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Abstract

Extraction, Characterization and Modeling of Network Data Features -

A Compressive Sensing and Robust PCA based Approach

Designing computer networks resilient to failures, excessive loads, and attacks and then

monitoring them are challenged by a range of issues inherent to networks. These limita-

tions include inability to effectively characterize anomalous and baseline behaviors, access

restrictions to place probes, and measurement limitations due to load limits. We develop

a suite of solutions for extracting network data given the accessibility and load limitations

of networks, and for characterizing interesting behaviors that capture the features useful for

designing and monitoring networks. To the network monitoring and data extraction end, we

build solutions for (1) retrieving interesting network data such as anomalies, with a limited

amount of instrumentation, e.g., at the network periphery, (2) reconstructing a description

of the network from a limited number of measurements, with different approaches suitable

for computer networks and sensor networks. To the network data characterization end,

we develop solutions for (1) extracting interesting features of data, such as anomalies and

baselines, and (2) concisely and accurately modeling these features. These four classes of

solutions build up the contributions of this thesis, which include: (1) adaptive compressive

sensing algorithms for network monitoring, (2) spatiotemporal modeling of network traffic

anomalies, (3) modeling and extracting network traffic baselines using Robust PCA, (4)

Compressive Sensing (CS) based data recovery for phenomena discovery, (5) Wavelet based

recovery with applications to plume tracking in sensor networks, (6) Subtle pattern detec-

tion algorithm with usage in hardware trojan detection, and (7) TCP/IP filter for extracting

features with deployments in network attack detection.
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We present multiple algorithms that adaptively perform CS to resolve network tomo-

graphic measurements and rapidly localize anomalies. These algorithms are scalable to large

networks, operable with probes placed at arbitrary locations, and guide measurements using

advanced IP options. The adaptive compressive sensing algorithms demonstrat over 99% de-

tection rates and less than 1% false positive rates in realistic test environments, for networks

reaching over 10,000 links. These require a limited number of monitoring probes residing

at the edge of the network and are capable of localizing faults with orders of magnitudes

fewer measurements than traditional approaches. Thus, we overcome the accessibility re-

strictions in networks and also provide an efficient method to retrieve critical information

from networks.

Due to the sporadic behavior, modeling spatiotemporal characteristics of network traffic

anomalies has been a challenge. The solution we developed models different spatial and

temporal properties of anomalies and integrate them into a single model. The combined

anomaly model captures statistical behaviors of anomalies as they propagate through nodes

and subnets. Calibrating the model requires only local measurements. However it is capa-

ble of capturing the global anomaly behaviors. This characterization enables reproducing

statistically similar network anomalies. By incorporating such characterization, traffic gen-

erators can produce realistic behaviors containing realistic anomalies. Based on the anomaly

model, a real-time anomaly monitoring system and a real-time parameter learning system

are also proposed. The model concisely and hierarchically characterizes anomaly behaviors

of networks, which so far was not possible. Moreover, the model provides vital information

for designing robust networks.

Our experiments reveal that Robust PCA achieves recovery over much wider ranges of

sparsity and rank, than the published sufficient conditions suggest. These findings enable
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the use of Robust PCA for separating features of network data. We employ Robust PCA and

Fourier methods for separating baseline and anomalous components. Further, these methods

are made into real-time filters for baseline extraction and modeling. The baseline extraction

algorithm is used in anomaly detection and compared against a number of existing methods

to establish its fidelity. Extracted baselines are modeled using two types of patterns: one

for link level behaviors and another for network level behaviors. Such characterizations are

crucial for network design and provisioning.

Applications of the work done in this thesis go beyond the scope of infrastructure net-

works. For example, we derive theoretical recovery bounds of CS for any pairing of sampling

and orthogonality measures. This work leads to cost effective phenomena discovery in sensor

networks, where every node in the network becomes aware of the overall network state. Phe-

nomena awareness experiments implemented with random walk sampling indicate superior

energy savings and comparable accuracy to classical uniform sampling. Random walk mea-

surements provide a practical means of gathering measurements, while uniform sampling is

costly to implement. When applied with CS, phenomena awareness provides a practical and

efficient approach to build a complete picture.

We developed an energy efficient approach that require fewer instrumentation using

wavelet transforms. This work has applications in chemical plume tracking. It achieves

an error of less than 7% with 25% of measurement points. This data reconstruction scheme

saves energy and extends longevity of energy starved sensor network by a factor of five in

average. A second improved solution is proposed by combining matrix completion and CS.

An algorithm for detecting subtle patterns in an array of time-series is also developed. It

is capable of extracting interesting but obscure features from data. The subtle pattern ex-

traction algorithm lay the pathway for detecting hardware trojans whose existence makes
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only a slight impact on the impedance measurements. To extract interesting features from

live network data, we develop a TCP/IP feature filter and successfully use it for detecting

Neptune, Smurf, IP and port sweep, and Ping of death attacks. These approaches provide

different means of extracting data and features for a range of applications, which extend

beyond the scope of networks.

The proposed solutions are tested on either real-world or realistic data in order to estab-

lish performance and accuracy. To obtain real data, we develop tools to extract data from

planet-lab infrastructure and other networks. To construct realistic data, we use established

data models such as the Gilbert-Elliot model for packet loss and heavy-tailed distributions

for delay, then calibrated these models using actual measurements. Further, commonly used

synthesis tools such as IGen are used to simulate large scale realistic networks. These test

environments help establish the fidelity of the developed solutions. This research provides

effective, practical and accurate solutions for network monitoring, data extraction and mod-

eling.
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CHAPTER 1

Introduction

Computer networks connect resources and deliver information to build information sys-

tems that range from Personal Area Networks (PANs) to internets. Each category of net-

works has their own class of problems. For example, networks of the scales ranging from

Local Area Networks (LANs) to the Internet would be concerned about the throughput,

latency, reliability and security; whereas wireless sensor networks would be more concerned

about the energy efficiency. Therefore, when designing networks, their respective concerns

should be taken into account. Further, during operation, the networks should be monitored

to assure a healthy operation and to learn when faults occur. The premise of this the-

sis revolves around monitoring networks, retrieving network information, characterizing and

modeling network behaviors. This study addresses issues related to robust network designing

and efficient network monitoring.

Network data are rich in various features. External to the data content, physical fea-

tures such as throughput and delay reveal information about the network performance. By

digesting the data content, much about the communication can be revealed. At a higher

level, packet headers can be conveniently extracted by filters, which provide a range of in-

formation about the communication such as the origin, destination and the protocol used.

By performing deep packet inspection more intricate information about the communication

can be learned. Information extracted from features of different levels can be used to di-

agnose network issues of a few categories. Most operational issues such as link failures can

be diagnosed by observing physical features as the throughput. Tracking traffic flows can

be done by observing the packet headers. Networks may observe unusual traffic behaviors
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in three main scenarios: (1) excessive but legitimate user behaviors such as flash crowds,

(2) network failures, and (3) attacks. The network administrators have to identify these

scenarios distinctly as they have to react in different manners to each of the cases. If the

unusual behavior is due to legitimate user behaviors, the administrators should take action

to throttle traffic, keep the system alive, and continue to serve requests. Whereas during

an attack, the administrators should first take action to protect the system and prevent fur-

ther damage. They may decide to trace data to identify and localize the perpetrators. All

these scenarios require the administrators characterizing the nature of the unusual behavior.

Methods based on deep packet inspection are likely to provide more information. However,

deep packet inspection is a costly operation and may not be possible to perform against

a large incoming traffic volume. Thus, fast and light-weight techniques based on packet

header characterization are more attractive. Further, packet header extraction is built into

most network hardware making methods based on packets headers cost-effective. We focus

on building a feature extraction and correlation scheme based on information revealed by

packet headers. We apply this method to detect a number different network attacks.

Modeling network traffic behaviors has been of interest since the early days of computer

networks. The initial approaches treated computer networks similar to telephony networks

and used Poisson models to describe traffic behaviors. As most communications on initial

computer networks were via dial-up connections, these models were quite valid. But as

broadband communication took prominence, validity of Poisson model decayed. Although

a group of researchers believe that Poisson model is still valid at an Internet backbone

level. Over time, traffic modeling evolved into heavy-tailed distributions as most network

parameters demonstrated occurrence of large values quite frequently. Furthermore, network

data showed long-range dependence [3]. Some recent approaches view network data as a
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fractal process and continue use heavy-tailed distributions to describe them. The most

recent approaches take truncation into account, as in [4]. For example, if the delay of a

transmission surpasses a certain threshold, a retransmission occurs. This leads to occurring

large values but with a maximum limit.

Another one of our interests is in identifying and characterizing the important and inter-

esting properties of data. One of the techniques we employ is Robust Principal Component

Analysis (RPCA) [5, 6]. It additively separates a data matrix into a low-rank matrix and a

sparse matrix. A number of practical scenarios exists where data matrices are a sum of low-

rank and sparse matrices. Video surveillance, face recognition, latent signal indexing and

collaborative filtering are a example few applications. If the data matrix was in fact a sum of

a “true” low-rank matrix, i.e. a matrix which is not also sparse, and a “true” sparse matrix,

i.e. a matrix that is not also low-rank, then the output matrices match the original low-rank

and sparse matrices. As low-rank-ness and sparse-ness can coexist, the conditions to assure

true low-rank-ness and true sparse-ness prevent ambiguous recoveries. The conditions laid

down in literature however are either quite conservative or impractical to calculate. Thus,

we could not use them to predict the recoverability of a matrix pair. As an alternative, we

empirically establish the recoverability of RPCA and as well a cross validation principle to

determine whether a decomposition was actually a recovery. We study a range of matrix

constructions and example matrices from real-world applications to establish our claims.

One of the primary focuses of this thesis is extracting and modeling network specific

behaviors. We identify two major component network data: (1) baselines and (2) anomalies.

However extracting these components are challenging as network data carry a vast amount

randomness that mask these properties. Baseline behavior describes the expected behavior

under regular operation. Although it is a well conceptualized property, mathematically
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describing a baseline is difficult. Thus, we use a few properties that are admissible to a

human network monitor’s point of view and amenable to mathematical representation to

describe baselines. Baselines are expected to be common across the dataset. They are

also expected to be the prominent component of the data. Further, baseline behaviors

are expected to re-occur at regular intervals. We employ PCA and Fourier analysis to

extract baseline behaviors, as they capture these properties. We also use RPCA to cleanse

data of any major anomalies. Anomalies on the other hand show a drastically different

behavior. Their sporadic occurrences with unpredictable volumes and durations make it

difficult to model anomalies with typical random processes. Thus, we device a new approach

where features of anomalies are separated and modeled individually. This leads to a concise

description of anomalies that captures the statistical properties of anomalies accurately. The

proposed method enables describing anomaly behaviors hierarchically. Further, based on this

new model, we propose two real-time applications: (1) a technique to communicate model

parameters efficiently track anomaly behaviors of regions on the fly, and (2) a technique for

intelligent real-time anomaly tracking.

As a maintenance service, network monitoring should be least intrusive as possible. More-

over, instrumentations used for monitoring can only be placed at authorized locations such

as end points. In designing an efficient monitoring system, a number of concerns should be

taken into consideration: (1) it should produce a minimal monitoring traffic, (2) identifica-

tion of the presence of faults and localizing the faults should be swift in order to minimize the

damage, (3) it should learn network conditions irrespective of the instrument locations, and

(4) it should be scalable in terms of the monitoring traffic and the instrumentation cost as

the networks grow in size. As pointed out in [7], network faults or anomalies in modern day

reliable networks are rare occurrences over time and space. Thus, anomalies have a sparse
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presence in network data. Pioneering work in [8] demonstrated the usage of Network To-

mography [9] for identification and localization of these sparse network faults via end to end

measurements. Work presented in [10] extends the network tomography to mesh networks

which by then had been limited to tree structures. Compressive sensing (CS) [11] (reviewed

later on) provided a means to evaluate under-determined linear systems for sparse solutions.

Authors of [12, 1] proposed to resolve for network faults using compressive sensing. A key

limitation in networks is that measurements can only be made over network paths, unlike

applications such as image processing where an arbitrary combination of samples can be

made. This leads to a poorer performance in terms of sampling for compressive sensing in

networks compared to other compressive sensing applications. More specifically, unlike other

CS applications, the common place logarithmic scaling of measurements was not achieved in

literature so far in the networking domain.

We in [13, 14] proposed adaptive schemes for network fault localization using compressive

sensing, which achieve the logarithmic scaling of measurements. This work presents efficient

and fast algorithms to monitor networks for faults and adaptively localize them with a

minimal number of additional measurements. The proposed schemes use the TCP/IP Loose

Source Routing and Route Recording (LSRR) option to be able reach interested network

locations from the instrumented locations, as well to record the path the measurements

took. This strategy overcomes the access restrictions on co-operating network segments.

The proposed schemes are applicable for network faults in a variety of QoSs (Quality of

Services) which are additive over network paths. Some examples are link delays, packet

losses, and log of packet loss rates. The schemes are implemented in two-stages. The first

stage monitors the network with a minimal number of measurements marginally sufficient

to cover the network. The objective of this phase is to detect when the network contains

5



faults. Separability conditions laid down in [8] are used to determine the existence of a fault.

Once the existence of a fault is detected, the second phase launches an adaptive algorithm

to iteratively learn the locations of the faults. Each iteration uses CS to resolve the network.

By evaluating the solution provided by CS, the algorithms determine whether the faults are

successfully localized, and if not, the next feedback measurement to make. These algorithms

are tested on realistic network topologies with realistic network data models, for accuracy,

performance and scalability.

Though the main focus of this thesis is on networking domain, the techniques developed

are valid for a range of applications that use time-series data. The primary approach in de-

tecting unusual behaviors is to seek for deviations in data from known acceptable behaviors.

Methods such as data clustering [15], and PCA scores [16] seek for differences in prominent

behaviors of data. Most of the methods detect when a behavior of a data sample is distinctly

different from the reference data. While that is an important contribution, detection of sub-

tle difference of behavior is a difficult and also an important issue. Being able to identify

a subtle but unusual behavior helps detecting issue before they cause a significant damage.

We propose an optimization based algorithm for detecting sparse pattern. To test it, we use

real PCB test data. The proposed method detects behavior changes in data, even when the

deviations are within a narrow margin.

A key factor in building an efficient data recovery scheme is to exploit the energy packing

of data in different domains. Network faults are sparse in time and space domains. Phenom-

ena such as chemical plumes which resembles natural images are dense in time and space,

but have a sparse representation in domains such as Fourier and Wavelets. Compressive

sensing [17–20, 1] provides an efficient means to solve sparse linear systems. We review the

details of CS principals in Section 3.3. In essence when the domain on which the signal is
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sparse is known, CS recovers the signal with a minimal number of measurements of the order

O (s log(n/s)) where n is the length of the signal and s is the sparsity of the signal in the

sparse domain. To achieve best performance of CS, sampling measure is required to have

an orthogonalizational property [21] – which states that sampling matrix is approximately

orthogonal. We extend this work to understand the recoverability of CS with any sampling

measure as practical sampling schemes may not be endowed with the orthogonalizational

property. Then we apply CS to achieve phenomena awareness of sensor networks with a

minimal measuring overhead. Sensor networks achieve global knowledge of the sensor field

via phenomena awareness which leads to intelligent data routing.

Common place image compression such Joint Photographic Experts Group (JPEG) [22]

relies heavily on sparse representations and has achieve significant image compression perfor-

mance. These concepts can be exploited to compress data on sensor networks and minimize

the communication cost. Wireless sensor networks are expected to operate with a minimal

energy usage. Communicating sensed data is their costliest operation. Thus, reducing the

communication cost has been of significant interest. Compressing the data to be commu-

nicated will reduce the cost of communication. We propose a distributed approach which

enables data compression over the communication structure of the sensor network, to reduce

the amount of data to be transmitted. These developments are applied to track a chemical

plume at a minimal cost with a high accuracy [23].

The best energy compaction scheme known to date is Karhunen-Loève transform or

Principal Component Analysis (PCA). PCA implies that if the most prominent principal

components can be estimated, the signal can be recovered with a high accuracy. Based on

this principle, authors of [24] propose to use nuclear norm minimization to reconstruct a

matrix from a subset of entries. The strategy is to fill in the missing entries such that the
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rank of the completed matrix is minimal. However, minimizing the nuclear norm does not

guarantee a smooth reconstruction, which affect data matrices of applications such as natural

images. Thus, we employ nuclear norm minimization in conjunction with compressive sensing

based image reconstruction to recover images with a high accuracy from a minimal number

of samples.

As a part of this research, several software tools are developed and made available to

the public. These tools encapsulate collecting, extracting, and modeling network traffic and

other data. The network anomaly analysis toolkit is a suite of tools to separate anomalies

from network data, characterize and visualize them. The Robust PCA toolkit provides

generation and analysis of a variety of data matrices. The network data collection tools can

be deployed against any typical network to gather data similar to those used in this work.

Publishing these tools enables future enhancements to the concepts proposed herein and

grants the researchers a head start.

Rest of the thesis is arranged as follows. Chapter 2 presents the precise problem state-

ment addressed in this work. Network monitoring and fault localization are addressed in

Chapter 3. Data recovery techniques are researched in Chapter 4 and feature extraction is re-

searched in Chapter 5. Then we proceed to network behavior modeling. Chapter 6 discusses

modeling anomalies and Chapter 7 discusses baseline modeling. Conclusions are presented

in Chapter 8. Finally, Appendix A reviews the algorithms used in this work, Appendix B

describes the software developed under this work, and Appendix C lists key sources codes.
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CHAPTER 2

Problem Statement

Network performance is a key factor of the performance of an information system. A

healthy network delivers a vast quantity of information faster, i.e., a healthy network has a

high throughput and a low delay. Whereas an unhealthy network has a poor information

delivery capacity, which in turn affects the performance of the entire computer system.

Therefore maintaining network performance targets is a major responsibility of network

administrators. These targets are referred to as Service Level Agreements (SLAs) [25].

As with any real-world system, computer networks are vulnerable to component failures.

Even with redundancy and replication, time lag bringing up fail over resources may affect

performance. Thus, sufficient provisioning and constant monitoring of the network is a major

part of the administrators responsibilities. Unusual user behaviors are another aspect that

has to be taken into consideration. Events such as flash crowds [26], may exceed the capacities

of even the best provisioned computer systems. Network administrators are expected to

detect, throttle and maintain operation under such overwhelming but legitimate traffic.

Resources of a computer system are accessible via its network. Therefore the resources have

to be protected against malicious connections arriving via the network that may harm the

computer system. Due to criticality of such protection measures, fields such as cyber-security

are gaining momentum nowadays. Also, the cost of deploying an efficient computer network

cannot be discounted. To this end, efficient and low-cost solutions for various computer

system related problems are of great interest. Further, an Understanding of the distribution

of loading and utilization of elements in a computer system allows designing networks with

appropriate provisioning.
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In order to support provisioning, maintaining health, and assuring security of computer

networks, information about the network has to be constantly retrieved and analyzed. How-

ever, care should be taken to make the process of information extraction and evaluation

not a burden to the network, especially when the network is overloaded or affected in some

other way. Otherwise the solution will contribute to and worsen the problem. Therefore ef-

ficient data reconstruction techniques via parsimonious sampling are of much interest. Such

techniques lead to drawing a complete picture of a given scenario from a minimal set of in-

formation. Once the information is extracted, they need to be analyzed rapidly. Thus, fast

fault localization algorithms are another branch of vital solutions needed. If certain actions

should be taken to regain the health of the network, those actions have to be triggered.

Further, the characterization of interesting features such as the baseline and anomalous be-

haviors, leads to optimum network design. The presented work attempts to encapsulate the

above discussed breadth of problems.

Challenges that inspired this work is discussed in Section 2.1. The overall research goals

are reviewed in Section 2.2. In Section 2.3 the specific research objectives are discussed.

Finally, in Section 2.4 the solution approach employed under this work is presented.

2.1. Challenges and Motivation

The problem domain concerned in this work is centered around monitoring networks,

diagnosing issues and modeling behaviors. As with any other problem domain, a range of

issues arises as we seek practical solutions. Computer networks contains an abundance of

data. However, the efficient retrieval and use of which is yet to pick up speed. The work

presented aims at efficient use of computer network data to solve prevalent problems in
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the domain. This work address challenges in scalability, accessibility, speed, and insight in

computer network traffic.

As networks grow in size, challenges of a few different natures begin to arise. One

aspect is the escalation of instrumentation to cover the increased network elements. Thus,

a large cost has to be incurred to monitor the network. Another aspect is the escalation in

complexity. Elements of a network are connected and thus, are correlated in many ways.

As the number of network elements increase, these correlations become even more complex.

The increased complexity poses a challenge to fault localization algorithms. Furthermore,

data needed to process for monitoring, fault localization, and network characterization also

increases. Even more, these data are needed to be delivered over the network itself to

the processing locations. Despite the important role played by network performance data,

retrieving them without burdening the network is challenging. Thus, developing methods

to efficiently retrieve interesting and important information about the network aids a wide

variety of networking and other applications.

Larger networks such as the Internet span beyond the scope of a single authority. Access

granted for co-operating entities by each other are mostly restricted. For example an entity

operating at network end points may not have complete access to the core of the network to

place monitoring devices. However, end to end performance is affected by issues in the core.

Thus, schemes have to be devised to operate at end to end points, but have capabilities

to diagnose and localize issues even in the core without complete access. Such problems

are not restricted to a single core. Large networks such as the Internet have multitudes of

sub-network units, such as Autonomous Systems (AS), which may be owned by different

groups but operate in parallel. In such scenarios access restrictions would become a more
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complicated problem. So schemes that require minimal access privileges and that maximally

exploit the available information are in great demand.

In spite of the size of the network, administrators require to know the existence and

locations of issues in the network soonest possible. This is a major challenge as complexity

of any algorithm would only grow with network size. Thus, fast algorithms that have low

complexities are in demand. Complexity of the algorithm is not the only factor that governs

the speed. Algorithms such as those are adaptive, require feedback, in these cases, from the

network. Thus, efficient feedback mechanisms contribute to the speed of the algorithm. A

key improvement here would be to identify the optimum feedbacks that deliver the most

information leading to a rapid convergence of the algorithm.

Gaining insight into the network would tremendously improve network management, pro-

visioning and also designing future networks. However the breadth of mathematics developed

to describe key behaviors of networks is limited. Thus, new approaches have to be identified

to efficiently and comprehensively capture network behaviors. To this end, network behavior

modeling is of much interest. However, identifying parameters to model and the approaches

for modeling is a major challenge. Features such as network traffic anomalies do not follow

commonly known and used distributions. Thus, new approaches have to be investigated and

devised to effectively capture behaviors of such properties.

Network administrators maintained networks facing the above challenges over the last few

decades. However as the network grow in scale, the current methods used are increasingly

becoming insufficient. Finding solutions to these challenges would greatly enhance network

performance and will ease the duties of administrators leading to more performant and

reliable networks.
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2.2. Research Goals

The ultimate goal of this work is to develop network monitoring infrastructures that are

highly scalable to a point they are almost invariant to network size, highly efficient that they

optimally collect and use network information, and completely model all aspect of networks.

This thesis innovates on the prevalent technologies and presents new concepts leading to the

above goal. For this, we take a data-centric approach.

The context of this thesis centered around data mostly specific but not limited to com-

puter networks. The goal is to seek optimum usage of data to address problems identified in

previous sections. For that, efficient means of data collection, processing, and interpretation

are needed. Impact on the network made by collecting data should almost be negligible.

This becomes critical when the network is under threat. Data gathering should not add up

weight to an already overloaded system. Once the data is collected they should be analyzed

in a timely manner. Fast algorithms and efficient feedback systems are critical for this.

Data analysis should be able to construct the larger picture of the network with a minimal

amount of data and also reveal interesting features of the behavior. If network behaviors can

be characterized once the features are extracted that would help provisioning and designing

future networks.

Thus, the goal of this thesis is to investigate and develop efficient gathering, processing,

feature extraction and characterization of network data, with the possibility to extend beyond

the scope of networks. For this, we seek to borrow concepts from signal processing, machine

learning, optimization, and TCP/IP. We also seek to establish the validity of the finding by

testing on realistic scenarios whenever possible. Furthermore, we pay special attention to

performance and accuracy of the developed schemes, as well as the practicality of deployment.

13



2.3. Research Objectives

The research objectives of this work are organized around the following four aspects.

(1) Retrieving network data

(2) Data recovery

(3) Extracting features

(4) Characterizing behaviors

Under retrieving network data aspect, we investigate approaches to retrieve important

information from networks efficiently. A primary concerns in collecting data is to gather and

deliver data in a timely manner and also not to burden the network. Thus, schemes relying

on naturally available or easily measurable properties are of interest. This work leads to

efficient network monitoring. Retrieving location information of faults is also viewed as a

part of this. We also investigate ways to exploit the sparse nature of network faults. Another

aspect to study is the accessibility to the network. Retrieving internal network information

from end points in particular is a key interest.

Optimal data retrieval schemes would only require a minimal amount of data to build

a complete picture of the network behavior. Thus, we investigate data recovery schemes

that operate on sparse and parsimonious samples. This involves looking into domains where

data has a compact representation and investigating sampling strategies to enable successful

data recovery. Practicality is another key factor to be taken into consideration. The data

recovery methods developed should be able to perform against real world data. Furthermore,

theoretical guidelines should be established to predict the recoverability and select sampling

specifications. We also extend the scope of investigations beyond network data into general

data occurring in other applications.
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Once data is collected, features have to extracted and analyzed. We seek to investigate

different domains for representing data and different data decomposition schemes to extract

features. We extend our investigations into algorithm implementations and evaluations. We

pay a special attention to practical recoverability and thus, attempt to establish empirical

recovery regions for the feature extraction algorithms. We focus on the feature extraction

methods that may be tied to interesting physical features of data. Network data contains a

wide range of features whose interplay reveals interesting behaviors. Moreover, we investigate

methods that can extract features obscure to a human operator.

Another objective of this thesis is to characterize network behaviors. Such character-

izations have applications in efficient provisioning and designing. We seek to investigate

extracting and characterizing interesting behaviors such as baselines and anomalies. These

behaviors are to be modeled so that their properties are well captured and also enable regen-

eration. The ability to regenerate behaviors is imperative for studies. Due to sporadic nature

of most network data, they are not amenable to classical modeling methodologies. There-

fore, new approaches for effectively modeling network behaviors should be investigated. The

models developed should be able to concisely represent behaviors enabling compact storage

and communication of interesting network behaviors.

2.4. Solution Approach

In this section we establish the solution approaches to address the research objectives

and goals identified so far. Our approaches are data centric and we pay a special attention

to practical implementation of the solutions. We also try to leverage from the existing

technologies and build upon them. Where no existing methods answer to our requirements,
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we develop new solutions. In all cases we test on real world or realistic data and evaluate

performance of the solutions.

Recently, a wide range of algorithms were introduced that take advantage of data sparsity.

We study and borrow concepts from these developments. Further, as discussed in [8], faults

in the core can be felt by end to end paths going thru the faulty point(s). Therefore we build

on Network Tomography algorithms to localize faults using end to end measurements. This

allows data extraction through access restricted networks. As network sizes grow, solutions

that resolve the entire network would be costly and inefficient. Thus, we research on adaptive

algorithms that use feedbacks to localize faults. The idea behind here is to limit probing

to the area of interest and narrow down the area of interest iteratively - thereby efficiently

localizing faults and limiting the measurement load.

Compressive sensing, matrix completion, and wavelet analysis are some of the concepts

we use for data reconstruction. When a signal has a sparse representation on some known

domain, compressive sensing allows reconstruction of the entire signal from a very small set

of samples [19, 27]. The “signal” in our case is the fault state of all the network elements.

As network faults are uncommon, the signal would be sparse in time and spatial domains.

In the cases of measurements such as those from chemical plumes, the signals are sparse in

domain such as discrete cosine and wavelets. We intend to identify the sparsity domains

for each application and use the appropriate transform to recover signals. As most data

matrices can be closely approximated by a few principal components, nuclear norm based

matrix completion [24] allows estimating matrices from a limited number of samples. Wavelet

compression is widely used for compressing natural images. By applying wavelet compression

distributively over a sensor field can drastically reduce the amount of information that needs
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to be transmitted over the network. This is highly beneficial especially for applications such

as resource limited wireless sensor networks.

We investigate extracting features from data using techniques as feature filters, Fourier

methods and Robust PCA. Network data carry a number of different fields, making them

amenable to convenient feature extraction via different filters. While each feature individ-

ually is interesting, their inter-connection and correlation are also quite interesting as well.

Further, we view these features as distributed in space and time. Thus, we study spatiotem-

poral correlation of features. Fourier methods reveal interesting features of signal that are

repetitive. Many network measurements such as, CPU usage, memory usage, and network

usage show diurnal and weekly patterns. Therefore Fourier methods are can decompose and

extract interesting features in those data. Karhunen-Loève transform or Principal Compo-

nent Analysis (PCA) is the best known energy compacting scheme. Therefore PCA will

produce the most prominent features of a dataset. However as pointed out in [28] con-

tamination can significantly spoil the identification of principal features. As a remedy, we

investigate the usage of Robust PCA [5, 6]. We establish its recoverability and applicability

to problem of our interest.

Most of the prevalent models do not capture enough information to successfully repro-

duce traffic with similar nature. This issue is especially noticeable with traffic anomalies.

Thus, we propose a new approach for modeling network data. First we decompose data

into physically meaningful components, namely, baseline and anomalies. Then we model

each component separately with appropriate techniques that is best suited to describe each

feature. Baselines are prominent and consistent across the data. Thus, we employ method-

ologies such as PCA and Fourier analysis to describe baseline behaviors. As anomalies are
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sporadic, they are not so amenable to commonly used to random processes. Thus, we in-

troduce a new modeling scheme for anomalies where important properties of anomalies are

modeled separately with common random processes. This leads to a more accurate and a

concise description of anomaly behaviors. We further investigate the ease of communication

and real time application of the extracted behaviors.
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CHAPTER 3

Network Monitoring and Fault Localization

3.1. Introduction

This chapter focuses on monitoring computer networks for faults, and upon detection of

faults to localize them. We mainly present two algorithms, one an enhancement of the other,

for this purpose. We also present the evolution of the algorithms that lead to these two. We

begin by reviewing the problem of network monitoring and fault localization and discuss the

state of art. We also review theoretical background leading up the proposed methodologies.

The presented algorithms have two phases. The initial phase monitors the network for faults

with a minimal cost. Then upon detection of presence of faults, they initiate the second phase

to localize the faults. It should be pointed out that we do not assume access to individual

network elements, preventing us from directly verifying a detection. This would be the case

in a realistic network where the access to the entire network may not be available to a single

party. Thus, we device indirect methods to verify a localization and if a localization is not

accurate to generate further measurements to improve the localization. The first complete

network monitoring and fault localization algorithm is presented in Section 3.2. Then a more

improved, noise resilient version is presented in Section 3.3. In Section 3.4, we additionally

present another algorithm to select effective monitoring paths and the evolution of the fault

localization algorithms. The presented algorithms are tested on realistic topologies and with

a few different data models which includes realistic loss and delay models.
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3.2. An Adaptive Compressive Sensing Scheme for Network Tomography

Based Fault Localization

A scalable network fault localization scheme based on compressive sensing is proposed.

Aimed at large networks, the proposed scheme monitors a network with a few paths covering

the network, and upon detection of anomalies in one or more paths, adaptively carries out

additional end-to-end measurements to localize the faulty links. Each adaptive measurement

covers a set of links identified based on the previous resolution. The scheme is highly scalable

as the total number of measurements required grows logarithmically with the number of links

in the network - a level of scalability not practically achieved for network data inference with

compressive sensing so far. The scheme is tested on realistic Internet topologies with Gilbert-

Elliott loss model calibrated with measurements made on Planet-Lab infrastructure. Results

indicate that the converged solution of the proposed scheme achieves over 99% detection rates

and less than 1% false positive rates. The proposed scalable scheme is accurate in terms of

detection, cost effective in terms of implementation, and casts a minimal monitoring traffic

load.

3.2.1. Introduction. A number of considerations challenge monitoring and localizing

faults in large networks. As large networks are formed by subnetworks, which often are

managed as separate entities, complete access of the network to a single party may not

exist. Also, the sheer size of networks or even a subnets demands a significant amount of

instrumentation. Thus, schemes such as “Network Tomography” [9] have gained a significant

interest recently. Network tomography techniques probe the network from endpoints and

infer internal performance and QoS characteristics. Schemes of interest to large networks

have to scale well with the network size, with respect to the instrumentation cost, the number
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of measurements or measurement time, and the monitoring traffic load. This dissertation

presents an efficient and a scalable scheme that detects and localizes faulty network links.

Many existing network tomography methods, e.g., [8], impose a tree-like probing scheme

where test packets are injected from a root node and observed at multiple leaf nodes. Based

on the anomaly characteristics established in [8], authors of [10] propose an efficient scheme

to monitor mesh networks and localize anomalies using end-to-end measurements. A frame-

work of three algorithms for monitoring and localizing anomalies in [29] seeks breaches of

network performance guarantees and localizes faults based on the anomalous path measure-

ments. Using second order statistics to characterize and localize lossy links is addressed in

[30]. Based on this work more recent developments such as Netscope[31] and LIABLI[32]

have emerged. Many loss tomography methods also rely on tree probing structures [33–35].

Network delay tomography over tree structures is addressed in [36]. Usage of passive probing

techniques as well as active techniques for loss tomography is addressed in [37]. A key issue

in network tomography involves setting or finding the routes for the measurements. Possible

path selection strategies include OSPF paths, and use of pre-configured MPLS [38]. However,

when the exact path cannot be found, routing matrices can be inferred using non-negative

matrix factorization [39, 40].

The concept of “Compressive Sensing” [20, 19, 27] sheds new light to the network tomog-

raphy domain. Compressive Sensing (CS) provides a mathematical foundation to retrieve

a sparse solution to an under-determined linear system, from a logarithmic fraction of re-

alizations. Considering that in most production networks today, anomalies occurring at a

given time are on a small set of links, the idea of sparse solutions is highly attractive. How-

ever, satisfying CS requirements in a network setup is quite challenging as highlighted in

[1, 41]. In spite of such theoretical challenges, [42] demonstrates the use of CS for network
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tomography. However, CS based methods tested on networks have achieved only a limited

amount of savings (in the order of 50%) [1]. As pointed out in [43], resource restrictions in

the measurement systems cause CS based recoveries to fail. Using an insufficient number of

measurements and the measurements not satisfying recovery conditions are some examples

that cause CS to fail in the network monitoring domain. An adaptive scheme is proposed in

[43] as a remedy for scenarios that lack resources for CS. Practical adaptive CS algorithms

are currently used in areas such as radar and image processing. However they are not readily

applicable in the networking domain.

The contribution of this work is an adaptive compressive sensing scheme for network

tomography based fault localization requiring far fewer tomographic measurements than

state-of-the-art [1]. The number of measurements scales logarithmically with the number

of links, therefore it requires much less instrumentation, especially in large networks. Fur-

thermore, the proposed scheme casts a significantly less monitoring traffic load on to the

network.

3.2.2. Background. Efficiency of the proposed scheme is due to the use of compressive

sensing (CS). If a signal is sparse, i.e., it contains only a few non-zero elements in a known

domain, CS can recover the signal with far fewer samples of the signal than the number of

elements. In fact, compressive sensing literature [19, 18] states that the number of samples

required for successful reconstruction of the signal is a logarithmic fraction of the signal

length. If the signal has n elements, k of which are non-zero, the signal can be reconstructed

with m samples where m = O (k log (n/k)). Internet traffic anomalies typically affect only

a small fraction of network elements [7]. Thus, we seek to exploit this similarity between

network anomalies and sparse signals to efficiently monitor for and localize network faults.
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For a network with n links, of which k are anomalous, a successful implementation of CS is

expected to localize the faulty links with m = O (k log (n/k)) samples.

Signal recovery via CS can be formulated as follows. Consider a linear system consisting

of a matrix A ∈ Rm×n, a vector x ∈ Rn×1, and a vector p ∈ Rm×1:

Ax = p (3.1)

Here A is referred to as the measurement matrix, while x is the unknown but sparse

signal and p contains the compressive measurements. In a network tomography setup, A

indicates the routes for each of the tomographic measurements, x represents the unknown

QoS values of each link, and p contains the cumulative QoS values over each measurement

path. The case of interest to us is when m� n, i.e., when the system given by (3.1) is highly

under-determined. CS literature shows that when matrix A satisfies certain conditions such

as Restricted Isometry Property [19, 27], the solution to sparse x is unique, and that it can be

found by solving for minimum ‖x‖0 (L0 norm) solution, i.e., the solution with the minimum

number of non-zero elements. CS literature recommends using L1 norm minimization since

L0 minimization is intractable. The mathematically tractable L1 norm minimization achieves

the L0 norm minimum solution with a very high probability for sparse signals x, when A is

well conditioned.

Random matrices have been shown to be good candidates forA [21]. But realizing random

measurements matrices is difficult in networks. The construction of binary matrices that are

good measurement matrices is addressed in [44]. Exploiting the fact that routing matrices

are binary, [42] connects compressive sensing to network tomography and demonstrates that

the recovery conditions in [44] can be met in network setups when the networks have only

one faulty link. However, results presented in [1, 41] do not hold with the logarithmic factor
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m = O (k log (n/k)) for general CS recovery in network setups. Further, the recovery bounds

of existing CS methods rely on the knowledge of the signal, such as sparsity. However, such

knowledge is not available in reality. A practical recovery algorithm has to depend only on

the information provided by the measurements themselves.

CS recovery is vulnerable to many factors including noise, poor measurement matrix

A, dense x, etc. As discussed in [43] a possible remedy for such scenarios is an adaptive

approach. An adaptive scheme takes into account the problem at hand and even partial

knowledge obtained in the process to drive the solution, rather than seeking a solution to

a general class of problems. When a network contains a fault, the requirement is only to

localize that particular fault. However, adaptive signal recovery via compressive sensing on a

network setup has not been addressed in literature as of now. The practical scheme proposed

in this dissertation adaptively applies compressive sensing to localize faulty links and only

uses knowledge provided by the measurements themselves to determine the convergence.

3.2.3. Network Monitoring and Fault Localization. We refer the linear system

(3.1) as the “measurement set.” The measurement value of path i is the ith element of the

vector p. The ith row of A indicates the number of times path i goes through each link. If

path i goes through link j once, aij - the element on row i column j of A - is set to one, if

path goes through the link twice, aij is set to two, and so on. If path i does not go through

link j , aij is zero. This representation can be used for any additive network QoS parameter,

such as link delays [36, 45], log of packet transmission rates [30–32], and packet losses [33].

The proposed scheme is of two phases. The first phase monitors the network for presence

of a fault. Upon detection of a fault, the second phase for localizing the faulty network

elements is initiated.
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3.2.3.1. Monitoring Phase. The network is monitored with a few tomographic monitoring

path measurements. Monitoring measurements can be implemented with random walks [1] or

more strategically as discussed in Section 3.4.1. These measurements cover all the network

links and form the initial set of measurements. Coverage of all the links is required to

guarantee the detection and subsequent localization of a fault on any of the links. Though

the monitoring measurements may not be sufficient to localize a fault, they are indicative

of when an anomaly is present. During the monitoring phase, the path measurement vector

p is inspected for significant deviations. If a path measurement does not exceed a certain

threshold, none of the links on the path are in error. A significant deviation in p indicates

that the network contains one or more faults that affect the end-to-end network performance.

In such cases the adaptive fault localization phase discussed below is initiated.

3.2.3.2. Adaptive Fault Localization Phase. The monitoring path measurements are merely

indicative of a presence of an anomaly and in general insufficient to localize faults. The

scheme discussed here adaptively carries out further path measurements to localize the faults.

It follows the algorithm in Fig. 3.1 whose steps can be summarized as follows:

(1) Reduce measurement set to Aasy = pa

(2) Solve system of reduced measurements

(3) Check for convergence, and if converged exit

(4) Find link set f for additional adaptive measurements

(5) Collect additional adaptive measurements

(6) Append measurements to the measurement set and repeat the procedure from step 1

Reducing the measurement set: Let set a indicate the subset of paths that have anomalous

readings. Then construct a vector pa by selecting elements on a from p. In addition, build

a sub-matrix Aa by selecting rows of A that correspond to a. Figure 3.2a illustrates this
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Figure 3.1. Adaptive fault localization algorithm.
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(a) Reducing rows

(b) Reducing columns

Figure 3.2. Reducing the measurement set. Anomalous path measurements
are indicated by a shaded cell.

step. As shown, entries of p corresponding to paths 2, 4 and 5 are anomalous. Thus, set

a = {2, 4, 5}. Then Aa is built with rows 2, 4 and 5 of A. Once the set of rows is reduced, a

new set s is built with the columns of Aa that have at least one non-zero element. Then by

selecting the columns on s from Aa, the reduced matrix Aas is built. This is illustrated in

Fig. 3.2b. As shown, columns 3 and 6 of Aa are all zero, in Fig. 3.2b. Thus, s = {1, 2, 4, 5}.

Then the reduced Aas is built with columns 1,2,4, and 5 of Aa.

Solving the reduced measurement set: The reduced measurement set contains the anoma-

lous path measurements and the links those paths go through. The goal in solving this linear

system is to recognize the exact links that caused the path measurements to be anomalous.

The reduced measurement set can be expressed as a linear system:

Aasxs = pa (3.2)
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where xs is the vector of unknown link QoS values of links in s. The reduced measurement

set (3.2) is extremely likely to be an under-determined set of equations, especially for large

networks monitored with a few tomographic measurements. We seek a solution that explains

the path anomalies with a minimal number of faulty links. Thus, we solve the following CS

problem as discussed in Section 3.2.2.

minimize‖xs‖0 such that Aasxs = pa (3.3)

where, ‖ · ‖0 is the L0 norm. In a traditional CS implementation, the process exits at this

point. The faulty links are indicated by the non-zero elements in xs. As measurement

matrices for networks are unlikely to satisfy properties required by traditional CS, leading

to solutions that does not indicate faulty links, we employ an adaptive approach.

Unlike the existing adaptive sensing methods where the entire measurement matrix is

rebuilt [43] or where the measurement matrices are impossible to be realized on networks, the

proposed adaptive approach appends additional measurements to the measurement set and

iteratively solves until convergence. In each iteration, (3.3) is solved as a ‖ · ‖1 minimization.

Though publicly available solvers such as L1 magic [46] can be used, we developed a solver

based on Doughlas-Rachford iterations [47] for stability. Should one seek to solve ‖ · ‖0

minimization without the ‖ · ‖1 relaxation, a number of algorithms such as the class of

matching pursuit algorithms [48] can be used. It should be noted that the solution delivered

from L1 minimization may not necessarily be the sparsest solution we desire. Further, the

solutions may require post-processing. For instance, if link delays were used, they are non-

negative. On the other hand, if log of packet loss rates were used, they are non-positive.

Thus, any out of range entries in the solution including other invalid entries such as NaNs

28



(Not a Number) have to be removed via post-processing. The solution is then analyzed for

convergence.

Convergence: Since individual link measurements are not available, a convergence criteria

to terminate the iterations using only the available path measurements need to be found.

Here we present three conditions which guarantee an accurate, minimal, and a unique fault

localization using only the path measurements. Violation of any of the three conditions

implies an un-converged solution, and therefore continuation with additional measurements.

The first condition is the “accuracy.” Since the solution obtained for (3.3) is subjected

to post-processing, it may no longer satisfy (3.2) closely. If the processed solution deviates

from the path measurements by some preset threshold ε, the accuracy condition is considered

violated.

‖Ax− p‖ > ε (3.4)

The second condition is the minimality. It implies that the solution cannot be further

reduced to fewer links, i.e., every link marked as faulty is needed to describe the anomalies

observed at path level. For this, a set h is formed with the indices of the non-zero entries of

the solution. Then a sub-matrix Aah is formed by selecting columns corresponding to h from

Aah. If the solution can be further reduced, then a linear dependence between the links in

h and the corresponding columns Aah should exist. Therefore, if Aah is rank deficient, the

minimality condition is considered to be violated.

rank (Aah) < min (|h|, |a|) (3.5)

The third condition is uniqueness. This condition prevents alternative solutions. A set

hC which is the complement of set h is formed first. By selecting columns of Aas on hC a
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sub-matrix AahC is then formed. Let set J indicate the zero entries in the inner product

〈Aah, AahC 〉. Elements in J correspond to possible alternative links that may have caused the

same path anomalies. Thus, a non-empty J indicates a violation of the uniqueness condition.

|J | > 0 (3.6)

If none of the above violations (3.4), (3.5), and (3.6), occur, then set h contains the

minimal set of faulty links and the fault localization scheme terminates. Otherwise, the

process continues through the next steps.

Selecting additional adaptive measurements (AAMs): If convergence was not achieved,

further path measurements are made. Termed as additional adaptive measurements (AAMs),

these measurements are designed to remove any ambiguities and converge to the actual

solution. Two requirements are sought in the links selected for adaptive measurements: (1)

selected links break linear dependences between faulty links indicated in the solution, and

(2) selected links include possible alternatives links which are not identified as faulty in the

solution. These requirements are achieved by selecting a random subset of links f from

h and the links that correspond to zeros in the inner product 〈Aah, AahC 〉. Then a path

measurement is made to cover links in f .

Carry out AAMs: The goal here is to make AAMs that will route measurement packets

through the links in f . It is to be noted that an AAM is not required to cover only or all

the links in f . A path measurement may contain other links and even may skip some of

the selected links due to routing limitations. If the path measurement did not achieve the

anticipated coverage, and as a result convergence was not reached, the next iteration will

account for the deficiencies.
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Appending the measurement set: Each additional adaptive measurement is appended to

the measurement set Ax = p. Each new AAM adds a new row to A corresponding to

the path and the measurement value adds a new entry to p. If the new AAM value is q,

then the current path values vector p is updated as p =
[
pT q
]T

. Similarly, the new route

indicated by row r is appended to measurement matrix A as A =
[
AT rT

]
. Then adaptive

fault localization scheme is repeated on the updated measurement set.

3.2.4. Experiments.

3.2.4.1. Experimental Setup. The proposed adaptive compressive sensing based fault lo-

calization algorithm is tested via the simulation setup described here and details can also be

found in Section 3.4.1. Realistic network topologies are generated using the IGen topology

generator [49] simulating backbone networks on one continent, connected using Delaunay

triangulation. The link faults are simulated with Gilbert-Elliott model [50] which uses a

two state Markov chain. This model emulates bursty packet losses prevalent in the Inter-

net, using a faulty state where packets are continually dropped and a no-faults state where

no packets are dropped. To obtain realistic parameters, we made measurements on the

Planet-Lab infrastructure [51] for link losses and tuned the fault model. The Planet-Lab

measurements suggested a probability of 1/ (1.5× 106) to transition to faulty state and a

probability of 0.05 to transition to no-faults state. Each measurement consisted of 1000

packets transmitted over a path. Measurement packets are generated at a network probing

device attached to a network node, and the measurement path terminates again at a probing

device which retrieves test packet information. All the simulated networks are assumed to be

monitored by 10% of nodes with attached probes scattered across the network. However, it

was noticed that the number of probes used has little impact on performance, long as more

than 10 probes are used. A random set of paths initiating and terminating at probes that

31



cover the network are selected for network monitoring. For AAMs, two probes closest to the

set of links f are selected and source routing measurement are made between the two probes

over path that includes the links on f . Path measurement vector p contains the log of path

pass rates. Pass rate is (1 - loss rate). Pass rate of a path j denoted by dj is the product of

pass rate of all links on the path. This formulation is similar to the previous work [31, 32].

If the loss rate of a link i which is a member of path j is ri then

dj =
∏
i

(1− ri) (3.7)

pj = log dj =
∑
i

log (1− ri) (3.8)

The performance is analyzed with two parameters: detection rate (DR) and false positive

rate (FPR). Links that have a loss rate over 5% are treated as faulty. Let the set of links

that actually are faulty be T and the set of links the scheme identified as faulty be S, then

DR =
|T ∩ S|
|T |

× 100% (3.9)

FPR =
|T ∩ SC |
|S|

× 100% (3.10)

3.2.5. Results. The main goal of the proposed scheme is to monitor and localize faults

in large networks with a small number of measurements. Further, the measurements required

were expected to scale slowly with the network size. The accuracy of detection is also of

significant interest. The results presented below answers these concerns.

Figure 3.3 shows the number of measurements needed for a range of network sizes. As

can be noted, the total number of measurements needed is significantly less than the number

of links in the network. Notably, only a few additional measurements were required for at
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all network sizes to successfully localize the faulty links. This demonstrates the credibility of

the criteria used to specify additional adaptive measurements, and also the ability to rapidly

localize faults.

Figure 3.3. Measurement cost vs. network size. Each column corresponds
to a certain network size. The average number of links and the number of
nodes (within paranthesis) for each size is shown.

Next, we demonstrate the scalability of required number of measurements with the net-

work size. As of now, there is no evidence that traditional compressive sensing approach on

networks has practically achieved logarithmic scaling of number of network measurements

with links. But as the results in Fig. 3.4 show, the required total number of measurements for

successful localization of faults increases logarithmically with the number of links in the net-

work for the proposed scheme. This result supports the scalability of the proposed scheme.

Since the cost of instrumentation increases with number of measurements, the scheme can

be implemented with less instrumentation, the scheme is cost effective.

As illustrated in Fig. 3.5 the proposed scheme achieves a very high detection rate and

a very low false positive rate for the range of network sizes using the realistic loss model.

The detection rate is consistently over 99.0% and the false positive rate is consistently below
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Figure 3.4. Logarithmic scaling of number of measurements with number of links.

1.0% for all the network sizes tested. This demonstrates the credibility of the conditions used

for convergence test. If the network is instrumented so that link level measurements can be

made for verification, detection rate achieves 100% and false positives drop to 0%. Finally

Figure 3.5. Fault localization performance.

we provide a comparison against a standard compressive sensing over graphs implementation

in Fig. 3.6. Here we apply the proposed scheme to bidirectional complete networks similar to

34



those used in [1] and then compare the number of measurements required for the proposed

scheme against the 50% measurement savings claimed [1]. We note that detection and

false positive rates of both schemes are same. As can be observed the proposed adaptive

compressive sensing scheme for network fault localization provides tremendous measurement

savings.

Figure 3.6. Comparison of proposed adaptive CS method against standard
CS implementation [1].

3.2.6. Conclusions. An adaptive compressive sensing scheme for network tomography

based fault localization was proposed. It achieves a very high detection rate and a very

low false positive rate with a number of measurements that scales logarithmically with the

number of links in the network. Experiments on realistic internet topologies with 100 links

to 5000 links show the total number of measurements required scaled logarithmically - a

level of scalability that has not been demonstrated so far for network tomography. Further,

the proposed three conditions for convergence and the two criteria for selecting the links

for additional adaptive measurements, lead to a fault localization with a minimal number

of additional measurements and assures a rapid localization process. Thus, the proposed

scheme is efficient for monitoring and localizing faulty links of large networks in terms of

accuracy, speed, instrumentation cost, and measurement traffic load.
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3.3. Adaptive Compressive Sensing for Network Fault Localization

A scalable technique that localizes network faults efficiently in large networks while im-

posing a minimal overhead is proposed. The scheme monitors the network of interest with

minimal end-to-end monitoring measurements, and upon detection of a fault, initiates an

adaptive fault localization process. An adaptive compressive sensing method that employs

practically available information to guide localization measurements, is developed for fault

localization. The algorithm indicates measurements that lead to an accurate, minimal and

a unique solution which rapidly converge on to the faulty links. The scheme requires only a

limited number of instrumentations sitting at the edge of the network and does not require

access to the internals of the network. The proposed scheme is tested on simulated realistic

Internet topologies with a number of different data models including realistic loss and delay

models, to evaluate performance and cost. Results show a very high detection rate and a

very low false positives rate for all data models tested. Results also indicate that the total

number of measurements required grows nearly logarithmically with the network size. This

is a scalability that is unachieved so far in literature.

3.3.1. Introduction. Effective, reliable and economical network monitoring schemes,

especially those targeted at large networks, are increasingly in demand. As instrumenting

and monitoring each network node and/or link individually is costly and impractical in large

networks, efficient approaches such as network tomography [9] are of significant interest.

Network tomography estimates internal network parameters with a few end to end measure-

ments. An efficient monitoring and fault localization system should scale well with respect

to the links and nodes in the network, in terms of the number of measurement equipment

and the amount of test traffic imposed on the network while guaranteeing a high quality of
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monitoring. As the network size grows, restricting the escalation of equipment and test traf-

fic is crucial to prevent the growth of cost of monitoring. To guarantee quality of monitoring

with fewer resources requires efficient and reliable techniques. With products such as JDSU

PacketPortalTM [52] and SFProbeTM [53] which allows for filtering of packets, identifying

and reporting header associated values such as timestamps, a novel class of monitoring and

fault localization techniques for networks has become feasible. In this section, we present

a technique for efficiently localize network faults. The presented scalable scheme requires

only a very limited number of network nodes to be instrumented with monitoring probes

and casts a low monitoring and fault localization traffic on to the network.

A brief review of closely related work is provided next. Many existing work on network

tomography proposes a tree-like probing scheme where test packets are injected from a root

node and observed at multiple leaf nodes. A few algorithms with plausible performance for

localizing faulty links from path measurements for tree networks appear in [8]. Based on

the anomaly characteristics established in [8], authors of [10] propose an efficient scheme

to monitor mesh networks and localize anomalies using end-to-end path measurements. A

framework of three algorithms for monitoring and localizing anomalies is presented in [29].

They seek breaches of network performance guarantees while achieving a good coverage of

the network. When such a breach is detected, the anomalous network elements are localized

using an elimination algorithm based on the anomalous path measurements. Locating links

with excessive losses and delays using network tomography based methods stands out in the

literature. Using second order statistics to characterize loss behaviors of links and locating

faulty links is addressed in [30]. This work has provided the base for more recent develop-

ments such as Netscope [31] and LIABLI [32]. Similar to other network tomography schemes,

many loss tomography methods also rely on tree probing structures [33–35]. Network delay
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tomography over tree structures is addressed in [36]. Usage of passive probing techniques

as well as active techniques for loss tomography is addressed in [37]. An active probing

scheme called Flexicast is used for delay tomography in [45]. Another common approach for

general network tomography is using network coding. Loss tomography via network coding

is proposed in [54]. A key issue in network tomography is either setting or learning the

routes of the tomographic measurements. As reviewed in [38], among the possible solutions

are periodically downloading and calculating OSPF paths, and use of pre-configured MPLS

paths. However, when the exact path cannot be learned, routing matrices can be inferred

using non-negative matrix factorization [39, 40].

The concept of “Compressive Sensing” [55, 20, 27, 17] facilitates novel techniques for net-

work tomography. Compressive Sensing (CS) provides a mathematical foundation to retrieve

a sparse solution to an under-determined linear system. Considering that in most produc-

tion networks today the anomalies affect only a small fraction of elements at a given time,

the idea of sparse solutions seems highly attractive. However, satisfying CS requirements

in a network setup is quite challenging as highlighted in [1, 41]. In spite of the theoretical

challenges, [42] proposes the use of CS for network tomography. They demonstrate that

expander graph based recovery guarantees of CS can be achieved with routing matrices of

a network tomography setup. More theoretical bounds are derived in [1] and [41] which

are further reinforced by simulated examples. Despite the significant literature on efficient

network monitoring techniques, there is a significant gap between the desired performance

and the theoretical achievements. Much of the earlier work relies on tree-based probing,

which either does not provide sufficient coverage or is costly to provide a complete coverage

for mesh topologies. Also, most work is limited to binary faults. Approaches such as in [1]

tested on more realistic QoS parameters on mesh networks have achieved only a limited
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amount of savings (in the order of 50%). As pointed out in [43], resource restrictions in

the measurement systems cause CS based recoveries to fail. Adaptive schemes are a remedy

proposed for these scenarios. In some of the earlier work, an iterative focusing algorithm that

adaptively collects measurements and retains only a subset of the estimates at each iteration

is used [43]. Among the more recent developments of adaptive CS algorithms, [56] proposes

LASeR (Learning Adaptive Sensing Representation) - an adaptive algorithm to solve convex

optimization problems for CS when coefficients exhibit a tree structure in some orthonormal

dictionary. The existing adaptive CS algorithms, which have been developed for applications

such as radar, image processing, are not readily applicable in the networking domain.

The focus of this section is the development of an adaptive compressive sensing algorithms

targeted for network monitoring. A preliminary but a different version of the proposed

scheme is presented in the companion paper [13]. The proposed scheme monitors the network

with a minimal number of end-to-end measurements for faults and upon detection of a fault,

initiates an adaptive fault localization algorithm to localize the faulty links that uses a few

additional end-to-end measurements. The total number of measurements required by the

scheme grows logarithmically with the number of links in the network. Therefore the scheme

is highly scalable and very cost effective for large networks. Furthermore, the results show

a high detection rate and a low false positives rate for a number of different data models

including realistic loss and delay models, on realistic Internet-like topologies. The remainder

of the section is arranged as follows. Section 3.3.2 reviews some preliminaries required for the

context of the section. The analytical foundation of the proposed work is laid in Section 3.3.3.

The proposed network monitoring and fault localization scheme is presented in Section 3.3.4.

Section 3.3.5 discusses the experimental setup and Section 3.3.6 presents the results of the

experiments carried out. Finally, Section 3.3.7 makes the concluding remarks.
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3.3.2. Preliminaries. We begin by reviewing a few related technical concepts, to ease

the conversation forth. First we lay down the taxonomy and then review compressive sensing

and fixed sparse signal recovery, as they form the base for the proposed scheme.

3.3.2.1. Taxonomy. The following notation is used throughout the section. Scalars are

indicated with non-bold italic lower-case characters; for example: x. While vectors and sets

are indicated with bold italic lower-case characters as in x, matrices are indicated with bold

italic upper-case characters as in X. When sub-sets or sub-matrices are formed, a subscript

representing the index set is attached to these symbols; for example: Xy.

If a certain sparse vector x has k non-zero elements whose locations are listed in a set

s, k is referred to as the sparsity of x, and s is referred to as the support of x. In signal

processing, similarity between two vectors x and y if often quantified with coherence yielded

from their inner product 〈x,y〉 = xTy. Let A be a matrix of n columns, and ai and

aj denote the ith and jth columns. Then worst case coherence of A = mini,j
〈
aTi ,aj

〉
for

i, j = 1, . . . , n and i 6= j. It should be noted that, if the matrix or vectors are strictly binary,

Hamming distance can be used in place of the inner product. Two norms occur frequently

in this section: L0 norm and L1 norm. The L1 norm of a vector or a matrix X, denoted

by ‖X‖1, is the sum of absolute values of the entries of X. The L0 norm of X, denoted by

‖X‖0, is the number of non-zero elements (also called active elements) in X.

The presented work revolves around network faults. Network faults are significant de-

viations of QoS (Quality of Service) parameters of the network. We use the symbol ξ to

denote the strength of a faulty QoS sample, and it is expressed as a factor of the range of

the acceptable QoS values. If γ is the maximum acceptable value for a certain QoS param-

eter, and if a certain faulty sample had a value of ζ, then ξ = ζ/γ. When convenient, ξ is

expressed in dBs.
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Certain QoS parameters are additive over network paths. For example, delay over a

network path is the sum of the delays of individual links of the path. If the packet loss rate

is denoted by is r, the log of the pass rate, log (1−r), is also an additive QoS parameter. We

refer to such path QoS values as tomographic end-to-end path values. A significant deviation

of a link QoS value will cause a significant deviation of the tomographic end-to-end path

value, which sets the premise of the proposed network monitoring and fault localization

scheme.

3.3.2.2. Compressive Sensing. Efficiency of the proposed scheme is due to the use of

compressive sensing (CS). If a signal is sparse, i.e., it contains only a few non-zero elements

in a known domain such as time, space, frequency, wavelet, etc., CS can recover the signal

with far fewer samples of the signal than the number of elements. In fact, compressive

sensing literature [19, 20, 27, 17, 18] states that the number of samples required for successful

reconstruction of the signal is a logarithmic fraction of the signal length. If the signal has

n elements, k of which are non-zero, the signal can be reconstructed with m samples where

m = O (k log (n/k)). Internet traffic anomalies typically affect only a small fraction of

network elements at a given time [7]. Thus, we seek to exploit this similarity between

network anomalies and sparse signals to efficiently monitor for and localize network faults.

For a network with n links, of which k are anomalous, a successful implementation of CS is

expected to localize the faulty links with m = O (k log (n/k)) samples. Though this target

is not yet practically achieved in literature.

Signal recovery via CS can be formulated as follows. Consider a linear system consisting

of a matrix A ∈ Rm×n, a vector x ∈ Rn×1, and a vector p ∈ Rm×1

Ax = p (3.11)
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Here A is referred to as the measurement matrix, while x is the unknown but sparse signal

and p contains the compressive measurements. In a network tomography setup, A indicates

the routes for each of the tomographic measurements, x represents the unknown QoS values

of each link, and p contains the cumulative QoS values over each measurement path. The

case of interest to us is when m � n, i.e., when a network of many elements is monitored

with a few measurements. Notably, the system given by (3.11) is highly under-determined

when m� n, thus, no unique solution is available. CS literature shows that when matrix A

satisfies certain conditions such as Restricted Isometry Property (RIP) [19, 27], the solution

to sparse x is unique, and that it can be found by solving for minimum ‖x‖0 (L0 norm)

solution, i.e., the solution with the minimum number of non-zero elements. CS literature

recommends solving (3.11) as a L1 norm minimization since L0 minimization is intractable.

The mathematically tractable L1 norm minimization achieves the L0 norm minimum solution

with a very high probability for sparse signals x, when A is well conditioned as in RIP

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2 (3.12)

where the constant δ is called the Restricted Isometry Constant (RIC).

Random matrices have been shown to be good candidates for A [21]. But realizing

random measurements matrices as routing matrices in networks is impractical. Work such

as in [57] discusses the construction of deterministic matrices which have good recoverability

in CS. The construction of binary matrices that are good measurement matrices is addressed

in [44]. Exploiting the fact that routing matrices are binary, [42] connects compressive

sensing to network tomography and demonstrates that the recovery conditions in [44] can

be met in network setups when the networks have only one faulty link. However, results

for CS implementations on networks such as those presented in [1] and [41] do not hold
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with the logarithmic factor m = O (k log(n/k)) for general CS recovery in realistic network

setups. Further, the recovery bounds of existing CS methods rely on prior knowledge of the

signal, such as sparsity. However, such prior knowledge is not available in reality. Therefore

the existing bounds cannot be used to build a practical CS implementation for network

monitoring. A practical detection algorithm has to depend only on the information provided

by the measurements themselves.

CS recovery is vulnerable to many factors including noise, poor measurement matrix A,

dense x, etc. As discussed in [43] a possible remedy for such scenarios is to use an adaptive

approach. Based on the idea of adaptive compressive sensing, a number of extensions are

stemmed, such as LASeR (Learning Adaptive Sensing Representation) [56] an adaptive algo-

rithm to solve convex optimization problems for CS when coefficients exhibit a tree structure

in some orthonormal dictionary. An adaptive scheme seeks to solve the problem at hand

using partial knowledge obtained in the process, rather than solving a general class of prob-

lems. When a network contains a fault, the requirement is only to localize that particular

fault. However, adaptive signal recovery via compressive sensing on a network setup has not

been addressed in literature as of now. The practical scheme proposed in this section adap-

tively applies compressive sensing to localize faulty links and only uses knowledge provided

by the measurements themselves to determine the convergence.

3.3.2.3. Recovery of Fixed Sparse Signals. As noted above, if the scheme is adaptive,

conditions to recover a general sparse signal are not necessary to meet. As mentioned earlier

when a network contains a fault, it is only required to localize that particular fault. Recovery

of fixed sparse signals is discussed in [58, 59]. The following theorem is initially proposed

in [58] and then is generalized in [59]. A comprehensive review of the theorem can be found

in [21]. A signal x with support s can be successfully recovered via Compressive Sensing
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when the measurement matrix A satisfies

∣∣〈A+
s ai, sgn (xs)

〉∣∣ ≤ 1∀i /∈ s (3.13)

where A+
s is the pseudo-inverse of the sub-matrix of columns of A over s, ai is the ith columns

of A, xs is the vector of elements of x over s, and sgn(·) is the signum function. The proof

can be found in [58, 21, 59]. As can be noted, this optimality condition depends on a priori

knowledge of the signal’s support. If the knowledge of signal sparsity is in fact available,

the system equation (3.11) can be constructed to satisfy the above theorem. However, such

knowledge is not available in practice.

Using an adaptive scheme to resolve a fixed sparse signal, as we do in this section, has

not been discussed yet in literature. Further, as shown above, recovery bounds of exist-

ing methods rely on prior knowledge of the signal. The scheme proposed in this section

adaptively applies compressive sensing to localize faulty links and use only the knowledge

provided by the measurements and the solver to determine the convergence. Thus, it relies

only on practically available information, not practically unavailable prior knowledge.

3.3.3. Analytical Foundation. The proposed scheme localizes faulty links from path

measurements. For this we need to develop an understanding of how faults affect network

paths. The path measurements are resolved using compressive sensing, but with a novel

adaptive approach which uses existing knowledge to converge on the solution. This section

discusses the underlying concepts of the proposed scheme.

3.3.3.1. Sum of Random Variables and Faults. Network link QoS values can be treated

as random variables. We are interested in QoS values which are additive over network

paths. Sum of two random variables is obtained by the convolution between the two. By
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Central Limit Theorem, it is known that the sum of many (typically greater than 30) random

variables approximates to a Gaussian distribution centered around the sum of the means of

the individual random variable with a variance which is the sum of the variances of the

individual random variables. In other words, with a 68% probability the path measurements

would lie within one standard deviation around the sum of the means of link QoS values,

and with a 95% probability within two standard deviations and with a 99.7% probability

within three standard deviations. More precisely with a probability of erf
(
n/
√

2
)
, the path

measurements would lie within n standard deviations around the sum of the means of link

QoS values.

When a path measurement contains a faulty link measurement, the path measurement

will significantly deviate from the expected range. However, it should be noted that the

variance of longer paths is high and therefore the deviation caused by a link fault may lie

within the non-faulty range of path measurements. For a fault on a path of h links to make

a deviation beyond n standard deviations, the path length should satisfy

h ≤
(
ζ − γ
nσl

)2

(3.14)

where ζ is the magnitude of the fault, γ is the maximum non-faulty link QoS value and σl

is the standard deviation of link level QoS parameter. The derivation is found in Appen-

dix 3.3.8. This result provides a rule for limiting monitoring path length. For the simple

random data model discussed later in Section 3.3.5, the limit on the path length is simplified

to 12(ξ − 1)2/n2. This quantity is derived in Appendix 3.3.9.

When measurements are beyond a certain threshold they are considered anomalous.

Based on the desired detection rate and false positive rate, a threshold can be found more

precisely as follows. Let β = ζ − µl, where µl is the mean of link level QoS parameter, and
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α denotes the threshold. Then the distribution of path level QoS values with and without

faults can be described as shown in Fig. 3.7. The detection and false positive rates are

Detection rate =

(
1 + erf

(
β − α√

2σ

))
/2 (3.15)

False positives rate =

(
1 + erf

(
α√
2σ

))
/2 (3.16)

where σ is the path level standard deviation. Derivations of these quantities are discussed in

Appendix 3.3.10. An ROC (Receiver Operating Characteristic) curve for the above is shown

in Fig. 3.8, which enables selecting a suitable threshold to obtain a desired performance in

detecting faults of an interested magnitude.

Figure 3.7. Distribution of path level QoS values with (red) and without
(green) a fault. Mean of the no-fault path measurements is indicated by µ.

3.3.3.2. Criteria Indicating a Correct Fault Localization. Compressive Sensing solves the

system equation (3.11) as a minimization of L1 norm. The proposed fault localization scheme

iteratively appends adaptive measurements to (3.11) and solves until a correct localization

is achieved. Here we develop the criteria that indicate a correct localization. Notably, these

criteria depend only on the available information, unlike the prevalent CS methods.

We first study an example where CS L1 minimization does not yield the sparsest solution

we seek. Let us consider the following scenario illustrated in Fig. 3.9. It has multiple possible
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Figure 3.8. ROC for different fault magnitudes and thresholds. Deviation
caused by faults β = nσ, where σ is the path level standard deviation.

L1 minimum solutions, to name a few: (1) x2 = 1, x3 = x4 = 0 (2) x2 = 0, x3 = x4 = 0.5 and

(3) x2 = 0.5, 3 = x4 = 0.25. While ‖x‖1 of all these three solutions is 1.0, ‖x‖0 is 1.0, 2.0

and 3.0 respectively. Though the first solution is the sparsest, an L1 minimization cannot

guarantee to produce the sparsest, as it cannot distinguish the sparsest solution from the

other possibilities long as they all have the minimum L1 norm. Quite possibly, the solver

would produce the least squares solution, i.e., x2 = x3 = x4 = 1/3 in this case.

Figure 3.9. An example system having multiple L1 minimum solutions, but
has a unique L0 minimum solution.
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Thus, we need one or more criteria that indicate when the solver produces a less than

acceptable answer. If the solution is unacceptable, by making additional measurements

the ambiguities can be resolved. When the solution satisfies the criteria, no additional

measurements will be needed and resolution can terminate. We identified three criteria

which indicate when the solver produces an acceptable parsimonious solution. In fact, as

discussed in the next subsection, these criteria even guide additional measurements.

When the proposed adaptive scheme achieves a correct localization, the solution had the

following properties: (1) it was stable - meaning, the solution does not change with further

measurements, (2) it was minimal - meaning, the solution cannot be further reduced, i.e.,

it had no redundancies, and (3) it was unique - meaning, there are no alternative solutions.

Further, these three criteria are testable using available knowledge. Thus, they are very

practical to implement.

The first criterion - stability - is assessed by keeping track of the support of the solution

produced by the solver. When the solution does not show any churn between iterations,

the solution is said to be stable. The second criterion is minimality. Let the support of an

intermediate solution be h. Since elements outside h are redundant, the system (3.11) can

be expressed as

Ax = p = Ahxh (3.17)

where Ah is a submatrix formed with the columns of A on h, and xh is vector formed with

elements of x on h. If h can further be reduced to g, then Ahxh = Agxg where |h| > |g|.

That implies rank (Ah) ≤ rank (Ag) < |h|. But if h is minimal, then rank (Ah) = |h|. The

final criterion is uniqueness. Here we seek for elements in the complementary set of h, called

hc that can replace elements in h. We take a geometric approach for this. First we build an

projector I −Ah

(
AT

hAh

)−1
AT

h and then project columns of A corresponding to hc. This
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projector projects vectors to the perpendicular space of the solution h. Should a vector

vanishes completely when projected that vector lies on the subspace of the solution and the

link it correspond to can be an alternative to some of the links in the current solution. If

none of the columns of A corresponding to hc vanish when projected, then the solution is

unique. We will illustrate implementation of these criteria in Section 3.3.4.

3.3.3.3. Adaptive Measurements. For an efficient localization involving a minimal number

of additional measurements, the most effective adaptive measurements have to be made. We

deduce two rules based on the termination criteria discussed earlier. The first rule is to

improve minimality of non-minimal solutions. If two links are visited by the same set of

measurements, and if one of them has a fault, it would be difficult to pin point which

link actually contained the fault. The L1 solvers are likely to indicate both links as faulty.

Columns of A corresponding to such columns have a high coherence value. An adaptive

measurement has to decrease the coherence between the columns of A corresponding to the

support of the current solution. That will lead to a minimal solution in future resolutions.

The way to decrease coherence between a subset of links is to visit each link with different

measurement or visit only a subset of links with a measurement. The second rule is to

incorporate possible alternatives. For that, adaptive measurements have to go through the

possible alternative links indicated previously. Inclusion of alternative links may lead to

a non-minimal solution at first. But eventually minimality will be achieved with the first

rule. By then, all the possible alternatives will also be taken into consideration, leading

to a minimal unique resolution. Again, the implementations of these are illustrated in

Section 3.3.4.

3.3.4. Network Monitoring and Fault Localization. A “good” monitoring sys-

tem operates with minimal number of equipment and casts minimal monitoring traffic onto
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the network, and is efficient. Resource requirements of a good monitoring algorithm will scale

well with the network size, thus, is scalable. Accuracy guarantee is a major challenge for al-

gorithms as they operate with far fewer resources compared to the size of the network, thus,

a good scheme is reliable. The proposed scheme is endowed with the above characteristics.

It consists of two phases:

(1) Tomographic monitoring phase

(2) Adaptive fault localization phase

The first phase monitors the network for a presence of a fault. Upon detection of a fault,

the second phase for localizing the faulty network elements is initiated. The procedure is

summarized in Fig. 3.10.

Figure 3.10. The monitoring and localization framework.

We refer the linear system (3.11) as the “measurement set.” The measurement value of

path i is the ith element of the vector p. The ith row of A indicates the number of times
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path i goes through each link. If path i goes through link j once, aij - the element on row

i column j of A - is set to one, if path goes through the link twice, aij is set to two, and

so on. If path i does not go through link j, aij is zero. It should be noted that though

most routing matrices are binary, we do not impose a binary constraint on the measurement

matrix. Binary routing matrices are a special case of the general class of measurement

matrices considered herein. This representation can be used for any additive network QoS

parameter, such as link delays [36, 45], log of packet transmission rates [30–32], and packet

losses [33].

3.3.4.1. Monitoring Phase. The goal of the proposed approach is to monitor the network

with a minimal measurement load on the network, while employing a minimal number of

instrumented nodes. The monitoring system keeps the network in check with a few tomo-

graphic path measurements. Monitoring measurements can be implemented with random

walks [1] or more strategically as discussed in Section 3.4. Subjected to path length restric-

tions discussed in Section 3.3.3, these measurements cover all the network links and form the

initial set of measurements. Coverage of all the links is required to guarantee the detection

and subsequent localization of a fault on any of the links. Though the monitoring mea-

surements may not be sufficient to localize a fault, they are indicative of when an anomaly

is present. If no path measurement is anomalous, then the network is anomaly-free. But

if one or more path measurements are anomalous, then the network contains at least one

anomalous link. During the monitoring phase, the path measurement vector p is inspected

for significant deviations. If a path measurement does not exceed a certain threshold, none

of the links on the path has a fault. A significant deviation in p indicates that the network

contains one or more faults that affect the end-to-end network performance. In such cases

the adaptive fault localization phase discussed below is initiated.
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3.3.4.2. Adaptive Fault Localization Phase. The monitoring path measurements are merely

indicative of a presence of a fault and quite possibly insufficient to localize the faults. The

scheme discussed here adaptively carries out further path measurements to localize the faults.

It follows the algorithm in Fig. 3.11 whose steps can be summarized as follows:

(1) Reduce measurement set to Aasy = pa

(2) Solve system of reduced measurements

(3) Test termination criteria. If they are satisfied, exit.

(4) Find link set f for additional adaptive measurements

(5) Collect additional adaptive measurements

(6) Append measurements to the measurement set and repeat the procedure from step 1

Reducing the measurement set: Let set a indicate the subset of paths that have anoma-

lous readings. Then construct a vector pa by selecting elements on a from p. In addition,

build a sub-matrix Aa by selecting rows of A that correspond to a. Fig. 3.12(a) illustrates

this step. As shown, entries of p corresponding to paths 2, 4 and 5 are anomalous. Thus,

set a = {2, 4, 5}. Then Aa is built with rows 2, 4 and 5 of A. Once the set of rows is

reduced, a new set s is built with the columns of Aa that have at least one non-zero ele-

ment. Then by selecting the columns on s from Aa, the reduced matrix Aas is built. This

is illustrated in Fig. 3.12(b). As shown, columns 3 and 6 of Aa in Fig. 3.12(b) are all zero.

Thus, s = {1, 2, 4, 5}. Then the reduced Aas is built with columns 1,2,4, and 5 of Aa.

Solving the reduced measurement set: The reduced measurement set contains the faulty

path measurements and the links those paths go through. The goal in solving this linear

system is to recognize the exact links with the faults. The reduced measurement set can be

expressed as a linear system:

Aasxs = pa (3.18)
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Figure 3.11. Adaptive fault localization algorithm.

where xs is the vector of unknown link QoS values of links in |bms. The reduced measurement

set (3.18) is extremely likely to be an under-determined set of equations, especially for large

networks monitored with a few tomographic measurements. We seek a solution that explains
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Figure 3.12. Reducing the measurement set. Anomalous path measure-
ments are indicated by a shaded cell.

the path anomalies with a minimal number of faulty links. Thus, we solve the following CS

problem as discussed in Section 3.3.2.

minimize ‖x‖0 such that Aasxs = pa (3.19)

where, ‖ · ‖0 is the L0 norm. In a traditional CS implementation, the process exits at this

point. The faulty links are indicated by the non-zero elements in xs. Measurement matri-

ces for networks are unlikely to satisfy properties required by traditional CS and solutions

obtained will fail to indicate the faulty links. Thus, we develop an adaptive approach.

Unlike the existing adaptive sensing methods where the entire measurement matrix is

rebuilt [43] or where the measurement matrices are impossible to be realized on networks,

the proposed adaptive approach appends additional path measurements to the measurement

set and iteratively solves until convergence. In each iteration, (3.19) is solved as a ‖ · ‖1
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minimization. Though publicly available solvers such as L1 magic [46] can be used, we

developed a solver based on Doughlas-Rachford iterations [47] for stability. Should one seek

to solve ‖ · ‖0 minimization without the ‖ · ‖1 relaxation, a number of algorithms such as

the class of matching pursuit algorithms [48] can be used. It should be noted that the

solution delivered from L1 minimization may not necessarily be the sparsest solution we

desire. Further, the solutions may require post-processing. For instance, if link delays were

used, they are non-negative. On the other hand, if log of packet loss rates were used, they

are non-positive. Thus, any out of range entries in the solution including other invalid entries

such as NaNs (not a number) have to be removed via post-processing. The solution is then

analyzed for termination criteria.

Termination criteria: Since individual link measurements are not available, a convergence

criteria to terminate the iterations using only the available path measurements need to be

found. Here we implement the three criteria discussed in Section 3.3.3. Violation of any of

the three conditions implies an un-converged solution, and therefore the scheme continues

with additional measurements.

The first criterion - stability - is implemented by keeping track of the support of the

solution. At each iteration the support of the previous solution hold is compared against

the support of the current solution h. If they are similar a counter t is incremented. If h

is different, the counter is reset to zero. When the counter increase past a predetermined

threshold tmax, the solution is said to be stable. The solution is unstable when

t < tmax. (3.20)

The second criterion is the minimality. It implies that the solution cannot be further

reduced to fewer links, i.e., every link marked as faulty is needed to describe the anomalies
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observed at path measurements. For this, a sub-matrix Aah is formed by selecting columns

corresponding to h from Aas. If the solution can be further reduced, then a linear dependence

between the links in h and the corresponding columns Aah should exist. Therefore, if Aah

is rank deficient, the minimality condition is considered to be violated.

rank (Aah) < min (|h|, |a|) (3.21)

The third criterion is uniqueness. This condition prevents alternative solutions. A pro-

jection operator I −Aah

(
AT

ahAah

)−1
AT

ah is built, first. Then a set hc which is the com-

plement of set h is formed. Columns of Aas corresponding to hc are projected onto the

above projector. The columns that vanishes when projected are listed in a set j. Elements

in j correspond to possible alternative links that may have caused the same faulty path

measurements. Thus, a non-empty j indicates a violation of the uniqueness condition.

|j| > 0 (3.22)

If none of the above violations (3.20), (3.20), or (3.22) occur, then set h contains the

minimal set of faulty links. The fault localization scheme terminates at this point. Otherwise,

the process continues through the next steps.

Selecting additional adaptive measurements (AAMs): If the scheme did not terminate

in the previous step, further path measurements are made. Termed as additional adaptive

measurements (AAMs), these measurements are designed to remove any ambiguities and

converge to the actual solution. As discussed in Section 3.3.3, two requirements are sought

in the links selected for adaptive measurements: (1) selected links that break linear de-

pendences between faulty links indicated in the solution, and (2) selected links to include
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possible alternatives links which are not identified as faulty in the solution. The first rule is

implemented by selecting a subset of links in h. The second rule is implemented by including

the set j. Thus, a set f is formed by taking the union of a subset of h and the entire set j.

Then a path measurement is made to cover links in f .

Carry out AAMs: The goal here is to make AAMs that will route measurement packets

through the links in f . It is to be noted that an AAM is not required to cover only or all

the links in f . A path measurement may contain other links and even may skip some of

the selected links due to routing limitations. If the path measurement did not achieve the

anticipated coverage, and as a result convergence was not reached, the next iteration will

account for the deficiencies.

Appending the measurement set: Each additional adaptive measurement is appended to

the measurement set Ax = p. Each new AAM adds a new row to A corresponding to the

path and the measurement value adds a new entry to p. If the new AAM value is q, then the

current path values vector p is updated as p =
[
pT q

]T
. Similarly, the new route indicated

by row r is appended to measurement matrix A as A =
[
ATrT

]T
. Then adaptive fault

localization scheme is repeated on the updated measurement set.

3.3.5. Experimental Setup. Here we review the experimental setup used to test the

proposed scheme. Our goal is to test the proposed scheme on realistic large networks under

real and interesting operating conditions. The details can also be found in .

3.3.5.1. Realistic Topologies. Realistic network topologies are generated using the IGen

topology generator [49] simulating backbone networks on one continent, connected using

Delaunay triangulation. Work in [60] shows that though the Internet grows in size, its

features are relatively stable. Therefore we make a reasonable assumption that IGen provides

a faithful representation of realistic networks of the scales we sought to test.
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3.3.5.2. Path Measurements. We assume the network supports the IPv4 option Loose

Source Routing and Route Recording (LSRR) [61] for test traffic. This option provides two

functions. The first, it permits routing test packets along a path that includes the links

we desire. The second, it records the path the test packets took, enabling a convenient

construction of the measurement matrix. Measurement packets are generated at a network

probing device attached to a network node, and the measurement path terminates again

at a probing device which retrieves test packet information. All the simulated networks are

assumed to be monitored by 10% of nodes with attached probes scattered across the network.

However, it was noticed that the number of probes used has little impact on performance,

long as more than 10 probes are used. This is because source routing enables routing to and

from desired links, from and to the available probes. Two types of measurements are made

in the proposed scheme: monitoring measurements and AAMs.

The goal of the monitoring measurements is to monitor the network with a minimum

number of measurements. They have to adhere to two constraints: (1) monitoring measure-

ment should cover the entire network, and (2) each monitoring path has to adhere to the

path length limit. This is achieved by building a few longest possible paths that cover the

network. Each path is forced to go thru as many unvisited links as possible. The algorithm

used is summarized in Fig. 3.13.

For AAMs, two probes closest to the set of links f are selected and source routing

measurement are made between the two probes over path that includes the links on f .

However, there is a possibility that path length may exceed the limit if the entire set f

is included in a measurement. The set f contains links included for two purposes: (1)

break linear dependence between the links identified as possibly faulty, and (2) alternative

links which possibly be faulty. The set f is shuffled, so that the two types of links appear
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Figure 3.13. Constructing monitoring path measurements.

in reasonably large subset of f . Then a path measurement is developed by including the

largest possible subset of f adhering to the path length limit.

3.3.5.3. Data Models. Network tomography relies on the fundamental concept of separa-

bility laid down in [8]. The data model proposed in [8] uses two states of QoS values: High

and Low. The idea of separability and the High-Low data model states that when a link

contain a fault, a path going through the link will show a noticeable shift in path QoS values

and if a path shows a noticeable shift in QoS values, it must contain at least one faulty link.

We test the proposed scheme under three data models: (1) binary fault model, (2) simple

random fault model, and (3) realistic loss and delay data model.

The first data model we consider is the binary data model. Mostly used in earlier lit-

erature on network tomography such as in [62], binary data model is a highly simplified

representation of data and faults, mostly suitable for proof of concept experiments. Under

this model, links with no faults are assumed to carry a QoS value of zero and faulty links

are assigned with a one. Each path measurement counts the number of one’s along the path.
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Finally, the fault localization scheme will identify the faulty links which carried a QoS value

of one.

The second model we employ is called the simple random fault model. This model is

more representative of realistic network data. Under the simple random model, links without

a fault are assumed to have a random value in a range [0, γ]. For simplicity, we assume non-

faulty QoS values are uniformly distributed over [0, γ]. When a link is faulty, its QoS value

will escalate to an unbounded random value ζ, which is obviously beyond γ. We express the

strength of the fault ξ as a fold of the range of non-faulty values, i.e, ζ/γ.

Finally we simulate realistic network data. We consider two QoS parameters: packet loss

rate and link delay. The packet losses are simulated with Gilbert-Elliott model [50] which

uses a two state Markov chain. This model emulates bursty packet losses prevalent in the

Internet, using a faulty state where packets are continually dropped and a no-faults state

where no packets are dropped. To obtain realistic parameters, we made measurements on

the Planet-Lab infrastructure [51] for link losses and tuned the fault model. The Planet-Lab

measurements suggested a probability of 1/ (1.5× 106) to transition to faulty state and a

probability of 0.05 to transition to no-faults state. Each measurement consisted of 1000

packets transmitted over a path. For convenience of implementation pass rate which is (1 -

loss rate) is used. Pass rate of a path j denoted by dj is the product of pass rates of all links

on the path. This formulation is similar to the previous work [31, 32]. If the loss rate of a

link i which is a member of path j is ri then

dj =
∏
i

(1− r − i) (3.23)

pj = log dj =
∑
i

log (1− ri) (3.24)
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Network delays are simulated using an alpha-stable heavy-tail distribution [63]. Again

we employ measurements made on Planet-Lab infrastructure to calibrate the model, so

that the regenerated data is realistic. Based on the measurements we made, we used the

following parameter settings for the network delay model. The characteristic exponent is set

to 1.0. The skewness is bounded within [-1,1] and found to follow an exponential distribution

with a rate of 0.25 distributed leftwards with an offset of 1.0. The scale is found to be

distributed exponentially with a rate of 0.02. Finally, the location parameter is also found

to be distributed exponentially with a rate of 0.2 and an offset of 2.0.

3.3.5.4. Performance Metrics. The performance is analyzed with two parameters: detec-

tion rate (DR) and false positive rate (FPR). Links that have a loss rate over 5% are treated

as faulty. Let the set of links that actually are faulty be t and the set of links the scheme

identified as faulty be s, then

DR =
|t ∩ s|

t
× 100% (3.25)

FPR =
|t ∩ sc|

s
× 100% (3.26)

3.3.6. Results. In this section we present the performance and cost results of the pro-

posed scheme under the data models discussed in Section 3.3.5. Performance is quantified

with detection and false positive rates. Cost is quantified with the number of measure-

ments needed for monitoring and fault localization. All results are average values over 100

realization under each parameter setting.

First, we test the scheme under varying sparsities of binary fault model. The corre-

sponding results are shown in Fig. 3.14. Here we use networks of 300 nodes and 1772 links

in average. Faulty links carry a value one and the other links carry a zero. As can be noted,
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Table 3.1. Ratio Between Actual and Theoretical Samples Needed

Sparsity k log(n/k) m (Actual Number of Samples) m (k log (n/k))−1

2 13.6 26.2 1.93
4 24.4 37.1 1.52
6 34.1 51.6 1.51
8 43.2 61.6 1.42
10 51.8 78.0 1.51

the proposed scheme achieves near 100% detections and near 0% false positives for the range

of sparsities tested.

Figure 3.14. Effect of sparsity under the binary data model.

We compare the above results against the theoretical number of measurements needed

m = O (k log (n/k)). For this we calculate m (k log (n/k))−1. Under a typical compressive

sensing setup, this number is expected to be around 3.0. But as listed in Table 3.1, the

proposed algorithm achieves a relatively smaller factor.

Next we consider the scalability of the scheme under the binary data model, as we increase

the network size. Here we simulate five faulty links on each network. Fig. 3.15 shows the

results, as the network size is increased. The figure shows the sizes of the networks in terms

of the number of nodes and the average number of links. As the results indicate, the scheme
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continues to performs with near 100% detection and near 0% false positives throughout all

the network sizes test. Notably even when the network size is grown exponentially, the

number of measurements needed grew much slower.

Figure 3.15. Scalability under the binary data model.

Next we test the scheme under the simple random model. As before, we begin by testing

the performance of the scheme with varying fault sparsity. The networks tested in these

experiments are of 300 nodes and 1772 links average. The faults had a strength ξ of 30dB.

Performance and cost results are shown in Fig. 3.16. The results indicate a perfect 100%

detection for all the tested cases, and a low false positives rate.

The scalability of the scheme under the simple random model is tested in the experiment

whose results are shown in Fig. 3.17. In this experiment five faults with strength of 30dB

is injected to the test networks. The network sizes are varied exponentially as shown in the

figure. Although, as can be seen, the number of measurements needed grew slowly. The

detection rate continues to remain at 100% while maintaining a low false positives rate.

We also test the effect of fault strength on the performance and cost. For this, we test the

detection of five faulty links on a network of 300 nodes and 1772 links in average. The fault
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Figure 3.16. Effect of sparsity under the simple random model.

Figure 3.17. Scalability under the simple random model.

strength ξ is varied over the range 25dB to 45dB. The results shown in Fig. 3.18 indicate

that the scheme achieves a near 100% detection rate and a very low false positives rate.

Further, it can also be noted that the number of measurements needed to localizes faults

slightly decreases as the strength of the faults increases.

Then we test the performance of the scheme under realistic data models. We begin with

the loss data and test for the scalability of the proposed scheme. As discussed before network
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Figure 3.18. Effect of the strength of the faults.

losses are simulated with Gilbert-Elliott model calibrated with real measurements made on

Planet-Lab infrastructure. As the results shown in Fig. 3.19 indicate, the proposed model

achieves a high detection rate and low false positives rate. More importantly, even when the

network size is grown exponentially, the number of measurements needed grew much slower

indicating a high scalability.

Figure 3.19. Scalability under the loss data model.
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Then we repeat the experiment for the network link delay model. As discussed above,

link delays are simulated using heavy tail distributions calibrated with measurements made

on Planet-lab infrastructure. We continue to observe a high detection rate and a low false

positives rate in the link delay model as well. Moreover, the number of measurements needed

grew much slower, even when the network size is grown exponentially.

Figure 3.20. Scalability under link delay model.

Finally we take a closer look at the scalability of the proposed scheme under each data

model. As the results in Fig. 3.21 shows, the number of measurements needed to localize

faults grows nearly proportional to the logarithm of the number of links in the network. This

indicates that the proposed scheme achieves the m = O (k log (n/k)) scaling so far was not

achieved with CS in a network setup. Such kind of a scaling promises significant cost savings

for large networks.

3.3.7. Conclusions. An adaptive compressive sensing scheme for network tomography

based fault localization was proposed. The scheme is tested on realistic network topologies

using a few different data models. The scheme achieves a very high detection rate and a
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Figure 3.21. Scalability under link delay model.

very low false positive rate under all the tested data models. More importantly, the number

of measurements the scheme required scale logarithmically with the number of links in the

network. Further, the proposed three criteria for termination and the two rules for selecting

the links for additional adaptive measurements, lead to a fault localization with a minimal

number of additional measurements and assures a rapid localization process. Thus, the

proposed scheme is efficient for monitoring and localizing faulty links of large networks in

terms of accuracy, speed, instrumentation cost, and measurement traffic load.

3.3.8. Limit on Path Length. Let σ2 denote variance of path QoS values and σ2
l

denote variance of link QoS values. Then for a path of h links σ2 = σ2
l h. For a fault of

magnitude ζ to cause a deviation beyond nσ for a selected n

(ζ − γ) > nσ = nσl
√
h (3.27)

∴ h <

(
ζ − γ
nσl

)2

(3.28)
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3.3.9. Limit on Path Length Under Simple Random Data Model. Let the typ-

ical link level QoS values under simple random data model be distributed uniformly over the

range [0, γ]. Then link level variance σ2
l = γ2/12.

h <
12(ζ − γ)2

n2γ2
(3.29)

h <
12

n2

(
ζ − γ
γ

)2

=
12

n2
(ξ − 1)2 (3.30)

3.3.10. Detection and False Positive Rates. Area under a normalized Gaussian

bell over a range [−x,+x] around the mode is given by erf(x/
√

2). Therefore the detection

rate for Fig. 3.7 is

erf

(
1√
2

β − α
σ

)
+

1

2

(
1− erf

(
1√
2

β − α
σ

))
=

(
1 + erf

(
1√
2

β − α
σ

))
/2 (3.31)

Similarly, the false positive rate is

(
1− erf

(
1√
2

α

σ

))
/2 (3.32)

3.4. Additional Algorithms Developed

Here we present a few additional algorithms developed under this work.

3.4.1. Optimum Sampling Paths. This section presents an approach to select opti-

mum sampling paths. This scheme is an alternative measurement scheme to the random

path monitoring used in the prior sections. The presented scheme supports prioritized re-

covery. That is, the measurements are constructed such that faults localization occurs more

rapidly over marked high priority regions. Further, the algorithm is designed to operate
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with realistic hub and spoke cum mesh core network structures. The monitoring probes are

assumes to be placed in the leaf nodes.

Figure 3.22 shows an example map of three priority levels. The network resembles a

typical communication network where the core is a mesh network and the service network

has a hub and spoke structure. We use this map as a running example.

Figure 3.22. Sample network

Algorithm 3.23 shows the algorithm used herein. It begins by listing all end to end path

measurements. The next step is to assign a score to each path. The score is based on the

importance of the links covered. Note that it follows the priorities assigned in the map.

Then the algorithm selects the paths. It can be terminated when the maximum number of

paths desired is reached.

In order to compare performance of the scheme, three other path selection schemes are

used.

(1) All core paths

(2) Weighted random paths

(3) Random paths
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Obtain all end-to-end paths
Assign a score to paths based on the links it go thru

Max for core links
Min for edge links

Start with a path with maximal score
Find a most different path

Hamming distance / incoherence
Compare group-wise

Figure 3.23. Algorithm for optimum sampling paths

In “All core path” selection, all possible paths that go through the core network are selected.

However, this does not lead to superior performance, as shown later. In “Weighted random

paths” paths are selected at random, but a higher probability is assigned to paths with a

higher priority. In the “Random paths” case paths are selected at random.

Next we proceed to compare performance. Figure 3.24 shows the detection of a single

fault using each path selection scheme at each priority level. In this experiment the number

of paths selected are varied. As can be noted, the proposed scheme shows the most superior

performance. We also study the false positive rate of the proposed scheme in detecting 1-

Figure 3.24. Detecting 1-sparse faults
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sparse faults. The results are shown in Fig. 3.25. The results indicate that the false positives

caused by the algorithm is in the same neighborhood as the other schemes. We also test

Figure 3.25. False positives in detecting 1-sparse

the performance of the algorithm in detecting realistic losses. The corresponding results are

presented in Fig. 3.26. These results are comparable to the detection results obtained earlier.

In essence, the presented optimum sampling scheme selects the best set of measurements

to optimize fault localization of a prioritized network.

3.4.2. Evolution of the Fault Localization Algorithm. Here we briefly review

the evolution of the fault localization algorithm presented in prior sections.

The first algorithm reduces the measurement systems and applies compressive sensing

to localize faults. But it does not perform iterative solving. Thus, it will require a good

measurement systems such as build in Section 3.4.1. Otherwise it requires a higher number

of measurements compared to algorithms presented here forth.
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Figure 3.26. Loss detection

When access to any network link is available fault localizations can be immediately

verified. Algorithm 3.28 is designed for such scenarios. Notably this algorithm always

yields zero fault positives. Also the number of measurements needed for this algorithms

is far less. However, to realize the algorithm on a network require a significant amount of

instrumentation.

When access to a limited set of links are available, Algorithm 3.29 can be used. Although

it require less instrumentation than the previous algorithm, it has degraded performance.

Algorithm 3.30 is designed for tomographic measurement environments. This algorithm

forms the foundation of the localization algorithms presented in prior sections. This algo-

rithm is endowed with high accuracy and also require less instrumentations. However it is

vulnerable to noise. But the next generations of this algorithm became resilient to noise.
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Figure 3.27. Fault localization algorithm - version 1

3.5. Conclusions

In this chapter we presented our work on network monitoring and fault localization. We

used compressive sensing to resolve network measurements. To achieve a high detection

accuracy from a minimal number of measurements, we developed adaptive algorithms that

quickly converge on the faulty links. Further, these algorithms relied only on the available

information unlike CS algorithms found in literature. We tested our algorithms on realistic

network topologies with realistic data models for QoS parameters such as link delays and

losses, for accuracy, scalability and cost.
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Figure 3.28. Fault localization algorithm - version 2

74



Figure 3.29. Fault localization algorithm - version 3
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Figure 3.30. Fault localization algorithm - version 4
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CHAPTER 4

Data Recovery

4.1. Introduction

In this chapter we consider data recovery techniques. We begin with compressive sensing.

Authors of [21] established recovery bounds for compressive sensing when the sampling

measure is orthogonalizational. We extend this work to any sampling measure and quantify

the effect of mismatch therein. We also review the implications of the generalizations. This

generalization is important as it cannot be guaranteed that a practical sampling scheme

would actually be orthogonalizational. Then we apply compressive sensing for phenomena

discovery in Wireless Sensor Networks (WSNs). The findings here show a notable amount

of cost savings that can achieved via compressive sensing in WSNs.

Next we consider wavelet based data recovery. We develop a distributed compression

scheme that reduce the communication cost of WSNs to deliver information. This scheme

uses two-dimensional wavelet transform and only require a limited set of sensors scattered

at random locations. We demonstrate the performance of the scheme on tracking a chemical

plume with this limited number of sensors. In an extension of the same work, matrix com-

pletion is used to recover data when the sampling is extremely low (5%). To overcome the

lack of smoothness in matrix completion, compressive sensing is used over matrix completed

data with Discrete Cosine basis as the sparsity domain.

4.2. Performance Bounds for Sparse Signal Recovery from Random Samples

We consider the problem of reconstructing a signal from a small number of its samples.

The signal is assumed to have a sparse representation in a known basis and the sampling

points are selected at random according to a probability measure. However, unlike previous
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work, the basis elements are not orthogonal with respect to the measure from which the

sample points are selected. In other words, there is mismatch between the sampling measure

and the orthogonality measure. We consider two cases: (1) non-uniform recovery : Given

each fixed s-sparse support, we establish conditions that guarantee the recovery of the signal

from a random realization of sample points with high probability, and (2) uniform recovery :

Given a fixed realization of sample points, we establish conditions under which recovery is

guaranteed for any s-sparse signal with high probability. In each case, lower bound on the

number of measurements is a monotonically increasing function of the extent of mismatch.

We specifically bound the extent of mismatch in the case where sparse signals in the Fourier

basis are sampled at random according to distributions from the natural exponential family.

4.2.1. Introduction. Let {ψk(t)}Nk=1 be an orthonormal system of complex functions

on D ⊂ R with respect to measure ν that is

∫
D
ψj(t)ψk(t) dν(t) = δjk j, k ∈ {1, . . . , N}, (4.1)

where δjk is the Kronecker delta and D is endowed with measure ν, and ν(D) = 1. Assume

basis elements ψk(t), k = 1, . . . , N are bounded as

‖ψk‖∞ = sup
t∈D
|ψk(t)| ≤ K, K ∈ R+. (4.2)

Let y(t) be a generic signal that has an s-sparse representation in {ψk(t)}Nk=1. That is,

y(t) =
N∑
k=1

ψk(t)bk = Ψ(t)b, (4.3)

where Ψ(t) = [ψ1(t), . . . , ψN(t)], and b = [b1, . . . , bN ]T ∈ CN is s-sparse. Let t1, . . . , tm be

a sequence of i.i.d. realizations w.r.t. a probability measure ν̄. Let y = [y(t1), . . . , y(tm)]T
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and A be an m×N matrix whose (l, k)th entry Al,k = ψk(tl). Then, we can express y as

y = Ab. (4.4)

We are interested in deriving bounds on the number of samples m required to guaran-

tee the recovery of y(t) from a random set of samples y = [y(t1), . . . , y(tm)]T , with high

probability.

In [21], the authors have investigated this question in the case where the sampling measure

ν̄ is identical to the orthogonality measure ν. They have studied two scenarios: non-uniform

recovery and uniform recovery. Given each fixed s-sparse support, non-uniform recovery

guarantees the recovery of the signal from a random realization of sample points with high

probability. Given a fixed realization of sample points, uniform recovery guarantees the

recovery of any s-sparse signal with high probability. In [64], the authors present improved

guarantee bounds for the uniform recovery case considered in [21].

In this paper, we study the case where there is a mismatch between the sampling measure

ν̄ and the orthogonality measure ν, and derive sufficient conditions for uniform and non-

uniform recoveries. The lower bound on the number of measurements needed for recovery

is a monotonically increasing function of the extent of mismatch. We specifically bound

the extent of mismatch in case where sparse signals in the Fourier basis are sampled at

random according to distributions from the natural exponential family. We report explicit

bounds for three distributions: Exponential, Normal, and Gamma. As discussed in [65] many

scenarios exist where sampling measures are not orthogonalizational. This work provides the

theoretical foundation for recovery guarantees for such instances.

79



4.2.2. Non-Uniform Recovery. Here we study the recovery of sparse signals with a

fixed but unknown support.

Theorem 4.2.1. Let b ∈ CN be an arbitrary s-sparse signal with fixed but unknown

support S (|S| = s). Let {ti}mi=1 be a sequence of i.i.d. draws w.r.t. the probability measure

ν̄ and A ∈ Cm×N be a matrix whose (l, k)th entry Al,k = ψk(tl). Then, b can be successfully

recovered from y = Ab with probability at least (1− ε) if

m ≥ 8
4
√

2sK2κ2 log

(
3(N − s)23/4

ε

)
log

(
3 (N2 + s)

4
√

2ε

)
. (4.5)

where κ =
√

D2

4
+ 1 +Q+ Q

D
+ D

2
, D = 215/8

√
s/meK, Q = ‖∆‖2 and

∆ =



0 ρ12 · · · ρ1N

ρ2,1 0 · · · ρ2N

...
...

. . .
...

ρN1 ρN2 · · · 0


(4.6)

where

ρij =

∫
D

ψj(t)ψi(t) dν̄(t) (4.7)

for i = 1, . . . , N, j = 1, . . . , N, and i 6= j.

Proof. Steps of the proof is similar to those in the proof of [21, Theorem 4.2]. In

Appendix 4.2.6.1, the steps that are required to incorporate the effects of mismatch into the

proof are presented. �

Remark 1. The lower bound in (4.44) is similar to the bound derived in [21], except in

κ. The effect of mismatch between orthogonalization measure ν and the sampling measure
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ν̄ appears in κ via Q. The value of Q depends on ρijs which capture the extent of non-

orthogonality of the basis elements ψj(t) w.r.t. the sampling measure ν̄, as shown in (4.7). In

the mismatch-free case, κ =
√
D2/4 + 1+D/2 and for us κ =

√
D2/4 + 1 +Q+Q/D+D/2.

The extent of mismatch will in turn determine the overhead in the number of measurements

to guarantee perfect recovery. In the special case where ν and ν̄ coincide, ρij and subsequently

Q vanish, and the bound in (4.44) reduces to that obtained in [21]. Later in Section 4.2.4,

we present a case study where the mismatch is quantified and explicitly bounded.

4.2.3. Uniform Recovery. We now study the recovery of any sparse signal with a

sparsity limit.

Restricted Isometry Property (RIP) of A is a commonly used sufficient condition for A

to recover b from y = Ab (see, e.g. [11]). We say A satisfies RIP with Restricted Isometry

Constant (RIC ) γs, or in short it satisfies γs-RIP, if

(1− γs)‖b‖2
2 ≤ ‖Ab‖2

2 ≤ (1 + γs)‖b‖2
2, ∀b ∈ Γs (4.8)

where Γs is the set of all s-sparse vectors in CN . The RIP can be written as

|||Ã∗Ã− I|||s ≤ γs (4.9)

where Ã = 1√
m

A, and the operator semi-norm ||| · |||s for s-sparse unit vectors is defined as

|||B|||s = sup
‖z‖0≤s,‖z‖2=1

|〈Bz, z〉| (4.10)

for B ∈ Rm×N .

If A satisfies γ2s-RIP with γ2s < 1/3, then every s-sparse b is recoverable from y = Ab

using a linear program [11]. If RIP is satisfied probabilistically, then recovery is guaranteed
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only probabilistically. The probability ε with which γs-RIP is not satisfied is given by

ε = P
[
|||Ã∗Ã− I|||s ≥ γs

]
. (4.11)

Theorem 4.2.2. Let b ∈ CN be an arbitrary s-sparse signal. Let {ti}m̃i=1 be a sequence

of i.i.d. draws w.r.t. the probability measure ν̄ and A ∈ Cm̃×N be a matrix whose (l, k)th

entry Al,k = ψk(tl). Then, b is recoverable from y = Ab with a probability at least (1− ε) if

m̃

ln(10m̃)
≥ c1κ̃

2

γ2
s

s ln2(100s) ln(4N) ln

(
7

ε

)
(4.12)

where

κ̃ =

√
1 +

D2

m̃
+ Q̃+

Q̃
√
m̃

2D
+
D

m̃
(4.13)

for D = C
√

2βK
√
s ln(100s)

√
ln(4N) ln(10m̃) for some constants C and β, and Q̃ = |||∆|||s.

Before we prove Theorem 4.3.3, two remarks are in order.

Remark 2. The bound in (4.95) is similar to the bound obtained in [21], except in κ̃.

The effect of mismatch between the sampling measure ν̄ and the orthogonalization measure

ν appears in κ̃ via Q̃. In the mismatch-free case, κ̃ =
√
D2/m̃+ 1 + D/m̃ instead of

κ̃ =
√
D2/m̃+ 1 + Q̃ + D/m̃ + Q̃

√
m̃/(2D). The extent of mismatch affects the number

of measurements needed to guarantee recovery with a certain probability. When ν and ν̄

coincide, Q̃ vanishes and (4.95) reduces to that in [21]. Later in Section 4.2.4, we will bound

the extent of mismatch for the case where Fourier sparse signals are sampled at random

according to distributions from the natural exponential family.
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Remark 3. Under the additional condition E|||A∗A−I|||s ≤ 8γs/9, the bound in (4.95)

can be tightened to

m̃ ≥ c2D1

γ2
s

sK2 ln

(
1

ε

)
(4.14)

where c2 ≤ 456 and D1 = 1+Q̃/76

1+9Q̃/γ2
s
.

Proof. See Appendix 4.2.6.2. �

4.2.4. Canonical Example. We consider a signal y(t) that has a sparse representation

in Fourier domain, i.e., ψk(t) = eıkω0t, for some fundamental frequency ω0, and ‖b‖0 ≤ s.

We assume the signal y(t) is sampled in time at random according to a probability measure

ν̄ corresponding to the natural exponential family with characteristic function

ϕν̄(t) = exp{A(η + t)−A(η)} (4.15)

where A(η) is the so-called log-partition function and η is the so-called natural parameter.

We quantify the extent of mismatch between the sampling measure ν̄ and the orthogo-

nality measure ν for the Fourier basis by Q = ‖∆‖2, with ∆ defined in (4.6). We have the

following theorem.

Theorem 4.2.3 (Bounding mismatch for non-uniform recovery). Let Q = ‖∆‖2 with ∆

as in (4.6) and ρjk =
∫
Dψj(t)ψk(t)dν̄(t) with ν̄ being a measure of the natural exponential

family with characteristic function (4.15), and ψk(t) = eıkω0t. Then

exp {A (η + ıω0)−A(η)} ≤ Q

≤
∑
k 6=N/2

exp

{
A
(
η + ı(

N

2
− k)ω0

)
−A(η)

}
(4.16)

for k = 1, . . . , N .
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Proof. Using Gershgorin circle theorem, and norm equivalence, we have

max
j,k
|ρjk| ≤ Q ≤ max

j

∑
k 6=j

|ρjk| (4.17)

where

ρjk =

∫
D
eı(j−k)ω0tdν̄(t). (4.18)

Note that (4.18) is the characteristic function of ν̄(t) at (j − k)ω0. Therefore

ρjk = exp {A (η + ı(j − k)ω0)−A(η)} . (4.19)

Since A(η) is a logarithmic function, maxj,k |ρjk| occurs when |j−k| = 1 and maxj
∑

k 6=j |ρjk|

occurs at j = dN/2e. This completes the proof. �

Remark 4. For uniform recovery, we quantify the extent of mismatch by Q = |||∆|||s.

Then, similar bounds as in (4.16) for Q hold with k = 1, . . . , s/2, N − s/2, . . . , N .

We now explicitly work out the bounds in (4.16) for three distributions from the natural

exponential family. For the exponential distribution, the natural parameter η = −λ and

log-partition function A(η) = − ln−η, where λ is the rate. Then,

λ√
λ2 + ω2

0

≤ Q ≤
∑
k 6=N

2

λ√
λ2 + (N

2
− k)2ω2

0

. (4.20)

For the Normal distribution with mean µ and variance σ2, we have

η =

[
µ

σ2
,− 1

2σ2

]
A(η) = − η2

1

4η2
2

− 1

2
ln (−2η2)
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and,

exp

{
−1

2
σ2ω2

0

}
≤ Q ≤

∑
k 6=N

2

exp

{
−1

2
σ2

(
N

2
− k
)2

ω2
0

}
. (4.21)

Similarly, for the Gamma distribution, we have

η =

[
α− 1,−1

θ

]
and

A(η) = ln Γ (η1 + 1)− (η1 + 1) ln (−η2)

where α is the shape parameter and θ is the scale parameter, and (4.16) becomes

(
1 + ω2

0θ
2
)−α/2 ≤ Q ≤

∑
k 6=N

2

(
1 +

(
N

2
− k
)2

ω2
0θ

2

)−α/2
. (4.22)

Figure 4.1 show the effect of sampling mismatch on κ in non-uniform and uniform recovery

for Exponential distribution in Figs. 4.1(a) and 4.1(d), Normal distribution in Figs. 4.1(b)

and 4.1(e), and Gamma distribution in Figs. 4.1(c) and 4.1(f). In each figure, the upper and

lower bound on κ in the presence of mismatch are plotted (meshed surface), along with the

κ in the mismatch-free case (solid surface) obtained in [21]. These plots show the increase

of κ due to the mismatch between the sampling measure and the orthogonality measure

for the sparsity basis. An increase in κ means more measurements may be needed in the

mismatched case, compared to the mismatch-free case, to guarantee signal recovery with the

same probability.

4.2.5. Conclusion. In this paper we derived sufficient conditions for uniform and non-

uniform recovery of a sparse signal from its random samples for the case where there is

a mismatch between the sampling measure and the orthogonality measure for the sparsity
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(a) Exponential with λ = 0.5
(non-uniform recovery)

(b) Normal with σ = 0.1
(non-uniform recovery)

(c) Gamma with
α = 0.5, θ = 1.0

(non-uniform recovery)

(d) Exponential with λ = 0.5
(uniform recovery)

(e) Normal with σ = 0.1
(uniform recovery)

(f) Gamma with
α = 0.5, θ = 1.0

(uniform recovery)

Figure 4.1. Upper and lower bounds for κ (in dB), for different values of
s and m, in non-uniform recovery (subplots (a)–(c)) and uniform recovery
(subplots (d)–(f)). The bounds are plotted for three different random sam-
pling distributions: Exponential, Normal, and Gamma. The plot of κ in the
mismatch-free case is also shown for comparison (bottom most surface in all
subplots). In all cases the signal dimension N = 1000.

basis. We derive explicit bounds for the extent of mismatch when Fourier sparse signals are

sampled at random according to distributions from the natural exponential family.

4.2.6. Appendices.

4.2.6.1. Proof of Theorem 4.3.1. Let al denote the lth column of A. Let AS denote the

submatrix of A, whose column indices are in S that is, AS = [al1 , al2 , . . . , als ], where li ∈ S

for i = 1, 2, . . . , s. Further, let bS = [bl1 , bl2 , . . . , bls ]
T .

From [21, Corollary 2.8] (also see [58, 59]) if bS satisfies

∣∣∣〈A†Sal, sgn (bS)
〉∣∣∣ < 1, ∀l /∈ S (4.23)
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where sgn(·) denotes the signum function and A†S denotes the Moore-Penrose pseudo inverse

of AS, then b can be recovered from y with probability at least 1−ε, using a linear program.

Using union bound and [21, Corollary 6.10], the lower bound ε on the failure probability in

recovering b can be bounded as

ε ≤ P
[
max
l /∈S

∣∣∣〈A†Sal, sgn (bS)
〉∣∣∣ ≥ 1

]
(4.24)

≤ (N − s)23/4 exp

(
−1

2

( √
sτ

1− γ

)−2
)

+ P
[∥∥∥Ã∗SÃS − I

∥∥∥
2
> γ

]
+ P

max
l /∈S

√∑
j∈S

|〈ãl, ãj〉|2 >
√
sτ

 (4.25)

where τ, γ ∈ (0, 1/2], ÃS = 1√
m

AS, Ã∗S is the Hermitian transposed of ÃS, and ãl = 1√
m
al

for l = 1, . . . , s.

From Markov inequality, the second term of R.H.S. of (4.25) is bounded as

P
[∥∥∥Ã∗SÃS − I

∥∥∥
2
> γ

]
≤ E

γ
(4.26)

where E = Eν̄‖Ã∗SÃS − I‖2, and the expectation is taken w.r.t. the probability measure ν̄.

Then we write E as

E = Eν̄

∥∥∥∥∥ 1

m

m∑
l=1

X∗l Xl − I

∥∥∥∥∥
2

(4.27)

where Xl is the lth column of Ã∗S. Now, let’s look at Eν̄ (XlX
∗
l ). The (i,j)th entry of Eν̄ (XlX

∗
l )

is

Eν̄ (XlX
∗
l )ij =

1

m

m∑
l=1

Eν̄
[
ψi(tl)ψj(tl)

]
. (4.28)
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Then, we have Eν̄ (XlX
∗
l ) = I + ∆ or alternatively

I = Eν̄ (XlX
∗
l )−∆ (4.29)

where ∆ is given in (4.6) and ρij is given in (4.7) for i = 1, . . . , N, j = 1, . . . , N, and i 6= j.

Using (4.29), we write

E = Eν̄

∥∥∥∥∥ 1

m

m∑
l=1

(X∗l Xl − Eν̄ (XlX
∗
l ) + ∆)

∥∥∥∥∥
2

≤ Eν̄

∥∥∥∥∥ 1

m

m∑
l=1

(X∗l Xl − Eν̄ (XlX
∗
l ))

∥∥∥∥∥
2

+Q (4.30)

where Q = ‖∆‖2.

From the symmetrization lemma [21, Lemma 6.7], we have

Eν̄

∥∥∥∥∥
m∑
l=1

XlX
∗
l − Eν̄XlX

∗
l

∥∥∥∥∥
2

≤ 2Eν̄

∥∥∥∥∥
m∑
l=1

ξlXlX
∗
l

∥∥∥∥∥
2

(4.31)

where {ξl}ml=1 is a Radermacher sequence. Therefore,

E <
2

m
Eν̄

∥∥∥∥∥
m∑
l=1

ξlXlX
∗
l

∥∥∥∥∥
2

+Q (4.32)

From Rudelson’s lemma [21, Lemma 6.18], we have

Eν̄

∥∥∥∥∥
m∑
l=1

ξlXlX
∗
l

∥∥∥∥∥
2

≤ 27/8

√
sm

e
K

√
Eν̄
∥∥∥Ã∗SÃS − I + I

∥∥∥
2

(4.33)

From (4.31)–(4.33) we obatin

E ≤ 215/8

√
s

me
K
√
E + 1 +Q. (4.34)
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Let D = 215/8
√
s/meK, then

E ≤ D
√
E + 1 +Q ≤ κD (4.35)

where

κ =

√
D2

4
+ 1 +Q+

Q

D
+
D

2
. (4.36)

From [21, Proposition 6.5], we have

P
[
‖Ã∗SÃS − I‖2 ≥ γ

]
≤ 23/4s exp

(
− msγ2

8 4
√

2K2κ2

)
. (4.37)

This bound is similar in form to the probability bound in [21, Theorem 7.3], except that κ

in (4.67) now contains the effect of mismatch as captured by (4.36). From here on, we can

follow similar steps as in [21, Section 7.3] to obtain (4.44). We omit these steps for brevity.

4.2.6.2. Proof of Theorem 4.3.3. From Markov inequality, we have

P
[
|||Ã∗Ã− I|||s

]
≤ Ẽ

γs
(4.38)

where Ẽ = |||Ã∗Ã − I|||s. Following similar steps as (4.27)–(4.30), with ‖ · ‖2 replaced by

||| · |||s, we obtain

E ≤ 1

m̃
Eν̄ |||

m̃∑
l=1

(XlX
∗
l − Eν̄XlX

∗
l ) |||s + Q̃ (4.39)

where Q̃ = |||∆|||s. From this point on the proof follows that of [21, Section 8.5], except

that we carry Q̃ in our derivations quantify the effects of mismatch.
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4.3. Complete Proof of Generalized Recovery Bounds for Compressive

Sensing

Let {ψk(t)}Nk=1 be an orthonormal system of complex functions with respect to measure

ν that is ∫
R
ψj(t)ψk(t) dν(t) = δjk j, k ∈ {1, . . . , N}, (4.40)

where δjk is the Kronecker delta and measure space R is endowed with measure ν, and

ν(R) = 1. It should be noted that the results derived here are valid for any measure space

D ⊂ Rd. Assume basis elements ψk(t), k = 1, . . . , N are bounded as

‖ψk‖∞ = sup
t∈D
|ψk(t)| ≤ K, K ∈ R+. (4.41)

Let y(t) be a generic signal that has an s-sparse representation in {ψk(t)}Nk=1. That is,

y(t) = Ψ(t)b =
N∑
k=1

ψk(t)bk, (4.42)

where Ψ(t) = [ψ1(t), . . . , ψN(t)], and b = [b1, . . . , bN ]T ∈ RN is s-sparse. Let t1, . . . , tm be

a sequence of i.i.d. realizations w.r.t. a probability measure ν̄. Let y = [y(t1), . . . , y(tm)]T

and A be an m×N matrix whose (l, k)th entry Al,k = ψk(tl). Then,

y = Ab. (4.43)

We are interested in deriving bounds on the number of samples m required to guarantee

the recovery of y(t) from a random set of samples, with high probability.

In [21], the authors have investigated this question in the case where the sampling measure

ν̄ is identical to the orthogonality measure ν. They have studied two scenarios: non-uniform
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recovery and uniform recovery. Given each fixed s-sparse support, non-uniform recovery

guarantees the recovery of the signal from a random realization of sample points with high

probability. Given a fixed realization of sample points, uniform recovery guarantees the

recovery of any s-sparse signal with high probability. In [64], the authors present improved

guarantee bounds for the uniform recovery case considered in [21].

In this dissertation, we study the case where there is a mismatch between the sampling

measure ν̄ and the orthogonality measure ν, and derive sufficient conditions for uniform and

non-uniform recoveries.

4.3.1. Non-Uniform Recovery. Here we study the recovery of signals with a fixed

support.

Theorem 4.3.1. Let b ∈ RN be an arbitrary s-sparse signal with fixed but unknown

support S. Let {ti}mi=1 be a sequence of i.i.d. draws w.r.t. the probability measure ν̄ and

A ∈ Rm×N be a matrix whose (l, k)th entry Al,k = ψk(tl). Then, b can be successfully

recovered from y = Ab with probability at least (1− ε) if

m ≥ 8
4
√

2sK2κ2 log

(
3(N − s)23/4

ε

)
log

(
3 (N2 + s)

4
√

2ε

)
. (4.44)

Proof. According to [58, 59] and [21, Corollary 2.8], if b with fixed support S(|S| = s)

satisfies ∣∣∣〈A†Sal, sgn (bS)
〉∣∣∣ < 1 ∀l /∈ S (4.45)

then b can be recovered from y = Ab using a linear program. Here AS denotes the submatrix

formed with the columns of A on S, bS denotes the sub-vector formed with the elements of

b on S, al is the lth column of A, sgn(·) is the signum function, and A†S is the Moore-Penrose
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inverse of AS. Then the probability ε of failure to recover b is bounded as

ε ≤ P
[
max
l /∈S

∣∣∣〈A†Sal, sgn (bS)
〉∣∣∣ ≥ 1

]
. (4.46)

Next we consider two cases:

(1)
∥∥∥A†Sal∥∥∥

2
≤ α ∀l /∈ S

(2)
∥∥∥A†Sal∥∥∥

2
> α ∀l /∈ S.

We will set the value of α later on.

Under the first case

P
[
max
l /∈S

∣∣∣〈A†Sal, sgn (bS)
〉∣∣∣ ≥ 1

]
≤ P

[
max
l /∈S

∣∣∣〈A†Sal, sgn (bS)
〉∣∣∣ ≥ ∥∥∥A†Sal∥∥∥

2
α−1

]
(4.47)

Then by applying union bound

P
[
max
l /∈S

∣∣∣〈A†Sal, sgn (bS)
〉∣∣∣ ≥ 1

]
≤
∑
l /∈S

P
[∣∣∣〈A†Sal, sgn (bS)

〉∣∣∣ ≥ ∥∥∥A†Sal∥∥∥
2
α−1
]

(4.48)

Reference [21, Corollary 6.10] states

P
[∣∣∣〈A†Sal, sgn (bS)

〉∣∣∣ ≥ ∥∥∥A†Sal∥∥∥
2
α−1
]

≤ 23/4 exp
(
−α−2/2

)
(4.49)
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Therefore

P
[
max
l /∈S

∣∣∣〈A†Sal, sgn (bS)
〉∣∣∣ ≥ 1

]
≤ (N − s)23/4 exp

(
−α−2/2

)
(4.50)

Using the above two cases, (4.46) can be re-written as

P
[
max
l /∈S

∣∣∣〈A†Sal, sgn (bS)
〉∣∣∣ ≥ 1

]
=

P
[∥∥∥A†Sal∥∥∥

2
≤ α

]
P
[
max
l /∈S

∣∣∣〈A†Sal, sgn (bS)
〉∣∣∣ ≥ 1

∣∣∣ ∥∥∥A†Sal∥∥∥
2
≤ α

]
+

P
[∥∥∥A†Sal∥∥∥

2
> α

]
P
[
max
l /∈S

∣∣∣〈A†Sal, sgn (bS)
〉∣∣∣ ≥ 1

∣∣∣ ∥∥∥A†Sal∥∥∥
2
> α

]
. (4.51)

Then can be bounded as

P
[
max
l /∈S

∣∣∣〈A†Sal, sgn (bS)
〉∣∣∣ ≥ 1

]
≤ (N − s)23/4 exp

(
−α−2/2

)
+

P
[
max
l /∈S

∥∥∥A†Sal∥∥∥
2
> α

]
. (4.52)
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Now we focus on the second term of the R.H.S. of (4.52). By the definition of Moore-

Penrose inverse

P
[
max
l /∈S

∥∥∥A†Sal∥∥∥
2
> α

]
=

P
[
max
l /∈S

∥∥(A∗SAS)−1 A∗Sal
∥∥

2
> α

]
. (4.53)

Following [21] we set α =
√
st

1−γ for some t, γ ∈ (0, 1/2]

P
[
max
l /∈S

∥∥∥A†Sal∥∥∥
2
> α

]
≤

P
[
max
l /∈S

∥∥(A∗SAS)−1
∥∥

2
‖A∗Sal‖2 >

√
st

1− γ

]
≤ P

[∥∥(A∗SAS)−1
∥∥

2
>

1

1− γ

]
+

P
[
max
l /∈S
‖A∗Sal‖2 >

√
st

]
. (4.54)
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By applying the normalization Ã = 1√
m

A, Neumann series, and using the definition of

spectral norm ‖B‖2 = max‖z‖2=1 ‖Bz‖2 = sup‖z‖2=1 | < Bz, z > |

P
[
max
l /∈S

∥∥∥A†Sal∥∥∥
2
> α

]
≤

≤ P

[
∞∑
k=1

∥∥∥Ã∗SÃS − I
∥∥∥k

2
>
∞∑
k=1

γk

]
+

P

max
l /∈S

√∑
j∈S

|〈al, aj〉|2 >
√
st


≤ P

[∥∥∥Ã∗SÃS − I
∥∥∥

2
> γ

]
+

P

max
l /∈S

√∑
j∈S

|〈ãl, ãj〉|2 >
√
st

 . (4.55)

Next we focus on the first term on the R.H.S. of (4.55). From Markov inequality,

P
[
‖Ã∗SÃS − I‖2 ≥ γ

]
≤ E

γ
(4.56)

where E = E‖Ã∗SÃS − I‖2, and the expectation is taken w.r.t. probability measure ν. Let

Xl = Ψ̄S(tl) ∈ Cs be the lth column of Ã∗S. Next we take the expectation of XlX
∗
l w.r.t. ν̄ -

the sampling measure.

Eν̄XlX
∗
l =

1

m

m∑
l=1

XlX
∗
l =

1

m

m∑
l=1

Ψ̄S(tl)ΨS(tl). (4.57)
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The (i, j)th entry of Eν̄XlX
∗
l can be written as

(Eν̄XlX
∗
l )ij =

1

m

m∑
l=1

ψi(tl)ψj(tl)

=

∫
R
ψj(t)ψi(t) dν̄(t) = ρij (4.58)

∴ Eν̄XlX
∗
l = I + ∆ (4.59)

where ∆ is a matrix whose diagonal entries are zero, and whose (i, j)th entry (for i 6= j) is

ρij.

Now we can write E as

E = E‖ 1

m

m∑
l=1

(X∗l Xl − Eν̄XlX
∗
l + ∆) ‖2

≤ E‖ 1

m

m∑
l=1

(X∗l Xl − Eν̄XlX
∗
l ) ‖2 + ‖∆‖2. (4.60)

The symmetrization lemma [21, Lemma 6.7] states

(
E

∥∥∥∥∥
m∑
l=1

XlX
∗
l − Eν̄XlX

∗
l

∥∥∥∥∥
p

2

)1/p

≤

2

(
E

∥∥∥∥∥
m∑
l=1

ξlXlX
∗
l

∥∥∥∥∥
p

2

)1/p

for 1 ≤ p <∞ (4.61)

where ξl is a Radermacher sequence.

∴ E <
2

m
E

∥∥∥∥∥
m∑
l=1

ξlXlX
∗
l

∥∥∥∥∥
2

+Q (4.62)

where Q = ‖∆‖2.
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Rudelson’s lemma [21, Lemma 6.18] states

(
E

∥∥∥∥∥
m∑
l=1

ξlXlX
∗
l

∥∥∥∥∥
p

2

)1/p

≤

23/4ps1/p√pe−1/2E
[
‖A∗S‖2 max

l
‖Xl‖2

]
for 2 ≤ p <∞. (4.63)

Assuming E ‖
∑m

l=1 ξlXlX
∗
l ‖2
≥ 1 and E ‖A∗S‖2 ≥ 1

E

∥∥∥∥∥
m∑
l=1

ξlXlX
∗
l

∥∥∥∥∥
2

≤

E

∥∥∥∥∥
m∑
l=1

ξlXlX
∗
l

∥∥∥∥∥
2

2

1/2

≤ 27/8

√
s

e
K
√

E ‖A∗SAS‖2

= 27/8

√
sm

e
K

√
E
∥∥∥Ã∗SÃS − I + I

∥∥∥
2

(4.64)

∴ E ≤ 215/8

√
s

me
K
√
E + 1 +Q. (4.65)

Let D = 215/8
√
s/meK, then

E ≤ D
√
E + 1 +Q

≤ κD (4.66)

where κ =
√

D2

4
+ 1 +Q+ Q

D
+ D

2
.

Reference [21, Proposition 6.5] states if (E|Z|p)1/p < θβ1/pp1/η for some θ, β, η, p > 0 then

P
[
|Z| > e1/ηθu

]
< βe−u

η/η. By comparing variables of (4.56) and (4.66) we set β = 23/4s

and u = 8
√
ms

2 8√2Kκ
. Then

P
[
‖Ã∗SÃS − I‖2 ≥ γ

]
≤ 23/4s exp

(
− msγ2

8 4
√

2K2κ2

)
. (4.67)

97



Next we discuss the second term on the R.H.S. of (4.55). Let’s pick a pair of column

indices i, j and define T = {i, j}, |T | = 2, set γ = t, and apply in (4.67).

P
[
‖Ã∗T ÃT − I‖2 ≥ t

]
≤ 23/4 · 2 · exp

(
− 2mt2

8 4
√

2K2κ2

)
. (4.68)

There are
(
N
2

)
= N(N−1)

2
(< N2

2
) candidate sets for T . Using union bound, for any T

P
[
‖Ã∗T ÃT − I‖2 ≥ t

]
≤ 23/4 · 2 · exp

(
− 2mt2

8 4
√

2K2κ2

)
· N

2

2

= 23/4N2 exp

(
− mt2

4 4
√

2K2κ2

)
(4.69)

The second term on the R.H.S. of (4.55) can be bounded as

P

max
l /∈S

√∑
j∈S

|〈ãl, ãj〉|2 >
√
st

 ≤ P
[
max
i 6=j
|〈ãi, ãj〉| > t

]
(4.70)

Since the absolute value of any entry of a matrix is bounded by the spectral norm of the

matrix |〈ãi, ãj〉| ≤
∥∥∥Ã∗T ÃT − I

∥∥∥
2
.

∴ P

max
l /∈S

√∑
j∈S

|〈ãl, ãj〉|2 >
√
st


≤ P

[∥∥∥Ã∗T ÃT − I
∥∥∥

2
≥ t
]
≤ 23/4N2 exp

(
− mt2

4 4
√

2K2κ2

)
(4.71)
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Now we proceed to derive the non-uniform recovery bound. For this, we plug (4.67) and

(4.71) in (4.55), then apply (4.55) in (4.52), and finally apply (4.52) in (4.46).

ε ≤ P
[
max
l /∈S

∣∣∣〈A†Sal, sgn (bS)
〉∣∣∣ ≥ 1

]
≤ (N − s)23/4 exp

(
−α−2/2

)
+

23/4s exp

(
− msγ2

8 4
√

2K2κ2

)
+

23/4N2 exp

(
− mt2

4 4
√

2K2κ2

)
(4.72)

Following [21] we bound the first term by ε/3 and set t = γ
√
s/2. From the first term

we deduce

1

γ2
≥ s2 log

(
3(N − s)23/4

ε

)
. (4.73)

From the latter two terms we deduce

m ≤ 1

γ2

8 4
√

2K2κ2

s
log

(
3 (N2 + s)

4
√

2ε

)
. (4.74)

Therefore if

m ≤ 8
4
√

2sK2κ2 log

(
3(N − s)23/4

ε

)
log

(
3 (N2 + s)

4
√

2ε

)
(4.75)

signal b cannot be recovered from y = Ab with probability (1− ε). �

REMARK: Note that Q is the noise generated due to violating the orthogonalization

measure condition (4.40). Q vanishes in the cases similar to [21] where the sampling is an

orthogonalization measure.
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4.3.1.1. Example: Exponential and Gaussian. We assume that y(t) has a sparse repre-

sentation in Fourier domain, i.e., ψk(t) = eıωkt and ‖b‖0 ≤ s. We also assume ψk(t)’s have

the same fundamental frequency ωk = kω0.

Note that ∆jk =


0 for j = k

ρjk for j 6= k

and Q = E‖∆‖2
2.

If ν(t) is exponential with rate λ, from (4.58) for j 6= k

ρjk =

∫ +∞

0

eı(ωj−ωk)t · λe−λt dt.

∴ |ρjk| =
λ√

λ2 + (ωj − ωk)2
. (4.76)

Using Gershgorin circle theorem

‖∆‖2 = σmax(∆) ≤ max
j

∑
k 6=j

|ρjk| . (4.77)

Q ≤ 4λ2Ň2

 Ň∑
k=1

λ√
λ2 + ω2

0k
2

2

, Ň = dN
2
− 1e. (4.78)

For Gaussian ν(t) with mean µ̌ and standard deviation σ̌,

ρjk =

∫ +∞

−∞
eı(ωj−ωk)t · 1

σ̌
√

2π
e−

(t−µ̌)2

2σ̌2 dt. (4.79)

Q ≤ 4

 Ň∑
k=1

exp

(
−1

2
ω2

0σ
2k2

)2

, Ň = dN
2
− 1e. (4.80)

4.3.2. Uniform Recovery. Restricted Isometric Property (RIP) of A is a commonly

used sufficient condition for A recovering of b from y (see, e.g. [46]). The RIP means that
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A satisfies

(1− γs)‖b‖2
2 ≤ ‖Ab‖2

2 ≤ (1 + γs)‖b‖2
2, ∀b ∈ Γs (4.81)

where Γs is the set of all s-sparse vectors in RN and γs is a positive constant called Restricted

Isometric Constant (RIC ). When A satisfies (4.81) we say A is γs-RIP. If A has γ2s-RIP

with γ2s < 1/3, then every s-sparse b is recoverable from y = Ab using a linear program [46].

If RIP is satisfied only probabilistically, then recovery is guaranteed only probabilistically as

well.

The following operator semi norm ||| · |||s is defined for s-sparse unit vectors.

|||B|||s = sup
‖z‖0≤s,‖z‖2=1

|〈Bz, z〉| (4.82)

Then RIP can be rearranged as

|||Ã∗Ã− I|||s ≤ γs (4.83)

where Ã = 1√
m

A, as before. Then the probability ε with which γs-RIP is not satisfied is give

by

ε = P
[
|||Ã∗Ã− I|||s ≥ γs

]
. (4.84)

4.3.2.1. Recovery Probability Guarantee.

Theorem 4.3.2. Let b ∈ RN be an arbitrary s-sparse signal. Let {ti}m̃i=1 be a sequence

of i.i.d. draws w.r.t. the probability measure ν̄ and A ∈ Rm̃×N be a matrix whose (l, k)th

entry Al,k = ψk(tl). Then, b can be successfully recovered from y = Ab with probability at

least (1− ε) if

ε ≤ 7 exp

(
− γ2

s

c1κ̃2s ln2(100s) ln(4N)

m̃

ln(10m̃)

)
. (4.85)
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Proof. By noting

Ã∗Ã =
1

m̃

m̃∑
l=1

XlX
∗
l and Eν̄XlX

∗
l = I + ∆

we redefine the quantity E as

E = E|||Ã∗Ã− I|||s. (4.86)

restate (4.86) as

E =
1

m̃
E|||

m̃∑
l=1

(XlX
∗
l − Eν̄XlX

∗
l + ∆) |||s. (4.87)

Then use Jensen’s inequality to separate ∆ as

E ≤ 1

m̃
E|||

m̃∑
l=1

(XlX
∗
l − Eν̄XlX

∗
l ) |||s + E|||∆|||s. (4.88)

By applying the Symmetrization Lemma [21, Lemma 6.7]

E ≤ 2

m̃
E|||

m̃∑
l=1

εlXlX
∗
l |||s + E|||∆|||s (4.89)

where {ε1, . . . ,εm̃} is a Rademarcher sequence. Using the Crucial Lemma [21, Lemma 8.2]

on (4.89) and setting Q̃ = E|||∆|||s

E ≤ 2

m̃
D|||

m̃∑
l=1

XlX
∗
l |||1/2s + Q̃ (4.90)

where D = C
√

2βK
√
s ln(100s)

√
ln(4N) ln(10m̃) with C ≈ 67.97 and β = 6.028 from

Dudley’s inequality ([21, Theorem 6.42]). Following [21] we use triangle inequality to derive

E ≤ 2D√
m̃

√
E + 1 + Q̃. (4.91)
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Then by completing the squares yields

E ≤ 2D√
m̃

(√
1 +

D2

m̃
+ Q̃+

Q̃
√
m̃

2D
+
D

m̃

)
. (4.92)

Let κ̃ =

√
1 +

D2

m̃
+ Q̃+

Q̃
√
m̃

2D
+
D

m̃
. (4.93)

Then following the same procedure as for (4.67) we obtain

ε = P
[
|||Ã∗Ã− I|||s ≥ γs

]
≤ 7 exp

(
− γ2

s

c1κ̃2s ln2(100s) ln(4N)

m̃

ln(10m̃)

)
(4.94)

where c1 = 8eC. �

4.3.2.2. Minimum Number of Samples Required.

Theorem 4.3.3. Let b ∈ RN be an arbitrary s-sparse signal. Let {ti}m̃i=1 be a sequence

of i.i.d. draws w.r.t. the probability measure ν̄ and A ∈ Rm̃×N be a matrix whose (l, k)th

entry Al,k = ψk(tl). Then, to successfully recover b from y = Ab with a probability at least

(1− ε) will require at least m̃ samples satisfying

m̃

ln(10m̃)
≥ c1κ̃

2

γ2
s

s ln2(100s) ln(4N) ln

(
7

ε

)
(4.95)

and when E|||
∑m̃

l=1XlX
∗
l − I|||s ≤ 8γs/9

m̃ ≥ c2D1

γ2
s

sK2 ln

(
1

ε

)
(4.96)

Proof. Re-arrange Theorem 4.3.2 to obtain (4.95).
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When E|||
∑m̃

l=1XlX
∗
l − I|||s ≤ 8γs/9, as per [21, Theorem 8.4], ε can be strengthened as

ε = P

[
|||

m̃∑
l=1

XlX
∗
l − I|||s ≥

E|||
m̃∑
l=1

XlX
∗
l − I|||s + Q̃m̃+

γsm̃

9

]
(4.97)

Since γs/sK
2 < 1, using [21, Theorem 6.25]

ε ≤ exp

−
(
Q̃+ γs

9

)2

m̃2

2m̃sK2 + 4
(

8γs
9

)
m̃+ 2

3

(
Q̃+ γs

9

)
m̃


= exp

(
− m̃γs
c2D1sK2

)
(4.98)

where c2 ≤ 456 and D1 = 1+Q̃/76

1+9Q̃/γ2
s
.

Rearrange (4.98) into (4.96). �

4.4. Phenomena Discovery in WSNs: A Compressive Sensing Based Approach

A Compressive Sensing (CS) based solution is proposed for centralized and distributed

discovery of physical phenomena in large scale Wireless Sensor Networks (WSNs). WSNs

monitoring environmental phenomena over large geographic areas collect measurements from

a large number of distributed sensors. Compressive Sensing provides an effective means of

discovery and reconstruction of functions with only a subset of samples. Traditional CS relies

on uniformly distributed samples which limits practicality of CS based recovery. To enhance

the flexibility of sampling and implementation, the proposed approach uses random walk

based samples. Unlike uniform sampling, random walk based sampling enables individual

nodes achieve phenomenon awareness, i.e., the physical distribution of the phenomenon. We

also derive a theoretical upper bound for the reconstruction failure probability. Simulation
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results on the number of samples required and error show that random walk based sampling

is comparable to uniform sampling but with superior energy efficiency. More importantly,

the proposed scheme provides a practical solution for a range of applications where uniform

sampling is less economical or even infeasible.

4.4.1. Introduction. Future Wireless Sensor Networks (WSNs) can be envisioned as

large information ecosystems of millions of sensors embedded in the environment. Apart from

the complexities posed by the enormous scale, factors such as lack of direct connectivity [66],

coverage and delay intolerance [67], make data dissemination and fusion much challenging.

Therefore, schemes for data dissemination capable of handling vast amount of data, which

are also resilient to intermittent connections and lack of connectivity are in demand.

Compressive Sensing (CS) [11] is an attractive approach to estimate functions from a

minimal set of samples. Employing a domain where a signal is represented with a min-

imal support, CS can recover a high dimensional signal with a small number of random

projections or samples of the signal. The distribution of the samples has a major effect

on the recovery [21]. Among the distributions identified as feasible, uniformly at random

sampling is predominant in literature. However, gathering uniformly scattered samples is

expensive in practice. The goal of the presented work is to investigate function recovery of

natural physical phenomena using practical sampling schemes and domains providing sparse

representations.

Phenomenon, in this dissertation, refers to a distribution or some other profile, e.g.,

a chemical plume, being monitored by a sensor network. Current CS based phenomena

discovery approaches are implemented at a BS instead of at individual nodes [68], as they

employ uniform sampling. Since collecting a set of uniformly scattered samples is costly

to realize, data are only gathered at BSs, not at individual nodes. We define phenomena
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awareness as nodes being conscious of the phenomena the network is observing and call

the perception process as phenomena discovery. Phenomena awareness ranges from a gross

estimation to the exact recovery of the phenomena. This awareness at individual nodes

can dramatically improve the capability of the network to efficiently track and react to the

changes of the phenomenon. In this dissertation, we demonstrate achieving phenomenon

awareness at individual nodes efficiently in a distributed manner. In the presence of a

BS, phenomena awareness may be achieved at BS as well. Phenomenon awareness at the

node level facilitates smarter and adaptive sensing strategies and provides localized decision

making ability to sensor-actuator applications, with no involvement of a base-station. An

upper bound is provided for the probability of recovery failure of CS based recovery under a

given basis and a sampling scheme. This upper bound provides an estimate for the number

of samples required to reconstruct a function within a desired error margin.

We present several motivating examples next. The hydrologic study by USDA-ARS Great

Plains Systems Research (Fort Collins, Colorado) has 110ha of a winter wheat and fallow

strip cropping system [69], where soil measurements are collected using sensors mounted on

a pickup truck. A traditional CS realization needs samples scattered uniformly over the

field, which is difficult to achieve with a truck. However, the truck could make random

walks (RWs) to collect samples with much ease. We are interested in knowing whether CS

reconstruction is possible with RW samples instead of uniform samples. Another application

is Intel’s Wireless Vineyard [70] which uses ubiquitous computing for agricultural monitoring.

Here, the network is expected to not only collect and interpret data, but also to use such

data to make decisions related to detecting parasites and using appropriate insecticides. In

this delay tolerant network application [71], data collection relies on data mules [72] - small

devices carried by people/dogs/robots that communicate with the nodes and collect data.
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Here as well the collected samples may not be uniformly scattered. The results presented in

this dissertation are applicable under such scenarios.

Distributed phenomena discovery has many emerging applications. If the sensor nodes in

Intel’s Wireless Vineyard are phenomena aware, then the sensed information can be accessed

via any node using a mobile phone, and alerts can be sent out via automated emails or text

messages. Vehicular Ad-hoc Networks (VANETs) - networking vehicles with one another

to build an infrastructure that provide drivers information beyond their field of vision and

warn them about accidents or traffic jams [73] is another example, where it is necessary for

individual nodes to be aware of phenomena being monitored.

The rest of the section is organized as follows: Section 4.4.2 presents related work. Pro-

posed novel algorithm for phenomena discovery using random walk and a mathematical

bound for the reconstruction performance is discussed in Section 4.4.3. Section 4.4.4 delivers

performance evaluation. Finally, Section 4.4.5 concludes the section.

4.4.2. Related Work. Single dimension function recovery in underwater sensor net-

works is discussed in [74], where function is assumed to be sparse in Fourier domain and

sensors send their information directly to the base station in a uniformly at random manner.

Discovery of binary sparse events using Bayesian detection is addressed in [75]. However,

the performance of their scheme decays as the signal to noise ratio (SNR) approaches 20dB.

Minimizing the network energy consumption through joint routing and compressed aggre-

gation is the goal in [76], with uniformly at random samples routed to a sink through a

tree based structure. A scheme to efficiently exchange features in VANETs is developed

in [77]. An energy efficient compressed sensing scheme for wireless sensor networks using

spatially-localized sparse projections is proposed in [78] by using measurements from clus-

ters of adjacent sensors in order to reduce transmission cost. Differing from the above, [79]
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proposes spatial domain sparse function recovery at a sink using RW based linear combina-

tion of the sensed values. However this scheme has scalability issues related to RW samples

required in larger networks.

A CS for manifold learning protocol (CSML) is proposed in [80] for localization in wireless

sensor networks. Here, each sensor transmits a subset of distance measurements to a central

node. Then the central node reconstructs the full pair wise distance matrix through an L1-

minimization algorithm. A CS based approach for sparse target counting and positioning

scheme is proposed in [81]. The proposed greedy matching pursuit algorithm (GMP) in [81]

complements the well-known signal recovery algorithms in CS theory and proves that GMP

can accurately recover a sparse signal with a high probability.

All the successful implementations discussed above share two common factors: uniformly

at random sampling and recovery at a base/central station. The focus of this research is

on smooth function discovery in a suitable domain, using a pragmatic sampling scheme.

Uniformly sampled sensor values require many nodes to participate in propagating sensed

values of a limited number of nodes to the BS. We are tempted to ask “why not make use

of the sensed information lying on the paths leading to the BS?” Collecting uniformly at

random samples also require sensor nodes to be placed and activated uniformly in the sensor

field, which is less or even not practical in many of the applications. We propose RW based

sampling, and demonstrate centralized and distributed phenomena discovery.

4.4.3. Compressive Sensing Under Random Walk based Sampling in Dis-

crete Cosine Domain. Compressive Sensing [11] is posed as recovering an n-dimensional

signal X(∈ Rn) that is k-sparse in its sparse representationx(∈ Rn, with m(� n) number

of samples y(∈ Rm) given by y = Ax. If y is a subset of samples of X and X has a sparse

representation in a domain whose inverse transform is Ψ, the problem can be re-written as

108



in [17]:

y = RX = R(Ψx) = (RΨ)x (4.99)

where A = RΨ is called the measurement matrix and R is a subset of rows of an n × n

Identity matrix selected by some probability mass function (pmf). Most of the theoretical

recovery bounds in CS are derived from the Restricted Isometric Property (RIP) of the

measurement matrix A. RIP requires every combination of support of x many columns of A

to be well conditioned as [11]:

(1− δ)‖x‖p2 ≤ ‖Ax‖
p
2 ≤ (1 + δ)‖x‖p2 (4.100)

where δ is called Restricted Isometric Constant (RIC) and is specific for the support of x.

Authors of [57] provide a summary of solvers that can be used to solve the CS problem when

the RIP is satisfied. The work presented in this dissertation uses L1 minimization [11, 46]

to recover the signal vector. Given y and A, the under-determined system (4.99) is solved

for x as:

minimize ‖x‖1 s.t. Ax = y (4.101)

where ‖ · ‖1 is the L1-norm and A(∈ Rm×n) is the sensing/measurement matrix.

The goal is to recover the sparse transformed domain representation of the function/sig-

nal. Here, two main design criteria emerge: (1) the choice of the basis/frame, and (2) the

row selection scheme. The basis/frame is chosen to provide a sparsest possible representation

of the signal. The row selection scheme essentially is the sampling scheme. The probability

of failure and the minimal number of samples required, when the measurement matrix is

constructed by drawing rows from an orthonormal basis is derived in [21] according to an

orthogonalization measure. For example, a measurement matrix constructed by uniformly
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sampling the Fourier basis meets the above requirements. Deviating from the traditional

approach, in this dissertation we sample the basis based on a pragmatic sampling schemes

that can be used in a sensor field. Next, we discuss the basis and the sampling scheme

selected.

4.4.3.1. Why Discrete Cosine Basis? According to [21], operating on a basis where the

signal is sparsest, provides highest recovery probability. Therefore, in a WSN deployment to

monitor real-world physical phenomena, sensing the Discrete Cosine Transform (DCT) of the

phenomenon is rather promising. As reference [82] points out, the DCT of natural signals

achieves nearly optimal energy compression - comparable to Karhunen-Loève transform,

yielding the fewest coefficients, i.e., the sparsest representation.

4.4.3.2. Why Random Walk as the Sampling Scheme? Random routing is based on Ran-

dom Walk or Brownian motion models and is the basis for a large number of routing al-

gorithms for WSNs [83]. In random routing, each node randomly selects a neighbor and

forwards the received message. Rumor routing [83] is an example RW routing protocol, in

which messages such as agents and queries, also called rumors, randomly traverse the net-

work. Even when the network is structured and deterministic routing is possible, random

routing schemes play a crucial role in WSNs in discovery of resources and disseminating

information, especially in the absence of a base station that acts as a global moderator.

Moreover, RW motion models are applicable for the case where samples are collected by a

carrier. Thus, random routing is highly desirable in WSN applications. However, using RW

routing to gather a set of uniformly scattered measurements from a sensor field is rather

inefficient. Making the messages traverse in a RW manner, while collecting measurements

along the path it traverse is more practical. But, such will not result in a uniform selection

of measurements. Instead we receive a set of RW collected samples.

110



4.4.3.3. Implementation - Random Walk based Phenomena Discovery. This section dis-

cusses the proposed RW based phenomena discovery algorithm for centralized and distributed

realizations.

Centralized Realization of Phenomena Discovery. In a centralized implementation, the

network has a base station (BS) with a higher computational capacity. There are many

scenarios where a centralized implementation is feasible or even preferable [70]. In this

setup, we assume there is a carrier - a robot/vehicle/animal, collecting sensed information

while traversing the network on a RW. At the end, the carrier either returns or transmits

the collected data to the BS. Then BS will form and solve the CS problem to recover the

phenomenon. Under similar conditions, forcing the carrier to collect samples uniformly at

random is not pragmatic.

Distributed Realization of Phenomena Discovery. Nodes becoming phenomena aware

with distributed schemes without the involvement of a base-station is crucial for many fu-

ture ubiquitous sensor/actuator network applications. This phenomena awareness may be

achieved using messages that continuously disseminate in the network for event/destination

discovery or other management purposes. Let X be the vectorized 2D sensed phenomena.

Then each node has a corresponding entry in X. For simplicity, we assume nodes are num-

bered in ascending order from the top left corner to bottom right corner (see Fig. 4.2), which

is used as the node ID as well the index in X. In a localized network, physical position

information of nodes can be used to organize X. If the network is not localized, a hash

function can be used to map some identification of the node to an index in the range of

X. Consider the example grid network in Fig. 4.2, where a message generated by node-8

traverses the network in a RW while disseminating information it gathered so far from the

nodes it visited. When a node receives a message, it stores the content. Then the node
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piggybacks its node ID and the measurement to the message and forwards to a randomly

selected neighbor. For instance, node-15 may receive the message [ID8, T8, ID9, T9] from

node-9. Node-15 then stores the message and appends its node identification ID15 and mea-

surement T15 and transmits to a neighbor. After visits from multiple packets, a node may

accumulate a sufficient number of samples for recovery and construct the entire phenomena

using the algorithm in Fig. 4.3.

Figure 4.2. RW based sample collection on an example grid

In next section we evaluate the probability of recovery failure of this process. The pro-

posed mathematical bound provides a bound on the minimum number of measurements

needed to recover the function within a desired error margin.

Reconstruction Failure Probability. The support of the signal vector is the set of indices

of non-zero elements. Let x with support S be the signal to be recovered and |S| = s the

number of non-zero elements, i.e., sparsity of x. Failure of recovery of a signal with support

S is viewed as A being unable to satisfy RIP. In this case, RIP implies that a sub-matrix
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function Phenomena Discovery(Collected samples of the phenomena)
m̄← number of collected samples
y ← Ti, i = 1, . . . , m̄
Z ← IDi, i = 1, . . . , m̄
if m̄ ≥ mT then

for i = 1, . . . , m̄ do
for j = 1, . . . , NT do

if j == 1 then
Ψ(i, j)←

√
1/NT

else
k ← IDi

Ψ(i, j)←
√

1/NT cos
(
π(2k+1)j

2NT

)
end if

end for
end for
Solve(min. ‖x‖1 s.t. Ψx = y)
X ← IDCT(x) . Inverse DCT of x

else . more sample required
for j = 1, . . . , m̄ do . check whether i is a new sample

if IDi == IDj then
flag ← 1

end if
end for
flag ← 0
if flag == 0 then

IDm+1 ← IDi

Tm+1 ← Ti
else

flag ← 1
end if
Forward the packet to a neighbor to which which the packet has not been previously

forwarded.
end if

return Reconstructed phenomena
end function

Figure 4.3. Distributed phenomena discovery algorithm implemented at a node.

formed by columns of A over S referred as AS being nearly orthonormal, i.e.,

‖Ã∗SÃS − I‖2 ≤ δ. (4.102)
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Here ÃS denotes column wise normalized AS and δ is the RIC. The probability with

which the above is unable to be satisfied is defined as the probability of failure ε.

ε = P
[
‖Ã∗SÃS − I‖2 ≥ δ

]
(4.103)

Let Xl =
(
Ψ̄j (tl)

)
j∈S, then, expected value of X∗l Xl

E (X∗l Xl)j,k = φj,k (4.104)

EX∗l Xl = I + η (4.105)

where E is expectation, Ψ is an orthonormal basis, tl is a set of arbitrary indices and I is

the identity. η is the off-diagonal elements of EX∗l Xl. According to [21] in scenarios such as

when the basis is Fourier and the sampling scheme is uniform and η is null; thus, Fourier

basis with uniform sampling is widely accepted to provide the optimal performance. Since

we are using a different sampling scheme, recovery performance is degraded due to nonzero

η, thus, requiring additional number of samples to achieve similar recovery properties such

as probability of failure, error in recovered function, etc., compared to those when uniform

sampling is used. The general form of the RIP condition given in (4.100) can be re-arranged

to:

δ = max
S⊂{1,...,n},|S|≤s

∥∥∥Ã∗SÃS − I
∥∥∥

2
(4.106)

From Markov Inequality the probability of failure is bounded above by;

P
[
‖Ã∗SÃS − I‖2 ≥ δ

]
≤ Ep

δ
(4.107)
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where Ep is E
∥∥∥Ã∗SÃS − I

∥∥∥p
2
. Substituting for I from (4.106)

Ep = E
∥∥∥Ã∗SÃS − I

∥∥∥p
2
≤ E

∥∥∥∥∥ 1

m

m̄∑
l=1

X∗l Xl − EXlX
∗
l

∥∥∥∥∥
p

2

+ E ‖η‖p2 (4.108)

Note that E‖η‖p2 is the noise generated due to the deviation from uniform sampling. By

solving for Ep

E1/p
p ≤ D

[√
1 +

D2

4
+

Q

D2
+
D

2

]
(4.109)

where D =
((

2√
m̄

)p
23/4spp/2 exp

(
−p

2

))1/p

. Let κ̄ =
√

1 + D2

4
+ Q

D2 + D
2

. Substituting Ep

(4.109) in (4.107) and rearranging terms, we obtain the failure probability ε

P
[
‖Ã∗SÃS − I‖2

]
= ε ≤ 2

3
4 s exp

(
− δ2m̄

8K2κ̄2s

)
(4.110)

where m̄ is the number of measurements needed under any sampling scheme and K is the

upper bound of ‖Xl‖2 ≤
√
s. Complete proof is available on [65].

The theoretical number of samples required for uniform sampling as in [78] is evaluated

and shown in Fig. 4.4 under failure probabilities 0.1%; 0.5%; 1%, against sparsity. δ and K

were set to 0.5 and 1 respectively. The number of samples required under same probabilities

of failure (ε), by RW based sampling evaluated by simply solving (4.110) for m̄, which is

m̄ ≥ K2κ̄2s
δ2 ln

(
22/3s
ε

)
, for the same sparsity range is also plotted in Fig. 4.4. Monte Carlo

simulation of RW is used to estimate the probability distribution of a message visiting a

node and κ̄ is estimated.

4.4.4. Performance Evaluation. Temperature distribution map of State of Alabama

[84] during August averaged over 1951 - 2006 years was used to demonstrate the effectiveness

of the RW based phenomena discovery (See Fig. 4.5(a)). There are a total of 7653 data
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Figure 4.4. Variation of m and m̄ with sparsity under different failure prob-
abilities (ε) for a 100× 100 grid network

points in a grid structure where we assume 7653 sensors are deployed. Each node is capable

of communicating with its immediate four neighbors, i.e. communication range is one grid

segment.

The presented experiments look into the cost of implementing centralized and distributed

phenomena awareness with random walk sampling using a suitable basis. Experiments are

carried out on MATLAB 2011a and L1 magic [46] is used as CS solver. Performance eval-

uation metric is the percentage reconstruction error (Er) of the recovered function defined

as:

Er =
1

NT

NT∑
k=1

(∣∣Xk − X̄k

∣∣ /Xk

)
× 100 (4.111)

where NT is the total number of samples in the function, which is the same as the total

number of sensors in the network. Xk and X̄k are the kth sample of the original function

and the reconstructed function respectively.
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First, a pre analysis of temperature distribution in Fig. 4.5(a) was performed to identify

its sparsity level. The number of significant coefficients defines the sparsity level. If the

function to be reconstructed is sparse in DCT domain, we expect only a few significant DCT

coefficients. It was found that to approximate the temperature function in Fig. 4.5(a) within

a 0.1% error, 3183 DCT coefficient out of 7653 were required. This implied that even in

DCT domain the selected phenomenon is not as sparse as expected.

Figure 4.5. (a)Average temperature distribution of State of Alabama in Au-
gust. 7653 sensors in total are available. (b) Reconstructed image based on
2583 samples collected at the BS by a single carrier (c) Reconstructed image
at randomly selected node when 1056 samples were collected in that node

In order to compare the theoretical prediction with the simulated, we begin our per-

formance evaluation by finding the number of samples needed to recover the approximated

version of phenomena in Fig. 4.5(a) based on the most significant s DCT coefficients. The

number of coefficients to be recovered is considered as the sparsity (s) of the function. Here a

message with a predefined TTL (Time To Live) is disseminated into the network. Note that

due to the possibility of revisiting to the same node the message will not be able to collect

TTL many unique samples. Recovery error of reconstruction against the samples collected

by the message is plotted as in Fig. 4.6, for three sparsity cases: 2, 3 and 4. As Fig. 4.6

indicates, the empirical values for the number of measurements needed to obtain an Er of

1%, for sparsities 2, 3, 4 is less than 600. Dashed lines in Fig. 4.6 indicate the theoretical
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(a) s = 2

(b) s = 3

(c) s = 4

Figure 4.6. Variation of Er with the empirical number of samples used when
(a) s=2 (b) s=3 (c) s=4. Dashed lines show the theoretical number of samples
needed and the dotted line show the Er=1% level.

estimates for the number of samples required under each sampling scheme. The theoreti-

cal values are an over-estimate as they are based on satisfying the sufficient conditions of

recovery.

Although such natural phenomena can be approximated by a sparse representation with

only a few non-zero coefficients, in next simulation results, we aim to recover the original

dataset - not an approximation of the original with low sparsity.
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4.4.4.1. Performance of Phenomena Discovery at the Base Station. Here, the base sta-

tion is assumed to be at (0,0). A carrier (robot) collects sensed information and node IDs

while moving from one node to another in a RW of step size one. The maximum number of

steps that the carrier will take is set to 4000 when there is a single carrier. Since revisiting

to the same node twice is allowed, the carrier may collect less than 4000 samples. Fig. 4.5(b)

shows an example recovery under RW sampling at a BS when 2583 unique samples were

available. In reality, the true sparsity of the phenomenon is unknown. Therefore, the theo-

retical number of samples needed is undetermined. In Fig. 4.7 we demonstrate the variation

of Er with the number of samples used. The variation of error as two carriers collectively

gather the same number of samples is also plotted in the same Figure. In the experiment

with two carriers, each carrier has a TTL of 2000. As can be seen, performance in terms of

Er depends more on the number of samples than the number of carriers used. Even though

collecting samples under uniform distribution is difficult in practice, we show the recovery

error under simulated uniform sampling as a comparison. Error performance under RW

sampling is only about 0.2% away that of under uniform sampling, when 2000 samples are

available.

4.4.4.2. Performance of Distributed Phenomena Discovery. To the best of our knowledge,

CS based distributed phenomena discovery in WSNs is proposed here for the first time. We

envision that future WSNs will evolve over their lifespan and become increasingly aware of the

sensed phenomena. Thus, the proposed scheme will provide a cost effective infrastructure.

We use the same temperature dataset for the distributed phenomena awareness imple-

mentation and evaluation. In a WSN where there is no fixed BS, random routing is used for

event and sink discovery [67]. Those messages can be used to make network learn the phe-

nomena being observed. Note that while phenomena discovery at a BS used carriers incurring
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Figure 4.7. Variation of average error with number of samples used for re-
construction in centralized recovery. Single carrier with 4000 steps in total
and two carriers with 2000 steps per each were used.

cost, the distributed implementation uses packets already disseminated in the network in-

curring no additional cost. In the simulation, 1000 messages with TTL 300 are generated

at a randomly selected node and traversed on a RW. Messages may revisit the same node

but message will carry only one sample per visited node. A view of the phenomena at a

randomly selected node, which has collected 1056 samples from the messages that passed

through it, is given in Fig. 4.5(c). Figure 4.8 shows the average error Er in the recovered

phenomena at different nodes. The mean Er is calculated over nodes with the same number

of samples collected.

Next, we consider the convergence of the entire network achieving phenomena awareness

in a distributed implementation. Figure 4.9 shows the mean rate of nodes achieving phe-

nomena awareness under two different TTL values. From Fig. 4.8 we deduce that a node
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Figure 4.8. Variation of average error with number of samples used for re-
construction in a distributed manner. Evaluation is after 1000 messages with
300 TTL disseminated in the network.

needs at least 1000 samples to become aware of the sensed phenomena with an Er of less

than 2%. When TTL is 300, at least 1200 messages need to be disseminated in the network,

while when TTL is doubled the required number of messages reduces to less than 400. Note

that the network considered has 7653 nodes. If the traditional uniform sampling was used,

for entire network to become aware of the phenomena, 1000 randomly selected nodes need

to flood the network which leads to at least 7,653,000 transmissions. But the proposed ap-

proach achieves a map with a similar Er with at least 240,000 transmissions with TTL 600,

providing approximately 96% reduction in the number of transmissions.
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Figure 4.9. Convergence rate of nodes achieving phenomena awareness in a
distributed implementation when messages has TTL 300 and 600.

4.4.5. Conclusions. A novel implementation using compressive sensing for phenomena

awareness is proposed. The proposed algorithm provides nodes with network-wide knowl-

edge of the events observed. Moving beyond the traditional approach of uniform sampling

based CS for function recovery, we illustrate that RW based sampling can practically and

successfully be used for phenomena awareness at base-stations and at each sensor without

a BS, with minimal additional samples. An upper bound for the probability of successful

recovery with a given error percentage is also derived. The derived bound provides an ap-

proximate number of samples required to recover a function under a selected basis and a

sampling scheme.

We considered random walk as the mobility model due its wide spread usage in WSNs.

But other mobility models as random waypoint model, Markovian model etc. can also be

used in the same manner. Performance bounds for CS based phenomena discovery using a

frame - an over complete basis, instead of an orthogonal basis and other practical sampling

schemes that accurately captured by motion models are under investigation.
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4.5. Subsurface Plume Tracking Using Sparse Wireless Sensor Networks

Deployment of sensors for tracking chemical plumes such as those in the subsurface can

be quite expensive. A compressed data gathering scheme for chemical plume tracking is

presented. With only a fraction (about 25%) of the measurement points required to achieve

a given spatial resolution this novel application of compressed sensing can track the plume

within 7% accuracy compared to the case of a full sensor array. The scheme also gathers and

re-distributes information of the sensors to the entire network, compressing with Discrete

Wavelet Transform. The scheme can be used to disseminate global tracking information to

sensors as well, with savings in communications by a factor of 5 in average, if such capability

is required. The scheme is capable of interpolating randomly missing sensor points with

significant accuracy. It also supports data fusion as a simple addition of coefficients requiring

no changes to the message length.

4.5.1. Introduction. In a variety of situations in environmental science and engineer-

ing, some of them related to national security, it is necessary to track and monitor chemical

plumes, to make predictions on their future behaviors, and to evaluate potential risk to

humans and ecological environments. While it is desirable to have data on chemical concen-

trations collected at high spatial and temporal resolutions to facilitate reliable predictions,

the cost and other logistical factors associated with installing sampling wells limit the mon-

itoring accuracy and the resolution achievable. Specific situations dealing with tracking

dissolved contaminant plumes in flowing groundwater require the collection of water sam-

ples from sparsely distributed monitoring wells. With current technology, these samples are

delivered from field sites to testing laboratories to conduct chemical analysis to determine

dissolved concentrations. For accurate tracking, this tedious and expensive process has to be
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repeated frequently. Recent advances in Wireless Sensor Network (WSNs) have the potential

to alleviate this labor intensive and time consuming task of data gathering. With wireless

sensor nodes (motes) that measure and transmit the concentrations in situ in sampling wells

in real-time, the need for manual collection of samples can be avoided. However, installa-

tion and maintenance of a large number of WSN nodes (containing sensors interfaced with

motes) required for large-scale and evolving plumes can also be expensive. Minimizing the

number of sensors will allow for this real-time monitoring technology to be a viable option.

Sampling at regular spatial intervals (e.g., with sensors arranged in a rectangular grid) can

be challenging at field sites, wherein an unstructured deployment of motes would be more

realistic. The distribution of such nodes will be determined by other factors associated with

the geography and accessibility of deployment locations (e.g., to avoid buildings and other

land infrastructure features). Effectively using a random deployment of sensors to obtain

satisfactory results is also of interest.

Many interesting phenomenon in chemical plume tracking, seismic activity monitoring,

animal migration tracking, etc., results in data in the forms of configurations with fairly

regular boundaries and smooth gradients over the sensor field. Image processing algorithms

often deals with similar regular features. A number of transforms such as Discrete Cosine

Transform (DCT), Discrete Wavelet Transform (DWT) are known to effectively compress

images with regular shapes. Moreover these transforms are realizable as linear transforms

and can easily be implemented on sensor motes with limited processing capacity. The goal

of this work is to use such image processing techniques to reduce the amount of information

transferred back and forth on sensor networks, while improving the resolution for a given set

of sensors. The technique also enables the redistribution of the state of a part or the entire
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network back to each node efficiently. This feature could be used to develop future smart

sensing schemes that operate more intelligently.

4.5.1.1. Related work. WSNs are widely used in applications related to environmental

and habitat monitoring, reconnaissance and building automation [85–89]. A WSN node,

also called a mote, consists of a processor and a wireless transceiver interfaced to a sensing

device to measure the interested phenomenon, [90].

The feasibility of using WSNs for subsurface chemical plume tracking applications has

been demonstrated in [91, 92]. Some of the challenges posed in traditional data gathering as

described in [93] prevent the accurate tracking of the plume. Low maintenance, miniature

sensing devices such as electrical conductivity sensors [94] are placed in wells at different

depths for monitoring the plumes. The WSN has to be configured for efficient operation

[95], and can coupled to numerical models to form a closed loop system that uses WSN

readings to calibrate the model, while the model provides information for data collection

and node activation [96].

The potential for sensor readings related to many applications to be compressible is well

known. Most work exploits the local correlation of the readings. Reference [97] provides an

information theoretic derivation, based on correlations of sensor readings, on savings possible

for one- and two-dimensional networks. The Hierarchical Cooperation scheme presented

in [97] achieves logarithmic scaling on traffic and schedule lengths. A data compression

scheme based on wavelet decomposition and reconstruction is applied hierarchically at cluster

heads in [98] with the goal of reducing waste in transmitting raw data to the data-center.

Reference [99] points out the fact that wavelets approximate missing data on sensor readings

when applied on a correlated structure. Their method - Data Correlation Compression

(DCC) relies on Gaussian assumption of sensor data. A scheme utilizing historical data to

125



reduce the amount of information needed to be transmitted is presented in [100]. A localizing

scheme based on correlation is used to improve the accuracy on the multi-level clustering

structure. Spatio-temporal correlation can be exploited to identify redundant sensors as

indicated in [101], where wavelet transform and Fourier transform are used for compressing

time series on individual sensors.

4.5.1.2. Contribution. A novel approach for reducing the number of sensors used and/or

improving the resolution of the measurements in plume tracking applications is presented.

With a fairly small fraction of sensor readings, the scheme is capable of approximating the

status of the entire network to a significant accuracy. With the proposed approach, the

energy spent gathering the status of the network and then redistributing that information

back to the network is a magnitude less than with the conventional approach. Fusion has

no effect to the message length, thus, it requires no additional bandwidth.

Section 4.5.2 discusses the theoretical background. An analysis on the communication

cost is presented in Section 4.5.3. Sensor deployment is addressed in Section 4.5.5 while Sec-

tion 4.5.6 presents the results of the work. Scheme and results are evaluated in Section 4.5.7,

followed by conclusions in Section 4.5.8.

4.5.2. Discrete Wavelet Transform Based Compression. We view the mea-

surements collected by the sensors as pixels of an image. We assume that the underlying

chemical concentration image has pixels on a fine grid. However, the wireless sensors are

randomly deployed and only sparsely populate this grid. Our objective is to reconstruct the

image on the fine grid from the sensor measurements. To minimize communication volume,

we also wish to compress the data collected by each sensor before processing. We show in

this dissertation that a simple DWT compression provides reasonable results. We start by

reviewing two-dimensional DWT.
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4.5.2.1. DWT compression and reconstruction. Most real images are compressible in the

DWT domain. The DWT successively splits an image into an approximation component,

which captures the smooth part of the image, and several detail components, as shown in

Fig. 4.10. Roughly speaking, at each level, the Hi filter is a “low-pass” filter that passes the

smoother part of the image and the Gi is a “high-pass” filter that passes detail components.

As the DWT branches are traversed the size of the signal decreases diadically (down-sampling

by 2). Since an image is two dimensional, each transformation is applied in two dimensions,

the horizontal (row-wise) and vertical (column-wise) and as we proceed through successive

branches the number pixels in the DWT image is reduced by a factor of 4.

To compress the image, we discard the detail components and only keep the coarsest

approximation component produced by the bottom most branch in Fig. 4.10.

path in bold - coarsest approximation and recovery
Hi - ith level approximation filter
H̃i - ith level reconstruction filter
ΨVi - ith level vertical approximation filter

Ψ̃Vi - ith level vertical reconstruction filter
ΨHi - ith level horizontal approximation filter

Ψ̃Hi - ith level horizontal reconstruction filter
X - original image
Y - reconstructed image

Figure 4.10. Block diagram of wavelet transform
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The DWT however needs to be calculated in a distributed fashion, where each sensor

computes the contribution of its own measurement to the coarse approximation term without

having the knowledge of measurements from the other nodes in the network. To accomplish

this, we work with point spread functions (PSF) associated with each sensor node as we now

describe.

Consider the coarsest approximation branch in Fig. 4.10. The coarsest approximation A

for this branch can be expressed in matrix form as:

A = ΨVXΨH (4.112)

where, X is the original image defined under the fine grid, ΨV is the DWT matrix in vertical

direction and ΨH is the DWT matrix in horizontal direction.

The vertical DWT matrix ΨVi (accounting for down-sampling) at the ith level for an n×n

image is given by (j = 1, . . . , n/2i, k = 1, . . . , n/2i−1):

ΨVi =


nj−2(k−1) i ≥ j − 2(k − 1) ≥ 1

0 otherwise

(4.113)

where, l is the length of the filter and hi’s are the scaling coefficients of the filter. The

horizontal transform ΨHi is the transpose of ΨVi . The coarse approximation component Ai

at level i is given by

Ai = ΨViXi−1ΨHi (4.114)
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where, A0 is equal to X. If an L-level DWT the coarse approximation component A can be

calculated from (4.112) with:

ΨV = ΨVL−1
ΨVL−2

· · ·ΨV1ΨV0 (4.115)

ΨH = ΨH0ΨH1 · · ·ΨHL−2
ΨHL−1

(4.116)

We can write the coarse term approximation to A as:

A =
∑
i,j

A(i,j) =
∑
i,j

ΨV (·, i)X(i, j)ΨH(j, ·) (4.117)

where A(i,j) = ΨV (·, i)X(i, j)ΨH(j, ·) is the contribution of the (i, j) pixel X(i, j to the coarse

approximation A. The notations (·, i) and (j, ·) respectively mean the ith column and the

jth row of a matrix. Thus, we can think of PSF of pixel (i, j) as:

PSF (i, j) = ΨV (·, i)ΨH(j, ·) (4.118)

If all X(i, j) on the fine grid were available we could obtain the coarse approximation compo-

nent A by simply transmitting PSFs scaled by the corresponding pixel value. The advantage

is that each PSF can be calculated locally without knowledge of other pixels. The size of

each PSF matrix is 2/nL × n/2L.

In our case sensors sparsely populate the image grid and we only have access to a small

number of pixels at random locations. Nonetheless, we show that by combining the PSFs

associated with these sensor locations we can still obtain a reasonable reconstruction of the

chemical plume concentration.

Coefficients of the PSF depend on the wavelet transform and the filter selected. They can

be built into the sensor motes prior to deployment. Therefore computing the contribution of
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each sensor to the approximation can be done locally, which involves only scaling the PSF

by the sensor reading.

Another advantage of this method is that computing the approximation of a part of or the

entire sensor field becomes an addition of the contributions of each of the sensors. This allows

sensors nodes to fuse their contributions to a single message conveniently and opportunely.

For example, if the sensors are reporting to a base station over a tree, an intermediate node

will add its coefficient matrix to the coefficient matrices it receives from its children nodes

and transmits the result to its parent. Thus, there will be only one transmission per link

in the tree carrying all the information of the subtree below. Regardless of the position of

a link in the tree the size of the composite PSF matrix that the link needs to communicate

stays the same.

Once the base-station receives the sum of all contributions the image can be approximated

by applying the inverse-DWT, as shown in Fig. 4.10. The synthesis filter pair (H̃, G̃) and

analysis filter pair (H,G) are quadrature mirror filters, satisfying the perfect reconstruction

condition [102]. Note that in the synthesis tree all detail components are zero.

However, this reconstruction can also be done at each sensor as will be shortly explained.

While it is not essential for a node to know about the plume spread in the entire flow

region, we envision future intelligent plume tracking systems where sensing operations within

a locality may benefit by having global information on plumes. A simple extension to

the scheme provides the ability to re-distribute the global information to cluster heads or

individual sensors efficiently.
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Table 4.1. Daubechies D4 Scaling Coefficients

Coefficient Value

h1

(
1 +
√

3
)
/4
√

2

h2

(
3 +
√

3
)
/4
√

2

h3

(
3−
√

3
)
/4
√

2

h4

(
1−
√

3
)
/4
√

2

Suppose the coarse approximation component A is broadcasted from the base-station,

then the inverse-DWT approximation can be calculated as:

X̃ = Ψ̃V ÃΨ̃H (4.119)

where, Ã is the sensor network approximation to the coarse approximation component A.

The matrices Ψ̃V and Ψ̃H are vertical and horizontal synthesis matrices. They are of the

form (4.115) and (4.116) respectively, but constructed from elements of similar to (4.113).

4.5.2.2. Implementation with Daubechies D4 wavelet. We present a sample implementa-

tion of a single level compression using Daubechies D4 wavelet. The coefficients of the H

filter are shown in Table 4.1. The single level vertical and horizontal DWT matrices are

given by:

ΨV =



h1 h2 h3 h4 0 0 0 0

0 0 h1 h2 h3 h4 0 0

0 0 0 0 h1 h2 h3 h4

. . .


(4.120)

ΨH = ΨT
V (4.121)

The PSF to be loaded to each node is computed using (4.118). The PSF for a node is a

few non-zero elements often appear as a single patch on a mostly empty matrix. During
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reporting, each node will scale the pre-loaded PSF by its measurement. Details of the

compression algorithm are summarized in Fig. 4.11.

function Compressed report(reading, reports from children)
Initialize report ← [] . empty matrix of the size of PSF
for i = 1, . . . , number of children do

report i← report of child node i
report + = report i . a matrix addition

end for
my report ← PSF × reading . a matrix scaling
report + = my report . a matrix addition
Forward report to parent

end function

Figure 4.11. Pseudo code for the compression algorithm

As a simple example, let us consider the 10 × 10 matrix of sensor readings shown in

Fig. 4.12.

0.00 0.00 1.76 2.47 2.67 2.47 1.76 0.00 0.00 0.00
0.00 0.00 2.20 2.80 2.98 2.80 2.20 0.00 0.00 0.00
0.00 1.05 2.47 3.02 3.18 3.02 2.47 1.05 0.00 0.00
0.00 1.36 2.62 3.14 3.30 3.14 2.62 1.36 0.00 0.00
0.00 1.45 2.67 3.18 3.33 3.18 2.67 1.45 0.00 0.00
0.00 1.36 2.62 3.14 3.30 3.14 2.62 1.36 0.00 0.00
0.00 1.05 2.47 3.02 3.18 3.02 2.47 1.05 0.00 0.00
0.00 0.00 2.20 2.80 2.98 2.80 2.20 0.00 0.00 0.00
0.00 0.00 1.76 2.47 2.67 2.47 1.76 0.00 0.00 0.00
0.00 0.00 0.93 1.96 2.20 1.96 0.93 0.00 0.00 0.00

Figure 4.12. A sample 10× 10 measurement matrix

Each sensor is also assigned with a PSF calculated according to (4.118). For example

node (7,4) would calculate its PSF using (4.118) for a single level compression by multiplying
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the 7th column of ΨV and 4th row of ΨH to produce:

PSF(7, 4) =



0 0 0 0 0

0 0 0 0 0

−0.029 0.188 0 0 0

−0.062 0.404 0 0 0

0 0 0 0 0


(4.122)

According to Fig. 4.12 the reading of the sensor node (7,4) is 3.02 . Therefore the

contribution of the node (7,4) is obtained by scaling PSF(7,4) by 3.02 .

Similarly, all the nodes will calculate their PSF and then scale by their measurement. The

approximation of the entire sensor field is obtained by summing up all the approximations

generated by individual nodes.

A =
10∑
i=1

10∑
j=1

A(i,j) (4.123)

A =



0.210 5.011 5.794 1.456 −0.008

1.754 5.899 6.485 3.265 −0.233

2.000 6.027 6.583 3.549 −0.269

0.638 5.474 6.204 2.026 −0.066

−0.002 3.731 4.539 0.839 0.000


(4.124)

To obtain an approximation to the chemical plume image we inverse-DWT is applied on

A and the resultant matrix is shown in Fig. 4.13.

4.5.3. Exchange of Sensor Data. a network in which the sensors are placed on an

n×n grid as shown in Fig. 4.14(a) with a tree communication structure rooted at the center
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0.05 0.08 1.60 2.71 2.57 2.77 1.29 0.25 0.20 -0.12
0.08 0.15 1.83 3.08 2.89 3.08 1.49 0.38 0.25 -0.15
0.41 0.76 2.12 3.21 3.03 3.19 1.91 1.02 0.37 -0.34
0.65 1.23 2.39 3.40 3.22 3.36 2.28 1.52 0.48 -0.49
0.62 1.16 2.35 3.37 3.19 3.33 2.22 1.45 0.46 -0.47
0.65 1.23 2.39 3.39 3.21 3.35 2.28 1.53 0.48 -0.49
0.34 0.64 2.10 3.24 3.06 3.22 1.86 0.91 0.35 -0.31
0.13 0.23 1.90 3.14 2.95 3.14 1.57 0.47 0.27 -0.18
0.07 0.12 1.49 2.52 2.41 2.61 1.22 0.26 0.19 -0.12
-0.04 -0.07 1.15 2.03 1.99 2.19 0.88 -0.02 0.10 -0.05

Figure 4.13. The reconstructed measurement matrix

Figure 4.14. (a) Nodes placed in a grid with root at the center (b) Levels of
nodes (c) A random node deployment with a tree communication structure.

of the grid. We assume that a node is capable of communicating with its eight immediate

neighbors. The levels of the tree then form co-centric squares, with the maximum depth of

the tree at n/2. The average depth of a node from the root is n/6.

Communication cost is two folds: reporting and re-distributing. During reporting, sensors

report their readings to the root. Then, root informs the status of the network to each of

the sensors during re-distributing. Reporting costs can be alleviated by making sensors not

report, if the reading is null. However, the node still needs to take part in communication

to relay reports from the subtree descending from itself.
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4.5.3.1. Conventional Reporting. Under the conventional monitoring scheme, each node

reports its measurement along with its ID or coordinates. This report has to be to the root,

i.e. n/6 times on average. Since there are n2 nodes in the network, the total reporting

cost is O (n3). If the null readings are not transmitted, then communication cost reduces to

O (kn2), where k is the number of nodes having a non-zero reading. Further, overhead in

transmitting individual reports as separate packets can be saved by packing a few if not all

reports received from the subtree to a single message along with its report. Such a fusion

saves overhead cost, yet no savings are made on the amount of payload transmitted. It is to

be noted that in the conventional scheme, reporting the location and the reading provides

no loss of information.

4.5.3.2. Compressed Reporting, Fusion and Recovering Missing Data. Compressed re-

porting exploits the compressibility of data. Instead of reporting the reading and location

information tuple, nodes report wavelet coefficients. Further, data is fused by adding coeffi-

cient matrices. As in conventional scheme, the nodes having a null reading do not contribute

to the coefficient matrix.

Each contributing node will produce a coefficient matrix, which is a small patch of non-

zero elements. By putting together these patches, the approximation for the entire matrix

is formed. Patches are in fact added onto the coefficient matrix - which enable an effective

fusion scheme, where the message length does not change. Under conventional reporting,

reading of each node was stored in the message separately. Such would lengthen message

length as the message arrives at the root. But with the compressed reporting, nodes keep

adding their contributions onto the existing message. Therefore the length of the message is

not affected.
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The size of the coefficient matrix is m×m, with m equal to n/2L, where L is the number

of levels of compression applied. When fewer nodes have readings, instead of transmitting

the entire coefficient matrix, the patch and its location information can be transmitted to

save cost.

Compressed reporting imposes a smoothing operation on the measurements. Thus, it

automatically approximates readings of the locations which provided no input. If a malfunc-

tioning node feeds in an abnormally large contribution (an outlier) that would be suppressed

as well.

Let us demonstrate recovering missing data points using the matrix in Fig. 4.12 by

randomly dropping some 10 measurements out of the 100. The resultant is shown in Fig. 4.15.

This doesn’t correspond to a sparse sensor network, but still demonstrates how missing

data points are handled. The actual chemical plume example presented in Section 4.5.6

corresponds to a truly sparse network where the sensors populate only 25% of the grid

points. beginfigure[!ht]

0.00 0.00 1.76 2.47 2.67 2.47 0.00 0.00 0.00
0.00 0.00 2.20 2.80 2.98 2.80 2.20 0.00 0.00
0.00 1.05 2.47 3.02 3.18 3.02 2.47 1.05 0.00 0.00

2.62 3.30 3.14 2.62 1.36 0.00 0.00
0.00 1.45 2.67 3.18 3.33 3.18 2.67 1.45 0.00 0.00
0.00 1.36 2.62 3.14 3.30 3.14 2.62 0.00 0.00
0.00 2.47 3.02 3.18 3.02 2.47 1.05 0.00 0.00

0.00 2.20 2.80 2.98 2.80 2.20 0.00 0.00 0.00
0.00 0.00 1.76 2.47 2.67 1.76 0.00 0.00 0.00
0.00 0.00 0.93 2.20 1.96 0.93 0.00 0.00 0.00

Figure 4.15. A sample 10× 10 measurement matrix with 10 missing values

The approximation derived from the available nodes if shown in Fig. 4.16a and the

reconstruction is shown in Fig. 4.16b. By comparing Fig. 4.16b with Fig. 4.12, it can be
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0.305 5.351 5.603 1.045 -0.031
1.139 3.701 6.462 3.413 -0.085
1.802 6.027 6.730 2.595 -0.238
0.179 5.758 5.741 2.026 0.000
0.210 2.510 3.451 0.649 0.000

(a) Approximation for the sensor readings with missing nodes

0.09 0.16 1.56 2.61 2.39 2.50 1.09 0.09 0.14 -0.10
0.10 0.19 2.06 3.44 2.98 3.01 1.33 0.11 0.16 -0.12
0.29 0.52 1.58 2.42 2.78 3.27 1.89 1.01 0.40 -0.28
0.43 0.77 1.37 1.89 2.80 3.60 2.36 1.67 0.58 -0.41
0.51 0.96 2.06 2.98 3.11 3.45 2.03 1.08 0.39 -0.37
0.61 1.16 2.51 3.64 3.34 3.42 1.91 0.83 0.30 -0.38
0.22 0.42 2.11 3.39 2.99 3.05 1.71 0.75 0.32 -0.25
-0.03 -0.07 1.93 3.39 2.80 2.77 1.54 0.63 0.32 -0.15
0.07 0.12 1.24 2.08 1.99 2.15 1.03 0.26 0.17 -0.10
0.07 0.13 0.69 1.11 1.34 1.62 0.62 -0.04 0.06 -0.04

(b) Reconstruction

Figure 4.16. Approximation and reconstruction with missing data

noted missing points are approximated quite closely compared to the range of measurements.

4.5.3.3. Hybrid reporting. Compressed reporting captures the status of the (partial) net-

work by an m×m matrix, instead of the number of nodes many tuples. However, at lower

depths of the tree, where only a few nodes observe some reading, reporting the m × m

matrix or the coefficients patch may be too costly. The hybrid scheme proposes to use

conventional scheme until the number of nodes with a non-zero reading is below 1
2
m ×m.

Once this threshold is reached, readings are to be transformed to the m × m coefficient

matrix. Implementation of the hybrid scheme is explained in Fig. 4.17. Until transmitting

the coefficient matrix is effective than reporting raw data, conventional scheme is followed,

denoted by reporting mode : 0. When the list of raw data and the coordinate information

grow past the threshold, the coefficient matrix is formed. Thereafter, all nodes contribute in

the compressed mode.
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function Get Mode of Reporting
enum mode {0, 1} . 0 :raw data, 1 :compressed data
message length ← 0
for i = 1, . . . , number of children do

Receive message i
message length + = length(message i)

end for
if message length > 0.5×m2 then

reporting mode ← 1
else

reporting mode ← 0
end if

return reporting mode
end function

function Construct Message
if reporting mode == 0 then

message ← [ ]
for i = 1, . . . , number of children do

receive message i
message ← [ message; message i]

end for
if measurement ! = 0 then

message ← [ message; [coordinates, measurement]]
end if

end if
if reporting mode == 1 then

message ← [ ]
for i = 1, . . . , number of children do

receive message i
message + = message i

end formessage + = PSF×reading
end if

end function

function Transmitting Message
if reporting mode == 1 then transmit(message)
end if
if reporting mode == 0 then

if length(message) < 0.5×m2 then transmit(message)
else

msg ← [ ]
for i = 1, . . . ,length(message) do

coord ← message i(coordinate)
value ← message i(measurement)
msg + = PSF(coord)×value

end fortransmit(msg)
end if

end if
end function

Figure 4.17. Pseudo code for hybrid reporting scheme

4.5.3.4. Re-distribution. Future smart sensing schemes on large networks would benefit

by being aware of the state of the entire network. Thus, a phase where the status of the
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network is re-distributed back to the network is discussed here. The methodology of re-

distributing status of the network is intuitive from the hybrid scheme. The status of the

n×n network is compressed to m×m. But if the number of non-zero values in the network is

below 1
2
m×m, re-distribution is more effectively done with a conventional approach, where

the location and reading information tuple is broadcast. Otherwise the compressed matrix

delivers the status of the network more effectively.

Then at each node, the inverse transform is performed to recover the status of the entire

network. By doing so each and every node becomes aware of the entire network.

4.5.3.5. Potential Issues. Here we discuss issues associated with the scheme that would

be of interest to certain applications.

Reconfiguring nodes: since each node use a unique combination of ΨV and ΨH , reconfig-

uring can be tedious. However, using nodes programmable over the network would alleviate

the effort.

Speed of the plume: a cycle of reporting and dissemination is expected to complete while

the plume is effectively stationary. If the cycle is a slow process, the picture built using the

reports would be inaccurate.

Ringing effects: this is an issue natural to lossy compression. Since the high-frequency

components are discarded, a slight ringing artifact builds on the image.

Blurred image: approximation is analogous to a low-pass filter, which smoothens the

image. Thus, reconstructed images would be less crispy and more blurred.

Effects of missing contributions: although the scheme interpolates the missing locations

quite accurately according to a smoother description of the plume, it draws energy from the

available contributions. Thus, missing contributions causes noise on the available.
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Poor alignment: the simulation results presented later assumes a worst case of a purely

random deployment. A pure random deployment would have a few cluttered nodes and a

few blank areas. Thus, the approximation would be more biased to the cluttered locality

and less towards the empty regions. However, actual deployments are not purely random

and will suffer less from such effects.

4.5.4. Analytical Results. To identify uniquely and for communication sensor nodes

need & log2 n
2 bit long address. If we assume the reading produces some b bit floating point,

the cost of reporting under conventional scheme is ≈ (log2 n
2 + b) n

6
per node. If only k nodes

read non-zero values and report, then the total reporting cost is ≈ k (log2 n
2 + b) n

6
. Pure

compressed reporting scheme requires transmitting an m ×m matrix. Thus, the reporting

cost would be km2b′n/6, where b′ is the length of a coefficient. Reporting cost can be saved

by reporting patches instead of the entire matrix, where applicable. Moreover, the hybrid

scheme would provide much savings.

Reporting is economical for certain choices of wavelets and levels, which also determine

the required precision of the coefficients. Nonetheless, reporting in compressed form is es-

sential to implement compressed re-distribution in a distributed form. As well to interpolate

for the missing location, compression scheme has to be employed at reporting, irrespective

of the communication cost. Re-distributing is effectively achieved for large values of k and

n, i.e. for large network with a large fraction of nodes reading non-zero measurements.

The key advantage of the compressed reporting and re-distributing is the information of

a vast network is represented using only a few coefficients. Thus, less information needed to

be transmitted in order to deliver the status of the network.
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4.5.5. Sensor Deployment. When sensor nodes are placed on a regular grid, they

can be matched to pixels of an image (Fig. 4.14(a) and Fig. 4.14(b)). To calculate the

contribution made by each pixel (sensor) for the approximation, each sensor is fed with a

corresponding PSF. Thus, at reporting, each node will scale its PSF by the reading and

report the resultant matrix. Further, nodes fuse readings simply by adding the contribution

matrices.

When all the contribution matrices of all the sensors are added, the approximation for

the entire sensor field is formed. This approximation can be then transmitted back to the

sensor field, so that each of the sensors learns the status of the entire network.

When constructing the approximation, if the contribution of some of the pixels were not

available, an interpolated value will be automatically assigned to those pixels. This relaxes

the need of a complete grid which is attractive for many applications, and is discussed next.

4.5.5.1. Random points on a Grid. A random deployment of sensors can be treated as a

sparse deployment on a grid (Fig. 4.14(c)). As pointed out above, DWT based approximation

scheme fills out the missing grid points with interpolated values based on the available grid

points automatically. This allows using the same scheme even for a random deployment of

sensor nodes.

As before, each node is assigned with its PSF matrix based on the grid point the sensor

is located. The rest of procedure is the same. When reconstructing, an image of the size of

the grid is formed, where missing grid points are assigned with an interpolated value based

on the wavelet used.

4.5.5.2. Representing a More Realistic Scenario. Deploying sensors on an exact grid is

difficult and not economical for many environmental sensing applications. A deployment

exhibiting characteristics of a random deployment can be considered more realistic. The
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nodes can be considered to be randomly placed at points on a finer grid for computational

convenience. Another issue with wireless sensor networks is the availability of the nodes. At

a given time it is quite likely that a significant fraction of the nodes may either be sleeping,

or even dead. Once the random deployment is treated as a sparse deployment over a fine

grid, unavailability can be accounted as a much sparser deployment. Thus, when resolved,

measurements will be interpolated for on each point on the fine grid.

4.5.6. Results. In this section we evaluate the compressed data reporting and dissem-

ination scheme using a dataset corresponding to a subsurface plume. The dataset and

numerical results are presented next.

4.5.6.1. Synthetic Plume Data Set. The data that is needed in field problems will come

from a set of sensors that are installed in water quality monitoring wells. As such data set

was not available, a synthetic data set using a groundwater flow (MODFLOW) transport

model (MT3DMS) was generated [103–106]. Synthetic data emulating a propagating plume

over a period of 3 years, collecting daily samples are used as experimental data for this work.

The synthesizer software allows placing sensors and making measurements at any desired

location. By placing sensors at a complete fine grid, the actual plume is recognized. Then

sensors are placed at random location for the experiments. Sensor field is represented as a

64 × 64 pixel image. The readings are compressed using a two-level Daubeschie-4 wavelet.

The compressed image is 16× 16.

4.5.6.2. Numerical Results. At each time interval, selected based on plume tracking ap-

plication, a snapshot of the sensor field is built using the compressed reporting method

described in Section 4.5.3. For our experiment, the time interval was selected to be a day.
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Table 4.2. Error of Approximation

Mean over en-
tire sensing pe-
riod

Max over entire
sensing period

Mean over a
snapshot

Max over a
snapshot

Mean over a
snapshot

Max over a
snapshot

Error (%) 2.5 55.4 9.5 82.4

The error is defined as the deference between the calculated value and the actual value nor-

malized to the largest reading (which is the range of the measurements), and expressed as a

percentage.

Four versions of errors are defined. Given a snapshot, the mean of the errors and the

maximum of the errors can be taken. Then over the entire sensing duration (3 years in our

case) the mean and the maximum of above two can be taken.

Transmission cost is evaluated in terms of the number of transmissions. The experiment

used double precision floating point values for both measurements and coefficient matrices.

Thus, the actual transmission cost is a factor of the number of transmissions made.

4.5.6.3. Accuracy. The proposed scheme exploits the effectiveness of lossy compression.

Inevitably, some of the information is destroyed during the reporting phase. Table 4.2

assesses the error introduced by the approximation.

More realistic networks are represented as a sparse deployment of nodes over a grid.

Their performance is comparable when a large fraction of nodes are unavailable on a grid.

Table 4.3 summarizes error performance when 25%, 50% and 75% of the nodes are unavail-

able. Table 4.4 shows the mean and the standard deviation of the mean error over 100

random network settings. It can be noted that mean error is small and it varies very little.

4.5.6.4. Communications Cost Savings. Compression based data gathering and re-distributing

scheme saves floating point transmissions by a factor of 5 in average. When hybrid scheme
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Table 4.3. Effect of Partial Availability on the Error

Dead nodes 25%
Mean over
entire sensing
period

Max over
entire sensing
period

Error com-
pared against

Mean over a
snapshot

Max over a
snapshot

Mean over a
snapshot

Max over a
snapshot

Actual 2.5 55.4 9.5 82.4
Approximation 2.7 24.9 4.9 47.7

Dead nodes 50%
Actual 4.9 76.7 13.6 98.8
Approximation 5.3 41.1 9.0 82.6

Dead nodes 75%
Actual 7.0 87.9 18.4 103.5
Approximation 7.9 56.1 11.8 84.9

Table 4.4. Mean and Standard Deviation of the Accuracy

Dead node % Error compared against Mean Standard deviation

25
Actual 3.2 0.09
Approximation 2.7 0.16

50
Actual 4.9 0.14
Approximation 5.3 0.19

75
Actual 7.0 0.15
Approximation 7.9 0.16

is employed instead, the saving reaches a factor of 10. Figure 4.18 shows the total cost of

using the three schemes over the sensing period.

Largest factor of the savings is accounted to the re-distributing phase as shown in

Fig. 4.19. However, for the re-distribution to be implemented in a distributed fashion, the

reporting scheme has to be implemented in either the compressed form or the hybrid form.

The hybrid scheme improves the compressed scheme further by a factor of 2 in average. The

performance of the hybrid scheme over the compressed scheme is presented in Fig. 4.20.

4.5.6.5. Approximating Missing Data. DWT coefficients automatically approximate val-

ues for the missing locations during reconstruction. Figure 4.21 displays the approximation

capacity of the scheme. Only 25% of the sensors were activated in the sensor field. This
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Figure 4.18. Cost of re-distributing sensor information over the entire net-
work over time.

Figure 4.19. Amount of floating point transmissions saving by compression
over time.

could also be interpreted as, only 25% of the grid points actually contained sensors. Fig-

ure 4.21(a) shows a snapshot of the plume to be detected. But only some random 25% of

the grid points indicated in Fig. 4.21(b) are available for measurements. The non-zero mea-

surements provided by the available sensors are indicated in Fig. 4.21(c). With coefficients

for these non-zero measurements the plume is approximated as in Fig. 4.21(d). It is to be
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Figure 4.20. Amount of floating point transmissions saved using hybrid re-
porting instead of compressed reporting over time.

noted that the mean error between the approximated reconstruction using only 25% of the

measurements is only 7% as shown in Table 4.3.

Figure 4.21. (a) The actual plume (b) a sample deployment of sensors (c)
non-zero reading provided by 25% of sensors (d) approximate plume recon-
structed.

146



4.5.7. Discussion. The goal of the presented scheme is to gather and re-distributed

sensor data from each of the sensors to entire network cost effectively. The communication

structure is a tree rooted at the center of the network. All the nodes observing the interested

phenomenon generates a report and pass it up the tree. Thus, a description of the entire

network is generated at the root. Then the root sends down this information back to the

network, making all the nodes aware of the entire network.

Under conventional scheme each node reports its reading and the location information,

and all the nodes take part in passing this information to the root. The root collects all

the information and build giant picture of the network which is then passed down to the

network. The conventional scheme does not take into account the compressibility of data.

Although it preserves perfect accuracy, most applications tolerate errors to a certain degree

to account for noise which is inevitable in measurements. Compressed re-distributing scheme

proposed exploit the tolerance to mild loss of information. The coefficients also enable data

fusion. Thus, when multiple messages are to be transmitted on the same link, they can be

fused to a single message saving overhead. Moreover, the fusion does not change the data

length, whereas under the conventional scheme the length of the message is increased when

multiple messages are packed.

Compressed scheme reduces the operations at the root. Under the conventional scheme,

the root has to gather and form the giant message containing information of the entire

network. In the compressed scheme the root has no more operations than a regular node in

the network. It sums the coefficients and pass on to the children nodes.

Although compressed reporting alone may not be communication effective, it is essential

to facilitate interpolation of missing points, improve resolution and for a distributed imple-

mentation of the dissemination scheme. So that the burden on the root is alleviated, and
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producing a distributed deployment of the scheme. The hybrid scheme utilizes the effective

components from both the conventional and compressed schemes. It prevents forming a

large coefficient matrix where data is effectively transmitted conventionally, but also applies

compression later on, to utilize the advantages in both the schemes.

Computation requirement at sensors nodes are commendable as well. Compression and

decompression require matrix multiplication, which is an O (n2) floating point operation.

Fusion requires matrix addition which is O(n) floating point operation. The PSF needed for

each node is proposed to be preloaded to each node. The hybrid scheme requires a list of

potential PSFs of its children which can also be pre-loaded.

4.5.8. Conclusions. The scheme estimated the state of the entire network within a

7% error bound using only 25% of the measurements, and demonstrated a communication

savings by factor of 10 when applied for the plume data. Thus, the scheme is capable of

improving resolution of the measurements made, and also to reduce the number of sensors

to be used to achieve a given error bound.

Hybrid scheme exploits the effective components from conventional and the compressed

reporting schemes and cuts down the communication cost by a magnitude. Computation

and memory requirements needed for all the operation in the feasible range for most common

place sensor motes.

4.6. Combined Matrix Completion and Compressive Sensing based Image

Reconstruction

In this section we attempt to employ both matrix completion and compressive sensing

to recover a highly under-sampled image. We use the same chemical plume data used in

prior sections. In the example presented in Fig. 4.22 only 5% of the points are sampled.
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(a) Chemical Plume (b) 5% Samples

(c) Matrix Completion
(d) Matrix Completion and Compressive Sens-
ing

Figure 4.22. Reconstruction using matrix completion and compressive sensing.

The chemical plume is shown in Fig. 4.22a and the samples are shown in Fig. 4.22b. Then

matrix completion is applied on the samples and its reconstruction is shown in Fig. 4.22c. A

key limitation of matrix completion is that it does not take smoothness into account. Thus,

we add another phase to enforce smoothness. Due to the similarity of chemical plumes to

natural images, we select a DCT basis as the sparsity basis and perform compressive sensing

over the recovered image. This step identifies significant DCT coefficient that describe the

underlying plume. Then we recover the plume information as shown in Fig. 4.22d which has

only a 4% reconstruction error.
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4.7. Conclusions

We employed methods such as compressive sensing, wavelet transform and matrix com-

pletion for data recovery in this chapter. The developed techniques are applied on a few

WSN applications to recover data at a lower cost. The developed methodologies enabled

reconstructing sensor field information from a sparse set of samples as well as enable phe-

nomena awareness. Further, recovery bounds of compressive sensing are derived for any

sampling measure.

150



CHAPTER 5

Data Feature Extractions

5.1. Introduction

Extracting features from the gathered data is the focus of this chapter. We begin by

taking a closer look at Robust Principal Component Analysis. As the sufficient conditions

established in [6] are too conservative and the conditions in [5] do not provide all the infor-

mation, there is no guidance to predict whether a combination of a low-rank matrix and a

sparse matrix would recover. Thus, we investigate the empirical recovery region of RPCA.

We establish the recovery regions for a variety of matrices and also look into a cross valida-

tion principle to determine whether a decomposition is a recovery. Validity of the established

boundaries are tested on real-world matrices as well. Then we focus our attention to features

of network data. We propose a scheme to extract network data features and compute derived

features. Then we apply this scheme to detect a few network attacks. We also develop a

methodology to extract subtle patterns in data. These findings are tested on real PCB ca-

pacitance measurements. The objective of this breadth of work is to find candidate methods

to extract features of various nature.

5.2. Experimental Recovery Regions for Robust PCA

The principle of Robust Principal Component Analysis (RPCA) is to additively resolve a

matrix into a low-rank and a sparse component. The question that arises in the application

of this principle to experimental data is, “when is this resolution an identification of the

actual low-rank and sparse components of the data?” That is, when is recovery successful?

And, given a resolution, how can we know it is a recovery of the underlying matrices? In

this paper we report several experimental findings: (1) the subset of matrices that satisfy
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published sufficient conditions is quite small compared to the set of matrices that successfully

recover; (2) successful recoveries can only be expected at low fractional ranks and sparsities ;

(3) where recovery is unsuccessful, the returned matrices tend to be near half-rank and half-

sparsity ; (4) the demarkation between the region of consistent recovery and consistent failure

is narrow, indicating a phase change in recoverability. We demonstrate these findings with a

variety of synthetic matrices that are faithful to matrices appearing in practice. Furthermore,

we apply and verify these results on real-world matrices.

5.2.1. Introduction. Robust Principal Component Analysis (RPCA) decomposes an

input data matrix into a sum of a low-rank matrix and a sparse matrix. If the input

matrix is in fact a sum of an unknown “true” low-rank matrix (which is low rank but not

sparse) and an unknown “true” sparse matrix (which is sparse but not low-rank), RPCA

“recovers” the original unknown matrices. In this paper we report experimental evidence for

“recoverability” of matrices consisting of low-rank plus sparse components, using RPCA.

A low-rank—plus—sparse decomposition is of interest in many applications. A few

classes of applications are reviewed in [5], namely : video surveillance, face recognition,

Latent Signal Indexing (LSI) and ranking and collaborative filtering. The authors of [6]

review rank -sparsity decomposition for statistical model selection, computational complexity

and system identification. RPCA for cyber-security is discussed in [107–109]. RPCA is also

used in a number of image processing applications such as texture extraction [110], image

alignment [111], image tag refinement [112] and image signature analysis [113].

Among a few interpretations, RPCA is viewed as making classical Principal Component

Analysis (PCA) robust against “gross” perturbations [5]. That is, it separates principal

components of a matrix in the presence of additive sparse perturbations – hence the name

Robust PCA. This can also be viewed as “recovering” a low-rank matrix from sparse and
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“gross” corruptions. In another point of view, RPCA can be viewed as a tool to extract

sparse signals concealed by low-rank background interferences. The work presented here

focuses on the “recovery” of both low-rank and sparse components.

Following [5] and [6], we model a data matrix Y ∈ Rn×n as composed of a low-rank

“baseline” matrix B and a sparse “anomalies” matrix A. The idea is to “recover” the two

components from Y with RPCA:

Y = B + A
RPCA−−−−→ L+ S = Y (5.1)

The output low-rank matrix L and sparse matrix S solve

arg min
L,S
||L||∗ + λ||S||1 s.t. L+ S = Y (5.2)

where || · ||∗ is the nuclear-norm, || · ||1 is the one-norm, and λ is a weighting parameter. Our

goal is to recover B via L and A via S.

The results of this paper suggest that the existing sufficient conditions for recovery via

RPCA derived in [5] and [6], while certainly fundamental to the theory of Robust PCA, are so

seldom satisfied for experimental data that they do not reliably predict when a resolution will

actually be a recovery. These sufficient conditions are met only at extremely low fractional-

ranks and fractional-sparsities, where recovery is also successful. At relatively small ranks

and sparsities sufficient conditions are not met, but recovery is satisfactory. At moderate to

high ranks and sparsities sufficient conditions are not met and recovery is unsuccessful. When

recovery is unsuccessful, the resultant low-rank matrix is near half-rank and the sparse matrix

is near half-sparse. This leads to a cross validation principle to determine failed recoveries.

Further, we report a narrow phase change between the regions of successful recovery and
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unsuccessful recovery. We empirically establish ranges of rank and sparsity where recovery

is successful. These ranges are estimated using a variety of synthetic matrices that represent

a range of matrices appearing in practical problems. Then these results are validated on

real-world matrices obtained from actual data.

5.2.2. Background. Conditions presented in [6] state that if B is “true” low-rank

(meaning, it is not also sparse) and A is “true” sparse (meaning, it is not also low-rank) then

RPCA recovers exactly. The two metrics ξ and µ presented in [6] measure these respective

properties. There, a small ξ(B) indicates that low-rank B is not sparse and a small µ(A)

indicates that sparse A is not low-rank. The sufficient conditions for exact recovery of B

and A via RPCA are stated as

ξ(B)µ(A) ≤ 1

6
. (5.3)

The metrics ξ and µ are defined as follows. Let us denote the Singular Value Decomposi-

tion (SVD) of B as UΣV T where B ∈ Rn×n and rank(B) = r with orthonormal U, V ∈ Rn×r.

Then a measure of “true” low-rank -ness in [6] is

ξ(B) = max
N∈T (B),||N ||2≤1

||N ||∞ (5.4)

where T (B) = {UXT + Y V T |X, Y ∈ Rn×r} is the tangent space at B w.r.t. the variety of

n× n matrices whose rank is less than or equal to rank(B). Further, incoherence bounds ξ

as

inc(B) ≤ ξ(B) ≤ 2 inc(B) . (5.5)

Here, incoherence is

inc(B) = max
{

max
i
||PUei||2,max

i
||PV ei||2

}
(5.6)
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where PU is the rank -r orthogonal projection onto the dimension-r subspace 〈U〉, and {ei}n1 is

the standard basis for Rn. ||PUei||22 may be interpreted as the cosine squared of the principal

angle between ei and the subspace 〈U〉.

A measure of “true” sparsity [6] is

µ(A) = max
N∈Ω(A),||N ||∞≤1

||N ||2 (5.7)

where Ω(A) = {N ∈ Rn×n | supp(N) ⊆ supp(A)} is the tangent plane at A w.r.t. the variety

of sparse n× n matrices whose support size is less than or equal to supp(A). The maximum

and minimum matrix degrees bound µ above and below as

degmin(A) ≤ µ(A) ≤ degmax(A) (5.8)

where degmin is the minimum number of non-zero elements along a row or a column, and

degmax is the maximum number of non-zero elements along a row or a column.

Using incoherence as a surrogate for ξ and maximum degree as a surrogate for µ, the

recovery condition (5.3) is re-stated in [6] as

inc(B)degmax(A) ≤ 1

12
. (5.9)

This condition provides a convenient test of sufficiency for recovery. This work is further

extended in [114] where the interest is to recover the column space of the low-rank matrix.

The authors of [5] provide two different sufficient conditions for the low-rank component

and the sparse component, but these conditions do not appear to be verifiable from data.

Stable Principal Component Pursuit [115] provides a viable scheme to recover a low-rank

component buried in a combination of small entry-wise and gross sparse noise. The matrix
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completion problem is viewed and solved in [55] as recovering a low-rank matrix by observing

only a fraction of the entries. Work presented in [108, 109, 116] addresses the recovery of a

low-rank matrix corrupted with both gross sparse and entry-wise noise, by observing only a

fraction of the entries.

5.2.3. Experimental Setup. Here we discuss the construction and decomposition of

test matrices. Though sufficient conditions depend only on the eigenvectors of the low-rank

component and support of the sparse component, there remains the question of what role

the eigenvalues play in recovery. Therefore we consider a range of different eigenvalue struc-

tures for low-rank matrices and a few different magnitude distributions for sparse matrices.

Though these are by no means exhaustive, they cover a set of matrices of theoretical and

practical interest.

5.2.3.1. Test Matrices. We experiment with a few classes of low-rank and sparse ma-

trices with controllable ranks and sparsities. These matrix types occur commonly in first

and second order multivariate analysis, likelihood-ratio testing, radar array processing, etc.

Further, as shown later in Section 5.2.4.4, the matrices considered here faithfully indicate

the behavior of real-world matrices.

Low Rank Matrices. Inspired by the random orthogonal model in [6] and [24], we build

five types of low-rank matrices, namely, first and second order Gaussian; Wishart ; and first

and second order Vandermonde matrices.

Begin with the positive-definite matrix C ∈ Rn×n. Give it the eigenvalue decomposition

C = UΣ2UT , UTU = UUT = In×n, and Σ2 = diag (σ2
1, . . . , σ

2
n). Let h ∈ Rn×1 be the normal

random vector ∼ Nn [0, In×n]. Then for any V ∈ Rn×n, V TV = V V T = In×n, the random

vector g = UΣV Th is the normal random vector ∼ Nn[0, C]. For i.i.d. h1, . . . , hr, this
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experiment generates the first-order Gaussian matrix G = [g1, . . . , gr] ∈ Rn×r, distributed as

Nn [0, I⊗ C]. The covariance, rank, and spectrum of G are controlled with U , Σ2.

A second order random matrix is constructed using first order Gaussian matrices as

G1G
T
2 ; with G1 independent of G2. Low-rank matrices of rank r used for simulations in [5]

and [6] can be obtained by setting U1 = U2 = Σ1 = Σ2 = In, C = I and drawing g
(1)
i , g

(2)
i

independantly.

A realization of a Wishart matrix W is obtained by taking the outer product GGT .

To build random Vandermonde matrices, a standard Vandermonde matrix Z = [zjk]n×n ; zjk =

αj−1
k ; j = 1, . . . , n; k = 1, . . . , n and αk = eı

2π
n

(k−1) is constructed first. Then a first order

random Vandermonde matrix V is built as

V = ZΣG . (5.10)

The rank and the spectrum of V is controlled with Z and Σ. A realization of a second order

random matrix is built as V V T using a realization of a first order Vandermonde matrix.

Sparse Matrices. We employ Algorithm 1 to build a sparse matrix A with the desired

sparsity and to uniformly scatter its support. It samples s points uniformly without replace-

ment from n2 locations. The values of active elements are set using a desired distribution

for δA.

Algorithm 1 Build sparse A

A← 0n×n
while ||A||0 < s do

x← discrete uniform random(n)
y ← discrete uniform random(n)
if A(x, y) == 0 then

A(x, y)← δA
end if

end while
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5.2.3.2. Error Metrics. Here we establish several error metrics for measuring the fidelity

of a low-rank—plus—sparse matrix recovery.

Normalized Error Norm. We define the normalized error norm for recovery of the low-

rank component as ||B−L||||B|| . In particular, we use the two (spectral), Frobenius, nuclear,

and infinity norms for the low-rank matrices. The normalized error norm for the sparse

component is ||A−S||||S|| . The norms used for the sparse matrices are zero, one, two, and infinity.

Alignment of Low-Rank Components. The principal angles and geodesic distances be-

tween the column-spaces and the row-spaces of B and L are used to assess the alignment

of the decomposed low-rank component with the original. The cosine of the first principal

angle between the column or row space of B and L is [117] cos θ1 = maxk σk(Q
T
BQL), where

QB and QL are orthogonal bases for the column or row spaces of B and L and σk is the kth

singular value. The geodesic distance [118] is || {θk|k = 1, · · · , r} ||2, where r is the minimum

of rank(B) and rank(L), and θk is the kth principal angle between the subspaces.

Support of Sparse Components. The accuracy of recovery of the sparse component is

also assessed by comparing the supports of S and A. We define the detection rate D and

false-alarm rate F as

D =
|supp(A) ∩ supp(S)|

|supp(A)|
and

F =
|supp(A) ∩ supp(S)|

|supp(S)|
.

5.2.3.3. Reconstruction. We use the implementation of RPCA in [108, 109] which is also

employed in [107], to decompose Y of (5.1) into a low-rank matrix L and a sparse matrix S

that approximate B and A. While the standard RPCA is noiseless, the εRPCA algorithm

[108, 109] solves the RPCA problem (5.2) with a point-wise error bound ε using Augmented
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Lagrange Multipliers [119]. We set ε = 0, λ = 1√
n

and iterate to termination when ||Y −L−

S||F/||Y ||F < 10−8 or when more than 500 iterations have elapsed. Using the same threshold

as in [5], recovery was considered successful when ||B−L||F/||B||F ≤ 10−5. Further, matrix

elements of the sparse components whose magnitudes are greater than 10−5 were considered

active when support is calculated.

5.2.4. Experimental Results and Discussions. In Section 5.2.4.1 we find the ranges

of matrix sizes, ranks and sparsities at which the published sufficient conditions are satisfied.

Then in Section 5.2.4.2 we establish ranges for fractional-rank and fractional-sparsity where

recovery is successful. These results indicate a very narrow range of ranks and sparsities

where sufficient conditions are satisfied and a relatively larger region where recovery is suc-

cessful. We use several error metrics in Section 5.2.4.3 to assess recovery. In Section 5.2.4.4

recoverability of real-world matrices are employed to demonstrate the accuracy of recovery

regions established in Section 5.2.4.2.

When not otherwise noted, the low-rank and the sparse matrices are built as follows.

The low-rank matrices are rank -r Wishart matrices with left singular vectors U drawn once

from an n× n, white Gaussian matrix and singular values

Σ = diag(σ1, . . . , σn) ; σi =


Unif [0, 1], i ≤ r

0, i > r

. (5.11)

The sparse matrices are built using Algorithm 1, with δA ∼ Unif [−1, 1]. When ap-

propriate, rank r is expressed in fractional-rank r
n

and sparsity s in fractional-sparsity s
n2 .

Experiments are repeated 100 times for each configuration of low-rank and sparse matrices.
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5.2.4.1. Region Satisfying the Sufficient Conditions. Here we seek answers to the follow-

ing questions regarding the published sufficient conditions.

(1) At which matrix sizes, ranks and sparsities are published sufficient conditions sat-

isfied?

(2) What impact does the matrix type have on recovery conditions?

We begin by testing matrices for the probability of satisfying the sufficient condition (5.9).

The matrices used here are inspired by the random orthogonal model in [6] and therefore

produce similar incoherence and degmax values. Fig. 5.1 displays the condition value of (5.9)

for 100 realizations at each rank -sparsity pair for two matrix sizes, n = 100 and n = 2000.

The surface in Fig. 5.1 indicates the condition (5.9) threshold 1
12

. Fig. 5.1 indicates that

none of the realizations of 100× 100 matrices satisfied the sufficient conditions, and a few of

extremely low ranks and sparsities of 2000×2000 matrices satisfied the sufficient conditions.

Fig. 5.2 provides a summary of ranks, sparsities and matrix sizes that satisfy the sufficient

conditions in over 90 out of 100 realizations. The results of Fig. 5.1 and Fig. 5.2 indicate

that the sufficient conditions are more likely to be satisfied when the matrices are large, and

the ranks and sparsities are very small.

These experiments indicate that sufficient conditions are satisfied for a very narrow region

of ranks and sparsities. Fig. 5.3 shows the fraction of realizations of Wishart matrices

that satisfied the sufficient conditions. Results corresponding to three matrix sizes n =

2000, 2500, 5000 are shown for rank -1, rank -2 , and rank -3 in Fig. 5.3. It can be noted

that increasing the rank dramatically reduces the probability of satisfying the sufficient

conditions. Further experiments show similar effects for other types of low-rank matrices.
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(a) matrices of size 100× 100

(b) matrices of size 2000× 2000

Figure 5.1. Condition values of (5.9) for 100 realizations of each rank -
sparsity pair. Wishart matrices are used for the low-rank component. The
support of the sparse matrices is scattered uniformly at random and the mag-
nitudes are distributed uniformly over [−1, 1]. The surface indicates the suffi-
cient condition threshold 1

12
.

5.2.4.2. Region of Successful Recovery. We also note that all the realizations in Fig. 5.1

recovered successfully, though only a few satisfied the sufficient conditions. That is, recovery

is successful over much wider ranges of ranks r, sparsities s and matrix sizes n than those
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Figure 5.2. Highest rank -sparsity combinations at which at least 90 of
100 realizations satisfied the sufficient conditions, for different matrix sizes.
Wishart matrices are used for the low-rank component. The support of the
sparse matrices is scattered uniformly at random.

(a) rank = 1 (b) rank = 2

(c) rank = 3

Figure 5.3. Fraction of the realizations that satisfied the sufficient condi-
tion for Wishart matrices with varying size n×n and rank r against sparsity.
Curves are not shown when none of the realizations satisfied the sufficient con-
ditions. The support of the sparse matrices is scattered uniformly at random.
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might be suggested by the sufficient conditions. Therefore we investigate the empirical

recovery regions of RPCA, as a function of rank and sparsity.

The first experiment on recoverability finds the boundaries of the recoverable fractional-

rank r
n

and fractional-sparsity s
n2 regions for different matrix sizes. These boundaries are

shown in Fig. 5.4. As indicated in Fig. 5.2, Wishart matrices of size n = 2500 satisfy sufficient

conditions with a probability of 90% at rank= 2 (fractional-rank= 0.0008) and sparsity= 10

(fractional-sparsity= 1.6 × 10−6). Any higher ranks or sparsities, or lower matrix sizes do

not satisfy the sufficient conditions. But Fig. 5.4 indicates that Wishart matrices of size

n = 2000 have 100% recoverability at (rank, sparsity) pairs far exceeding these values.

Practically recoverable boundaries are established with the pairs of highest fractional-

ranks and fractional-sparsities for which 100 out of 100 realizations recovered successfully.

Here we observe that boundaries of recoverable regions closely follow the relationship

( s
n2

+ α(n)
)( r

n
+ β(n)

)
= κ(n) (5.12)

for some α, β and κ. This model between fractional-rank and fractional-sparsity is qualita-

tively consistent with the inverse relationship between maximum matrix degree and incoher-

ence in the sufficient conditions of [6].

Next we investigate the probability of successful recovery as rank and sparsity are varied

in an experiment on 100×100 matrices. As shown in Fig. 5.5, at very low ranks and sparsities

recovery is assured, but the probability decreases as the rank and the sparsity increase.

Further, the narrow gap between the region of 100% recoverability and 0%, indicates a phase

change from recoverable region to unrecoverable region in fractional-rank -fractional-sparsity

plane.
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Figure 5.4. Boundaries of the 100% recoverable regions of different matrix
sizes n × n. Points indicates the largest rank that allows recovery at a given
sparsity. Curves are fitted using (5.12). Wishart matrices are used for the low-
rank component. The support of the sparse matrices is scattered uniformly at
random and the magnitudes are distributed uniformly over [−1, 1].

Figure 5.5. Recovery percentile contours on fractional-rank—fractional-
sparsity plane. Matrices of size 100 × 100. Wishart matrices are used for
the low-rank component. The support of the sparse matrices is scattered uni-
formly at random and the magnitudes are distributed uniformly over [−1, 1].

The impact of the type of the low-rank matrix on recovery is studied next. We fit the

model (5.12) onto the boundaries of the recoverable regions of different low-rank matrix

types, as shown in Fig. 5.6. This indicates that the recovery region is relatively invariant to

matrix type.
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Figure 5.6. Boundaries of the 100% recoverable regions of different matrix
types of sizes 100× 100. Markers indicate the empirical boundary points and
the solid line indicates the fitted curve. The fitted curve is computed for
Wishart matrices. The support of the sparse matrices is scattered uniformly
at random and the magnitudes are distributed uniformly over [−1, 1].

Fig. 5.7 characterizes recovery as a function of fractional-rank and fractional-sparsity of

the matrices that are passed to the RPCA algorithm (input matrices) and the matrices that

are returned as recovered matrices. The figure shows a map of decompositions across the

entire range of fractional-ranks and fractional-sparsities. The map is constructed using 100

realizations at each input matrix and showing the concentration ellipses for the corresponding

output matrices. We observe that output matrix pairs corresponding to input matrix pairs

that are of relatively low-rank and low-sparsity, map back to the inputs. Output pairs of

input matrices of moderate to high rank and sparsities map to a near-half-rank and a near-

half-sparse region. This indicates that at low rank and sparsity, where recovery is successful,

output matrices are of low rank and sparsity (matching those of the input). At higher input

ranks and sparsities where recovery fails, the output matrices are near half-rank and near

half-sparse. Thus, we can characterize decompositions by the rank and sparsity of the output
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Figure 5.7. Input and output fractional-rank—fractional-sparsity combi-
nations. Ellipses in blue indicate the concentration ellipses of the output
fractional-rank and fractional-sparsity distributions corresponding to each in-
put fractional-rank and fractional-sparsity combination. 100 realizations were
generated at each input combination. Combinations corresponding to green di-
amond markers consistently recovered successfully. Combinations correspond-
ing to red crosses consistently failed recovery. Recovery of the combinations
corresponding to yellow circle markers were ambiguous. Each input combi-
nation that consistently failed recovery is linked to the corresponding average
output fractional-rank and fractional-sparsity. Matrices are of size 100× 100.
Wishart matrices are used for the low-rank component. The support of the
sparse matrices is scattered uniformly at random and the magnitudes are dis-
tributed uniformly over [−1, 1].

matrices. This result suggests a cross validation principle. If the rank and sparsity of output

matrices are near half-rank and near half-sparsity, the recovery has likely failed.
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Figure 5.8. Recovery error of the low-rank component against fractional-
rank. Normalized error norms are shown in thinner lines and read on the left
axis. Alignment errors are in thicker lines and read on the right axis. Matrices
are of size 100 × 100. Fractional-sparsity of the sparse component is fixed at
0.1. Wishart matrices are used for the low-rank component. The support of
the sparse matrices is scattered uniformly at random and the magnitudes are
distributed uniformly over [−1, 1].

5.2.4.3. Error in Recovery. The definition of recovery depends on the application. Thus,

we consider the common notions of errors discussed in Section 5.2.3.2. Figs. 5.8 and 5.9

indicate that recovery fails according to all error matrics at the same fractional-rank of the

low-rank component and at the same fractional-sparsity of the sparse component. Thus,

the results presented in this paper on successful recovery regions are consistent across error

norms. An interesting phenomenon can be noted in Fig. 5.9. With increasing fractional-

sparsity, the false positive rate shows a sudden rise and a decrease. This is due to the

elements from the low-rank component leaking into the sparse component in malformed

recoveries. As the fractional-sparsity of the original A increases, the support of the leakage

overlaps with supp(A) causing a decrease of the false negatives.

Sufficient conditions suggest that recovery only depends on the support of the sparse

component, not on the distribution of the magnitudes of the active elements. The next
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Figure 5.9. Recovery error of the sparse component against fractional-
sparsity. Normalized error norms are shown in thinner lines and read on the
left axis. Detections of non-zero elements are in thicker lines and read on the
right axis. Matrices are of size 100 × 100. Wishart matrices are used for the
low-rank component and their fractional-rank is fixed at 0.1. The support of
the sparse matrices is scattered uniformly at random and the magnitudes are
distributed uniformly over [−1, 1].

experiment supports this claim. Here, we observe the effects of fixing and varying active

element magnitudes δA of the sparse component. Fig. 5.10 shows the error in recovery of

the sparse component for three distributions: fixed at 1, unif [−1, 1], and N (0, 1). Results

indicate that the value distribution of δA does not affect the recoverable region.

5.2.4.4. Recovery of Real-World Low-Rank Matrices. Finally, we seek to demonstrate

the effectiveness of RPCA when applied to real-world matrices. For that, we investigate the

maximum sparse contaminations from which a series of real-world low-rank matrices can

recover. We further seek to predict the recoverability of these matrices using the recovery

boundaries established earlier in Section 5.2.4.2 with synthetic matrices.

The real-world low-rank matrices used here are from the San Jose State University Sin-

gular Matrix Database [120]. We select a series of low-rank matrices that are of relatively
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Figure 5.10. Recovery error of sparse matrices with varying sparsity for
100× 100 matrices. The support of the sparse matrices is scattered uniformly
at random. Wishart matrices are used for the low-rank component and they
are fixed at rank=10.

low rank but not sparse. The selected matrices belong to the built-in test problems in Reg-

ularization Tools [121] that are used to analyze and solve discrete ill-posed problems. The

matrix categories used here are:

• baart Used as noisy matrices to test solving Fredholm integral equation of the first

kind [122].

• shaw Test matrices for one-dimensional image restoration model of image recon-

struction problems of [123].

• wing Used for testing discretization of Fredholm integral problems with discontin-

uous solutions [124].

Then these matrices are contaminated with sparse matrices built using Algorithm 1, with

δA ∼ Unif [−1, 1]. Table 5.1 lists the maximum fractional-sparsity of the contaminations

that can be added and still successfully recover the low-rank matrices. Using the recovery

boundaries built for Wishart matrices, the maximum fractional-sparsity of the tolerable
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Table 5.1. Maximum Fractional Sparsity of Contamination from which Real
Low-Rank Matrices Can Be Recovered

Group/Name/SJId size fractional-
rank

actual
maximum
fractional
sparsity

estimated
maximum
fractional
sparsity

actual ≤
maximum

Regtools/baart 100/233 100× 100 0.12 0.01 0.04 Yes
Regtools/baart 200/234 200× 200 0.06 0.12 0.21 Yes
Regtools/baart 500/235 500× 500 0.022 0.36 0.43 Yes
Regtools/baart 1000/236 1000×

1000
0.013 0.48 0.48 Yes

Regtools/shaw 200/254 200× 200 0.1 0.04 0.13 Yes
Regtools/shaw 500/255 500× 500 0.04 0.3 0.37 Yes
Regtools/shaw 1000/256 1000×

1000
0.02 0.44 0.46 Yes

Regtools/wing 200/262 200× 200 0.04 0.07 0.27 Yes
Regtools/wing 500/263 500× 500 0.016 0.28 0.46 Yes
Regtools/wing 1000/264 1000×

1000
0.008 0.47 0.50 Yes

contamination is estimated and listed in Table 5.1. Notably, the actual maximum sparsities

for recovery are close and below the estimated boundaries in all cases.

Next we consider the positioning of the estimated recovery boundary with respect to

the actual recoverable region of a few real matrices. For that, we record the recoverability

of three 200 × 200 matrices with varying contamination sparsities. Then we overlay the

estimated recoverable boundary of 200× 200 Wishart matrices. These results are shown in

Fig. 5.11. As can be noted, the recovery boundary of Wishart matrices is a good estimate

for the recovery boundary of the three real-world matrix types considered.

5.2.5. Conclusions. The performance of RPCA in recovering a low-rank matrix and a

sparse matrix from their sum is evaluated empirically. Our findings may be summarized as

follows:

(1) Published sufficient conditions for recoverability are rarely satisfied even at low ranks

and sparsities.
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Figure 5.11. Comparison of recoverability of real-world matrices and the re-
covery boundary estimated using synthetic matrices. The matrices considered
here are of 200× 200. The real-world matrices are from SJSU Singular Matrix
Database and the estimated boundary is based on Wishart matrices.

(2) Common random matrices do not satisfy the sufficient conditions, but recover at

low ranks and/or low sparsities.

(3) At high fractional -rank and -sparsity, sufficient conditions are not met and recovery

is unsuccessful.

(4) If the output matrices of a resolution are near-half-rank and near-half-sparse, the

recovery has likely failed. This presents a cross validation principle for recovery.

(5) The gap between the region of ranks and sparsities where recovery consistently

succeeds and the region where recovery consistently fails is narrow. This indicates

a phase change of recoverability on the fractional-rank—fractional-sparsity plane.

(6) Experimentally established recovery regions are relatively invariant to the matrix

type and the choice of the error metric.

(7) Empirical recovery regions established using synthetic matrices are reasonable esti-

mators of recoverable regions of real-world matrices.
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(8) As the sufficient conditions suggest, recovery only depends on the support of the

sparse matrices, not on the distribution of the magnitudes.

The ranges of rank and sparsity for successful recovery suggest practical limits on what can

be recovered with a practical RPCA algorithm.

5.3. Feature Filters for Network Data

Network data has a wide range of properties. Studying them and their correlations reveals

interesting behaviors of communications. Further, extracting most of these features can be

done cost effectively, as many network hardware support data filtering. In this section we

present an organized approach to extract network data features and obtain derived features

which we employ for network attack detection.

We assume an array of N network sensors each equipped with an array of (not necessarily

similar) filters. These filters extract different features of network data. Then these features

are fed into a computation unit, which calculate various derived features, such as cross

correlations between different features. This structure is shown in Fig. 5.12. Our goal is

to setup the feature filters and wire the computation unit in a way to reveal interesting

information about the network data.

Here, we apply the proposed feature filter for network attack detection. We target five

network attacks.

(1) Neptune attack opens a range of TCP connections and leave them hanging, pre-

venting further legitimate requests establishing connections.

(2) Smurf attack overwhelm the victim by sending a large amount of echo-requests,

thus, engaging the victim to a point it cannot execute its intended duties.

(3) IP sweep attack searches a sub-network for vulnerable hosts.
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Figure 5.12. Feature Filter

(4) Ping Of Death (pod) attack sends a large echo-request packet which cause many

systems to crash.

(5) Port sweep searches a victim for a vulnerable port.

The feature filter shown in Fig. 5.13 is designed to capture these five attacks. As can be

noted only a few features and a limited calculations are needed to implement this detector.

More specifically, the feature to be filtered are: protocol, packet type, destination IP, packet

length and port. The computation unit require only a counter and time averaging units.

5.4. Detection of Subtle Variations in Analog Measurements - A Method

for Counterfeit and Hardware Trojan Identification

A method to detect and localize subtle outliers in analog measurements is proposed, with

applications to detection of hardware Trojans, counterfeits and other problems with low
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Figure 5.13. Detecting Various Network Attacks

SNR (signal-to-noise ratio) outcomes. Approach seeks disturbances from a trend established

with reference samples. The method is tunable, takes global measurement correlations into

account, and is sensitive and performs better than traditional statistical methods.

5.4.1. Introduction. Hardware trojans [125] and counterfeit components are becom-

ing increasingly common and pose a real threat to physical and financial infrastructures.

Since counterfeits functionally identical to legitimate devices and Trojans are inactive until

the trigger sequence occurs, functional and digital testing scheme are not effective. Thus,

techniques for detection often resort to analog measurements. However, “not obvious” coun-

terfeits and well concealed Trojans cause only slight deviations even in analog measurements.

Costly alternatives such as medical scanning, embedding and querying serial numbers have

to be used in place of analog/digital testing in the fight against counterfeits [126]. Low SNR

measurements are also becoming increasingly common in PCB fault detection as devices

and features scale and speeds increase; the signals associated with faults are now buried

174



within the manufacturing and test tolerances. Subtle outliers lying within such acceptable

tolerances escape many statistical detections schemes as well.

Hardware Trojans for ICs may be inserted by modifying the design specification or by

modifying fabrication. Countermeasures such as circuit obfuscation [127] lead to many chal-

lenges including testing and detection difficult. Advanced techniques such as side-channel

signal testing [128] are emerging, but they are only effective in detecting large Trojans. Side-

Channel Analysis (SCA) [129] operates by applying a various test sequences and measuring

side-effects such as magnetic and electric fields. While SCA is used to detect hardware

abnormalities such as Trojans, Trojans may use SCA to couple themselves to the circuit

without a physical connection [130] hiding from test signals. Hardware Trojans are not re-

stricted to modified ICs, but they may sit at port interfaces, connectors or externally but

in close proximity to modules seeking side-channel signals [131]. Except for large and less

sophisticated ones, Trojans produce only subtle deviations within the acceptable range of

measurements, making detecting challenging with traditional means.

In a typical detection setup, a set of reference products/devices are used to establish

the acceptable ranges for different measurements. This range depends on the variability

of the Device Under Test (DUT) due to parametric and manufacturing variations and the

variability of the measurement systems. In PCB testing, reference set would be readings at

each pin of a set of functional boards, obtained perhaps even from different test fixtures or

testers. In statistical detection, this set provides a characterization of acceptability in terms

of statistics such as the mean and standard deviation. Many statistical techniques treat

values corresponding to different test pins independently. [Note: Without loss of generality

we use the term value of a pin to refer to one point measurement out of a set of such

measurements, a term associated with PCBs. However, the description is applicable even
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when each measurement corresponds to a different value, e.g., a delay measurement or a

current measurement.] What lacks here is a notion of a trend that takes into account the

correlations among measurements and direction of variations from one measurement from

one vector (pin) to the other. Although all measurements lie within the acceptable range

of values for each vector (pin), if it does not follow the appropriate trend its acceptability

is questionable. This issue becomes severe for high variance datasets, such as in low SNR

situations. Even for perfectly operational reference set, measurements may vary over a

significant range due to parameter variations with process margins, inherent thermal noise

and variations in fixtures and testers. Such high variances bury subtle but critical deviations

in measurement trends. A trend in general is associated with a particular ordering of pins,

but our aim is not to depend on a particular ordering, rather to have the detection method

consider multiple (or all) possible orderings in detecting devices going against the trend.

Such an approach is essential for dealing with sophisticated circuits, e.g., pin-grid arrays and

circuit boards in which many physical coordinate relationships exist among different pins,

and circuits connected to seemingly unrelated pins. Results from approaches such those

based on principle component analysis [132] are independent of the pin order.

We propose a scheme for detecting subtle outliers that go against the trends exhibited by

reference devices even when each of the measurements individually lie within the acceptable

range. A formulation is developed that highlights disturbances to the trends in measure-

ments, thereby not only allowing for detection of unacceptable devices, but also localizes the

suspect pins. Below we outline the formulation and underlying mathematics for the method.

Results from PCB testing are provided to validate the method.
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5.4.2. Methodology. The methodology utilizes measurements from a “good” set of

devices - the reference set. We desire to test other devices for anomalous patterns or de-

fects. The good set defines the baseline acceptable behavior, on top of which deviations are

permitted within a tolerable margin.

First we consider the measurements obtained for a good set of devices. Denote the

measurement trace for such a device by a length n row vector zg (∈ R1×n). This measurement

trace for a device is the resultant of many components such as the nominal design values,

the parametric and manufacturing variations and the variations introduced by test fixtures.

We assume the effect of these different components to be additive. Let pi’s be the row

vectors of R1×n representing the individual contribution of these properties. Therefore zg =

a1p1 +a2p2 + . . . where ai’s are weights on vectors associated with different properties for the

particular device under test. zg is thus, given by ag = aP , where P is the matrix containing

pi as the ith row. However, P is unknown to us. As measurements are dependent on P ,

we can use measurements from a set of reference boards, denoted by B, to characterize

P . ith row of B is the vector of measurements of the ith reference board, which is of the

form zg = aP . Therefore B = AP , where A contains a’s of each reference board and thus,

P = A+B, where A+ is the pseudo-inverse of A. Since zg = aP we may write:

zg = aA+B = νB (5.13)

Let the number of reference devices be k. As each device provides n measurements, the

reference set provides the baseline matrix B (∈ Rk×n).

The outliers are detected by comparing the measurement vector z of device under test

against the reference model described above. As per our linear model we express the relation

177



between the B and z as:

z = νB + ε (5.14)

where νB correspond to the linear reference model and ε (∈ R1×n) is the row vector of

deviations from the linear model. Information in z that does not fit the reference model such

as noise, nonlinear components and abnormal measurement components of outliers are all

represented by ε. Especially the measurement components of outliers that deviate from the

reference model appear in ε. We take the value of ε to be the minimum vector value that

satisfies (5.14), i.e., we minimize ε, over ν, by posing the following optimization problem:

min .‖ε‖ = ‖z − νB‖ (5.15)

L-1 norm is used for ‖ · ‖ owing to its sparsity promoting properties, as discussed at the

end of this section. Apart from the norm ‖ · ‖, the baseline matrix B and constraints for

the optimization problem are design parameters. These are chosen based on the nature of

dataset and also due convenience. In the presented results, measurements from a carefully

selected set of boards are used as the baseline B, as mentioned above L-1 norm and ν is

bounded above zero and below one: 0 ≤ ν ≤ 1.

An important case is when ε consists only of a few significant values. Such an ε implies

that the test trace deviates from the references significantly at a few locations, and these

locations and the deviations are indicated in ε. In other words, faults get localized to a few

measurement indices. Small Trojans are likely to be wired to a few critical data lines, and

therefore appear on only a few measurement points. Similarly faults in PCBs that are difficult

to be detected, may affect only a few pins. A highly sparse ε is yielded by forcing a minimum

number of non-zero elements referred as the L-0 norm. But mathematical intractability of
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L-0 norm prevents employing efficient solvers in this problem. It is known that tractable

L-1 norm - the sum of absolute values, can be used in place of L-0 norm [133]. Therefore

by solving (5.15) for a minimum ε in an L-1 sense, we can detect faulty devices and localize

the fault to a minimum number of pins. A number of more mathematical implications

construct the foundation of this work, such as low-rank-ness for de-noising, affine constraint

for restricted fitting.

For the results presented here we selected the reference set by validating with multiple

tests and finally manually selecting boards with similar measurement structure. However this

tedious process is not a necessity. For situations where the reference set is possibly contam-

inated, we demonstrate two de-noising methods based on (1) Singular Value Decomposition

(SVD) [134] and (2) Robust Principal Component Analysis (RPCA) [5].

5.4.3. Results. The section will present two sets of results. First is a set of PCB mea-

surement data using Capacitive Leadframe Testing (aka TestJet® in industry). The Trojan

sitting on the interposer layer (Fig. 5.14) samples the communication between the upper

and lower dies looking for the trigger sequence. This will not affect regular communication

between the two layers. Also the presence of a Hardware Trojan changes test measurements

only mildly.

Figure 5.14. An example of a Hardware Trojan in a connector
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Next we present a subset of results from the PCB testing experiment for a j24 connector

mounted on a PCB tested with an Agilent 3070 tester running VTEP. Each board has

145 test pins that are not grounded or VDD, for which the tester measured the capacitance

between a sense plate above the boards and pin underneath the board [135, 132]. A good set

of 23 boards was manually selected as the baseline test set B. 61 other board runs, for a total

of 83 board runs, are made and each run is tested for abnormalities individually using the

formulation in (3). Here, results are shown only for board #51. Figure 5.15 shows the subtle

anomalies of board #51 localized to five pins. Figure 5.15a plots the measured values vs. the

pin number, and in Fig. 5.15b we have shuffled the pin numbers to establish the invariance

of the method to the order of the pins, i.e., such subtle violation of the trend occurs with

respect to many other pins of the connector. Next we focus on the pin 97 (indicated by

the box) in Figs. 5.15a and 5.15b. The same fault is marked in both pin orderings and the

zoomed versions are shown in Fig. 5.16. The subtle fault is marked with a circle in the two

sub-figures 5.16a and 5.16b. As can be seen, this subtle fault lies well within the acceptable

measurement range. This subtle fault would easily escape statistical testing. However it

does not follow the trend. The proposed method was capable of observing its disturbance

to the nominal trend and detecting it. This establishes the key claim of this work.

Additionally we demonstrate the use of RPCA for de-noising a contaminated reference

set, i.e., obtaining a good reference matrix B as discussed in Section 5.4.2 under selecting B.

This is useful, for example when a reference set cannot be obtained via manual inspection.

The measurements corresponding to the initial set of reference boards are shown in Fig. 5.17a

and its de-noised version is shown in Fig. 5.17b. The final version will include a detailed

description of this procedure and also results for validating the approach.
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(a) pin number (b) randomly assigned pin

Figure 5.15. Capacitance values of different pins for 23 reference boards and
test board #51 (a) vs. pin number, and (b) vs. a randomly assigned pin index.

(a) pin number (b) randomly assigned pin

Figure 5.16. Neighborhood of pin-97 of board #51 (a) a subtle outlier with
respect to its neighbors in the original pin ordering (b) the same outlier with
respect to a random set of pins.

5.4.4. Conclusions. A scheme to detect outliers causing subtle changes to in the mea-

surement, but goes against the trend of a reference set of devices is presented. The method

captures global trends over the entire set of measurements, and is insensitive to the order in

which measurements are listed or even the physical order of the pins of a module under test.

The method reveals subtle outliers such as those occur in presence of hardware Trojans and

counterfeits even when they lie within the range of regular data variations. The insensitivity
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(a) Original set of boards (b) RPCA selected boards

Figure 5.17. Obtaining a reference set of measurements for B (a) original
set of measurement vectors, and (b) set of reference vectors obtained using
RPCA approach.

to the pin ordering, relaxes the need of having measurements sorted in a particular order,

which reduces the complexity. Additionally the final version will also present a sensitivity

and robustness analysis of the proposed method.

5.5. Conclusions

A few feature extraction methods are studied in this section. Empirical recovery regions

of RPCA are established along with cross validation principle to determine a successful

recovery. Further, the findings are tested on a variety of matrices that include real-world

matrices. A scheme to extract and derive meaningful features from network data is devised.

This scheme is applied to detect a few network attacks. A methodology to detect subtle

patterns is developed and tested on real PCB data.
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CHAPTER 6

Network Traffic Anomalies

6.1. Introduction

We study network traffic anomalies in this chapter. Anomalies are sporadic and thus,

are difficult to be modelled by classical approaches. Thus, we investigate a modularized

approach to separately model different anomaly behaviors and combine them to describe

the overall anomaly behavior. The resultant model concisely capture the anomaly behaviors

of the network. The parameters of the models can be calculated with local measurements.

However, they capture the global behavior of the anomalies. Using the concise descrip-

tion, two real-time applications are proposed. The presented work also includes anomaly

extraction methods. The work is applied on to Internet2 throughput data to characterize

its anomaly behavior. These findings help provision future networks and also develop more

realistic traffic generators.

6.2. Modeling Spatial and Temporal Behavior of Internet Traffic

Anomalies

A new approach based on graph wavelets for analyzing the spatial and temporal behav-

ior of Internet traffic anomalies is presented. This approach is applied to Internet2 traffic

measurements to evaluate the time duration and spatial spread (number of links affected)

of anomalies. Based on the empirical results, a node model is proposed that captures the

behavior of anomalies at individual network nodes. The model considers various aspects of

anomalies, such as its origin, termination, propagation, duration and volume changes. The

derivation of the model parameters requires only local node information, but the model is
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capable of producing network-wide anomalies whose behavior mimics network wide anom-

alies. Model is verified by using Internet2 traffic data. Since the proposed model can be

specified using only a few parameters, it can be used in place of large anomaly traces with

a great data reduction. As extensions, the model is applied over a path and an aggregated

model that applies to a neighborhood in the network is also presented. A method to use

the graph wavelet components found during the analysis to implement a real-time anomaly

monitoring system is also discussed.

6.2.1. Introduction. Identifying Internet traffic anomalies, such as flash crowds and

denial of service attacks, along with their spatial and temporal characteristics (e.g., life time

and spatial spread) is vital for robust network design and operation. These characterizations

provide critical information for designing and updating link, buffer and router capacities that

are necessary for stable operation. They can also be used to identify the vulnerable regions

of the network and to plan for adversarial attempts. Understanding the behavior of traffic

anomalies also helps improve QoS provisioning and performance modeling. Modeling anom-

aly properties directly contributes for studies and also enables higher level representations.

The model presented in this section captures the behavior of anomalies at a node. As shown

later in the section, the model is also extended to aggregate a region of the network. Such

aggregations capture traffic behavior between ISP level regions.

Recognizing a deviation from the usual traffic pattern is the main goal in anomaly de-

tection and analysis. A thresholding technique in which traffic/flow rate is compared with a

threshold would be an obvious choice, but due to the bursty and self-similar nature of Internet

traffic [3], and daily and weekly variations, such approaches are not adequate. Frequency do-

main solutions in which anomalies are observed and characterized at certain frequency bands
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have shown some promise [136]. Wavelets decomposition and time-series analysis techniques

have been used in [137] to study the statistical characteristics of network traffic anomalies.

Fourier analysis is used in [138] to find the source of an anomaly (origin-destination), as

well as to characterize regular trends. A simple but effective method to detect and diagnose

“black-holes,” where packets are dropped in large quantities due to faults, is presented in

[139]. Other anomaly detection and tracking techniques using principal component analysis

[140, 138], machine learning [141], data mining [142], statistical analysis of payloads (for

intrusion detection) [143], and risk modeling and Bayesian analysis (for IP fault tracking)

[144, 145] have also been proposed. The reader is referred to [146] for a more comprehensive

literature survey. In addition, a number of active probing techniques have been reported

[29] for detecting and localizing anomalies and their spatial spread over the network, by

comparing probe measurements against service level agreements. Probing techniques have

also been proposed for fault diagnosis [147].

In [148], a relatively low complexity spatial analysis of network traffic is presented, which

can be implemented at individual routers across the network to alleviate the need for moni-

toring network-wide data at a central location. Graph wavelets [149] provide a new way for

spatial traffic analysis at different granularities. The idea behind graph wavelets is similar

to that of standard discrete wavelet transform, where wavelet coefficients at different scales

are obtained by aggregating or differencing adjacent data points in time, with appropriate

weights depending on the type of wavelet. In graph wavelets, adjacent points correspond to

neighborhoods defined on the network graph. For example a neighborhood can be a collec-

tion of nodes that are within a radius of a node of interest on the graph, or they can be a

collection of links that are all connected to the same node. The size of the neighborhood in
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turn represents fine or coarse scales for multi-scale analysis. The former definition for neigh-

borhoods is used in [149] for spatial traffic analysis, where the graph corresponds to the line

graph of a network. The graph wavelet approach of [149] has shown great promise for dis-

covering traffic patterns at different spatial granularities and for extracting low-dimensional

representations of the traffic data.

Data adaptive approaches include diffusion wavelets [150], which have been used in [151,

12] for dimension reduction for network traffic analysis. Here, we propose a new approach

for analyzing and modeling Internet traffic anomalies. We use graph wavelet analysis to

evaluate the contribution of each link at a node, as opposed to [149] where graph wavelet

analysis was done over an expanding neighborhood of the network. In [149], links at a certain

depth of the neighborhood are aggregated, so the contribution of an individual link becomes

less significant. Analyzing links at each node provides an analysis which does not loose

granularity. Our aim is to analyze the temporal spread (lifetime) and the spatial spread

(spread path and extent) of traffic anomalies across the network, and to develop simple

models that capture such behavior at different spatio-temporal scales for network traffic

modeling. Our main contributions are as follows:

(1) We first develop a multi-scale traffic analysis framework to analyze how traffic anom-

alies migrate through the network. Using graph-wavelet coefficients of the traffic

data we determine how long an anomaly persist in the network, which route it takes,

and how deep it spreads through the network. We show that this behavior can be

adequately described using well-known statistical distributions.
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(2) We then develop a model that captures the input-output relationship between anom-

aly traffic at a node. We extend this model to capture the overall (composite) input-

output relation of the anomaly traffic for a set of nodes in the network. We also

propose a real-time distributed detection system for traffic anomalies.

In Section 6.2.2, the traffic measurements and data preprocessing steps are discussed.

Section 6.2.3 presents the proposed graph-wavelet based technique for tracing anomalies.

Results explaining the spatial and temporal behavior of anomalies are presented in Sec-

tion 6.2.4. A model for anomaly generation and propagation at nodes is presented in Sec-

tion 6.2.5. Anomaly characteristics observed on Internet2 are presented in Section 6.2.6

in terms of model parameters. Application of the model is discussed in Section 6.2.7, and

conclusions are drawn in Section 6.2.8.

6.2.2. Dataset and Preprocessing. We use traffic volume measurements from In-

ternet2 network starting from Oct. 16th, 2005 [152]. The corresponding network topology

is shown in Fig. 6.1. The data were collected at 11 nodes probing with 5 minute intervals.

There were 28 inbound and outbound links spanning the network. However the techniques

applied are very general and thus, can be used to analyze measurements from any network.

Figure 6.1. Network nodes and links from Internet2
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Internet traffic is best characterized as bursty and self-similar [3]. Nonetheless, daily

and weekly slow-varying patterns are present in traffic measures [136] as evident in Fig. 6.2.

Before applying a threshold to detect anomalies, data has to be preprocessed to remove

these trends as otherwise such trends could mask an anomaly. For example the measure of

anomaly (A) in Fig. 6.2 is less than most of the peaks in the trace. Therefore the threshold

is applied after de-trending the trace.

As probing is performed at 5 minute intervals, 2016 samples per link are collected over a

complete week at every node. The common trend of traffic is identified by recognizing the

prominent frequency components, by performing 2048 point FFT. In the Internet2 dataset,

20 frequency components sufficiently captured the common trends in a week. De-trending

is done by zero-forcing these frequency components.

Figure 6.2. A sample weekly traffic trace

A simple thresholding is then performed to identify the large deviations (three times the

standard deviation) back in the time domain. We consider these large deviations as traffic

anomalies and we are interested to understand the spatial and temporal behavior of them.

188



Fig. 6.3 shows an example of the preprocessed data: Large deviations in the raw data (blue)

are preserved in both the de-trended data (cyan) and the thresholded (red) data. But the

traffic trends present in the observed data are significantly suppressed in the de-trended

data. Thresholding has revealed the anomalies on the dataset.

Figure 6.3. Detected anomalies (marked in red)

6.2.3. Graph Wavelets for Tracing Anomalies. Our aim is to analyze the spa-

tial and temporal behavior of the anomalies across the network. Specifically, we wish to

analyze the temporal spread (lifetime) and the spatial spread (spread path and extent) of

the anomalies to understand how an anomaly affects the networks operation.

6.2.3.1. Graph Wavelets. To explain the basic idea behind graph-based wavelets, let us

first recall the simplest form of Discrete Wavelet Transform (DWT), i.e., the Haar wavelet

[153]. The Haar multi-scale representation of the data is obtained by forming differences

between aggregated versions of the data at different scales. For instance, the Haar wavelet

coefficients at the first scale are simply the differences between adjacent data points. The
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Table 6.1. Properties Revealed by Graph Wavelet Coefficients

Node degree
Coefficient

Scale-1 Scale-2 Scale-3

2 Originating/ Propa-
gating anomalies

N/A N/A

3 Originating anom-
alies

Propagating anom-
alies

N/A

4 Originating anom-
alies

Propagating anom-
alies

Remaining contribu-
tion

coefficients at higher scales are obtained by computing differences between aggregated data

points in neighboring dyadic intervals.

In this section, we apply Graph-based wavelets at each node over the links. This is

different from the approach in [149], where analysis was done over the radius of neighborhood.

Analysis on each node captures all the activities at each of them. Further, the wavelets

coefficients reveal certain physical properties which depend of the degree of the node, as

shown in Table 6.1. These properties are explained later in Section 6.2.5.

Referring to Fig. 6.4, suppose an anomaly is detected in L0. We wish to analyze how

incoming traffic from other links contribute to the anomaly effect in L0, or how the anomaly

in L0 affects the outgoing traffic in other links connected to the node. We take a multi-scale

approach that is, we study the anomaly propagation at various scales, with 1 corresponding

to the finest scale.

Figure 6.4. Multi-scale analysis of links around a node
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At scale 1, we look at weighted differences between the traffic data at L0 and the traffic

data at each of the other links one by one. These differences are viewed as graph-wavelet

coefficients at scale 1. In the example depicted in Fig. 6.4, there are four scale-1 coefficient

time series, indexed from 1 to 4 depending on their location with respect to L0 in a clockwise

fashion. The scale-1 analysis compares the link under consideration with the other links indi-

vidually and captures the difference (actually similarity) between the links. If the difference

between L0 and another link is small (magnitude-wise), we conclude that the anomaly must

have propagated from there. On the other hand, if the difference is large then anomaly must

have propagated from other links.

Figure 6.5. Partitioning of the wavelet function for weight calculation

The scale 2 analysis is coarser, and does not identify how every individual link is similar or

dissimilar to L0. Rather it explains how the aggregated traffic at a pair of nodes contributes

to or is affected by the anomaly at L0. Letting Li denote the traffic in link i, at scale 2 we

form differences (possibly with weights) of the form L0−(Li + Lj), for all i, j = 1, 2, . . . , n−1

and i 6= j. Here n is the total number of nodes.

At scale 3, the aggregated traffic at a collections of three links is compared with the

traffic in L0 that is we look at link differences of the form L0− (Li + Lj + Lk), where (i, j, k)
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Table 6.2. Weights for Scale 2 Analysis for the Haar and the Mexican-Hat
Wavelets

Haar wavelet Mexican-hat wavelet

scale-0 +1 0.548
scale-1 0 -0.472
scale-2 -1 -0.075

enumerate all distinct link triples. Higher scale analyses, up to n−1, are defined in a similar

fashion. Under the Haar wavelet an N -scale analysis will have the form:

L̂N = L0 −
∑

∀sizeNlink sets

Li (6.1)

6.2.3.2. Coefficient Assignment. The values of the weights are determined by the choice

of the wavelet function. To determine the weights we first partition the wavelet function in

time into n intervals of equal duration and then calculate the area under each interval. An

example of this partitioning is shown in Fig. 6.5 for the Haar and Mexican Hat wavelets and

the corresponding weight values for scales 1 and 2 are given in Table 6.2.

6.2.3.3. Tracing Anomalies. The next phase is to traverse the links that had a contri-

bution to the anomaly. Fig. 6.6 presents the pseudocode for the traversal. Two types of

traversals are involved depending on the direction of the traffic analyzed. Forward tracking

(by invoking trace(forward) ) is performed by iteratively comparing an inbound link with

the outbound links connected to the same node.

Similarly backward tracking (by invoking trace(backward) ) is performed by iteratively

comparing an outbound link with inbound links connected to the node. Tracing terminates

when no links show significant contribution to the anomaly. This approach selects links

contributing to the anomaly explicitly, and generates a map of the spread of the considered

anomaly over the entire network.
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function trace(direction) . direction = enum{forward, backward}
Initialize LinkSet← {}
if direction == forward then LinkSet← outgoinglinks
elseLinkSet← incominglinks
end if
ChosenLinks← select(LinkSet)
if ChosenLinks == {} then

exit
else

for all link in ChosenLinks do trace(direction)
end for

end if
end function

function select(LinkSet)
Initialize window ← window of anomaly on current link .

window = struct{StartT ime,EndT ime}
Initialize ChosenLinks← {}
for all link in LinkSet do

Move StartT ime to start of anomaly on the link
Move EndTime to end of anomaly on the link
if (StartT ime− EndTime) > 0 then ChosenLinks← ChosenLinks ∪ link
end if

end forreturn ChosenLinks
end function

Figure 6.6. Pseudocodes for anomaly tracing

The only information passed from one iteration at a node to the next iteration at the

other node is the duration information (time window) of the anomaly. The time window is

moved and stretched/shrunk to find the best correlating time window to pick the anomaly.

The same anomaly may be marked at different routers at different timestamps, due to

propagation delays time synchronization tolerances, and duration variation due to traffic

shaping. Matching the best correlating time window overcomes these issues.

6.2.4. Results. We use the anomaly detection and traversal methods presented above

to investigate properties of anomalies. The revealed properties are characterized by fitting

to appropriate statistical distributions.
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6.2.4.1. Anomaly Detection and Tracing. Fig. 6.7 shows a sample trace of a detected

anomaly (marked in red) in the link from Denver to Kansas City. Haar wavelet-based tracing

indicates that the anomaly originated in the Sunny Valley to Denver link (by backward

tracking), and terminated after the Kansas City to Indianapolis link (by forward tracking).

For the studies presented some 4313 anomalies observed in a period of 50 weeks starting

from Oct. 16th, 2005 are used.

Figure 6.7. Traffic from Denver to Kansas City link (the spikes marked in
red are anomalies detected)

6.2.4.2. Anomaly Characterization. Next we characterize the anomalies observed over

the entire network, in terms of the distribution of their time duration, and the distribution

of their spatial spread. Since anomalies are rare occurrences, data has to be collected over

a long period of time to calculate reasonably accurate statistics. A statistically significant

sample set large enough to evaluate properties of anomalies is generated by averaging traffic

over 10 weeks.
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Fig. 6.8 shows the average time duration characteristics of anomalies over the entire

network. These results show the distribution of the time duration of anomalies in five 10-

week periods. Time distribution shows that they all follow the same distribution, as well

show a thorough compliance to a Geometric distribution with parameter 0.5 in timestamps.

This means that about 50% of anomalies die within 5 minutes. About 25% of the anomalies

last beyond 5 minutes but disappear within 10 minutes, etc.

Figure 6.8. Probability distribution of average time duration of anomalies

The spatial spread is assessed in terms of number of links involved in the anomaly,

and depth to which the anomaly descends. The spatial spread distribution explains the

probability an anomaly would prevail in a particular number of links down the network.

This distribution heavily depends on the structure of the network. Though the probability

distribution for any 10 weeks period is found to be nearly the same, finding a standard

distribution that will fit well (as with the case of duration analysis) is not possible.

The “depth” an anomaly propagates is less network-structure-dependent than the set

of links affected by the anomaly. Therefore depth is a more reasonable measure for spatial

analysis. Here, the number of levels an anomaly spread is counted, instead of the number of

links. We found the distributions to be well converged, and to be close to a Log-Pearson type
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III distribution. The Kolmogorov-Smirnov (KS) test [154] verified this claim. The resulting

distribution is shown in Fig. 6.9.

Figure 6.9. Probability distribution of spatial spread (in terms of depth of
the anomaly)

The KS test [154] was performed on all the 10-week datasets to assure our claims. For

most of the observation sets, KS-test confirmed similarity to the claimed distributions with

a P -value close to 1.

6.2.5. Anomaly Model. Being able to regenerate anomalies similar to those in prac-

tical networks is essential for accurate network modeling, evaluation and forecasting. Based

on the properties of anomalies observed, a model to describe the origination, propagation

and termination characteristics of anomalies is proposed next. The model is intended to

capture the statistical properties of anomalies. Distinct from other Internet traffic models,

it identifies and characterizes different properties of anomalies. Such a model is useful for

applications such as Internet traffic simulators - to generate anomalies having realistic statis-

tical properties. The model is validated by comparing the statistics of anomalies generated

by the model and actual anomalies observed in the network. Statistics of the anomalies

generated by the model showed a maximum Kullback-Leibler (KL) divergence of 8% from
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the statistical properties of detected anomalies. KL divergence provides a distance between

two probability densities compared. A low distance value claims the probability densities

are similar. Accuracy of the model further verified when applied over a path as shown later

in Section 6.2.7.

6.2.5.1. Proposed Model to Emulate Anomaly Behavior at a Node. The proposed model

captures the behavior of anomalies at a network node. Fig. 6.10 shows the basic structure of

the proposed model for a node having three links. Traffic flows marked are only for the link-i.

Each link connects the node at an interface block, represented with the detailed structure

shown in Fig. 6.11. To characterize the core, a splitting ratio is used where a fractions αi,j

(αi,k), of anomalies received at interface-i propagate to interface-j (or k).

Figure 6.10. Basic anomaly model for a network node

Parameters of the model are derived using the characteristics observed in the network.

The core is specified using a splitting ratio, which is the fraction of anomalies that would take

each path. The interface block is specified using two probability values and three probability

distributions as presented in Table 6.3, which also indicates the values for an example node

based on measurements. Pabs is the probability a received anomaly would be absorbed, i.e.,

moved out of the network. For certain anomalies a responding anomaly can be observed

on the same link in the reverse direction. These can be interpreted as acknowledgements

for the anomalies received. The probability of having a responding anomaly is identified
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Table 6.3. Parameters in the Interface Block

Parameter Definition Sample values (for Kansas City
nodes Denver interface)

Pabs Probability of absorbing a re-
ceived anomaly completely

68%

pdfgen Distribution of inter anomaly gap
(in hours)

Exponential(45.33)

Pres Probability of responding to a re-
ceived anomaly

3%

pdfvol Distribution of volume adjust-
ment

Normal(1,0.188)

pdfres vol Distribution of volume change of
the responding anomaly

Normal(1,0.305)

with Pres. The inter-anomaly gap is found to have an exponential distribution (noted with

Exponential(mean) and valued in hours) is marked as pdfgen. When anomalies propagate

and get responded their volume is adjusted. These factor by which the volume is adjusted is

explained using a normal distribution (noted with Normal(mean, standard deviation)) and

identified with pdfvol and pdfres vol respectively.

Figure 6.11. Structure of the interface model
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6.2.5.2. Utilizing the Model. The proposed model is capable of regenerating anomalies

having similar statistical properties as observed in the actual network. The model covers the

three types of outgoing anomalies:

(1) An originating anomaly

(2) An anomaly as a response to a received anomaly

(3) As propagation of a received anomaly

The inter-arrival time of originating anomalies and the initial anomaly volume showed a

wide range of behaviors on different links. Yet in general, it could be observed that an origi-

nating anomaly would have about 3 million to 18 million packets distributed logarithmically,

and the inter-arrival time between originating anomalies have a Poisson distribution. When

inter-arrival times of anomalies of each link were fitted with an exponential distribution they

only had standard error of about 5%. An example case is shown in Fig. 6.12, for anomalies

observed in the Chicago to New York link. The histogram of inter-arrival times of anomalies

is shown in bars in Fig. 6.12. The histogram can be closely approximated to an exponential

curve as shown.

It was also noted that the distributions used to characterize the volume adjustment when

an anomaly propagate, and when a responding anomaly is generated could be approximated

using a normal distribution. A standard error of about 10% was seen at worse case.

Once the model parameters (shown in Fig. 6.10 and 6.11) are identified for a network,

anomalies having similar statistical properties can be generated. The complete process to

regenerate anomalies having similar statistical behaviors to the observed is summarized using

a pseudocode in Fig. 6.13. Originating anomalies are generated with an inter-anomaly gap of

pdfgen. A receiving node generates a responding anomaly in the reverse link with probability

Pres, with the volume related to the incoming anomaly by a multiplicative factor randomly
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Figure 6.12. Inter-arrival time distribution on the Chicago to New York link
Structure of the interface model

distributed according to pdfres vol. A receiving node absorbs the received anomaly with Pabs,

or propagates it after changing the volume by a multiplicative factor given by pdfvol and

forwards to the core. If the node has more than one out-going link, the anomaly will choose

a link with the links splitting ratio. The outgoing interface spread the anomaly volume over

a period given by geometric(0.5) distribution.

6.2.6. Anomaly Parameters of Internet2. The model captures the statistical prop-

erties of anomalies observed at a node. Thus, now it becomes possible to evaluate or classify

the anomalies, and also regenerate anomalies having the same statistical behavior as ob-

served at each node. Tables 6.4 and 6.5 presents model parameter values for the Internet2

network. Table 6.5 lists the splitting ratios. A propagating anomaly would pick an outgoing

link based on the splitting ratio.

The link having a higher ratio is referred as the “dominant link” and the other as the

“other link.” As many phenomena of interest such as buffer overflow, packet loss, etc. occur

due to traffic anomalies, such characterization is useful for network design and resource
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function Anomaly receive process(anomaly)
Responding anomaly generation process(anomaly)
With Pabs absorb anomaly
if anomaly not absorbed then

Adjust volume according to pdfvol
Anomaly passing to core process(anomaly)

end if
end function

function Responding anomaly generation process(anomaly)
With (1− Pabs) discard anomaly
if anomaly not discarded then

Construct an anomaly according to pdfres vol
Force an outgoing anomaly

end if
end function

function Anomaly passing to core process(anomaly)
According to splitting ratio choose the outgoing link
Pass the anomaly

end function

function Anomaly generation process
According to pdfgen OR by a trigger from Responding anomaly generation pro-

cess
Spread the anomaly over time according to geometric(0.5)
Transmit anomaly

end function

Figure 6.13. Pseudocodes to implement the model

provisioning. Notably, only a few parameters (measured locally) are required to capture the

statistical properties of anomalies over the entire network. As shown Section 6.2.7, these

parameters can be extended over a path or a region. An extension to the model over a path

and region is discussed in Section 6.2.7.

6.2.7. Application of the Model.

6.2.7.1. Anomaly Propagation Characteristics. The model proposed above captures prop-

agation of anomalies over the network. The probability that an anomaly would survive over
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Table 6.4. Parameters in the Interface Block

Node Link Pabs (%) Standard
Deviation
of Normal
pdfvol

Pres (%) Standard
Deviation
of Normal
pdfres vol

Mean of
Exponen-
tial pdfgen
(hours)

KSCY
DNVR 39.3 2.17 23.5 0.926 45.33
IPLS 31.8 0.617 14.4 1.27 42.28
HSTN 77.1 57.8 29.4 2.60 33.86

HSTN
KSCY 73.0 31.9 31.6 2.50 37.96
LOSA 37.8 16.4 33.2 48.3 42.95
ATLA 48.8 1.48 28.2 2.10 28.57

DNVR
STTL 65.0 12.9 22.5 2.07 41.96
SNVA 50.8 6.68 31.0 2.68 24.11
KSCY 23.0 1.72 15.9 10.3 38.38

IPLS
KSCY 30.1 0.599 18.0 1.83 41.79
CHIN 24.0 5.97 19.1 14.4 44.22
ATLA 73.5 12.5 26.1 1.02 37.11

ATLA
WASH 48.5 2.84 31.8 2.07 42.61
IPLS 85.6 5.38 20.7 1.25 45.59
HSTN 47.2 5.69 30.5 1.86 35.52

SNVA
STTL 83.9 21.3 11.8 20.0 35.71
DNVR 25.2 4.82 21.7 1.47 52.64
LOSA 29.7 1.89 27.5 2.36 16.46

STTL
SNVA 93.1 201.0 13.1 114.0 30.13
DNVR 92.5 3.19 19.3 2.31 42.52

LOSA
SNVA 86.9 5.93 20.1 2.52 21.80
HSTN 81.9 2.76 30.8 5.24 25.88

WASH
ATLA 76.5 3.60 31.7 3.25 29.73
NYCM 82.6 1.55 9.76 3.38 49.90

NYCM
WASH 75.0 20.2 13.1 0.976 39.94
CHIN 60.7 0.838 17.1 1.74 21.56

CHIN
NYCM 59.1 5.09 12.4 3.01 33.02
IPLS 74.4 2.67 17.5 2.11 29.35

a path depends on Pabss and αi,js of intermediate nodes and given by:

PW =
∏
i∈W

((1− Pabs,i)αc,i) (6.2)

where, W = {links of the path}, αc,i is splitting ratio for the chosen outgoing link from

link-i. A comparison between the PW ’s derived from the model and the actual is shown in

Table 6.6. It compares the probability an anomaly would survive over path provided by the
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Table 6.5. Splitting Ratios

Link Preferred link Splitting ratio (%) Other link

ATLA-HSTN HSTN-LOSA 95.0 HSTN-KSCY
ATLA-IPLS IPLS-CHIN 70.5 IPLS-KSCY
CHIN-IPLS IPLS-KSCY 96.1 IPLS-ATLA
DNVR-KSCY KSCY-IPLS 88.5 KSCY-HSTN
DNVR-SNVA SNVA-LOSA 97.0 SNVA-STTL
HSTN-ATLA ATLA-WASH 98.6 ATLA-IPLS
HSTN-KSCY KSCY-DNVR 55.8 KSCY-IPLS
IPLS-ATLA ATLA-WASH 87.5 ATLA-HSTN
IPLS-KSCY KSCY-DNVR 93.7 KSCY-HSTN
KSCY-DNVR DNVR-SNVA 82.8 DNVR-STTL
KSCY-HSTN HSTN-LOSA 63.3 HSTN-ATLA
KSCY-IPLS IPLS-CHIN 94.5 IPLS-ATLA
LOSA-HSTN HSTN-ATLA 90.4 HSTN-KSCY
LOSA-SNVA SNVA-DNVR 89.9 SNVA-STTL
SNVA-DNVR DNVR-KSCY 95.7 DNVR-STTL
STTL-DNVR DNVR-KSCY 86.4 DNVR-SNVA
STTL-SNVA SNVA-LOSA 61.5 SNVA-DNVR
WASH-ATLA ATLA-HSTN 90.9 ATLA-IPLS

Table 6.6. Comparison Between PW s

Propagation Actual PW (%) Model PW (%) Error

LOSA-SNVA-DNVR-KSCY 68.1 70.4 2.3
NYCM-WASH-ATLA-HSTN 95.0 88.9 6.1
STTL-SNVA-LOSA-HSTN 98.6 98.6 0.0
CHIN-NYCM-WASH-ATLA 92.5 93.0 0.5
IPLS-ATLA-HSTN-LOSA 98.7 99.1 0.4

model and actually observed. The error column states the difference between the probability

values. The “Actual PW” is the value observed in the network. The “Model PW” is the value

calculated using model parameters using (6.2). The error columns is the difference between

the two probability values.

As an anomaly propagates, its volume changes according to pdfvol of each node in the

path. The effective pdf of volume adjustment over a path is the product of individual pdfs
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over each link. As these pdfs are independent, the effective pdf can be expressed as follows:

pdfvol,W = M−1

{∏
i∈W

M {pdfvol,i}

}
(6.3)

where W = {links of the path}, M is the Mellin transform [155]. When the above statistics

were derived for a number paths we observe a standard error of about 7% between the

estimated and actual values.

6.2.7.2. Model for Node Aggregates. Further attempts were made to devise a higher level

node model, which can capture a region, as in Fig. 6.14. Having each node characterized

with a very few parameters, eases forming higher level nodes.

Aggregating nodes hides links, and a region has multiple internal paths. Entry points

to the region will become interfaces to the aggregated node. The probability of absorption

(Pabs) for an interface in the aggregated node is given by:

Pabs = 1−
∑
w∈T

Pw (6.4)

where, T is the set of all internal paths starting from the interested interfaces of the aggre-

gated node.

The splitting ratio of an anomaly arriving at interface-i, choosing interface-j (αi,j) de-

pends on all the possible internal paths exist between the two interfaces, and the splittings

encountered internally, and is given by:

αi,j =
∑
t∈Ti,j

∏
k∈t

αk (6.5)

where, Ti,j is the set of all the paths between interface-i to interface-j, αk splitting ratio of

choosing link-k.
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When (6.4) and (6.5) are applied for the portion of network indicated in Fig. 6.14(a), to

reach Kansas City from Los Angeles, there are two internal paths in the aggregated node.

The first path has a probability of 29.75% to reach the interface to Kansas City. The path-2

(through Seattle) has a PW of 0.16%. Thus, the cumulative probability to reach at the

interface to Kansas City from Los Angeles interface is 29.91%. Therefore according to the

model Pabs for the interface towards Los Angeles is 70.1%. The actual value was found to

be 62.4%.

6.2.7.3. A Real-time Distributed Monitoring System. Although the analysis presented

here is aimed at deriving a statistical model, the analysis can easily be extended to a real-

time distributed system for monitoring anomalies. The wavelet coefficients presented in

Section 6.2.7 are computed using traffic around a node. Thus, each router is capable of

constructing a data-structure with its wavelet coefficients.

Management Information Base (MIB) on each router will perform the Fourier based

detection on each of its links, and the wavelet analysis to produce the data-structure with

the coefficients shown in Table 6.1. By exchanging the data-structures with neighbors a

description of anomalies in the local network can be constructed. The data-structure of a

node contains the anomaly information on all its links. When a node is aware of it neighbors’

data-structures, the node is aware of anomalies in a local network up to two links deep.

When an anomaly propagates towards a certain node, the observing node could forward

all known coefficient data-structures to the same node. Thus, all nodes experiencing an

anomaly have the capacity to develop the complete spatio-temporal map of the anomaly.

Fig. 6.15 shows the pseudocode for this scheme. Such a scheme enables any node observing

an anomaly to derive properties of the anomaly. If the anomaly behavior of the network has

been modeled, then these properties will enable predicting and decision making.

205



Figure 6.14. Portion of the network made into a higher level node

6.2.8. Conclusions. A method to characterize and model Internet traffic anomalies

was proposed. To detect anomalies a simple Fourier-based method was employed. A new

approach based on graph wavelets was developed to analyze the spatial and temporal behav-

ior of anomalies. Measurement data for Internet2 was used to evaluate model parameters

and to validate the region model. In particular, we studied how an anomaly propagates from

one link to other links connected to the same node in the network (or vice versa). We demon-

strated that the time duration and spatial spread of anomalies, observed in the Internet2

data used in this section, can be adequately captured by standard statistical distributions.

A node model capable of capturing the input-output relation for the anomaly traffic in a
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function Throughput sampler
Set Timer to sampling time
At expiry

Sample all links
Anomaly detector
Form wavelet coefficients
Exchange coefficients

end function

function Anomaly detector
Apply Fourier transform to sample record
Threshold and mark anomalies

end function

function Form wavelet coefficients
Perform link comparison to form wavelet coefficients

end function

function Exchange coefficients
Send coefficients to all neighbors
Receive coefficients from all neighbors
Construct message with own coefficients and neighbor coefficients
Forward the message in the anomaly direction

end function

Figure 6.15. Pseudocodes for real-time distributed monitoring system

node was developed. This model was then extended to a composite input-output model,

capturing the anomaly propagation over a path or region.

6.3. Spatiotemporal Model for Internet Traffic Anomalies

Models for Internet traffic anomalies greatly benefit a range of applications including

robust network design, network provisioning and performance studies. A novel approach to

analyze and model network traffic anomalies is presented. The proposed approach individ-

ually characterizes different aspects of anomalies, such as origin, termination, propagation,

and changes in duration and volume, with common random processes. These characteristics
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are then integrated into a single model that successfully captures the overall anomaly be-

haviours. Characterization of each anomaly property requires only a few parameters, leading

to a concise set of parameters for the entire model. Though the model is calibrated with local

measurements made at nodes, it successfully represents the global behaviours of anomalies

over the network. The proposed model is applicable both at nodal level and at subnet level.

This enables hierarchically analyzing large and sophisticated networks. Anomalies are ana-

lyzed using a multi-scale analysis framework based on which, a real-time monitoring system

that efficiently communicate ongoing anomaly information across the network is developed.

The system is also used for learning regional model parameters distributively. Internet2

traffic data is analyzed using the framework, and the corresponding model parameters are

derived. These results provide insight on the nature of anomalies in networks.

6.3.1. Introduction. Characterizing the nature of traffic anomalies such as those due

to flash crowds, Distributed Denial of Service (DDOS) attacks and link failures is crucial

for robust network design, operation and forensics. Behaviours of these anomalies, in time

and space, and the correlations among these behaviours are referred to as spatiotemporal

characteristics. Spatial properties of interest include the links, subnets and regions affected,

while temporal properties of interest include amplitude variations, durations, and rates of

anomalies. These properties reveal vulnerable regions and periods in network operation.

Modelling anomalies aims at capturing anomaly properties coherently and concisely. Repre-

sentative models for the characterization of spatiotemporal anomaly properties help provi-

sioning of network resources such as link capacities, trunks, router capacities and failovers.

Efficient and scalable frameworks to extract anomaly features also facilitate calibration of

models, which in turn are useful for design, evaluation and forensics. Anomaly models can

significantly enhance applications such as network simulators. Anomaly modelling provides
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different levels of abstractions, such as activities at link/node level and aggregated activi-

ties at ISP (Internet Service Provider) level. Despite the significant importance of anomaly

modelling, formal models that effectively capture spatial and temporal features of anomalies

are yet to emerge. This is mainly due to the difficulty in modelling anomalies as pointed

out in [156]. Traffic anomalies do not adhere to common random processes as they are spo-

radically scattered in time and space with arbitrary durations, gaps, volumes, and spreads.

This poses a challenge for modelling traffic anomalies with traditional approaches. How-

ever, this dissertation achieves a formal model that successfully characterises network traffic

anomalies.

Two main contributions are made herein. First, we present a multi-scale framework

for network traffic anomaly analysis. A spatiotemporal filter that extracts the duration

and volume information of anomalies at various scales is proposed for this purpose. The

filter outputs summarise the variation of volumes of anomalies and the durations they are

in effect. Second, using the above filter outputs and time gaps between anomalies, we

characterize individual properties of anomalies and integrate them into a comprehensive

model that captures the input-output anomaly relationships at a node. We also extend

this model to describe the behaviours of anomalies at subnet level. As each component of

the model accurately captures various aspects of anomalies, such as inter-anomaly gaps and

anomaly volume/duration distributions, the proposed integrated model accurately represents

the overall anomaly behaviours. The model parameters identified adhere to common random

processes, successfully and concisely describing different anomaly features. We demonstrate

that the model apprehends anomaly behaviours both at node level and at subnet level

with the same limited set of parameters and relationships. Therefore the proposed model

characterizes the network at a desired level of granularity. The attention of this work is on
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the traffic intensity and volume anomalies, i.e., unusual deviations in throughputs. We note

however that the techniques developed here are valid for other types of measurements that

can be represented as arrays of time-series.

Much of the literature on anomalies is focused on detection rather than modelling, though

detection does assume an underlying anomaly model. Detection schemes are specialized and

fine-tuned based on properties of anomalies, implicitly modelling anomalies. Initial attempts

to model anomalies vary from approaches based on simple thresholding for anomaly detection

to localizing anomalies in certain frequency bands [136] or wavelet coefficients [29], followed

by statistical characterization. Many approaches model regular trends, for example with

Fourier analysis [138], and declare significant deviations as anomalies. Other anomaly detec-

tion techniques have been developed based on principal component analysis [157], machine

learning [141], data mining [142], statistical analysis of payloads [143], risk modelling, and

Bayesian analysis [144, 145]. A relatively low complexity spatial analysis is presented in [148],

which can be implemented at individual routers across the network to alleviate the load at a

central location. Correlation Layers for Information Query and Exploration (CLIQUE) [158]

models anomalies in streaming datasets by indicating atypical patterns. Generalized Anom-

aly and Fault Threshold (GAFT) [159] is a hierarchical, multi-tier, multi-window, soft-fault

detection system based on statistical models. Other statistical approaches for anomaly mod-

elling use Chi-Square [160] and Bayesian models [161]. A multi-tier extension of Bayesian

models is discussed in [162]. Statistical models provide pragmatic approaches for anomaly

detection as pointed out in [163]. Hidden Markov Models are another approach used to

describe anomaly activities [164, 165]. An adaptive approach for anomaly detection using a

model with a simple architecture is discussed in [166]. Among the other approaches are the
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usages of danger models [167] and cluster analysis [15]. In [168], knowledge gained by anom-

aly models is used to improve control mechanisms such as flow sampling. Model selection

for anomaly detection in wireless ad-hoc networks is addressed in [169], where an extended

anomaly model is employed in WLANs (Wireless Local Area Networks) with RSVP (Re-

source Reservation Protocol) mechanism to improve QoS (Quality of Service). Data adaptive

approaches for traffic analysis include use of diffusion wavelets [150], e.g., for dimension re-

duction of network traffic [151, 12]. Graph wavelets [149, 7] enable spatial traffic analysis

at different granularities. A graph wavelet based approach for modelling Internet traffic

anomalies is presented in [149], while [7] uses graph wavelets without losing granularity.

Models for anomalies have a wide range of practical applications, only a few of which are

briefly addressed here. Simulators for network traffic greatly benefit from anomaly models.

Typically, the normal component of traffic is well behaved allowing it to be reproduced/re-

generated accurately with common distributions. The anomalous components however are

difficult to be reproduced due to their complicated spatial and temporal behaviours and

dependencies. A model that captures statistics of anomaly features can facilitate synthe-

sizing statistically accurate anomalies and ultimately realistic traffic traces. An alternative

is to record and store traces of real traffic and then drive the simulators. However such

trace-driven approaches are not scalable, and are often not feasible even for moderate sized

networks. The model presented here captures the vital features of traffic traces. Storing

only such characteristics of the traces is scalable and requires orders of magnitudes less

storage. Further, realistic anomalies for traffic streams can be successfully synthesized with

the stored statistics. These features are also useful in specifying anomalies. A formal and

concise specification would be needed, for example, to stipulate descriptions of anomalies for

network analysis, and to query for anomalies exhibiting a certain behaviour. The model is
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also a prediction tool. The model describes the probability at which an anomaly can be ex-

pected with certain features. Robust network design can greatly benefit from such anomaly

models. Information captured by the model parameters also has a design value. They reveal

interesting information about the network, such as distributions of the severity of anomalies,

which may otherwise be difficult to obtain. Such information is useful for applications such

as provisioning of resources. The proposed scheme models anomalies at various levels of

abstractions. Therefore the model helps assess anomalies over the network at different levels

of hierarchy, such as node and subnet levels.

The rest of the section is arranged as follows. Section 6.3.2 discusses properties of anom-

alies and the analysis framework. The proposed model is presented in Section 6.3.3 and

accompanied by modelling at the node level. Modelling at subnet level is discussed in Sec-

tion 6.3.4. Concluding remarks are in Section 6.3.5. An appendix in Section 6.3.6 provides

the details of the anomaly extraction process.

6.3.2. Internet Traffic Anomalies and Their Properties. This section takes an

extensive look at characteristics of traffic anomalies. Internet traffic anomalies are complex

combinations of volumes, durations, and gaps. Therefore describing traffic anomalies with a

single standard random process is challenging if not impossible. However individual temporal

and spatial anomaly properties can be described more successfully with well-known random

processes.

We discuss the analysis procedure with a running example based on the Internet2 net-

work data. The process however is general and applicable to any network. The dataset from

Internet2 network [152] shown in Fig. 6.16 [2], contains throughput measurements sampled

every five minutes starting October 16th, 2005. The nodes in Internet2 network are abbrevi-

ated as: Atlanta (ATLA), Chicago (CHIN), Denver (DNVR), Houston (HSTN), Indianapolis
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(IPLS), Kansas City (KSCY), Los Angeles (LOSA), New York (NYCM), Sunnyvale (SNVA),

Seattle (STTL), Washington (WASH).

Figure 6.16. The Internet2 network [2], consisting of 11 nodes and 14 bi-
directional links.

6.3.2.1. Classes of Anomalies. We classify anomalies into three classes: originating, prop-

agating and responding. This categorization is based on the generation of the anomalies with

respect to the node they are observed at. Each class has distinct properties and builds a

separate component of the proposed model.

Originating anomalies: Anomalies that originate at the considered node are termed

“originating anomalies.”. The process of originating anomalies is described with

three features: (1) the interval between anomalies, (2) the volume of each anomaly,

and (3) the duration of each anomaly. In other words, anomalies of random volumes

and random durations are generated at random intervals.

Propagating anomalies: Anomalies that originate at a different node and pass through

the observing node, are called “propagating anomalies.” However, not all anomalies

arriving at a node propagate further. A fraction of anomalies gets absorbed. The
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outgoing anomalies may have different volumes and durations than the correspond-

ing incoming anomalies. Therefore the ratios between the incoming and outgoing

anomaly volumes and durations are used to characterize the reshaping of propagat-

ing anomalies.

Responding anomalies: An interface of a node has an inbound link and an out-

bound link. In certain cases, an anomaly is also observed on the outbound link over

a time period that overlaps with the duration of an anomaly on the inbound link.

Such anomalies on the outbound link are referred to as “responding anomalies.” A

probability value is used to describe the probability of observing a responding anom-

aly. Similar to propagating anomalies, ratios relating the volumes and durations of

the responding anomaly and incoming anomaly are used for characterization.

6.3.2.2. Spatial and Temporal Properties of Anomalies. Network traffic anomalies are

endowed with a number of spatial and temporal properties. Temporal properties are observed

at a point in the network over time, such as at an interface of a node or a tapping point on a

link. It produces a time-series of the anomalous activities. Properties describing the spread

of anomalies over the network are spatial properties. They describe features such as nodes

where anomalies were absorbed or propagated, number of links the anomaly affected, etc.

We find the following anomaly properties to be of interest:

Inter-anomaly gap: The inter-anomaly gap is the time interval between two adja-

cent anomalies.

Duration / duration change: The length of the period the anomaly is in effect is

the duration of the anomaly. For example, durations of the anomalies shown in

Figs. 6.17(b), (c) and (d) are one, two and two sample periods, respectively. As

anomalies propagate, the duration they are in effect also changes, which can be
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described using a multiplicative factor. In the example from Fig. 6.17, the duration

of the incoming anomaly doubles as it propagates out, i.e., by a factor of two.

Volume / volume change: Volume of an anomaly is the area under the anomalous

trace over the duration of the anomaly of interest, or in other words, anomalous

throughput integrated over the duration of the anomaly. For the anomalies shown in

Fig. 6.17(b), (c) and (d), the volumes are 8.82×106, 2.35×107 and 8.52×106 packets,

respectively. Volume change can be characterized similar to duration change. As

the incoming anomaly on KSCY to IPLS link propagates, its volume has grown by

a multiplicative factor of 3.63 .

Absorption: When an anomaly does not propagate beyond a certain node, it is

considered absorbed at that node.

Split / join: As an anomaly propagates across a node with multiple outgoing links,

the anomaly may split between outgoing links. Also when anomalies from a few

links arrive at a node at the same time, they may jointly propagate onto outgoing

links.

The individual features discussed above are amenable to common random processes.

Therefore a feature-wise anomaly model can successfully be built. Motivated by this ability,

we propose a model for network traffic anomalies, in Section 6.3.3.

6.3.2.3. Anomaly activity at a node. Anomaly extraction schemes in general provide

time-series of anomaly measurements on individual links. Following [149], we consider volume

anomalies. The extraction process is described in detail in [7] and is outlined in Section 6.3.6.

This scheme de-trends to remove normal traffic and applies a threshold to separate anomalies.

It produces a train of impulses with amplitudes corresponding to anomalous throughputs at
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Figure 6.17. An example anomaly propagation: (a) The map of the prop-
agation, (b) Trace showing anomaly in the incoming link - KSCY to IPLS,
(c) Trace showing anomaly in outgoing link - IPLS to CHIN, and (d) Trace
showing anomaly in outgoing link - IPLS to ATLA.

each sample time. During the anomaly free periods, the time-series is empty. When anom-

alies last multiple sample times, the time-series have consecutive impulses, which are treated

as a single anomaly. With further treatment, three basic properties of anomalies, duration,

inter-anomaly gap and volume are obtained. Each node indexes the anomaly activity on all

its links and records these properties. The duration is the interval between the start time and

end time. Inter anomaly gap is the interval between the start time of the current anomaly

and the end time of the previous anomaly. Volume is obtained by integrating the throughput

over the duration of the anomaly. Couple of example anomalies from the New York node is
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shown in Table 6.7. The anomaly indexed 203 entered from both the Chicago and Washing-

ton interfaces, and left from the Washington interface. This anomaly was observed after 12

samples (one hour) from a previous anomaly on the Chicago interface. The anomaly lasted

for two samples (10 minutes) on the Chicago interface and for one sample time (five minutes)

on Washington interface. We define stt(k, l, in/out), ent(k, l, in/out), dur(k, l, in/out), and

vol(k, l, in/out) as the start time, end time, duration and volume respectively. Here, k is the

anomaly index, l is the link index and in/out indicates the direction of anomaly.

6.3.2.4. Spatial-Temporal Filtering. The anomaly activities, such as listed in Table 6.7,

needs to be analyzed in order to obtain anomaly properties discussed in Section 6.3.2. This

section proposes a filtering scheme termed “Spatial-Temporal filtering” (ST-filtering) for

anomaly activity analysis. The filters derive spatial and temporal properties of anomaly

activities at a node by comparing volumes and durations on subsets of input and output

links. Though this procedure has similarities to graph wavelets [149, 7], it is more flexible

as there is no dyadic restriction on selecting subsets. Table 6.8 lists the notations used here

onwards.

We propose two filters, one analyzing anomalous volumes and the other analyzing anom-

aly durations. The volume filter is defined as:

LvI,J,s(k) =
∑
i∈I

vol(k, i, in)−
∑
j∈Js

vol(k, j, out). (6.6)

The volume filter (Lv) compares the total input volume on the subset of input links I against

s-size subsets of output links J , yielding the difference between the input anomalous volume

on a specific subset of input links and the anomalous output volume on a specific subset of

output links. Let I = {a, b} and J = {c, d, e} as shown in Fig. 6.18. The parameter s is

called the scale, and it is the number of links in the subset to be compared at a time. Set Js is
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Table 6.7. A Sample of Anomaly Activities At New York Node

Anomaly
index

Incoming link from Chicago
Start time End time Duration Inter anom-

aly gap
Volume

... - - - - -
202 17032 17036 4 3 3.15× 105

203 17048 17050 2 12 9.17× 104

... - - - - -

Anomaly
index

Outgoing link to Chicago
Start time End time Duration Inter anom-

aly gap
Volume

... - - - - -
202 - - - - -
203 - - - - -
... - - - - -

Anomaly
index

Incoming link from Washington
Start time End time Duration Inter anom-

aly gap
Volume

... - - - - -
202 17032 17033 1 5 1.98× 104

203 17048 17049 1 15 2.04× 104

... - - - - -

Anomaly
index

Outgoing link to Washington
Start time End time Duration Inter anom-

aly gap
Volume

... - - - - -
202 - - - - -
203 17048 17049 1 206 2.02× 104

... - - - - -

a set of all cardinality-s subsets of J , for example, if s = 2, then Js = {{c, d}, {d, e}, {e, c}}.

Each filter produces

(
|J |
s

)
many outputs, one for each subset in Js. The scale s = 1, will
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Table 6.8. Notation

Notation Description

I Set of incoming links
a, b Indices of the incoming links
J Set of outgoing links

c, d, e Indices of the outgoing links
s Scale
k Anomaly index

LvI,J,s Volume filter (defined below)
LdI,J,s Duration filter (defined below)

subscript i− j Symbolises that the parameter is on anomalies going from node i to node j
Ni The set of neighbours of node i
NT Statistically sufficient sample size
ai−j The set of anomalies in NT

qi−j The subset of propagating anomalies
ri−j The subset of responding anomalies
ni−j The subset of originating anomalies
λi−j The set of inter anomaly gaps
vi−j The set of volumes of anomalies
di−j The set of durations of anomalies

As ai−j is the set of anomalies on the link from node i to node j, the cardinality
|ai−j| indicates the number of anomalies on the link.

compare the total incoming volume against the output volumes at individual links:

Lv{a,b},{c,d,e},1(k) = {{vol(k, a, in) + vol(k, b, in)− vol(k, c, out)},

{vol(k, a, in) + vol(k, b, in)− vol(k, d, out)},

{vol(k, a, in) + vol(k, b, in)− vol(k, e, out)}}. (6.7)
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It produces three outputs, one corresponding to each output link. At scale s = 2, the output

links are taken pair-wise:

Lv{a,b},{c,d,e},2(k) = {{vol(k, a, in) + vol(k, b, in)− (vol(k, c, out) + vol(k, d, out))},

{vol(k, a, in) + vol(k, b, in)− (vol(k, d, out) + vol(k, e, out))},

{vol(k, a, in) + vol(k, b, in)− (vol(k, e, out) + vol(k, c, out))}}. (6.8)

Again, it produces three outputs, one per each pair. Finally, at the maximum possible scale

s = 3, the total incoming volume is compared against the total outgoing volume:

Lv{a,b},{c,d,e},3(k) = vol(k, a, in) +vol(k, b, in)− (vol(k, c, out) + vol(k, d, out) + vol(k, e, out)) .

(6.9)

At boundary setting s = 0 and I = {}, the input volume and output volumes are produced.

Figure 6.18. Analyzing anomalies at a node, whose links are grouped into
an in-bound set I and out-bound set J .

Taking an example from Internet2, the filter Lv{CHIN},{KSCY,ATLA},1 applied to Indianapo-

lis node will return two outputs: the amount of anomalous throughput changed from Chicago

interface to Kansas City interface and that from Chicago interface to Atlanta interface. The
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filter Lv{CHIN},{KSCY,ATLA},2 will provide one output expressing the amount of volume changed

from the Chicago interface to the sum of volumes on the Kansas City and the Atlanta inter-

faces.

We define the following duration filter to analyze duration change of anomalies.

LdI,J,s(k) =

(
max
i∈I
{ent(k, i, in)} −min

i∈I
{stt(k, in)}

)
−(

max
j∈Js
{ent(k, j, out)} −min

j∈Js
{stt(k, j, out)}

)
(6.10)

where k is the anomaly index, I and J are sets of link indices corresponding to input and

output links, s is the scale.

These filter outputs are utilized in calculating anomaly properties in Section 6.3.3. No-

tably, the filters outputs are sufficient to explain all the volume and duration properties of

anomalies.

6.3.3. Traffic Anomaly Model. Being able to regenerate actual or realistic anom-

alies is imperative for robust network design, studies and many other applications. The

node model proposed below captures the statistical properties of the observed anomalies

and is capable of regenerating anomalies having the same statistical behaviours. The model

consists of two components: the core and the interface. We attribute anomaly splitting and

joining behaviours to the core. Rest of the anomaly properties are described at the interface.

6.3.3.1. The Core Model. Figure 6.19 shows sample nodes of degrees two, three and four.

In Fig. 6.19(b) anomalies entering from interface-i may propagate out from interface-j and

interface-k. The “splitting ratio” αi−j is for the fraction of the anomalies propagating from

interface-i to interface-j. In the same fashion, a fraction αi−k is defined for interface-k.
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Figure 6.19. model: (a) Two link node, (b) Three link node, and (c) Four
link node.

For a typical node b, splitting ratio of anomalies entering from node i towards node j is

defined as follows:

αi−j =
|ai−b ∩ ab−j|∣∣ai−b ∩ (∪∀l∈{Nb\i}ab−l)∣∣ . (6.11)

The numerator expresses the number of propagating anomalies from node i to node j. The

denominator expresses the total number of propagating anomalies entered node b from node

i. The following relationship is used to derive the splitting ratio from the ST-filter outputs:

αi−j =
‖Lv{i},{j},1(k)‖0∣∣∣Lv{i},{J},|J |(k)

∣∣∣ s.t. Lv∅,J,|J |−1(k) 6= 0 (6.12)

where k runs through the indices of the anomalies during NT , J = Nj \ i, ∅ is the null set,

| · | indicate the cardinality and ‖ · ‖0 is the L0-norm (the number of nonzero elements). The
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constraint Lv∅,J,|J |−1(k) 6= 0 asserts usage of only the propagating anomalies for splitting ratio

calculation.

6.3.3.2. The Interface Model. Activities at the interface are illustrated in Fig. 6.20. Each

link is bidirectional. Thus, there is an in and out channel on either side of the interface -

towards the link and towards the core.

At a certain probability, nodes absorb anomalies. We characterize this phenomenon using

a probability value pa - the probability of absorption. The probability of absorption at node

j on the interface towards node i is:

pa,i−j =

∣∣ai−j \ (∪∀m∈{Nj\i}aj−m)∣∣
|ai−j|

(6.13)

This is the ratio between the number of anomalies that did not propagate past node j and

the number of total anomalies arrived from node i. The parameter pa is calculated using

ST-filter with the relationship:

pa,i−j = 1−
‖Lv{i},J,|Nj |−1(k)‖0∣∣∣Lv{i},J,0(k)

∣∣∣ . (6.14)

Anomaly Reshaping: If anomalies survive, they propagate onto the core. During the

propagation, their volumes and durations are adjusted by factors drawn from distributions

ρv and ρd respectively. To derive distributions ρv and ρd, the subset of propagating anomalies

qi−j defined as below for node j’s interface towards node i.

qi−j = ai−j ∩
(
∪∀l∈{Nj\i}aj−l

)
(6.15)

Then distribution parameters for ρv and ρd are tuned such that they best fit the volume

adjustment factors and duration adjustment factors of the anomaly set qi−j. To calculate
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(a) Generation

(b) Absorption and propagation

(c) Responding anomalies

(d) Complete interface model

Figure 6.20. Interface model.
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the parameters of these two distributions using the ST-filter, we define two temporary sets

Lvρ and Ldρ and use the relationships shown below:

Lvρ =

{
Lvi,J,|Nj |−1(k)

Lvi,J,0(k)
s.t. Lvi,J,|Nj |−1(k) 6= ∅

}
(6.16)

Ldρ =

{
Ldi,J,|Nj |−1(k)

Ldi,J,0(k)
s.t. Ldi,J,|Nj |−1(k) 6= ∅

}
(6.17)

The two sets Lvρ and Ldρ contain the fractional changes in volume and duration. Then two

distributions ρv and ρd are selected to characterize the multiplicative factor of change in

volume and duration. For example, if Gaussian distribution is found to be a good fit, it is

characterized with the mean and standard deviation as follows:

ρv,i−j = N
(
1 + ELvρ, stdev

(
Lvρ
))
ρd,i−j = N

(
1 + ELdρ, stdev

(
Ldρ
))

(6.18)

where E is the empirical expectation and stdev(·) is the standard deviation. The constraint

Lvi,J,|Nj |−1(k) 6= ∅ selects only the propagating anomalies. The two quantities ELvρ and ELdρ

are mean fractional changes in volume and duration. By adding a one to them, as in

1 + ELvρ, yields the mean multiplicative factor of change. To further clarify this using a

simplistic example, let x be the input volume and y be the output volume. Then (y − x)/x

is the fractional change in volume and 1 + (y − x)/x = y/x, is the multiplicative factor

corresponding to the change.

Originating Anomalies: Nodes generate originating anomalies with volumes and durations

drawn from distributions gv and gd with an inter-anomaly gap drawn from gλ. To find

these distributions, we observe the subset of originating anomalies ni−j on node i’s interface

towards node j.

ni−j = ai−j \
(
∪∀l∈{Nj\i}al−j

)
(6.19)
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Then find distributions gv, gd and gλ that best fit volumes, durations and inter anomaly gaps

of originating anomalies ni−j. To estimate these distributions from ST-filter outputs, first

we define temporary sets Lvg, L
d
g, M and Lλg that contains volumes, durations, an index set,

and inter-anomaly gaps of the originating anomalies. Here we define iag(M) as the set of

inter anomaly gaps of the index set M . Then the following relationships emerge.

Lvg =
{
−LvJ,{i},1(k) s.t. LvJ,{i},0(k) = 0

}
(6.20)

Ldg =
{
−LdJ,{i},1(k) s.t. LdJ,{i},0(k) = 0

}
(6.21)

M =
{
k | k = 1 . . . Nk s.t. LvJ,{i},0(k) = 0

}
(6.22)

Lλg = {iag(M)} (6.23)

The distributions that best fit to Lvg, L
d
g and Lλg are selected for gv, gd and gλ. For example,

if they were Gaussian, exponential and exponential, respectively, the distributions will be

specified with mean, standard deviation and rate as follows.

gv,i−j = N
(
ELvg, stdev

(
Lvg
))

(6.24)

gd,i−j = Exp
(
ELdg

)
(6.25)

gλ,i−j = Exp
(
ELλg

)
(6.26)

Responding Anomalies: The probability at which responding anomalies appear is de-

scribed with pr. The responding volumes and durations are factors of the original anomaly

drawn from distributions γv and γd. As above, we define the subset of responding anomalies
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ri−j on the node i’s interface towards node j, to derive the parameters.

ri−j = ai−j ∩ aj−i (6.27)

The probability of responding at node i’s interface towards node j is:

pr,i−j =
|ri−j|
|ai−j|

(6.28)

The distributions γv and γd are selected to fit the volume and duration adjustment factors

of the responding anomaly set ri−j. As before, we define two temporary variables Lvγ and

Ldγ that contain volumes and durations of responding anomalies, and use ST-filter outputs

to find above parameters.

Lvγ =

{
Lvi,i,1(k)

Lvi,i,0(k)

}
(6.29)

Ldγ =

{
Ldi,i,1(k)

Ldi,i,0(k)

}
(6.30)

Distributions γv and γd are selected in a similar fashion as with propagating anomalies. If

the selected distributions were Gaussian, they would be specified with mean and standard

deviation as follows:

γv,i−j = N
(
1 + ELvγ, stdev

(
Lvγ
))

(6.31)

γd,i−j = N
(
1 + ELdγ, stdev

(
Ldγ
))

(6.32)

The probability values pa, pr and splitting ratios were estimated with sufficiently large

sample sets NT . Standard distributions are fitted for other parameters and verified using

Kolmogorov-Smirnov (KS) test [154]. All the distribution fits satisfied the KS test with a 5%
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significance level. This indicates that the selected anomaly properties can be well modelled

with the chosen random processes. However, such a successful fit cannot be achieved for

modelling the anomaly trace as a whole. This implies that the proposed anomaly model

more accurately captures anomaly behaviours into common random processes.

6.3.3.3. Modelling at Node Level. Here, the model is applied to nodes in the Internet2

network (Fig. 6.16). To find the most suitable time frame, parameter values are estimated

over increasing number of weeks. Parameter values converged when averaged over 10 weeks

of data. In other words NT needs to be at least 10 weeks for the parameter values to be

stable. The results presented below are for NT = 50 weeks. It was found that inter anom-

aly gap, duration and volume of originating anomalies are best described using exponential,

exponential and Gaussian distributions respectively. Anomaly duration and volume change

factors for both propagating and responding anomalies were well described using Gaussian

distributions. The resulting parameters listed in Table 6.9, capture the statistical properties

of anomalies at each node. With these results, now it is possible to evaluate and classify

anomalies, and also to regenerate anomalies having statistical behaviours similar to nodes

in Internet2 network, even for different topologies. Notably, only a limited number of pa-

rameters, measured locally, are required to successfully capture the statistical properties of

anomalies over the entire network.
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Table 6.9. Node Parameters for Internet2 Network

Node Interface pa pr Splitting ratio µ for gλ ∼
Exp(µ)∗

µ for gd ∼
Exp(µ)

(µ, σ2)
for gv ∼
N (µ, σ2)

(µ, σ2)
for ρd ∼
N (µ, σ2)

(µ, σ2)
for ρv ∼
N (µ, σ2)

(µ, σ2)
for γd ∼
N (µ, σ2)

(µ, σ2)
for γv ∼
N (µ, σ2)

KSCY
DNVR 0.40 0.24 αIPLS = 0.95 αHSTN = 0.15 45 1.8 (29, 69) (1.1, 1.2) (1.0, 2.2) (1.6, 1.5) (1.2, 0.9)
IPLS 0.32 0.14 αDNV R = 0.91 αHSTN = 0.22 42 1.7 (43, 95) (1.3, 0.9) (1.0, 0.6) (1.2, 1.2) (1.3, 1.3)

HSTN 0.77 0.29 αIPLS = 0.71 αDNV R = 0.65 34 1.8 (4.6, 25) (1.7, 2.5) (5.4, 58.0) (1.1, 0.8) (1.4, 2.6)

HSTN
KSCY 0.73 0.32 αLOSA = 0.90 αATLA = 0.86 38 1.5 (7.7, 26) (2.0, 3.1) (4.0, 32.0) (1.2, 1.0) (0.6, 2.5)
LOSA 0.38 0.33 αKSCY = 0.43 αATLA = 0.93 43 1.9 (2.7, 28) (1.2, 0.6) (0.8, 16.0) (1.3, 1.5) (1.1, 48.0)
ATLA 0.49 0.28 αKSCY = 0.31 αLOSA = 0.98 29 1.7 (20, 41) (1.2, 0.8) (1.3, 1.5) (1.2, 1.1) (1.1, 2.1)

DNVR
STTL 0.65 0.22 αSNV A = 0.24 αKSCY = 0.93 42 1.9 (5.2, 66) (1.0, 1.0) (1.6, 13.0) (1.5, 1.5) (1.8, 2.1)
SNVA 0.51 0.31 αSTTL = 0.09 αKSCY = 0.98 24 1.6 (17, 46) (1.1, 0.9) (1.5, 6.7) (1.4, 1.4) (1.2, 2.7)
KSCY 0.23 0.16 αSTTL = 0.33 αSNV A = 0.74 38 1.6 (42, 220) (1.6, 1.5) (1.1, 1.7) (1.0, 0.5) (0.6, 10.0)

IPLS
KSCY 0.30 0.18 αCHIN = 0.98 αATLA = 0.98 42 1.6 (37, 99) (1.1, 0.6) (1.2, 0.6) (1.2, 0.8) (1.3, 1.8)
CHIN 0.24 0.19 αKSCY = 0.89 αATLA = 0.18 44 1.8 (38, 130) (1.2, 1.1) (1.1, 6.0) (1.4, 1.8) (1.5, 14.0)
ATLA 0.74 0.26 αKSCY = 0.57 αCHIN = 0.71 37 1.9 (11, 44) (1.5, 1.8) (4.8, 12.0) (1.1, 0.6) (1.1, 1.0)

ATLA
WASH 0.48 0.32 αIPLS = 0.20 αWASH = 0.94 43 1.9 (23, 66) (1.3, 1.2) (0.9, 2.8) (1.1, 0.6) (1.0, 2.1)
IPLS 0.86 0.21 αWASH = 0.91 αHSTN = 0.66 46 1.7 (9.6, 31) (1.6, 1.2) (0.9, 5.4) (1.6, 3.2) (1.3, 1.2)

HSTN 0.47 0.30 αWASH = 0.99 αIPLS = 0.17 36 1.8 (15, 39) (1.1, 0.7) (2.1, 5.7) (1.2, 1.1) (1.3, 1.9)

SNVA
STTL 0.84 0.12 αDNV R = 0.51 αLOSA = 0.79 36 1.9 (5.2, 17) (1.8, 2.4) (0.9, 21.0) (1.0, 0.5) (3.0, 20.0)
DNVR 0.25 0.22 αSTTL = 0.10 αLOSA = 0.97 53 1.9 (25, 49) (1.2, 0.6) (1.0, 4.8) (1.4, 1.5) (1.4, 1.5)
LOSA 0.30 0.28 αSTTL = 0.09 αDNV R = 0.95 16 1.2 (11, 24) (1.1, 0.5) (1.1, 1.9) (1.4, 1.8) (1.1, 2.4)

STTL
SNVA 0.93 0.13 αDNV R = 1.0 30 2.0 (7.5, 16) (1.3, 0.9) (5.3,

200.0)
(1.2, 0.6) (4.6,

110.0)
DNVR 0.92 0.19 αSNV A = 1.0 43 2.4 (44, 95) (2.8, 5.3) (0.5, 3.2) (1.4, 1.8) (1.1, 2.3)

LOSA
SNVA 0.87 0.20 αHSTN = 1.0 22 2.1 (45, 80) (2.0, 3.0) (1.3, 5.9) (1.3, 1.1) (0.4, 2.5)
HSTN 0.82 0.31 αSNV A = 1.0 26 2.2 (22, 55) (1.1, 1.3) (5.5, 2.8) (1.2, 1.1) (0.6, 5.2)

WASH
ATLA 0.76 0.32 αNY CM = 1.0 30 2.3 (29, 72) (0.9, 0.4) (0.3, 3.6) (1.2, 0.7) (1.6, 3.2)
NYCM 0.83 0.10 αATLA = 1.0 50 2.2 (56, 82) (1.5, 1.0) (0.3, 1.6) (1.0, 0.5) (1.1, 3.4)

NYCM
WASH 0.75 0.13 αCHIN = 1.0 40 2.4 (69, 130) (1.2, 1.3) (1.2, 20.0) (1.4, 1.3) (1.0, 1.0)
CHIN 0.61 0.17 αWASH = 1.0 22 2.0 (52, 120) (1.3, 1.1) (0.8, 0.8) (1.5, 1.3) (1.3, 1.7)

CHIN
NYCM 0.59 0.12 αIPLS = 1.0 33 2.1 (69, 130) (1.1, 1.0) (1.5, 5.1) (1.3, 1.6) (1.2, 3.0)
IPLS 0.74 0.18 αNY CM = 1.0 29 1.8 (67, 230) (1.3, 0.9) (1.5, 2.7) (1.3, 1.1) (2.1, 2.1)

* gλ is expressed in hours, as oppose to sample periods. Mean µ and standard deviation σ2 are expressed in 1000’s.
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These results are useful in many aspects. The model parameters reveal illuminating

information about the network. For instance, model parameters indicate that anomalies

originating at the Washington interface of New York node have significantly large volumes,

on average 68870 pkts/sec. Another example is most of anomalies, in fact 98.2%, entering

the Indianapolis node from the Kansas City interface propagate to Chicago node. A more

important aspect however is that the model parameters are useful for design of other similar

networks. Based on the information as above, large and sophisticated networks can be

calibrated. When a new network is designed, the model parameters of representative nodes

from an analyzed network can be used to provision capacities needed to withstand possible

network anomalies.

6.3.4. Modelling at Subnet Level. Similar to anomaly activities at and between

nodes, anomaly activities at subnet level are also important for ISPs and backbone service

providers. Subnet level anomalies correspond to anomalous behaviours at higher abstractions

of the network. We observe that the above proposed anomaly model captures the anomaly

behaviour even at subnet levels. Approaches to extend the nodal model over paths and

regions were discussed in [7]. Though the same model captures the nodal level and subnet

level anomaly behaviours, we have not yet been able to derive a rigorous derivation of the

subnet level model parameters from the nodal level model parameters due to a number of

limitations.

6.3.4.1. Limitations on Extending Nodal Model to Regional Model. Given the model pa-

rameter values of a set of nodes does not permit deriving the model parameter values for

the region made out of those nodes, due to a number of reasons. Despite node level charac-

terization provides a satisfactory estimate on global behaviours, information is insufficient
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to aggregate nodes. We identify key limitations preventing aggregating nodal models into

regional models, below:

Nodal model use only local information: All the anomalies arriving and leaving a node

are used to calibrate nodal parameters without a distinction. Thus, distinctive properties

of anomalies, such as: the specific origin, path, changes in volumes and durations as they

travel, are not captured. Not having a classification of anomalies may raise issues in aggre-

gating nodes, as parameters for different groups of anomalies may not be the same. Short

range anomalies may not be of interest when regions are formulated, as they become internal

behaviours. Anomaly properties of long range anomalies would govern propagation prop-

erties across a region. But such differences are not taken into account as all anomalies are

treated equally when deriving nodal parameters. The properties based on the origin of the

anomalies play a key role. For example, most anomalies a certain node receives may be from

another specific node. If such a pair of nodes aggregated, most anomalies become internal

and regional properties will change significantly. Since origin information is not recorded,

the model will not carry such pieces of information, despite the key role they play during

aggregation. However, representing such behaviours will require more details stored.

Rules of aggregations not understood: Another critical issue in network node aggregation

is that there are no understood rules, unlike in, say, circuit theory.

(1) No conservation theories: The anomalous throughput entering and leaving an en-

tity, and the amount generated and absorbed do not form a conservation of traffic.

However, the count of anomalies is treated conserved during development of the

anomaly model, i.e., anomalies that did not propagate treated absorbed.

(2) No simplification theories: A key concern is whether two nodes required to be di-

rectly linked to be aggregated. With the assumption of no such restriction, a number
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of primitive simplification modes can be thought of, as shown below. However, ag-

gregating any of these modes is not understood.

• Two nodes connected with a direct link (in series)

• Two nodes with no direct link between them, but connects to a common node

(in parallel)

• A loop of nodes (ring)

• A random scatter of nodes with no condition of direct links or common nodes

(3) No rules on super-imposing links: Links may collapse onto each other when aggre-

gating nodes. An example scenario is when two nodes connected to a third are

merged. The aggregated node will have two links running to the same third node

that need to be merged. Conditions and constraints on super-imposing these two

links are not understood.

6.3.4.2. Region parameters. Here we present the anomaly statistics of a set of subnets

(Fig. 6.21) modelled with the proposed anomaly model. The key characteristics of the chosen

subnets are summarised in Table 6.10. The model parameters for these subnets are listed

in Table 6.11. Similar to the node level analysis, distributions are chosen such that they

best capture the observed properties. Similar to the node level statistics, interesting features

are revealed by the model parameters. For example, over 96% of anomalies entered the

subnet (d) from the Denver interface propagated to the Los Angeles interface. Here we

note that the parameters that are described using distributions, fitted to the same type

of distributions as the nodal model did. For example the inter anomaly gap was still well

described with an exponential distribution; volume and duration changes of propagating

and responding anomalies are well described with Gaussian distributions. Being able to

characterize anomaly behaviours of different subnets with the same model used for nodal
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Table 6.10. Description of the Subnets

Subnet Description

a Two nodes of degree-2 in series; subnet is degree-2
b Two nodes of degree-3 in series; subnet is degree-4
c Two connected nodes in parallel
d Two unconnected nodes in parallel
e A ring of three nodes
f A ring of four nodes

level characterization implies that the proposed model can capture the network anomaly

behaviour at different levels of granularity.
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(a) Chicago - New York

(b) Houston - Atlanta

(c) Sunny Valley - Denver
(d) Sunny Valley - Houston

(e) Seattle - Denver - Sunny Valley (f) Kansas City - Indianapolis - Atlanta -
Houston

Figure 6.21. Sample subnets aggregated.
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Table 6.11. Model Parameters for Selected Set of Subnets
S
u
b
n
et

Interface pa pr Splitting ratio µ for
gλ ∼
Exp(µ)∗

µ for
gd ∼
Exp(µ)

(µ, σ2)
for gv ∼
N (µ, σ2)

(µ, σ2)
for ρd ∼
N (µ, σ2)

(µ, σ2)
for ρv ∼
N (µ, σ2)

(µ, σ2)
for γd ∼
N (µ, σ2)

(µ, σ2)
for γv ∼
N (µ, σ2)

a
IPLS 0.90 0.18 αWASH = 1.0 24 2.0 (64, 220) (1.4, 1.2) (0.7, 1.0) (1.3, 1.1) (2.1,

19.0)
WASH 0.82 0.11 αIPLS = 1.0 44 2.7 (72, 130) (1.4, 1.9) (3.1, 7.6) (1.5, 1.3) (1.0, 1.3)

b

LOSA 0.43 0.53 αKSCY = 0.56 αIPLS = 0.22 αWASH = 0.86 80 2.0 (14, 48) (1.2, 0.8) (0.7, 6.7) (1.3, 1.5) (1.1, 9.9)
KSCY 0.70 0.28 αLOSA = 0.79 αIPLS = 0.32 αWASH = 0.77 42 1.5 (7.1, 25) (2.1, 3.1) (2.8,

23.0)
(1.2, 1.0) (0.7, 3.6)

IPLS 0.78 0.25 αLOSA = 0.60 αKSCY = 0.54 αWASH = 0.80 41 1.8 (9.4, 32) (1.9, 2.5) (1.3,
12.0)

(1.6, 3.2) (1.3, 0.9)

WASH 0.48 0.35 αLOSA = 0.89 αKSCY = 0.37 αIPLS = 0.24 47 2.1 (34, 72) (1.4, 1.4) (1.0, 2.2) (1.1, 0.6) (1.0, 2.4)

c
STTL 0.61 0.22 αKSCY = 0.76 αLOSA = 0.42 37 1.9 (4.7, 55) (1.2, 1.6) (2.3, 9.5) (1.4, 1.5) (2.7,

10.0)
KSCY 0.28 0.25 αSTTL = 0.39 αLOSA = 0.70 68 1.7 (42, 89) (1.6, 1.7) 0.8, 2.4) (1.0, 0.6) (0.6, 3.1)
LOSA 0.44 0.23 αSTTL = 0.15 αKSCY = 0.93 45 1.5 (15, 33) (1.2, 1.2) (1.4, 7.7) (1.4, 1.8) (1.1, 2.0)

d

LOSA 0.20 0.27 αSTTL = 0.10 αDNV R = 0.77 αKSCY = 0.15 αATLA = 0.31 51 1.4 (9.3, 26) (1.1, 0.6) (2.0,
28.0)

(1.4, 1.8) (0.2,
15.0)

STTL 0.40 0.35 αLOSA = 0.85 αDNV R = 0.46 αKSCY = 0.25 αATLA = 0.32 120 1.6 (6.9, 78) (2.3, 2.7) (9.6,
50.0)

(1.0, 0.5) (3.0,
33.0)

DNVR 0.14 0.39 αSTTL = 0.10 αLOSA = 0.97 αKSCY = 0.21 αATLA = 0.30 150 1.9 (30, 48) (1.4, 0.9) (0.5, 2.1) (1.4, 1.5) (1.4, 2.8)
KSCY 0.68 0.28 αSTTL = 0.22 αDNV R = 0.58 αLOSA = 0.80 αATLA = 0.70 45 1.5 (7.8, 27) (2.3, 3.6) (3.9,

20.0)
(1.2, 1.0) (0.6, 3.6)

ATLA 0.37 0.32 αSTTL = 0.12 αDNV R = 0.29 αKSCY = 0.30 αLOSA = 0.97 46 1.6 (20, 41) (1.4, 1.2) (0.6, 3.1) (1.2, 1.1) (1.1, 2.2)

e
LOSA 0.47 0.22 αKSCY = 1.0 38 1.7 (18, 46) (1.0, 0.9) (1.4, 7.8) (1.4, 1.8) (1.1, 2.0)
KSCY 0.50 0.25 αLOSA = 1.0 45 2.0 (67, 130) (1.4, 1.5) (0.6, 2.8) (1.0, 0.6) (0.6, 3.1)

f

LOSA 0.45 0.53 αDNV R = 0.48 αCHIN = 0.36 αWASH = 0.89 80 2.0 (15, 48) (1.3, 1.2) (3.0,
31.0)

(1.3, 1.5) (1.1, 9.9)

DNVR 0.31 0.17 αLOSA = 0.18 αCHIN = 0.90 αWASH = 0.18 66 1.9 (39, 79) (1.3, 1.3) (0.7, 1.2) (1.6, 1.5) (1.2, 1.1)
CHIN 0.66 0.20 αDNV R = 0.92 αLOSA = 0.29 αWASH = 0.27 51 1.9 (47, 120) (1.7, 2.5) (0.8, 1.6) (1.4, 1.8) (1.5, 2.1)
WASH 0.48 0.35 αDNV R = 0.41 αCHIN = 0.25 αLOSA = 0.90 46 1.9 (29, 53) (1.3, 1.0) (1.1, 8.3) (1.1, 0.6) (1.0, 2.4)

* gλ is expressed in hours, as oppose to sample periods. Mean µ and standard deviation σ2 are expressed in 1000’s.
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6.3.4.3. Real-Time Monitoring and Regional Parameter Learning. A scheme using Graph

Wavelet Transform (GWT) [149] coefficients to share anomaly information over the net-

work is proposed in [7]. Spatial scales of graph wavelets are defined along the connections

in a graph. Here, the scheme from [7] is implemented with ST-filter shown in Fig. 6.22.

MIB (Management Information Base) on each router records traffic samples and summarises

anomaly activities. Then the ST-filter will produce the set of outputs of interest. By com-

bining these filter outputs from the different neighbours, a description of anomalies in the

local network can be obtained. The choice of exchanged information and the direction of

information propagation would depend on the application. We consider two applications:

(1) monitoring anomaly activity in the network, and (2) learning regional subnet model

parameters.

For monitoring purposes, two sets of outputs Lvi,J,1(k) and Ldi,J,1(k), where J = Nj \ i,

are passed down the direction of anomalies, similar to [7]. Here a node j formulates outputs

for all its interface i’s that experience anomalies.

Based on the ST-filter outputs used in Section 6.3.3 to estimate model parameters, a

specific set of outputs are shared for distributed learning of regional model parameters.

Since anomaly activity on nodes internal to the region play no role in the model, only the

boundary nodes share a selected set of ST-filter outputs. If each boundary node share

LvI,J,|J |(k), LdI,J,|J |(k), LvJ,I,|I|(k) and LdJ,I,|I|(k), with all the other boundary nodes, regional

parameters can be learned distributively. Here I is the set of interfaces internal to the region

and J is the set of interfaces external to the region. Calculation of splitting ratio, absorption

probability, and volume adjustments for propagating anomalies will require LvI,J,|J |(k) from

the other boundary nodes. Similarly, duration adjustment for propagating anomalies requires

LdI,J,|J |(k) from all boundary nodes. To find properties of originating anomalies, LvJ,I,|I|(k)
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function Main
Set Timer to sampling time
At expiry

Sample all links
Form traffictimeseries
Anomaly Detector(traffictimeseries)
ST Filter(anomalytimeseries)
Exchange Information(filteroutputs)

end function

function ST Filter(anomalytimeseries)
Form summaries
Do ST Filtering

return filteroutputs
end function

function Exchange Information(filteroutputs)
Send filteroutputs to neighbors
Receive filteroutputs from neighbors
Forward Lvi,J,1 and Ldi,J,1 in direction of anomalies
if boundarynode then

Forward LvI,J,|J |, L
d
I,J,|J |, L

v
J,I,|I| and LdJ,I,|I| to other boundary nodes

end if
end function

Figure 6.22. Algorithm for real-time anomaly monitoring system

and LdJ,I,|I|(k) are required. Properties of responding anomalies are calculated locally without

any information from the region. Thus, the above set is sufficient to compute all region model

parameters.

6.3.5. Conclusions and Future Work. A model that successfully characterizes In-

ternet traffic anomalies by characterizing the different anomaly features and integrating them

to obtain anomaly characteristics was proposed. The proposed model characterizes various

spatiotemporal properties of anomaly behaviours with separate random models. As shown

by KS-test based verifications, this approach accurately captures anomaly behaviours. The

model parameters were derived using the outputs of a multi-scale anomaly analysis frame-

work called the spatial-temporal filter. It analyzes various duration and volume properties of
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anomalies at difference scales. Compared to graph wavelets, the proposed spatial-temporal

filter is more flexible in extracting anomaly properties. Further, the model parameters for

Internet2 nodes and a number of subnets thereof were derived and validated. These results

reveal interesting features of the Internet2 network, and more importantly provides infor-

mation for designing future networks. The model is shown to be viable for anomaly char-

acterization at nodal level and at subnet level, enabling hierarchical analysis of large and

sophisticated networks. A real-time monitoring system was proposed and used for learning

regional model parameters.

Future extensions of the model could add second order information by means such as

covariances between model parameters, and elaborate the current simpler features. For

example, the parameters described with probability values, such as probability of absorption

or response, can be converted into distributions over the distance to the considered node.

As the proposed model facilitates re-synthesizing statistically similar anomalies, an anomaly

simulator can be developed using the model. Such a simulator can be used along with a

typical traffic generator to produce more realistic traffic traces.

6.3.6. Appendix - Fourier Analysis Based Anomaly Extraction Scheme.

Network data is viewed as a combination of the following: (1) baseline behaviour that

accounts for traffic trends, e.g., weekly and daily trends, and load variations, (2) noise like

random fluctuations superimposed on baseline that account for normal traffic variations,

and (3) anomalies that significantly deviate from tolerable traffic variations. The aim here

is to extract the anomaly component of a traffic trace. The proposed scheme is capable of

overcoming the major periodic fluctuations of traffic that naturally occur daily and weekly.

The traffic patterns exhibit clear weekly trends that are consistent over time, and internal to
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weekly patterns one can also observe more regular periodic behaviours, such as diurnal pat-

terns. Due to this periodicity, a Fourier analysis based scheme, described below, is employed

to extract anomalies [7]. Other Fourier analysis based anomaly detections and characteriza-

tions such as in [138] operate on a few frequency bands. But the approach employed in this

work operates on individual frequency components, as explained below.

The anomaly extraction scheme is described in Fig. 6.23. The algorithm takes in a time-

series of network traffic and outputs a time-series containing only the anomalies. The process

first de-trends the time-series by removing the significant Fourier components. The implica-

tion is that the prominent Fourier coefficients capture the baseline trend of the time-series.

A weekly measurement trace has 2016 samples, collected every five minutes. The baseline

component of this 2016 point time-series is found to lie in the largest 20 Fourier coefficients.

Thus, 20 Fourier coefficients with largest magnitude are set to zero for de-trending. The

number 20 has been established by studying the energy distribution in the spectrum of traf-

fic traces. The Fourier components are also selected symmetrically, to maintain realness of

the de-trended data. For a different time-frame or for a different network, Fourier coefficients

would be selected to capture over 80% of the energy. The severity sought in the deviating

samples to be labelled as anomalous is controlled by a tunable threshold. Typical settings

for threshold are in the range of two to three times the standard deviation of the de-trended

time-series.

Figure 6.24 demonstrates the stages of anomaly detection using a week’s worth of data.

The baseline estimated with the 20 most significant Fourier coefficients is shown in Fig. 6.24(a)

plotted over the raw data. Once the baseline is removed, anomalies become more appar-

ent and then a threshold is applied as shown in Fig. 6.24(b) to separate anomalies. The

amount over the threshold is marked as anomalous as shown in Fig. 6.24(c). As can be
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function Anomaly Detector(traffictimeseries)
spectrum← FFT(traffictimeseries)
blI ← index set of largest Fourier coefficients
spectrum[blI]← 0
anomalytimeseries← iFFT(spectrum)
for all element k do

if |anomalytimeseries[k]| < threshold then
anomalytimeseries[k]← 0

end if
end for

return anomalytimeseries
end function

Figure 6.23. Anomaly detection algorithm

noted, Anomaly 2 and Anomaly 3 have peaks below the traffic trend and they would not

have been detected using a threshold only approach. Two temporal properties, the anomaly

duration and the inter anomaly gap are also identified in Fig. 6.24(c).

6.4. Conclusions

Network traffic anomalies are modelled component-wise to overcome the limitations posed

by their sporadic behaviors. The presented model concisely capture the anomaly behavior

with a limited set of parameters. The anomaly behavior of Internet2 network is closely

described with a table of 10 columns. Furthermore, the model parameters can be calcu-

lated locally. But they do describe the global anomaly behavior. The anomaly description

produced by the model is used for two real-time applications: (1) real-time computation

of regional anomaly behavior, and (2) real-time communication of anomaly propagation for

intelligent anomaly tracking.
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Figure 6.24. Anomaly extraction process: (a) Anomalies indicated on a
trace of raw data, (b) Anomalies indicated over de-trended data, and (c) The
extracted trace of anomalies.
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CHAPTER 7

Network Traffic Baseline

Robust BaseLine (RBL) is a formal technique for extracting the baseline of network

traffic to capture the underlying traffic trend. A range of applications such as anomaly

detection and load balancing rely on baseline estimation. Once the fundamental period of

the pattern for analysis is recognized, e.g., based on user interest or a period detector such

as Autocorrelation Function (ACF), the basic extraction is carried out in two steps. First,

the common component across the dataset is separated using Robust Principal Component

Analysis (RPCA). The fundamental pattern in the common component is extracted using

Principal Component Analysis (PCA) in the second step. Scaling factors required to fit the

base-pattern back into the data are returned automatically by PCA. Two types of traffic

baselines may be extracted: RBL-L captures the common behavior across time on a single

link, and RBL-N captures the common behavior across a network of links, i.e., in space.

RBL-N is particularly useful for specifying traffic matrices more efficiently over time, which

normally requires multiple updates to follow baseline trends. The derived base-patterns for

a single link or a single time period is then extended over the entire network or through the

entire observation period with a compressive analysis. The compressed base-pattern provides

a smoother baseline and also a filter to separate baseline traffic and the deviations on the

fly from traffic measurements. When compared against BLGBA (Baseline for Automatic

Backbone Management) the proposed scheme provides a less noisy, more precisely fitting

baseline. It is also more effective in revealing anomalies.
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7.1. Introduction

Trends in traffic such as peaks during busy hours and valleys during inert hours are

natural occurrences. Traffic baselines represent such general trends. These baselines, which

often are repetitive and perhaps deterministic, carry a large fraction of information about

the traffic and play a vital role in traffic engineering, network design, load balancing and

pricing. Extracting the baseline behavior from a traffic trace is a subjective task, based on

how the baseline is perceived.

The fundamental structure of the baseline is termed “baseline pattern.” The baseline of

a traffic trace may be viewed as a series of scaled baseline patterns. The baseline pattern

(or base-pattern) captures the following ideas: (1) it represents a segment that cannot be

broken down to smaller similar segments, (2) it is repeated persistently on a trace, and

(3) it contains most of the energy of the signal. The base-pattern in effect captures the

most prominent features of the traffic trace such as modes, trends and gradients. Having

a simple and compact representation for the base-pattern is useful for applications such as

characterization of network traffic in terms of traffic matrices, which otherwise would require

frequent updates.

7.1.1. Contribution. This dissertation develops a novel formal scheme for extracting

a Robust Base-line (RBL) of a traffic trace. Given a traffic trace, the scheme returns the

most common and prominent base-pattern in the dataset, along with the scaling coefficients

to construct the baseline. The scheme is developed formalizing features an expert would

perceive as constituents of a baseline: a common, prominent and perhaps smooth extraction

for the data trace. The novelty of the work lies here. Mathematical tools are applied in order

to realize the perceptions of a baseline. The scheme employs Robust Principal Component
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Analysis (RPCA) [5], a technique that recently has received much interest for separating

the common component, i.e., the low rank component, across the dataset. The most salient

component comprised of significant principal components in the common component is then

extracted using classical PCA. Following that, a compressed representation for the base-

pattern is proposed. The compressed representation builds a smoother version of the baseline.

Furthermore, compressed representation is also used to build a filter to separate baseline from

traffic intensity in real-time.

The formal scheme presented is dataset independent. The scheme operates on a data

matrix which could either be multiple time windows on a single link or a data for single

time window on multiple links. In the former arrangement, the baseline behavior over a link

across time is found, and referred to as RBL-Link (RBL-L). While the latter will deliver the

baseline behavior across the network over the considered time window, and referred to as

RBL-Network (RBL-N). The scheme is also capable of revealing more subtle patterns that

are buried in noisy data segments. The tunable parameters and the optimal settings for each

parameter are also discussed.

7.1.2. Related Work. The importance of traffic characterization is emphasized in

[170]. However, the widely used random-process based traffic models overlook deterministic

baseline behaviors [171]. An extensive survey of traffic identification can be found in [172].

Lack of a proper definition of a baseline has challenged traffic characterization attempts.

A simulated network is used in [173] for the baseline characterization in a tactical security

architecture. In much of the literature, the baseline behavior of traffic is mostly characterized

rather than being extracted. The difference here is that, characterization is not constructive,

i.e., the returned properties are not sufficient to build a baseline trace, whereas extraction

filters out the baseline trace from the data trace. A more simplistic approach in [174] uses
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average and variance to characterize traffic, and uses daily variation to account for dynamics.

Such approaches are convenient for implementation. The characterization proposed in [174]

is tuned for QoS routing. A statistical approach in [175] uses marginal and multi-variate

histograms of traffic features to characterize baseline behavior. Use of Principal Component

Analysis (PCA) for classifying baseline and anomalous traffic is discussed in [176]. In [177],

entropy based clustering is used on a five-tuple characterization (source and destination; IP

and port; and the protocol). This work is further extended in [178] by developing a real

time traffic filter. An entropy based profiling scheme for attack detection is presented in

[179]. A Hidden Markov Model (HMM) is used in [180], which also presents a good survey

emphasizing the need of an effective traffic model. The approach in [181] uses a Gaussian

mixture model for baselining network traffic. Some models are driven by the nature of traffic,

such as burstiness and self-similarity [4]. An alternative is to use a token bucket scheme to

meter bursty traffic traces [182]. A seven-tuple characterization in [183] uses a self-similar

model parameterized with the minimum, the maximum and the degree of self-similarity

using the Hurst exponent. In a more cross field approach to classify network traffic, Grey

Level Co-occurrence Matrices (GLCM) are used in [184]. Here, the idea is to interpret the

nature of traffic as the texture of an image. BLGBA proposed in [185] serves as the baseline

scheme for GBA tool (Gerenciamento de Backbone Automatizado : Automatic Backbone

Management). Two types of baseline sets were used in BLGBA: a set labeled bl-7 having

separate baseline for each day of the week, and a set labeled bl-3 having a baseline for the

week days, one for Saturday and one for Sunday. As an extension, [186] uses BLGBA based

baseline and k-means clustering for anomaly detection.

Rest of the section is as follows. Section 7.2 explains the theoretical basis related to

separating the base-pattern from a data trace. The derived scheme is applied to real data
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and the results are shown in Section 7.3. Section 7.4 addresses some applications of the

proposed scheme. Section 7.5 provides a discussion on the scheme and concludes the section.

7.2. Scheme for Base-Pattern Separation

This section explains the formal scheme used to separate base-patterns from traffic pat-

terns. The base-pattern is expected to capture a significant fraction of the traffic behavior,

and stand as a good representation for the traffic trend. Therefore the base-pattern has to

be (1) always present in the trace, (2) common to all links, (3) a prominent component in the

trace, and preferably (4) has a compact representation. Below we consider two arrangements

for data; one extracting baseline behavior over time and the other over space - the network.

The following are discussed in this section:

(1) Finding an optimal period to break time-series

(2) RPCA based common component separation

(3) PCA based salient component extraction

(4) Compressed analysis on the extracted baseline is addressed

(5) A filter to separate baseline from traffic measurements on the fly

7.2.1. Data Arrangement. The scheme extracts the baseline of a traffic trace, ar-

ranged in a matrix, referred as Y . Two arrangements are possible: data traces of multiple

links over the same period of time, or data on a single link broken into windows. When data

traces of multiple links over an arbitrary period N is arranged into rows, the scheme returns

a base-pattern valid for all the considered links over the period. Due to its validity over the

space, it is referred as a “spatial” base-pattern. If M links are considered, then the data

matrix Y = {Ymn}M×N with links m = 0, . . . , (M−1) and sample indices n = 0, . . . , (N−1).

The goal behind analyzing time windows on a single link is to identify a base-pattern valid
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over time for the considered link - therefore is referred as the “temporal” base-pattern. Here,

the time window N is chosen as described in the next section. The choice of the arrange-

ment is application dependant. For example, anomaly detection may be more effective with

temporal arrangements; whereas traffic characterization may prefer a spatial arrangement.

7.2.2. The Fundamental Period. To best capture temporal properties of the base-

line, time-series has to be broken into cyclostationary periods [187] referred to here as the

fundamental period. If the entire time-series is T samples long, and fundamental period is

N , then time-series in broken into M windows, where M = bT/Nc. Then the time series

y[t] is arranged row-wise on a matrix Y = {Ymn}M×N ; time window m = 0, . . . , (M − 1) and

sample index n = 0, . . . , (N − 1) s.t. t = mN + n and Ymn = y[t]. A poorly selected period

N will mis-align and truncate patterns, hampering recognition of the best base-pattern.

While Internet traffic in general exhibit trends that repeat week after week, such a period

may not necessarily be obvious or clear in other networks. Corresponding time-series may not

have well-defined frequency properties. Therefore, alternative methods have to be employed

in identifying the fundamental period (N) of the trace. Autocorrelation Function (ACF)

can be used to estimate the period by posing the candidate period as the lag of the function

[188].

Ry[τ ] =
E [〈y[k]− µ, y[k + τ ]− µ〉]

σ2
(7.1)

where y[k] is the time-series, µ is the mean of the series, σ2 is the variance of the series, and

τ is the lag. Then the optimal estimate for period N is given by:

N = min
arg max

τ

Ry[τ ] (7.2)
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If there happened to be multiple τ values that will maximize the ACF, then the least is

taken. More efficient cycle detectors can be employed when the search space N is large.

7.2.3. The Common Component Across Time. The most common component in

the dataset is identified using Robust-PCA [5]. Different from the classical PCA, RPCA

breaks a given matrix Y into a low rank component L and a sparse component S as in (7.3).

Y = L+ S (7.3)

s.t.
arg min

L, S

‖L‖∗ + λ‖S‖1 (7.4)

where ‖ · ‖∗ is the nuclear-norm (the sum of the singular values), ‖ · ‖1 is the 1-norm,

and typically, is chosen. This optimization problem is solved as an Augmented Lagrange

Multiplier problem [189] with linear convergence.

The rank deficient component L carries elements common to all rows (i.e, periods or

links). The rank deficiency often is interpreted as follows: the pattern in each row is a linear

combinations of a few contributing sources. Since the few sources are common across the

matrix, this low rank matrix represents the common component in the data. Traffic on a

network on the other hand is the result of a large number of traffic sources. However, there

are certain underlying repetitive phenomena, such as work hours and work patterns, when

aggregated over a large number of users, result in equivalent logical effect on network traffic.

Our interest is on the low rank L matrix. Each row of L is the component in the

corresponding row of Y common with rest of the rows in Y . Thus, L carries the common

component across the dataset. The amount of details of traffic split between the sparse and
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the low rank components are balanced by λ. Here, λ can be treated as tunable parameter

to make the low rank matrix (which is of our interest) detailed or less.

7.2.4. The Salient Component. Next, the salient patterns in the common component

of the dataset are identified. They formulate the base-patterns of the dataset. Here we apply

PCA [190] to the L matrix. In a Singular Value Decomposition (SVD) approach to solve

PCA, L decomposes to:

L = UΣV T (7.5)

and the principal components (PCs) of L projected on the basis of UT are given by:

UTL = ΣV T = {Li} , i = 0, . . . , (M − 1) (7.6)

Each principal component (Li) can be expressed as

Li = σiV
T
i (7.7)

where σi = Σii.

Then the least number of PCs that will satisfactorily capture the information in the trace

is selected. They are summed to form the salient component (p).

p = {Li} , i ∈ I (7.8)

where I is an index selected, s.t.,

∑
i∈I

‖Li‖2 ≥ α
∑
∀i

‖Li‖2 (7.9)
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where arg min |I|, and α < 1, but close to 1. The selection criteria for the index set I is the

least number of principal components to represent most of the variance of L. It is important

to note that computing the PCs of the L matrix need not be done explicitly as a part of

singular value shrinkage in RPCA the SVD of L is computed, and therefore PCs of L can be

directly tapped from the algorithm. In selecting PCs to build the base-pattern the parameter

α determines the amount of energy to be captured. With a higher α a base-pattern that

resembles the low rank component much closely can be derived. However that will require

selecting more PCs which also calls for maintaining more weights for each realization.

The resulting time-series p[n] is present in all rows of Y and captures much of the behavior

of the dataset. Thus, we call p[n], n = 0, . . . , (N − 1) as the base-pattern of the dataset Y .

The base pattern can be scaled back into the dataset using the coefficients in U , constructing

a baseline for the dataset. For example the baseline for the mth row of Y is:

pm =
∑
i∈I

U(m, i)Li (7.10)

This baseline is robust against contaminations such as anomalies in the dataset. Thus,

is referred to as the Robust Base-Line (RBL). The RBL constructed with temporal base-

patterns yields a robust baseline capturing the baseline behavior of a link; therefore is referred

to as RBL-L (RBL for a link). Similarly RBL constructed with spatial base-pattern represent

the baseline behavior over the network, and is referred to as RBL-N (RBL for the network).

7.2.5. Compact Representation. The base-pattern extracted above has a dimension-

ality of N . Also the analysis done so far is data independent. It is quite likely that further

analysis is possible due to the nature of the Internet traffic data, which will allow a com-

pressed description. Here we propose a compression strategy to reduce the dimensionality of
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the base-pattern. When long time windows are considered, e.g., weeks-long traces with min-

utes of sampling intervals, a certain degree of periodicity can be expected, which in turn will

allow for a compressed representation of in the Fourier domain. Here, for demonstration pur-

pose the compressibility in the Fourier basis is used. But we acknowledge the possibility of

employing other basis appropriate for a given dataset. The dc component of Fourier domain

corresponds to the mean of the time-series. It is automatically included in the base-pattern.

Next, to select the other frequency components, consider the Discrete Fourier Transform

(DFT) of the base-pattern.

P [k] =
N−1∑
n=0

p[n]e−
2πı
N
nk (7.11)

We seek a minimum cardinality subset of frequency indices (zeroth frequency is automat-

ically included) that will capture the required energy (variance/information) of the system.

Since network traffic traces are real valued data, we also need to maintain the symmetry in

the frequency description. Therefore, we select a subset of frequencies K (referred as the

dominant frequency set here forth); s.t. arg min |K|, k ∈ K, (N − k) ∈ K and k 6= 0.

∑
k∈K

(P [k])2 ≥ α′
N−1∑
k=1

(P [k])2 (7.12)

where α′ < 1, and preferable > 0.75. The resulting set K of frequency components inclusive

of the zeroth frequency is a good smooth approximation to the base-pattern.

7.2.6. Extending over the Secondary Dimension. To make the compressed de-

scription obtained for a single link valid for the entire network or the compressed description

obtained for the network over a single time window valid for multiple time windows, the

union of the dominant frequency sets is taken. If the dominant frequency set of link-i (or

window i) is Ki, and if the network has some q links (or q time windows), the dominant
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frequency set K for the entire network over a selected time history is,

K = K0 ∪K1 ∪ . . . ∪Kq−1. (7.13)

The analysis above permits designing an FFT-filter for base-pattern separation in real-

time. The goal of the FFT-filter is to break a given time series (y[t]) into its base-pattern

component (yB[t]) and the deviation from the base-pattern component (yD[t]) on the fly.

The most interesting feature of the filter is, it by-passes all the processing required to obtain

the baseline and returns an approximation for the baseline (and the deviation) only with a

frequency filtering operation.

y[t] = yB[t] + yD[t] (7.14)

yB[t] =
1

N

∑
k∈{0∪K}

e
2πı
N
kt

N−1∑
j=0

y[j]e−
2πı
N
jk (7.15)

Similar to (15), yD[t] is found by replacing {0 ∪K} with its complement.

7.3. Results

In this section we present results of applying the proposed baseline detection for Internet

traffic. Results related to compact representation of base-patterns are also included.

7.3.1. Dataset. The nature of the dataset plays a key role over the extracted baseline.

The baseline extracts the prominent and common structures across the dataset. Ideally, it

should avoid sudden impulses which may arise due to unusual customer behaviors, attacks,

network failures and other causes of traffic anomalies. If the basic structure of traffic - where

the peaks and valleys lie, is common, irrespective of increasing, decreasing or even oscillating

traffic trends, a common baseline is extracted. However, if either the different links or the
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different fundamental periods have disparate traffic trends and structure, there would be a

few salient traces characterizing these different groups.

The publicly available dataset from Abilene network [152] is used in this work. It consists

of 28 links spanning the United States. The dataset provides throughput on the links sampled

at five minute intervals, starting from October 16th, 2005. At sampling period of five minutes,

each link produces 2016 samples a week. For the results presented below, 50 weeks of data

on the 28 links are used.

The Abilene dataset however is fairly stable and has similar traffic structures across time.

The traffic structure between links is also quite similar. Such a nature results in a single or

perhaps a very few salient components. As discussed above this may not be the case with

any general traffic dataset. If a dataset of heterogeneous or disparate traffic structures were

used, we expect to see more salient components as explained in (7.8). These components will

capture the principal structures of different groups. The weights U(m, i) in (7.10) will express

how each sample is biased to each salient component. Thus, even under heterogeneous traffic

trends, the scheme will extract the salient trends as the baseline.

7.3.2. Estimating the Period. The fundamental period N of data is found using the

ACF as explained Section 7.2. Figure 7.1 shows the variation of ACF for all 28 links over lags

up to 10,000. The ACF is maximized at lag 2016, which correspond to a period of a week.

Therefore, a week (2016 samples) is selected as the fundamental period N of the dataset.

The ACF for a period of a day (288 samples) is also indicated in the plot. In fact, choosing a

week as the duration of the base-pattern can be supported visually as in Fig. 7.2. Figure 7.2

shows throughput over a period of four months (16 weeks). A pattern that repeats 16 times

can be noted in the figure.
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Figure 7.1. Autocorrelation function at different lags for all links.

Figure 7.2. Traffic observed over a period of four months.

7.3.3. Identifying the Base-Pattern. Data arranged as per Section 7.2 are decom-

posed using RPCA to a low rank L component and a sparse S component. Figure 7.3 shows

an example of temporal base-pattern extracted for a 10 week long trace. The 10 week data

block is broken into separate weeks and arranged as a 10×2016 matrix Y (five rows of which

are shown in Fig. 7.3(a)). Then Y is decomposed to L and S (shown in Figs. 7.3(b) and (c)

respectively) as per (7.3) and (7.4). As expected L turns out rather similar in all the rows,

and differences are pushed to S. The rank of L is reduced to 5 from 10 in Y . Then PCA is
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applied to the low rank component L to identify the most salient time-series common to all

time windows. A sufficient number of PCs has to be selected to capture much of the details.

Figure 7.4 shows the decay of principal components of raw dataset and of RPCA low rank

component, for both spatial and temporal arrangements. The keys in the legend are to be

interpreted as, temporal: time-series on a single link, spatial: time-series of multiple links,

PCA: PCs of Y , and base-pattern: PCs of L. The low rank component of the temporal

arrangement has the fastest decaying PCs. In fact the first PC is over an order of magnitude

larger than rest of the PCs. Therefore only the first PC is enough to obtain the temporal

base-pattern for this dataset.

Figure 7.3. Sparse and low rank decomposition of a 10 week window: (a)
data matrix Y, (b) low rank component L, and (c) sparse component S (de-
composed throughput vs sample index).

7.3.4. FFT-Filter. The base-pattern for the Abilene dataset shows certain periodicity

suggesting the applicability of the proposed compressed analysis, and the FFT-filter. Fourier
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Figure 7.4. Decay of magnitude of principal components.

analysis revealed the magnitude of the zeroth frequency for any link is at least an order of

magnitude greater than other frequency components. After the mean, about 85% of energy

on average of all links is concentrated in a subset of 10 frequency components. Thus, we build

an FFT-filter to select the ten frequency components with largest magnitudes. It was also

found that, the superset of these frequencies, even across the entire network consisted of only

13 unique frequencies. This results in a compression from 2016 frequency component base-

pattern characterization to a 13 frequency component characterization. Figure 7.5 shows the

filtering performed using the 13 frequency component filter on five sample time series. The

resulting filter separates baseline from traffic by-passing the tedious processing required in

the scheme. Also, once the FFT-filter is designed, it may be valid over a long period of time

due to the stability of the base-pattern as discussed later.

7.3.5. Comparison. To evaluate the effectiveness of the proposed scheme, we observe

how closely the baselines capture raw traffic traces and avoid anomalies. Here we compare

RBL-L and RBL-N with temporal and spatial PCA based baselinings [176], bl-7 baseline in

BLGBA proposed in [185] and subsequently used in [186, 191], FFT-filter output baseline
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Figure 7.5. Sample operation of FFT-filter: (a) raw time-series, (b) filtered
baseline, (c) deviation of from baseline (decomposed throughput vs sample
index).

described in Section 7.2, and with low-pass filter baselining, where traffic is filtered thru

a low-pass filter to extract the baseline. In BLGBA bl-7 each day of the week is modeled

individually. Realizations for each sample is classified by BLGBA into five classes and the

maximum value in the class greater than or equal to the 80% percentile is taken to be the

baseline. Owing to the nature of the scheme, BLGBA baseline lies above the traffic trace

most of the time, i.e., it over-estimates, whereas RBL follows the fundamental trace in the

data. BLGBA independently looks at realizations of individual sample points and selects

one; therefore it loses the relationship between adjacent samples. This leads to a time-wise

uncorrelated noisy base-line. In RBL, relationships between samples are maintained.

Further, BLGBA returns one fixed pattern for the entire dataset. How that pattern

should be scaled and shifted to fit to individual realizations, i.e., individual links or weeks,
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is not addressed. In RBL, as the final pattern is the output of PCA, the scaling coefficients

U(m, i) are automatically available. As can be seen in Fig 7.6, BLGBA is rather noisy de-

feating the very purposes of having a baseline. RBL baselines are consistent and also display

less variance. We do acknowledge the simplicity of BLGBA and the ease of implementation.

However, with the availability of hardware such as FPGAs and monitoring devices with sig-

nificant computation and communication capability, the accuracy gains of RBL is not hard

to realize.

In Fig. 7.6 we demonstrate anomaly detection in three selected traces, using each of the

baselines. The first (Fig. 7.6a and 7.6b) is an example of a typical trace. The second (Fig. 7.6c

and 7.6d) has a large anomaly. The third trace (Fig. 7.6e and 7.6f) has a long-lasting anomaly.

Figures 7.6a, 7.6c and 7.6e show the baselines generated by various methods super-imposed

on traffic, in an attempt to see how closely each baseline follows traffic. Figures 7.6b, 7.6d and

7.6f show the anomalies detected using each method. Anomalies are detected by observing

large deviations from baselines. Here the goal is recognize the effectiveness of each baselining

technique for anomaly detection. Observing Fig. 7.6a BLGBA shows a noisy over-estimating

baseline.

The frequency based methods provide a smoother baseline and PCA based methods

closely follow the traffic. RBL shows the best fit to the traffic, while avoiding anomalies. As

pointed out in [28], PCA based methods can sometimes be vulnerable to large anomalies and

certain noise conditions. Figure 7.6d shows an example where PCA methods and RBL-N

fail to detect a large anomaly. However, the RBL-L was capable of detecting this anomaly.

Anomalies with long durations deform the frequency based baselines, as they form large low

frequency descriptions. The long anomaly in Fig. 7.6f goes undetected by frequency based

methods.
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The strength in robust principal component based methods is that they are fairly immune

to abrupt changes, such as unexpected customer behaviors. But methods based on classical

PCA, and methods that consider every sample with equal importance, such as BLGBA, gain

a bias from such. As the baseline is expected to capture the typical behavior, such biases

are undesirable. Furthermore, when there are trends in traffic, RPCA identifies them quite

effectively even if it is hidden. This is discussed shortly.

7.3.6. Stability. Here, we investigate the stability of the base-pattern. In Fig. 7.7 two

extractions of base-patterns are considered: using 10 week blocks, and using 5 week blocks.

Then the cross correlation between base-pattern of each of the blocks against the base-pattern

of the initial block is observed to assess the stability. Furthermore, cross correlation of the

data for the same time intervals is also presented, to assess degree of similarity. As can be

noticed, with the exception of 5-week base-pattern for the weeks from 10 to 15, others show

a high correlation to the initially derived base-pattern. This indicates that the base-pattern

of traffic is fairly stable for this dataset, and it requires less realizations to calculate, as few

as five weeks. The cross correlations for baselines always lie above cross correlations for raw

data - a verification that the baselines capture the common components in data.

7.3.7. Patterns Buried in Noise. The advantage of baseline detection with a formal

scheme is that it may reveal underlying patterns that are more subtle and buried in noise.

An example of such is previewed in Fig. 7.8. Figure 7.8(a) shows weekend traffic on five

different weeks. It is not much clear whether an underlying pattern exists between Saturday

afternoon and Sunday morning (indicated by the box). However, when RBL is applied, it

reveals a pattern in Figure 7.8(b) that can be verified by super-imposing back on the traffic

trace as in Figure 7.8(c).
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(a) a typical traffic trace
(b) anomalies detected on a typical traffic
trace

(c) a trace with a large anomaly (d) detecting large anomalies

(e) a trace with a long anomaly (f) detecting a long anomaly

Figure 7.6. Comparison of baselines and application on anomaly detection
(throughput vs sample index). The instances at which anomalies have been
detected by different strategies are also identified at the bottom of Figures to
enhance clarity.

7.4. Applications

Utilities of the base-pattern p[n] and its compact version yD[t] include a number of ap-

plications in traffic engineering. Range of applications includes traffic characterization, load
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Figure 7.7. Variation of correlation of the base-pattern and traffic

Figure 7.8. Example revealing subtle patterns; (a) raw time series (b) FFT-
filtered smooth baseline; (c) baseline super-imposed on data (decomposed
throughput vs sample index)
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balancing, building robust networks, and pricing. The traffic baseline also may be related

to the utilization and the availability of resources required by load balancing applications.

In green computing applications, energy demanding resources can be scheduled to be online

based on the demand/utility/base pattern.

Anomalies are large deviations of traffic from the expected. Baselining is an obvious

choice for defining the expected traffic. When the difference between the observed traffic is

beyond a certain threshold, say, a few times the standard deviation, then the observation

is marked as anomalous. With an implementation such as the FFT-filter’s deviation com-

ponent as explained in Section 7.2, the deviation from the expected traffic can be readily

extracted from the trace. The output here is de-trended for the baseline, and therefore can

be thresholded with a fixed value to mark anomalies. Figure 7.6 also shows few examples

demonstrating the effectiveness of using RBL for anomaly detection. Here, all the methods

are tuned the same to declare measurements above two standard deviations as anomalous.

BLGBA misses a few of the prominent anomalies. PCA based methods overlook large anom-

alies; while frequency based methods miss long duration anomalies. RBL effectively captures

most of the major anomalies in the trace, which escape most other techniques.

Knowledge of baseline traffic behavior is useful in network planning and operations.

Features such as resource demand dynamics, maximum and minimum loadings are well

described by traffic baselines. Therefore baselines facilitate decisions regarding allocating

and scheduling resources. Traffic Matrices (TMs) are a widely used in applications such as

QoS routing and network capacity provisioning [192]. Methods such as Kalman filtering are

often used to capture and predict the dynamics of TMs [193]. By providing the base pattern

together with the appropriate scaling factor, TM specification can be simplified. Instead of
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the frequently updating the entire traffic matrix elements, the few scaling coefficients are

needed to be updated only once a fundamental period.

7.5. Conclusions

A scheme for extracting baselines of network traffic traces was presented. The method

was illustrated with the spatial and temporal arrangements of traffic to captures common

trends in space and time respectively. It consists of two phases. The first uses RPCA to

find the most common component of the dataset. Next, PCA was used to extracts the most

salient trace in the common component. By identifying common frequency components of

the baseline, we constructed an approximate smoother version of the baseline. An FFT filter

is then designed to separate such a baseline from a traffic trace in real-time. RBL was found

to be more effective in anomaly detection over number of other existing methods.
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CHAPTER 8

Conclusions

This dissertation is centered around extracting, analyzing and modeling network data.

We began with efficient network monitoring and fault localization. The proposed schemes

monitor the network with a minimal load. Then upon detection of a fault, adaptive schemes

based on compressive sensing rapidly localize the the faulty links. The schemes are tested

on realistic topologies with realistic data models for accuracy, scalability and cost. Then we

focused our attention to recovering data from a subset of samples. We generalized recovery

bounds of compressive sensing to account for any sampling measure and applied CS for

phenomena discovery in WSNs. Capabilities of wavelet transform is used for distributively

compress data in a sensor network in order to minimize the communication cost. Matrix

completion methods are used in conjunction with compressive sensing to reconstruct sensor

field data from a small subset of samples. Thereafter, feature extraction from the data is

taken into account. Recovery regions of RPCA are established empirically. Further, a cross

validation principle is also developed to determine a successful recovery. A scheme to extract

and derive network data features is developed and applied to detect a few network attack

types. A method to detect subtle pattern is developed and applied for PCB testing. Then we

proceed to network traffic behavior modeling. A component-wise approach is taken to model

network traffic anomalies which do not adhere to common random processes. This method

resulted in a concise description of traffic anomalies of a Internet2 network. Further, the

model is used for efficient real-time communication of anomaly information. Finally, network

traffic baselines are modelled. Techniques to extract baselines from highly contaminated data

is devised. The tools developed as a result of these work are made publicly available.
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APPENDIX A

Algorithm Implementations

A.1. Bregman L1 minimization

Bregman iterations [194] is applied to the problem

min
u
J(u) +H(u). (A.1)

Then the iterations are shown in Fig. A.1 where D is the Bregman distance given by

Initialize: k ← 0, u0 ← 0, p0 ← 0
while not converged do

uk+1 ← arg minuD
pk

J

(
u, uk

)
+H(u)

pk+1 ← pk −∇H
(
uk+1

)
∈ ∂J

(
uk+1

)
k ← k + 1

end while

Figure A.1. Bregman iterations

Dp
J(u, v) = J(u)− J(v)− < p, u− v >.

As shown in [195] for L1 minimization J(u) = µ‖u‖1 and H(u) = 1
2
‖Au− f‖2.

A.2. Doughlas-Rachford L1 minimization

min
x
F (x) +G(x) where F (x) = iC(x), G(x) = ‖x‖1, C = {x : Φx = y}. (A.2)

Then the Douglas-Rachford iterations are

x̃k+1 =
(

1− µ

2

)
x̃k +

µ

2
rProx γG (rProx γF (x̃k)) (A.3)

xk+1 = Prox γF (x̃k+1) (A.4)
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Then

rProx γF (x) = 2Prox γF (x)− x (A.5)

Prox γF (x) = arg min
y

1

2
‖x− y‖2 + γF (y) (A.6)

A.3. Doughlas-Rachford L∗ minimization

Using [55] nuclear norm minimization can be written as

min
x
F (x) +G(x) where F (x) = iC(x), G(x) = ‖x‖∗, C = {x : Φx = y}. (A.7)

Then the Douglas-Rachford iterations are

x̃k+1 =
(

1− µ

2

)
x̃k +

µ

2
rProx γG (rProx γF (x̃k)) (A.8)

xk+1 = Prox γF (x̃k+1) (A.9)

Then

rProx γF (x) = 2Prox γF (x)− x (A.10)

Prox γF (x) = arg min
y

1

2
‖x− y‖2 + γF (y) = x+ Φ∗(y − Φx) (A.11)

A.4. Principal Component Pursuit

The following algorithm implements RPCA via inexact ALM [119]. It decomposes the

input matrix D into low-rank A and sparse E.
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Initialize: Y0 = D/J(D), E0 = 0, µ0 > 0, ρ > 1, k = 0
while not converged do

(U, S, V )← svd
(
D − Ek + µ−1

k Yk
)

Ak+1 ← U(S)µ−1
k

(S)V T

Ek+1 ← Sλµ−1
k

(
D − Ak+1 + µ−1

k Yk
)

Yk+1 ← Yk + µk (D − Ak+1 − Ek+1)
Update µk to µk+1

k ← k + 1
end while

Figure A.2. RPCA via the inexact ALM method

A.5. Matching Pursuit L0 minimization

CoSaMP algorithm listed in [48] takes in a sampling matrix Φ, noisy sample vector u

and a sparsity level s and perform Algorithm A.3.

Initialize: a0 ← 0, v ← u, k ← 0
while not converged do

k ← k + 1
y ← Φ∗v
Ω← supp(y2s)
T ← Ω ∪ supp(ak−1)
b|T ← Φ†u
b|T c ← 0
ak ← bs
v ← u− Φak

end while

Figure A.3. CoSaMP algorithm
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APPENDIX B

Software Tools

B.1. GUI for Robust PCA Recoverability Experiments

http://www.cnrl.colostate.edu/Projects/NetworkDataAnalysis/software1.html

Permanent URL: http://hdl.handle.net/10217/89321

The GUI provides the following functionalities:

• Evaluate sufficient conditions for recovery over a selected range of ranks and spar-

sities, size, low-rank and sparse matrix types.

• Recoverable region for a selected range fractional sparsities, size, low-rank and sparse

matrix types.

• Input - output mapping between fractional-ranks fractional-sparsities.

• Recovery error of the low-rank component.

• Recovery error of the sparse component.

The software reproduces experiments listed in [6]. The sufficient conditions used are from [6].

Matrix constructions and further details of the experiments can be found in Section 5.2.3.1.

Figure B.1. Main GUI
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B.1.1. Main GUI. Figure B.1 is portal to the GUIs of each experiment. User will select

experiments and click Launch open a separate GUI for the experiment. When clicked on an

experiment, a brief description of the experiment will be displayed.

Figure B.2. Sufficient condition values

B.1.2. Sufficient Condition Values. Dots in Fig. B.2 indicate the condition values

of the sufficient conditions presented in [6]. The green surface indicate the condition threshold

1/12. Users select the matrix size to test, the number of realizations, sparse and low-rank

matrix type and the ranges for sparsity and ranks.

B.1.3. Recoverable Regions. Fractional-rank and fractional-sparsity combinations

below the curves in Fig. B.3 are 100% recoverable for corresponding matrix size. Users

select the sparse and low-rank matrix type, the range of fractional-sparsities to test and the

list of matrix sizes to test. The users also specify the number of repetitions to be made to

verify 100% recoverability.

B.1.4. Input-Output Fractional-rank Fractional-sparsity Mapping. The map-

ping between the input pair of fractional rank of the low-rank component, fractional-sparsity
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Figure B.3. Recoverable regions

Figure B.4. Input-output fractional-rank fractional-sparsity mapping

of the sparse component and the output pair of fractional rank of the low-rank component,

fractional-sparsity of the sparse component is shown in Fig. B.4. Results indicate that failed

recoveries tend to result in a half-rank low-rank component and half-sparse sparse compo-

nent. Users specify the matrix size to test, the number of repetitions, sparse and low-rank

matrix types, and ranges of fractional-ranks and fractional-sparsities.
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Figure B.5. Recovery error of the low-rank component

B.1.5. Recovery Error of the Low-rank Component. In Fig. B.5 the growth

of error in recovering the low-rank component for a range of fractional-ranks with sparsity

of the sparse component kept fixed. User specifies the matrix size to test, number of repeti-

tions, type of the sparse and low-rank components, the fixed fractional-sparsity of the sparse

component, the range of fractional-ranks of the low-rank components, and the types of the

errors. Two types of errors can be found: normalized norm errors and alignment errors. Nor-

malized norm errors use spectral, nuclear, Frobenius and infinity norms. Alignment errors

check principal angles and geodesic distances.

B.1.6. Recovery Error of the Sparse Component. In Fig. B.5 the growth of

error in recovering the sparse component for a range of fractional-sparsities with rank of

the low-rank component kept fixed. User specifies the matrix size to test, number of repeti-

tions, type of the sparse and low-rank components, the fixed fractional-rank of the low-rank

component, the range of fractional-sparsities of the sparse components, and the types of

the errors. Two types of errors can be found: normalized norm errors and detection errors.
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Figure B.6. Recovery error of the sparse component

Normalized norm errors use one, spectral, Frobenius and infinity norms. Alignment errors

check detection rate and false positive rate.

B.2. GUI for Robust Principal Component Analysis

http://www.cnrl.colostate.edu/Projects/NetworkDataAnalysis/software2.html

Permanent URL: http://hdl.handle.net/10217/89321

The GUI performs Robust PCA on:

• Synthesized low-rank and sparse matrix additions.

• Data from external experiments.

Matrix constructions details can be found in Section 5.2.3.1.

B.2.1. Generate test matrices. Synthesizes test matrices of a specified sized. Test

matrices are a sum of a low-rank matrix and a sparse matrix. The users set the types and

fractional sparsity and ranks of the low-rank and sparse matrices.
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Figure B.7. GUI for Robust Principal Component Analysis

B.2.2. Load test matrices. Users may analyze test matrices from an external exper-

iment. The matrices are to be formatted as follows.

• Separate row by new lines.

• Separate columns (entries of a row) by commas.

E.g.:

2.5, 3.0, 1.2

6.2, 2.1, -7.8

-9.7, 4.5, 2.0

B.3. Random Matrix Generator

http://www.cnrl.colostate.edu/Projects/NetworkDataAnalysis/software3.html
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Permanent URL: http://hdl.handle.net/10217/89321

The software sythesizes random realizations of low-rank and sparse matrices of speci-

fied types. These software is used in, and the matrix constructions details can be found

inSection 5.2.3.1.

B.3.1. Synopsis. Input arguments: LS typ n frs reps fname

LS: specify either low-rank or sparse. Use L or l to indicate low-rank matrices, and S or s to

indicate sparse matrices.

typ: indicates the type of the matrices. Types available for low-rank are:

(1) First order Gaussian

(2) Second order Gaussian

(3) Wishart

(4) First order Vandermonde

(5) Second order Vandermonde

Type available for sparse matrices are:

(1) Fixed

(2) Uniform

(3) Gaussian

n: size of the matrices.

frs: fractional rank or fractional sparsity of the matrix.

reps: number of realizations of the specified matrix.

fname: base file name of the matrices. reps many files will be produced each containing a

comma-delimited realization of the specified matrix. E.g.: If fname is testfile and reps is 3,

then three output files with names testfile.1, testfile.2, and testfile.3 will be produced.
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B.3.2. Examples. DOS: genRandMats-1.0.exe L 1 20 0.1 3 testfile

Linux: ./run genRandMatix v01a.sh $MCR DIRECTORY L 1 20 0.1 3 testfile

B.4. MATALB® Toolkit for Network Traffic Anomaly Analysis

http://www.engr.colostate.edu/∼vwb/anom/

Permanent URL: http://hdl.handle.net/10217/89321

The toolkit performs:

• De-trending and thresholding for anomaly detection

• Graph wavelet based summarizing and anomaly tracing

• Distribution fitting to spatial and temporal parameters

• Simulator/Emulator to regenerate statistically similar anomalies

The toolkit is developed for Internet2 dataset, but customizable for other datasets.

Figure B.8. Anomaly detection

B.4.1. Screenshots.
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Figure B.9. Activity on a link

Figure B.10. Activity over the network
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Figure B.11. Estimating parameters
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Figure B.12. Simulator
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APPENDIX C

Source Codes

C.1. Source Codes for Robust PCA Experiments

C.1.1. lagrangian.m. The following code performs RPCA decomposition of input ma-

trix. i.e., solves

arg min
L,S
||L||∗ + λ||Sε(S)||1 (C.1)

s.t. M − L− S = 0 (C.2)

Synopsis of usage is:

[L,S,iter] =

lagrangian(M, epsilon, tol, maxIter, lambda-Scale, lambda, rho, mu)

where M is the only mandatory argument.

function [L,S,iter]=lagrangian(M,varargin)

% [L,S,iter] =

% LAGRANGIAN(M, [epsilon, tol, maxIter, lambda-Scale, lambda, rho, mu])

%

% Solve

% argmin {L,S} | | L | | * + lambda. | | shrink(epsilon,S) | | 1

% s.t. M-L-S=0

% Copyrights (C) Vidarshana Bandara

% Computer Networking Research Laboratory,
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% Department of Electrical & Computer Engineering,

% Colorado State University,

% Fort Collins, CO 80523, USA

% use defaults for unspecified arguments

switch nargin

case 1

epsilon=zeros(size(M));

tol=1e-6;

maxIter=100;

lambdaScale=1.0;

lambda=1.0/sqrt(max(size(M)));

rho=1.1;

mu=1.25/norm(M);

case 2

epsilon=varargin{1};

tol=1e-6;

maxIter=100;

lambdaScale=1.0;

lambda=1.0/sqrt(max(size(M)));

rho=1.1;

mu=1.25/norm(M);

case 3
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epsilon=varargin{1};

tol=varargin{2};

maxIter=100;

lambdaScale=1.0;

lambda=1.0/sqrt(max(size(M)));

rho=1.1;

mu=1.25/norm(M);

case 4

epsilon=varargin{1};

tol=varargin{2};

maxIter=varargin{3};

lambdaScale=1.0;

lambda=1.0/sqrt(max(size(M)));

rho=1.1;

mu=1.25/norm(M);

case 5

epsilon=varargin{1};

tol=varargin{2};

maxIter=varargin{3};

lambdaScale=varargin{4};

lambda=1.0/sqrt(max(size(M)));

rho=1.1;

mu=1.25/norm(M);
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case 6

epsilon=varargin{1};

tol=varargin{2};

maxIter=varargin{3};

lambdaScale=varargin{4};

lambda=varargin{5};

rho=1.1;

mu=1.25/norm(M);

case 7

epsilon=varargin{1};

tol=varargin{2};

maxIter=varargin{3};

lambdaScale=varargin{4};

lambda=varargin{5};

rho=varargin{6};

mu=1.25/norm(M);

case 8

epsilon=varargin{1};

tol=varargin{2};

maxIter=varargin{3};

lambdaScale=varargin{4};

lambda=varargin{5};

rho=varargin{6};

mu=varargin{7};
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otherwise

warning('error in arguments');

return

end

% sanity check

% epsilon

if size(epsilon)~=size(M)

warning('dimensions of epsilon should match M');

return

end

% tol

if length(tol)~=1 | | tol<0

warning('tol should be a positive scalar');

return

end

% maxIter

if length(maxIter)~=1 | | maxIter<0

warning('maximum iterations should be a positive scalar');

return

end

% lambda-scale

if length(lambdaScale)~=1 | | lambdaScale<0

warning('lambda-Scale should be a positive scalar');

return
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end

% lambda

if length(lambda)~=1

warning('lambda should be a scalar');

return

end

% rho

if length(rho)~=1 | | rho<0

warning('rho should be a positive scalar');

return

end

% mu

if length(mu)~=1 | | mu<0

warning('mu should be a positive scalar');

return

end

% initialize

iter=0;

S=zeros(size(M));

Y=zeros(size(M));

% solve

while 1

iter=iter+1;

% alternating directions
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L = lagrangeL(M,S,mu,Y);

S = lagrangeS(M,L,mu,Y,lambda,epsilon);

% updates

Y = Y + mu*(M-L-S);

mu = mu * rho;

% check convergence

error = norm(M-L-S,'fro')/norm(M,'fro');

if error < tol

break

end

% break long loops

if iter>maxIter

break

end

end

% shrink S before returning

S = sign(S) .* max( abs(S)-epsilon , zeros(size(S)) );

function L=lagrangeL(M,S,mu,Y)

% argmin L {lagrangian}

X = M - S + (1.0/mu)*Y;
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[U,sigma,V] = svd(X);

% shrink singular values

sigma = sign(sigma) .* max( abs(sigma)-(1.0/mu) , zeros(size(sigma)) );

% construct L

L = U*sigma*V';

function S=lagrangeS(M,L,mu,Y,lambda,epsilon)

% argmin S {lagrangian}

X = M - L + (1.0/mu)*Y;

S1 = X -(lambda/mu);

S2 = X;

S3 = X + (lambda/mu);

[m,n] = size(M);

S = zeros(m,n);

for i=1:m

for j=1:n

if epsilon(i,j) < S1(i,j)

S(i,j)=S1(i,j);

elseif -epsilon(i,j) < S2(i,j) && S2(i,j) < epsilon(i,j)

S(i,j) = S2(i,j);
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elseif S3(i,j) < -epsilon(i,j)

S(i,j) = S3(i,j);

else

tmp1 = Y(i,j) * ( M(i,j) - L(i,j) - epsilon(i,j) ) + ...

(mu/2.0) * ( M(i,j) - L(i,j) - epsilon(i,j) )ˆ2;

tmp2 = Y(i,j) * ( M(i,j) - L(i,j) + epsilon(i,j) ) + ...

(mu/2.0) * ( M(i,j) - L(i,j) + epsilon(i,j) )ˆ2;

if tmp1 < tmp2

S(i,j) = epsilon(i,j);

else

S(i,j) = -epsilon(i,j);

end

end

end

end

C.1.2. getsparse.m. The code below produces a sparse matrix of given sparsity.

Synopsis:

S = getSparse(sp,N,[M,typ])

where

• typ 1 : fixed (default)

• typ 2 : uniform

• typ 3 : Gaussian

First two arguments are mandatory.
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function S = getSparse(sp,N,varargin)

% produce a sparse matrix of given sparsity

% S = getSparse v02b(sp,N,[M,typ])

% typ 1 : fixed (default)

% typ 2 : uniform

% typ 3 : gaussian

% default

typ=1;

% input args

switch nargin

case 2

M = N;

case 3

M = varargin{1};

case 4

M = varargin{1};

typ = varargin{2};

otherwise

S=[];

return

end

% support

if isempty(M)
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M=N;

end

locs=randperm(N*M,int32(sp));

S = zeros(N,M);

% element values

if typ == 1

% fixed

S(locs)=1;

elseif typ == 2

% unif

S(locs)=2*rand(sp,1)-1;

elseif typ == 3

% gaussian

S(locs)=randn(sp,1);

else

S = [];

end

C.1.3. getlowrank.m. The code below constructs a low rank matrix.

Synopsis:

L = getLowRank(n,r,typ,U1,Sig1h,U2,Sig2h)

where

• typ 1 : 1st order Gaussian

• typ 2 : 2nd order Gaussian

• typ 3 : Wishart
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• typ 4 : 1st order Vandermonde

• typ 5 : 2nd order Vandermonde

All arguments are mandatory.

function L = getLowRank(n,r,typ,U1,Sig1h,U2,Sig2h)

% construct low rank matrices

% 1. 1st ord Gauss

% 2. 2nd ord Gauss

% 3. Wishart

% 4. 1st ord Vandermonde

% 5. 2nd ord Vandermonde

L=[];

% adjust Sigma 1

Sig1h(r+1:n)=0;

Sig1h=diag(Sig1h);

% Sigma 2 adjusted on demand

% 1. 1st ord Gauss

if typ==1

L=U1*Sig1h*randn(n);

end

% 2. 2nd ord Gauss

if typ==2
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Sig2h(r+1:n)=0; Sig2h=diag(Sig2h);

L=U1*Sig1h*randn(n)*randn(n)'*Sig2h'*U2';

end

% 3. Wishart

if typ==3

X=U1*Sig1h*randn(n);

L=X*X';

end

% U1 is Z for Vandermondes

% 4. 1st ord Vandermonde

if typ==4

L=U1*Sig1h*randn(n);

end

% 5. 2nd ord Vandermonde

if typ==5

X=U1*Sig1h*randn(n);

L=X*X';

end

C.1.4. genG.m, genW.m, and genZ.m. The following codes produce row and columns

spaces for Gaussian, Wishart and Vandermonde matrices.
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% Generate Cov for 2nd ord. Gauss - don't re-run

n=100; % size

% iid N(0,1)

X1=randn(n);

X2=randn(n);

% svd

[U1,~,~]=svd(X1);

[U2,~,~]=svd(X2);

% spectra

Sig1h=sqrt(rand(n,1));

Sig2h=sqrt(rand(n,1));

% DON'T RUN THIS LINE

save n100G U1 U2 Sig1h Sig2h

% Generate Cov for Wishart - don't re-run

n=100; % size

fName=['n' num2str(n) 'W.mat'];

% iid N(0,1)
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X1=randn(n);

% svd

[U1,~,~]=svd(X1);

% spectra

Sig1h=sqrt(rand(n,1));

% DON'T RUN THIS LINE

save(fName,'U1','Sig1h');

% Vandermonde matrices

clear all

close all

clc

n=500;

tmp1=2*pi*linspace(0,1,n+1);

tmp2=cos(tmp1)+sin(tmp1)*1i;

alphaI=tmp2(1:n);

Z=ones(n,n);

for i=1:n

for j=1:n
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Z(i,j)=alphaI(j)ˆ(i-1);

end

end

% spectra

Sig1h=sqrt(rand(n,1));

save(['n' num2str(n) 'Z.mat'],'Z','Sig1h');

Source codes and binaries developed in this work, including the

codes listed in Appendix C, are deposited on the permanent URL:

http://hdl.handle.net/10217/89321
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