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ABSTRACT

CHANGE-POINT ESTIMATION USING SHAPE-RESTRICTED REGRESSION

SPLINES

Change-Point estimation is in need in fields like climate change, signal processing, eco-

nomics, dose-response analysis etc, but it has not yet been fully discussed. We consider

estimating a regression function fm and a change-point m, where m is a mode, an inflec-

tion point, or a jump point. Linear inequality constraints are used with spline regression

functions to estimate m and fm simultaneously using profile methods. For a given m, the

maximum-likelihood estimate of fm is found using constrained regression methods, then

the set of possible change-points is searched to find the m̂ that maximizes the likelihood.

Convergence rates are obtained for each type of change-point estimator, and we show an

oracle property, that the convergence rate of the regression function estimator is as if m

were known. Parametrically modeled covariates are easily incorporated in the model. Sim-

ulations show that for small and moderate sample sizes, these methods compare well to

existing methods. The scenario when the random error is from a stationary autoregressive

process is also presented. Under such a scenario, the change-point and parameters of the

stationary autoregressive process, such as autoregressive coefficients and the model variance,

are estimated together via Cochran-Orcutt-type iterations. Simulations are conducted and it

is shown that the change-point estimator performs well in terms of choosing the right order

of the autoregressive process. Penalized spline-based regression is also discussed as an ex-

tension. Given a large number of knots and a penalty parameter which controls the effective

degrees of freedom of a shape-restricted model, penalized methods give smoother fits while
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balance between under- and over-fitting. A bootstrap confidence interval for a change-point

is established. By generating random change-points from a curve on the unit interval, we

compute the coverage rate of the bootstrap confidence interval using penalized estimators,

which shows advantages such as robustness over competitors. The methods are available in

the R package ShapeChange on the Comprehensive R Archival Network (CRAN).

Moreover, we discuss the shape selection problem when there are more than one possible

shapes for a given data set. A project with the Forest Inventory & Analysis (FIA) scientists

is included as an example. In this project, we apply shape-restricted spline-based estima-

tors, among which the one-jump and double-jump estimators are emphasized, to time-series

Landsat imagery for the purpose of modeling, mapping, and monitoring annual forest dis-

turbance dynamics. For each pixel and spectral band or index of choice in temporal Landsat

data, our method delivers a smoothed rendition of the trajectory constrained to behave in an

ecologically sensible manner, reflecting one of seven possible “shapes”. Routines to realize

the methodology are built in the R package ShapeSelectForest on CRAN, and techniques

in this package are being applied for forest disturbance and attribute mapping across the

conterminous U.S.. The Landsat community will implement techniques in this package on

the Google Earth Engine in 2016.

Finally, we consider the change-point estimation with generalized linear models. Such

work can be applied to dose-response analysis, when the effect of a drug increases as the

dose increases to a saturation point, after which the effect starts decreasing.
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CHAPTER 1

Introduction

1.1. Cone Projection Review

The projection of Y ∈ R
n onto a set C ⊆ R

n is defined as the point θ̂ ∈ C that minimizes

the Euclidean distance

‖ Y − θ ‖2=
n

∑

i=1

(Yi − θi)
2.

A unique minimum exists if C is closed and convex. We are concerned with projecting onto

convex polyhedral cones such as

(1) C = {θ ∈ R
n : Aθ ≥ 0} ,

for an m×n constraint matrix A. The set C is a cone because given θ ∈ C, we have αθ ∈ C,

for all non-negative real numbers α, and it is straightforward to verify that C is convex. We

require that A be “irreducible” as defined by Meyer (1999); the intuitive meaning is “non-

redundant.” The term “polyhedral” means finitely generated, so that points in the cone

can be characterized as linear combinations of a finite set of points (generators) where the

coefficients of the linear combination are non-negative.

The coneproj package contains routines for cone projection and quadratic programming,

plus applications in estimation and inference for shape-restricted regression. For the coneA

routine, the user specifies Y ∈ R
n, an m × n matrix A, and an optional weight vector w

with positive elements. The routine returns θ̂ to minimize

n
∑

i=1

wi(Yi − θi)
2

1



over θ ∈ C, is returned, where C is defined in (1). The matrixA is required to be irreducible,

that is, the rows of A form an irreducible set. A set of vectors is irreducible if none can be

written as a positive linear combination of two or more of the others, and the origin is not

a positive linear combination of two or more vectors in the set. (The phrase “positive linear

combination” means a linear combination with positive coefficients.)

Let V be the null space of A; that is, the linear space orthogonal to the space spanned by

the rows of A. The space V is contained in C. An element in C can be written as the sum

of a vector in V and a linear combination of the edges or generators of C with non-negative

coefficients. If A is full row-rank, it is shown in Meyer (2013) that the edges η1, . . . ,ηm of

the cone are the columns of B = A⊤(AA⊤)−1. If A is not full row-rank, Proposition 1 of

Meyer (1999) can be used to obtain the edges η1, . . . ,ηM , where M ≥ m. The cone (1) can

alternatively be written as

(2) C =

{

θ ∈ R
n : θ = v +

M
∑

j=1

bjηj, v ∈ V and b1, . . . , bM ≥ 0

}

,

where M is the number of generators and M = m if A is full row rank. The generators

η1, . . . ,ηM are orthogonal to V , so the projection of Y onto C is the sum of the projections

onto V and onto the cone

Ω =

{

θ ∈ R
n : θ =

M
∑

j=1

bjηj, b1, . . . , bM ≥ 0

}

.

The algorithm of Meyer (2013) provides the projection onto Ω by determining the face

of the cone on which the projection lands. The faces are used for the inference methods and

2



are indexed by subsets of {1, . . . ,M}. For such a subset J , the corresponding face is

FJ =

{

θ ∈ R
n : θ =

∑

j∈J

bjηj, bj > 0 for j ∈ J

}

.

The faces cover the cone; once the face containing the projection is determined, the projection

onto Ω is simply the projection onto the linear space spanned by the edges making up the

face. For more details and proofs, see Meyer (1999). The algorithm finds the projection by

determining the set J .

The initial guess J0 can be any subset of {1, . . . ,M} for which the corresponding ηj,

j ∈ J , form a linearly independent set. At the kth iteration,

(1) Project Y onto the linear space spanned by {ηj, j ∈ Jk}, to get θ(k) =
∑

j∈Jk
b
(k)
j ηj.

(2) Check to see if all b
(k)
j are non-negative:

• If yes, go to step 3.

• If no, choose j for which b
(k)
j is minimized, and remove it from J ; go to step

1.

(3) Compute 〈Y − θk,ηj〉 for each j /∈ Jk. If these are all non-positive, then stop. If

not, choose j for which this inner product is largest, add it to the set, and go to

step 1.

See Meyer (2013) for the proof of convergence.

The polar cone is defined as

Ωo = {ρ : 〈θ,ρ〉 ≤ 0, ∀ θ ∈ C},

and it can be shown that the projection ρ̂ of Y onto Ωo is Y − θ̂, i.e., the residual of the

projection onto C.
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The constraint cone edges η1, . . . ,ηM are not needed if A is provided, because the rows of

−A are the edges of the polar cone. See Meyer (1999) for proof. The function coneA requires

the specification of the constraint matrix (and hence the polar cone edges), while the function

coneB requires the user to specify the cone edges η1, . . . ,ηM and a basis for the linear space

V that is contained in the cone. When there is no linear space in the cone, the user need

only provide η1, . . . ,ηM . In either case, the function returns the projection, the dimension

of the face of the cone on which the projection lands (which may be used as a surrogate

degrees of freedom of the model), and the number of iterations. It also returns a message

concerning convergence when the algorithm does not converge; although theoretically the

algorithm must converge, the presence of rounding error in the real world results in a small

possibility of non-convergence.

The function coneA will return the projection given the vector Y ∈ R
n and the m × n

matrix A. The function coneB will return the projection given Y and the generators of C.

In addition, if a positive weight vector w is provided, the functions return the minimizer of

∑n
i=1wi(Yi − θi)

2 over C.

The coneA and coneB algorithms have been coded and compiled in C++, and are called

by R, which makes them considerably faster than if coded completely in R. They are the core

algorithms of the package coneproj, which is now available on the Comprehensive R Archive

Network (CRAN) at https://cran.r-project.org/package=coneproj. A paper about

this package was published in the Journal of Statistical Software in 2014. The methodology

proposed in this dissertation is developed based on coneA and coneB.
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1.2. Regression Spline Review

B-splines are a standard choice for regression basis functions because of their interpolation

property and flexibility. Suppose that ηq(x) is a B-spline basis function of order q, q > 1

and tj, j = 1, . . . , k, are the “knots” such that t1 < . . . < tk, t1 ≤ min(x), and tk ≥ max(x),

then it is piecewise polynomial in x, and the expression of the polynomial pieces on [ti, ti+1]

can be derived by de Boor’s algorithm recursively as

ηi,1(x) =



















1 if ti ≤ x < ti+1

0 otherwise,

and

ηi,q(x) =
x− ti

ti+q−1 − ti
ηi,q−1(x) +

ti+q − x

ti+q − ti+1

ηi+1,q−1(x).

The splines are defined so that each basis vector is orthogonal to all but a few of the others.

B-spline properties are thoroughly discussed in de Boor (1978).
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Figure 1. B-spline basis functions for a data set with n = 100 observations
with values marked as dots. Knots are marked as “X”. Left: piecewise qua-
dratic. Right: piecewise cubic.
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The derivative of a B-spline of order q is a function of B-splines of order q − 1, i.e.,

dηi,q(x)

dx
= (q − 1)

[−ηi+1,q−1(x)

ti+q − ti+1

+
ηi,q−1(x)

ti+q−1 − ti

]

.

Since the first (second) derivative of quadratic (cubic) B-splines are piecewise linear, it is

straight-forward to impose a monotonicity or convexity constraint on an underlying curve

using the derivative of B-splines to get a shape-restricted regression.
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Figure 2. Derivatives of B-spline basis functions for a data set with n = 100
observations with values marked as dots. Knots are marked as “X”. Left:
first derivatives of quadratic B-splines. Right: second derivatives of cubic
B-splines.

Using quadratic and cubic B-splines, we will develop the change-point estimators with

shape constraints in the following chapters.
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CHAPTER 2

Change-Point Estimation Methods

Consider the regression model

(3) Yi = fm(Xi) + σεi, for i = 1, . . . , n,

where fm(x) is a function mapping [0, 1] to R with a change-point m, 0 < m < 1. Let σ > 0

and assume (for now) that the errors are independent with mean zero and unit variance.

We consider three types of change-points: the mode of an increasing-decreasing (unimodal)

regression function, the inflection point of a convex-concave regression function, and a jump

point in an otherwise smooth regression function.

2.1. Literature Review

Nonparametric estimation of a unimodal regression function is closely relevant to the

estimation of a unimodal density function. A kernel estimator of the mode of a density

f is given by Eddy (1980). The estimator is consistent and asymptotically normal. The

rate at which the mean squared error of the estimator converges to zero can be decreased

from n−4/7 to n−1+ε for any positive ε with sufficient conditions. Meyer (2012b) proposed a

smoothed shape-restricted estimator for a unimodal density. The estimator of f is a linear

combination of regression quadratic B-splines and it is obtained by a weighted projection

onto a convex cone. The least-squares criterion proposed by Greoneboom, Jongbloed, and

Wellner (2001) is minimized over the set of linear combinations of basis functions with the

coefficients constrained to capture the shape assumption and the convergence rate for f̂ and

m̂ is n−3/7 for both the known mode case and unknown mode case.
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Shoung and Zhang (2001) provide a nonparametric least squares estimator of the mode

m of a unimodal regression function fm using unsmoothed isotonic regression. When the

mode m is known, the estimate of fm uses the pooled adjacent violators algorithm (PAVA)

on each side ofm; whenm is unknown, the least-squares estimator m̂ is that which minimizes

the sum of squared residuals for the fitted regression function over m = xi. This function

estimator tends to have a “spike” at the largest observation near the true mode, and hence

the mode estimator tends to have a larger variance than that for a smoothed function esti-

mator. The convergence rate of m̂ satisfies that lim
n→∞

sup{n/(log(n))2γ}1/(2s+1)|m̂−m| <∞

a.s.. Köllmann, Bornkamp, and Ickstadt (2014) discuss penalized spline methods to achieve

unimodal and smooth estimation of a functional relationship in a scenario of dose-response

analysis. They use a restricted maximum likelihood approach to choose the tuning parame-

ter and to estimate B-spline coefficients. For choices of m, they choose the tuning parameter

and B-spline coefficients that minimize the residual sum of squares; an alternative Bayesian

approach is also provided to estimate m instead of searching for m over a grid of possible

values. Their methods are in the R package uniReg Köllmann (2014).

Inflection-Point detection is a challenging problem that is important in fields like signal

processing and economics. Kachouie and Schwartzman (2013) propose an estimator using

local polynomial regression to detect a single inflection point in an underlying smooth signal

curve. To ensure that only one inflection point is detected, a constrained method is proposed

for bandwidth selection. Two methods in Christopoulos (2014) are available in the R package

inflection Christopoulos (2013) for identifying the inflection point in a convex-concave

curve. They use a generalization of bisection method in root finding without any regression

or splines representation.
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In the jump-point case, all the well established estimators have the weak convergence

property. Müller (1992) provides a kernel estimator for a jump point in an otherwise smooth

regression model which is based on maximizing the difference between one-sided kernel

smoothers. The estimator is asymptotically normal with a convergence rate exceeding n−1/2

in most cases. Under some conditions, the rate can be arbitrarily close to n−1[log(n)]1/2. In

Loader (1996), a jump-point estimator is the design point which maximizes the difference

between the right and left limits at the point based on one-sided nonparametric local poly-

nomial regression of degree p, where p = 0 or 1. Grégoire and Hamrouni (2001) provides a

local linear regression estimator of a jump point in a regression function which maximizes the

jump size. The convergence rate of the estimators in Loader (1996) and Grégoire and Ham-

rouni (2001) is n−1. Horváth and Kokoszka (2002) provides a test statistic for a discontinuity

point in a regression function f or its pth derivative f (p) by fitting local polynomials from

the left and right. They also show that the estimator is weakly consistent with a convergence

rate of h such that lim
n→∞

n1/2hp+1/2(log(1/h))1/2 = 0.

In this chapter, we propose a more computationally straight-forward spline-based non-

parametric estimator of the regression function. In Section 2.2, the sets of spline basis func-

tions and constraints are specified for each type of change-point, and the cone-projection

algorithm is formulated. In Chapter 3, the convergence rates are established. We also show

how to include covariates in the model, and the methods are adapted to the case of correlated

errors. In Chapter 4, simulation results show that our estimators perform well when com-

pared to some established estimators, and the methods are demonstrated with “real-data”

examples.
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Routines to realize the estimation methods discussed in this chapter are built in the R

package ShapeChange Liao and Meyer (2016), and it is open to the public on the Compre-

hensive R Archival Network (CRAN).

2.2. Regression Spline Estimators

We first consider m to be known, and discuss spline estimation of fm(x). For each type of

change-point, we use a constrained linear combination of B-spline basis functions to estimate

the regression function. The basis functions η1(x), . . . ,ηℓ(x) are determined by the degree

of the splines and the knots 0 = t1 < · · · < tk = 1; for details, see de Boor (2001). For

design points x1, . . . , xn in [0, 1], we define θ ∈ R
n as θi = fm(xi), i = 1, . . . , n, and similarly

define basis vectors ηj ∈ R
n, j = 1, . . . , ℓ, where ηji = ηj(xi), i = 1, . . . , n. We define the

n× ℓ matrix B to have the basis vectors as columns. Then θ is approximated by Bb, where

b ∈ R
ℓ is the coefficient vector. Inequality constraints of the form Sb ≥ 0 will constrain

the shape appropriately for each case, and the estimation is accomplished with a quadratic

programming routine in coneproj Meyer and Liao (2014). For the mode estimation and for

the inflection-point estimation, we formulate the solution with the same notation, so that

we can derive results that are valid for both cases.

According to Huang (2001), we define H as a Hilbert space and the norm ‖ · ‖ for H is

chosen to be the L2 norm such that for any h ∈ H , ‖h‖2 = 1
n
〈h,h〉 =

n
∑

i=1

h2i . We assume

that θ ∈ H , and we suppose that G ⊆ H is a finite-dimensional linear space spanned by

bounded functions with the given knots on [0, 1], which we will specify in the following part,

and we call G an approximating space of H .

In the unimodal case and the inflection-point case, we suppose that Gm is a subspace of

G such that an equality constraint with respect to m holds, which will be specified for each
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case, and we define θ̃m as the orthogonal projection of Y onto Gm and θ̄ as the orthogonal

projection of θ onto Gm; in the jump-point case, we define θ̃m as the orthogonal projection

of Y onto G and θ̄ as the orthogonal projection of θ onto G.

By the definition of θ̄, we know that it is the best approximation to θ in G. θ̃m is

estimating θ̄ and we call it the unconstrained regression estimator of θ. If G is chosen such

that θ̄ is close to θ, then θ̃m should be close to θ as it estimates θ̄. Then we can decompose

θ̃m − θ as

θ̃m − θ = θ̄ − θ + θ̃m − θ̄,

where θ̄− θ and θ̃m − θ̄ are referred to as the approximation error and the estimation error

respectively. Based on such decomposition, we will establish the convergence rate of each

change-point estimator.

2.2.1. Unimodal Case. Given m ∈ (0, 1), the regression function fm(x) is assumed to

be continuous with two continuous derivatives on [0, 1]. We consider only the increasing-

decreasing case, but the decreasing-increasing case is similar. If f ′
m(x) > 0 on [0,m) and

f ′
m(x) < 0 on (m, 1], the smoothness condition implies that f ′

m(m) = 0. We use quadratic

B-splines, with ℓ = k + 1 basis functions spanning the space of piece-wise quadratic spline

functions. To enforce zero slope at m, let v ∈ R
ℓ be defined as vj = η′j(m), and impose the

linear equality constraint v⊤b = 0.

Because the first derivative of a quadratic spline function is piece-wise linear, constraining

the function to be increasing at two adjacent knots ensures that the function is increasing

in the interval between these knots. Suppose that tp is the knot such that tp ≤ m < tp+1,
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p ∈ {1, . . . , k − 1}. We define a k × (k + 1) matrix S as

Sij =



















η′j(ti) i = 1, . . . , p and j = 1, . . . , k + 1

−η′j(ti) i = p+ 1, . . . , k and j = 1, . . . , k + 1.

Then the linear combination g(x) =
∑m

j=1 bjηj(x) is increasing on [0,m) and decreasing on

(m, 1] if and only if the coefficient vector b is in the set
{

b ∈ R
k+1 : v⊤b = 0 and Sb ≥ 0

}

.

These coefficient vectors can be written as b = Wc, where the columns of the ℓ× k matrix

W are orthogonal to v. A vector θ satisfies the constraints if it is in the set

(4) Cm = {θ ∈ R
n : θ = BWc, where SWc ≥ 0} .

Finally, let Gm ⊆ R
n be the k-dimensional linear subspace containing Cm, defined by

(5) Gm = {θ ∈ R
n : θ = BWc, c ∈ R

k}.

2.2.2. Inflection-Point Case. To estimate fm(x) with an inflection point at m on

[0, 1], we use ℓ = k+2 cubic B-spline basis functions, spanning the space of piece-wise cubic

spline functions with the given knots. To enforce the second derivative to be zero at m, we

use a linear equality constraint v⊤b = 0; here vj = η′′j (m).

Because the second derivative of a cubic spline function is piecewise linear, constraining

the function to be convex at two adjacent knots ensures convexity between the knots. We

discuss only the case f ′′
m(x) > 0 on [0,m) and f ′′

m(x) < 0 on (m, 1], but the concave-convex

function estimation is similar. If tp is the knot such that tp ≤ m < tp+1, we define a k×(k+2)

12



matrix S as

Sij =



















η
′′

j (ti) i = 1, . . . , p and j = 1, . . . , k + 2

−η
′′

j (ti) i = p+ 1, . . . , k and j = 1, . . . , k + 2.

Then the linear combination of basis functions is convex on [0,m) and concave on (m, 1] if

and only if the coefficient vector b satisfies Sb ≥ 0 and v⊤b = 0, and these coefficient vectors

can be written as b = Wc, where the columns of the ℓ× (k + 1) matrix W are orthogonal

to v. The constraint set Cm and the linear vector space Gm are defined as for the unimodal

case using (4) and (5).

The constraint matrix S is readily modified for the case in which the prior information

includes a monotonicity assumption. For example, a growth curve might be known to be

increasing as well as convex-concave. In this case two rows are added to S. The first

contains the derivatives of the spline basis functions at the left end-point of the interval,

and the second contains the derivatives at the right end-point; that is, Sk+1,j = η′j(0), and

Sk+2,j = η′j(1).

2.2.3. Jump-Point Case. To estimate a function fm(x) which has a jump point at m

but is otherwise continuous with continuous first derivative on [0, 1], we use the k+1 quadratic

B-spline basis functions, one “jump” basis function and one “ramp” basis function. The first

basis function is constant on [0,m) and on (m, 1], for example

η(k+2)(xi) =



















0 if xi < m, i = 1, . . . , n

1 if xi ≥ m, i = 1, . . . , n.
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The ramp basis function is linear on [0,m) and on (m, 1], and the basis vector is defined as

η(k+3)(xi) =



















0 if xi < m, i = 1, . . . , n

xi −m if xi ≥ m, i = 1, . . . , n.

The basis vectors are the basis functions evaluated at the design points, and may be centered

and scaled, for numerical stability. The n× (k+3) matrix B contains the basis vectors, and

G is the space of quadratic spline functions with a jump and change of slope at m.

Suppose it is reasonable to assume that the regression function is decreasing, with an

upward jump at m for now. This problem was motivated by the need to detect disturbances

in forests, caused by fire or logging. The satellite signal is constant or slowly decreasing

for a healthy forest, with a jump upward in the signal is caused by mass destruction of

trees. The signal is subsequently decreasing as the forest recovers. Later we will relax the

monotonicity constraint and the jump direction constraint for a more general problem. To

be specific, we define γ = lim
x→m+

fm(x) − lim
x→m−

fm(x) as the jump size of fm at m. When

γ > 0, there is an upward jump and when γ < 0, there is a downward jump. We only assume

that fm(x) is decreasing (increasing) on [tp,m)∪ (m, tp+1] ⊂ [0, 1], where tp and tp+1 are two

consecutive knots. Since [tp, tp+1] → 0 as n → ∞, we can drop the monotonicity constraint

asymptotically.

Let S be a (k + 3)× (k + 3) matrix such that

Sij = −η′j(ti) i = 1, . . . , k and j = 1, . . . , k + 1,

S(k+1)j =



















1 j = k + 2

0 j 6= k + 2,

14



S(k+2)j =



















−η′j(m) j = 1, . . . , k + 1

0 j = k + 2 and k + 3,

and finally

S(k+3)j =







































−η′j(m) j = 1, . . . , k + 1

0 j = k + 2

−1 j = k + 3.

Then to model a decreasing function with an upward jump at m, we constrain the spline

coefficients to be in the set
{

b ∈ R
k+3 : Sb ≥ 0

}

, and

(6) C = {θ ∈ R
n : θ = Bb, where Sb ≥ 0} .

2.2.4. Least Squares Criterion. To minimize sum of squared residuals over appro-

priate values of b, we use the criterion

(7) ψ(b) = b⊤B⊤Bb− 2Y ⊤Bb,

The equality constraint v⊤b = 0 is incorporated in the objective function

(8) ψ(c) = c⊤W⊤B⊤BWc− 2Y ⊤BWc.

Define c̃m as (W⊤B⊤BW )−1W⊤B⊤Y and subsequently θ̃m = BWc̃m is the uncon-

strained least-squares estimate of θ. (Here we use “constrained” and “unconstrained” to

reflect the use of the inequality constraints. The unconstrained estimate in the unimodal

case, for example, has zero derivative at m, but might not be unimodal.)
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To get the constrained estimates, we solve a quadratic programming problem. Let U⊤U

be the Cholesky decomposition of W⊤B⊤BW . Define φ = Uc and Z = (U−1)⊤W⊤B⊤Y ,

so that (7) can be written as ‖Z−φ‖2, and the constraints areAφ ≥ 0, whereA = SWU−1.

The minimizer φ̂m is the projection ofZ onto the cone C̃ =
{

φ ∈ R
d : Aφ ≥ 0

}

, where d = k

for the unimodal case and d = k+1 for the inflection-point case. The coneA function in the

R package coneproj Meyer and Liao (2014) will provide φ̂m, and θ̂m = BWU−1φ̂m.

Necessary and sufficient conditions for the projection of Z onto C̃ are: φ̂ minimizes

‖Z − φ‖2 over C̃ if and only if

〈Z − φ̂, φ̂〉 = 0 and 〈Z − φ̂,φ〉 ≤ 0, for φ ∈ C̃,

which provides necessary and sufficient conditions for the projection θ̂ of Y onto Cm:

(9) 〈Y − θ̂, θ̂〉 = 0 and 〈Y − θ̂,θ〉 ≤ 0, for θ ∈ Cm.

These are well-known special forms of the Karush-Kuhn-Tucker conditions; see Section 28

of Rockafellar (1970), or Proposition 3.12.3 of Silvapulle and Sen (2005).

Finally, when m is unknown, we search [0, 1] for the m that minimizes the sum of squared

residuals. In this case, we need not utilize the equality constraints imposed with the matrix

W . For each j = 1, . . . , k − 1, we construct the constraint matrix for the coefficients

that enforces the shape. For the unimodal case, this is increasing at knots t1, . . . , tj, then

decreasing at knots tj+1, . . . , tk. The mode can be inferred from the least-squares fit with

these constraints, and the mode estimate is that which minimizes the sum of squared residuals

over j. The procedure for estimating the inflection point is similar. In summary, only k − 1

constrained spline estimators are needed, and m̂ is computed from the fit that minimizes the

least-squares criterion.
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CHAPTER 3

Theoretical Results

3.1. Convergence Rates

When the change-point m is known, established results apply to the unconstrained least-

squares spline estimator. References include Stone (1980), Stone (1982), Stone, Hansen,

Kooperberg, and Truong (1997), Zhou, Shen, and Wolfe (1998), Huang (1998), Zhou and

Wolfe (2000), and Huang (2001). If p is the order of the spline, let the number of knots

increase as n1/(2p+1); that is, as n1/7 for quadratic splines and as n1/9 for cubic splines.

Further, the knots must have bounded mesh ratios, that is, ratios of lengths of consecutive

knot intervals are bounded away from zero and infinity. Further assume that the design points

X1, . . . , Xn follow a distribution H with density h > 0 on (0, 1), so that the proportion of

design points less than c ∈ (0, 1) approaches H(c) as n increases without bound. These

conditions together with the smoothness assumptions for the regression function fm give the

following local and global results. If θ̃m is the projection of Y onto the linear vector space

Gm, and f̃m is the corresponding spline function, then for x ∈ [0, 1],

|f̃m(x)− fm(x)| = Op(n
−p/(2p+1)),

and

1

n
‖θ̃m − θ‖2 = Op(n

−2p/(2p+1)),

17



where ‖a‖2 = 〈a,a〉 and 〈a, b〉 =
n
∑

i=1

aibi. Next, let θ̂m be the projection of Y onto Cm and

let θ̄ be the projection of θ onto Gm. Then if θ̄ ∈ Cm (i.e., the constraints hold), we have

‖θ̃m − θ̄‖2 = ‖θ̃m − θ̂m‖
2 + ‖θ̂m − θ̄‖2 + 2〈θ̃m − θ̂m, θ̂m − θ̄〉

= ‖θ̃m − θ̂m‖
2 + ‖θ̂m − θ̄‖2 + 2〈θ̃m − Y , θ̂m − θ̄〉+ 2〈Y − θ̂m, θ̂m − θ̄〉

= ‖θ̃m − θ̂m‖
2 + ‖θ̂m − θ̄‖2 − 2〈Y − θ̂m, θ̄〉

≥ ‖θ̂m − θ̄‖2,

because by (9), the last inner product is negative. Because θ̄ − θ is orthogonal to Gm, we

have ‖θ̃m − θ‖2 ≥ ‖θ̂m − θ‖2, and hence the constrained spline attains the rate for the

unconstrained spline.

Next we consider the case when m is unknown, and is estimated by m̂, the change-point

for which the sum of squared residuals is minimized. By definition, ‖Y − θ̂m̂‖
2 ≤ ‖Y − θ̂m‖

2,

so

‖Y − θ‖2 + ‖θ − θ̂m̂‖
2 + 2〈Y − θ,θ − θ̂m̂〉 ≤ ‖Y − θ‖2 + ‖θ − θ̂m‖

2 + 2〈Y − θ,θ − θ̂m〉,

or

‖θ − θ̂m‖
2 − ‖θ − θ̂m̂‖

2 ≥ 2〈Y − θ, θ̂m〉 − 2〈Y − θ, θ̂m̂〉.

By (8) of Meyer and Woodroofe (2000), each term on the right is Op(d), where d is the

dimension of Gm, the smallest linear space containing Cm. Therefore with the optimal

number of knots, we have

(10) ‖θ − θ̂m̂‖
2 = Op(n

1/(2p+1)).

18



3.1.1. Convergence of the Change-Point Estimator for the Unimodal Case.

To derive the rate of convergence of m̂ to m, in addition to f
′

m(m) = 0, f
′

m(x) > 0 on [0,m),

and f
′

m(x) < 0 on (m, 1], we assume that f
′′

m(x) < −D < 0 on [m − δ,m + δ], δ > 0. The

proofs assume that the distribution of x in [0, 1] is uniform, but the results are valid if the

density function is bounded away from zero and infinity.

Lemma 1. There is a c > 0 that depends only on D, such that for any δ > 0 and any g

with g′(x) ≥ 0 on [m,m+ δ],

∫ m+δ

m

[fm(x)− g(x)]2dx ≥ cδ5,

and similarly for any g with g′(x) ≤ 0 on [m− δ,m],

∫ m

m−δ

[fm(x)− g(x)]2dx ≥ cδ5.

To prove Lemma 1, we start with

Lemma 2. For any function g such that g′(x) ≥ 0 on [m,m+ δ], we have

∫ m+δ

m

[fm(x)− g(x)]2dx ≥

∫ m+δ

m

[fm(x)− ℓ]2dx, where ℓ =
1

δ

∫ m+δ

m

fm(x)dx.

Proof: Define the constant c as follows. If g(x) ≥ fm(x) over [m,m+ δ], then let c = g(m).

If g(x) ≤ fm(x) over [m,m + δ], then let c = g(m + δ). If fm and g intersect at m0, for

m0 ∈ [m,m+δ], then let c = g(m0). Then [fm(x)−g(x)]
2 ≥ [fm(x)−c]

2 for all x ∈ [m,m+δ],

and
∫ m+δ

m
[fm(x)− g(x)]2dx ≥

∫ m+δ

m
[fm(x)− c]2dx. The constant ℓ minimizes the expression

∫ m+δ

m
[fm(x)− c]2dx over all constants c.
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Proof of Lemma 1: Let x0 be such that fm(x0) = ℓ; it is straightforward to see that m <

x0 < m+ δ. By the strict concavity of fm on [m− δ,m+ δ], we have for all x ∈ [m,m+ δ],

|fm(x)− ℓ| > [fm(m)− ℓ]

(

|x0 − x|

x0 −m

)

,

so
∫ m+δ

m

[fm(x)− ℓ]2dx ≥
1

3
[fm(m)− ℓ]2

(m+ δ − x0)
3 + (x0 −m)3

(x0 −m)2
.

Now, for some ξ0 between m and x0, we have by Taylor’s expansion of fm at m:

ℓ = fm(m) +
1

2
f ′′

m(ξ0)(x0 −m)2,

so fm(m)− ℓ ≥ D(x0 −m)2/2, and

∫ m+δ

m

[fm(x)− ℓ]2dx ≥
D2

12
(x0 −m)2

[

(m+ δ − x0)
3 + (x0 −m)3

]

.(11)

By the strict concavity of fm at x0, we can get

∫ x0

m

[

fm(x)− ℓ
]

dx < −
1

2
f ′

m(x0)(x0 −m)2,

and
∫ m+δ

x0

[

ℓ− fm(x)
]

dx > −
1

2
f ′

m(x0)(m+ δ − x0)
2.

Also note that
∫ m+δ

m

[

fm(x)− ℓ
]

dx = 0,
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we can get
∫ x0

m

[

fm(x)− ℓ
]

dx =

∫ m+δ

x0

[

ℓ− fm(x)
]

dx,

so x0 −m > m+ δ − x0, which implies that

x0 −m >
δ

2
.(12)

Now we let x0 −m = αδ and m+ δ − x0 = (1− α)δ, 0 < α < 1. Then we get

(m+ δ − x0)
3 + (x0 −m)3 = (3α2 − 3α + 1)δ3.

Since we have shown that α > 1/2, we can get

(m+ δ − x0)
3 + (x0 −m)3 ≥

δ3

4
.(13)

Plugging (12) and (13) back in (11), we get

∫ m+δ

m

[

fm(x)− ℓ
]2
dx ≥ cδ5,

where c only depends on D.

Theorem 1. For the unimodal case, |m̂−m| = Op(n
−6/35).

Proof: First, we want to show that |m̂−m|
p
→ 0. Suppose that |m̂−m|

p
9 0, then there is

some δ > 0 such that |m̂−m| > δ i.o., where i.o. stands for infinitely often. Suppose that

m̂ > m+ δ i.o.. When this condition holds, since [m, m̂] ⊂ [0, 1], we can get

∫ 1

0

[f̂m̂(x)− fm(x)]
2dx >

∫ m̂

m

[f̂m̂(x)− fm(x)]
2dx >

∫ m+δ

m

[f̂m̂(x)− fm(x)]
2dx.
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By Lemma 1, we know that

∫ m+δ

m

[f̂m̂(x)− fm(x)]
2dx > cδ5.

Therefore

(14)

∫ 1

0

[f̂m̂(x)− f(x)]2dx > cδ5,

and because

(15)
1

n
‖θ̂m̂ − θ‖2 ≍

∫ 1

0

[

f̂m̂(x)− fm(x)
]2

dx,

(where an ≍ bn means that an/bn
p
→ 1 as n→ ∞), we can get

∫ 1

0

[f̂m̂(x)− f(x)]2dx = O(n−6/7),

which implies that there is some M > 0 such that

(16)

∫ 1

0

[f̂m̂(x)− fm(x)]
2dx ≤ n−6/7M as n→ ∞.

However

cδ5 > n−6/7M as n→ ∞,

which implies that there is some N , such that

cδ5 > n−6/7M for all n > N.
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Then by (14) we can get

∫ 1

0

[f̂m̂(x)− fm(x)]
2dx > n−6/7M i.o.,

and this is a contradiction to (16). Therefore, we can conclude that |m̂−m|
p
−→ 0.

Next, we want to show that |m̂ −m| = Op(n
−6/35). Suppose that for some fixed α > 0,

|m̂−m| > n−α i.o., and we claim that α > 6/35. We can further suppose that m̂−m > n−α

i.o.. When this condition holds, since [m, m̂] ⊂ [0, 1], we can get

(17)

∫ 1

0

[f̂m̂(x)− fm(x)]
2dx >

∫ m̂

m

[f̂m̂(x)− fm(x)]
2dx >

∫ m+n−α

m

[f̂m̂(x)− fm(x)]
2dx.

By Lemma 1, we know that

(18)

∫ m+n−α

m

[f̂m̂(x)− fm(x)]
2dx > cn−5α.

By (17) and (18), we can get

∫ 1

0

[f̂m̂(x)− fm(x)]
2dx > cn−5α.

Since (16) holds, we can get

cn−5α < n−6/7M,

which implies

n−α < n−6/35(M/c)1/5.

This means that for all ε > 0, there is some Ñ such that for all n > Ñ we have

P
{

|m̂−m| > n−6/35(M/c)1/5
}

< ε.
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Therefore, we can conclude that |m̂−m| = Op(n
−6/35).

3.1.2. Convergence of the Change-Point Estimator for the Inflection-Point

Case. In addition to f
′′

m(m) = 0, f
′′

m(x) > 0 on [0,m), f
′′

m(x) < 0 on (m, 1], we assume that

f
(3)
m (x) < −D < 0 on [m− δ,m+ δ], δ > 0, and f

(4)
m (x) is continuous on [m− δ,m+ δ]. We

again assume that the distribution of x in [0, 1] is uniform, for simplicity of presentation.

Lemma 3. For a function g such that g′′(x) ≤ 0 on [m−δ,m], there is a c > 0 that depends

only on D,
∫ m

m−δ

[fm(x)− g(x)]2dx ≥ cδ7,

and similarly for g such that g′′(x) ≥ 0 on [m,m+ δ],

∫ m+δ

m

[fm(x)− g(x)]2dx ≥ cδ7.

To prove Lemma 3, we begin with

Lemma 4. For any function g such that g′′(x) ≤ 0 on [m− δ,m], we have

∫ m

m−δ

[

fm(x)− g(x)
]2
dx ≥

∫ m

m−δ

[

fm(x)− ℓ(x)
]2
dx, where ℓ(x)

minimizes
∫ m

m−δ

[

fm(x)− g(x)
]2
dx over the class L = {gl(x) : gl(x) = c0 + c1x, c0, c1 ∈ R}.

Proof: Define the linear function gl(x) as follows. If g(m−δ) ≥ fm(m−δ) and g(m) ≥ fm(m),

then let gl(x) be the line connecting the points
(

m−δ, g(m−δ)
)

and
(

m, g(m)
)

. If g(m−δ) ≥

fm(m − δ) and g(x) intersects fm(x) at m1, for m1 ∈ (m − δ,m), then let gl(x) be the line

connecting the points
(

m−δ, g(m−δ)
)

and
(

m1, g(m1)
)

. If g(m) ≥ fm(m) and g(x) intersects

fm(x) atm1, form1 ∈ (m−δ,m), then let gl(x) be the line connecting the points
(

m1, g(m1)
)

and
(

m, g(m)
)

. If g(x) intersects fm(x) at m1 and m2, where [m1,m2] ⊂ (m− δ,m), then let
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gl(x) be the line connecting the points
(

m1, g(m1)
)

and
(

m2, g(m2)
)

. Then [fm(x)−g(x)]
2 ≥

[fm(x)− gl(x)]
2 on [m− δ,m], and

∫ m

m−δ

[

fm(x)− g(x)
]2
dx ≥

∫ m

m−δ

[

fm(x)− gl(x)
]2
dx.

By taking the first derivative of
∫ m

m−δ

[

fm(x) − gl(x)
]2
dx with respect to c0 and c1, we

can get the minimizer of
∫ m

m−δ

[

fm(x) − g(x)
]2
dx over the class L = {gl(x) : gl(x) = c0 +

c1x, c0, c1 ∈ R}, and we define it as ℓ(x). Let hm(x) = fm(x) − ℓ(x), then it readily follows

that hm(x1) = 0, hm(x2) = 0, and h
(k)
m (x) = f

(k)
m (x), k ≥ 2; then we bound below

∫ m

m−δ

[

fm(x)− ℓ(x)
]2
dx =

∫ m

m−δ

[

hm(x)
]2
dx.

Lemma 5. We have

hm(m) >
D

30
δ3 +O(δ4).

Proof: By Taylor’s expansion of hm at m and h′′m(m) = 0, we have

hm(x) = hm(m) + h′m(m)(x−m) +
1

6
h(3)m (m)(x−m)3 +

1

24
h(4)m (ξxm)(x−m)4,

where ξxm ∈ (x,m). Moreover, note that
∫ m

m−δ
hm(x)dx = 0 and

∫ m

m−δ
xhm(x)dx = 0, so

hm(m)δ − h′m(m)
δ2

2
− h(3)m (m)

δ4

24
+

1

24

[
∫ m

m−δ

h(4)m (ξxm)(x−m)4dx

]

= 0

and

hm(m)
(

mδ−
δ2

2

)

+h′m(m)
(δ3

3
−
mδ2

2

)

+h(3)m (m)
( δ5

30
−
mδ4

24

)

+
1

24

[
∫ m

m−δ

h(4)m (ξxm)x(x−m)4dx

]

= 0.
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Solving the two equations for hm(m), we can get

hm(m) = −h(3)m (m)
δ3

30
−

1

δ2

[

1

4

∫ m

m−δ

h(4)m (ξxm)(x−m)5dx+
δ

6

∫ m

m−δ

h(4)m (ξxm)(x−m)4dx

]

= −h(3)m (m)
δ3

30
+O(δ4).

Then observe h
(3)
m (m) < −D < 0, to get the result.

Analogously to the unimodal case, we connect with a parabola p(x) the points
(

x1, hm(x1)
)

,

(

x2, hm(x2)
)

and
(

m,hm(m)
)

. We show that |hm(x)| ≥ |p(x)|, and bound below
∫ m

m−δ
p(x)2dx.

To do this, we first show that the curvature of the parabola is sufficiently large.

Lemma 6. The parabola p(x) satisfies

p′′ >
D

15
δ +O(δ2),

where p′′ is the second derivative of p(x), and |p(x)| < |hm(x)| on [m− δ,m].

Proof: Note that hm(x1) = 0 and hm(x2) = 0, by the definition of p(x), we can get

p(x) = hm(m)
(x− x1)(x− x2)

(m− x1)(m− x2)
,(19)

which implies that

p′′ =
2hm(m)

(m− x1)(m− x2)
.(20)

Note that 0 < m− x2 < δ and 0 < m− x1 < δ, so by Lemma 5,

p′′ >
D

15
δ +O(δ2).
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Then we only need to show that p′(x2) < h′(x2) and p
′(x1) > h′(x1) to get |p(x)| < |hm(x)|

on [m− δ,m]. From (19),

p′(x2) = hm(m)
x2 − x1

(m− x1)(m− x2)
.(21)

By Taylor’s expansion of hm(m) at x2, and hm(x2) = 0, we have

hm(m) = h′m(x2)(m− x2) +
1

2
h′′m(x2)(m− x2)

2 +
1

6
h(3)m (ξ2m)(m− x2)

3,

where ξ2m ∈ (x2,m). Also note that h′′m(x2) = −h
(3)
m (ξ2m)(m− x2), we can get

hm(m) = h′m(x2)(m− x2)−
1

3
h(3)m (ξ2m)(m− x2)

3.

Then by (21), we can write p′(x2) as

p′(x2) = h′m(x2)
x2 − x1
m− x1

−
1

3
h(3)m (ξ2m)

(x2 − x1)(m− x2)
2

m− x1
,

which implies that

p′(x2)− h′m(x2) = −h′m(x2)
m− x2
m− x1

−
1

3
h(3)m (ξ2m)

(x2 − x1)(m− x2)
2

m− x1
.(22)

By Taylor’s expansion of hm(x1) at x2, we have

hm(x1) = hm(x2) + h′m(x2)(x1 − x2) +
1
2
h′′m(x2)(x1 − x2)

2 + 1
6
h
(3)
m (ξ12)(x1 − x2)

3,

where ξ12 ∈ (x1, x2). Note that hm(x1) = 0 and hm(x2) = 0, we can get

h′m(x2) =
1

2
h′′m(x2)(x2 − x1)−

1

6
h(3)m (ξ12)(x2 − x1)

2.(23)
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Plugging (23) in the RHS of (22), we can get

−
1

2
h′′m(x2)

(x2 − x1)(m− x2)

m− x1
+
1

6
h(3)m (ξ12)

(x2 − x1)
2(m− x2)

m− x1
−
1

3
h(3)m (ξ2m)

(x2 − x1)(m− x2)
2

m− x1
.

Using h′′m(x2) = −h
(3)
m (ξ2m)(m− x2) again, we can further write it as

1

6
h(3)m (ξ12)

(x2 − x1)
2(m− x2)

m− x1
+

1

6
h(3)m (ξ2m)

(x2 − x1)(m− x2)
2

m− x1
.

Since h
(3)
m (ξ12) < 0 and h

(3)
m (ξ2m) < 0, we know that the RHS of (22) is negative, which

implies that p′(x2) < h′(x2). Next, we want to show that p′(x1) > h′m(x1). By (19) and

(21), we can get that p′(x1) = −p′(x2), so we only need to show that p′(x2) < −h′m(x1). By

Taylor’s expansion of hm(x2) at x1, we have

hm(x2) = hm(x1) + h′m(x1)(x2 − x1) +
1

2
h′′m(x1)(x2 − x1)

2 +
1

6
h(3)m (ξ12)(x2 − x1)

3.

Note that hm(x1) = 0 and hm(x2) = 0, we further get

−h′m(x1) =
1

2
h′′m(x1)(x2 − x1) +

1

6
h(3)m (ξ12)(x2 − x1)

2.(24)

By (23) and h′′m(x2) = h′′m(x1) + h
(3)
m (ξ12)(x2 − x1), we can get

h′m(x2) =
1

2
h′′m(x1)(x2 − x1) +

1

3
h(3)m (ξ12)(x2 − x1)

2.(25)

Since h
(3)
m (ξ12) < −D < 0, we know that h′m(x2) < −h′m(x1) by comparing (24) and (25),

which implies that p′(x2) < −h′m(x1) and equivalently p′(x1) > h′m(x1). Therefore, we can

conclude that |p(x)| < |hm(x)| on [m− δ,m] by the previous results.
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Proof of Lemma 3: By Lemma 4, we know that for any function g such that g′′(x) ≤ 0 on

[m− δ,m], we have
∫ m

m−δ

[fm(x)− g(x)]2dx ≥

∫ m

m−δ

[hm(x)]
2dx.

By Lemma 6, we know that the parabola p(x) which connects
(

x1, hm(x1)
)

,
(

x2, hm(x2)
)

and

(

m,hm(m)
)

satisfies that |p(x)| < |hm(x)| on [m− δ,m]. Therefore

∫

s

[hm(x)]
2dx >

∫

s

[p(x)]2dx

holds for s, where s ∈ S =
{

[m− δ, x1], [x1, x2], [x2,m]
}

. Note that the length of at least one

element in S is no less than δ/3. We consider the scenario that s = [x1, x2] and x2−x1 ≥ δ/3.

By Lemma 6, we can get

∫

s

[p(x)]2dx =
1

4
p′′2

∫

s

(x− x2)
2(x− x1)

2dx =
1

120
p′′2(x2 − x1)

5 > cδ7 +O(δ8),(26)

where c depends only on D. In another two possible scenarios, i.e., s = [x2,m] and m−x2 ≥

δ/3, or s = [m− δ, x1] and x1 − (m− δ) ≥ δ/3, we can get (26) similarly. Therefore

∫ m

m−δ

[

p(x)
]2
dx > cδ7 +O(δ8),

which implies that
∫ m

m−δ

[hm(x)]
2dx > cδ7 +O(δ8).

As n→ ∞, O(δ8) is negligible, and this gives the result.

Theorem 2. For the inflection-point case, |m̂−m| = Op(n
−8/63).

Proof: First, we want to show that |m̂−m|
p
→ 0. Suppose that |m̂−m|

p
9 0, then there is

some δ > 0 such that |m̂−m| > δ i.o., where i.o. stands for infinitely often. Suppose that
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m̂ > m+ δ i.o.. When this condition holds, since [m, m̂] ⊂ [0, 1], we can get

∫ 1

0

[f̂m̂(x)− fm(x)]
2dx >

∫ m̂

m

[f̂m̂(x)− fm(x)]
2dx >

∫ m+δ

m

[f̂m̂(x)− fm(x)]
2dx.

By Lemma 3, we know that

∫ m+δ

m

[f̂m̂(x)− fm(x)]
2dx > cδ7.

Therefore

(27)

∫ 1

0

[f̂m̂(x)− fm(x)]
2dx > cδ7.

With (15), we can get
∫ 1

0

[f̂m̂(x)− fm(x)]
2dx = O(n−8/9),

which implies that there is some M > 0 such that

(28)

∫ 1

0

[f̂m̂(x)− fm(x)]
2dx ≤ n−8/9M as n→ ∞.

However

cδ7 > n−8/9M as n→ ∞,

which implies that there is some N , such that

cδ7 > n−8/9M for all n > N.

Then by (27) we can get

∫ 1

0

[f̂m̂(x)− fm(x)]
2dx > n−8/9M i.o.,
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and this is a contradiction to (28). Therefore, we can conclude that |m̂−m|
p
−→ 0.

Next, we want to show that |m̂ −m| = Op(n
−8/63). Suppose that for some fixed α > 0,

|m̂−m| > n−α i.o., and we claim that α > 8/63. We can further suppose that m̂−m > n−α

i.o.. When this condition holds, since [m, m̂] ⊂ [0, 1], we can get

(29)

∫ 1

0

[f̂m̂(x)− fm(x)]
2dx >

∫ m̂

m

[f̂m̂(x)− fm(x)]
2dx >

∫ m+n−α

m

[f̂m̂(x)− fm(x)]
2dx.

By Lemma 3, we know that

(30)

∫ m+n−α

m

[f̂m̂(x)− fm(x)]
2dx > cn−7α.

By (29) and (30), we can get

∫ 1

0

[f̂m̂(x)− fm(x)]
2dx > cn−7α.

Since (28) holds, we can get

cn−7α < n−8/9M,

which implies

n−α < n−8/63(M/c)1/7.

This means that for all ε > 0, there is some Ñ such that for all n > Ñ we have

P
{

|m̂−m| > n−8/63(M/c)1/7
}

< ε.

Therefore, we can conclude that |m̂−m| = Op(n
−8/63).

3.1.3. Convergence of the Change-Point Estimator for the Jump-Point Case.

In addition to f
′

m(x) < 0 on [m − δ,m) ∪ (m,m + δ], we define γ = fm(m+) − fm(m−) as
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the jump size and we only discuss the case γ > 0, i.e., fm(x) has an upward jump at m. The

same results hold when γ < 0.

Lemma 7. For any function g such that g′(x) ≤ 0 on [m,m + δ], there is a c > 0 that

depends only on γ, we have

∫ m+δ

m

[fm(x)− g(x)]2dx ≥ cδ,

and similarly for g such that g′(x) ≤ 0 on [m− δ,m],

∫ m

m−δ

[fm(x)− g(x)]2dx ≥ cδ.

Proof of Lemma 7: If g(m) ≤ fm(m−), by the monotonicity of fm and g on [m,m + δ], we

have

fm(x)− g(x) ≥ fm(m+ δ)− g(m) ≥ fm(m+ δ)− fm(m−) ≥
γ

2
.

Similarly, if g(m) ≥ fm(m+), we have

g(x)− fm(x) ≥ g(m)− fm(m− δ) ≥ fm(m+)− fm(m− δ) ≥
γ

2
,

and if fm(m−) < g(m) < fm(m+), we have

fm(x)− gm(x) ≥ fm(m+ δ)− gm(m) ≥
(1− ξ)

2
γ,

for some ξ ∈ (0, 1). Combining these results we can get

∫ m+δ

m

[fm(x)− g(x)]2dx ≥ cδ
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for some c which only depends on γ.

Theorem 3. For the jump-point case, |m̂−m| = Op(n
−6/7).

Proof: First, we want to show that |m̂−m|
p
→ 0. Suppose that |m̂−m|

p
9 0, then there is

some δ > 0 such that |m̂−m| > δ i.o., where i.o. stands for infinitely often. Suppose that

m̂ > m+ δ i.o.. When this condition holds, since [m, m̂] ⊂ [0, 1], we can get

∫ 1

0

[f̂m̂(x)− fm(x)]
2dx >

∫ m̂

m

[f̂m̂(x)− fm(x)]
2dx >

∫ m+δ

m

[f̂m̂(x)− fm(x)]
2dx.

By Lemma 7, we know that

∫ m+δ

m

[f̂m̂(x)− fm(x)]
2dx > cδ.

Therefore

(31)

∫ 1

0

[f̂m̂(x)− fm(x)]
2dx > cδ.

With (15), we can get
∫ 1

0

[f̂m̂(x)− fm(x)]
2dx = O(n−6/7),

which implies that there is some M > 0 such that

(32)

∫ 1

0

[f̂m̂(x)− fm(x)]
2dx ≤ n−6/7M as n→ ∞.

However

cδ > n−6/7M as n→ ∞,
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which implies that there is some N , such that

cδ > n−6/7M for all n > N.

Then by (31) we can get

∫ 1

0

[f̂m̂(x)− fm(x)]
2dx > n−6/7M i.o.,

and this is a contradiction to (32). Therefore, we can conclude that |m̂−m|
p
−→ 0.

Next, we want to show that |m̂ −m| = Op(n
−6/7). Suppose that for some fixed α > 0,

|m̂−m| > n−α i.o., and we claim that α > 6/7. We can further suppose that m̂−m > n−α

i.o.. When this condition holds, since [m, m̂] ⊂ [0, 1], we can get

(33)

∫ 1

0

[f̂m̂(x)− fm(x)]
2dx >

∫ m̂

m

[f̂m̂(x)− fm(x)]
2dx >

∫ m+n−α

m

[f̂m̂(x)− fm(x)]
2dx.

By Lemma 7, we know that

(34)

∫ m+n−α

m

[f̂m̂(x)− fm(x)]
2dx > cn−α.

By (33) and (34), we can get

∫ 1

0

[f̂m̂(x)− fm(x)]
2dx > cn−α.

Since (32) holds, we can get

cn−α < n−6/7M,
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which implies

n−α < n−6/7M/c.

This means that for all ε > 0, there is some Ñ such that for all n > Ñ we have

P
{

|m̂−m| > n−6/7M/c
}

< ε.

Therefore, we can conclude that |m̂−m| = Op(n
−6/7).

3.2. Constrained Penalized Regression Spline Estimators

Penalized spline functions provide more flexibility while avoiding over-fitting. For exam-

ple, the quadratic splines can have inflection points only at the knots, so having a “small”

number of knots might be too limiting. However, providing a large number of knots increases

the degrees of freedom for the unpenalized splines. A penalty term can lower the effective

degrees of freedom while providing a flexible fit. Hence, penalized spline functions allow for

“many” knots while controlling the degrees of freedom with a single tuning parameter λ.

For details about unconstrained penalized splines, see Eilers and Marx (1996) and Ruppert,

Wand, and Carroll (2003).

To implement a penalty of order q, q = 1, 2, ..., we use a penalized sum of squares for the

criterion function:

(35)
n

∑

i=1

[

Yi −

m
∑

j=1

bjηj(xi)

]2

+ λ

m
∑

j=q+1

(∆qbj)
2,

where ∆1bj = bj − bj−1 and ∆qbj = ∆q−1bj for q > 1. When q = 1, the fit gets close to the

simple linear regression as λ increases without bound, so the effective degrees of freedom

ranges from 2 to the number of basis functions. Similarly, when q = 2, the fit converges to
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the quadratic least-squares curve, etc. The vector form of the criterion is

(36) ψ(b) = b⊤(B⊤B + λD⊤D)b− 2Y ⊤Bb,

where D is the qth order difference matrix. The unconstrained minimizer of ψ is b̃λ =

(B⊤B + λD⊤D)−1B⊤Y , and the constrained minimizer b̂λ is found through quadratic

programming as described in Section 2.2.

For the unconstrained estimator, the “effective degrees of freedom” (edfuλ) of the model

(see Hastie and Tibshirani (1990), Chapter 5) is the trace of B(B⊤B + λD⊤D)−1B⊤.

Because the constrained fit is robust to choices of λ, we can simply choose λ so that edfuλ

is a reasonable number such as 8. The constrained estimator then has an effective degrees

of freedom edfcλ ≤ edfuλ. See Meyer (2012a) for more details about constrained penalized

splines and the edfc. Alternatively, generalized cross validation (GCV) can be used to select

a penalty parameter. For a choice of λ ≥ 0, let θ̂m,λ = Bb̂λ where b̂λ minimizes (36); then

the GCV choice of λ minimizes the criterion:

(37) GCV(λ) =

n
∑

i=1

[Yi − θ̂m,λ,i]
2

(1− edfcλ/n)2
.

The convergence rates are inherited from the unpenalized version if the penalty term becomes

negligible as n grows. The matrix B⊤B is banded with elements on the order of n/k. The

elements of D⊤D do not grow with n, so if the number k of knots grows at the same rate

as for the unpenalized version, we require that λ grow at a slower rate than n2q/(2q+1).

3.3. Extensions

Two simple extensions greatly increase the utility of these methods in practice.
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3.3.1. Extensions to Heteroskedastic and Correlated Error Models. Assume

cov(ε) = Σ for some symmetric and positive-definite matrix Σ. If Σ is known, as in the case

of weighted regression, we can readily transform the model to the i.i.d.case, by multiplying

the regression equation Y = θ+ ε through by Σ−1/2, to get Y̌ = θ̌+ σε̌, where cov(ε̌) = I.

The vector θ̌ is estimated by a linear combination of transformed B-spline basis vectors,

where η̌j, j = 1, . . . , ℓ, are the columns of B̌ = Σ−1/2B. Then the results of the previous

sections follow.

For time-series data, we can often assume auto-regressive errors of degree p; for example

AR(1) errors follow the pattern εi+1 = φεi+ξi, where ξi’s are independent. For the case where

the covariance parameters are unknown, Wang, Meyer, and Opsomer (2013) proved an oracle

property showing that the convergence rate of the spline fit, with estimated auto-regression

parameters, is the same as for the known covariance case. Hence the estimates of the auto-

regression parameters are themselves consistent. They determine p with a modified AIC

criterion, and estimate the parameters and the regression function with Cochran-Orcutt-

type iterations. These results apply directly to our change-point regression model with

auto-regressive errors.

3.3.2. Change-Point Models with Covariates. For the partial linear model with

parameter vector α ∈ R
p and covariate vectors zi, i = 1, . . . , n, consider the additive model

Yi = fm(Xi) + z⊤

i α+ σεi, for i = 1, . . . , n.

If Z is the n × p matrix whose rows are zi, i = 1, . . . , n, then we can model the expected

value of Y as Bb+Zα. Writing B̃ = [B|Z] and β⊤ = [b⊤|α⊤], we can define a constraint

matrix Sc = [S|0]. Assuming that the columns of B̃ are linearly independent, the method
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of Section 2.2 can be used to minimize ‖Y − B̃β‖2 subject to Scβ ≥ 0. In this way the

model with covariates is fit with a single step (without back-fitting), and the convergence

rate results for m̂ and f̂m̂ follow.

To add covariates to the penalized spline model, we define the (m+ p)× (m+ p) matrix

Dc =









D 0

0 0









.

Then we minimize ψ(β) = β⊤(B̃⊤B̃+λD⊤
c Dc)β− 2Y ⊤B̃β, subject to Scβ ≥ 0, using the

same quadratic programming method.
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CHAPTER 4

Simulation and Examples

4.1. Simulation Studies

We compare the performance of the proposed change-point estimator with some other

established estimators using the square root of mean squared error (SMSE) criterion:

SMSE =
[ 1

N

N
∑

i=1

|m̂i −m|2
]1/2

,

where N is the number of simulations.

4.1.1. Unimodal Case. We compare our estimator m̂S with the estimator m̂P of

Shoung and Zhang (2001) and the estimator m̂U of Köllmann et al. (2014). We choose

two unimodal functions. The first is fm = 6x(1 − x) with m = .5, and the second is

fm = 30x4(1 − x) with m = .8. For each function, we use three sample sizes and three

standard deviations. Xi’s are equally spaced on [0, 1]. To get m̂U , we use the default choice

of knots in the R package uniReg Köllmann (2014), i.e., 2 exterior knots are placed at the

endpoints of the interval and 10 interior knots are equally placed between the 2 knots, and

we also use the default choice of penalty in this package, for which the difference penalty of

order 2 is used and the tuning parameter is chosen via restricted maximum likelihood; to get

m̂S, we use the constrained penalized method with the same knots. We choose N = 10, 000

to get m̂S and m̂P , and N = 1000 to get m̂U due to its speed. Results are shown in Figure 3

(Table 1 and Table 2), with examples of the estimators shown in Figure 4. The proposed

estimator has a bigger advantage when the function is more peaked or the variance is smaller,

39



m̂S m̂P m̂U

n σ = .5 σ = 1 σ = 2 σ = .5 σ = 1 σ = 2 σ = .5 σ = 1 σ = 2
100 .069 .103 .163 .104 .139 .182 .077 .088 .157
200 .055 .085 .128 .092 .123 .165 .063 .087 .091
500 .039 .065 .096 .079 .104 .139 .047 .069 .084

Table 1. SMSE for the estimators m̂S (proposed), m̂P and m̂U simulated
from fm(x) = 6x(1− x) with m = .5.

m̂S m̂P m̂U

n σ = .5 σ = 1 σ = 2 σ = .5 σ = 1 σ = 2 σ = .5 σ = 1 σ = 2
100 .019 .031 .059 .050 .070 .105 .020 .032 .088
200 .016 .023 .042 .044 .061 .087 .017 .028 .051
500 .013 .018 .028 .037 .051 .071 .014 .024 .033

Table 2. SMSE for the estimators m̂S (proposed), m̂P and m̂U simulated
from fm(x) = 30x4(1− x) with m = .8.
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Figure 1. n = 500, σ = 1, and fm(x) = 6x(1− x) with m = .5. From top to
bottom are the histograms of m̂S, m̂P and m̂U .

and both spline estimators have considerably smaller SMSE, compared to the mode estimator

without smoothing.
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Figure 2. n = 500, σ = 1, and fm(x) = 30x4(1− x) with m = .8. From top
to bottom are the histograms of m̂S, m̂P and m̂U .
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Figure 3. Comparisons of m̂S (solid) with m̂P (dashed) and m̂U (dot-dash).

4.1.2. Inflection-Point Case. The method used in Kachouie and Schwartzman (2013)

is local polynomial regression. We choose the degree p of the local polynomials to be 3

in the following simulation, which will be applied to construct a confidence interval for
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Figure 4. Examples of fits for simulated data with n = 100. In each case,
εi’s are i.i.d.normal with zero mean and unit variance. The dotted line is fm.
Left: m̂S = .48 (solid), m̂P = .44 (dash) and m̂U = .51 (dot-dash). Right:
m̂S = .83 (solid), m̂P = .7 (dash) and m̂U = .8 (dot-dash).

the inflection-point in Section 4.3 as discussed in Kachouie and Schwartzman (2013). In

Kachouie and Schwartzman (2013), when the authors choose the bandwidth h, they do not

use the cross validation score, since this may result in multiple inflection-point estimates.

Instead, they choose a h such that the set of the zero down-crossings of the second derivative

has only one element to ensure that the smoothed curve has only one inflection point. The

authors propose selecting the smallest h within the range that guarantees only one inflection

point. To get their proposed h, we try searching for such a h within the range [.05, .5]

using an increment of length .02. The smallest h in this range that guarantees that there

is only one inflection point is the h to be used. The R package inflection Christopoulos

(2013) estimates an inflection point by the routine findiplist. It can estimate an inflection

point by two methods: extremum surface estimator (ESE) and extremum distance estimator

(EDE). We use the ESE method, which is the default method in inflection, in the following
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m̂S m̂K m̂C

n σ = .5 σ = 1 σ = 2 σ = .5 σ = 1 σ = 2 σ = .5 σ = 1 σ = 2
100 .021 (.022) .025 (.026) .040 (.039) .033 .034 .037 .057 .072 .091
200 .020 (.021) .022 (.023) .030 (.031) .032 .033 .034 .057 .073 .091

Table 3. SMSE for the estimators m̂S (proposed), m̂K and m̂C simulated

from fm(x) = 10e−e5(1−2x)
with m = .5.

simulation. Note that the R package inflection does not provide an estimate of fm and

Kachouie and Schwartzman (2013) does.

We choose two convex-concave curves to compare our estimator m̂S with the estimator

m̂K of Kachouie and Schwartzman (2013) and the estimator m̂C in the R package inflection

through simulations. The first curve is the Gompertz sigmoid curve fm = 10e−e5(1−2x)
, and

the second is fm = 5{1+ tanh[10(x− .5)]}, which is a multiple of the cumulative distribution

function of a logistic distribution. Because both functions also satisfy the monotonicity

constraint, we also present results for the increasing convex-concave spline estimator. Both

curves have inflection-point m = .5 and are discussed in , where it is mentioned that the

Gompertz sigmoid curve has applications in economics and other disciplines. To compare

the estimators, we choose two sample sizes and three standard deviations, with Xi’s equally

spaced on [0, 1]. The constrained penalized method is used for m̂S, with 2 exterior knots

placed at the endpoints of the interval and 10 interior knots equally placed between the

2 knots. Simulation results are shown in Figure 7, and some example fits are shown in

Figure 8 (Table 3 and Table 4). In the tables below, the SMSE of m̂S with the monotonicity

constraint is included in the bracket.

4.1.3. Jump-Point Case. In this case, we choose the functions fm(x) = 4sin(5x) +

3x + I[.7,1](x) and fm(x) = x4 + I[.5,1](x) to compare m̂S with m̂L of Loader (1996) and m̂G
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m̂S m̂K m̂C

n σ = .5 σ = 1 σ = 2 σ = .5 σ = 1 σ = 2 σ = .5 σ = 1 σ = 2
100 .004 (.003) .008 (.007) .020 (.018) .003 .006 .012 .025 .042 .074
200 .002 (.002) .005 (.004) .012 (.011) .002 .004 .008 .024 .040 .074

Table 4. SMSE for the estimators m̂S (proposed), m̂K and m̂C simulated
from fm(x) = 5{1 + tanh[10(x− .5)]} with m = .5.
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Figure 5. n = 100, σ = 1, and fm(x) = 10e−e5(1−2x)
with m = .5. From top

to bottom are the histograms of m̂S assuming that fm is increasing over the
whole interval, m̂S without this assumption, m̂K and m̂C .

of Grégoire and Hamrouni (2001) by simulation. The first function is discussed in both

papers. In Loader (1996), m̂L is the design point xi, i = 1, . . . , n, which maximizes the

difference between the right and left limits at the point based on one-sided nonparametric

local polynomial regression of degree p. The author discusses the estimator when p = 0 or 1.
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Figure 6. n = 100, σ = 1, and fm(x) = 5{1 + tanh[10(x− .5)] with m = .5.
From top to bottom are the histograms of m̂S assuming that fm is increasing
over the whole interval, m̂S without this assumption, m̂K and m̂C .

It is mentioned that the choice of the degree of local polynomials have little impact on the

asymptotic results for m̂L, but local linear fitting is suggested to avoid the “boundary prob-

lem”. So we use local linear fitting to get the following simulation results. In Grégoire and

Hamrouni (2001), m̂G is the design point xi, i = 1, . . . , n, which maximizes the difference be-

tween the right and left limits at the point based on local linear smoothing with a symmetric

kernel function defined on [−1, 1]. In both papers, the optimal bandwidths include .15, .17,
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fm = 10e−e^[5(1−2x)] with m=.5
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Figure 7. Comparisons of m̂S (solid) with m̂K (dashed) and m̂C (dot-dash).

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−2
0

2
4

6
8

10
12

fm = 10e−e^[5(1−2x)] with m=.5

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−2
0

2
4

6
8

10
12

fm = 5{1+tanh[10(x−.5)]} with m=.5

Figure 8. Examples of fits for n = 100. In each case, εi’s are i.i.d. normal
with zero mean and unit variance. Left: m̂S = .516 (solid), m̂K = .536 (dot-
dash) and m̂C = .565. Right: m̂S = .499 (solid), m̂K = .501 (dot-dash) and
m̂C = .48. There is no estimate of fm in the R package inflection.

and .19, and we choose the bandwidth to be .15 to make the comparison. To compare the

estimators, we choose three sample sizes and two standard deviations. To apply our method,

we relax the jump direction constraint and we only constrain that fm is non-increasing in
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fm = 4sin(5x)+3x+I[.7,1](x) with m=.7
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Figure 9. Comparisons of m̂S (solid) with m̂L (dashed) and m̂G (dot-dash).

m̂S m̂L m̂G

n σ = .5 σ = 1 σ = .5 σ = 1 σ = .5 σ = 1
200 .057 .152 .141 .244 .122 .241
500 .010 .096 .029 .180 .024 .176
1000 .009 .059 .003 .088 .001 .083

Table 5. SMSE for the estimators m̂S (proposed), m̂L and m̂G simulated
from fm(x) = 4sin(5x) + 3x+ I[.7,1](x) with m = .7.

m̂S m̂L m̂G

n σ = .5 σ = 1 σ = .5 σ = 1 σ = .5 σ = 1
200 .093 .248 .069 .169 .076 .172
500 .003 .053 .007 .108 .009 .112
1000 .001 .076 .002 .039 .001 .042

Table 6. SMSE for the estimators m̂S (proposed), m̂L and m̂G simulated
from fm(x) = x4 + I[.5,1](x) with m = .5.

[tp,m)∪(m, tp+1] ⊂ [0, 1], where tp and tp+1 are two consecutive knots. Results are in Figure 9

(Table 5 and Table 6). Neither Loader (1996) or Grégoire and Hamrouni (2001) provides

an estimate of fm, and we include two example plots of f̂m̂S
in Figure 10 and Figure 11.

It is mentioned in Loader (1996) that for fm(x) = 4sin(5x) + 3x + I[.7,1](x) with n = 1000

observations and residuals which are i.i.d. normal with mean zero and unit variance, “the
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Figure 10. Regression estimates for n = 1000 independent observations sim-
ulated from fm(x) = 4sin(5x)+3x+ I[.7,1](x) (dot-dash) with errors which are

i.i.d. normal with mean zero and unit variance. The solid curve is f̂m̂S
with

m̂S = .690.

change is nearly impossible to detect by eye”. The following plot is an example showing m̂S

and f̂m̂S
in this scenario.

4.1.4. Choosing p for the AR(p) Model. We generate data from a unimodal regres-

sion function with errors from a stationary autoregressive process, to assess the AIC choice of

p. The errors are AR(1) with autoregressive coefficient φ = .4; that is, εi = φεi−1+ ξi, where

ξi’s are i.i.d. normal with zero mean and the standard deviation σ = .2. For fm = 6x(1−x)

and Xi values equally spaced on [0, 1], and five equally spaced knots, three sample sizes are

used to calculate the proportion that the estimator chooses the true p, i.e., p = 1, for choice

p = 0, 1, or 2. In Table 7, results from N = 10, 000 simulated data sets are given.
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Figure 11. Regression estimates for n = 1000 independent observations sim-
ulated from fm(x) = x4 + I[.5,1](x) (dot-dash) with errors which are i.i.d. nor-

mal with mean zero and unit variance. The solid curve is f̂m̂S
with m̂S = .498.
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Figure 12. n = 200, σ = .5, and fm(x) = 4sin(5x) + 3x + I[.7,1](x) with
m = .7. From top to bottom are the histograms of m̂S, m̂L and m̂G

.
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Figure 13. n = 200, σ = .5, and fm(x) = x4 + I[.5,1](x) with m = .5. From
top to bottom are the histograms of m̂S, m̂L and m̂G

.

p̂ σ̂2 (p̂ = 1) φ̂ (p̂ = 1)
n 0 1 2 mean SD mean SD

100 .000 .754 .246 .037 .005 .307 .098

200 .000 .799 .201 .039 .004 .353 .067

500 .000 .828 .172 .039 .002 .382 .042

Table 7. For each of three sample sizes, proportions of datasets for which
p̂ = 0, 1, or 2 are shown, with the mean and standard deviation of the estimated
model variance and autocorrelation parameter estimates, when the choice of p
is correct.

4.2. Examples

4.2.1. Ethanol Data Set. The ethanol data set in the R package SemiPar Wand

(2014) contains three variables: the concentration of nitric oxide and nitrogen dioxide in

engine exhaust (NOx), the richness of the air-to-ethanol mix (E) and the compression ratio

of the engine (C). NOx is formed during combustion of ethanol and there is a relationship

between the air-to-ethanol ratio and the completeness of combustion. The observed C has
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Figure 14. The estimated curve between NOx and E at each level of C is
shown in this plot. The estimated mode is at .927.

five levels, and we assume that expected NOx, as a function of E, has mode m at each level

of C. In Figure 14, it is revealed that when E is close to 1, combustion is complete and the

NOx formed reaches its maximum.

4.2.2. Trade.union Data Set. The trade.union data set in the R package SemiPar

Wand (2014) contains data on 534 U.S. workers, which includes workers’ age and wage. There

are six occupations, and we assume that the expected logarithm of wage, as a function of

age, has mode m. We also include gender and race as another two categorical covariates.

We find that the logarithm of wage, on average, rises quickly to a peak when a worker is

aged around 39, and starts decreasing slowly afterwards. The fits for black male workers are

shown in Figure 15, with curves for the six occupations. The curves for Hispanic workers

are .125 units lower while those for white workers are .074 units higher; the estimated curves

for female workers are .251 units lower. We use the constrained penalized estimator with 12
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Figure 15. Fitted unimodal curves for log(wage) as a function of age for six
occupations, for one of the ethnicity/gender combinations.

equally spaced knots, and choose λ with the GCV method. A range of penalty parameters

is used, such that the edfuλ is an integer from 12 to 21 (including eight degrees of freedom

for the covariates), and the GCV choice corresponds to edfuλ = 13.

4.2.3. World Population Growth Rate. We next look at the world population

growth rate from 1950 to 2015, which is believed to be unimodal. This data set comes from

the U.S. Census Bureau at https://www.census.gov/population/international/data/

worldpop/table_population.php. We assume a stationary autoregressive process with

p = 0, 1 or 2; the AIC method of Wang et al. (2013) chooses p = 2 and φ̂ = (1.064,−.570).

The estimated curve is shown in Figure 16, where m̂ is around 1964.

4.2.4. CO2 Emission. We consider the CO2 emissions (metric tons per capita) in

Ghana, Nepal and Hong Kong from 1960 to 2011. This data set comes from the World Bank:

Data at http://data.worldbank.org/indicator/EN.ATM.CO2E.PC. We assume that the

mean curve is convex-concave. The estimated curve for each country is shown in Figure 17.

52

https://www.census.gov/population/international/data/worldpop/table_population.php
https://www.census.gov/population/international/data/worldpop/table_population.php
http://data.worldbank.org/indicator/EN.ATM.CO2E.PC


●

●

●

●

●
●

●
●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
● ●

● ● ● ●
●

●
● ● ●

●
● ●

1950 1960 1970 1980 1990 2000 2010

1
.2

1
.4

1
.6

1
.8

2
.0

2
.2

G
ro

w
th

 r
a

te
 o

f 
w

o
rl

d
 p

o
p

u
la

tio
n

Figure 16. The estimated curve of the world population growth rate from
1950 to 2015.

Similarly to the previous example, we have that for Ghana, p = 1, φ̂ = .252 and m̂ is

around 1996; for Nepal, p = 1, φ̂ = .491 and m̂ is around 1995; for Hong Kong, p = 2,

φ̂ = (.615,−.476) and m̂ is around 1983. It is suggested that although the CO2 emissions

have been increasing since 1960 in Ghana and Nepal, the increasing rate started decreasing

since mid-1990s. Meanwhile, the increasing rate started decreasing since early 1980s in Hong

Kong and the CO2 emissions started decreasing in late 2000s.

4.2.5. Nile River Flow. We consider the Nile river data set, which is about the annual

volume of the Nile river from 1871 to 1970. Since the British was constructing the Aswan

Low Dam from 1898 to 1902, it is reasonable to believe that there is a jump point in the

Nile river flow during this period. We apply our method to this data set to detect a jump

point. The estimate is at the year 1898, which is shown in Figure 18. This data set is also

discussed in Müller (1992), in which m̂ is defined as the maximizer of the difference of right-
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Figure 17. The estimated curve of the CO2 emissions (metric tons per
capita) from 1960 to 2011.

and left-sided kernel smoothers, and in Cobb (1978), which applies parametric modelling.

Their estimates are the same as our estimate. Again, we use the AIC method of Wang et al.

(2013), and it chooses p = 1 and φ̂ = .096.

4.3. SMSE and Bootstrap Confidence Intervals with Randomly Generated

Change-Points

In this section, we discuss the performance of the proposed spline-based estimator m̂S

through simulations using randomly generated change-points on the unit interval. Bootstrap

confidence intervals are discussed and we compare the coverage rate of m̂S and some com-

petitors. Note that none of the jump-point competitors discussed in Section 4.1 estimates

f , and we only discuss the unimodal case and the inflection-point case in this section.

It will be shown in the tables below that the B-spline estimator performs better in

term of SMSE than its competitors when the change-point is uniformly distributed, which
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Figure 18. Nile river flow from 1871 to 1970. The solid line is the estimated
Nile flow curve. The estimated jump point is 1898. The monotonicity con-
straint is that fm(x) is increasing on both sides of m and there is no constraint
about the jump direction.

indicates its robustness. Besides, in most cases, bootstrap confidence intervals of the B-

spline estimator have a much higher coverage rate while the average width of the confidence

interval is smaller than its competitors.

4.3.1. Unimodal Case. Based on the two unimodal functions used in Section 4.1, we

modify the curves by allowing the mode m to be random on the unit interval to check the

robustness of the proposed spline-based estimator m̂S, and we use the penalized version. Now

the two curves are fm(x) = 6(x+ .5−m)(.5+m−x) and fm(x) = 30(x+ .8−m)4(.2+m−x),

where m is uniformly distributed on (0, 1). Due to the speed issue of m̂U of Köllmann et al.

(2014), we only compare m̂S and m̂P of Shoung and Zhang (2001) in this section. In this

section, we compare the estimators based on the SMSE criteria for m and fm. The SMSE
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m̂S m̂P

n σ = .5 σ = 1 σ = 2 σ = .5 σ = 1 σ = 2
100 .0061 .0138 .0266 .0109 .0182 .0304
200 .0036 .0094 .0195 .0085 .0146 .0242
500 .0016 .0052 .0124 .0062 .0108 .0181

Table 8. SMSEm for the estimator m̂S (proposed) and m̂P simulated from
fm(x) = 6(x+ .5−m)(.5 +m− x).

m̂S m̂P

n σ = .5 σ = 1 σ = 2 σ = .5 σ = 1 σ = 2
100 .0003 .0012 .0047 .0026 .0051 .0105
200 .0037 .0005 .0023 .0020 .0038 .0075
500 9.879e-05 .0002 .0009 .0014 .0026 .0050

Table 9. SMSEm for the estimators m̂S (proposed) and m̂P simulated from
fm(x) = 30(x+ .8−m)4(.2 +m− x).

m̂S m̂P

n σ = .5 σ = 1 σ = 2 σ = .5 σ = 1 σ = 2
100 .0134 .0497 .1820 .0485 .1687 .6296
200 .0069 .0258 .0950 .0304 .1047 .3853
500 .0029 .0108 .0404 .0162 .0547 .1978

Table 10. SMSEf for the estimators m̂S (proposed) and m̂P simulated from
fm(x) = 6(x+ .5−m)(.5 +m− x).

criteria are now defined as

SMSEm =
[ 1

N

N
∑

i=1

|m̂i −mi|
2
]1/2

and

SMSEf =
[ 1

Nn

N
∑

i=1

n
∑

j=1

|f̂m̂i
(xj)− fmi

(xj)|
2
]1/2

,

where N = 10, 000 and mi is the random mode for the ith iteration. Three samples sizes

and three standard deviations are used. Next, we compare the coverage rate of m̂S and m̂P
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m̂S m̂P

n σ = .5 σ = 1 σ = 2 σ = .5 σ = 1 σ = 2
100 .1143 .1537 .3026 .1045 .3337 1.0552
200 .0995 .1155 .1922 .0750 .2231 .6746
500 .0836 .0916 .1231 .0436 .1229 .3613

Table 11. SMSEf for the estimators m̂S (proposed) and m̂P simulated from
fm(x) = 30(x+ .8−m)4(.2 +m− x).

based on bootstrapping, and the random noise is normal with zero mean and unit variance.

For each curve, we construct a 95% bootstrap confidence interval by the following procedure.

1. At the ith iteration, mi is randomly generated on (0, 1) by the uniform distribution.

For a scatterplot (Xj, Yj), j = 1, . . . , n, which satisfies that Yj = fmi
(Xj) + εj, j =

1, . . . , n, we get a f̂m̂i
and a residual vector e.

2. We sample a new residual vector e∗ with replacement from e. By adding e∗ back

to f̂m̂i
, we get Y ∗ and regress it on X to get a bootstrap estimate of mi.

3. Repeating the previous step for 10, 000 times, we get a bootstrap distribution for

each estimator and use the 2.5% quantile and the 97.5% quantile as the 95% boot-

strap confidence interval.

Repeating the procedure for 1000 times, we can get a coverage rate from the 1000 bootstrap

confidence intervals for each estimator, and we can further compare the coverage rate and

the average width of the bootstrap confidence intervals.

4.3.2. Inflection-Point Case. In the inflection-point case, we again generate m uni-

formly on (0, 1), and the functions in Section 4.1 are changed into fm(x) = 10e−e5(1−
x
m

)

and fm(x) = 5{1 + tanh[10(x −m)]. In this section, we only consider m̂S with the mono-

tonicity constraint on fm. First, we compare m̂S with m̂K of Kachouie and Schwartzman

(2013) and m̂C in the R package inflection by the SMSE criteria defined in the unimodal
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m̂S m̂P

n Coverage Rate C.I. Width Coverage Rate C.I. Width

100 .992 .443 .813 .260
200 .982 .333 .843 .238
500 .984 .266 .828 .199

Table 12. Coverage rate and C.I. width of m̂S and m̂P simulated from
fm(x) = 6(x+ .5−m)(.5 +m− x).

m̂S m̂P

n Coverage Rate C.I. Width Coverage Rate C.I. Width

100 .971 .141 .763 .129
200 .955 .102 .786 .115
500 .929 .060 .831 .099

Table 13. Coverage rate and C.I. width of m̂S and m̂P simulated from
fm(x) = 30(x+ .8−m)4(.2 +m− x).

m̂S m̂K m̂C

n σ = .5 σ = 1 σ = 2 σ = .5 σ = 1 σ = 2 σ = .5 σ = 1 σ = 2
100 .0014 .0025 .0045 .0666 .0651 .0629 .0031 .0039 .0075
200 .0011 .0019 .0035 .0660 .0638 .0621 .0031 .0037 .0076
500 .0007 .0013 .0023 .0655 .0652 .0645 .0030 .0036 .0081

Table 14. SMSEm for the estimators m̂S (proposed), m̂K and m̂C simulated

from fm(x) = 10e−e5(1−
x
m

)

.

case. Note that there is no estimator of fm in the R package inflection , and we don’t

simulate SMSEf or bootstrap confidence intervals for their estimator. Three samples sizes

and three standard deviations are used. Next, we compare the coverage rate of m̂S and

m̂K . We use the bootstrapping method in the unimodal case to get the coverage rate of

m̂S. According to Kachouie and Schwartzman (2013), an approximate 95% confidence in-

terval for m is [m̂K − 1.96SE(m̂K), m̂K + 1.96SE(m̂K)], where SE(m̂K) ≈
SE(f̂

′′

m̂K
(m̂K))

f̂
′′′

m̂K
(m̂K)

,
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m̂S m̂K m̂C

n σ = .5 σ = 1 σ = 2 σ = .5 σ = 1 σ = 2 σ = .5 σ = 1 σ = 2
100 .0005 .0009 .0017 .0626 .0615 .0599 .0010 .0018 .0052
200 .0003 .0007 .0012 .0604 .0603 .0583 .0009 .0016 .0052
500 .0002 .0004 .0008 .0618 .0613 .0610 .0009 .0016 .0055

Table 15. SMSEm for the estimators m̂S (proposed), m̂K and m̂C simulated
from fm(x) = 5{1 + tanh[10(x−m)].

m̂S m̂K

n σ = .5 σ = 1 σ = 2 σ = .5 σ = 1 σ = 2
100 .0181 .0622 .2126 .2986 .3325 .4781
200 .0098 .0334 .1146 .2919 .3033 .3741
500 .0044 .0149 .0510 .2975 .2981 .3217

Table 16. SMSEf for the estimators m̂S (proposed) and m̂K simulated from

fm(x) = 10e−e5(1−
x
m

)

.

m̂S m̂K

n σ = .5 σ = 1 σ = 2 σ = .5 σ = 1 σ = 2
100 .0185 .0625 .2104 .3806 .4126 .5543
200 .0100 .0338 .1138 .3772 .3880 .4557
500 .0045 .0152 .0514 .3796 .3799 .4022

Table 17. SMSEf for the estimators m̂S (proposed) and m̂K simulated from
fm(x) = 5{1 + tanh[10(x−m)].

m̂S m̂K

n Coverage Rate C.I. Width Coverage Rate C.I. Width

100 .981 .113 .713 .420
200 .983 .097 .729 .311
500 .973 .083 .676 .195

Table 18. Coverage rate and C.I. width of m̂S and m̂K simulated from

fm(x) = e−e5(1−
x
m

)

.

SE(f̂
′′

m̂K
(m̂K)) =

√

var(f̂
′′

m̂K
(m̂K)) is the standard error of the estimated second derivative

at m̂K , and f̂
′′′

m̂K
(m̂K) is the estimated third derivative at m̂K .
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m̂S m̂K

n Coverage Rate C.I. Width Coverage Rate C.I. Width

100 .984 .097 .792 .381
200 .987 .084 .797 .277
500 .984 .066 .762 .174

Table 19. Coverage rate and C.I. width of m̂S and m̂K simulated from
fm(x) = 5{1 + tanh[10(x−m)].
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CHAPTER 5

Extension to the Generalized Linear Models

In this chapter, we consider the generalized linear model with independent observations

from an exponential family, and its mean curve is smooth with a change-point which we have

discussed. Such extension can be useful for the estimation of the optimal dosage of a drug

which gives the highest survival rate, which is an application of mode estimation, and the

estimation of the the inflection-point in a convex-concave dose-response curve.

The generalized linear model with independent observations from an exponential family

is of the form

(38) p(yi; θ, τ) = exp[{yiθi − b(θi)}τ − c(yi, τ)], i = 1, . . . , n,

where the specifications of the functions b and c determine the sub-family of models. The

mean vector µ = E(y) has values µi = b′(θi), and is related to a design matrix of predictor

variables through a monotonically increasing link function g(µi) = ηi, i = 1, . . . , n, where

η is the systematic component and describes the relationship with the predictors. The

relationship between η and θ is determined by the link function b. For now, we only discuss

the Poisson and binomial response.

In the unimodal case and the jump-point case, we use quadratic B-splines and to con-

strain the monotonicity of µ is equivalent to constrain the monotonicity of η. The change-

point in η is also the change-point in µ. We specify η for each observation by ηi = fm(xi),

where fm satisfies the smoothness and regular conditions defined in Chapter 3. An itera-

tively re-weighted cone projection algorithm is used to estimate m̂, η̂, and µ̂ is obtained by

transforming η̂ by the inverse of the link function.
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To be specific, the algorithm is as following. The negative log-likelihood

L(θ, τ ; y) =
n

∑

i=1

{

c(yi, τ)−
yiθi − b(θi)

τ

}

is written in terms of the systematic component and minimized over C ⊆ R
n. Let ℓ(η) be the

negative log likelihood written as a function of η = (η1, . . . , ηn)
⊤. For ηk in the constraint

set, let

(39) ψk(η) = ℓ(ηk) +∇ℓ(ηk)
⊤(η − ηk) +

1

2
(η − ηk)

⊤Qk(η − ηk),

which is equivalent to

1

2
η⊤Qkη +

[

∇ℓ(ηk)−Qkηk

]⊤

η,

where ∇ℓ(ηk) is the gradient vector and Qk is the Hessian matrix for ℓ(η), both evaluated

at ηk. Since we approximate η as Bb where the columns of B are quadratic B-splines, we

could further write (39) as

(40) ψk(b) =
1

2
b⊤B⊤QkBb+

[

∇ℓ(ηk)−QkBbk

]⊤

Bb.

Then as we did in Chapter 3, we can include a covariate matrix Z in B, and we also have

a penalized estimator by adding a penalty term to (40) such that the criterion for penalized

regression is

(41) ψk(b) =
1

2
b⊤(B⊤QkB + λD⊤D)b+

[

∇ℓ(ηk)−QkBbk

]⊤

Bb,
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where λ and D are defined in Section 3.2 of Chapter 3. To impose a shape constraint on η,

we again use the linear inequality Sb ≥ 0.

For a fixed m, the iteratively re-weighted algorithm is:

1. Choose a valid starting η0, and set k = 0.

2. Given ηk, minimize ψk(η) over C defined by the model. Then ηk+1 minimizes ℓ(η)

over the line segment connecting the minimizer of ψk(η) and ηk.

3. Set k = k + 1 and repeat step 2, stopping when a convergence criterion is met.

At step 2, a cone projection algorithm is required, and the coneA routine of the R package

coneproj Liao and Meyer (2014) is used. At each iteration of the algorithm, the vector µk

is computed where µki = g−1(ηki). If the Hessian matrix is positive definite for all η then

the negative log-likelihood function is strictly convex and µk is guaranteed to converge to

the MLE µ̂k.

When m is unknown, we search through knots for m̂ along with η̂m̂ and µ̂m̂. The final

set of MLE estimates minimizes the negative log likelihood.

In the inflection-point case, since we use cubic B-splines, restricting the convexity of

µ cannot be obtained by restricting the convexity of η. Instead, µ is specified for each

observation by µi = fm(xi), where fm satisfies the smoothness and regular conditions in

Chapter 3, and is approximated by cubic B-spline basis functions as we discussed for the

least-squares model.

We present some examples for each case in the following.

5.1. Unimodal Case

First, we consider the trade.union data set in the R package SemiPar Wand (2014)

again. This data set is also discussed in Chapter 11 in Ruppert et al. (2003), in which
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Figure 1. Fitted unimodal curve for the probability of union membership
= 1 as a function of wages. m̂ = 11.86.

the binary variable union membership (union) is the response and the continuous variable

wages (wages) is the predictor. As discussed in Chapter 11 in Ruppert et al. (2003), there

is strong evidence from the quadratic fit that the linear logistic model is inadequate. It is

shown that the probability of union membership = 1 increases as wage increases up to a

point, and then decreases with increasing wages. We could model the relationship between

the probability of union membership = 1 and wages as unimodal in Figure 1. Here we

use the penalized estimator and also get a 95% bootstrap confidence interval for m. As a

comparison, the log-odds linear and quadratic fits are shown in Figure 2. The P -value of

the lack-of-fit test is 3.672e−06 which indicates significant inadequacy of the linear fit. For

the unimodal fit, we could further include “occupation” as a categorical covariate as we did

in Section 4.2 in Chapter 4. The fit for each occupation is shown in Figure 3.
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Figure 2. Log-odds fits for the probability of union membership = 1 as a
function of wages. The solid line is the linear fit. The dash line is the quadratic
fit.
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union membership = 1 as a function of wages. m̂ = 11.25.
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Figure 4. The solid curve is f̂m̂ for the probability of y = 1 as a convex-
concave function of dosage with m̂ = .702, the dot-dash curve is the logistic
fit, and the dash curve is the dose-response curve with m = .7.

5.2. Inflection-Point Case

We simulate a dose-response data set from the dashed curve. It is shown in Figure 4 that

the standard logistic fit cannot capture the true shape, however a smooth curve constrained

to be convex-concave is close to the true curve.

5.3. Jump-Point Case

First, we simulate a data set from the curve fm(x) = .8sin(5x)+.6x+.4I[.7,1](x) such that

fm has a jump-point m = .7, and the response vector is binomial with n = 100 observations

with the mean vector equal to fm. The fit is shown in Figure 5. Next, using the curve

fm(x) = 4sin(5x) + 3x + I[.7,1](x) + 2, which has a jump-point at .7, we simulate a Poisson

data set with n = 1000 observations. The fit is shown in Figure 6.
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Figure 5. The solid curve is f̂m̂ for the probability of y = 1 as a function of
x with m̂ = .64 and the dot-dash curve is fm with m = .7.
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Figure 6. The solid curve is f̂m̂ with m̂ = .703 and the dot-dash curve is fm
with m = .7.
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CHAPTER 6

General Shape Selection

6.1. Overview

In Chapter 2, we propose three change-point estimators in an underlying curve satisfying

some smoothness conditions with a priori shape constraint. In Chapter 3, convergence rates

are developed for the three estimators, and penalized estimation is discussed as an option to

avoid over-fitting. We also discuss the model which could include a time-series covariance

structure or a categorical covariate.

Now, instead of assuming one possible shape, we suppose that there is a set of possible

shapes, either with or without change-point(s), for a given data set, and we want to choose

the shape which is closest to the underlying phenomenon. To be specific, we define the basic

model as

Yi = f(Xi) + σεi, for i = 1, . . . , n,

where f is the underlying trend, Xi is the predictor which could be a time point, and εi is the

noise. The trend represents several possible phenomena which could be simply monotonic or

follow some pattern with a change-point such as an increasing-decreasing (unimodal) curve,

a convex-concave curve, or a time series like river flow with jump-point(s).

For all possible shapes, we can assume that each shape satisfies some smoothness condi-

tions, like continuous first derivatives, second derivatives etc, and we use quadratic (cubic)

B-splines to approximate the underlying phenomenon. To impose a shape constraint on

the fit, we define a k ×m constraint matrix S of slopes or second derivatives at the knots

similarly to what we define in Section 2.2 of Chapter 2. For example, if the underlying curve
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is assumed to be decreasing, then to get a decreasing fit, we find b ∈ R
m to minimize the cri-

terion (7) subject to the inequality constraint Sb ≤ 0; if the shape is increasing-decreasing,

we apply the inequality constraint defined in the unimodal case in Section 2.2 of Chapter 2;

if the shape is decreasing-increasing, we simply swap the sign of the rows of S which are

defined at knots greater than the “mode” and the rows defined at knots smaller than the

“mode”. S can be defined flexibly to catch more general shapes.

A fit will be made for each shape, and for shapes with change-point(s), the estimation

methods discussed in previous chapters apply. The best fit can be chosen according to the

“Cone Information Criterion” (CIC) Meyer (2013), which is defined as

log(SSE) + log
{ 2

[

E0(D) + d0
]

n− d0 − cE0(D)
+ 1

}

,

where SSE is the sum of squared residuals, d0 is the dimension of the null space contained

in the cone, and E0(D) is the “null expected degrees of freedom” which is computed by

simulating a lot of data sets, usually more than one thousand, as independent and normally

distributed with zero mean and taking the average of the used degrees of freedom of the fits.

(For the change-point models, one degree of freedom for the change-point is added.). The

shape with the smallest CIC is chosen as the best. This criterion is similar to the “Akaike

Information Criterion” (AIC) but is specially defined for cone projection problems.

6.1.1. Global Annual Mean Precipitation. We consider estimating the underlying

trend and the possible change-point of the global annual mean precipitation from 1901

to 2000, which is available at http://data.giss.nasa.gov/precip_cru/. Suppose that

the underlying trend has three possible shapes: flat, increasing, or increasing-decreasing.

We fit all three shapes and estimate the turn-around point for the increasing-decreasing
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Figure 1. Left: flat fit with CIC= −.415. Middle: smooth increasing fit
with CIC= −.757. Right: increasing-decreasing fit with CIC= −.764 and
m̂ = 1973.

shape, and the best fit can be chosen according to the CIC criterion, which is a measure

of model complexity for cone projection problems. For this time series, we again assume

that the random error follows an AR(p) process. The autoregressive process is estimated

simultaneously for each shape. The unimodal fit has the smallest CIC value and thus the

underlying trend of the global annual mean precipitation is estimated to be slowly increasing

with a peak at 1973 and then decreasing. For this fit, the random error is estimated to follow

an AR(1) process and the estimated autoregressive coefficient is .146, which implies that the

random error of each year has a weakly positive correlation with the random error of the

immediately previous year. The three fits are in Figure 1.

6.2. Shape Selection with FIA Data

6.2.1. Background. Understanding forest disturbance is important for carbon assess-

ment and forest management decisions. Forest Inventory & Analysis (FIA) scientists have
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been working with National Aeronautics and Space Administration (NASA) and univer-

sity partners on remote sensing-based projects to detect and characterize forest land cover

changes over the last three decades. In the North American Dynamics Project (NADP),

work has been done to attribute causal agents to the nationwide change maps, making pre-

dictions of forest disturbance and cause, as well as fitted spectral trajectories and other useful

parameters available at 30m resolution annually over this country. In this project, we use

shape-restricted B-splines to fit trajectories of Landsat imagery, which monitors forest con-

ditions, to detect annual forest disturbance dynamics over three decades. (Landsat satellites

collect important data about global forest conditions. Documentation about Landsat’s role

in forest disturbance estimation is available at http://landsat.gsfc.nasa.gov/?p=9513.)

In this project, Y is a vector of Landsat band or index measurements, and X is a

vector representing years. We assume that Y is trend plus noise, and the trend repre-

sents various possible phenomena captured by Landsat trajectories on a single pixel through

time. The underlying trend is constrained to behave in an ecologically sensible manner,

assuming one of seven possible shapes. An undisturbed forest has a flat signal, while

the signal is decreasing for a forest recovering from a disturbance. An upward jump in-

dicates a disturbance in forest canopy or structure, typically caused by a harvest or fire

and a double-jump signal shows two distinct disturbance events over a short period. A

decreasing-increasing signal indicates a forest that recovers at first but then encounters

a slow disturbance. Conversely, an increasing-decreasing signal illustrates the opposite

case. Finally, an increasing pattern shows gradual decline of a forest caused by a distur-

bance that might occur very early in the time series of Landsat imagery. An example of each

shape is shown in Figure 2.
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Figure 2. Seven possible shapes: flat, decreasing, one-jump (decreasing,
jump up, decreasing), increasing-decreasing, decreasing-increasing, linearly in-
creasing, and double-jump (decreasing, jump up, decreasing, jump up, de-
creasing).

6.2.2. Model Set-Up and Information Criteria. For all shapes except for the flat

shape and the linearly increasing shape, we use a constrained linear combination of quadratic

B-spline basis functions to estimate the regression function given inequality constraints of

the form Sb ≥ 0. In the one-jump (double-jump) case, we use one (two) “jump” basis

function and one (two) “ramp” basis function. This is a constrained quadratic programming

problem and it is solved by the coneA routine in the R package coneproj Meyer and Liao

(2014). Suppose that t1, . . . , tk are knots, then
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Decreasing: we define the k × (k + 1) constraint matrix S as

Sij = −η′j(ti) i = 1, . . . , k and j = 1, . . . , k + 1.

One-Jump: we define the (k + 3)× (k + 3) constraint matrix S as

Sij = −η′j(ti) i = 1, . . . , k and j = 1, . . . , k + 1,

S(k+1)j =



















1 j = k + 2

0 j 6= k + 2,

S(k+2)j =



















−η′j(m) j = 1, . . . , k + 1

0 j = k + 2 and k + 3,

S(k+3)j =







































−η′j(m) j = 1, . . . , k + 1

0 j = k + 2

−1 j = k + 3.

Suppose that tp is the knot such that tp ≤ m < tp+1, p ∈ {1, . . . , k − 1}. We define a

k × (k + 1) matrix S as

Inverted-Vee:

Sij =



















η′j(ti) i = 1, . . . , p and j = 1, . . . , k + 1

−η′j(ti) i = p+ 1, . . . , k and j = 1, . . . , k + 1.
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Vee:

Sij =



















−η′j(ti) i = 1, . . . , p and j = 1, . . . , k + 1

η′j(ti) i = p+ 1, . . . , k and j = 1, . . . , k + 1.

Double-Jump: suppose that m is the first jump and m′ is the second jump, we define

the (k + 6)× (k + 5) constraint matrix S as

Sij = −η′j(ti) i = 1, . . . , k and j = 1, . . . , k + 1,

S(k+1)j =



















1 j = k + 2

0 j 6= k + 2,

S(k+2)j =



















−η′j(m) j = 1, . . . , k + 1

0 j ≥ k + 2,

S(k+3)j =







































−η′j(m) j = 1, . . . , k + 1

0 j = k + 2, k + 4 and k + 5

−1 j = k + 3.

S(k+4)j =



















1 j = k + 4

0 j 6= k + 4,

S(k+5)j =







































−η′j(m
′) j = 1, . . . , k + 1

0 j = k + 2, k + 4 and k + 5

−1 j = k + 3,
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S(k+6)j =







































−η′j(m
′) j = 1, . . . , k + 1

0 j = k + 2 and j = k + 4

−1 j = k + 3 and j = k + 5.

For each trajectory with n observations, all seven shapes can be fitted. An information

criterion is computed for each fit to choose between the seven fits, and it is defined as the

sum of squared residuals (SSE) penalized by adding a measure of model complexity which

is a function of the “null effective degrees of freedom” of the model Meyer (2013). The

shape with the smallest information criterion is the winner. Two information criteria are

considered. One is the “Bayesian Information Criterion” (BIC), which is defined as

nlog(SSE) + log(n)E0(D),

and the other is the “Cone Information Criterion” (CIC) Meyer (2013), which is defined as

log(SSE) + log
{ 2

[

E0(D) + 1
]

n− 1− 1.5E0(D)
+ 1

}

,

where E0(D) is the null expected dimension of the face of the cone on which the projection

lands. For the flat shape and the linearly increasing shape, which are not fitted by the cone

projection algorithm, E0(D) = 0 and 1.5.

6.2.3. ShapeSelectForest. The R package ShapeSelectForestMeyer, Liao, Freeman,

and Moisen (2015) package applies constrained regression splines to time series of Landsat

imagery for the purpose of modelling, mapping, and monitoring annual forest disturbance

dynamics. For each pixel and spectral band or index of choice in temporal Landsat data,

the package gives an optimally smoothed fit of the trajectory constrained to behave in
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an ecologically sensible manner, assuming one of seven possible shapes. It also contains

functions for deriving annual predictions of forest disturbance, as well as graphical displays

of the shape fits.

In the ShapeSelectForest package, for a given set of consecutive years, we compute

the edf0 vector (null effective degrees of freedom) using the routine getedf0. Each element

of the edf0 vector is an edf0 value simulated for one of the seven shapes under the null

hypothesis that the response is independent of the predictor. The calculations for the edf0

vector for a given set of years can be time-consuming, this is accomplished in the subroutine

getedf0, and the edf0 vector is an input to the main routine shape. The user can choose

to simulate the edf0 value for each single shape, or to simulate the edf0 vector for all the

seven shapes. An edf0 vector can be used for many response vectors as long as the set of

years corresponding to the response vectors are equally spaced and have the same length.

We put a matrix edf0s in this package. It is a 21 × 7 matrix. Each row is an edf0 vector

for an equally spaced predictor vector x of n elements. Each vector has seven elements

corresponding to the seven shapes. From the first row to the last row, the edf0 vector is for

x of length n which is an integer ranging from 20 to 40. When x is not equally spaced or its

number of elements is not between 20 and 40, getedf0 will be called to get the edf0 vector.

The main routine in this package is shape. Given a predictor vector x , e.g., years and

a matrix whose columns are response vectors corresponding to x . The shape routine will

select a shape among the seven possible shapes that is the best fit for each response vector

according to the BIC criterion or the CIC criterion. The user can choose to simulate an edf0

vector before calling shape, or simulate it inside shape. Given a scatter plot, the user can

choose any subset of the seven shapes or all the seven shapes to get a shape-restricted fit.
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Suppose that we have N scatter plots and for each plot, we have n observations. The

main output objects of shape are shape: a N ×1 vector. Each element is the best shape for

each of the N scatter plots; ic: a k × N matrix where the ith column is the vector of BIC

or CIC values used to choose the best shape for the ith scatterplot, where k is the number

of shapes allowed by the user; thetab: a n × N matrix where the ith column is the n × 1

vector of predicted values for the chosen shape for the ith scatter plot.

Here we present a data set built in this package as an example. The predictor x is a set

of consecutive years from 1985 to 2010. For this set of years, there are 36 pixels in South

Carolina. For each pixel, there are two spectral bands, B5 and NDVI. It is believed that

these pixels have more than one disturbance. We can choose to fit the 36 scatter plots with

the seven possible shapes and choose the best shape for each of them according to the CIC

criterion. By the graphical routine plotshape, we can plot the best shape for each scatter

plot along with the CIC value for each candidate shape.

From Figure 3 to Figure 8, each plot on the left panel represents the Landsat signals of

a pixel in South Carolina with the fitted trajectory from 1985 to 2010. The fitted trajectory

is chosen according to the CIC criterion. On the right panel, each plot shows the CIC values

for the seven shapes. The best shape has the smallest CIC value.

Now we are extending the ShapeSelectForest package to longer time series and also try

to develop the algorithm to allow for new shapes, such as multiple jumps. Also, choosing

the best shape of a pixel based on best shapes of spatial neighbors is being considered.
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Figure 3. Left: the best shape chosen by the CIC criterion with fitted values
marked as dots. Right: CIC values for seven possible shapes. The shape with
the smallest CIC value is the winner.
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Figure 4. Left: the best shape chosen by the CIC criterion with fitted values
marked as dots. Right: CIC values for seven possible shapes. The shape with
the smallest CIC value is the winner.
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Figure 5. Left: the best shape chosen by the CIC criterion with fitted values
marked as dots. Right: CIC values for seven possible shapes. The shape with
the smallest CIC value is the winner.
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Figure 6. Left: the best shape chosen by the CIC criterion with fitted values
marked as dots. Right: CIC values for seven possible shapes. The shape with
the smallest CIC value is the winner.
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Figure 7. Left: the best shape chosen by the CIC criterion with fitted values
marked as dots. Right: CIC values for seven possible shapes. The shape with
the smallest CIC value is the winner.
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Figure 8. Left: the best shape chosen by the CIC criterion with fitted values
marked as dots. Right: CIC values for seven possible shapes. The shape with
the smallest CIC value is the winner.
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CHAPTER 7

Conclusion and Future Work

7.1. Conclusion

In this dissertation, we propose change-point estimators of a mode, a jump point, and an

inflection point, based on constrained splines, with or without penalty. It is shown by sim-

ulation that for small or moderate sample sizes, the proposed estimator performs well when

compared to some existing estimators. Moreover, convergence rates are established such that

the estimator is consistent, while consistency of the other smoothed mode or inflection-point

estimators has not been established. The proposed estimators also allow the flexibility to

include linear covariates in the model and to incorporate the scenario when the errors fol-

low a stationary autoregressive process with short memory. Change-Point estimation with

generalized linear models is also discussed, and the methods are applied to some real and

simulated binomial and Poisson data sets.

The proposed methods are implemented in the R package ShapeChange Liao and Meyer

(2016). We compared the speed of our routines with other R packages or routines discussed

in Chapter 4, using a laptop with a 2.16GHz dual-core Intel(R) Celeron(R) CPU. For ex-

ample, in the unimodal case, if we simulate data using the curve fm = 6x(1 − x) with 100

observations, it takes roughly 40 milliseconds, 20 milliseconds and 2 minutes per call to get

m̂S, m̂P and m̂U with 1000 repetitions. In the inflection-point case, we simulate using the

curve fm = 10e−e5(1−2x)
and 100 observations; it takes roughly 50 milliseconds, 1.4 seconds

and 280 milliseconds per call to get m̂S, m̂K and m̂C with 1000 repetitions.

The project with FIA scientists is an application of shape-restricted estimation using

B-splines, which emphasize jump-point detection in Landsat time series. It is proven to
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be an important addition to the Landsat community. A paper about the techniques in the

ShapeSelectForest package is accepted by Global Change Biology as a technical advance

paper. The algorithm in the ShapeSelectForest package will be implemented on Google

Earth Engine in 2016, providing shape parameters and fitted trajectories for use in other

disturbance, tree canopy cover, and biomass mapping projects.

7.2. Future Work

Like the analysis we make with the global annual precipitation data set in Chapter 4,

we could develop model selection techniques and built them in the ShapeChange package as

another option. For example, in the unimodal case, we can assume possible shapes of the

underlying trend such as flat, increasing, increasing-decreasing etc, and we could choose the

best shape according to the CIC criterion. If the best shape is unimodal, a mode estimate

will be delivered and the autoregressive parameters will be estimated as well given a time

series. Similar ideas can be applied to the jump-point case and the inflection-point case. In

the jump-point case, we can assume possible shapes as we did in the ShapeSelectForest

package but not limit possible data sets to Landsat data; in the inflection-point case, we can

assume possible shapes like flat, increasing, convex-concave, or combinations of monotonicity

and convexity. Some work has been done in terms of testing the existence of a jump point.

We can explore hypothesis testing procedures about the existence of a mode, a jump point,

and an inflection point of a regression function.

There are some other interesting change-point estimators which have not been much

discussed. For example, the change-point where a regression function, which is flat for a

wide range, turns upwards, the change-point where a linear regression function changes its

sign, or multiple jump-points in a series.
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