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Abstract

Group Action on Neighborhood Complexes of Cayley Graphs

Given G a group generated by S ≐ {g1, .., gn}, one can construct the Cayley Graph

Cayley (G,S). Given a distance set D ⊂ Z≥0 and Cayley (G,S) one can construct a D-

neighborhood complex. This neighborhood complex is a simplicial complex to which we can

associate a chain complex. The group G acts on this chain complex and this leads to an

action on the homology of the chain complex. These group actions decompose into several

representations of G. This thesis uses tools from group theory, representation theory, homo-

logical algebra, and topology to further our understanding of the interplay between generated

groups (i.e. a group together with a set of generators), corresponding representations on their

associated D-neighborhood complexes, and the homology of the D-neighborhood complexes.
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CHAPTER 1

Introduction

The goal of this thesis is to find relationships between a generated group, i.e. a group

along with a chosen generating set, and a graph on which the generated group acts transi-

tively on the set of vertices. This thesis will focus on the case where the graph is a Cayley

graph. Cayley graphs give us a large collection of graphs which are easy to define and

construct. However in future work we are planning to replace the Cayley graph with an

arbitrary graph which has a transitive group action defined on it. In searching for these re-

lationships we shall use tools from group theory, representation theory, homological algebra,

and topology.

From the Cayley graph we construct a simplicial complex called the neighborhood com-

plex. The neighborhood complex was originally created by Lovász as a tool to study the

chromatic number of a graph and to prove Kneser’s conjecture [1]. For further applications of

simplicial complexes we refer the reader to Simplicial Complexs of Graphs by Jakob Jonsson

[2] and Combinatorial Commutative Algebra by Miller and Sturmfels [3].

While studying the neighborhood complex we make use of a chain complex which pro-

vides information about how the neighborhoods interact. The chain complex also provides

several linear representations of the generated group which we make use of to understand

the homology of the complex.

We make use of the computer algebra system, GAP4, to compute these linear represen-

tations. See Appendix B for examples of the output created. Note that we use Python code

to format the data into an easily readable pdf file.
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A few of the culminating results are given below.

Theorem. Let S = {g1, g2, ..., gn} be an irredundant generating set for a group G. Define

the set S = S ∪ {gig−1
j ∣gi, gj ∈ S and i < j}. The representation given by the group action on

the set of edges, F1(∆), consists of

● one copy of the regular representation for each element in S which is not order two

● a representation of degree
∣G∣
2

that is a direct sum of constituents of the regular

representation for each element in S which has order two.

Moreover for a ∈ S of order two and χ an irreducible character of G, the number of copies

of χ which appear in the representation of degree
∣G∣
2

is given by the formula:

(χ, ρ ↑G)=(χ ↓⟨a⟩, ρ)=
1

∣⟨a⟩∣ ∑x∈⟨a⟩
χ(x)ρ(x)=1

2
(χ(1)ρ(1) + χ(a)ρ(a))=1

2
(χ(1) − χ(a))

where ρ is the sign character of ⟨a⟩.

Let S = {g1, g2, .., gn} be an irredundant generating set for a group G and S = S ∪

{gig−1
j ∣gi, gj ∈ S and i < j}. We say a unordered pair of elements of S, {a, b}, is a square pair

if ∣a∣ = ∣b∣ = ∣ab∣ = 2.

Theorem. Let S = {g1, g2, .., gn} be an irredundant generating set for a group G and

S = S ∪ {gig−1
j ∣gi, gj ∈ S and i < j}. If x, y ∈ S form a square pair then dim (H̃2) ≥ ∣G∣4 .
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CHAPTER 2

The Objects: Cayley Graphs, Neighborhood

Complexes, Chain Complexes, and Homology

Let G be a generated group that is a group together with a fixed generating set {g1, ..., gn}.

A directed Cayley graph for G, denoted Cayley (G,{g1, .., gn}), is a graph whose vertices, de-

noted V (Cayley (G,{g1, .., gn})), are the elements of the group and whose edge set, denoted

E (Cayley (G,{g1, .., gn})) is defined by the generating set as follows. For any a, b ∈ G there

exist a directed edge from a to b if there exist g ∈ {g1, ..., gn} such that g ⋅ a = b. An irredun-

dant generating set is a set of generators for a group with the property that no proper subset

of the generators will generate the group. Therefore, our generating sets will not contain

inverses if the order of gi is greater than two for every i. Although any generating set of

G will give rise to a Cayley graph, we will focus on irredundant generating sets and finite

groups.

We call a set D ⊂ Z≥0 a distance set. Let the distance d(x,xi) be the length of the shortest

path from x to xi. Given such a distance set and d(x,xi) we define the neighborhood, ND(x),

for the vertex x as follows.

ND(x) = {xi∣xi ∈ V (Cayley (G,{g1, .., gn})) and d(x,xi) ∈D} .

A simplicial complex ∆ is a set such that if ρ ∈ ∆ and σ ⊆ ρ then σ ∈ ∆, i.e. closed under

subsets [3, p.4]. All of the sets in ∆ are called simplices or faces. Define the neighborhood

complex of a graph to be the simplicial complex consisting of the subsets of the sets ND(x),

∀x ∈ V . The neighborhoods are viewed as the largest dimensional faces in a simplicial

complex. In this paper unless otherwise stated take D = {0,1}.
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Figure 2.1

Example 2.1. Let the distance set be D = {0,1}. For the graph in Figure 2.1 we obtain

the neighborhoods:

ND(a) = {a, b, c, e} , ND(b) = {b, f} ,

ND(c) = {c, d} , ND(d) = {d, f} ,

ND(e) = {e, a} , ND(f) = {f, d} .

So we have the simplicial complex ∆ consisting of the all the subsets of the elements in

{{a, b, c, e} ,{b, f} ,{c, d} ,{d, f} ,{a, e}} .

For convenience, we will denote the sets as words in further examples, e.g. {a, b, c, e} = abce.

Notice that the graph in the example is directed and as such the neighborhood ND(c)

contains d, yet the neighborhood ND(d) does not contain c.

The neighborhood complex leads to a chain complex which is defined has follows. Let

∆ be a simplicial complex. Define Fi(∆) to be the set of simplices in ∆ of dimension i. So

∣Fi(∆)∣ is the number of simplices of dimension i. We let ∣F−1(∆)∣ = ∣{∅}∣ = 1.
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Let C∣Fi(∆)∣ be a vector space with basis elements indexed by the i-simplices in Fi(∆).

The map ∂i from C∣Fi(∆)∣ to C∣Fi−1(∆)∣ is defined as follows. Let α be a simplex in Fi(∆) and

eα be the corresponding basis vector in C∣Fi(∆)∣. Define α ∖ j to be the simplex α with the

jth element removed and sgn(j, α) ≐ (−1)r−1 if j is the rth element of α written in increasing

(lexicographical) order. Then the maps in the chain complex are given by

∂i(eα) = ∑
j∈α

sgn(j, α)eα∖j.

A (reduced) chain complex of ∆ is then as follows:

0 C∣Fn(∆)∣ ... C∣F1(∆)∣ C∣F0(∆)∣ C 0.
∂n ∂2 ∂1 ∂0

This is a chain complex since the above maps have the property that ∂i ○ ∂i+1 = 0 i.e.

im (∂i+1) ⊆ ker (∂i) [3, p.7]. Recall that a chain complex is said to be exact if all the maps

in the sequence have the relation that the image of the ith map is equal to the kernel of the

(i + 1)th map. So the following sequence,

0 A B C 0
ϕ ψ

is exact if im (ϕ) = ker (ψ), ϕ is injective, and ψ is surjective.

The homology of a chain complex is a measure of how far the sequence is from being

exact. The (reduced) ith homology of the chain complex, defined as above from ∆, is the

vector space ker (∂i)/im (∂i+1) and is denoted H̃i(∆).

Example 2.2. Recall Example 2.1. ∆ was the simplical complex generated by the maxi-

mal faces {abce, bf, cd, df, ae}. Since the simplical complex is closed under subsets we have:

F3(∆) = {abce}, F2(∆) = {abc, abe, ace, bce}, F1(∆) = {ab, ac, ae, bc, be, bf, cd, ce, df},

F0(∆) = {a, b, c, d, e, f}, F−1(∆) = {∅}
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∣F3(∆)∣ = 1, ∣F2(∆)∣ = 4, ∣F1(∆)∣ = 9, ∣F0(∆)∣ = 6, ∣F−1(∆)∣ = 1

0 C C4 C9 C6 C 0
∂3 ∂2 ∂1 ∂0

∂0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a 1

b 1

c 1

d 1

e 1

f 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, ∂1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a b c d e f

ab −1 1 0 0 0 0

ac −1 0 1 0 0 0

ae −1 0 0 0 1 0

bc 0 −1 1 0 0 0

be 0 −1 0 0 1 0

bf 0 −1 0 0 0 1

cd 0 0 −1 1 0 0

ce 0 0 −1 0 1 0

df 0 0 0 −1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∂2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ab ac ae bc be bf cd ce df

abc 1 −1 0 1 0 0 0 0 0

abe 1 0 −1 0 1 0 0 0 0

ace 0 1 −1 0 0 0 0 1 0

bce 0 0 0 1 −1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∂3 = (

abc abe ace bce

abce −1 1 −1 1 )

Calculating the rank of the matrices we get that

H̃3(∆) = ker (∂3)/im (∂4) = 0, H̃2(∆) = ker (∂2)/im (∂3) = 0

H̃1(∆) = ker (∂1)/im (∂2) ≅ C, H̃0(∆) = ker (∂0)/im (∂1) = 0
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CHAPTER 3

The Objects: Results

Since the neighborhood complex comes from a Cayley graph there are structural restric-

tions on the complex. In this section we will give some of the restrictions on the neighborhood

complex and also general results for homology implied by these restrictions.

We need to define some notation for the first theorem. Let Fn (x0, x1, ..., xn) be an

n-dimensional face of the neighborhood complex ∆ with vertices x0, x1, ..., xn. We will say

that an edge, F1 (a, b), corresponds to an edge in the Cayley graph if there exists an ele-

ment g in the generating set such that g ⋅ a = b. More concretely, the neighborhood cen-

tered at a for a group generated by {g1, g2} is N{0,1}(a) = {a, g1 ⋅ a, g2 ⋅ a} and the edges

F1 (a, g1 ⋅ a) and F1 (a, g2 ⋅ a) are the edges which correspond to an edge in the Cayley graph

while F1 (g1 ⋅ a, g2 ⋅ a) is the edge which does not correspond to an edge in the Cayley graph.

x

g1 ⋅ x = g2 ⋅ y g2 ⋅ x = g1 ⋅ y

y

x = g1 ⋅ y

g2 ⋅ x
y = g1 ⋅ x

g2 ⋅ y x

s

y

(1) (2) (3)

(1) and (2) are valid ways for N{0,1}(x) and N{0,1}(y) to share an edge while (3) is not.

Figures for Theorem 3.1.
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Theorem 3.1. Let S = {g1, ..., gn} be an irredundant generating set for a group G. Sup-

pose x ≠ y and that there is a 1-simplex ε ∈ N{0,1}(x)∩N{0,1}(y). Then either ε = F1 (x, gi ⋅ x) =

F1 (y, gi ⋅ y) and ∣gi∣ = 2 or ε = F1 (gi ⋅ x, gj ⋅ x) = F1 (gj ⋅ y, gi ⋅ y) and ∣gig−1
j ∣ = 2.

Proof. Suppose that our two neighborhoods, N{0,1}(x) and N{0,1}(y), intersect at a

1-simplex which corresponds to an edge in the Cayley graph for N{0,1}(x) but not for

N{0,1}(y). Since the 1-simplex in N{0,1}(x) corresponds to an edge in the Cayley graph the

simplex has the form F1 (x, gi ⋅ x) for some gi in S. The form of the 1-simplex in N{0,1}(y) is

F1 (gj ⋅ y, gk ⋅ y) for some gj and gk in S since it does not correspond to an edge in the Cayley

Graph (see above figure (3)).

The equality F1 (x, gi ⋅ x) = F1 (gj ⋅ y, gk ⋅ y) implies either x = gj ⋅ y and gi ⋅ x = gk ⋅ y or

x = gk ⋅ y and gi ⋅ x = gj ⋅ y. Suppose that x = gj ⋅ y and gi ⋅ x = gk ⋅ y. Then gigj = gk. However,

gigj = gk contradicts S being irredundant. (Note: j ≠ k but i could equal either j or k. If

i ≠ j and i ≠ k then gigj = gk implies gk is redundant. If i = j and i ≠ k then gigj = gk implies

g2
i = gk and so again gk is redundant. If i ≠ j and i = k then gigj = gk implies gj is the identity

which is a redundant generator by definition.) On the other hand, x = gk ⋅ y and gi ⋅ x = gj ⋅ y

implies gigk = gj which again contradicts S being irredundant.

By the above argument, we have shown that either ε = F1 (x, gi ⋅ x) = F1 (y, gj ⋅ y) or

ε = F1 (gi ⋅ x, gj ⋅ x) = F1 (gk ⋅ y, gl ⋅ y) i.e. either ε ∈ E (Cayley (G,S)) for both neighborhoods

or ε ∉ E (Cayley (G,S)) for both neighborhoods (see above figures (1) and (2)). Consider

ε = F1 (x, gi ⋅ x) = F1 (y, gj ⋅ y). So x = gj ⋅ y and y = gi ⋅ x since x ≠ y. Thus x = (gigj) ⋅ x Ô⇒

gigj = id but again S is irredundant and so gj = gi. Therefore ∣gi∣ = 2 and ε = x(gi ⋅x) = y(gi ⋅y).

Next consider ε = F1 (gi ⋅ x, gj ⋅ x) = F1 (gk ⋅ y, gl ⋅ y). So up to labeling gi ⋅ x = gk ⋅ y and

gj ⋅ x = gl ⋅ y. First notice that i ≠ j and k ≠ l since F1 (gi ⋅ x, gj ⋅ x) and F1 (gk ⋅ y, gl ⋅ y) are

8



edges. gi ⋅ x = gk ⋅ y and gj ⋅ x = gl ⋅ y imply that gi = gkg−1
l gj. However S is irredundant so

i = k or i = l.

Suppose i = l. Then gi = gkg−1
l gj Ô⇒ gi = gkg−1

i gj Ô⇒ g−1
j = g−1

i gkg
−1
i . Again S is

irredundant, so j = k. Thus gi ⋅ x = gj ⋅ y and gj ⋅ x = gi ⋅ y, which implies ∣gig−1
j ∣ = 2. Suppose

instead that i = k. Then gi ⋅x = gi ⋅ y Ô⇒ x = y, which is a contradiction. Thus we conclude

that ε = F1 (gi ⋅ x, gj ⋅ x) = F1 (gj ⋅ y, gi ⋅ y) and ∣gig−1
j ∣ = 2. �

Let S = {g1, g2, .., gn} be a irredundant generating set for a group then we define the

extended generating set to be S = S ∪ {gig−1
j ∣gi, gj ∈ S and i < j}.

Lemma 3.2. [4] The number of i-dimensional simplices in an n-dimensional simplex is

(n + 1

i + 1
).

Corollary 3.3. Let S = {g1, ..., gn} be an irredundant generating set for a group G and ∆

be the neighborhood complex. Define α = ∣{g ∈ S∣ ∣g∣ = 2}∣ and β = ∣{gig−1
j ∣gi, gj ∈ S, ∣gig−1

j ∣ = 2, and i < j}∣.

Then

∣F1(∆)∣ = ((n + 1

2
) − 1

2
(α + β)) ∣G∣ .

Proof. The number of edges in one neighborhood is (n + 1

2
). By Theorem 3.1 we know

that two distinct neighborhoods share an edge if and only if ∣gi∣ = 2 for some i or ∣gig−1
j ∣ = 2

for some i < j. Therefore, (n + 1

2
) ∣G∣ will count twice an edge for every generator of order

two and pair of generators such that ∣gig−1
j ∣ = 2.

Note that if α + β > 0 then ∣G∣ is even since there must be an order two element in the

extended generating set. �

It should be noted that the above theorem gives the condition for two neighborhoods to

share an edge. This is not to say that an edge could not be shared between two simplices
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contained in one neighborhood. In fact, an edge can be shared between two i-simplices if

both i-simplices are highest dimensional simplices, i.e. the neighborhoods, as described by

Theorem 3.1 or if both i-simplices are contained in one neighborhood in which case the edge

does not need to be given by an order two element.

We can also show that two neighborhoods cannot intersect in a triangle.

Theorem 3.4. Two neighborhoods of a Cayley graph defined by the group G and an

irredundant generating set S = {g1, ..., gn} cannot intersect in a 2-simplex.

Proof. Let v,w ∈ V (Cayley (G,S)) = G and suppose that ND(v) and ND(w) intersect

in a 2-simplex. There must exist edges e1, e2 ∈ ND(v) ∩ND(w) such that e1 and e2 intersect

in a vertex. By Theorem 3.1, e1 = F1 (gi ⋅ v, gj ⋅ v) = F1 (gj ⋅w, gi ⋅w) or e1 = F1 (v, gi ⋅ v) =

F1 (w, gi ⋅w).

Any 2-simplex in a neighborhood complex consists of exactly one edge of type

F1 (gi ⋅ v, gj ⋅ v) or all three edges are of type F1 (gi ⋅ v, gj ⋅ v). Therefore we need only consider

the following two cases.

Case 1:

gi ⋅ v = gj ⋅w = gk ⋅w

e1 e2

Assume e1 = F1 (gi ⋅ v, gj ⋅ v) = F1 (gj ⋅w, gi ⋅w), e2 = F1 (gi ⋅ v, gk ⋅ v) = F1 (gk ⋅w, gi ⋅w)

and e1 ≠ e2. Then gi ⋅v = gj ⋅w, and gi ⋅v = gk ⋅w. These two relations imply that gj ⋅w = gk ⋅w

and so gj = gk which contradicts that S is an irredundant generating set.
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Case 2:

v = gi ⋅w = gj ⋅w

e1 e2

Assume e1 = F1 (v, gi ⋅ v) = F1 (w, gi ⋅w), e2 = F1 (v, gj ⋅ v) = F1 (w, gj ⋅w), and e1 ≠ e2.

Then v = gi ⋅ w and v = gj ⋅ w. These two relations imply that gj ⋅ w = gk ⋅ w and so gj = gk

which contradicts that S is an irredundant generating set. �

Notice that if two neighborhoods intersect in a higher dimensional simplex (greater than

2) then the 2-simplices in the intersection must be shared in the two neighborhoods. Thus

we immediately have the following corollaries.

Corollary 3.5. Two neighborhoods of a Cayley graph defined by the group G and an

irredundant generating set S = {g1, ..., gn} cannot intersect in an i-simplex for i ≥ 2.

Corollary 3.6. Let S = {g1, ..., gn} be an irredundant generating set for a group G. The

number of m-simplices in the corresponding neighborhood complex is (n+1
m+1

) ∣G∣ for n ≥m ≥ 2.

The impact of how simplices can intersect is quite profound as can be seen in the next

theorem.

Theorem 3.7. Let S be a irredundant generating set of size n for G. Then

H̃n (ND (Cayley (G,S))) = 0 except when

(1) n = 1 in which case G is cyclic and thus H̃1 = C, or

(2) n = 2 and G is the Klein 4-group in which case H̃2 = C.

11



We shall prove Theorem 3.7 by showing the result for n = 2 and n ≥ 3 as lemmata. Notice

that a cyclic group generated by one element will give a cyclic graph. Thus its neighborhood

complex is simply a loop and H̃1 = C.

Lemma 3.8. Let S = ⟨g1, g2⟩ be an irredundant generating set for a group G. If G is not

isomorphic to the Klein 4 group then H̃2 = 0.

Proof. (Geometric proof.) This lemma could be considered as a corollary of Theorem

3.1. Let G = ⟨g1, g2⟩ and ∆ denote the corresponding neighborhood complex. If we are to

have nontrivial H̃2 we must enclose a volume with triangles. To see why this corresponds

to enclosing a volume notice for x ∈ C∣F2(∆)∣ to be in the kernel of ∂2, every triangle in the

linear combination of triangles, x, must share each of its edges with other triangles in such

a way that they cancel after mapping by ∂2.

Let F2 (v, g1 ⋅ v, g2 ⋅ v) ∈ F2(∆). To enclose a volume every edge of F2 (v, g1 ⋅ v, g2 ⋅ v) must

be contained in another triangle in F2(∆). However, by Theorem 3.1, we know that the

edges of F2 (v, g1 ⋅ v, g2 ⋅ v) which correspond to the edges in Cayley (G,{g1, g2}) are shared

if and only if ∣gi∣ = 2. Thus if the edge F1 (v, g1 ⋅ v) is shared then ∣g1∣ = 2. Similarly, ∣g2∣ = 2

for F1 (v, g2 ⋅ v). Again by Theorem 3.1, F1 (g1 ⋅ v, g2 ⋅ v) is shared if and only if ∣g1g−1
2 ∣ = 2.

So we see that the only way to have nontrivial H̃2 for a group with generating set of size two

is for the group to be the Klein 4 group. �

An alternate proof is:

Proof. (Algebra proof.) Since there is a bijection between our basis for C∣F2(∆)∣ and

F2(∆), we can use the set F2(∆) to show that ker (∂2) = 0. Let x be a linear combination of

2-simplexes in F2(∆) such that ∂2(x) = 0 and x ≠ 0. We shall say that a 2-simplex is in x if

that 2-simplex has nonzero coefficient in x.
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Let v ∈ V (Cayley (G,S)), then the neighborhood ND(v) = F2 (v, g1 ⋅ v, g2 ⋅ v) is mapped

by ∂2 to F1 (g1 ⋅ v, g2 ⋅ v) − F1 (v, g2 ⋅ v) + F1 (v, g1 ⋅ v). If F2 (v, g1 ⋅ v, g2 ⋅ v) is in x then there

must be another neighborhood ND(w) ∈ x such that F1 (v, g2 ⋅ v) is in F1 (g1 ⋅w, g2 ⋅w) −

F1 (w, g2 ⋅w) + F1 (w, g1 ⋅w) i.e. F1 (v, g2 ⋅ v) = F1 (g1 ⋅w, g2 ⋅w), F1 (v, g2 ⋅ v) = F1 (w, g2 ⋅w),

or F1 (v, g2 ⋅ v) = F1 (w, g1 ⋅w) since ∂2(x) = 0. However by Theorem 3.1, we must have the

case F1 (v, g2 ⋅ v) = F1 (w, g2 ⋅w) and ∣g2∣ = 2.

Similarly for F1 (v, g1 ⋅ v) in ∂2(F2 (v, g1 ⋅ v, g2 ⋅ v)) = F1 (g1 ⋅ v, g2 ⋅ v)−F1 (v, g2 ⋅ v)+F1 (v, g1 ⋅ v),

we get F1 (v, g1 ⋅ v) = F1 (y, g1 ⋅ y) for some y ∈ V (Cayley (G,S)) and ∣g1∣ = 2 and lastly

F1 (g1 ⋅ v, g2 ⋅ v) = F1 (g1 ⋅ z, g2 ⋅ z) for some z ∈ V (Cayley (G,S)) and ∣g1g−1
2 ∣ = 2. So we see

that the only way to have nontrivial H̃2 for a group with generating set of size two is for the

group to be the Klein 4 group. �

Lemma 3.9. H̃n = 0 in the neighborhood complex of the Cayley graph for an irredundant

generating set of size n if n ≥ 3.

Proof. Since there is a bijection between our basis for C∣Fn(∆)∣ and Fn(∆), we can use

the set Fn(∆) to show that ker (∂n) = 0. Let x be a linear combination of n-simplexes in

Fn(∆) such that ∂n(x) = 0 and x ≠ 0. We shall say that a n-simplex is in x if that n-simplex

has nonzero coefficient in x.

Let v ∈ V (Cayley (G,S)) then the neighborhoodND(v) = Fn (v, g1 ⋅ v, ..., gn ⋅ v) is mapped

by ∂n to Fn−1 (g1 ⋅ v, g2 ⋅ v, ..., gn ⋅ v) − Fn−1 (v, g2 ⋅ v, ..., gn ⋅ v) + ⋯ + Fn−1 (v, g1 ⋅ v, ..., gn−1 ⋅ v).

Since ∂n(x) = 0, if Fn (v, g1 ⋅ v, ..., gn ⋅ v) is in x then there must be another neighborhood

ND(w) in x such that Fn−1 (g1 ⋅ v, g2 ⋅ v, ..., gn ⋅ v) = Fn−1 (g1 ⋅w, g2 ⋅w, ..., gn ⋅w). However,

Corollary 3.5 states that neighborhoods cannot intersect in an (n− 1)-dimensional simplices

for n ≥ 3. �
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With all the structure restrictions that we have shown for a neighborhood complex cor-

responding to the finite group, we can fully describe the homology when the irredundant

generating set is of size two.

Theorem 3.10. dim (H̃1) = ∣F1(∆)∣ − 2 ∣G∣ + 1 in the neighborhood complex of the Cayley

graph for an irredundant generating set of size two except for the Klein 4 group.

0 C∣F2(∆)∣ C∣F1(∆)∣ C∣F0(∆)∣ C 0
∂2 ∂1 ∂0

Proof. Let G be any group except for the Klein 4 group. The neighborhood complex

for any group is connected so H̃0 = 0. Thus ker (∂0) = im (∂1). By the rank-nullity theorem

dim (ker (∂0)) = ∣F0(∆)∣ − dim (im (∂0)) = ∣G∣ − 1. Similarly,

dim (ker (∂1)) = ∣F1(∆)∣ − dim (im (∂1))

= ∣F1(∆)∣ − dim (ker (∂0))

= ∣F1(∆)∣ − ∣G∣ + 1.

According to Theorem 3.7, H̃2 = 0. Thus ker (∂2) = 0 and so dim (im (∂2)) = ∣F2(∆)∣ = ∣G∣.

We conclude that dim (H̃1) = dim (ker (∂1)) − dim (im (∂2)) = ∣F1(∆)∣ − 2 ∣G∣ + 1 �

Corollary 3.11. Let S = {g1, g2} be a generating set for the group G not isomorphic to

the Klein four group. Using the notation from Corollary 3.3, the homology is as follows:

● H̃2 = 0

● dim (H̃1) = (3 − 1
2 (α + β)) ∣G∣ − 2 ∣G∣ + 1

● H̃0 = 0.
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These structural restrictions not only give us information in the case where the generating

set is of size two but also gives us the following result about groups with generating set of

any size.

Theorem 3.12. H̃i = 0 for i ≥ 3.

Proof. Let γ be a linear combination of elements from Fi(∆) such that ∂i(γ) = 0. Recall

that for all α ∈ Fi(∆),

∂i(α) = ∑
j∈{0,...,i}

(−1)jFi−1(x0, ..., x̂j, ...xi).

We can see for ∂i(γ) to equal zero we need every (i-1)-simplex in ∂i(γ) to appear in pairs

(i.e. an even number of times). However, this would mean that γ must have two i-simplices

for each pair which share a particular (i−1)-simplex. By Corollary 3.5, the pair of i-simplices

must be in the same (i+1)-simplex. Let η1 and η2 be one such pair of i-simplices.

Besides the (i − 1)-simplex that η1 and η2 share, η1 has ( i+1
(i−1)+1

) − 1 = i other (i − 1)-

simplices which must be shared with other i-simplices from the same (i+1)-simplex in order

for ∂i(γ) = 0. However, the (i+1)-simplex containing η1 and η2 has ((i+1)+1
i+1

) = i+2 i-simplices.

Thus γ must contain all of the i-simplices in the (i+1)-simplex. A similar argument is valid

for every such pairing and so γ ∈ im (∂i+1). �

Using elementary methods we can capture the homology. The group action on the homol-

ogy induces a representation of the group and affords us further structure which we explore

in the next section.
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CHAPTER 4

Group Action on the Neighborhood Complexes

Since the Cayley graph is constructed from a group, there is a natural group action on the

graph. Moreover, if the Cayley graph is built by left multiplication then right multiplication

by a group element is a graph automorphism. The neighborhoods, and thereby the chain

complex and the homology, are created using only the structure of the Cayley Graph. Thus

the action on the Cayley graph induces an action on the chain complex and the homology.

Let G be a group generated by {g1, .., gn}. Then right multiplication by gi on the group

elements induces an action on the labeling of the vertex set for the Cayley graph. The

induced permutation on the labeling gives an action, σi on C∣Fi(∆)∣ such that the following

diagram commutes.

0 C∣Fn(∆)∣ ... C∣F1(∆)∣ C∣F0(∆)∣ C 0

0 C∣Fn(∆)∣ ... C∣F1(∆)∣ C∣F0(∆)∣ C 0

∂n ∂2 ∂1 ∂0

∂n ∂2 ∂1 ∂0

σn σ1 σ0

In the natural basis σi can be represented as a matrix of 0,±1 based on the permutation.

More concretely, let α be a i-simplex in Fi(∆), eα be the corresponding basis vector in

C∣Fi(∆)∣ and ρ is the aforementioned permutation of the vertices. Then σi(eα) = sgn(α)eρ(α)

where sgn(α) is defined to be the parity of the permutation which restores the elements of

α to ascending order.

A homomorphism from a group G to the general linear group GLn(C) over C of degree

n is a matrix representation of G of degree n [5, p.1]. A representation is called irreducible

if it does not leave any proper nontrivial subspaces fixed [5, p.6]. The vertices in the Cay-

ley graph are the group elements and the action of G is group multiplication so the regular
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representation will appear quite often. A permutation representation is a representation per-

muting the basis vectors of Cn. The regular representation is the permutation representation

on cosets of the trivial group or, in other words, group multiplication.

Since we are working over C, we know that all of our linear representations of G will be

a direct sum of irreducible representations. We say that a linear representation “contains”

a module if the module is a summand of the direct sum decomposition of the linear repre-

sentation. We will also use the term constituents to the refer to the terms in the direct sum

decomposition.

One minor result can be given for cyclic groups generated by a single element.

Theorem 4.1. The module defined by the action of the cyclic group Cn on H̃1 for the

neighborhood complex of Cayley (Cn,{g}) is the trivial module.

Proof. We only have one generator so ∣F2(∆)∣ = 0. Thus the chain complex is

0 C∣F1(∆)∣ C∣F0(∆)∣ C 0
∂2 ∂1 ∂0

So the image of ∂2 is zero and the homology, H̃1, is given only by the elements in the kernel

of ∂1. The kernel is one dimensional and is generated by id ⋅g+g ⋅g2 +g2 ⋅g3 + ...+gn−1 ⋅ id i.e.

[1,1, ...,1]. The action of g on id⋅g+g ⋅g2+g2 ⋅g3+...+gn−1 ⋅id is g ⋅g2+g2 ⋅g3+...+gn−1 ⋅id+id⋅g =

id ⋅ g + g ⋅ g2 + g2 ⋅ g3 + ... + gn−1 ⋅ id. Thus this action is trivial. �

We will now focus on the case where the group is generated by two elements. Before

we begin our analysis we need to recall one more fact from representation theory. The

irreducible constituents of the regular representation are all the irreducible representations

for the group. Furthermore, the regular module contains k copies of each k-dimensional

irreducible submodule [5, p.7].
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As mentioned earlier, the action of G on the Cayley graph induces an action on the chain

complex and therefore on Fi(∆) for 0 ≤ i ≤ 2. There exist bijections from F0(∆) and F2(∆)

to G which are compatible with the action of G. Therefore, the action of G on F0(∆) and

F2(∆) is group multiplication and so the representation will be the regular representation

in both cases. F1(∆) holds some more interest.

The action of G = ⟨g1, g2⟩ on F1(∆) has three orbits:

● Eg1 ≐ {F1 (v, g1 ⋅ v) ∣v ∈ V (Cayley (G,{g1, g2}))}

● Eg2 ≐ {F1 (v, g2 ⋅ v) ∣v ∈ V (Cayley (G,{g1, g2}))}

● Eg1g−12 ≐ {F1 (g1 ⋅ v, g2 ⋅ v) ∣v ∈ V (Cayley (G,{g1, g2}))}.

Here F1 (v, g1 ⋅ v) denotes the edge with initial point v and terminal point g1 ⋅ v.

To see why these three sets of edges are orbits, recall that we have a generating set

of size two and thus all edges are of the form F1 (v, g1 ⋅ v), F1 (v, g2 ⋅ v), or F1 (g1 ⋅ v, g2 ⋅ v)

for some v ∈ V (Cayley (G,{g1, g2})). Furthermore, consider the action of a group ele-

ment, g, on F1 (w, g1 ⋅w). F1 (w, g1 ⋅w)g = F1 (wg, g1 ⋅ (wg)) since w and g are both in

G, wg ∈ G and thus F1 (wg, g1 ⋅ (wg)) is still of the form F1 (v, g1 ⋅ v) for some v ∈ G =

V (Cayley (G,{g1, g2})) namely v = wg. A similar argument will hold for edges of type

F1 (v, g2 ⋅ v) and F1 (g1 ⋅ v, g2 ⋅ v).

Lemma 4.2. {F1 (v, gi ⋅ v) ,F1 (gi ⋅ v, v)} defines a block system for Egi if ∣gi∣ = 2.

Proof. First note that F1 (gi ⋅ v, v) = F1 ((gi ⋅ v), gi ⋅ (gi ⋅ v)) ∈ Egi since ∣gi∣ = 2.

We need to show that either

{F1 (v, gi ⋅ v) ,F1 (gi ⋅ v, v)}gi ∩ {F1 (v, gi ⋅ v) ,F1 (gi ⋅ v, v)} = {F1 (v, gi ⋅ v) ,F1 (gi ⋅ v, v)}

or

{F1 (v, gi ⋅ v) ,F1 (gi ⋅ v, v)}gi ∩ {F1 (v, gi ⋅ v) ,F1 (gi ⋅ v, v)} = ∅ for i ∈ {1,2}.
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Suppose that the intersection is nonempty. Then there are four possibilities:

(1) F1 (vgi, gi ⋅ vgi) = F1 (v, gi ⋅ v)

(2) F1 (vgi, gi ⋅ vgi) = F1 (gi ⋅ v, v)

(3) F1 (gi ⋅ vgi, vgi) = F1 (v, gi ⋅ v)

(4) F1 (gi ⋅ vgi, vgi) = F1 (gi ⋅ v, v)

We will now explore where each possibility can lead.

(1) F1 (vgi, gi ⋅ vgi) = F1 (v, gi ⋅ v) Ô⇒ vgi = v Ô⇒ gi is the identity which is impossi-

ble.

(2) F1 (vgi, gi ⋅ vgi) = F1 (gi ⋅ v, v) Ô⇒ vgi = gi ⋅ v and gi ⋅ vgi = v.

(3) F1 (gi ⋅ vgi, vgi) = F1 (v, gi ⋅ v) Ô⇒ gi ⋅ vgi = v and vgi = gi ⋅ v.

(4) F1 (gi ⋅ vgi, vgi) = F1 (gi ⋅ v, v) Ô⇒ vgi = v Ô⇒ gi is the identity which is impossi-

ble.

Cases 1 and 4 lead to contradictions while cases 2 and 3 gave the same relation vgi = gi ⋅ v.

Thus {F1 (v, gi ⋅ v) ,F1 (gi ⋅ v, v)}gi ∩ {F1 (v, gi ⋅ v) ,F1 (gi ⋅ v, v)} = {F1 (v, gi ⋅ v) ,F1 (gi ⋅ v, v)}

if vgi = gi ⋅ v and otherwise disjoint. �

Lemma 4.3. The stabilizer in G of {F1 (1, gi ⋅ 1) ,F1 (gi ⋅ 1,1)} is ⟨gi⟩ if ∣gi∣ = 2.

Proof. Suppose g ∈ StabG ({F1 (1, gi ⋅ 1) ,F1 (gi ⋅ 1,1)}).

{F1 (1, gi ⋅ 1) ,F1 (gi ⋅ 1,1)}g = {F1 (1g, gi ⋅ 1g) ,F1 (gi ⋅ 1g,1g)}

= {F1 (1, gi ⋅ 1) ,F1 (gi ⋅ 1,1)}

Thus we have 2 cases:
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(1) F1 (1, gi ⋅ 1) = F1 (1g, gi ⋅ 1g) and F1 (gi ⋅ 1,1) = F1 (gi ⋅ 1 ⋅ g,1 ⋅ g)

(2) F1 (1, gi ⋅ 1) = F1 (gi ⋅ 1g,1g) and F1 (gi ⋅ 1,1) = F1 (1g, gi ⋅ 1g)

Case 1 implies 1 = 1g and thus g is the identity.

Case 2 implies gi ⋅1 = 1g and thus g = gi. (Notice that if ∣gi∣ ≠ 2 we would have a contradiction

in this case: gi ⋅ 1 = 1g Ô⇒ g = gi and yet 1 = gi ⋅ 1g Ô⇒ g = g−1
i .)

Therefore StabG ({F1 (1, gi ⋅ 1) ,F1 (gi ⋅ 1,1)}) = ⟨gi⟩. �

The two lemmata above can also be given for the case of ∣gig−1
j ∣ = 2. Proofs are omitted

here since they follow the same process as those above.

Lemma 4.4. {F1 (gi ⋅ v, gj ⋅ v) ,F1 (gj ⋅ v, gi ⋅ v)} defines a block system for

Egig−1j if ∣gig−1
j ∣ = 2.

Lemma 4.5. The stabilizer in G of {F1 (gi ⋅ 1, gj ⋅ 1) ,F1 (gj ⋅ 1, gi ⋅ 1)} is ⟨gig−1
j ⟩ if

∣gig−1
j ∣ = 2.

Given these lemmata we can now prove our main theorem.

Theorem 4.6. Let {g1, g2} be an irredundant generating set for a group G. Define the set

S = {g1, g2, g1g−1
2 }. The representation given by the group action on the set of edges, F1(∆),

decomposes into the direct sum of

● one copy of the regular representation for each element in S which is not order two

● a representation of degree
∣G∣
2

that is a direct sum of constituents of the regular

representation for each element in S which has order two.

Moreover for a ∈ S of order two and ϕ an irreducible representation of G with character

χ, the number of summands of ϕ which appear in the representation of degree
∣G∣
2

is given
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by the formula:

(4.1) (χ, ρ ↑G)=(χ ↓⟨a⟩, ρ)=
1

∣⟨a⟩∣ ∑x∈⟨a⟩
χ(x)ρ(x)=1

2
(χ(1)ρ(1) + χ(a)ρ(a))=1

2
(χ(1) − χ(a))

where ρ is the sign character of ⟨a⟩.

Proof. Since Eg1 , Eg2 , and Eg1g−12 are the orbits of the action of G on F1(∆) they must

be disjoint. Thus the action of G on the edge set can be viewed as three separate actions,

one for each orbit.

If ∣a∣ ≠ 2 for a ∈ S there exists a bijection between Ea and G. Thus the action of G on

Ea will give rise to the regular representation of G.

Suppose ∣a∣ = 2 for a ∈ S and denote the subgroup generated by a by H. By Lemma

4.2 and Lemma 4.3, Ea has a block system and StabG ({F1 (1, a ⋅ 1) ,F1 (a ⋅ 1,1)}) = H (or

StabG ({F1 (g1 ⋅ 1, g2 ⋅ 1) ,F1 (g2 ⋅ 1, g1 ⋅ 1)}) = H if a = g1g−1
2 ). Therefore by the (Krasner,

Kaloujnine) embedding theorem [6, p.45], the action of G on Ea defines an embedding of

G into the wreath product, Hϕ ≀Gψ, where ϕ is the permutation representation of H given

by the action of H on {F1 (1, a ⋅ 1) ,F1 (a ⋅ 1,1)} and ψ is the permutation representation

of G given by the action of G on the blocks. From the point of view of representation

theory this embedding is the induced representation of ϕ ↑G. Notice that the action of H

on {F1 (1, a ⋅ 1) ,F1 (a ⋅ 1,1)} (or {F1 (g1 ⋅ 1, g2 ⋅ 1) ,F1 (g2 ⋅ 1, g1 ⋅ 1)} if a = g1g−1
2 ) is nontrivial

and thus ϕ is the nontrivial representation of H. �
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Let us consider an example which uses the above theorem.

Example 4.1. Consider the symmetric group on four points.

1A 2A 3A 2B 4A
χ1 1 1 1 1 1
χ2 1 1 1 -1 -1
χ3 2 2 -1 0 0
χ4 3 -1 0 -1 1
χ5 3 -1 0 1 -1

Table 4.1. Character Table for S4.

Consider the generating set {g1 = (1,2), g2 = (1,2,3,4)} for G = S4. Notice that ∣g1∣ = 2,

∣g2∣ ≠ 2 and ∣g1g−1
2 ∣ ≠ 2. So by Theorem 4.6 we have two copies of the regular representation

in the action on the set of edges given by the action on the orbits Eg2 ≐ {F1 (v, g2 ⋅ v) ∣v ∈

V (Cayley (G,{g1, g2}))} and Eg1g−12 ≐ {F1 (g1 ⋅ v, g2 ⋅ v) ∣v ∈ V (Cayley (G,{g1, g2}))}. Thus

we have at least:
Copies irreducible representation

2 χ1

2 χ2

4 χ3

6 χ4

6 χ5

Theorem 4.6 also tells us that we will have a half of the regular representation given by

the action on the orbit Eg1 ≐ {F1 (v, g1 ⋅ v) ∣v ∈ V (Cayley (G,{g1, g2}))}. To see exactly which

irreducible representations will appear in this half of the regular representation we use the

formula 4.1.

(χ1, ρ ↑G) = 1
2 (χ1(1) − χ1(g1)) = 1

2(1 − 1) = 0

(χ2, ρ ↑G) = 1
2 (χ2(1) − χ2(g1)) = 1

2(1 − (−1)) = 1

(χ3, ρ ↑G) = 1
2 (χ3(1) − χ3(g1)) = 1

2(2 − 0) = 1

(χ4, ρ ↑G) = 1
2 (χ4(1) − χ4(g1)) = 1

2(3 − (−1)) = 2

(χ5, ρ ↑G) = 1
2 (χ5(1) − χ5(g1)) = 1

2(3 − 1) = 1

Note that g1 is in the conjugacy class labeled 2B, in the above table.

22



Thus the irreducible representations given by the action of S4 on the set of edges is as

follows.

Copies of irreducible representation
2 χ1

3 χ2

5 χ3

8 χ4

7 χ5

By Theorem 4.6, we fully described the representation given by the action of G on the

space of edges. In order to easily understand the representations given by the action on the

other spaces, i.e. images, kernels, and homology, we will use the following structure.

im (∂3) H̃2

ker (∂2)

W2

im (∂2) H̃1

ker (∂1)
W1

im (∂1) H̃0

ker (∂0)
W0

im (∂0) Meets are relations.

im (∂i+1) + H̃i=ker (∂i) and

ker (∂i) + im (∂i) =Wi

With this means of organizing the information, we can state what the irreducible repre-

sentations given by the action on the images, kernels, homology and whole space (i.e. set of

edges). We have a few of the items in the figure by definition (single underline), a few more

by theorems stated earlier (double underline), and the remaining entries can be deduced via

the structure of the figure.
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im (∂3) = 0 H̃2 = 0

ker (∂2) = 0

W2 = 1 reg rep

im (∂2) = 1 reg rep H̃1 = C−

2 reg rep + id

ker (∂1) = C−

1 reg rep +

id

W1 = C�

im (∂1) =

1 reg rep - id

H̃0 = 0

ker (∂0) =

1 reg rep - id

W0 = 1 reg rep

im (∂0) = id

�See Theorem 4.6 for value of C.

As the chart indicates, the irreducible representations corresponding to the action on the

ker (∂1) and H̃1 = ker (∂1)/im (∂0) are known once the action on the set of edges, F1(∆), is

understood. Thus we have the following corollary.

Corollary 4.7. Let {g1, g2} be an irredundant generating set for a group G. Let C be

the collection of irreducible representations given by the action on the set of edges F1(∆).

Then the irreducible representations given by the action of G on

● ker (∂1) is C minus one regular representation of G plus the trivial representation of

G

● H̃1 is C minus two copies of the regular representation of G plus the trivial repre-

sentation of G.

Example 4.2. Continuing the previous example. Consider the symmetric group on four

points.
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Previous calculations showed the irreducible representations given by the action of S4 on

the set of edges is as follows.

Copies of irreducible representation
2 χ1

3 χ2

5 χ3

8 χ4

7 χ5

So by corollary 4.7 we can complete the following table of counts of irreducible represen-

tations.

irreducible representation im (∂2) ker (∂1) ker (∂1)/im (∂2) F1(∆)
χ1 1 2 1 2
χ2 1 2 1 3
χ3 2 3 1 5
χ4 3 5 2 8
χ5 3 4 1 7

◻

Notice that Theorem 4.6 and Corollary 4.7 gives a complete description of the action of

G where G is generated by irredundant generating set of size two. The next step is to extend

these ideas to the case where the irredundant generating set is of size n. Recall Theorem

4.6 and notice that in the proof we never used the fact that there were only two generators.

Rather we could replace G = {g1, g2, g1g−1
2 } with G = {g1, g2, ..., gn}∪{gig−1

j ∣gi, gj ∈ S and i < j}

and apply the same techniques to prove the following generalization.

Theorem 4.8. Let S = {g1, g2, ..., gn} be an irredundant generating set for a group G.

Define the set S = S ∪ {gig−1
j ∣gi, gj ∈ S and i < j}. The representation given by the group

action on the set of edges, F1(∆), consists of

● one copy of the regular representation for each element in S which is not order two
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● a representation of degree
∣G∣
2

that is a direct sum of constituents of the regular

representation for each element in S which has order two.

MMoreover for a ∈ S of order two and ϕ an irreducible representation of G with character

χ, the number of summands of ϕ which appear in the representation of degree
∣G∣
2

is given

by the formula:

(4.2) (χ, ρ ↑G)=(χ ↓⟨a⟩, ρ)=
1

∣⟨a⟩∣ ∑x∈⟨a⟩
χ(x)ρ(x)=1

2
(χ(1)ρ(1) + χ(a)ρ(a))=1

2
(χ(1) − χ(a))

where ρ is the sign character of ⟨a⟩.

Another statement that we can make at this time towards the generalization to an irre-

dundant generating set of size n is about the group action on Fi(∆) where 2 ≤ i ≤ n.

Theorem 4.9. Let S = {g1, g2, ..., gn} be an irredundant generating set for a group G.

The representation given by the group action on Fi(∆) for 2 ≤ i ≤ n is (n + 1

i + 1
) copies of the

regular representation of G.

Proof. Let 2 ≤ i ≤ n. The result follows immediately from Corollary 3.5 since the

corollary implies that no i-dimensional simplex will be shared by two (i + 1)-dimensional

simplices and thus there are (n + 1

i + 1
) orbits, recall Lemma 3.2, with n i-simplices in each

orbit for the action of G on Fi(∆). �

Corollary 4.10. Let S = {g1, g2, ..., gn} be an irredundant generating set for a group G.

The representation given by the group action on im (∂j) and ker (∂j) for 3 ≤ j ≤ n is

∣
n

∑
i=j

(−1)i(n + 1

i + 1
)∣

copies of the regular representation of G.
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Proof. By Theorem 4.9 we know the representation given by the group action on Fi(∆)

for 2 ≤ i ≤ n is a direct sum of (n + 1

i + 1
) copies of the regular representation of G.

Recall im (∂n+1) = 0 by definition and H̃i = 0 for i ≥ 3 by Theorem 3.12. Using this

information we simply apply the relations im (∂i+1) + H̃i = ker (∂i) and ker (∂i) + im (∂i) =

Fi(∆). �
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CHAPTER 5

Second Homology for Generating Sets of Size

Greater than Two

In this chapter we focus on the second homology. Once we understand the representation

given by the action on H̃2, we will have a full description of the action on all of our objects.

(See second organizational structure in Appendix D.) This section gives results towards

proving that the size of the second homology, H̃2, is determined by the number of certain

pairs of generators appearing in the extended generating set. Recall that the extended

generating set, S = S ∪ {gig−1
j ∣gi, gj ∈ S and i < j} where S = {g1, g2, .., gn} is the chosen

irredundant generating set.

The first step to understanding the homology is to understand the structure of the im-

age of ∂3. In an attempt towards this goal we define a few relations that the elements

of the image of ∂3 must satisfy. Let ζ be a linear combination of triangles in F2(∆).

We define Coeffζ(F2 (x, gi ⋅ x, gj ⋅ x)) to be the coefficient which appears with the triangle

F2 (x, gi ⋅ x, gj ⋅ x) in ζ. Recall that the triangles in F2(∆) have an ordering. Also for any

triangle in F2(∆) not appearing in ζ is considered to have coefficient zero with respect to

Coeffζ . For example take ζ = −abc + 3adf + def then Coeffζ(abc) = −1, Coeffζ(adf) = 3,

Coeffζ(def) = 1 and Coeffζ(abd) = 0.

Associated to each edge in F1(∆) we can define the following relations.
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Relations:

(1) ∣gi∣ ≠ 2 ∶ fF1(x,gi⋅x)(ζ) = ∑g∈S
g≠gi

sgn(α) Coeffζ(F2 (x, gi ⋅ x, g ⋅ x)α)

(2) ∣gigj ∣ ≠ 2 ∶ fF1(gi⋅x,gj ⋅x)(ζ) = ∑g∈S
g≠gi

sgn(α) Coeffζ(F2 (gi ⋅ x, gj ⋅ x, g ⋅ x)α)

(3) ∣gi∣ = 2 and thus F1 (x, gi ⋅ x) = F1 (y, gi ⋅ y) ∶

(a) fF1(x,gi⋅x)(ζ) = ∑g∈S
g≠gi

sgn(α) Coeffζ(F2 (x, gi ⋅ x, g ⋅ x)α)

(b) fF1(y,gi⋅y)(ζ) = ∑g∈S
g≠gi

sgn(α) Coeffζ(F2 (y, gi ⋅ y, g ⋅ y)α)

(4) ∣gigj ∣ = 2 and thus F1 (gi ⋅ x, gj ⋅ x) = F1 (gi ⋅ y, gj ⋅ y) ∶

(a) fF1(gi⋅x,gj ⋅x)(ζ) = ∑g∈S
g≠gi

sgn(α) Coeffζ(F2 (gi ⋅ x, gj ⋅ x, g ⋅ x)α)

(b) fF1(gi⋅y,gj ⋅y)(ζ) = ∑g∈S
g≠gi

sgn(α) Coeffζ(F2 (gi ⋅ y, gj ⋅ y, g ⋅ y)α)

where ζ is in the vector space F3(∆) and α is the sorting permutation for the triangle.

We will refer to the relations given by setting the above maps to zero many times later

in this section.

Lemma 5.1. The image of ∂3 satisfies the above relations.

Proof. We will show the relations hold by direct computations. There are two possi-

bilities for elements in F3(∆) assuming we have a sufficient number of generators:

F3 (x, gi ⋅ x, gj ⋅ x, gk ⋅ x) and F3 (gi ⋅ x, gj ⋅ x, gk ⋅ x, gl ⋅ x).
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Case 1: F3 (x, gi ⋅ x, gj ⋅ x, gk ⋅ x)

ζ ≐ ∂3(F3 (x, gi ⋅ x, gj ⋅ x, gk ⋅ x)) =F2 (gi ⋅ x, gj ⋅ x, gk ⋅ x) − F2 (x, gj ⋅ x, gk ⋅ x)

+ F2 (x, gi ⋅ x, gk ⋅ x) − F2 (x, gi ⋅ x, gj ⋅ x)

The relations in the box above are given on edges and therefore we need only check the

relations given by the edges in ζ: F1 (x, gi ⋅ x), F1 (x, gj ⋅ x), F1 (x, gk ⋅ x), F1 (gi ⋅ x, gj ⋅ x),

F1 (gi ⋅ x, gk ⋅ x), and F1 (gj ⋅ x, gk ⋅ x).

(1a) F1 (x, gi ⋅ x) ∶

fF1(x,gi⋅x)(ζ) = ∑
g∈S
g≠gi

sgn(α) Coeffζ(F2 (x, gi ⋅ x, g ⋅ x)α)

= sgn((1))Coeff(F2 (x, gi ⋅ x, gk ⋅ x)) + sgn((1))Coeff(F2 (x, gi ⋅ x, gj ⋅ x))

= (1)(1) + (1)(−1) = 0

(1b) F1 (x, gj ⋅ x) ∶ fF1(x,gj ⋅x)(ζ) = (1)(−1) + (−1)(−1) = 0

(1c) F1 (x, gk ⋅ x) ∶ fF1(x,gk ⋅x)(ζ) = (−1)(−1) + (−1)(1) = 0

(1d) F1 (gi ⋅ x, gj ⋅ x) ∶ fF1(gi⋅x,gj ⋅x)(ζ) = (1)(1) + (1)(−1) = 0

(1e) F1 (gi ⋅ x, gk ⋅ x) ∶ fF1(gi⋅x,gk ⋅x)(ζ) = (−1)(1) + (1)(1) = 0

(1f) F1 (gj ⋅ x, gk ⋅ x) ∶ fF1(gj ⋅x,gk ⋅x)(ζ) = (1)(1) + (1)(−1) = 0

Case 2: F3 (gi ⋅ x, gj ⋅ x, gk ⋅ x, gl ⋅ x)

ζ ≐ ∂3(F3 (gi ⋅ x, gj ⋅ x, gk ⋅ x, gl ⋅ x)) =F2 (gj ⋅ x, gk ⋅ x, gl ⋅ x) − F2 (gi ⋅ x, gk ⋅ x, gl ⋅ x)

+ F2 (gi ⋅ x, gj ⋅ x, gl ⋅ x) − F2 (gi ⋅ x, gj ⋅ x, gk ⋅ x)
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The edges in ζ: F1 (gi ⋅ x, gj ⋅ x), F1 (gi ⋅ x, gk ⋅ x), F1 (gi ⋅ x, gl ⋅ x), F1 (gj ⋅ x, gk ⋅ x),

F1 (gj ⋅ x, gl ⋅ x), and F1 (gk ⋅ x, gl ⋅ x).

(2a) F1 (gi ⋅ x, gj ⋅ x) ∶ fF1(gi⋅x,gj ⋅x)(ζ) = (1)(1) + (1)(−1) = 0

(2b) F1 (gi ⋅ x, gk ⋅ x) ∶ fF1(gi⋅x,gk ⋅x)(ζ) = (1)(−1) + (−1)(−1) = 0

(2c) F1 (gi ⋅ x, gl ⋅ x) ∶ fF1(gi⋅x,gl⋅x)(ζ) = (−1)(−1) + (−1)(1) = 0

(2d) F1 (gj ⋅ x, gk ⋅ x) ∶ fF1(gj ⋅x,gk ⋅x)(ζ) = (1)(1) + (1)(−1) = 0

(2e) F1 (gj ⋅ x, gl ⋅ x) ∶ fF1(gj ⋅x,gl⋅x)(ζ) = (−1)(1) + (1)(1) = 0

(2f) F1 (gk ⋅ x, gl ⋅ x) ∶ fF1(gk ⋅x,gl⋅x)(ζ) = (1)(1) + (1)(−1) = 0

Thus in both cases the relations hold and therefore any element in the image will satisfy the

relations. �

There are two items that the careful reader will have noticed about the last proof. First,

we never asked whether a generator has order two or not, even though the relations seem to

be dependent on this property. However upon closer inspection the reader will notice that

the property of the generator being order two only doubles the number of relations by giving

relations for x and y. Therefore since in the proof, we are concerned with showing that the

mapping of tetrahedrons based at x, for an arbitrary vertex x, satisfies the relations, we

need not concern ourselves whether the generator is of order two. Then why have the second

set of relations in (3) and (4) given by the order two generators? Computing examples

indicates that the relations without (3b) and (4b) describe a space larger than the im (∂3).

In experiments it seems that an element ζ in F2(∆) is in the image if and only if ζ satisfies

the relations. Although the examples indicate that this claim is true, it has yet to be proven.

The second item that the careful reader will have noticed is that the definition of the

relations required a sorting permutation and consequently an ordering on the labeling of the

vertices. For the proof of Lemma 5.1, we took the ordering to be x < gi ⋅x < gj ⋅x < gk ⋅x < gl ⋅x.
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However any ordering on the vertices will give the same result since for any change in sign

in f(ζ) there is a corresponding change in ζ.

Now that we have the relations set up, we will continue towards our goal of understanding

the homology H̃2. Let S = {g1, g2, .., gn} be an irredundant generating set for a group G and

S be the extended generating set for S. We say an unordered pair of elements of S, {a, b}, is

a square pair if ∣a∣ = ∣b∣ = ∣ab∣ = 2. Two square pairs {a, b} and {c, d} are equivalent if {a, b, ab}

and {c, d, cd} are equal as sets. Note that this definition is equivalent to saying that {a, b}

generate Z/2Z ×Z/2Z.

Theorem 5.2. Let S = {g1, g2, .., gn} be an irredundant generating set for a group G and

S be the extended generating set for S. If there exist an a, b ∈ S such that {a, b} is a square

pair then H̃2 ≠ {0}.

Proof. Suppose there exists gi, gj ∈ S that form a square pair. Consider

ζ ≐ F2 (x, gi ⋅ x, gj ⋅ x) − F2 (x, gi ⋅ x, gigj ⋅ x) + F2 (x, gj ⋅ x, gigj ⋅ x) − F2 (gi ⋅ x, gj ⋅ x, gigj ⋅ x) .

First notice that every triangle in ζ is in F2(∆) since ζ can be rewritten as

ζ =F2 (x, gi ⋅ x, gj ⋅ x) + F2 ((gi ⋅ x), gi ⋅ (gi ⋅ x), gj ⋅ (gi ⋅ x)) + F2 ((gj ⋅ x), gi ⋅ (gj ⋅ x), gj ⋅ (gj ⋅ x))

+ F2 ((gigj ⋅ x), gi ⋅ (gigj ⋅ x), gj ⋅ (gigj ⋅ x)) .

ζ ∉ im (∂3) since the relation for F1 (x, gi ⋅ x) ∶ fF1(x,gi⋅x)(ζ) = (1)(1) = 1 ≠ 0. Notice we only

use F2 (x, gi ⋅ x, gj ⋅ x) from ζ since the other triangle with F1 (x, gi ⋅ x) is F2 (x, gi ⋅ x, gigj ⋅ x)

and gigj ∉ S. Thus by Lemma 5.1, ζ ∉ im (∂3). However, the quick calculation below shows

ζ ∈ ker (∂2).
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∂2(ζ) =F1 (gi ⋅ x, gj ⋅ x) − F1 (x, gj ⋅ x) + F1 (x, gi ⋅ x)

− F1 (gi ⋅ x, gigj ⋅ x) + F1 (x, gigj ⋅ x) − F1 (x, gi ⋅ x)

+ F1 (gj ⋅ x, gigj ⋅ x) − F1 (x, gigj ⋅ x) + F1 (x, gj ⋅ x)

− F1 (gj ⋅ x, gigj ⋅ x) + F1 (gi ⋅ x, gigj ⋅ x) − F1 (gi ⋅ x, gj ⋅ x) = 0

Thus if there exist a square pair in S then H̃2 ≠ {0}. �

Throughout the rest of this section we will be working towards proving the imprecise

statement that “H̃2 is determined by the square pairs appearing in S”. We have shown that

if there is a square pair in S then the second homology is nontrivial. Next we will show that

the square pair gives a lower bound for the size of H̃2.

Suppose that S = {g1, g2, .., gn} is an irredundant generating set for a group G and that

{gi, gj} is a square pair. Since {gi, gj} is a square pair, we have ζ(id) ≐ F2 (id, gi ⋅ id, gj ⋅ id) −

F2 (id, gi ⋅ id, gigj ⋅ id)+F2 (id, gj ⋅ id, gigj ⋅ id)−F2 (gi ⋅ id, gj ⋅ id, gigj ⋅ id) is in the homology by

Theorem 5.2. Consider the action of gk ∈ S where k ≠ i, j on ζ(id).

ζ(id) ⋅ gk =F2 (gk, gigk, gjgk) − F2 (gk, gigk, gigjgk) + F2 (gk, gjgk, gigjgk) − F2 (gigk, gjgk, gigjgk)

=F2 (gk, gi ⋅ gk, gj ⋅ gk) − F2 (gk, gi ⋅ gk, gigj ⋅ gk) + F2 (gk, gj ⋅ gk, gigj ⋅ gk)

− F2 (gi ⋅ gk, gj ⋅ gk, gigj ⋅ gk)(5.1)

=ζ(gk)
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Next consider the action of gi on ζ(id).

ζ(id) ⋅ gi =F2 (gi, id, gjgi) − F2 (gi, id, gj) + F2 (gi, gjgi, gj) − F2 (id, gjgi, gj)

=F2 (id, gi ⋅ id, gj ⋅ id) − F2 (id, gi ⋅ id, gigj ⋅ id) + F2 (id, gj ⋅ id, gigj ⋅ id)

− F2 (gi ⋅ id, gj ⋅ id, gigj ⋅ id)(5.2)

=ζ(id)

Similarly for gj. Thus the square pair given by gi and gj generate the stabilizer for ζ(id).

Therefore, the action of G on ∆ gives rise to a cyclic submodule generated by ζ(id). Notice

that the module given by the action on ζ(id) corresponds to the trivial representation of

⟨gi, gj⟩ induced up to G. This line of reasoning gives the following result.

Theorem 5.3. Let S = {g1, g2, .., gn} be an irredundant generating set for a group G and

S be the extended generating set for S. If x, y ∈ S form a square pair then dim (H̃2) ≥ ∣G∣4 .

Proof. This result follows directly from the calculations above and that H̃2 is a G-

module. �

The same argument can be used for any number of square pairs as long as their pairwise

intersection is trivial, i.e. the only element in the intersection of the groups generated by

any two of the square pairs is the identity.

Theorem 5.4. Let S = {g1, g2, .., gn} be an irredundant generating set for a group G and

S be the extended generating set for S. Suppose G has m distinct square pairs with generators

in S such that the pairwise intersections of the square pairs are trivial. Then dim (H̃2) ≥ m∣G∣
4 .
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Proof. For each square pair the induced module for the action on ζ(id) will be in H̃2.

However, we need to show that the module created by inducing the trivial module for each

of the square pairs is of full size or more precisely that the module is a direct sum of the

induced trivial modules.

Recall that in Lemma 5.1 we showed that the image of ∂3 satisfies the relations on page

29. Therefore, if we can show that a linear combination of triangles does not satisfy the

relations then that linear combination of triangles is not in the image of ∂3.

Consider again ζ{gi,gj}(id) ≐ F2 (id, gi ⋅ id, gj ⋅ id) − F2 (id, gi ⋅ id, gigj ⋅ id)

+F2 (id, gj ⋅ id, gigj ⋅ id)−F2 (gi ⋅ id, gj ⋅ id, gigj ⋅ id). (Since there are now multiple square pairs

we will denote which generators are used in ζ(id) by the subscript.) Notice that the edge

F1 (id, gi ⋅ id) appears in ζ{gi,gj}(id) twice but only one of those triangles are of the form

F2 (a, x ⋅ a, y ⋅ a) where x and y are in S since gigj ∉ S. Thus ζ{gi,gj}(id) does not satisfy the

relations given by F1 (id, gi ⋅ id) and consequently ζ{gi,gj}(id) ∉ im (∂3).

Since the pairwise intersections of the square pairs are trivial the edge F1 (id, gi ⋅ id)

cannot appear in any other ζ{x,y}(b) for any generators in a square pair {x, y} where x ∉

{gi, gj} , y ∉ {gi, gj} or b ∈ G. Thus no linear combination of ζ’s will be in the image. �

In the previous proof we only really used that the edge F1 (id, gi ⋅ id) cannot appear in

any other ζ⟨x,y⟩(b). Thus the same proof will work for the following theorem.

Theorem 5.5. Let S = {g1, g2, .., gn} be an irredundant generating set for a group G.

Suppose G has m distinct square pairs with the property that at least one generator of each

square pair does not appear in any other square pair. Then dim (H̃2) ≥ m∣G∣
4 .

We can think of a square pair as a square, as shown in Figure 5.1, then the assumption in

Theorem 5.5 of at least one generator of each square pair does not appear in any other square
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gi ⋅ v gigj ⋅ v

v gj ⋅ v

gj

gi

gj

gi

Figure 5.1. V4 = ⟨gi, gj⟩ square.

pair can be thought of as a “free edge” property. With this point of view the next natural

question is what happens when we do not have a free edge? The smallest such example is C3
2

with generating set {g1, g2, g3} such that {g1, g2}, {g1, g3}, and {g2, g3} are all square pairs.

If drawn as in Figure 5.1 these three square pairs would make a cube.

In order to state the next theorem we will need a new definition. We say that a square

pair {x, y} is a k-square pair if x = ab and y = cd where {a, b} and {c, d} are (k − 1)-square

pairs. In the case of C3
2 with generating set {g1, g2, g3} such that {g1, g2}, {g1, g3}, and

{g2, g3} are all square pairs (can be thought of as 0-square pairs), we have one 1-square pair

{g1g2, g1g3}. Recall that two square pairs {a, b} and {c, d} are equivalent if {a, b, ab} and

{c, d, cd} are equal as sets. With this definition we see that we only have one 1-square pair

since {g1g2, g1g3} ∼ {g1g2, g2g3} ∼ {g1g3, g2g3}.

Theorem 5.6. Take S = {g1, g2, g3} be an irredundant generating set for G = C2×C2×C2

such that A = {g1, g2}, B = {g1, g3}, and C = {g2, g3} are square pairs. Then there exists

a 1-square pair, D = ⟨g1g2, g1g3⟩. Furthermore, the trivial representations corresponding to

subgroups generated by A, B, and C induced up to G and the nontrivial irreducible submodule

of the trivial representation corresponding to subgroup generated by D induced up to G are

contained in H̃2. In other words, H̃2 contains the direct sum of all of constituents of the

induced trivial representations of the square pairs except one trivial module.
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Proof. As we have observed above (see reasoning before Theorem 5.3), the trivial rep-

resentation of the group generated by a square pair is isomorphic to a submodule of H̃2.

What is left to be determined is if the induced representations from each of the square pairs

interact in any way.

Let ϕ be the representation given by the action of G on H̃2.

Recall that the group generated by a square pair is isomorphic to the Klein four group

and thus has index two with respect to G. Therefore the trivial character of ⟨A⟩ induced

to G has two constituents: one is the trivial character of G, denoted by 1G, and other is a

nontrivial one dimensional character of G, denoted by χA. Similarly for B, C, and D we get

the irreducible characters 1G, χB, 1G, χC , 1G, and χD. The characters χA, χB, χC , and χD

are all distinct since G is abelian and thus every element of G is in its own conjugacy class.

Thus their corresponding modules are distinct and all of these characters are constituents of

ϕ.

Now we restrict to the constituents of homogeneous component for the trivial G-module

induced from A, B, C, and D. We will show this module is generated by the trivial modules

induced from A, B, and C, i.e. the trivial module induced from D is contained in the direct

sum of the trivial modules induced from A, B, and C.

Recall the definition of ζ{gi,gj}(x):

ζ{gi,gj}(x) ≐F2 (x, gi ⋅ x, gj ⋅ x) − F2 (x, gi ⋅ x, gigj ⋅ x) + F2 (x, gj ⋅ x, gigj ⋅ x)

− F2 (gi ⋅ x, gj ⋅ x, gigj ⋅ x) .

We will now show that the vector ζ{g1,g2}(id) + ζ{g1,g2}(g3) spans a fixed subspace corre-

sponding to the trivial module for G. As seen in equation 5.2, ζ{g1,g2}(id) and ζ{g1,g2}(g3)

are both fixed by g1 and g2 and thus ζ{g1,g2}(id) + ζ{g1,g2}(g3) is fixed by g1 and g2. Equation
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5.1 also shows that ζ{g1,g2}(id) ⋅ g3 = ζ{g1,g2}(g3). The following quick calculation shows that

ζ{g1,g2}(g3) ⋅ g3 = ζ{g1,g2}(id).

ζ{g1,g2}(g3) ⋅ g3 =F2 (g3 ⋅ g3, (g1 ⋅ g3) ⋅ g3, (g2 ⋅ g3) ⋅ g3) − F2 (g3 ⋅ g3, (g1 ⋅ g3) ⋅ g3, (g1g2 ⋅ g3) ⋅ g3)

+ F2 (g3 ⋅ g3, (g2 ⋅ g3) ⋅ g3, (g1g2 ⋅ g3) ⋅ g3)

− F2 ((g1 ⋅ g3) ⋅ g3, (g2 ⋅ g3) ⋅ g3, (g1g2 ⋅ g3) ⋅ g3)

=F2 (g3 ⋅ g3, g1 ⋅ (g3 ⋅ g3), g2 ⋅ (g3 ⋅ g3)) − F2 (g3 ⋅ g3, g1 ⋅ (g3 ⋅ g3), g1g2 ⋅ (g3 ⋅ g3))

+ F2 (g3 ⋅ g3, g2 ⋅ (g3 ⋅ g3), g1g2 ⋅ (g3 ⋅ g3))

− F2 (g1 ⋅ (g3 ⋅ g3), g2 ⋅ (g3 ⋅ g3), g1g2 ⋅ (g3 ⋅ g3))

=F2 (id, g1 ⋅ id, g2 ⋅ id) − F2 (id, g1 ⋅ id, g1g2 ⋅ id)

+ F2 (id, g2 ⋅ id, g1g2 ⋅ id) − F2 (g1 ⋅ id, g2 ⋅ id, g1g2 ⋅ id)

=ζ{g1,g2}(id)

Therefore ζ{g1,g2}(id)+ ζ{g1,g2}(g3) is fixed by all three generators and so corresponds to a

trivial module forG. Similarly ζ{g1,g3}(id)+ζ{g1,g3}(g2), ζ{g2,g3}(id)+ζ{g2,g3}(g1), ζ{g1g2,g2g3}(id)+

ζ{g1g2,g2g3}(g3) are fixed by G. So we have four copies of the trivial module. However, in the

homology, one copy of the trivial module is redundant.

ζ{g1,g2}(id) + ζ{g1,g2}(g3) + ζ{g1,g3}(id) + ζ{g1,g3}(g2) + ζ{g2,g3}(id) + ζ{g2,g3}(g1) + ζ{g1g2,g2g3}(id)

+ ζ{g1g2,g2g3}(g3)

=∂2(−F3 (id, g1 ⋅ id, g2 ⋅ id, g3 ⋅ id) + F3 (g3, g1 ⋅ g3, g2 ⋅ g3, g3 ⋅ g3)

− F3 (g2, g1 ⋅ g2, g2 ⋅ g2, g3 ⋅ g2) + F3 (g1, g1 ⋅ g1, g2 ⋅ g1, g3 ⋅ g1)

+ F3 (g1g2, g1 ⋅ g1g2, g2 ⋅ g1g2, g3 ⋅ g1g2) − F3 (g1g3, g1 ⋅ g1g3, g2 ⋅ g1g3, g3 ⋅ g1g3)

+ F3 (g2g3, g1 ⋅ g2g3, g2 ⋅ g2g3, g3 ⋅ g2g3)

− F3 (g1g2g3, g1 ⋅ g1g2g3, g2 ⋅ g1g2g3, g3 ⋅ g1g2g3)) ∈ im (∂2) .

�
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We have seen that in the C3
2 case instead of the expected eight dimensional module, we

get a seven dimensional module. This loss was determined to be the trivial module of the

induced representation of the 1-square pair modulo the image. However, does this trend

continue for Cn
2 where n > 3?

Example 5.1. Let C4
2 be generated by {g1, g2, g3, g4} where ∣gi∣ = 2.

0-square pairs with respect to the generating set:

⟨g1, g2⟩,⟨g1, g3⟩,⟨g1, g4⟩, ⟨g2, g3⟩,⟨g2, g4⟩, ⟨g3, g4⟩

1-square pairs:

⟨g1g2, g1g3⟩,⟨g1g2, g1g4⟩, ⟨g1g3, g1g4⟩, ⟨g2g3, g2g4⟩

2-square pair:

⟨g2g3, g2g4⟩

Notice that ⟨g3g4, g3g5⟩ is both a 1-square pair and a 2-square pair.

Example 5.2. Let C5
2 be generated by {g1, g2, ..., g5} where ∣gi∣ = 2.

0-square pairs with respect to the generating set:

⟨g1, g2⟩,⟨g1, g3⟩,⟨g1, g4⟩,⟨g1, g5⟩, ⟨g2, g3⟩,⟨g2, g4⟩,⟨g2, g5⟩, ⟨g3, g4⟩,⟨g3, g5⟩, ⟨g4, g5⟩

1-square pairs:

⟨g1g2, g1g3⟩,⟨g1g2, g1g4⟩,⟨g1g2, g1g5⟩, ⟨g1g3, g1g4⟩,⟨g1g3, g1g5⟩, ⟨g1g4, g1g5⟩,

⟨g2g3, g2g4⟩,⟨g2g3, g2g5⟩, ⟨g2g4, g2g5⟩, ⟨g3g4, g3g5⟩

2-square pairs:

⟨g2g3, g2g4⟩,⟨g2g3, g2g5⟩,⟨g2g4, g2g5⟩, ⟨g3g4, g3g5⟩

3-square pair:

⟨g3g4, g3g5⟩
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Our proof for C3
2 illustrated that the k-square pairs play a role. Our current conjecture

for the group Cn
2 with generating set {g1, .., gn} such that ∣gi∣ = 2 is that for each k-square pair

reduces the size of the part of H̃2 which the square pairs generate. The following table gives

the number of k-square pairs and the directly computed size of H̃2 for Cn
2 where 4 ≤ n ≤ 7

(See Appendix C for outputs).

C3
2 C4

2 C5
2 C6

2 C7
2

Rank of induced module from all V4’s 8 40 160 560 1792

Reduction due to 1-square pairs 1 4 ∗ 21 10 ∗ 22 20 ∗ 23 35 ∗ 24

Reduction due to 2-square pairs 0 1 4 ∗ 21 10 ∗ 22 20 ∗ 23

Reduction due to 3-square pairs 0 0 1 4 ∗ 21 10 ∗ 22

Reduction due to 4-square pairs 0 0 0 1 4 ∗ 21

Reduction due to 5-square pairs 0 0 0 0 1

Total Reduction mod image 1 9 49 209 769

Rank of induced module from

all V4’s mod image 7 31 111 351 1023

Conjecture 5.1. Let G = Cn
2 with generating set S = {g1, ..., gn} such that ∣gi∣ = 2 for all

i. Then the size of H̃2 is

(n + 1

3
)2(n−2) −

n−2

∑
i=1

((n + 1) − i
3

)2(n−2)−i.

We not only have a conjecture for the size of H̃2 but we also have a conjecture for which

irreducible representations will appear in the action of Cn
2 on H̃2. However in order to state

that conjecture we will need some more notation.
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Let

τ{gi,gj},gk(id) ≐ (ζ{gi,gj}(id) − ζ{gi,gj}(id) ⋅ gk)

then we define

τ{gi,gj},gk(id) ∗ gl ≐ −τ{gi,gj},gk(id) + τ{gi,gj},gk(id) ⋅ gk,

τ{gi,gj},gk(id) ∗ glgm ≐ −(τ{gi,gj},gk(id) ∗ gl) + (τ{gi,gj},gk(id) ∗ gl) ⋅ gm,

and so on.

Conjecture 5.2. Let G = Cn
2 with generating set S = {g1, ..., gn} such that ∣gi∣ = 2 for

all i. The representation of G given by the action of G on H̃2 is comprised of the trivial

representations of the 0-square pairs and 1-square pairs induced up to G minus a few of the

constituents. The constituents which must be removed are as follows:

Step 1: For each 1-square pair remove one copy of the trivial representation at the C3
2 level.

(Reduction size: (n
3
)2(n−3))

Step k: (k > 1) For the k-square pairs remove one nontrivial representation of the form

τ{ga,gb},gc(id) ∗ gx1gx2 ...gxk at the C2+k
2 level. (Reduction size: ((n + 1) − k

3
)2(n−2)−k)
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APPENDIX A

Code

Algorithm 1: CG to CC Outputwriter

Data: Group, Generating Sets, Distance Set, Prime

Result: Cayley graph and Chain complex output file

for Gen Set ∈ Generating Sets do

Cayley Graph, Distance Matrix := CayleyGraph(Gen Set, Distance Set); #Uses

GRAPE package via GAP

Group elements := List Group Elements(Gen Set);

Nbhds := Create Nbhds(Group Elements,Distance Matrix,Distance Set); #For

each group element the function uses the Distance Matrix to

determine which elements are distance in Distance Set

Simplicial Complex := Powerset(Nbhds);

Chain Complex:=Create Mats for Chain Complex(Simplicial Complex,Prime);

#Creates the matrices by using the definition σi(eα) = sgn(α)eρ(α).

See Section 3.

end

Create and compile Latex file using the objects created above.�

�See Sample Output 1 in Appendix B.
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Algorithm 2: Action Analysis

Data: Group, Generating Sets, Distance Set, Prime

Result: Cayley graph and Chain complex output file

Gen Set for Action:=Grab Action Set(Group); #Defines a unique generating set

for the action of the group. This will allow us to compare the

modules in the output even though the Gen Set is different.

for Gen Set ∈ Generating Sets do

Cayley Graph, Distance Matrix := CayleyGraph(Gen Set, Distance Set);

Group elements := List Group Elements(Gen Set);

Nbhds := Create Nbhds(Group Elements,Distance Matrix,Distance Set);

Simplicial Complex := Powerset(Nbhds);

Chain Complex:=Create Mats for Chain Complex(Simplicial Complex,Prime);

New Elem List:=Act by Element(Group,Gen Set for Action,Nbhds);

Matrices Between CCs:=Matrices Between CCs(Simplicial Complex,New Elem List);

Matrices Commute(Matrices Between CCs,Chain Complex,Prime); #Tests the

matrices. If they are constructed correctly they must commute.

Four Action output:=Four Action Analysis(Matrices Between CCs,Chain Complex);

#Creates and runs a GAP script to investigate the action on the

Images and Kernels of the boundary maps along with the action on

the homology and whole vector space.

Create and compile Latex file using Four Action Analysis output.�

end

�See Sample Output 2 in Appendix B.
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APPENDIX B

Example Outputs

Following examples are calculated in a finite field of characteristic coprime to the order of

G with all the necessary roots of unity for the irreducible characters below to be in bijection

with the ordinary characters.

AlternatingGroup( [ 1 .. 4 ] )

Generating Set: Directed: F-Vector: Homology of the chain complex:
[’(1,2)(3,4)’, ’(1,2,3)’] True [1, 12, 30, 12] [0, 7, 0]
[’(1,2)(3,4)’, ’(1,2,4)’] True [1, 12, 30, 12] [0, 7, 0]
[’(2,4,3)’, ’(1,2,3)’] True [1, 12, 30, 12] [0, 7, 0]
[’(1,2,3)’, ’(1,2,4)’] True [1, 12, 36, 12] [0, 13, 0]
[’(1,2,4)’, ’(1,4,3)’] True [1, 12, 30, 12] [0, 7, 0]

Cayley Graph to Chain Complex Output File 1.
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Group: SymmetricGroup( [ 1 .. 4 ] )
Generators of Cayley Graph: [ (1,2), (1,2)(3,4), (1,2,3) ]
Generators for Action: [ (1,2), (1,2,3,4) ] Prime: 5

Tables give the multiplicity of representation. Period stands for zero.
Step0

Irred Reps Image Kernel Homology Whole Space
1A . . . 1
1B 1 1 . 1
2A 2 2 . 2
3A 3 3 . 3
3B 3 3 . 3

*Homology Block 0 dim.
Step1

Irred Reps Image Kernel Homology Whole Space
1A 2 2 . 2
1B 3 4 1 5
2A 5 5 . 7
3A 9 11 2 14
3B 8 8 . 11

Step2

Irred Reps Image Kernel Homology Whole Space
1A 1 2 1 4
1B 1 1 . 4
2A 2 3 1 8
3A 3 3 . 12
3B 3 4 1 12

Step3

Irred Reps Image Kernel Homology Whole Space
1A . . . 1
1B . . . 1
2A . . . 2
3A . . . 3
3B . . . 3

*Image Block 0 dim. Kernel Block 0 dim. Homology Block 0 dim.
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APPENDIX C

Square Pairs Conjecture

All the examples in this appendix are calculated in a finite field, given by the listed

prime, of characteristic coprime to the order of G with all the necessary roots of unity for

the irreducible characters below to be in bijection with the ordinary characters.

Group: C3
2

Generators of Cayley Graph: [ (1,2), (3,4), (5,6)]
Generators for Action: [ (1,2), (3,4), (5,6)]
Prime:11

H̃2

Irred Reps Image Kernel Homology Whole Space
1A 1 4 3 4
1B 1 2 1 4
1C 1 1 . 4
1D 1 2 1 4
1E 1 1 . 4
1F 1 1 . 4
1G 1 2 1 4
1H 1 2 1 4

Sums 8 15 7 32
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Group: C4
2

Generators of Cayley Graph: [ (1,2), (3,4), (5,6), (7,8)]
Generators for Action: [ (1,2), (3,4), (5,6), (7,8)]
Prime:11

H̃2

Irred Reps Image Kernel Homology Whole Space
1A 4 10 6 10
1B 4 5 1 10
1C 4 5 1 10
1D 4 5 1 10
1E 4 7 3 10
1F 4 5 1 10
1G 4 7 3 10
1H 4 5 1 10
1I 4 5 1 10
1J 4 7 3 10
1K 4 5 1 10
1L 4 7 3 10
1M 4 5 1 10
1N 4 5 1 10
1O 4 5 1 10
1P 4 7 3 10

Sums 64 95 31 160
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Group: C5
2

Generators of Cayley Graph: [ (1,2), (3,4), (5,6), (7,8), (9,10)]
Generators for Action: [ (1,2), (3,4), (5,6), (7,8), (9,10) ]
Prime:11

H̃2

Irred Reps Image Kernel Homology Whole Space
1A 10 20 10 20
1AA 10 16 6 20
1AB 10 12 2 20
1AC 10 12 2 20
1AD 10 13 3 20
1AE 10 13 3 20
1AF 10 16 6 20
1B 10 16 6 20
1C 10 12 2 20
1D 10 13 3 20
1E 10 16 6 20
1F 10 13 3 20
1G 10 13 3 20
1H 10 12 2 20
1I 10 13 3 20
1J 10 13 3 20
1K 10 13 3 20
1L 10 13 3 20
1M 10 12 2 20
1N 10 13 3 20
1O 10 12 2 20
1P 10 12 2 20
1Q 10 12 2 20
1R 10 16 6 20
1S 10 13 3 20
1T 10 13 3 20
1U 10 13 3 20
1V 10 12 2 20
1W 10 16 6 20
1X 10 12 2 20
1Y 10 13 3 20
1Z 10 13 3 20

Sums 320 431 111 640

49



Group: C6
2

Generators of Cayley Graph: [ (1,2), (3,4), (5,6), (7,8), (9,10), (11,12)]
Generators for Action: [ (1,2), (3,4), (5,6), (7,8), (9,10), (11,12) ]
Prime:11

H̃2

Irred Reps Image Kernel Homology Whole Space
1A 20 35 15 35
1AA 20 24 4 35
1AB 20 26 6 35
1AC 20 24 4 35
1AD 20 24 4 35
1AE 20 26 6 35
1AF 20 24 4 35
1AG 20 24 4 35
1AH 20 24 4 35
1AI 20 26 6 35
1AJ 20 26 6 35
1AK 20 26 6 35
1AL 20 24 4 35
1AM 20 30 10 35
1AN 20 24 4 35
1AO 20 26 6 35
1AP 20 24 4 35
1AQ 20 26 6 35
1AR 20 24 4 35
1AS 20 26 6 35
1AT 20 30 10 35
1AU 20 24 4 35
1AV 20 24 4 35
1AW 20 24 4 35
1AX 20 24 4 35
1AY 20 24 4 35
1AZ 20 24 4 35
1B 20 26 6 35
1BA 20 26 6 35
1BB 20 30 10 35
1BC 20 24 4 35
1BD 20 26 6 35
1BE 20 24 4 35
1BF 20 26 6 35
⋮ ⋮ ⋮ ⋮ ⋮
1Z 20 24 4 35

Sums 1280 1631 351 2240
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APPENDIX D

Organizational Structure

im (∂3) = 0 H̃2 = 0

ker (∂2) = 0

W2 = 1 reg rep

im (∂2) = 1 reg rep H̃1 = C−
2 reg rep + id

ker (∂1) = C−
1 reg rep +

id

W1 = C�

im (∂1) =
1 reg rep - id

H̃0 = 0

ker (∂0) =
1 reg rep - id

W0 = 1 reg rep

im (∂0) = id
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im (∂n+1) = 0 H̃n = 0

ker (∂n) = 0

Fn = (n + 1

n + 1
) = 1

im (∂n) = 1 H̃n−1 = 0

ker (∂n−1)
= 1

Fn−1 = (n + 1

n
)

im (∂n−1) = (n + 1

n
) − 1H̃n−1 = 0

ker (∂n−2) =
im (∂n−1)

Fn−2 = (n + 1

n − 1
)

im (∂n−2) =
(n + 1

n − 1
) − (n + 1

n
) + 1

im (∂3) =
∣∑ni=3(−1)i(n + 1

i + 1
)∣
H̃2

ker (∂2)

F2 = (n + 1

3
)

im (∂2) H̃1

ker (∂1) = C−
1 reg rep +

id

F1 = C�

im (∂1) =
1 reg rep - id

H̃0 = 0

ker (∂0) =
1 reg rep - id

F0 = 1 reg rep

im (∂0) = id

All values in the bottom of the figure are number of copies of the regular representation.

�See Theorem 4.6 for value of C.
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