar to each other and to the link

between them.  This adds a smoothness constraint by adding a high cost to sharp

changes in direction.

f
P
(q) ,  f

I
(q) ,  f

O
(q) :  These functions are based on the value of the pixel itself, a pixel to

the ÒInsideÓ of the boundary, and a pixel to the ÒOutsideÓ of the boundary.  A

history of 32 to 62 values for these pixels is tracked, and if pixel q is consistent

with these values, f(q) is set to a low value, otherwise it is set to a high value.

Comparing the current pixel value to recent history is an adaptive measure that

allows the overall cost function to be sensitive to local circumstance.

The user-interface of this tool has been refined over time.  For instance, as the user

moves the cursor around, some portion of the path nearest the set control point will

remain constant.  This portion will be "frozen" into place by automatically generating a

new set point further along the boundary.

Figure IVÐ6:  On top is an integer-valued
IS boundary, drawn to pixel centers,

superimposed on a smooth boundary (the
dotted white line); the bottom shows the

IS boundary after smoothing.

Because the IS boundary points are all on

pixel centers, an IS defined boundary will

have a more rough look than that of a

smooth curve, as shown in the upper half of

Figure IVÐ6.  This problem arose in the user

acceptance of ETA, until a weighted-average

smoothing was implemented.  The weighted-

average gave the boundary a smoother

character, like manually defined boundaries
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traced at high magnifications to allow sub-pixel resolution.  The simple geometric

average used to smooth each  point replaced each point  p
i
  by

0.1 p
i-2

  +  0.2 p
i-1

  +  0.4 p
i
  +  0.2 p

i+1
  +  0.1 p

i+2
  .

This straightforward smoothing resulted in greater acceptance of ETA-drawn contours

by expert users.  For consistency in comparison, this smoothing was added as a post-

processing step to the IS contours as well.  The results are illustrated in the  lower half of

Figure IVÐ6.

IV.2.2    ACTIVE CONTOUR MODELS (ACM)

The user-guided, Active Contour Models of Kass, et al. [1987] were summarily reviewed

in Section II.2.3.  This section adds further detail relevant to the comparison study.  The

ACM is an energy minimizing spline, which is initialized close to a structure of interest

and then iterated to a local minima.  The energy function is defined so the minima

correspond to boundaries of interest in images.  Since the ACM is initialized with a

closed curve, the final result will always be a closed, continuous curve.

The boundary contour is represented parametrically by a point-valued function  v(s)

and the shape of the contour is defined to have an energy, E(v),  defined as

E(v(s)) = S(v(s))  +  P(v(s)) ,   where   v(s) = ( x(s), y(s) )  for  s  on [0,1] .

The first term in the sum is a measure of the geometry of the boundaryÕs shape, and the

second term is derived from the character of the image pixels on which the boundary is

superimposed.  The shape contribution is defined as
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S (  v( s )   )   =   

1 

I 
0 

α ( s ) | v ' ( s ) | 
2 

+   β ( s ) | v ' ' ( s ) | 
2 

  ds . 

The function  α(s)  controls the contribution of the first-derivative of the curvature,  vÕ(s),

physically interpreted as the overall "tension" of the parametric curve, and β(s) controls

the contribution of the second derivative,  vÕÕ(s),  interpreted as the "rigidity" of the

parametric curve.  The image contribution is defined as

P (  v ( s )   )   =   

1 

I 
0 

 p(   v ( s )   )  ds  , 

where  p(v(s))  is a scalar function defined on the image plane such that its local minima

correspond to intensity extrema, edges, or other features of interest in the image.  The

gradient of the image is large where image edges are strong, thus for   p(v(s))  the gradient

can be inverted so that minimal values represent features of interest.

This formulation can be transformed to a dynamic system by adding a time dependency

to  v(s,t).  By setting up Lagrangian equations for this dynamic system, equilibrium

conditions can be established for local minima of the overall energy. This introduces two

new parameters,  γ  and  κ , that weight the first and second partial derivatives of  v(s,t)

over time, interpreted as the damping and inertial forces of the dynamic system.

When solving this dynamic system,  LP  pulls the parametric curve toward edges in the

image.  Unfortunately, the Òcapture rangeÓ of traditional edge strength functions is

small. The capture range depends in part upon the amount of smoothing built into the

edge mask, and when using typical edge masks, the influence of an edge only reaches a
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few pixels.  This implies that the parametric curve must be initialized close to the

desired boundary of interest, otherwise  P  will have no influence on the dynamic

evolution of the parametric curve.

Xu and Prince [1997] replaced  LP  by a vector field throughout the image.  This

Gradient Vector Flow (GVF) improves the capture range of the dynamic system, by

pointing to the nearest strong edges in areas of image homogeneity where distant edge

information would otherwise be lacking.  This improves the range over which the

parametric curve can vary and still be attracted to a minimum and helps the curve settle

into concave boundary regions.  They implemented their GVF model along with

traditional snake and balloon models in Matlab and released their code for general use.

This GVFsnake software (Xu and Prince [1999]) was used to generate the ACM models

in this study.

The GVFsnake software starts with an image, an edge map, and an initial boundary,

and then iterates the dynamic system until it settles into a minimum.  The edge map

used in the software is a scalar function over the image pixels that is high at desirable

image points (in this case, image edges).  Displaying the curves at periodic iterations

provides a visualization of the evolution of the parametric curve to its equilibrium state.

This implementation uses a constant value for  α(s)  and  β(s).

The parameters through which the user can control the ACM and its evolution through

time are  α,  β,  κ,  γ,  and µ.  Figure IVÐ7 and Figure IVÐ8 show the effect of varying

these parameters individually.  Each of the small graphics is a detail of the ACM over a

sequence of 30 iterations: the green line shows the initialization supplied by the user, the

red line shows the state of the curve after 30 iterations, and the sequence of yellow lines

shows the curve at five iteration intervals in between.  This collection of graphics helps

ÐÐ   96   ÐÐ



provide further understanding of how these parameters influence the ACM and its

evolution over time.

     α : This parameter is referred to as controlling the overall ÒtensionÓ of the

parametric curve; increasing it favors boundaries of shorter length.  As seen in the

top row of Figure IVÐ7; increasing  α  eliminates extraneous loops and ripples.  A

reasonable initial choice for  α  is 1.0, which may be increased when a specific

circumstance calls for more smoothing.

     β : This parameter is referred to as controlling the overall ÒrigidityÓ of the

parametric curve.  As shown in the second row of Figure IVÐ7, when set to zero,

the boundary can make sharp angles; increasing  β  introduces a smoothing

curvature at these sharp angular places.  The initial choice for  β  is 0.0 so the

contour can find its way into tight corners.

     κ : This parameter is referred to as controlling the inertial force of the dynamic

system,  the weight on  ∂2v/∂t2.  In the third row of Figure IVÐ7, note the change

in spacing between the curves at different iterations.  Higher values push the

curve further in each iteration, and a value too high (in this case at 2.5) will result

in poor temporal behavior, which can be seen here as the curve passes by a good

boundary solution to a poorer one.  The initial choice for κ  is 0.5; this avoids the

squirrelly behavior of high values and the slow convergence of low values.

     γ : This parameter is referred to as controlling the ÒviscosityÓ, or damping force, of

the dynamic system, the weight on ∂v/∂t.  Figure IVÐ8 shows that at higher

values, the curves move less during a set of iterations.  The middle row shows

that a high value (in this case 4.0) can be useful in tracking the long thin intrusion
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alpha = 0.2 alpha = 1.0 alpha = 4.0 

beta = 0 beta = 2 beta = 8 

kappa = 0.1 kappa = 0.5 kappa = 2.5

Figure IV–7:  The effect the ACM parameters  α ,  β , and  κ  is visually illustrated in these se-
quences.  The green line shows the initial boundary segment, the red line shows the state of the
ACM after 30 iterations, and the sequence of yellow lines shows the contour evolution at five

iteration intervals.

α = 0.2 α = 4.0α =1.0

β = 0 β = 2 β = 8

κ = 0.1 κ = 2.5κ = 0.5
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Figure IV–8:  The effect the ACM parameters  γ  and  µ  is visually illustrated in these sequences.
The green line shows the initial boundary segment, the red line shows the state of the ACM after

30 iterations, and the sequence of yellow lines shows the contour evolution at five iteration
intervals.

gamma = 0.25 gamma = 1.0 gamma = 4.0 

gamma = 0.25 gamma = 1.0 gamma = 4.0 

mu = 0.033 mu = 0.1 mu = 0.3 

γ = 0.25 γ = 1.0 γ = 4.0

γ = 0.25 γ = 1.0 γ = 4.0

µ = 0.033 µ = 0.1 µ = 0.3
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which otherwise disappears over time.  The initial choice for γ  is 1.0, but this

may be increased as needed to avoid the disappearance of long, thin structures.

     µ : This parameter is referred to as controlling the pull of distant features on the

parametric curve.  In the bottom row of Figure IVÐ8, note that at a setting of

0.033, the curve evolves toward the boundary of the dark muscle mass only

when the initial boundary is close to it.  A value of 0.3, however, is too high, and

the boundary can be seen to be collapsing inward over time.  The starting choice

for µ  is 0.1, which may be reasonably decreased when the initial contour is close

to the boundary of interest.

The default values presented here were arrived at after weeks of trial applications on

the Visible Human imagery and initial hints by Xu and Prince [1997].  Figures IVÐ7 and

 IVÐ8 illustrate the effect of the parameters individually, with the others held at their

default values.  To some extent, the parameters control independent behaviors of the

ACM, though there can be interaction effects.  For instance, increasing the internal force

κ  while also increasing the viscosity  γ  may result in no effect, since the curve is being

pushed harder but against a stronger restraint.  For the final comparison, the parameters

were varied for each structure as necessary for the best ACM performance.

Section V.2.2 presents the values which ultimately were used for each structure.

Another key to successfully using an ACM is defining an appropriate edge map.  In the

edge map, small numbers will attract the parametric curve to the boundary and large

numbers will repel it.  This is problematic for second-derivative edge strength  measures,

such as the Laplacian.  When the image is convolved with a Laplacian kernel, in the

resulting edge map an edge is indicated by a zero crossing, which means there is a high

value on one side of the crossing and a low value on the other side.  If such an edge map
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is used for an ACM model, the evolving curve will be both attracted and repulsed from

the boundary, and this does not lead the system to any reasonable convergence.

After experimentation with a variety of edge strength operators, the edge map that

performed reasonably well over the Visible Human images was generated in Matlab by:

      (1) computing the Sobel operator in horizontal and vertical directions at each pixel

and then calculating the root of the sum of these squared values;

      (2) normalizing these values across the image to the range [0,1];

      (3) logarithmically transforming the edge image to bring up the values of the weaker

edges, which improves their influence on the parametric curve in the absence of

strong edges.

Comments in source code provided by Demetri Terzopoulos [2002] indicate a similar

line of thought in defining an appropriate edge strength operator.

The initial boundary contour was determined interactively by manually defining a "close-

enough" boundary around the structure of interest with a series of mouse clicks.

IV.2.3  EXPERTÕS TRACING ASSISTANT (ETA)

The background and operation of ETA have already been covered in Chapter III.  For

this study, a set of 23 features was used as input for the neural network.  The features

were defined by filters that were centered on the candidate pixel and its neighbors.

Figure IVÐ9 schematically illustrates the placement of the centers of the input filters.  The

figure illustrates a boundary-in-progress, indicated by the two shaded pixels and an

arrow for the direction in which the boundary is being defined.  One of the next pixels to

be considered is CCCC,,,, and relative to the direction given by the segment in progress, three
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left neighbors are labelled

LLLL3333, LLLL2222, and LLLL1111, and three

right neighbors RRRR1111, RRRR2222,

and RRRR3333 .  
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Figure IVÐ9:  The arrow indicates a boundary in progress; a
next possible pixel to consider adding to this boundary is the

candidate labelled C, shown here with its neighbors
labelled accordingly.

The 23 input features  x
0

through  x
22

   are defined

below.

    a) The function  g(p)  takes the channel value G of the RGB value of pixel  p  and

normalizes it to [0,1].  The first five inputs are:

x
0
 = g(LLLL2222);   x

1
 = g(LLLL1111);   x

2
 = g(CCCC);   x

3
 = g(RRRR1111);   x

4
 = g(RRRR2222). 

   b) The function G3 is the 3x3 Gaussian filter with σ=1, where the coefficients have

been normalized to sum to one.  Since the neural networkÕs output is only used at

one significant digit of precision, no more than two significant digits need to be

carried through the intermediate calculations.  The coefficients beyond the 3x3

center are outside this range of significance, thus a 3x3 size is used rather than

the more common 5x5 size for a  σ=1 mask.  The normalized green channel

values g are multiplied by the matrix  

� 

� 
� � � 
� � � 
� � � 
.0751

.1238

.0751

.1238

.2042

.1238

.0751

.1238

.0751

�

�
���
���
���

.

Five 3x3 Gaussian inputs are:

x
5
 = G3(LLLL2222);   x

6
 = G3(LLLL1111);   x

7
 = G3(CCCC);   x

8
 = G3(RRRR1111);   x

9
 = G3(RRRR2222). 
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    c) The function B5 averages a 5x1 bar of pixels in a direction parallel to the

direction established for the boundary in progress.  For example, using the

notation established in Figure IVÐ9:

B5(LLLL2222) = ( g(LLLL2222) + g(LLLL2222BBBB1111) + g(LLLL2222BBBB2222) + g(LLLL2222FFFF1111) + g(LLLL2222FFFF2222) ) / 5.

This 5bar input is used for five inputs:

x
10

 = B5(LLLL2222);   x
11

 = B5(LLLL1111);   x
12

 = B5(CCCC);   x
13

 = B5(RRRR1111);   x
14

 = B5(RRRR2222).

   d) The function G5 is the 5x5 Gaussian filter with σ=1.5, where the coefficients have

been normalized to sum to one.  The 5x5 size is used, with the same rationale as

discussed for  G3 .   The normalized green channel values g are multiplied by the

matrix  

� 

� 
� � � 
� � � 
� � � 
� � � 
� � � 
� � � 
� � � 
.01442

.02808

.03507

.02808

.01442

.02808

.05470

.06831

.05470

.02808

.03507

.06831

.08531

.06831

.03507

.02808

.05470

.06831

.05470

.02808

.01442

.02808

.03507

.02808

.01442

�

�
���
���
���
���
���
���
���

.

Four 5x5 Gaussian inputs are:

x
15

 = G5(LLLL3333);   x
16

 = G5(L1);   x
17

 = G5(RRRR1111);   x
18

 = G5(RRRR3333).

   e) The function B7 is similar to the function B5, but it averages a 7x3 bar of inputs

instead.  Four inputs with this filter are:

x
19

 = B5(LLLL3333);   x
20

 = B5(L1);   x
21

 = B5(RRRR1111);   x
22

 = B5(RRRR3333).

In aggregate, these 23 inputs cover approximately an 11x7 block of pixels centered on CCCC.
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Since ETA needs to be initially trained before boundary tracing and IS and ACM do not,

the expertÕs second manual trace was sampled to train the network.  The performance of

this system will then be compared against the ground truth of the expertÕs first manual

trace, against which the IS and ACM boundaries will also be compared.  Further

empirical discussion of this issue is in Section V.2.4.

IV.2.4   THE EXPERT

Human experts will exhibit some variation when manually tracing a boundary, even with

the most visually distinct of borders available.  Brahmi, et al., [1999] note that

boundaries drawn by experts may display substantial variation, especially in areas

where contrast is poor.  Karayiannis and Pai [1999] also note an inconsistency of ratings

among experts in a complex segmentation problem.  In a comparison of an automated

system to the expert, the system should thus not be required to exactly replicate an

expertÕs boundary to be successful, but the system-defined boundary should be

expected to fall within the range of variation for either a specific user or across a group

of experts.

For a ground truth in this comparison, an expert at Visible Productions was asked to

manually trace the structures.  The expert worked through the image set twice, generating

two boundaries, on independent trials, for each structure.  This permits a measure of the

variation within the expertÕs manual tracings to be quantified.

It could be argued that this ground truth is not really a truth, but one userÕs subjective

judgement of a structural boundary.  The expert user, however, is bringing outside

knowledge to bear on the problem, and is dealing with more than simple pixel values

when delineating a boundary.  For a system to be useful and acceptable as an assistant

to an expert, it should replicate what the expert is attempting to do, rather than do
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what is dictated by some set of a priori assumptions over which the expert has no input

or control.

Visible ProductionÕs tracing system is very flexible in providing the user the ability to

modify a boundary as it is in progress, thus it can be matched exactly to the expertÕs

desires.  The user can work at any enlargement level from 2:1 to 20:1; pixels are

replicated rather than interpolated when displayed at magnification.  In observing

experts at their task, it was noted that after quickly scanning the image overall, they

worked zoomed in on the image, typically at a factor of 10:1.  Also, they had a

preferred direction for tracing structures; in this case the structures were always traced

clockwise.

IV.3  Measures of Comparison

Since these are all user-guided systems, one comparison is the amount of user interaction

required to generate a structureÕs boundary.  One measure considered is the amount of

time a user spends defining a boundary.  This however, is more a function of the user-

interface engineering than it is of the underlying method itself: the best algorithm

wrapped in an awkward interface would not fare well in such a comparison.   Also, the

userÕs interaction will be different depending on the system, so it will not be directly

comparable across systems.  However, the general quality and amount of interaction has

been tracked and will be discussed.

Similarly, performance measured in actual execution time is not an adequate

comparison.  The methods in this study were all run on different platforms, and the

software implementations varied from interpreted Matlab statements to optimized C

code.  Once a method is proved to be fundamentally superior, performance engineering

can be brought to bear on it to improve efficiency.  Computations can be sped up by
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more and faster processors and better numerical methods; for example, the field of

Bayesian methods is in renaissance now that the computational load of these methods

can be handled.  However, there are basic algorithmic bounds to note; for example, an

iterative relaxation method such as ACM will always be computationally more

expensive than a forward pass through a neural network.

Figure IVÐ10:  A visual comparison of an expert-traced (white)
against  a machine traced (black) boundary.

Figure IVÐ10 displays

an example of a

machine traced

boundary (in black)

overlaying a manually

traced boundary (in

white) for a visual

comparison.  The

boundary definitions that result from these methods need to be quantitatively

compared, to each other, and to the ground truth of an expertÕs manual definition.

Qualitatively, one could say these are quite close, but how can ÔcloseÕ be quantified?

The remainder of this section develops a methodology to quantify this notion of

ÒclosenessÓ.

IV.3.1 COMPARING BOUNDARY CURVES

The boundaries these methods produce are sets of ordered points which can be

connected by lines or curves or splines to visually bound a region.  The comparison then

is to measure how far the boundary defined by one set of points is from the boundary

defined by the other set of points.
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One distance measure is to find, for each point in one set, the distance to the closest

point in the other.  This measure can be misleading, however.  The left side of

Figure IVÐ11 illustrates two sets of points marked with xxxx and oooo, both sampled off the

same circle.  Since they come from the same curve, they should ideally have a distance

measure of zero between them.  However the minimal distance from any one point to the

closest point of other set is 2.61.  A better method then Ònearest-pointÓ for quantifying

this difference would be to measure the perpendicular distance from a point to the

polyline created by connecting the points in the other set.  This is shown in the right half

of Figure IVÐ11, and the distance measured this way is now 0.34.  Though not zero, it is

an order of magnitude closer to the desired answer.

Figure IVÐ11:   LEFT:  Two sets of points, marked with xxxx and oooo, taken from a circle of radius 10
centered at (11,11).  RIGHT:  Measuring from one set of points to the polyline of the other set.

More accurate measures could be derived by fitting a higher-order curve to the set of

points rather than a piece-wise linear, however in this study such a higher degree of

precision is not necessary.  The methods studied are set to produce boundary points

spaced between one and two pixels apart, thus a worst case misstatement of error in

measuring a distance between sets would be half that amount, or less than one pixel.
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Reducing that worst error by an order of magnitude to a few tenths of a pixel by

measuring to the polyline is sufficient for the comparisons performed herein.

The measure of one curve to another is not simply one number.  For each point defining

one curve, there is a number that quantifies its distance to the other curve; all these

numbers in aggregate comprise a distance set.  The quantitative comparison of curves thus

involves generating and studying these distance sets.

IV.3.1.1   Generating a Distance Set

For a set of points PPPP, what is the distribution of distances of the points in PPPP from a

curve (polyline) defined by another set of points CCCC?

            

B

            

A
11
11
11
11

00
00
00
00
1
1
0
0
11
11
00
00

11
11
11

00
00
00110011
11
00
00            

P

Figure IVÐ12:  Measuring the
perpendicular distance from

point P to line AB.

The first step is to measure from one point to a line

segment of the polyline.  As shown in Figure IVÐ12,

for the point P, the distance of P to AB    is the

projection of  AP  onto  AB z  (the perpendicular to

segment AB),  which is  AP C � AB z �  .

To find the closest segments of the polyline to the point, for each point P in  PPPP, start by

finding the closest point C in  CCCC .  The minimum distance from  P  to  CCCC  can be found by

taking the minimum of the distances of P to the segments on either side of C.

It is not sufficient, though, only to project CP  onto the two segments which share C and

pick the minimum.  A problematic situation is shown in Figure IVÐ13.  In the case

illustrated, the minimum distance from  P  to the polyline is from P to  CC+ , however
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the projection of  P  onto  CC−   is smaller.

111
111
000
000            

P

            

C

            

C -

            

C+

Figure IVÐ13:  Point P is closer to the
segment CC+ rather than to CC-.

This is resolved by noting that since CC– 

is a directed vector, the projection of CP

onto CC– 
 is negative in this case.  So the

distance from P to the polyline created by  CCCC   is the minimum of:

   (1): CP C � CC– z � ,  considered only when  CP A CC–   >   0  , or

   (2): CP C � CC+ z � ,  considered only when  CP A CC+   >   0  , or

   (3):   CP    ,  the distance from P to C .
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Figure IVÐ14:  The distance
from PPPP to CCCC is not the same

as from CCCC to PPPP.

The set of distances for all P gives a collective measure

of the distance from  PPPP  to  CCCC .  However, the set of

distances from  PPPP  to  CCCC  is not the same as the set of

distances from CCCC  to  PPPP .  In Figure IVÐ14, the minimum

distance from P to the curve CCCC  does not reflect the

excursion of the curve out and around point C.   The

discrepancy of the two curves is only captured by the

distance from C to  PPPP .  Therefore, to adequately

quantify the distribution of distances between the curves, the union of the set of

distances from  PPPP  to  CCCC  and from CCCC  to  PPPP must be studied.
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The distance set is thus the ordered collection of distances from all  P  in  PPPP  to  CCCC     and

from all  C  in   CCCC     to  PPPP .

IV.3.1.2   Comparing Distance Sets

Figure IVÐ15 illustrates several visualizations that characterize this set of polyline-to-

polyline distances.   The first graph in the upper half of the figure plots distances

between the curves (on the vertical axis) as a function of position on the curve (on the

horizontal axis).  These are called Òposition graphsÓ in this work.  Sections of the curve

where there are significant excursions above a threshold of 1.0 are indicated.

Figure IVÐ15:  The set of distances can be visualized by examining (at top) the distribution
of distances between the curves as a function of position on the curve, (lower left) a

histogram of the distances overall, and (lower right) the empirical cumulative
distribution function (CDF) of the distances.  Significant excursions above 1.0 are circled in

the upper graphic.

Care must be taken in what statistics are used to quantify the comparison of boundary

curves in this study, since depending on oneÕs purpose, some measures of the difference

will be misleading,.  For example, the Hausdorff measure of the difference between the
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two curves is the maximum value of the position graph (Huttenlocher, et al. [1993]).  In

this case, the Hausdorff distance between the curves is 3.9.  In the context of these user-

guided systems where the user will override distances of over 1.0, the Hausdorff

measure becomes irrelevant, though, since all deviations over 1.0 are equally severe, i.e.,

they require a user correction regardless of their magnitude.  The measure of these

systemsÕ success is based on how close they are for the bulk of the pixels, not how far

off the single worst difference is.

In this position graph, eight significant excursions above a threshold of 1.0 are

highlighted.  These eight excursions represent four sections where the two curves are

significantly more than 1.0 pixels apart from each other; the number of excursions shown

in the position graph is twice number of troublesome curve sections, since this set is a

union of the distances measured from the first to the second and then from the second to

the first.  If the goal was to have the two curves within one pixel of each other, this

indicates that there are four places where operator intervention would be required to

adjust the curves so as to meet that objective.

The lower left of Figure IVÐ15 is a simple histogram of the distance set, with the number

of occurrences on the vertical axis and distance bins on the horizontal.  The lower right

of Figure IV-15 is an empirical cumulative distribution function (CDF) over the distance

set.  The vertical axis measures the fraction of occurrences that are within a tolerance

specified on the horizontal axis.  The CDF allows quantification of the inter-curve

distances by relating a tolerance in pixels to a percentage within that tolerance.

In the next chapter, the boundary methods delineated by the methods in this chapter

will be compared on a set of structures in a controlled study.  These comparison

statistics will quantify the results.
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ÐÐÐÐ==  Chapter V  ==ÐÐÐÐ

Comparative  Results

This chapter presents the comparison of the boundary definitions provided by an expert

to the semi-automated ACM (Active Contour Model), IS (Intelligent Scissors), and ETA

(Expert Tracing Assistant) methods on a set of representative structures from the Visible

Human imagery.  The discussion categorizes the boundaries as ÒbasicÓ (where the

boundary is represented by well defined image edges), ÒhardÓ (where outside knowledge

is required to define a boundary), or ÒintermediateÓ (somewhere between those two

extremes).    Additional structural boundaries are explored in MR imagery to illustrate

similar results in another imagery domain.

Section V.1 compares the boundaries defined by these three methods.  Section V.2

extends the general discussion of IS, ACM, and ETA methods in Chapter IV to the very

specific details of how the methods were configured to define adequate boundaries for

the specific structures of study.  Section V.3 discusses  the degree of user interaction

required.  Section V.4 discusses the reproducibility of the results.  Section V.5 extends

the imagery into the X-ray CT domain,  further exploring issues identified in the Visible

Human imagery.  And in closing, Section V.6 summarizes the issues identified in this

comparison study.
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V.1.  Comparison of the Boundary Definitions

The measures previously discussed in Section IV.3.1 are presented here for the nine

structures identified in Section IV.1.  There are five boundaries under consideration for

each structure: two boundaries that were manually traced by the expert and one

boundary produced by each of the three user-guided methods.  Figure VÐ1, Figure VÐ2,

and Figure VÐ3 show the five boundaries superimposed on the structures identified in

Figures IVÐ3 through IVÐ5.  The images are presented in greyscale to better observe the

behavior of the boundaries shown in color.  The color coding across the figures of this

chapter will maintain this common meaning:

Yellow: the expertÕs manually generated ground-truth boundary (GT).

Green: the boundary defined by the ExpertÕs Tracing Assistant (ETA)

Blue: the boundary defined by the Active Contour Model (ACM)

Red: the boundary defined by the Intelligent Scissors (IS)

Black: the second manually traced boundary provided by the expert (M2T).

The expert manually outlined each structure on two independent trials.  The first

boundary is used as the reference ground truth, and the second boundary is used to

provide a measure of the inherent variation a user shows in manually tracing a

boundary.  A good boundary delineation method need not exactly match any specific

expertÕs boundary definition, but it should be within the range of the expertÕs variance.

A value of one pixel was selected in advance as a basic criteria for two curves to be

adequately Òclose enoughÓ.  Values much larger than one pixel will yield less

discrimination among the methods, since in some cases all the boundary curves are

within two pixels of one another.  Values much smaller than one pixel rely on
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Figure V–1:  The boundaries defined on the leg image; skin, muscle, and bone boundaries
superimposed on a greyscale image of Figure IV–3.  Key: GT is yellow, M2T is black,

ETA is green, ACM is Blue, and IS is red.
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Figure V–2:  The boundaries defined on the arm image; skin, muscle, and bone boundaries
superimposed on a greyscale image of Figure IV–4.  Key: GT is yellow, M2T is black,

ETA is green, ACM is Blue, and IS is red
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Figure V–3:  The boundaries defined on the thorax image; throat, ventricle, and lung’s lobe
boundaries superimposed on a greyscale image of Figure IV–5.  Key: GT is yellow,

M2T is black, ETA is green, ACM is Blue, and IS is red.
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interpolations to sub-pixel accuracy, which may or may not be warranted by the image

data.  And as a practical matter, as the following empirical results show, the

relationships among the methods remain consistent over a range around one pixel.  Thus

while numeric results would differ were a different threshold chosen, the relative

rankings would remain the same.

V.1.1.   QUANTIFYING THE COMPARISON

As an example, the graphs used to quantify the comparison for each structure are

presented in Figure VÐ4.  The background and justification of the graphics was

presented and discussed in Section IV.3.1, the purpose of this section it to walk through

the comparison graphics to verify their meaning.

The five graphs of Figure VÐ4 capture the differences between the ground truth GT and

the other four boundaries defined around the leg bone.  The top four horizontal graphs

are four position graphs, plotting the distance of points along a curve to and from GT.

The first position graph, labelled M2T, plots the distances from the expertÕs second

manual boundary tracing to and from GT.  The second position graph, labelled ETA,

plots the distances of ETAÕs boundary definition to and from GT (ETA was trained on

M2T and then compared to GT).  The third position graph presents the difference data

for ACM, and the fourth position graph presents the difference data for IS.   The bottom

graph in the figure collectively displays the empirical cumulative distribution functions

(CDFs) over these four difference sets, each distinguished by color.

To verify the interpretation of the position graphs, the IS position graph is dissected here

and related back to the two source boundaries it encapsulates.  The first half

(horizontally) of the position graph shows the IS-to-GT distances, followed by the GT-

to-IS distances in the second half.   Reading the first half of the IS position graph, the
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Figure V–4:  For the Leg Bone, the top four position graphs measure the distance
from the M2T, ETA, ACM, and IS boundaries to the reference GT;

the bottom graph displays the CDF of the for differences sets.
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horizontal axis records the position s along the IS curve for its length of 291 points, with

the vertical axis showing the distance to GT.  There is an initial excursion above 1.0

immediately starting at s=0, another short excursion at s=88, followed by a long

excursion above 1.0 beginning at s=212, and a final excursion beginning at s=273.  The

second half of the graph starting at  s=290 has the distances from GT to IS, that reflects

similar, though not exactly the same, excursions at different horizontal placements since

GT starts at a different place than IS.

   

s = 88

   

s = 212    

s = 273

   

IS starting
point

Figure VÐ5:  The Intelligent Scissors (IS) boundary, in red, is
annotated where it deviates significantly from the Ground
Truth (GT) boundary, in yellow.  These deviations can be

mapped to the IS position graph of Figure VÐ4.

Figure VÐ5 shows in

detail the leg bone

boundaries super-

imposed on the image.

The IS boundary, in red,

is annotated where it

deviates significantly

from the GT boundary,

in yellow, to visually

confirm the behavior

seen in the position

graph.

The gap in the red

boundary is the IS

boundary starting point, and this boundary was created counter-clockwise.  In this case,

the user clicked to start the IS contour one pixel away from the GT reference, and the

initial few pixels of the boundary show up as the initial blip to a value of 1.5 at the start
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of the IS position graph.  The excursions beginning at s=88, at s=212, and at s=273, can

be observed as the red IS curve pulls away from the yellow GT curve at those places.

V.1.2.   BASIC CASES - ALL METHODS ESSENTIALLY AGREE

The boundaries for the leg bone were presented in Figure VÐ4.  The overall agreement

among all four boundaries is strong, since image edges adequately represent the

boundary.  There are a few excursions above the threshold line at 1.0 in the four position

graphs, though none of the excursions pass 2.0.  The differences arise from the fine

points of how the connective tissue, which is of a similar visual characteristic to the

bone, is segmented away from the bone.  From the CDF graph, all the boundaries,

excepting the upper tail of IS, are within the range of intra-expert variation represented

by the black CDF, thus, all three could be thus judged to be as good as the expert.

The throat, leg muscle, and ventricle show similar agreement of boundaries to within the

range of the intra-expert variability.  The position graphs and CDFs for the throat, leg

muscle, and ventricle, are shown, respectively, in Figures VÐ6, VÐ7, and VÐ9.  The

boundaries are in agreement for most of their lengths; they would each require minor

tweaks in only a few short spots to bring them totally within one-pixel of the expert.

However since their overall variation is within that of the expert, they may be good

enough to stand without correction.  The expert is typically self-consistent, however

Figure VÐ8 shows detail of the leg muscle where this is not the case.  The large diversion

of the expert is evident in the lower-left where the yellow and black curves diverge as the

expert chose to include slightly different pieces in the marbled area of muscle mass in

different trials.

The large diversion in the IS position graph of Figure VÐ9 is evident in Figure VÐ10 in the

lower right, where user-supplied points include an area of the ventricle which the expert
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Figure V–6:  For the Throat, the top four position graphs measure the distance
from the M2T, ETA, ACM, and IS boundaries to the reference GT;

the bottom graph displays the CDF of the for differences sets.
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Figure V–7:  For the Leg Muscle, the top four position graphs measure the distance
from the M2T, ETA, ACM, and IS boundaries to the reference GT;

the bottom graph displays the CDF of the for differences sets.

––  122  ––



Figure V–8:  The five boundaries drawn over the leg muscle; note the difference
in the lower left between the expert’s two manualy defined contours (yellow and black).
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Figure V–9:  For the Heart’s Ventricle, the top four position graphs measure the distance
from the M2T, ETA, ACM, and IS boundaries to the reference GT;

the bottom graph displays the CDF of the for differences sets.
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Figure V–10:  The IS boundary (in red) diverges from the other boundary definitions
in the lower right due to mis-placed user control points.
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chose not to include.  This diversion, which shows up strongly at s=200 in the IS position

graph (in Figure VÐ9), still implies only one user correction of about 30 pixels.  The point

to re-emphasize in this case is that it doesnÕt matter whether the boundary is wrong by

three or thirty pixels, for when itÕs wrong itÕs still counted as just one user correction.  It

could even be argued that itÕs better to be off by more rather than less when wrong, since

the user intervention required is more obvious when the error is extreme.

V.1.3.   HARD CASES - ALL METHODS HAVE TROUBLE

The statistics shown in Figure VÐ11, Figure VÐ12, and especially Figure VÐ13 show

evidence of larger and sustained inconsistencies in the boundaries.  These cases indicate

significant trouble spots for the methods.

The arm bone and the arm muscle (see the boundaries on Figure VÐ2 or the raw image in

Figure IVÐ4) have difficult boundary distinctions.  The general problem with bone is that

the connective tissue attaching muscle to bone is visually very hard to distinguish from

the bone itself.  In the best images, the fine texture of the outer bone surface may be

slightly visible as a distinguishing surface.  In the lower part of the arm bone, two

patches of connective tissue are evident.  While the expert has traced this bone-tissue

boundary, both the IS and ACM methods are attracted to the much stronger tissue-

muscle boundary.  The large excursions from GT evident in the position graphs of

Figure VÐ11 result from this problem.  The ETA begins to follow this false boundary

while tracing, but once corrected by the user and put back on the bone-tissue boundary,

it continued closer to the expert.  The CDFs in these three figures show ETA tracking the

expertÕs variability, while both IS and ACM performed more poorly.
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Figure V–11:  For the Arm Bone, the top four position graphs measure the distance
from the M2T, ETA, ACM, and IS boundaries to the reference GT;

the bottom graph displays the CDF of the for differences sets.
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Figure V–12:  For the Arm Muscle, the top four position graphs measure the distance
from the M2T, ETA, ACM, and IS boundaries to the reference GT;

the bottom graph displays the CDF of the for differences sets.
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Figure V–13:  For the Lung’s Lobe, the top four position graphs measure the distance
from the M2T, ETA, ACM, and IS boundaries to the reference GT;

the bottom graph displays the CDF of the for differences sets.
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The armÕs muscle tissue presents several problems: first is a totally indistinct border

along the top-left of the muscle; second is a deep fissure particularly troublesome to

ACM; and third is the narrow channel between muscle and bone where the strong bone

edges heavily influence edge-weighted ACM and IS methods.  All five boundaries

wander on somewhat different paths in the vaguely defined top-left region.  The texture

along the edge of the muscle seems to result in poorer performance of ACM and IS, as

evident on the position graphs of Figure VÐ12.

The lobe of the lung (Figure VÐ13) is the worst-case scenario where all the boundaries

radically differ; details are shown in  Figure VÐ14.  On the inner concave boundary,

where the lung abuts the heart tissues, all methods are in general agreement.  However,

on the outer surface (the lower-right side of the image) where lung meets protective tissue

meets ribs, there is no consistency, even between the expertÕs manual traces.

V.1.4.   INTERMEDIATE CASES - IMPROVED LEARNED BOUNDARIES

ETA produces dramatically better results than IS and ACM in following the leg skin and

the arm skin boundaries.  The position graphs of Figure VÐ15 show ETA well within the

one-pixel tolerance band, while IS and ACM are wildly out-of-bounds.  Figure VÐ16

illustrates what is occurring: the expert judgement of the skin boundary is inside what an

edge-defined boundary would be; note that both IS and ACM are agreeing on where the

boundary lies, and a priori this appears to be a sensible boundary to draw.  In this case,

though, the body was encased in a gel before freezing, and the expert is accounting for

both gel effects and the image pre-processing in locating the skinÕs boundary.  The expert

is consistent in this judgement, and ETA has learned this behavior and replicated it.

Figure VÐ17 shows similar results for the skin of the arm.  ETA is not simply learning an

offset, since the arm skin also abuts the thorax as shown in Figure VÐ2.
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Figure V–14:  The outer boundary of the lungs, on the right, against rib and protective tissue,
is a particularly troublsome case for all the boundary definition methods.
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Figure V–15:  For the Leg’s Skin, the top four position graphs measure the distance
from the M2T, ETA, ACM, and IS boundaries to the reference GT;

the bottom graph displays the CDF of the for differences sets.
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Figure V–16:  In this detail of the five boundaries on the leg’s skin, ETA is seen to have learned to
follow the expert who consistently defined the boundary (in yellow and black) slightly to the

inside of what would be classically expected.
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Figure V–17:  For the Arm’s Skin, the top four position graphs measure the distance
from the M2T, ETA, ACM, and IS boundaries to the reference GT;

the bottom graph displays the CDF of the for differences sets.
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V.1.5.   SUMMARY DATA

Table VÐ1:  Summary statistics for the IS, ACM, and ETA methods
compared to the baseline intra-user variance.

% of Curve within 1 pixel of GT 90th percentile of distance to GT

M2T ETA ACM IS M2T ETA ACM IS

B

A

S

I

C

Leg Bone 80% 96% 91% 82% 1.25 .84 .95 1.42

Throat 95% 88% 78% 86% .87 1.06 1.52 1.07

Leg Muscle 73% 77% 77% 70% 2.10 1.27 1.48 1.52

Ventricle 89% 84% 71% 70% 1.03 1.18 1.54 2.35

BASIC  average 84% 86% 79% 77% 1.31 1.09 1.37 1.59

I

N

T

Leg Skin 78% 91% 18% 13% 1.27 .97 2.43 2.74

Arm Skin 84% 65% 29% 27% 1.21 1.52 2.40 2.62

INT  average 81% 78% 24% 20% 1.24 1.25 2.42 2.68

H

A

R

D

Arm Bone 75% 71% 48% 53% 1.89 1.86 3.45 3.27

Arm Muscle 86% 91% 60% 73% 1.09 .97 2.09 1.67

Thorax Lobe 62% 62% 37% 60% 2.39 2.00 3.41 3.69

HARD  average 74% 75% 48% 62% 1.79 1.61 2.98 2.88

Table VÐ1 summarizes the data for the nine structures studied.  For the four structures

grouped as BASIC, where structural boundaries align with well defined image edges, the
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average values are all reasonably close.  In these well-defined cases, all the methods are

basically equivalent.   For the three HARD cases, ETA is more consistent with the intra-

user M2T.  The clearest and most dramatic difference among the semi-automated

methods is for the INTERMEDIATE cases: ETA matches M2T, and both are within the one-

pixel tolerance 80% of the time, while the other two methods are within tolerance less

than 25% of the time.

Not only are the statistics out-of-tolerance for the INTERMEDIATE cases, but there is no

adjustment to get the IS or ACM methods to adequately represent what the expert has

chosen for the boundary.  Since the boundary is NOT coincident with image edges, IS

and ACM will always do poorly.  ETA however has learned the pattern the expert

follows.  ETA learned to offset the skin boundary from the apparent image edges when

the skin is set against the gel background, and to not offset the skin boundary when

following skin-skin edges such as in the armpit area.

V.2.   Parameters of the Implementations  

The IS, ACM, and ETA methods have been discussed only in generality in previous

chapters.  This section describes the particulars of how each method was configured and

any appropriate parameter settings that were used to generate the comparative

boundaries.

For the ACM and ETA methods, in some cases additional minor tuning was made for a

particular structure, depending on the boundary traced.  While this extra effort might

not reflect realistic practice, a principle of this study is to compare each method at its

best, rather than with generic average settings that perform only adequately.
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V.2.1  INTELLIGENT SCISSORS SETUP

The IS boundaries were generated using the software created by Eric Mortensen [1999].

This software, which captured five years of evolution of IS research, represented the

state-of-the-art for the field.  The only advance setup required by the system was

deciding the various scale factors at which the the image features would then be

computed.     The Laplacian and Gaussian kernels used were at scales of 5x5, 7x7, 9x9,

and 11x11.  Since noise was not an issue with this imagery, the larger scale 13x13 and

15x15 kernels which are most useful  in noisy environments were not used.  These

kernels were used to calculate the Laplacian zero-crossings, gradient magnitude, and

gradient direction features that feed into the local cost function, as detailed in Section

IV.2.1.

Before each image was handled, there was a pause of some tens of seconds while all the

features and edge weights were pre-computed.  This underpinned the responsiveness of

the live wire since all the heavy calculations were done in advance, but it also implied

extra overhead for each image.  For a several megapixel image, this cost could be

significant. This issue was addressed in Photoshop’s implementation by restricting the

range the cursor can move from the most recently placed control point, and only

computing the edge costs within that more limited area.

The method was surprisingly  robust in finding paths through indistinct areas, such as

the lung’s lobe or the arm’s skin in this imagery.  This robustness arises from the

calculation of gradients at several scales and then independently selecting  the maximal

value among these at each edge pixel.  This allows for a semi-automatic adaptation to

the appropriate scale of the problem at that point.
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V.2.2  ACTIVE CONTOUR MODEL SETUP

For the ACM software, there are five continuous-valued parameters to specify (detailed

in Section IV.2.2).  This presents a daunting five-dimensional parameter space in which

to search for a "best" fit.  In this particular implementation, the parameters are set at one

value for the entire boundary contour.  However, in more general systems and models,

these parameters can be specified independently at each control point on the contour

thus adding further dimensions to the problem and solution spaces.  Additionally, the

number of iterations can be used as yet another control parameter, stopping the

evolution of the curve when it meets a visually appropriate criteria, rather than

computing the curve to convergence.  The specification of the initial contour also

influences the final state of the  contours.

Figure VÐ18 demonstrates how the evolution and final convergence state of the ACM is

sensitive to its starting contour.  The figure shows an initial contour in green, a series of

contours in yellow each of which was drawn at intervals of five iterations, and a final

30th iteration shown in red.  The dark inner structures are muscles, and the light outer

structure is the surrounding fatty tissue and skin.  Using the default set of initial ACM

parameters, the contour can both expand and contract to the nearest and/or strongest

image edge attractor.

One initialization problem is that when points on the starting contour are closer to the

muscle than the outer edge, they are drawn to that interior muscle as it evolves, and

when they are closer to the skin the contour evolves toward the skin, resulting in the ill-

formed boundary shown.  Also note the similar attraction to the small dark structures,

arteries and veins, in this lighter tissue.  A useful initialization rule-of-thumb is to keep
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Figure V–18:  The ACM runs into problems when the initial parametric curve is not close enough
to the boundary of interest.  The green line shows the initial boundary segment, the red line
shows the state of the ACM after 30 iterations, and the sequence of yellow lines shows the
contour evolution at five iteration intervals.  Note that when the initial boundary is closer

to a dark structure than to the skin, the ACM is attracted to that closer structure as it evolves.
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the initial contour closer than half-way to the desired boundary when other strongly

attracting structures are present.  In the case of the skin, the contour could be initialized

slightly outside the skin all the way around, and the contour would then contract

without interference to the skin boundary.  Conversely, many structures are consistent

internally, thus they can be initialized from the inside and will then evolve outward to

the  boundary.

Settling of the ACM to some final convergence state can be visually observed and

qualitatively monitored graphically.  Note in Figure VÐ18 that as long as the progression

of contours is evenly spaced, the contour is still actively evolving; as progressive

contours crowd together, the active contour is converging to its final resting state.

Figure VÐ19 shows the ACM as applied to the arm bone.  The upper half of this figure

shows how the ACM is attracted to the strong light/dark boundary.  However, this is

incorrect,  since the light area includes both bone and connective tissue; the desired

boundary is more like what is shown on the lower half of this figure.  To get the desired

result, several parameters of the ACM can be modified: (1) the "tension" α can be

increased, which acts to reduce the overall length of the snake; (2) the sensitivity of the

model µ can be decreased, thus the contour is not attracted to more distant features;

and (3) the boundary can be initialized close to the desired solution.

The parameter values used for the nine structures of this study are given in the following

Table VÐ2.  Initially, the default set of parameters was used, based on the study of their

overall effect on the ACM in this imagery, as detailed in Section IV.2.2.  When the

resultant boundary was inadequate, the parameters would then have been changed

based on the particular characteristics of the structure and its surround and the ACM

restarted.
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Figure V–19:  When the ACM parameters are set for a loose fit (above), the final boundary
includes both bone and similar connective tissue.  When the ACM parameters are set

for a tight fit (below), the final boundary does not truly represent the structure –
note the rounded part of the top of the bone.

––  141  ––



Table VÐ2:  Summary statistics for the IS, ACM, and ETA methods
compared to the baseline intra-user variance.

α β γ κ µ # of iterations

Arm Ð Bone 1.0 0 4.0 0.5 0.1 50

Arm Ð Skin 10.0 0 2.0 0.5 0.02 20

Arm - Muscle 1.0 0 1.0 0.5 0.1 30

Leg Ð Bone 15 0.1 3.0. 1.0 0.1 50

Leg Ð Skin 9.0 0.1 3.0 1.0 0.1 25

Leg Ð Muscle 5.0 0 3.0 1.0 0.1 25

Thorax Ð Throat 0.3 0 2.0 0.5 0.1 30

Thorax Ð
Ventricle

0.3 0 2.0 0.3 0.05 15

Thorax Ð Lobe 1.0 0 4.0 0.3 0.05 50

The arm skin (raw image shown in Figure IVÐ4) proved particularly  troublesome for the

ACM.  In the upper-left where the arm  is touching the chest in the arm-pit area, the skin

boundary becomes a faint line, with strong distracting structures (arteries and veins just

below the skin) nearby.  With the same rationale as for the arm bone, an acceptable

boundary solution was found by increasing α, decreasing µ, and initializing the

boundary close to the desired solution   The fundamental problem is that the underlying

edge map is weak, even non-existent, in the troublesome area.  A consideration to

improve performance here would be to supplement the edge map with information from

a line-sensitive kernel.
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V.2.3  EXPERT TRACING ASSISTANT SETUP

The ETA input configuration used a feature set that has demonstrated robust

performance, as discussed in Section III.5.3.   The learning rates were 0.25 for the weights

in the output layer and 0.5 in the hidden layer, with a common momentum of 0.5.  These

values historically proved robust on the visible human imagery in general.

To create the training data, boundaries or subsections of boundaries were sampled.  The

legÕs skin, for example, has a fairly consistent character all the way around, so in this

case, the expertÕs second manual trace (M2T) of approximately 1500 points was

sampled at 200 evenly spaced points.  Each sample point generates one positive

exemplar and three or four negative exemplars, depending on orientation; each negative

exemplar was given a 30% chance of being selected, thus keeping the positive and

negative examples in approximate balance (as discussed in Section III.3).  From this pool

of approximately 400 samples, 25% are randomly assigned to the validation set leaving

the remaining 75% for the training set.  To avoid testing this method on its training set,

ETA is trained on the M2T boundary, and compared in this study to GT, the expertÕs

first manual trace.  This issue is given further discussion in Section V.2.4.

The armÕs skin, in contrast to the leg, has a boundary with two distinctly different

aspects.  A part of the boundary is similar to the legÕs skin, but another part is in the

arm pit, where arm skin touches chest skin.  If the M2T boundary were evenly sampled,

the part of the boundary in the armpit area would have fewer samples than the longer

skin-grey boundary, and under-represented things in the training set are not learned

quickly.  In this case, two different segments of approximately 350 pixels were manually

traced to represent the two different boundary aspects.  These two boundary examples

were then sampled at 100 points each, creating a pool of approximately 400 samples
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that was handled as before.  As a general practice, when a boundary varied in character

along its length, this procedure was used to maintain balanced and representative

training and validation sets.

With the training set established, the system was trained through 2500 epochs, and if

there is a minimum error across the validation set in that interval, the weights of that

epoch were chosen.  For this study, a cross-check was made by re-training the network

varying only the number of hidden units to see if any significantly new weight behavior

emerged.  Figure VÐ20 shows the weights for several hidden unit configurations  when

learning the leg skin boundary.  For each of these configurations, the leg skin was traced

out, and the CDFs corresponding to the performance for these different hidden unit

cases are in Figure VÐ21.

The three rows of Figure VÐ20 show the weights for networks with five, three, and one

hidden unit(s).  The network was trained for 2,500 epochs.  In the first two rows, the left

set of weights represents the network state at the validation set minimum

(approximately 1,000 epochs in both cases), and the right set of weight represents the

networkÕs state at 2,500 epochs.  The pattern of the weights, which are almost identical

early in training (at 50 epochs) have evolved into two slightly different patterns.  A

third, minor pattern appears to be emerging with training beyond the minimum

validation set error.  The third row shows the weights with only one hidden unit, and the

validation set error was still declining at 2,500 epochs when training was stopped.

Figure VÐ21 shows the CDF  curves of these five cases against the reference GT

boundary, along with the CDF of the intra-user variation.  All five boundaries show

roughly the same behaviors.  The case of only one hidden unit is slightly the worst of the

five.  The CDF for the 2500 epoch, five-hidden unit case is an improvement over the best

validation case epoch CDF, but this data represents the curve after the operator has
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Figure V–20:  The neural network weights for five hidden units (top), three hidden units (middle)
and one hidden unit (bottom) in learning the leg’s skin boundary.
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Figure V–21:  CDFs for the five network variation, using hidden layer size
of one, three, and  five units, and using training epochs of either 2500 epochs

or training to the minimum of the validation set error.
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made ten corrections to the trace.  Both of the three hidden unit cases and the intra-user

variability are within one pixel 80% of the time.  This comparison illustrates the cost

associated with over-fitting the data: increased user intervention without any

significantly improved boundary quality.

Additionally, this example can be

used to study the effectiveness of the

early stopping criteria, that is, to stop

training when the error on the

validation set reaches a minimum.

Training beyond this point is referred

to as over-training.  
Figure VÐ22:  These two examples are

characteristic of mistakes made by ETA when
over-trained; the white curve is the uncorrected

ETA trace in progress, shown for comparison
against the black curve used for training.

In each of these

five cases, the ETA system was used

to trace the skin.  Figure VÐ22 shows a

particular error behavior that arose in

over-training.  The black curve shows the boundary which was sampled to create the

training set.  The white line shows an uncorrected error being made while tracing. With

three or five hidden units and when trained to 2500 epochs (well past the validation set

minimum), the ETA tracings had these sorts of errors which would require operator

correction when they occur.  The over-trained network with five hidden units exhibited

this behavior nine times in the course of tracing the skin, while the network with three

hidden units exhibited seven of these behaviors.  The three scenarios where training

stopped at the validation set minimum did not exhibit these behaviors at all.  All five

scenarios required an operator intervention at the bottom of the leg skin image, where

there is an actual blip in the skin caused by wires used to tie down the body during

freezing.
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The heuristic for initially determining the number of hidden units is to provide at least

one hidden unit for each different boundary character that is to be learned.  For

example, the boundary of the lungÕs lobe (shown in Figure VÐ14) has four different

characteristic areas: the lobe-lobe boundary (on the top), the lobe-heart boundary

(middle left), the curving lobe-fatty tissue boundary (lower left) and the lobe-rib

boundary (at right).   Thus ETA was configured with four hidden units in this case.

Fewer hidden units in a model is preferable to more from a computational perspective:

fewer hidden units implies fewer free parameters in the model and thus requiring less

training data, and both fewer weights and less training data implies less computation in

each training epoch and thus faster training.

V.2.4  SEPARATING TRAINING AND TESTING

In the operational framework of ETA, a boundary on one or some few images is learned

and then replicated on other similar images.  This has been observed to work well in

practice.  Due to shortcomings of the experimental procedure, this working model is not

exactly replicated in the comparison study, however.  In the study, all the analysis was

done on one image per structure, where the expert manually traced each structure on two

independent trials.  Thus there is a potential problem in that the results are

contaminated by generating boundary traces on the same image that was used to train

the system.

The expert manually generated two boundaries, GT (ground truth) and M2T (manual

second trace).  ETA used some portion of M2T to learn the boundary character, then a

boundary B was generated by ETA on the same image.  B generally follows M2T, though

with variation.  It may be argued that the only reason B follows M2T is because that is

the boundary upon which the system was trained.  This concern is largely mitigated by
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how the experimental results are measured and by the sampling of M2T, detailed further

in this section.  In addition, the leg skin boundary was analyzed to empirically study the

sensitivity of the results to the inclusion or exclusion of training neighborhoods from B.

The leg skin boundary was analyzed since that case most dramatically supports this

dissertationÕs premise and the empirical differentiation between learned boundaries and

a priori boundaries.

The problematic issue of testing a system on its training data usually arises in the

context of a system that, trained on M2T, generates boundary B which is then compared

to M2T as a measure of success.  In the boundary comparisons studied here, however B

is not being measured against M2T but rather against GT, a boundary on which it was

not trained.  Thus, as a first consideration in this issue, strictly speaking, the

experimental procedure here thus does not measure a trained boundary against its

training set.

However, as B is generated in this experimental setup, the system will likely encounter

some pixels and neighborhoods on which it was trained.  Because of the design of the

training, though, this will be infrequent.  The skin boundary was used with a 23-3-1

network, which has 76 free parameters (the weights).  The training set should thus have

in the vicinity of 200 data vectors Ð this is an empirical balance between too few

exemplars (which leads to memorizing the data and thus usually poor generalization)

and too many redundant exemplars (which implies more computation than necessary).

So the M2T boundary of  roughly 1,400 pixels should be sampled at approximately 100

points, since each point generates two exemplars, one positive and one negative.  The

boundary B in this case, also of 1,400 points, could thus possibly have at most 100

ÒcontaminatedÓ points, i.e., points on which the system was trained.  The remaining

1,300 of BÕs points, 93% of the total, were not in the training set.
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The above numbers are estimates, but they drive the point that even if the data is

potentially contaminated by testing-on-training, the contamination can be kept to a

minimum through appropriately sizing and selecting the training set.  A sensitivity

analysis was run to verify this hypothetical argument in practice on the leg skin

boundary.  The analysis was performed on both scenarios potentially used for selecting

the training set.  The first scenario is sampled training: training points are evenly spaced

around the training boundary.  If 100 samples are needed from a 1,400 point boundary,

every 14th point is taken as a sample point to generate the training exemplars.  The

second scenario is segment training: the training points are taken from a small,

continuous segment rather than an entire boundary.  In this scenario, the initial 10% of a

boundary is used for training, and the system could be tested against the remaining 90%.

Segment training is appropriate when the chosen segment is representative of the

boundary as a whole.  Multiple, approximately equal segments are useful for learning a

multi-characteristic boundary.

Applying the sampled training scenario to the leg skin, 160 points were selected around

M2T which generated 324 exemplars; these were partitioned into a training set of 242

exemplars and a validation set (used for early stopping) of 82 exemplars.  The ETA-

generated boundary B contains 1465 points.  The points are real-valued rather then

integer-valued, and due to rounding and smoothing in the boundary tracing process,

there is no exact match between any of the 160 training points and the 1465 points of B.

Table VÐ3 summarizes the distances from the points of B to the nearest point in the

training set.

To filter out likely contaminants, a subset B1 was created by removing from B the 218

points that are within one pixel of a training point.  To further study the possible

influences not only of training points but also of their neighborhoods, subset B2 was
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Table VÐ3:  Summary of distances from boundary to training points.

Number of points
defining boundary B  ...

...  that are within this distance (measured
in pixels) of a training point

218 < 1.0

328 >= 1.0  and  < 2.0

312 >= 2.0  and  < 3.0

296 >= 3.0  and  < 4.0

280 >= 4.0  and  < 5.0

31 >= 5

created by additionally removing the 328 points that are within two pixels of a training

point, and subset B3 was created by additionally removing the 312 points within three

pixels of a training point.

Since B1, B2, and B3 represent incomplete boundaries, their distance set to GT was

calculated by measuring only the one-way distance of those points to the GT polyline.

Figure VÐ23 shows the CDFs of these distance sets.  As before, the intra-user CDF is

shown in black and the CDF for B is shown in green.  The CDFs for B1, B2, and B3 are

superimposed in red, magenta, and blue, respectively.  The CDFs for B1 and B2 are

essentially the same as for B, thus the effect of possible training set contamination does

not influence this overall  result.  The CDF for B3 is slightly different, and actually

improved, but not with any statistical significance.

Applying the segment training scenario to the leg skin, the first 220 points of M2T were

chosen as the training segment, from which 109 training points were selected (alternate
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Figure V–23:  Two studies of possible training data contamination, for the leg skin boundary;
black represents the intra-expert variation.  Top: combined results.  Lower left, detail for

sampled training: green is all points; red excludes points within 1 pixel of any training data;
magenta excludes points within 2 pixels of any training data; blue excludes points

within 3 pixels of any training data.  Lower right, detail for segment training:
green is the full boundary; red is the partial boundary, excluding the training segment.
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points of the segment are used to avoid the high correlations of immediately adjacent

points).  These 109 points were used to generate 226 exemplars that were partitioned

into a training set of 169 and a validation set of 57.  The ETA-generated boundary Bw

contains 1463 points.  After removing the initial training segment from Bw, the subset

Bwo contains 1242 points.  The CDFs of the distance sets for  Bw and Bwo, measured as

discussed above and shown in Figure VÐ23, are essentially the same.

The comparison experimentation would have more accurately reflected ETAÕs

operational framework with expert traces on more than one image.  Since these were not

available, dual expert boundaries on a single image were used.  Figure VÐ23 summarizes

the sensitivity analysis discussed in this section, and shows the issue of contamination

by testing-on-training-data has minimal, if any, impact on the overall results.

V.3.  Required User Interaction

The user interacts with these systems in two distinct ways.  The first user interaction is

in setting up the system to begin with, deciding on the parameters discussed in the

previous section.  The second way the user interacts with the systems is by correcting

and revising the boundaries as the system creates them.  This section looks at the

interaction required by the IS, ACM, and ETA methods, in that order.

V.3.1   INTELLIGENT SCISSORS

Intelligent Scissors (IS) is an inherently user-guided approach.  The user must specify an

initial point on the boundary of interest, and then sweep the cursor along a path roughly

following the boundary until the curve closes back on itÕs starting point.  The closeness

with which the user must follow the boundary and the number of control points required

depend on the proximity of nearby confounding structures.
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Figure VÐ24:  Raw image (left) shows strong edges
around both bone and white tissue; control point

placement (circled)  forces IS to the bone boundary.

Figure VÐ24 illustrates how a

user corrects an IS contour which

will not naturally lie on a desired

border.  The raw image shows a

bone and its connective tissue,

both of which are visually

similar.  The IS contour is

naturally attracted to the

strongest boundary, but the user

can force the curve to a weaker boundary by placing a control point there, as the circles

on the right-side image indicate.

            

A
            

B

   

A Peninsula

   

A Narrow Channel

Figure VÐ25:  These structures
will always be problematic

boundaries for IS.

There are two situations which will always cause

problems for the IS method.  These are the Narrow

Channel and the Peninsula situations, illustrated in

Figure VÐ25.  The peninsula problem arises because

the cost of the long excursion around the peninsula

exceeds the cost of the shortcut across the

peninsulaÕs neck, thus the live wire will always be

drawn to this incorrect shortcut.  The operator

corrects this behavior by placing an extra control

point or two at the end of the peninsula to pull the

boundary to its full extent.  In the Narrow Channel

case, when tracing the boundary of A, in the tight channel the IS boundary will be drawn

to the shortest path, cutting across the channel to follow the boundary of B before

returning back to A.
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The control points used in tracing these nine Visible Human structures are shown as red

circles on the boundaries shown in Figure VÐ26.

V.3.2   ACTIVE CONTOUR MODELS

For Active Contour Models, an initial contour close to the boundary of interest is

required.  This will sometimes be supplied by the user, but for imagery sets representing

a sequence of images (e.g., sectional imagery or movie frames), the final boundary from

one image may well work as the initial image for the neighboring images.  If not, the user

will be required to initialize the contour.

In the GVFsnake implementation, the user controls the curve by specifying appropriate

parameters.  Figure VÐ27 shows the influence of this selection, for a fixed initial contour.

The green line is the initial user-specified contour, yellow lines represent the contour after

groups of five iterations, and the red line shows a final contour after 50 iterations.  In the

upper part of the figure, the contour is seen to be extending up and to the left toward

other structural boundaries.  The large spacing of the contours shows that it would

continue to evolve in that direction with further iterations.  By increasing the internal

tension parameter α from 0.3 to 1.0 and increasing the viscosity parameter γ from 2.0 to

4.0 to slow its evolution in time, the curve converges and comes to rest on an

appropriate boundary.

If the boundary is wrong, the user corrects it by respecifying the parameters and

restarting the model.  This is expensive computationally since the ACM relies on

iterative computations to converge.  The user must also have a solid understanding or

intuition in regard to how the parameters influence the contour evolution in their imagery

domain, such as that shown in Figures IVÐ7 and IVÐ8.
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Figure V–26:  The nine boundaries defined by IS are shown in blue, and the control points
on the boundary required to define them are circled in red.
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Figure V–27:  Two alternative evolutions of an ACM are shown above. The green line is the initial
user-specified contour, yellow lines represent the contour after groups of five iterations, and the

red line shows the final contour after 50 iterations.  In the upper picture, α=0.3 and γ=2.0;
note the contour is seen to be continuing up and to the left toward other structural

 boundaries.  By increasing α to 1.0 and increasing γ to 4.0 to slow its evolution,
the curve converges to the appropriate boundary.
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V.3.3   EXPERTS TRACING ASSISTANT

Figure VÐ28:  An ETA trace, after
catching a distracting texture,
turns around and begins tracing

the opposite direction.

Following lines and tight channels can also be

problematic for ETA.  A line through a consistent

background, from a local perspective, will look the

same in either direction.  Similarly, the wall on one

side of a narrow channel will look similar to the

opposing wall if travelling in the opposite direction.

In these circumstances, should some noise or texture

patch happen to turn the trace around, it will

continue along in the wrong direction.  Figure VÐ28

illustrates this behavior when tracing the fine line of

the arm skin through the armpit.  The white line is the

ETA-traced boundary, which proceeded from bottom

to top, and the small black extension shows where

the ETA trace turned itself around and continued on

in the opposite direction.  The user took control,

backed up over the error, and manually traced

through the trouble spot until the system could adequately take over again..

The user monitors the ETA as a boundary trace is laid down, and overrides it when it

strays from the desired boundary.  The goal for this system is to automate the routine

parts of the boundary tracing, allowing the user focus their expertise on the confusing

parts.  In this set of imagery, the most severe user interventions were in tracing the lobe

of the lung and the vague portions of the arm muscle.  The images are shown here in

Figure VÐ29.  In the lobe image, the two expert traces are shown in green and ETA in

magenta.  In the muscle, ETA is shown in magenta and the expertÕs boundary in blue.
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Figure V–29:  For ETA, segments requiring user intervention are circled in white.
The upper figure is the arm muscle; blue is GT and magenta is ETA.

The lower figure is the lobe of the lung; green boundaries are
the two expert traces and magenta is ETA.

––  159  ––



The sections where ETA required human intervention are circled in white. The arm

muscle shows a case where essentially the boundary (upper-left) is interpolated by eye.

There is little boundary evidence in this area, and any boundary definition borders on

fiction through this part of the image.  The lung lobe presented a problematic case for all

the methods, and ETA relied on fairly significant manual intervention to trace the

structure at all.  This case is particularly hard, and no method proved successful on this

structural boundary.

V.4.   Reproducibility of the Boundaries

People tracing a structural boundary in an image are known to exhibit a variance, both

across different users and across the same user at different times (Brahmi, et al., [1999];

Karayiannis and Pai [1999]).  In the images studied here, typically 80% of the two

boundaries traced by the same expert at different times differed by less than one pixel

distance.  This user variability provides a reference point with which to evaluate how

well the user-guided methods performed.

With IS, the selection of a set of scales determines at what scales the features are

computed and then algorithmically combined to weighted edge costs.  If the set of scales

and features remains the same, a cost-minimal path computed by this methodology will

remain constant.  Any variation in the IS boundaries will be dictated by the userÕs

interactive placement of seed points.

ACMs are well known to have initialization problems (Mao, et al., [1999]; Gill, et al.,

[1999a]).  Given that the real-valued parameters of the model remain constant, the final

boundary will vary depending on the definition of the initial contour by the user, and the

number of iterations through the ACM are made.
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With the ETA, given a fixed set of input features,  the learned trace is dependent on all

the training parameters of the neural network.  Given a fixed training set, in practice the

network settles to similar solutions across a range of reasonable parameter choices.

Creating a representative training set, however, is key to this methodÕs success.  ETA-

derived boundaries will range from poor to excellent, depending on the initial choice of

training set.   Poor performance, however, can be improved by additional learning, using

corrected cases which were initially erroneous.

V.5.  Indistinct Boundaries in CT Imagery

The Visible Human imagery is essentially free of any noise.  The only complications arise

from artifacts of the freezing and sectioning processes.  This section will briefly explore

the application and comparison of ETA and IS to lower resolution, less clean CT

imagery.  The comparison here is only to IS, since ACM tracked IS closely in its

behaviors.

            

1

            

2
            

3

Figure VÐ30:  Three muscles are labelled in this CT image
from a dogÕs legs.

The base image, shown in

Figure VÐ30, is a CT through

the legs of a dog.  The

contrast range has been

selected for the visualization

of muscle tissue.  Three

muscle masses are numbered:

note the indistinct boundary

between 2 and 3, and where

1 and 2 run along the skin.
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Figure VÐ31:  Two representative segments, shown in black
bordered by white, were used to generate a training set.

Figure VÐ31 shows two

muscle boundary segments,

shown in black bordered by

white, chosen as

representative samples for

training.  One aspect of this

study was to explore the

effectiveness of a limited

number of simple inputs.

Five 5Ðbar inputs were used,

centered on the candidate

pixel, its two left neighbors, and its two right neighbors.

Figure VÐ32:  After training, ETA cleanly traced the three
muscle boundaries.

Figure VÐ32 shows the

results of outlining the three

muscles with the trained

system, superimposed on

Figure VÐ31.  User

intervention was required

only twice, for 5% of the

total boundary.  Note the

clear separation of muscles

2 and 3, and the clean

tracking between skin and

muscle even though the much stronger skin-to-air edge is only two to three pixels away.
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Figure VÐ33:  Detail from an IS defined
boundary; the squares represent

automatically placed control points.

Figure VÐ33 shows a detail of an IS defined

boundary on the lower portion of muscle 1.

The IS tool used to generate this boundary was

the magnetic drawing tool from Photoshop,

which is AdobeÕs implementation of Barret and

MortensenÕs IS work.  The contrast sensitivity

of the tool is set very low so that the weak

muscle-skin edge will be recognized.  The

distance parameter is set small, which means

the boundary definition stays close to the

cursor as the user loosely traces out the

boundary.  The boundary is generally traced

well, however as seen in this detail, the boundary jitters when a strong edge runs near

the weaker edge of interest.

Figure VÐ34:  A detail of the ETA boundary
corresponding to the previous IS boundary

detail.

Figure VÐ34 shows the same image

detail, this time with the ETA boundary.

A section of the smoother training

segment is visible along the upper left of

the boundary.   The ETA defined line is

jagged, since the boundary points have

not yet been smoothed and are placed

at pixel centers.  Note the boundary

stays consistently within one pixel of its

training exemplar when it traces over it.

In this case, ETA effectively learned to

follow only the weak  muscle-skin
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boundary and to ignore the stronger outer skin boundary.  Both the ETA and IS

boundaries can be improved by smoothing, as shown in Figure VÐ35, however artifacts

from the IS edge jitter still remain.

Figure VÐ35:  Smoothed versions of the IS (left) and ETA (right) boundaries.

V.6.  Comparison Summary

Studying the empirical cumulative distribution functions of the distances between the

ground truth and the boundaries defined by the ACM, IS, and ETA methods revealed

several key trends.  Figure VÐ36 shows collectively all nine CDFs for the nine boundaries

compared in this chapter.   The IS and ACM errors are seen to parallel each other

closely, and the ETA usually parallels the intra-expert difference (M2T) closely.  In five

cases the IS-ACM pair was consistent  with the  ETA-M2T pair, while in four cases the

ETA boundary difference tracked the intra-expert difference and the IS and ACM

differences were significantly worse.  In the dramatic case of the skin boundaries, ETA

was able to much better replicate the expert than either IS or ACM methods.
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Figure V–36:  Nine CDFs for the nine boundaries compared in this chapter.
The IS and ACM CDFs are seen to track each other closely,

and the ETA usually tracks the intra-user difference (M2T) closely.
Color Key:  green is ETA; blue is ACM; red is IS; and Black is the intra-user variation M2T.
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ETA was the only method to have sufficient flexibility to mimic the expertÕs behavior in

tracing the skin.  This flexibility arises from the placement of a variety of input filters at

at several offsets, and the learning mechanism that ultimately determines which are

important.  For the basic skin, the network can simply learn the boundary as a simple

offset from image edges.  However the network learns more than a simple offset from the

background edge, as seen when tracing the armÕs skin through the skin-skin boundary of

the armpit (in Figure VÐ2), and as seen in the dogÕs leg CT imagery (in Figure VÐ32).

IS at its core relies on a priori edge strength measures for defining the cost functions on

the arcs between pixels.  To an extent, weights on these measures can be adaptively

moderated for IS to follow weaker edges, but IS still has little flexibility in the mapping

of edge to boundary.  To attract a contour, ACM models rely on a pixel feature map

that is typically implemented as some variation of an edge map.  The feature map could

be more flexibly defined over other features of interest, however this flexibility comes at

the cost of understanding and defining a custom feature map for every different

situation of interest.

ACM guarantees a continuous, closed boundary result since the method starts with a

closed parameterized curve and only modifies the parameters though its iterations.  IS

guarantees a continuous boundary since the core algorithm finds a path from the

designated starting point to a designated finish.  ETA is myopic by comparison, since at

any one point, the extension of the boundary in progress looks ahead only to the extent

that the input filter set is sized to do so.

ACM does provide a real-valued set of boundary points at sub-pixel resolution, while

both IS and ETA produce boundary points placed at integer pixel centers.  IS and ETA

rely on post-processing of the integer-valued points to smooth their boundaries.
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The main computational burden of IS is in computing, at each pixel, the features on each

of the eight arcs connecting a pixel to its eight neighbors.  Once this data is available, the

user can outline structures very quickly, requiring only a few seconds for simple

geometries with strong edges.   The feature computations need to be done once for a

specific image, and then multiple boundaries can be defined quickly over that image.

When changing to a new image, these costs must be borne again.  These features could be

pre-computed and saved along with the image data to speed future boundary definition

on the image.  Another option is to reduce the overall computational burden by

computing the arc-costs only in the immediate vicinity of the cursor as the cursor moves.

This may slow down the ability to define long boundaries quickly, but for large images it

focuses the computation only where it is likely to be needed.  This is the strategy chosen

by Photoshop and PaintShop when integrating this tool into their image editing

packages.

The main computational burden of ETA is in the training of the neural network for a

specific structureÕs boundary. Once the boundary definition is learned within an image

set, no more computation is required for different images in that set, thus the

computation required by training can be paid back only when there are a number of

similar boundaries to be traced. One method to speed the learning process is to add

each boundary definition to a library as it is created, and quickly run through the library

before starting training anew with each new structure.  The feed-forward neural network

can extend boundaries very quickly, faster than a user can verify its accuracy.

The computational burden of ACM is in the iterations necessary for the initial

parametric curve to converge to its final state.  This iterative computational burden will

be necessary for each boundary defined on each image, which makes ACM the most
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computationally expensive of all three methods.  For small structures, this may converge

quickly, but for large structures this can be a long, costly convergence.

All three methods require a user to start the boundary in an appropriate place.  The user

thus tackles the difficult problem of sorting through the overall image context and

isolating the structure of interest.  IS requires the user to place an initial point on the

boundary, and ETA requires the user to draw a segment of a few pixels on it.  ACM

requires the user to fully sketch out an initial, close-enough curve; the closer the initial

curve, the less resulting iterations are needed thus speeding the ACM process.

Regarding necessary user interventions, IS has some geometric situations that will always

require user guidance, namely the peninsula and narrow-channel shapes discussed along

with Figure VÐ25.  Without any adaptive learning of boundary statistics, IS requires

close guidance on weak boundaries, especially when neighboring strong boundaries are

present.  ETA can learn these weak boundary definitions, and has a confidence measure

associated with the edge extension so when it strays in unlearned domains, the system

can automatically pause and wait for user guidance.  When the system continues

erroneously on its own, the user needs to backtrack over the false boundary and restart

the boundary on its proper course.  The user interventions associated with ACM involve

the initial parameter selections that are based on general guidelines and specific

experience; some ACM systems allow the user to tweak specific points  along the curve

to pull it into the full extent of sharp concavities which it will not otherwise track.

Intelligent scissors has the best user interface among the methods.  The boundary can be

defined quickly, and is easy to back up when correcting what is wrong.  Once the user is

satisfied with a piece of the boundary contour, a mouse click freezes that segment in

place preventing accidental changes.  These are characteristics that would be useful to

incorporate into the user interface of ETA.
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ÐÐÐÐ==  Chapter VI  ==ÐÐÐÐ

Overall Conclusions

VI.1   Summary

Most image processing work addressing boundary definition tasks embed the

assumption that an edge in an image corresponds to the boundary of interest in the

world.  In straightforward imagery this is true, and a wealth of edge-detection research

can be applied to the task.  However this is not always the case.  There are images in

which edges are indistinct or obscure, images which can only be segmented by an expert.

This dissertation addresses the range of imagery between these two extremes, the

straightforward and the horribly difficult.  The premise is that by freeing systems of

a priori edge definitions and building in a mechanism to learn boundary definitions as

needed, systems can do better and be more broadly applicable.  This dissertation

presents the construction of such a boundary-learning system and demonstrates the

validity of this premise on real data.

This work was motivated by existing problems in fully automatic and fully manual

identification of boundaries in image processing tasks, such as the analysis of

biomedical imagery.  Solving these problems to some degree would significantly assist

experts in the task of delineating structures of interest in digital imagery.  A framework

was created for the task in which expert-provided boundary exemplars are used to
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create training data, which in turn are used by a neural network to learn the task and

replicate the expertÕs boundary tracing behavior.  This is appropriate over large and

repetitive image sets, where a small, representative subset of the imagery can be used to

learn a boundary representation that can then be exploited on the remainder of the

imagery.  This is the framework for the ExpertÕs Tracing Assistant (ETA) system.

As an example of the effectiveness of this framework, a version of ETA was used at

Visible Productions to trace for a second time the skin of the Visible Male across 1800

high-resolution images.  The first tracing was done totally manually, and the

inconsistencies in the original manual tracing motivated the re-tracing. The task time was

reduced by at least 80%, from approximately three staff-weeks to three staff-days, and

the overall set of boundaries was both more accurate and globally more consistent.

The issues addressed in this dissertation arose in the context of this application.  The

neural network used for this task is a mathematical abstraction, and several issues

center around representing and interpreting the parts of this abstraction.  Experiments

with interpretations of the neural networkÕs output  proved that a feature-detector

output interpretation, where the output unit goes high (or low) in the presence of a

feature and opposite in the featureÕs absence, was superior to a continuous-valued

interpretation suggested by control theory.  In the networkÕs layer of hidden unit(s), a

natural interpretation arises of that layer as a filter derived from the inputs, which in

turn is used at the output unit in a boundary decision criteria.   Experimentation with

the networkÕs inputs demonstrated that for a fixed number of inputs, preprocessing the

input data can bring about faster learning than simply presenting raw pixel data as

inputs to the network.

In this application, there is no lack of training data.  An expert can create a

representative training segment of 200 pixels in length in less than one minute.  At each
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point one on-boundary exemplar (a correct boundary continuation) and several off-

boundary exemplars can be constructed, thus generating a pool potentially of 1,000

training exemplars.  Different classes of exemplars may be disproportionately

represented, however, and this was shown to skew the results of training when the

negative exemplars outweigh the positive.  At a 4:1 ratio of negative to positive

exemplars, the correct responses were inadequately learned.  By randomly choosing only

25% of those negative exemplars to include in the training set, both positive and negative

cases were adequately learned, as was measured by the clustering of responses about

their desired targets.  This issue also arises, for example, when a structure is bounded by

a light background most of the time and a dark background only a small percentage of

the time.  The boundary sampling needs to represent the differing boundary character

approximately equally for the neural network to learn both boundary characteristics

adequately.

While the ETA system proved useful in practice, an experimental comparison to other

user-guided boundary definition methods was performed to explore its strengths and

shortcomings.  For a representative set of nine structures in the Visible Male cryosection

imagery, ETA was compared and contrasted to two other state-of-the-art, user guided

methods Ð Intelligent Scissors (IS) and Active Contour Models (ACM).  Each method

was used to define a boundary, and the distances between these boundaries and an

expertÕs ground truth were compared.  There is a natural variation between independent

boundary traces made by a human, and the three semi-automated methods were

compared to this intra-user variance.

Studying the empirical cumulative distribution functions of the distances between the

ground truth and the boundaries defined by the ACM, IS, and ETA methods revealed

several key trends.  The IS and ACM errors usually paralleled each other closely, and the
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ETA errors usually paralleled the intra-expert difference (M2T) closely.  Across the nine

structures compared in Chapter V, in five cases the IS-ACM pair was consistent  with

the ETA-M2T pair, while in four cases the ETA boundary difference paralleled the intra-

expert difference and the IS and ACM differences were significantly worse.  In the

dramatic case of the skin boundaries, ETA was able to much better replicate the expert

than either IS or ACM methods.  In this case, where the expertÕs judgement was most

called into play to bound the structure, ACM and IS could not adapt to the boundary

character the expert used while ETA could.

Researchers have observed that experts have resisted using automated systems that are

available, as noted in Section I.1.2.  This may result from many factors, from

inappropriate system behaviors to a poorly designed user interface.  One reason may be

that the system is perceived as doing its own thing rather than what the expert is

deciding upon.  A selling point for the adoption of systems which learn a boundary from

examples is that the system will be taught to match the expert, and thus its results

should be viewed more acceptably from the expertÕs perspective.

VI.2   Limitations

The learned boundary was shown experimentally to succeed in many cases.  Uniformly

bounded structures are the most successfully sampled, learned, and automatically

traced.  In some structures the boundary character varies, for example the armÕs skin

where the boundary was either skin-against-background or skin-against-skin in the

armpit area.  Multi-characteristic boundaries such as this can be successfully learned

when the training set has approximately equal representation from boundary segments

representing each characteristic.  And in structures where an expertÕs boundary

judgement is at variance with traditional image edge definitions, the implicit expertÕs
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boundary definition can be successfully learned by example.  This was demonstrated by

the results in defining the boundary of the Visible HumanÕs skin and the muscles on the

CT image of the dog leg.  Visually similar, though still slightly distinct, structural

boundaries can be learned, such as the bone-ligament boundary analyzed in the Visible

Male imagery.  In this case, a minor operator intervention is usually required to set the

system onto the proper boundary, but then the tracing proceeds well.  The results of

both these cases is detailed in Section V.1.

One limitation of the experimental method used in comparing the boundary methods

was reliance on the ETA user to understand the implications of a multi-characteristic

boundary situation.  Ideally, the user would recognize the situation beforehand and

provide roughly equal training segments for each characteristic.  When this isnÕt

anticipated, the recognition that a boundary characteristic is inadequately learned comes

when the automatic tracing fails miserably in one section.  The user then simply backs

over the problematic segment and manually traces in the proper boundary.  The user has

the option of providing separate training segments for this region and then retraining the

network.  The learning can only be as good as the chosen exemplars.

Several situations were isolated where the learned representation proved troublesome.

The Òthin channelÓ situation is one, where a narrow structure is bounded on either side

by similar image characteristics; the narrow structure is said to have close, anti-parallel

edges.  In this situation, a slight perturbance caused by noise or a small nearby structure

may cause the boundary trace to change direction, and the system picks up tracing the

structureÕs opposing side in the opposite direction.  Additionally, small and strongly

distinct structures or unrepresentative boundary anomalies can kick the boundary

tracing off-course.  These situations require operator intervention to correct.  And some

tasks are resistant to any accurate and consistent bounding, such as the case presented

ÐÐ   173   ÐÐ



by the lobe of the lung, when even the intra-user variance was exceptionally high.  For

such exceptionally hard cases, an expert will always be needed.

The learning approach used in the ETA framework as discussed in this dissertation was

static in the sense that the training set was defined and then never changed.    The way

to further improve a learned representation for a boundary is to analyze the errors made

initially and learn the correct responses for them, however additions to the training set

were not used during the experimentation in this work.

The raw data used for each pixelÕs input was one eight-bit channel of information.

Sometimes eight-bit greyscale is the norm, for instance with MRI imagery.  However

XÐray CT imagery typically is captured on one channel of 12 bits, and the Visible

Human dataset is captured on the three RGB channels of 8 bits each.  When working

with 12-bit CT imagery, the user tuned the displayed image to best highlight the

structure of interest, and the 12-bit image was saved in a reduced 8Ðbit range spanning

the appropriate image intensities.  In the three channel RGB imagery from the Visible

Male, the 8-bit green channel was used since it provided the best visual distinction

among structures overall.  While these are both reasonable choices for deciding upon a

significant eight bits if data, they are still user-dependent, relying on an appropriate user

choice.

Another shortcoming of the experimental methodology is that there was no attempt to

normalize the imagery for differences in image intensity  or inconsistency.  When the

Visible Human imagery was captured, the lighting conditions were well-controlled, and

thus the images are consistent both across the full extent of each image and between

images in the set.  Other imaging modalities are not as easily usable, however.  MR

imagery, for instance, typically has both significant inter-slice and intra-slice intensity

ÐÐ   174   ÐÐ



variation.  This could confound a learned boundary definition as the user moved among

these areas of intensity variation.

Choosing neural networks as the learning mechanism in this system did have some

overall implications.  The backpropagation method can be slow, especially when several

distinct characteristic segments are used with multiple hidden units to learn a multi-

characteristic boundary.  There is no proven way to select a best network size, and trial

and error was used to select the learning parameters.  Neural networks are often

problematic since the representation they learn is unclear, however in this application

the hidden layer has been shown to have a straightforward interpretation, at least with

simple inputs, as a compound filter.

While it rarely proved problematic in these experiments, the learned boundary is

directionally dependent.  If the training segments were traced clockwise, the boundary

continuation would be learned and preferentially extended in that direction.  When

defining several training segments for a multi-characteristic boundary, segments must be

defined consistently either clockwise or counter-clockwise, since mixing directions will

likely create a contradictory training set.

Each result presented was checked against a few variations in the random weight

initializations and number of hidden units.  No comprehensive study was made of the

overall robustness of results to variations in learning parameters, weight initializations,

image noise levels, or input or hidden unit configurations.

VI.3   Future Directions of Study

The learning approach used in the ETA framework as discussed in this dissertation was

static in the sense that the training set was defined and then never changed.  However,
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the interaction of system and user in ETA framework leads to a natural synergy.  The

simple fact that the user has taken back control indicates the system has erred, and by

collecting exemplars as the user backs up over a mistake and redraws a boundary

correctly, the system acquires exactly the data needed to improve the learned

representation.

With a larger training set of exemplars, a naive approach would be to start over again

and retrain a new network from scratch.  This is inefficient, since it implies relearning

what was initially learned as well as the new data.  Given these new exemplars, the

issue is now how to change the learned representation to incorporate the new data

without losing the information already assimilated from  earlier rounds of training.

Only a single eight-bit value was used for the raw data associated with each pixel.  For

RGB imagery, using three values per pixel would triple the number of inputs, triple the

associated number of weights from input to hidden layers, triple the number of free

parameters thus increasing the needed number of training exemplars, all of which imply

a dramatic increase in required training computation.  Given the benefit of using only a

single channel of input data per pixel, what should be used when multi-channel data is

available?  The choice of using the green channel was made for Visible Human imagery,

however the best distinction in the data may not lie in simply one channel.  RGB may be

transformed into other color spaces, such as HSI or Lab, whose dimensions may better

distinguish the boundaries.  Another option would be to pre-process a sample of the

imagery and find the single dimension of the high information content  through a

principal component analysis of the sample.

The user was responsible for providing a training set that is both representative and

balanced.  Balancing the training set, providing roughly equal number of samples for

distinct variations in boundary conditions, can be reasonably done at a gross level.  But
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there may be fine structural variations that are hard to distinguish.  One possible

approach to addressing the issue of balance would be to implement some fast clustering

of the exemplars, then sample equally from each cluster to create the training set.  A

rough and approximate clustering is all that is required, since this is used not to predict

a response but to select the training set used to learn the representation.

The success of ETA in the comparison experimentation demonstrated that the selected

input features were sufficient for the task, but this says nothing about the necessity of

the features used.  Future experimentation could study the adequacy of the boundary

representation learned as a function of features in the input set.  The weights on the

features can be indicators of which are most useful in the boundary definition.

One important source of information which was untapped in this work is the data from

neighboring images.  These neighboring images may come from a third spatial dimension,

as in a stack of images, or from a temporal dimension, as in neighboring frames within a

movie.  Using neighboring image planes would allow the generation of 3D input features.

The key result of this dissertation is showing the benefit available through the use of

learned boundary representations.  The framework is quite general, and other learning

mechanisms could be used to learn the appropriate responses given the exemplars.

Support vector machines, for example, may produce a learned representation much more

quickly than the iterative error-backpropagation algorithm.  This application could

provide a platform for studying the efficiency and effectiveness of different learning

mechanisms.
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