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EXECUTIVE SUMMARY

The purpose of this research was to increase knowledge of the physical
processes that govern wind characteristics over ridges and, subsequently, to
improve empirical and numerical techniques for wind velocities over ridges.
These objectives were achieved by conducting a wind-tunnel study of the flow
field over triangular-shaped and sinusoidal-shaped ridge models with varying
upwind and downwind slopes under various thermal stratification coﬁditions.

A simple technique was developed to predict the velocity-amplification
profile above a ridge crest for an arbitrary ridge slope. Largest speedups
were measured for the steepest symmetrical ridge which did not cause flow
separation. Criteria for flow separation over ridges are provided in this
report. Effects of turbulence, surface roughness, and thermal stratification
on speedup are generally of secondary importance. However, these effects and
the slopes of the ridge are significant in determining whether or not separa-
tion occurs. Applicability of the results for ridges with finite width is
discussed.

The. separation phenomenon downwind of a ridge was investigated by
analyzing the effects of upwind and downwind ridge slopes on the longitudinal
extent of the separation region. It appeared that the downwind slope partic-
ularly affected the length of this region.

The turbulence structure over ridges was investigated by analyzing the
longitudinal velocity fluctuations. It was found that the directional energy
distribution of the turbulence above the crest is significantly different from
that of the upwind turbulence. Changes in power spectra and probability
density functions are relatively small.

Physical and numerical techniques to simulate flow over ridges were
critically reviewed. It was shown that similarity requirements for wind-
tunnel modeling techniques were generally met. In some cases similarity could
not be achieved in a thin surface layer (% 3 percent of the hill length). The

overall flow, however, was not affected.
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1.0 INTRODUCTION

This report is the first in a series produced as part of the Wind-Tunnel
Wind Energy Conversion System (WECS) Siting Program. The program was designed
to study the characteristics of the wind in complex terrain, especially hilly
terrain, so that installation sites for WECS can be identified. This report
identifies the topographical features of hills most favorable for siting WECS.
Specifically it considers the role of hill slope, hill shape, surface rough-
ness, and stratification. Wind-tunnel measurements of the mean wind flow over
model hills provide data to substantiate an empirical hill crest and speed up
algorithm. Analysis of turbulence characteristics suggest what simplifica-

tions are permissible in analytic or numerical model procedures.

1.1 THE OBJECTIVES OF THIS WIND-TUNNEL WECS SITING PROGRAM

The objectives of this portion of the physical modeling program have been
1. To study the wind characteristics over hills as influenced by

a. hill shape,

b. surface roughness and upwind turbulence, and
Cis thermal stratification;
2. To correlate hillcrest wind conditions with upwind conditions for a

wide range of hill shapes; and
3. To 1identify the dominant physical mechanisms that govern flow

characteristics over hills and, hence, provide guidance for the

development or selection of analytic or numerical models for WECS

siting.
The information contained in this report deals primarily with two-dimensional
flow (to be interpreted as flow over ridges of infinite width and with a flow
direction perpendicular to the crest). However many of the findings should
hold, at least qualitatively, for three-dimensional flow over hills. Rela-
tions between the upwind velocity profiles and velocity profiles at the crest
have been established by varying hill and flow features.

Measurements have been made of wind speed, turbulence intensity static
pressure, probability density function, and spectra over a number of trian-
gular and sinusoidal two-dimensional hill shapes. Measurement techniques are
described in Meroney et al. (1976a,b), Rider and Sandborn (1977a), and in this
report. Data are tabulated in detail in Meroney et al. (1976b), and Rider and
Sandborn (1977b) for neutral stratification measurements. A set of measure-

ments investigating the flow field when the downslope hill varies to incipient



separation are discussed and tabulated in this report. A set of measurements
associated with stratified flow over two-dimensional hills has been compiled
into Appendix C, Meroney et al. (1978b). Additional measurements over a set
of six different hill shapes are described in Rider and Sandborn (1977b).

Three-dimensional flow field data are provided in tabulatiop form by
Chien et al. (1978). Their interpretation is discussed in Merony et al.
(1978b).

A review of physical-modeling similarity requirements has been placed in
reports by Meroney et al. (19763, 1978a,b). This report emphasizes particu-
larly the similarity requirements for flow over a surface obstacle in a deep
shear layer.

A wvalidation study was performed through a joint effort between Colorado
State University and the University of Canterbury, New Zealand. The results

of this program have been gathered into Meroney et al., 1978a.

1.2 ORGANIZATION OF THIS REPORT

The remaining chapters of this report are organized in the following
manner. In Chapter 2 the physical processes that govern flow over ridges are
discussed. If the reader is familiar with the literature concerning flow over
obstacles in shear flows, he may prefer to proceed directly to the result
sections in Chapters 3, 4, and 5. Chapter 3.0 discusses the experimental re-
sults of  the wind tunnel measurements of mean flow over ridges. The hill
shape: and. flow condition are parameterized to describe the dependency of
speedup over .the crest on such variables. Experimental results and additiomal
information are presented to extend the conclusiomns of the two-dimensional
analysis to flow over ridges with finite width. An empirical prediction
technique for the velocity profile at hill crest is proposed in Chapter 4.0.
Turbulence characteristics are considered in Chapter 5.0. In Chapter 6.0
there is a recapitulation of the major conclusions of this study including
suggestions about worthwhile areas for further investigation.

Details of experimental methodology, data analysis techniques, a review
of the constraints of and characteristics over ridges on mathematical predic-
tion procedures, and tabulated data are summarized in a series of appendices
at the end of the report. The tabulated data should be particularly helpful
to those interested in the construction or validation of analytic or numerical

WECS siting models.



2.0 PHYSICS OF FLOW OVER RIDGES

The accuracy of analytical or numerical prediction techniques that
approximate wind flow over hills depends a great deal upon

1. An understanding of the turbulence structure over the hill and its

interaction with the mean flow,

2. An understanding of the mechanism that causes flow separation and

the development of a wake, and

3. The sophistication and validity of current mathematical models for

flow over hills.
This chapter considers these aspects of flow over a hill.

The literature on the physics of boundary layer flow over obstacles is
not generally familiar to most meteorologists or engineers, nor has it been
consolidated into any single reference. Pertinent material is reviewed in
this section and is used to support the results of a perturbation analysis of
changes in total head as wind flows over a hill crest at various lengths from
the surface. The analysis and review provide a context for evaluation of the
experimental results discussed in Chapters 3.0, 4.0, and 5.0. The analysis
also provides a context for review of mathematical prediction procedures for
hill flows. Appendix E considers the constraints of wind characteristics over
ridges on various analytic and numerical methodologies.

The turbulent action on the mean flow is analyzed by considering flow
over hills as a departure from the flow of an inviscid fluid. Regions are
distinguished where the effect of turbulence on the mean flow is different.
The most important flow and hill features affecting flow separation are con-
sidered, and the large, separated flow region which results from the inter-
action between wake and main flow is investigated.

The analysis is carried out by considering two-dimensional flow over
ridges. However, the general approach of the analysis justifies application
to three-dimensional flow over ridges. Section 4 of Chapter 3 is devoted to
discussing quantitatively the applicability of the insights gained to ridges
with fipite width and to other three-dimensional effects such as Coriolis

accelerations and ridges at an angle to the flow.

2.1 IDENTIFICATION OF FLOW REGIONS

Flow regions are identified to indicate portions of the flow field where
the turbulence structure affects the mean flow differently. In flat plate

boundary layers two regions are usually distinguished, the inner and the outer
3



regions. In the inner region the flow is directly affected by the surface
shear stress; in the outer region the flow closely resembles free turbulence,
with properties of the turbulence being strongly dependent on conditions far
upstream.

Jackson and Hunt (1975) conducted an analytical study on flow over low
hills and also divided the flow field into an inner and outer region. By
definition, the inertia, pressure, and Reynolds stress gradients in the inner
region were of the same order of magnitude; whereas in the outer region the
fluid had effectively inviscid properties. Although the changes in Reynolds
stresses in the region outside the inner region may be orders of magnitudes
smaller than the inertia stresses, after extended periods of transport over
long hills they may cause significant additional total head losses.

In order to include the long-range effects of the turbulence on the mean

flow over the hill, three regions rather than two need to be distinguished.

a) An Inner Region. The inertia, pressure, and Reynolds stress

gradients in this region are of the same order of magnitude. It may be as-
sumed that the turbulence energy production and dissipation rates are so large
that they are the only dominant terms in the turbulence kinetic energy equa-

tion; thus

=1

u_a—=8 (2.1)

N

Under such conditions structural similarity exists between the Reynolds

stresses (Townsend, 1962).

b) A Middle Region. In this region inertia stress gradients are much

larger than Reynolds stress gradients. But changes in Reynolds stresses are
sufficiently large to cause substantial additional change in total head.

The advective terms in the Reynolds transport equations may reach the
same orders of magnitude or become even larger than the production and dis-
sipation terms. If longitudinal velocity accelerations are sufficiently
large, boundary-layer approximations may not be applied. As a result, the
prediction of the turbulence stresses may become very difficult. Moreover,
Bradshaw (1973a) pointed out that the effect of extra strain rates (additional
velocity gradients to the simple shear 8 u/d z) is often an order of magnitude
larger than expected from the explicit extra terms they introduce into the

Reynolds-stress transport equations. He indicated that the unexpected effects



of extra strain rates could be identified by classifying the flow according to

the ratio of the extra strain rate to main shear, Y. A flow is
strongly distorted if |y| < 0.1 - 10
a fairly thin shear layer if |[y| =~ .01 - .1
a simple shear layer if |y| < .01

The significance- of each of the classes is that in a strongly distorted
flow, the Reynolds stresses are locally insignificant since pressure gradients
greatly exceed Reynolds stress gradients; in a fairly thin shear layer
Reynolds stress gradients may become unexpectedly large; and in a simple shear
layer the turbulence is not affected by the extra strain rates.

The rates of extra strain in flow over hills are related to the curvature
of the streamlines. A convenient way of defining Y 1is by writing the strain
rates in s-n coordinates (Castro, 1976). Different extra rate of strain

ratios can be defined. First the following ratio will be considered:

Q| Q2
'.SIC-'IIHICI

(2.2)

o
I

Close to the surface the streamlines approximately follow the curvature of the
surface. In this region the radius of curvature may be estimated by the hill

parameters h and L. A typical value of r over the crest is
L2
Terest 0 [H_] (2.3a)
and at the foot of the hill

2
= 0 [_ %E]' (Z.Bb)

Tfoot

Velocities are approximately of the same order, and the length scale of

the normal velocity gradient is typically equal to &. The extra rate of
[ s

strain ratio is then

= o (RS (2.4a)

Y
foot 2L2



Y (2.4b) .

crest =4 L2

Thus these extra strain rates are large for steep, short hills and small for.
long low hills. The highest values for 7y exist when flow separation does
not occur (h/L < 0.3), and when the hill is deeply embedded in thé boundary
layer. Therefore values of |y| of interest are less than 1. Streamline
curvature decreases with increasing height. Thus flow close to the surface
may be strongly distorted, further away from the surface, the flow may be
characterized as a fairly thin shear layer.

The change in streamline curvature with height is directly related to the
longitudinal acceleration. The ratio of this extra strain rate to main shear

1)
y' == . (2.5)

The order of magnitude of the longitudinal acceleration will be expressed in

terms of the fractionmal speedup ratio, defined by

ﬁc(z) - ﬁo(z)

EO(Z)

AS =

where ﬁo is the upwind velocity, and ﬁc is the velocity at the crest.
Thus
y =0 %9, (2.6)

The fractional speedup factor AS in the surface region of steep hills
is large with respect to h/L. Therefore Yy' dominates the extra strains for
steep hills in the surface region; Yy [Equation (2.4)] may dominate in the
upper part of the middle region. The flow field over a hill should be classi-
fied according to the largest occurring extra rate of strain ratio. Thus the
middle region contains usually two flow regimes: a fairly thin shear layer
and a strongly distorted flow. This concept makes the mean flow prediction

particularly difficult.



In some cases the prediction may be less complex as a result of the
varying curvature of the streamlines; Y is negative at the foot of the hill
and positive over the crest. The turbulence structure does not immediately
adjust to the extra strain rate. Therefore Yy is effectively less. Bradshaw
(1973b) proposes the following lag equation to calculate the effective value
of ¥y

D¥err 1

Dt ki (YeffFY) ’ (2-7)

where T 1is a time scale of the stress-bearing eddies: T = 1: :
Buolaz

In the flow field over a hill, a region exists where Yy falls in the

range that defines a fairly thin shear layer. Suppose that in this region

T = 6/50. The time it takes a fluid particle to travel from x = - 1/2 L to
x=1/2 L is the order of L/EO. Suppose further that Yy is constant
for - 1/2 L < x < 1/2 L and y =0 for x < - 1/2 L. Then, at the crest:
” - & :
Yeff = Y(l exp( 26))- (2-8)

Now for L/6 =1, Yogf = 0.4 y. Thus, although curvature is significant over
this hill, this result shows that extra strain rates do not always affect the
Reynolds stress significantly.

It seems reasonable, based on the foregoing arguments to state that for
short hills (L<§) in the region where 0.01 < y < 0.1 , the stress-bearing
eddies do not change considerably due to streamline curvature. Consequently,
Reynolds shear stresses stay approximately constant along streamlines. This
result will be used in the next section to show that under these conditions

the flow may be essentially inviscid.

c) An Outer Region. In this region the flow is essentially a simple

shear layer. Extra strain rates do not affect the turbulence structure nor

the mean flow. The region is defined by,

du/ds
du/dn

< 0.01 and < 0.01.

Because the curvature changes continuously along a streamline, a better
definition of the region would be obtained if the effective value of the extra

strain rate were applied.



The three flow regions are illustrated in Figure 2.1. It is noted that

if
BO ¢ 001 and 22 < g.m
2 L
L
!
the middle region vanishes. 1In case L < 6 the middle region does not

necessarily vanish, but its size is reduced, since the effective strain rate
is much less than VY.

Classification of the different regions in the flow will be particularly
valuable to a discussion of closure models frequently used in numerical models
(see Appendix E, Section E.1) and to discuss the inviscid character of the

flow in the middle region.

2.2 THE INVISCID CHARACTER OF FLOW OVER RIDGES

Turbulent flow fields may be approximated as flow with an effectively
inviscid fluid if work dome by friction is small compared to the kinetic
energy of the flow. In stationary boundary-layer flow which is driven by a
pressure gradient, the work done by the pressure gradient equals the work done
by the friction; therefore, total head loss in the streamwise direction is
equal to the pressure drop of the driving-pressure system. Thus, if the
pressure drop over a hill is small (short hill), the fluid can be considered
as effectively inviscid. Over large distances the pressure drop becomes
significant, and total head losses have to be taken into account.

One of the characteristics of inviscid flow is that wvorticity stays
constant along streamlines. This characteristic is not restricted to inviscid
flows alone. Along streamlines in boundary layer flow over a flat plate, for
example vorticity (mean velocity gradient) stays practically constant over a
distance in which the boundary layer thickness does not change significantly.
In terms of total head, this may be interpreted to mean that total head along
a streamline decreases at the same rate as the pressure that drives the flow.
Since the synoptic-pressure system of flow over hills is often known, it is
convenient to analyze a specific case by considering the departure from flow
with constant vorticity along streamlines or, alternatively, to analyze the
flow by considering the departure from the total head loss as given by the

driving-pressure gradient. The latter case will be referred to as additional
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total head loss. An initial analysis of flow over hills is most easily
carried out by considering the additional total head loss, because the working
equations contain expressions for the Reynolds stress gradients which are
relatively easy to measure. Analysis of the change of vorticity requires the
use of the full vorticity equations which contain vorticity-velocity correla-
tions that are difficult to measure.

The Reynolds number for flow over a hill is sufficiently large that
viscosity terms in the equations of motion may be neglected. Thus the equa-

tions of motion for two-dimenstional mean flow are:

_ _ —
—du , —9du _ _9p _ du  _ duw
Uox " Y9z~ "95x " 3x a3z (2.9)
and
ﬁﬁJr;a_ﬁ__E_’E-g-?BE (2.10)
9x 9z 9z 9z ox :

It is convenient to transform the Cartesian coordinates into von Mises

coordinates. In the latter system the independent variables are x and the

stream function Y . The transformation formulae are:
) ) -9
=1 = [5z7] - wisgl (2.11)
ox 2 X " oy ”
and
9 et
[551 = u[§$] . (2.12)
X X

The - x, z, and W behind the brackets denote that the derivatives are taken
when x, z, and Y respectively are constant. In subsequent equations the

subscript is omitted. The equations of motion become

- Wi 5] —
—9du  9p _ —9dp _ _ du = 9u” _ - duw
u 5 + 5% " ¥ 3 - " 5x + w 50 u S (2.13)
9% , -9 _ _ - v’ _duw , - du T
nax tUgp =" Usy = wosE ;
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The change in total head along a streamline due to the action of Reynolds
stresses is easily derived by adding equation (2.13) after multiplication with
u to equation (2.14) after multiplication with w. Denoting total head by P,

the decrease in total head over a distance from X to xl is

— — —_— -

X 2 2 2 — — L
w=-1 - Q(u” - w7) , g W 4 §(1-%) gﬁﬂ] dx, - (2.15)
X
(0]

Y

where B =

1=

which is the local flow direction and X, is an upstream
w
reference point relatively to the crest of the hill.

The additional total head loss is then

AP' = AP - [ 2 dx (2.16)
X

where §§9 is the driving pressure gradient. It is noted that for flow over

a flat plate
AP' =0 .

An order of magnitude analysis is carried out to determine the maximum
losses in the middle region as defined in the previous section. This maximum
value is obtained by making the following approximations: Assume flat plate
conditions exist upstream from a point defined x = -L where L is the char-
acteristic length of the hill, defined as twice the distance between the crest
and the point where the hill height is half the height at the crest, and as-
sume changes in Reynolds stress gradients along streamlines occur a distance
up to AL above the surface, if AL < 8 and up to & , if AL > &. A de-
pends on the hill shape and is to be determined empirically. The character-
istic change in Reynolds stress will be defined as R , where R may be

either

R = o[|;E 1 (2.17a)

foot - crest

or

11



R = 0f mfo [ (2.17b)

- uw
ot crest

whichever is larger. The order of magnitude of the terms of equatioms (2.15)
and (2.16) for x > -L is then,

9 R
o = 0[5

7z 2 hR
pa 200 = g (M

where Rm is the maximum Reynolds stress in the flow field.

duw

_ hR
B 5% - 0 [£§]

duw apo

a(1-8%) e 03] if & <AL

o%] if 6> AL

The order of magnitude of the maximum additional total head loss is then

1,h R, b m .

APt = 0[((1 + X ik ]T..) f + i 6—) (Xl + L)] if &6 > AL (2.18)
L, h R,h"n .

APV = O[((1 + 5 + f) I * I 6_) (Xl + L)] if 6 < AL (2.19)

The: effect of the hill on AP' is illustrated by applying those
approximations to experimental data presented by Rider and Sandborn (1977a).
Horizontal and vertical turbulence intensities were measured over triangular
hill models where h/L = 0.17, 0.25, and 0.33, with L/6 = 0.6, 0.4, and 0.3,
respectively. Maximum local turbulence intensities were about 20 percent.' It
may be expected that for those rather steep and short hills, changes in the
Reynolds normal stresses along streamlines are less than changes in the
Reynolds shear stresses. The data show that R based upon Reynolds normal
stresses is less than 30 percent of Rm and that A is on the order of 0.5.

The maximum additional change in total head at the crest is then

’ ~
Af crest ~ b (2.20)
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Further away from the surface, AP' decreases since the most significant
changes in the turbulence structure occur in the lowest regions.

The result obtained for flow over the triangular hill models should also
be valid for hills with larger ratios of hill length to boundary-layer thick-
ness, since equation (2.18) in particular is not sensitive to this parameter.

The inviscid character of flow over a hill is illustrated also by the
following considerations. For weak turbulence and approximately constant
Reynolds shear stresses along streamlines, equations (2.13) and (2.14) may be

simplified to

~9u 9 _ -9 _ - du

us-t s - 3 - u S (2.21)
— 9w , — 9p _ — duw

l.lé;'f uaql-—wa—qj 3 (2.22)

Eliminating the terms on the right-hand side and presuming that the total head

along streamlines stays constant yields the following expression:

dw , 9

i A1)
5% T 3 - 0 (2.23)

The presumption that total head stays constant may be expressed as

Eo =2
=0 - [5— + pl . (2.24)
Y=, =iy

Elimination of p from equations (2.23) and (2.24) leads to

o am oG
—9u 9w 9w _ 2 o
u_l.ll g‘l‘w——ﬂr— (2-25)
Equation (2.25) represents another property of inviscid flow, namely that the
mean vorticity along streamlines stays constant. This justifies the presump-
tion that the total head along streamlines stays constant.

2.3 FLOW SEPARATION OVER RIDGES

The occurrence of flow separation over ridges is from the point of view
of wind power undesirable. The wake mixes momentum across streamlines,

diminishes longitudinal pressure gradients, and consequently reduces the wind
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velocity over the top of the hill. Moreover, separation causes reduced
velocities in the surface region downstream of the wake.

At present operational models for flow separation over ridges do not
exist. Some semi-empirical models require empirical information, such as the
location of the separation point, reattachment point, and base pressure. See
the discussion in Appendix E, Section E.4 of Kiya and Arie (1972) and Bitte
and Frost (1976). The development of prediction techniques for velocities
over hilly terrain must rely heavily on experimental data.

In this section implications of theoretical and experimental separation
concepts are reviewed and applied to flow over ridges. A general description
of phenomena related to separation from the surface is given by Scorer (1978).
The following discussion is a detailed review of existing insights into
separation phenomena over ridges. Two separation regions are considered: the

separation regions upstream and downstream of the ridge.

The Upstream Separation Region. Upstream separation depends primarily on

the upstream slope at the base of the hill. In contrast with the downstream
separation region, the upstream region is never very large. The length is of
the order of the obstacle hill height. Its effect, however, on the velocity
field is quite important, because the separation zone in front of a hill
reduces the favorable pressure gradient that normally provides large speedup
effects in the lower layers over the crest.

It was shown in Section 2.2 that the flow over hills, if no flow
separation occurs, is approximately inviscid. Indeed, even in the presence of
separation, the prediction of the occurrence of flow separation may be obtain-
ed by an inviscid theory presented by Fraenkel (1962). Fraenkel shows that
corner eddies with closed streamlines can be predicted analytically from
inviscid flow assumptions. The physical interpretation of this phenomenon is
simply that the flow near the front of the obstacle stagnates to the extent
that the motion is dominated by the vorticity. Once flow separation occurs,
the viscous effects (particularly along the separation streamline) invalidate
to some extent the inviscid flow assumption.

A semi-analytical model, based on Fraenkel's theory, was presented by
Kiya and Arie (1972) for flow over a fence deeply embedded in a boundary layer
(see also Appendix E, Section E.4). Their model requires empirical input
parameters to take into account the downstream wake. The flow in the upstream

separation region, however, is predicted essentially on a theoretical basis.
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Excellent agreement was found between their theoretical results and
experimental measurements by Good and Joubert (1968). The success is
undoubtedly due to the fact that the vorticity was sufficiently strong.

Conditions similar to those discussed above apply to flow over a ridge
embedded in the boundary layer. Hence an inviscid separation model is appro-
priate. The interaction between main flow and a separation eddy becomes
important if the hill height is much larger than boundary-layer thickness.
Robertson and Taulbee (1969) conducted an experimental study of turbulent
boundary-layer flow over a forward-facing normal step. They evaluated the
effect of ratio between the step height and boundary-layer thickness on the
extent of the separated flow region. When values of h/§ wvaried from 0.5 to
2, they found that the location of the separation point upstream of the step
extended to 0.8h for h/6 = 0.5, and to 1.5h for h/6 = 2.

An important phenomenon may occur if the flow is stably stratified. The
cooler heavier air in front of a ridge stagnates. That in turn results in a
further decrease in temperature. This may lead to a total blocking of the air
in front of a mountain range. This phenomenon is the main cause of Fohn
winds, in which air descends from an altitude not far from that of a ridge top
on the upwind side to the surface on the downwind side. Blocking seems to
occur only if (Scorer, 1978)

211
h > 5=

where £ 1is the Scorer parameter,

g =_8 1296
— 26 9z
u
)
and 6 is the potential temperature.

The Downstream Separation Region. Boundary-layer flow over a flat ground

plane driven by a synoptic-pressure system is in equilibrium and does not
separate since the pressure drop in the streamwise direction is in balance
with the surface shear stress. But the force balance in flow over hills is
disturbed due to the increased surface shear stress over the hill. As a
result horizontal momentum in the lowest layer is transported downward at a
higher rate. Although the momentum along a streamline at the crest is larger
than upstream along the same streamline, the momentum may not be large enough

to overcome the adverse over-crest pressure gradient. Consequently the flow
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tends to separate from the surface, and, depending on the interaction between
wake and main flow, a large wake may develop.

The interaction between those two flow regions can be described by
considering the flow over a hill model initially at rest and then suddenly in
motion at constant speed. (Batchelor (1967, plate 8) illustrated the develop-
ment of the downstream wake in this way by showing a series of pictures of a
flow visualization of the development of the flow patterns around a house
model that is pulled in a fluid initially at rest.) In the initial stages
when no flow separation has developed, the pressure gradient in the surface
region is parallel to the surface. When the flow separates, there is no force
that prevents the development of an eddy directly after the separation point.
In later stages, however, a pressure gradient across the separating streamline
builds up so that futher growth of the eddy is prevented. The equilibrium
that is established in the flow is mainly determined by the strength of the
eddy and the pressure gradients across the separation streamline. The order
of magnitude of those forces suggests that features like location of separa-
tion point and hill shape may significantly affect the size of the wake.
Indeed, experimental evidence of the importance of the point of separation was
given by Huber et al. (1976). They showed that significant increase in the
dimensions of the wake downstream of a bell-shaped hill model was created by
tripping the boundary layer at the crest.

Depending on the shape of the hill, different flow features may dominate
the separation phenomenon. Several aspects of flow separation may be conven-
iently discussed by considering three different hill types:

- Hills with steep downstream slopes, say h/Ldg % , where Ld is the
downstream characteristic hill length. For this category of hills the
eddy in the separation region is not constrained by the downstream
slope. Available information on the flow development downstream of the
separation point from studies with vertical backward-facing steps may
well be applied.

- Round-crested hills with downstream slopes % % h/Ld < % . For this
category, location of the separation point as affected by surface
roughness affects the velocity field significantly.

1

- Sharp-crested hills with downstream slopes 4 < h/Ld < For this

DN =t

hill type, the separation point is fixed. The effect of the ratio

h/L, on the extent of separation region is most marked.

d
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Hills with Downstream Slopes, Say h/Ld > %

Once separation occurs, two flow regions can be identified. One includes
the region around the separation streamline defined as the new shear layer,
the other, the region downstream of the reattachment point.

The new shear layer is a free turbulent shear flow similar to the mixing
of a uniform-freestream and a quiescent-flow region; hence turbulent half-jet
theories are relevant. Some of the first researchers who investigated the
flow in this manner were Korst, Page, and Childs (1954) and Chapman, Kuehn,
and Larson (1957). Following their methodology, Chang (1966) analyzed the
velocity distribution in the new shear layer behind a wedge-shaped hill model
with a frontward-facing vertical slope and backward-facing slope of 1/1. He
found that the velocity profiles in this layer could be described successfully
by the half-jet theory except for the region close to the separation point.

Chang noted that according to half-jet theory the velocity profiles along

the separation region may be described by

= % (1 + erf n), (2.26)

(V]

=N E=N

where n is a dimensionless coordinate equal to o z'/x', in which 0 is a

1

similarity parameter and =z and x' are the coordinates of an intrinsic

system. The z' coordinate is determined from measurements, whereas the x'
coordinate is the distance from the crest. Experiments have shown that values
of 0 are approximately constant in ideal flow cases such as the half-jet.
In the separated flow region behind a wedge-shaped hill, however, it appears
that 0 varies with downstream distance from the crest. This deviation may
occur because the half-jet theory assumes a uniform incident velocity profile,
whereas in the present case a nonuniform velocity distribution exists. Fol-
lowing Kirk (1959), Chang showed that o may be modified to a constant value,
if one displaces the origin in the upstream direction by a distance X,
determined experimentally. Incorporating these considerations into the

original equation leads to the following expression for the velocity field

downstream of the wedge-shaped hill:

u_ 1 ok
5 = (1 + erf (o x+x0) . (2.27)
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where the curve is a function to be determined experimentally and ¢ and X
are empirical constants.

Bradshaw and Wong (1972) reviewed a series of experiments conducted by
other researchers [(Tillmann (1945), Arie and Rouse (1956), Tani et al.
(1961), Mueller and Robertson (1963), Plate and Lin (1964), and Betryk and
Brundrett (1967)]. Based on their results Bradshaw and Wong showed that a
strong dependence exists between the length of the downwind separation region
and the configuration of the surface upstream of the separation point. The
distance between separation and reattachment point varies from 5 to 20 hill
heights. The distance is small for simple backward-facing steps and is large
for bluff surface obstacles such as fences.

As is well known, the turbulence structure in the new shear layer changes
significantly from upstream conditions. Downstream of the separation region
the turbulence in the boundary layer is strongly disturbed over the part of
the boundary layer that has been exposed to the new shear layer. The thick-
ness depends primarily on the length of the separation region. The longer the
separation region, the larger the disturbance of the turbulence and, conse-
quently, the larger the departure of the velocity from the velocity distribu-
tion in an equilibrium boundary layer. The return of the boundary layer to an
equilibrium structure occurs only after a long distance downstream of the
reattachment point.

Some quantitative information on reestablishment of equilibrium flow is
presented by Bradshaw and Wong (1972), who further analyzed the data of Petryk
and Brundrett (1967). Values of h/8 quoted were in the range of 0.18 and
0.53 where h is the height of a single fence; h as well as § were varied
in Petryk's experiments. Bradshaw and Wong used the Clauser parameter to
measure the departure of the boundary layer from equilibrium. The Clauser

parameter is defined as:

@ ©®) -u@)? dznl s
G = % -
2@ ® -u @) da/u, 6

According to the data of Coles (1962), G 1is about 6.8 in an equilibrium

(2.28)

constant-pressure boundary layer at high Reynolds numbers. Values of G
downstream of the reattachment point decreased sharply and then increased
slowly to an equilibrium value. The distance X where G reaches its

minimum could be expressed by the empirical relation
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x, « {50, (2.29)

implying that two length scales are to be considered. This is reasonable,
since on one hand the disturbance is caused by the length of the separation
region, h ; whereas on the other hand, the recovery of the boundary layer
depends on the scale of the turbulence, say 6. The proportionality constant
in Equation (2.29) is equal to 100 for a fence, but is certainly less for any
hill shape.

Depending on h/8, the minimum value of G changes, i.e., for h/6 =

0.18, G_. =5.6 whereas for h/6 = 0.53, G . = 4.5.
min min

Round-Crested Hills with 1/4 < h/Ld <1

The force balance in the flow over round-crested hills with 1/4 < h/Ld
<1 1is such that the mean flow field may change significantly due to simple
surface features. Flow separation over a hill may be caused by a salient
edge; however, if the hill has no salient features, change in surface rough-
ness or significant increase in surface shear stress may affect the location
of flow separation and thus the velocity field over the crest.

A popular method to predict the separation point of a turbulent boundary
layer in an adverse pressure gradient was developed by Stratford (1959) and
Townsend (1962). The basic assumption of the method is that the boundary
layer can be divided into two distinct and adjacent regions. The flow in the
region adjacent to the wall is determined by the local shear stress distribu-
tion and is otherwise independent of the past history of the flow. But the
flow in the outer region develops nearly independently of the Reynolds stress,
implying that the total head stays constant. In addition it is assumed that
the Reynolds shear stress stays constant in the outer region.

Unfortunately, application of the Stratford-Townsend method to predict
the point of flow separation over a hill is not possible, since a middle
region (see Section 2.3) exists which does not possess the characteristics of
the inner and outer region as given above. In the middle region, the flow is
locally 'inviscid, but Reynolds shear stress may change significantly due to
the strong flow distortion. Only if the Reynolds stresses could be predicted
in the lowest layer of the middle region, and if the velocity profile in the
inner region at the location of the pressure minimum is known, can a similar
approach to that of Stratford and Townsend be developed to predict the
separation point.
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The prediction becomes even more complicated if the surface roughness
changes upstream over the hill. Qualitatively the effect of changing surface
roughness on the flow is well understood. For some simple flow cases, analyt-
ical solutions have been obtained (Townsend, 1976). In general an increase in
surface roughness in the flow direction introduces higher shear stresses in
the flow. In turn this causes a larger total head loss in the layer adjacent
to the surface and consequently an earlier flow separation. A streamwise
decrease in surface roughness has the opposite effect. It may be noted that
the installation of extensive windmill hardware on a hill may itself induce
earlier flow separation and consequently less speedup of the wind.

The effect of surface roughness on flow separation owver a circular
cylinder was investigated by Guven, Patel, and Farrell (1976). Although their
semi-analytical approach may seem not directly applicable to flow over hills,
the experimental results show the effect of surface roughness. Since their
approach turbulence is weak and of a large-scale, their results may be inter-
preted as being the effect of increased surface roughness over a hill relative
to upstream conditions. Some of their results for a Reynolds number of 107

are presented in the table below.

%o Upn
d Cpb Cpm by U,

107> -0.62 -2.04 111.5 1.74
1074 -0.80 -1.91 105.6 1.71

where z, is the equivalent roughness height,

d is the cylinder diameter,

CPb is the base pressure coefficient,

CPm is the minimum pressure coefficient, and

¢w is the approximate angle of beginning of the wake region measured

from front stagnation point.
Upm/Um is the relative velocity increase at the pressure minimum.
The effect of a change in ¢w of 6° causes a 2 percent change in maximum
velocity over the cylinder. Although this is not a significant effect over
cylinders, for hills the effect of surface roughness on the location of separ-
ation point may be much larger because the hill slope at the downstream side

decreases in the flow direction.
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An interesting illustration of the effects of upwind turbulence (e.g.,
due to large upwind surface roughness) is offered in an investigation by
Halitsky (1965). He noticed that in boundary-layer flow over a ridge
(h/6 = 3, b/L, % 3
freestream turbulence intensities of 1 percent, whereas for large upwind

g h/Lu ~ %) downwind flow separation occurred for upwind

turbulence intensities of 15 percent periodic collapse of the wake occurred.
For smooth surfaces, the Reynolds number also influences flow separation.
Flow separation is essentially due to viscous effects; thus the separation
point will depend on the Reynolds number. Model results may require correc-
tion for the effective Reynolds number variation between field and laboratory.
Other than the material previously reviewed, little further material
speaks to separation over shapes with salient corners or crests.

1

Hills with a Salient Edge and with Slopes, Say %—( h/Ld < 5

The strength of the eddy in the separation region, of course, has an
important effect on the size of the wake. If the downstream slope is small,
then the eddy stays small causing a weak interaction between wake and main-
flow. Quantitative information about the important effect of hill slopes on
wake size and velocity speedup over the hill is not available in the litera-
ture. In Chapter 3 data is presented that systematically shows the effect of

hill slope on the size of the separation region.

2.4 SUMMARY

The following summary of the most important conclusions made in this
chapter serves as a review of present understanding of flow over an isolated
ridge and provides a basis for the experimental program discussed in the
following chapters.

1. Three regions in the flow are distinguished

a. An Inner Region. In this region Reynolds shear stress
gradients are of the same order of magnitude as pressure or
inertial gradients. Production and dissipation rates of turbu-

: lence are the dominant terms in the turbulence kinetic energy
equations. The large mean velocity gradients are character-
istic of this region.

b. A Middle Region. In this region Reynolds stress gradients are
locally insignificant but may cause substantial changes in
total head downwind of the first flow disturbance. The changes
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in total head may be large since extra rates of strain affect
Reynolds shear stresses, often one order of magnitude larger
than expected. Nevertheless, for relatively short hills
(L < 6) with large extra strain ratios, changes in Reynolds
stresses are small since it takes time for the stress-bearing
eddies to adjust to the mean flow conditions. An order of
magnitude analysis and experimental data show that for such
flow cases total head changes over the crest are usually less
than 4 percent. Generally, the order of magnitude analysis
indicates that the flow field upwind of the ridge crest can be
predicted accurately by assuming the fluid to be inviscid.
c. An Outer Region. Extra strain rates are small and do not
affect the turbulence nor the total head losses.
The upwind separation region is small compared with the downwind
separation region because interaction between upwind wake and main
flow is impeded by the presence of the ridge. For sufficiently
large vorticity in the approach flow (in other words, for a suf-
ficiently small ratio h/6), the upwind separation region is not
affected by the interaction between wake and main flow. Otherwise
interaction takes place and, with the present understanding of such
flow cases, empiricism has to enter analytical-prediction prece-
dures. No quantitative information is available on the amount of
vorticity required to avoid interaction.
A large wake resulting from main-flow wake interaction affects the
mean flow over a hill and downwind of a hill dramatically. The new
‘shear layer causes the boundary layer downwind of the reattachment
point to be in strong nonequilibrium. Up to distances of the order
of 100453' the Clauser parameter decreases, after which a return to
equilibrium flow conditions takes place. Therefore prediction of
the flow field over a group of ridges is extremely complex. The
occurrence of flow separation over downwind ridges may be strongly
affected.
Existing prediction techniques of flow separation over ridges are
not adequate. There exists some experimental evidence that changes
in surface roughness affect the occurrence of flow separation over

steep ridges (h/L < .3) significantly. Qualitatively, the effects
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of surface roughness are understood, i.e., an increase in upwind
surface roughness causes earlier flow separation whereas a decrease
in upwind roughness causes a later flow separation.

The length of the downwind separation region is reduced by shallower
downwind slopes since the eddy development in this region is impeded

by the presence of an elevated surface in the separation region.
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3.0 MEAN FLOW OVER RIDGES

The following three chapters discuss laboratory data measurements made
under this program and describes quantitatively the effects of ridge shape,
turbulence and surface roughness, and moderate stable stratificatjon on the
mean flow over ridges. Data are utilized to prepare an empirical wind speed
prediction relation in Chapter 4.0. Changes in the turbulence structure over
the ridge as a result of the distortion by the mean flow are interpreted using
rapid distortion principles in Chapter 5.0. A brief review on the limitations
of the physical modeling techniques employed is provided in Appendix F. Flow
conditions and hill shapes have been characterized by simple nondimensional
parameters defined in that Appendix.

Section 3.1 evaluates the influence of ridge shape on wind speedup over
hill crests. The important role of separation on speedup is identified and a
criterion for flow separation is provided. The data are used to validate the
inviscid approach identified in Section 2.2.

Section 3.2 examines the influence of turbulence and surface roughness on
wind speed over hills. An inviscid numerical program described in Appendix E,
Section 3.3 was used to extend the results beyond those measured in the
laboratory. The influence of turbulence on wind profiles was suggested by the
analysis in Chapter 2.0 to be significant only in an inner and middle region
near the surface. Comparison of model data against a recent field study
revealed the unexpected influence of relaminarization on the inner regions
during model measurements.

Section 3.3 considers the influence of stable stratification on the mean
velocity profile, the character of the hill crest turbulence, and the extent
of separation. Mild stratification appears to result in rather modest pertur-
bations.

Section 3.4 examines the validity of the assumption of two-dimensionality
when dealing with real finite-length ridges. A finite hill length reduces
hill crest and speedup, modifies the separation region, and results in lateral
wind field variations. Nevertheless for the cases considered perturbations

were modest.
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3.1 EFFECT OF RIDGE SHAPE ON VELOCITY PROFILES

The ridge shape is characterized by 3 parameters, namely h/Lu, h/Ld and
h/6. In addition to these three parameters, the presence of salient features
on a ridge is considered in this section.

The effect of ridge shape on wind flow will be considered separately in
terms of upwind and downwind slopes, the height of the hill with respect to
the atmospheric boundary layer, and the detailed hill profile.

Upwind and Downwind Slopes. The highest ridge in hilly terrain is not

necessarily the site where the largest speedup of the wind occurs. At ridge
crests where flow separation is present the wind speedup is less than at ridge
crests that avoid flow separation. Hence, speedup depends also on the upwind
and downwind slopes.

Figures 3.1 to 3.9 show the dramatic changes in mean velocity, static
pressure and longitudinal turbulence intensity that accompany flow separation.
In these figures and subsequet plots the distance from the crest to the base
is 2.5 times the height of the hill (except for Figures 3.7 and 3.9 where it
is 5 times the height of the hill). Similar, but enlarged, contour plots of
mean velocities and static pressures are presented in Appendix D.

Flow separatiou occurs for h/L = 1/2 and 1/3; however, no flow
separation occurs for h/L = 1/4. Static pressure perturbations for the
ridges with h/L = 1/2, 1/3 and 1/20 penetrate deep into the boundary layer,
causing slightly higher velocities in the upper region of the boundary layer.
Note that the contour lines of the static pressure distribution at the down-
wind side of the crest for h/L = 1/2 and 1/3 approximately follow the
streamlines. This phenomenon is typical for flow separation over ridges. It
shows clearly that pressure gradients across streamlines may be much larger
than the gradients in the streamwise direction. Therefore, mathematical
models in which the 9p/dz term in the equations of motion has been
neglected, such as the model of Frost et al., 1977 (see Appendix E, Section
E.4) do not represent the flow accurately.

Measurements over various ridge models were performed for two different
freestre;m velocities to 1identify any Reynolds number flow dependence.
Figures 3.1, 3.3, 3.5, 3.7, and 3.9 show contour plots for U, = 9.14 m/sec.
Figures 3.2, 3.3, 3.4, and 3.6 show contour plots for U, = 15.24 m/sec. No
significant changes in the flow field occur for different wind velocities.

Figures 3.10 to 3.13 are contour plots over two round-crested hills (half-sine
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FIGURE 3.1. Contours of Flow Characteristics Over a Triangular Ridge,
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FIGURE 3.3. Contours of Flow Characteristics Over a Triangular Ridge,

h/L = 1/3. Test Case 3
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FIGURE 3.5. Contours of Flow Characteristics Over a Triangular Ridge,
h/L = 1/4. ‘Test Case 5
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FIGURE 3.6. Contours of Flow Characteristics Over a Triangular Ridge,
h/L = 1.4. Test Case 6
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FIGURE 3.7. Contours of Flow Characteristics Over a Triangular Ridge,
h/L = 1/6. Test Case 7
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FIGURE 3.8. Contours of Flow Characteristics Over a Triangular Ridge,
h/L = 1/6. Test Case 8
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FIGURE 3.9. Contours of Flow Characteristics Over a Triangular Ridge,
h/L = 1/20. Test Case 9
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FIGURE 3.11. Contours of Flow Characteristics Over a Sinusoidal Ridge,
h/L = 1/4. Test Case 11
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FIGURE 3.12. Contours of Flow Characteristics Over a Sinusoidal Ridge,
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shaped) for 0, = 9.14 m/s and u, = 15.24 m/s. The average slopes defined
by h/Lb are 1/3 and 1/4; those defined by h/L are 1/4 and 3/16. Flow
separation does not occur in any of these cases. No Reynolds number effects
are noticeable. The mean flow fields closely resemble the flow field over the
triangular hill h/L = 1/4, but do not resemble the triangular hill h/L =
1/3. Apparently the definition of L characterizes the hill length better
than Lb'

Flow separation that may occur upwind of a hill is different from flow
separation that may occur downwind. The eddy in the downwind separation
region interacts strongly with the main flow, producing an extended wake in
the downwind direction. For steep downwind slopes the separation region may
extend to a distance of 10 to 20 times the obstacle height. The interaction
between eddy and main flow at the upwind side is constrained by the presence
of the hill. The upwind separation region, which depends slightly on the
parameter h/6, does not extend further than two hill heights upwind. Flow
separation occurs if h/Lu > 109,

High velocities over the crest result in large static pressure gradients
across streamlines just above the separated flow region. These large pressure
gradients vresult in earlier reattachment of the separating streamline.
Indeed, Figure 3.14 suggests the separated flow region for h/Lu, = 1/2
extended beyond a distance of x = 9h, but that the flow reattached at x = 9h
for h/Lu = 1/4 and 1/6. Figures 3.15 and 3.16 display similar trends.

The extent of the downstream separation region depends on the strength of
the eddy just downwind of the separation point, which in turn are dependent on
both upstream and downstream hill slopes. Figure 3.14 shows vertical mean
velocity profiles over the crest and downwind of the crest for three different
ridge shapes. 1In all cases there is a backward-facing step. The upwind slope
varies: h/Lu = 1/2, 1/4, and 1/6. Speedup is largest for h/Lu = 1/4, and is
slightly less for h/Lu = 1/6. The speedup is smallest for h/Lu = 1/2. For
relatively gentle downwind slopes only weak eddies can develop. This causes
early reattachment of the separating streamline. The effect of h/Ld on the
mean velocity field is illustrated in Figure 3.17 by superimposing vertical
velocity profiles at different locations downwind of the hills. For all cases
h/Lu = 1/2; the downwind slopes were h/Ld = 1/0, 1/3, 1/4, and 1/6. The
boundary layer recovers faster for the smaller values of h/Ld. A signifi-

cantly larger speedup over the hill crest occurs for h/Ld = 1/6. Similar
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effects may be noticed in Figure 3.18 where vertical velocity profiles are
presented at the crest and downwind of hills with h/Lu = 1/4, h/Ld = 1/0, 1/2,
an 1/3.

A given hill may cause quite different crest profiles depending on the
approach direction (see Figure 3.19). Although a "jet" effect occyrs for the
case h/Lu = 1/3, h/Ld = 1/4, the velocity distributions indicate that a
separation cavity has developed downwind of the crest.

All data measured in the current series of measurements to study the
effect of upwind and downwind slopes were for h/6 = 0.1. A wider range of
conditions was not examined because Huber et al. (1976) found that the
separation phenomenon is not affected by the upstream velocity distribution or
boundary layer depth. He observed essentially identical downwind separation
regions for approach velocity profiles, where h/6 = 0.2 and 0.5. Since the
occurrence of flow separation then depends primarily on h/Ld and h/Lu, a
generally applicable separation criterion for flow over ridges may be derived
from the wind-tunnel data obtained over the triangular ridges. Figure 3.20
suggests an empirical envelope determined between h/Lll and h/Ld that

governs the occurrence of flow separation.

Height of the Ridge. Tt is also desirable to Lnow the effect of hill

height to shear layer depth on wind speed when separation does not occur.

Jackson and Hunt (1975) define a speedup parameter called a fractional speedup

ratio:
B ucrest(Z] - uo(z)
AS = . ,
crest =
u (z)
0
where ﬁo is the upstream velocity distributon, acrest is the velocity

profile above the crest, and 2z is the distance from the surface. By non-
dimensionalizing the speedup parameter with the upstream 