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ABSTRACT 

 

 

 

EVALUATION OF POPULATION MONITORING STRATEGIES FOR GREATER SAGE- 

 

GROUSE (CENTROCERCUS UROPHASIANUS) IN NORTHWESTERN COLORADO 

 

 

 

Population monitoring programs are essential for the proper management of wildlife 

species but, despite recent advances in methodologies, generating accurate and defensible 

estimates of population size and trend remains a key challenge for wildlife biologists and 

managers and effective monitoring programs generally require considerable resources, effort and 

funding. For this reason, managers often turn to the use of population indices to monitor species. 

The greater sage-grouse (Centrocercus urophasianus) is a species of conservation concern 

throughout its range in western North America. Since the 1950s, high counts of males at leks 

have been used as an index for monitoring populations and are often assumed to represent 

overall population trend. However, the relationship between the lek-count index and true 

population size is unclear, resulting from a reliance on numerous untested assumptions, and the 

reliability of these counts for monitoring population trend has been questioned. In addition, lek-

count data do not provide information about the female population, a crucial component for 

assessing a population’s growth potential. There is a need for development and evaluation of 

alternative methods to obtain reliable estimates of population trend and test assumptions 

underlying the lek-count index. We tested two novel methods for monitoring a small greater 

sage-grouse population in Northwest Colorado. We found that a large and variable proportion of 

the lekking male population was missing from lek-count data each year when not all leks were 

known and counted, the lek-count index poorly represented true annual male abundance in small 



iii 
 

populations, and the possibility of large annual variation in male-to-female sex ratio should be 

considered when extrapolating female abundance from male count data. Our results suggest that, 

while lek-count data may be useful for detecting large changes in the abundance of lekking 

males over time, observations of trend based on annual lek-count index data may misrepresent 

true population trend in relatively small populations. 
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CHAPTER 1: USE OF THE LEK-COUNT INDEX FOR MONITORING POPULATIONS 

 

OF GREATER SAGE-GROUSE (CENTROCERCUS UROPHASIANUS)1 

 

INTRODUCTION 

Population monitoring programs are essential for the proper management of wildlife species. 

Well-designed monitoring strategies allow researchers to determine the status and temporal 

trends of the focal species; these are often keystone, umbrella, threatened or endangered, 

candidate, game, and invasive species. Information gained from wildlife monitoring programs 

allows managers to adjust land-use strategies, species status under federal or state law, hunting 

regulations, and mitigation plans in response to population trends. Monitoring programs also 

allow researchers to identify key factors such as disease, human land use, or natural disturbances 

that influence population dynamics. Additionally, species’ status assessments under the 

Endangered Species Act (ESA) require rigorous, quantitative methods for assessing population 

size and trend (NRC 1995). Scientifically rigorous abundance estimation and monitoring 

methods are therefore critical in determining conservation status of species and populations. To 

provide the information needed to evaluate the status of a population and inform management 

decisions, monitoring efforts should provide accurate and defensible estimation of population 

size and trend.   

 

1Jessica E. Shyvers, Department of Fish, Wildlife, Graduate Degree Program in Ecology, Colorado State 

University, Fort Collins, CO 80523 
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Since the 1970s, significant progress has been made in wildlife population estimation 

driven by the practical need to estimate abundance and monitor populations over time (Burnham 

2004). Advancements in survey methods, statistical models that account for imperfect 

detectability, and technology have contributed significantly to improvements in population size 

estimation and monitoring. Methods used to estimate wildlife population size have expanded to 

include stratified and cluster sampling, capture-mark-recapture, occupancy, dual-frame sampling, 

adaptive cluster sampling, and distance sampling, among others. The development of 

technologies such as radio telemetry, satellite telemetry, global positioning systems (GPS), 

geographic information systems (GIS), genetic analysis, and advanced open-source computer 

analysis programs (e.g., MARK, PRESENCE, DISTANCE, etc.) represent major advances that 

contribute to improved monitoring strategies for wildlife species. Progress has also been made in 

the development of non-invasive (or minimally invasive) sampling methods that reduce or 

eliminate disturbance to wildlife species, such as genetic mark-recapture, re-sighting, camera 

trapping, and track surveys. Additionally, innovations in the size and design of radio and satellite 

transmitters have resulted in reduced impact to study animals, allowed researchers to evaluate 

habitat use and management in a greater variety of species, and reduced the cost of monitoring 

per individual. 

Despite recent progress, generating accurate and defensible estimates of population size 

and trend remains a key challenge for wildlife biologists and managers, and the accurate 

estimation of wildlife population density requires a considerable investment of resources and 

time (Witmer 2005). This is particularly true for species that are rare or elusive, have low 

population densities, or occupy remote or difficult-to-access areas. Researchers investigating 

these populations face numerous challenges, such as logistical problems resulting from work in 
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remote areas, low population densities, clustering of animals, imperfect detectability, and limited 

funding. These challenges often force investigators to turn to population indices to estimate 

abundance or monitor population trends because they are significantly cheaper and easier to 

obtain. Indices use indirect evidence of the presence of animals (i.e. nest or den sites, territorial 

markings, fecal deposits, tracks), or counts of a detectable subset of the population (i.e. bat roost 

counts, avian point counts, aerial ungulate surveys, lek counts, etc.) to measure relative 

abundance. However, indices often rely on untested assumptions and their relationship to the true 

population is usually unclear (Witmer 2005). This has resulted in extensive criticism of indices 

in wildlife monitoring dating back to the early 1980s (Burnham 1981, Johnson 1995, Thompson 

et al. 1998, Nichols et al. 2000, Applegate 2000, Anderson 2001, Yuccoz et al. 2001, Williams et 

al. 2001, Pollock et al. 2002, Ellingson & Lukacs 2003, Walsh et al. 2004, Walsh et al. 2010). A 

key criticism of indices is that they only represent the portion of the population that is detected, 

which may vary across time, space and observer, diminishing their value (Johnson 2008). As a 

result, the true relationship between indices and population abundance is poorly understood and 

potentially biased (Walsh et al. 2004, Witmer 2005, White 2005). Indices may therefore be 

inadequate when estimates of abundance and trend are required to determine proper management 

of wildlife populations. 

Greater sage-grouse (Centrocercus urophasianus) populations are typically monitored 

using counts of males attending leks as an index to population size and trend, but the method has 

faced substantial criticism due to its dependence on several untested assumptions (Beck & Braun 

1980, Applegate 2000, Walsh et al. 2004, Walsh et al. 2010). Despite extensive availability of 

literature on methods to monitor greater sage-grouse populations, there remain large gaps in our 

knowledge that create challenges for effective conservation of the species. We have identified 
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these gaps as a need to: 1) investigate untested assumptions underlying population indices based 

on high counts of lekking males, and 2) evaluate potential alternatives to traditional methods for 

estimating population abundance and trend. In the chapters in this dissertation, we evaluate two 

novel monitoring methods (dual-frame lek surveys and non-invasive genetic mark-recapture) to 

estimate abundance in greater sage-grouse populations, make recommendations for their use in 

small populations, and investigate key assumptions underlying current lek-based monitoring 

methods. We also discuss implications of our results for the use of the lek-count index for 

estimating population size and monitoring trend in a small, isolated population of greater sage-

grouse in northwestern Colorado.  

 

BACKGROUND 

Greater Sage-Grouse Conservation 

The greater sage-grouse (Centrocercus urophasianus) is a species of conservation 

concern that currently occupies 11 U.S. states and 2 Canadian provinces (Schroeder et al. 2004). 

The species has experienced range-wide declines in abundance and distribution throughout the 

past century (Hornady 1916, Girard 1937, Patterson 1952, Rogers 1964, Autenrieth 1981, 

Connelly & Braun 1997, Schroeder et al. 1999, Schroeder et al. 2004, Aldridge et al. 2008, 

Garton et al. 2015). These declines are partly attributed to habitat loss and human land-use 

conflicts associated with oil and gas development (Walker et al. 2007, Doherty et al. 2008, Braun 

et al. 2002, Copeland et al. 2009, Naugle et al. 2011) and have resulted in repeated petitions for 

federal listing of the species under the U.S. Endangered Species Act (ESA). In 2010, the species 

was designated by the United States Fish and Wildlife Service as warranted for protection under 

the ESA, but precluded due to higher priorities (USFWS 2010). In 2015, the agency revisited 
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that decision and concluded the species was not warranted for federal protection, stating that the 

species “remains relatively abundant and well-distributed across the species’ 173-million acre 

range and does not face the risk of extinction now or in the foreseeable future.” (USFWS 2015). 

Despite this decision, it is likely that the species will continue to be the subject of future listing 

petitions.  

To better understand the status of this species, the USFWS requires unbiased and precise 

population estimates based on defensible monitoring techniques. Such approaches aid in 

understanding the current status and future trends of sage-grouse populations and abundance 

across the species range and guide management practices. However, current monitoring 

strategies for greater sage-grouse only provide information on relative population trends of male 

sage-grouse that attend leks (Connelly et al. 2004), which have been shown to potentially 

misrepresent both population size and trend (Walsh et al. 2004). For this reason, the development 

of innovative sampling and analysis methods for estimating greater sage-grouse abundance is 

critical.   

 

Lek-Count Index 

During the spring breeding season, male greater sage-grouse gather to display on 

traditional strutting grounds known as leks (Patterson 1952, Wiley 1978). Lekking behavior in 

the spring provides a unique opportunity to observe and count grouse that are otherwise highly 

cryptic, and seasonal high counts of males detected on leks are typically used as an index of male 

population size. Lek counts can be used to obtain estimates of relative population trends and 

changes in species distribution, and to identify key locations on the landscape for management 
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and conservation efforts. Historically, lek counts have been considered to be the most reliable, if 

not the only, means for monitoring populations of sage-grouse over large areas, and these counts 

are currently used by state wildlife agencies throughout the western United States (Connelly et 

al. 2004, WAFWA 2015). Since the early 2000s, lek counts have been based on standard 

sampling protocols intended to reduce the influence of temporal and weather-related variation in 

male lek attendance (Connelly et al. 2003). They are relatively cheap and easy to conduct and are 

assumed to provide information on relative population size and trend. However, lek counts are 

subject to numerous sources of sampling bias and therefore may not generate rigorous population 

estimates required for protection and management of species (Walsh et al. 2010). Even though 

the procedures for obtaining these counts have been standardized to improve consistency in 

collection of count data, the counts are still subject to sources of bias, and reliable inference rests 

on several untested assumptions (Johnson & Rowland 2007). While some aspects of the lek-

count index have been investigated previously (e.g. daily timing of counts [Monroe et al. 2016] 

and the importance of scale and repeated counts within a season [Fedy & Aldridge 2011]), other 

spatial and temporal aspects relating to variation in detectability either have not been assessed, or 

the extent to which they vary among populations and over time is unknown. When developing 

the objectives of my dissertation research, we identified six potential sources of bias that may 

influence lek-count data and its relationship to true population abundance: imperfect detection 

probability; the proportion of leks known and counted; variable attendance at leks by males; 

variation among observers making lek counts; the frequency of inter-lek movements by males; 

and male-to-female sex ratio (Figure 1). 
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Figure 1. Sources of bias and uncertainty (gray bubbles) in the relationship between high count 

of males and population abundance. 

 

Detection probability: Historically, wildlife biologists used raw counts of animals, 

assumed that counts were reliable indices of population size, and largely ignored the possibility 

of imperfect detectability (White 2005). It is now widely recognized that index methods often 

rest on critical and unrealistic assumptions concerning probability of detection (Anderson 2001), 

and this source of bias should not be ignored if population monitoring results are used to make 

management and conservation decisions. Imperfect detection of male sage-grouse attending leks 

has been demonstrated (Gibson et al. 2014, Fremgen et al. 2016) and may be influenced by 

numerous factors, including variation in the age, behavior, or posture of individual birds, lek 
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size, and lek characteristics such as vegetative cover, aspect, bare ground, and snow cover 

(Fremgen et al. 2016).  

In the past, wildlife monitoring efforts have relied on counts (C) of animals with the 

assumption that those counts are equal to abundance (N) (Anderson 2001, Pollock et al. 2002) or 

that a constant, but unknown, proportion of the population is counted across time and space. 

However, it is now widely acknowledged that counts are biased estimators of abundance (i.e., C 

≠ N), that detectability varies widely in space and time (Conn et al. 2004), and that population 

estimates must account for imperfect detectability (p). In reality, counts must be adjusted for 

detection probability to obtain unbiased estimates of the true population size (N = C/p). 

Concerning greater sage-grouse lek monitoring, a range of factors such as lek size, vegetation on 

and around leks, and visibility may impact our ability to detect male sage-grouse, attending a lek. 

Estimating detection probability requires repeat observations and, in theory, can be incorporated 

into lek-based monitoring if lek-count data collection is standardized to require multiple visits to 

known lek sites. 

Proportion of leks known and counted: Despite increased count effort, and in some cases, 

systematic searches for new leks, some leks remain unknown, particularly those that are small in 

size or that occur in remote areas (Johnson & Rowland 2007). There may be a sampling bias in 

favor of large leks because they are more easily detected (WAFWA 2015). Violation of 

assumptions underlying tools to prioritize habitat conservation and management is also a 

possibility if a substantial proportion of leks is unknown (Coates at al. 2013), potentially 

resulting in a serious effect on lek-based management. Despite the traditional nature of leks as 

annual usage sites, new lek sites can be established, and existing leks may become abandoned 

over time. Other than the loss of lek sites due to land use and land cover changes, the 
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environmental drivers of changes in lek location and status are still poorly understood (Connelly 

et al. 2011).  Because unknown leks cannot be counted, any males attending these leks are 

excluded from counts and do not contribute information to assess population status, size, or 

trend. For this reason, information on the proportion of leks that are known and counted in a 

population, and how much that proportion varies annually, is critical for monitoring long-term 

trend based on male lek-count data. 

Male lek attendance: Imperfect lek attendance by males has been well-documented, with 

numerous studies reporting daily and seasonal variation in attendance among males (Dalke et al. 

1960, Eng 1963, Hartzler 1972, Wiley 1973, Jenni & Hartzler 1978, Emmons & Braun 1984, 

Dunn & Braun 1985, Walsh et al. 2004, Blomberg et al. 2013, Sadoti et al. 2016). Evidence 

suggests that attendance of males may be much lower than 100%. For example, a study by Walsh 

et al. (2004) estimated that only 42% of marked adult males and 19% of yearling males attended 

leks per sighting occasion. Blomberg et al. (2013) estimated the probability of males attending at 

least one study lek in a season to range from 0.56-0.87. Lek attendance of males may be 

influenced by weather, presence of females, or time of day or season. It is also affected by 

survival of males during the breeding season since a male must remain alive in order to attend 

leks. Lek attendance also differs between adult and yearling males (Walsh et al. 2004). Yearling 

males typically attend at lower rates than adults and often do not begin attending leks until later 

in the breeding season (Jenni & Hartzler 1978, Emmons & Braun 1984). Imperfect male 

attendance can influence lek-count data and may have a greater effect on estimates of population 

trend if maximum lek attendance by males does not align with survey times. Additionally, 

inconsistent attendance may significantly affect estimates of population trend if it results in 

annual variation in attendance rates. Attempts to estimate male abundance from lek-count data 
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require reliable estimates of, or critical assumptions, regarding attendance of adult and yearling 

males (and therefore, also the ratio of adult to yearling males in the population). 

Inter-lek movement of males: Attendance of males at >1 lek within a single breeding 

season is also problematic for lek-based population monitoring. Standardized monitoring 

strategies throughout the species’ range require multiple visits to known lek sites. For this 

reason, biases can occur when males move between leks because individuals may be included in 

the maximum male count at one, two, or multiple leks, or missed on counts altogether. This bias 

could increase if lek-count data include counts from additional visits (>3) and are not adjusted 

for effort. A potential solution to this is the use of “lek routes” wherein all leks in an area are 

surveyed in a single morning for a combined high count (Connelly et al. 2003), however, most 

lek monitoring programs currently use high counts at individual leks rather than pooling the data. 

Some researchers have reported that inter-lek movement of males is rare (Gibson et al. 2014), 

but males in other studied populations are known to attend multiple leks within a season 

(Fremgen et al. 2017; Colorado Parks and Wildlife, unpublished data). Overall, the frequency 

and extent of this behavior and is still poorly understood. For example, Fremgen et al. (2017) 

found that inter-lek movement of males occurred more frequently than previously reported, and 

those movements would bias breeding season lek counts.  

Inter-lek movement of males warrants further investigation because the behavior may 

significantly affect lek-count data. If male movement patterns are constant across years then the 

impact on population trend may be minimal or irrelevant, however, if the rate of inter-lek 

movement varies among years, it may bias lek-count data and result in an index trend that is not 

representative of true population trend. More research is clearly needed to estimate the extent 



11 
 

and frequency of inter-lek movement among males and the impact those movements may have 

on lek-count data and assessment of population trend. 

Observer bias: Potential biases resulting from observer variability in the collection of 

lek-count index data should be acknowledged. An observer’s ability to detect, correctly 

determine sex of, and accurately count multiple sage-grouse at leks is dependent on experience, 

quality of equipment (e.g., optics), proper training, and inherent ability. Methods exists for 

researchers to reduce or measure observer bias; such as using designated observation viewpoints 

for lek counts to minimize variation between observers, the use of double-observer protocols to 

estimate observer-specific detection probabilities (Nichols et al. 2000), or the use of covariates 

(MacKenzie et al. 2002) for observer identification when modeling lek detection probabilities.  

Sex ratio: Lek-count data provide information on the population of lekking males and fail 

to represent the female population; a critical component that directs total population abundance 

(Johnson & Rowland 2007). Greater sage-grouse females primarily attend leks to assess male 

fitness and mate with males during a brief period prior to, and during, nesting but otherwise do 

not regularly attend leks during the breeding season. Females are smaller, more cryptic, and 

more difficult to detect and count on leks than males. As a result, lek counts are typically only 

used to provide information about the number of males attending leks. If only male abundance is 

estimated, then estimates of sex ratio (males per female) are also needed to obtain estimates of 

total population abundance.  

Sex ratios of greater sage-grouse populations are generally female-biased but estimates 

vary considerably throughout the species’ range (Connelly et al. 2011), ranging from 1 to 3 

females per male (Patterson 1952, Rogers, 1964, Beck 1977, Autenrieth 1981, Walsh et al. 2004, 
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Atamian 2007, Broms 2007). In Colorado, estimates of male-to-female sex ratios based on 

harvested birds were; 1:1.9 (Rogers 1964); spring breeding populations were 1:2.3-1:3 (Walsh et 

al. 2004), and winter populations were 1:1.6 (Beck 1977). State wildlife agencies often assume a 

ratio of 1 male per every 2 females (PPR-GSGWG 2008). Data on sex ratio is available from 

several states. Unfortunately, because many are based on data from hunter-harvested birds 

(Connelly et al. 2011), they are subject to bias since vulnerability to hunter harvest likely varies 

by sex (Connelly et al. 2000, Wik 2002). Other sex ratio data from observations of birds 

attending leks (Patterson, 1952, Keller et al. 1941), band-recovery data (e.g., Zablan et al. 2003), 

or non-random visual sampling of mixed sex flocks (e.g. Beck 1977) may also be subject to 

sampling biases. Thus, we lack reliable estimates of sex ratio based on random sampling of sage-

grouse populations.  

Each of the six potential sources of bias discussed above affects the accuracy of greater 

sage-grouse abundance estimates to an unknown degree and may vary over time and among 

populations. As a result of these unknowns, the true relationship between the lek-count index and 

population abundance is poorly understood. Lek-count indices continue to be the primary metrics 

for monitoring changes in greater sage-grouse populations over time. However, their ability to 

determine population trend has been questioned due to sampling biases in favor of larger leks 

(WAFWA 2015), and their utility for providing defensible estimates of population size is limited 

(Walsh et al. 2010). Long-term lek-count datasets are, however, widely available and are often 

the only data that allow inference to historic population trends and assessment of population 

changes across the species’ range (Connelly 2004).  

While indices, such as traditional lek counts, may detect large-scale changes in 

population size for large populations, this may not be true for changes in the size of small 
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populations. Biological populations change proportionately over time as a consequence of 

population growth being a multiplicative process. The use of indices to detect the direction of 

population change and temporal trend (i.e., the population increasing or decreasing over time) is 

defensible only if a number of critical assumptions have been met. The most significant of these 

is that the relationship between the index and true abundance is linear (Skalski et al. 2005). If the 

rate of change is large, indices may correctly reflect the direction of change in large populations, 

however, this may be unreliable for small populations. For example, with populations of 

different sizes (e.g., 1,000 vs. 100 individuals) that are declining at the same rate (e.g., λ = 0.9), 

the absolute change in abundance will be an order of magnitude greater in the larger population, 

than in the smaller one. The power to detect changes in population size is strongly affected by 

the coefficient of variation in abundance and can be thought of in terms of effect size, or the 

magnitude of change in abundance that a monitoring program has the power to detect 

(Gerrodette 1987). For large populations, a sample size of N = n may be sufficient to detect a 

decline of 10% per year because the effect size is large. In contrast, detecting the same 

percentage decline in smaller populations requires being able to detect a much smaller effect size 

and a larger sample would be needed. For indices such as those used to monitor greater sage-

grouse, large changes in abundance are much more likely to be detected than small changes in 

abundance. Therefore, drawing inferences to trend of small populations from change (or lack of 

change) in the lek-count index needs to be done cautiously. 

For sage-grouse, lek-count biases may also be greater in small populations. For example, 

detectability of leks may decrease and be more variable with smaller lek sizes, leading to higher 

variance in the estimate of population abundance (Thompson 2012). If the imprecision of lek 

index estimates exceeds the potential magnitude of annual change in the populations, power to 
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detect change will be effectively zero. These limitations of the lek index highlight the need to 

better understand what apparent trends in lek index data may indicate about true population 

trend, and develop more robust estimation methodologies required for monitoring small 

populations. Investigations into the reliability of lek-count data for estimating and monitoring 

changes in population size, and the development of alternative population monitoring methods, 

are key research priorities for greater sage-grouse management (Naugle & Walker 2007). There 

is a great need for researchers to: 1) quantify and test assumptions underlying the lek-count index 

to learn how these factors influence lek-count data and assessments of status, abundance, and 

trend; and 2) develop and evaluate new techniques for more rigorously estimating population 

abundance and trend. 

Several alternative methods to traditional lek-count indices are being explored. For 

example, occupancy analyses using spatially-based sample units (MacKenzie et al. 2006) to 

detect presence of leks (Johnson & Rowland 2007), N-mixture models to provide more 

defensible estimates of population trends based on lek-count data (McCaffrey et al. 2016), and 

integrated population models that incorporate population count and demographic data (Aldridge 

& Boyce 2007). Other promising alternatives for monitoring sage-grouse populations that have 

not been evaluated include dual-frame sampling (Haines & Pollock 1998) modified to account 

for imperfect detection, and genetic mark-recapture based on non-invasive sampling of fecal 

pellets. 
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Study Area 

The Parachute-Piceance-Roan (PPR) is one of seven recognized greater sage-grouse 

populations in Colorado (Figure 2). The species’ occupied range in the PPR is characterized by 

the rolling terrain of the Roan Plateau with numerous broad ridge tops formed where the Plateau 

drops off into canyons and drainages formed by creeks and tributaries. Vegetation on the ridge 

tops and plateaus is dominated by mountain big sagebrush (Artemisia tridentata vaseyana),  

 

 

 Figure 2. Current greater sage-grouse range and populations in Colorado (Source: Colorado Park 

and Wildlife). 
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mixed sagebrush-mountain shrub habitat and pinyon-juniper (Pinus edulis, Juniperus spp.) 

woodlands with patches of aspen (Populus tremuloides). Mixed sagebrush-mountain shrub 

habitat is primarily comprised of mountain sagebrush and serviceberry (Amelanchier spp.) with 

Gambel oak (Quercus gambelii), snowberry (Symphoricarpus spp.), antelope bitterbrush 

(Purshia tridentata), and mountain mahogany (Cercocarpus spp.). In the PPR, greater sage- 

grouse are largely restricted to sagebrush-dominated ridge tops and plateaus at higher elevations 

from 2,150–2,750m in elevation (Krager 1977, Hagen 1999, CGSSC 2008, Walker et al. 2016). 

Approximately 35% of the species range is owned and managed by state or federal agencies with 

the remaining privately owned by energy companies and ranches.    

The PPR population represents approximately 4% of the greater sage-grouse population 

in Colorado (CGSSC 2008, PPR-GSGWG 2008). Two specific threats faced by greater sage-

grouse in the PPR include rapidly increasing natural gas development and pinyon-juniper 

encroachment into sagebrush (PPR-GSGWG 2008). Hunting for sage-grouse has been closed in 

the PPR since 1995 due to low male counts. The PPR population may be especially vulnerable 

due to its small size (the population is thought to fluctuate somewhere between 500 and 1,200 

birds) and reductions in suitable habitat resulting from ongoing changes in land cover, 

particularly rapidly expanding natural gas extraction (PPR-GSGWG 2008). Understanding how 

the population responds to these changes, as well as mitigation efforts, is important for 

management of the population. For this reason, obtaining reliable baseline estimates of 

abundance and evaluating the reliability of the lek-count index for monitoring is critical to 

assessing future impacts to the population. 

The first lek-count data available for the PPR population is for the 1976 and 1977 

breeding season, after which no consistent, standardized monitoring of leks occurred until 2005 
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(PPR-GSGWG 2008). A high male count of approximately 234 males was recorded at 27 active 

leks from fixed-wing aircraft in 1976-1977 (Krager 1977), and high male count data from fixed-

wing (2005 only) and helicopter lek surveys are available from 2005-2016 (Figure 3). Colorado  

 

 

Figure 3. Lek-count index data showing summed high counts and a three-year running average 

for lekking males across all leks surveyed from 2005-2016 in the Parachute-Piceance-Roan, 

courtesy of Colorado Parks and Wildlife. 

 

Parks and Wildlife typically employs a three-year running average used to smooth variations in 

annual male counts arising from factors, such as weather conditions, that may affect male 

attendance and behavior (PPR-GSGWG 2008; Figure 3).  

Available data for the PPR do not allow rigorous inferences regarding population size 

and trend. Historical monitoring data for the PPR are based exclusively on high male counts at 
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leks, and there are no independent estimates of abundance against which to compare count data. 

Colorado Parks and Wildlife recognizes the limitations of using lek counts as an index of 

abundance and currently uses trends in the three-year running average of annual male high 

counts to inform management decisions without attempting to generate either male-specific or 

overall annual population estimates. However, information on how lek-count index data relates 

to true population abundance and trend would be extremely valuable as a baseline against which 

to compare historical and future estimates. 

Monitoring methods that provide unbiased estimates of population size and trend are 

needed for proper management, especially for low-density populations. There are no 

scientifically defensible, long-term datasets to assess the status and trend of the PPR population. 

Evaluating alternative monitoring strategies for this population was the primary goal of my 

dissertation research. Our study evaluated the use of two novel methods to estimate of the 

number of lekking males and total population abundance not previously applied to greater sage-

grouse populations. We also used these methods to evaluate other key lek-count index 

assumptions regarding the proportion of leks known and counted, detection probability of leks, 

and assumed male-to-female sex ratio. The results discussed in this dissertation provide valuable 

information to improve management of greater sage-grouse in the PPR and insights for applying 

dual-frame surveys and genetic mark-recapture methods to other sage-grouse populations.  
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PROJECT OBJECTIVES 

1)  Estimate the proportion of active leks and abundance of greater sage-grouse males attending 

leks in the Parachute-Piceance-Roan population, over three consecutive lekking seasons, using a 

dual-frame survey methodology that accounts for imperfect detectability.  

2)  Estimate pre-breeding abundance of greater sage-grouse in the Parachute-Piceance-Roan 

population during two consecutive winter seasons using genetic mark-recapture methods. 

3)  Estimate pre-breeding sex ratio and winter flock composition of greater sage-grouse in the 

Parachute-Piceance-Roan population during two consecutive winter seasons using genetic 

sampling. 
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CHAPTER 2: USING DUAL-FRAME SURVEYS OF LEKS TO IMPROVE MONITORING 

OF GREATER SAGE-GROUSE (CENTROCERCUS UROPHASIANUS) POPULATIONS IN 

NORTHWESTERN COLORADO2 

 

SUMMARY  

Effective wildlife population monitoring programs are critical for ensuring proper 

management of species but often require substantial resources, effort and funding. For this 

reason, managers often turn to the use of indices to monitor populations. However, indices have 

been heavily criticized because they rely on untested assumptions. For this reason, it is important 

to both evaluate more rigorous methods of population estimation and to test key assumptions 

underlying indices. The lek-count index is used to monitor populations of greater sage-grouse 

(Centrocercus urophasianus), a species of conservation concern, throughout its range in the 

western U.S. and Canada. The proportion of leks that are known and counted is critical 

information for managers to have when interpreting population trend data based on counts of 

lekking males. However, wildlife management agencies often have little to no quantitative 

information on the number of leks that exist in a population, and therefore, how many are 

included in, or excluded from, lek-based trend analyses and management efforts. We used dual-

frame surveys of leks, in combination with occupancy analysis to adjust for imperfect detection, 

to estimate the total number of active leks, the total number of males attending leks, and the 
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proportion of active leks that are known and counted on standard lek counts, during three 

consecutive breeding seasons in a small, low-density population in northwestern Colorado. We 

estimated that lek count and management efforts that rely exclusively on known lek locations 

may overlook as many as 26-55% of active leks and 22-57% of males attending leks each year. 

Our results suggest that a large proportion of the lekking male population in the PPR is missing 

from annual lek-count index data, and because this proportion varies annually, it may have a 

substantial impact on trend analyses. Managers need to recognize this potential source of bias in 

lek-count data and, if possible, account for it in trend analyses and management efforts. We 

recommend mapping potential lek habitat and conducting dual-frame surveys in conjunction 

with occupancy analyses over multiple years to quantify the proportion of active leks being 

missed by standard lek counts, as well as annual variation in this proportion, in specific 

populations of interest. 

 

INTRODUCTION 

Population Monitoring 

Wildlife population monitoring is critical for ensuring proper management of species, but 

it is challenging and requires considerable time and effort (Witmer 2005). For this reason, 

wildlife managers often turn to population indices, which are cheaper and easier to obtain, to 

estimate population size and monitor trend. Indices measure variables thought to correlate with 

abundance or density of species in an area (Caughley 1977) and can be based on a variety of 

metrics, such as the presence of animals, hair, feathers, scat, tracks, nests, or camera trap 

detections. Examples of commonly used indices include avian point counts (Johnson 2008), 

pellet surveys for ungulates (Rowland et al. 1984, Fuller 1991), and lek counts for greater sage-



31 
 

grouse (Connelly et al. 2003, Walsh et al. 2004, Johnson & Rowland 2007, WAFWA 2015). 

However, indices often rely on untested assumptions about their relationship to the true 

population (Witmer 2005), and may only represent changes in a subset of the population being 

sampled rather than the entire population (Johnson 2008). Assumptions of indices frequently 

include 1) constant probability of detection and 2) that a constant proportion of the true 

population is counted. For species of conservation concern, there is a critical need to test these 

assumptions. This can be accomplished by quantifying associated variables to determine their 

potential impact on index data and the extent to which they vary annually. 

The greater sage-grouse (Centrocercus urophasianus) is a species of conservation 

concern that has experienced historical population declines and substantial contraction of its pre-

settlement distribution (Connelly & Braun 1997, Connelly et al. 2004, Schroeder at al. 2004). 

These declines, in combination with habitat loss and human land use conflicts (Knick et al. 2003, 

Connelly et al. 2004, Holloran et al. 2005, Walker et al. 2007) have resulted in petitions for 

federal listing of the species under the Endangered Species Act (USFWS 2010, USFWS 2015). 

The greater sage-grouse is often regarded as an umbrella species whose protection is likely to 

offer conservation benefits for other sagebrush-obligate species (Rowland et al. 2006) and also 

has economic value as a game species and recreational birding attraction during the lekking 

season. 

 Management and conservation of greater sage-grouse populations should be based on 

accurate and defensible estimates of population size and trend over time. Historically, sage-

grouse populations have been monitored by counting males during the spring breeding season as 

they gather to display on traditional strutting grounds known as leks (Patterson 1952, Connelly et 

al. 2003). Lek counts are currently considered the only practical means of monitoring 
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populations of lek-breeding grouse over large areas, and they remain widely used by state 

wildlife agencies throughout the western United States (Applegate 2000, Connelly et al. 2004). 

Managers use lek-count data to determine conservation status of populations, set harvest limits, 

establish land management and restoration guidelines, and monitor impacts of anthropogenic 

land use and disturbance on populations. Lek locations are also used to identify and prioritize 

sage-grouse habitat in state conservation plans (CGSSC 2008, PPR-GSGWG 2008). Lek counts 

typically follow standardized protocols that specify season dates, recommended number of visits 

per lek per season, time of day, and weather conditions suitable for counting strutting males 

(Connelly et al. 2003). Standardized protocols are intended to reduce bias due to temporal 

variation in male attendance and increase the reliability of lek counts for documenting changes in 

relative abundance over time (Connelly et al. 2004, WAFWA 2015).  

The use of the lek-count index to estimate population size and trend relies on several 

untested assumptions and, as a result, their reliability for estimating population abundance, and 

even trend, has been criticized (Beck & Braun 1980, Applegate 2000, Walsh et al. 2004, Walsh 

et al. 2010). This in turn, creates challenges for establishing effective policies to manage and 

conserve populations. Current index-based monitoring strategies for greater sage-grouse only 

provide information on relative population trends (Connelly et al. 2004) and may actually 

misrepresent both population size and trend (Walsh et al. 2004). For these reasons, investigations 

into the reliability of lek-count data for monitoring changes in population size and development 

of innovative methods to estimate population size and trend are a research priority for greater 

sage-grouse (Naugle & Walker 2007).  

A key assumption underlying the use of lek counts for monitoring and management is 

that the proportion of leks that are known and counted during annual monitoring efforts is either 
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relatively high (i.e., most if not all leks are known) or at least constant over time (CGSSC 2008). 

This assumption will have consequences for population assessment if the set of leks that are 

known and counted differs greatly from the true set of leks in the population (which is typically 

unknown) or if the proportion of leks known and counted varies annually. The use of lek 

locations and count data to prioritize areas for conservation assumes that the majority of leks are 

known and available estimates of population size and trend are unbiased. However, if lek counts 

are biased, for example, because many lek locations are unknown (Coates et al. 2013) or 

detectability is low and variable (Walsh et al. 2004), then areas prioritized for conservation (e.g., 

Doherty et al. 2010) based on lek data may be incomplete or inadequate. 

Dual-frame surveys provide an opportunity to estimate the abundance of lekking males, 

the total number of active leks, and the proportion of leks in a population that are currently 

known (and presumably counted). In dual-frame sampling methodologies, surveys are conducted 

within two sampling frames, the list frame and the area frame (Hartley 1962). The list frame is 

comprised of a list of known point locations (e.g., bald eagle nests, Haines & Pollock 1998) that 

serve as list-frame sample units while the area frame is comprised of area-based sample units 

that are surveyed to locate previously unknown point locations. This approach allows each frame 

to effectively offset weaknesses of the other (Kott & Vogel 1995); the list frame provides 

information on all known units of interest, while the area frame provides information on the 

completeness of the list frame. The method is most often used in public and business surveys 

(Hartley 1962) but, to date, the only published use of dual-frame surveys to monitor wildlife 

populations was to estimate the number of active and successful bald eagle nests in the United 

States (Haines & Pollock 1998, USFWS 2007). Dual-frame surveys are thought to be most 

useful for monitoring breeding populations for species that have highly visible and stable 
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breeding locations (Haines & Pollock 1998), making it a potential candidate for improving 

monitoring of sage-grouse leks. 

We investigated the use of dual-frame surveys to improve population monitoring of 

greater sage-grouse in a small, low-density population in northwestern Colorado. We employed 

dual-frame lek surveys over three consecutive spring lekking seasons from 2012-2014 to 

estimate: 1) the total number of active greater sage-grouse leks, 2) the proportion of the total 

number of leks in the population that are known and counted, and 3) the number of males 

attending leks each year. We also examined trade-offs between cost and precision of estimates 

under different sampling strategies that vary the proportion of list-frame points and area-frame 

cells surveyed. 

 

Study Area 

We studied greater sage-grouse in the Parachute-Piceance-Roan (PPR) population in Rio 

Blanco and Garfield counties in northwestern Colorado (Figure 4, see Supplement A for details). 

Sage-grouse in the PPR occupy mountain big sagebrush (Artemisia tridentata vaseyana) and 

mixed sagebrush-mountain shrub habitats on ridges, plateaus, and the upper ends of drainages 

between 2,150–2,750 m in elevation (Krager 1977, Hagen 1999, CGSSC 2008, Walker et al. 

2016). Areas of suitable habitat are naturally fragmented and separated by steep drainages, cliffs, 

patches of aspen (Populus tremuloides), conifers, and non-sagebrush shrubs such as serviceberry 

(Amelanchier sp.) and Gambel oak (Quercus gambelii). Leks primarily occur within areas of 

bare ground or low-growing vegetation along the tops of sagebrush-dominated ridges and are 

often in close proximity to each other. Typical lek sites include meadows or other clearings,  
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Figure 4. Map of the Parachute-Piceance-Roan greater sage-grouse core population in 

northwestern Colorado with shaded topographic relief and the current (2012) occupied range 

boundary. 

 

areas of livestock use (i.e. open areas around stock ponds and mineral licks; Figure 5), grassy 

openings on ridges, and occasionally disturbed areas such as well pads and pipeline cuts. 

Leks in the PPR typically support relatively few males, compared to other larger GRSG 

populations, with an average size of 4-9 males per active lek and annual total high counts of 

males ranging from 77–249 males from 2005-2016 (Colorado Parks and Wildlife [CPW],  
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Figure 5. A typical lek site in the Parachute-Piceance-Roan. Leks are often located in open areas 

along sagebrush-dominated ridges. 

 

unpublished data). The rate of use of known lek sites (i.e., those with males observed in the past 

5 years) by breeding males is apparently low, with 28-71% observed to have displaying males 

between 2012 and 2016 (CPW, unpublished data). High annual variation in lek use suggests 

either poor detection probability of lekking males, low lek-site fidelity of males, or relatively 

high rates of annual lek establishment and abandonment (i.e. turnover), all of which may 

influence apparent trend in lek-count data over time, particularly if not all active lek locations are 

known. The objectives of this study were to obtain improved estimates of the abundance of 

active leks and lekking males and to quantify what proportion of leks and males are being missed 

on standard lek counts and in lek-based management efforts in the PPR. 
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METHODS 

Definitions 

We defined a “known lek site” as any open area on the ground, represented by a central 

waypoint, where ≥ 1 males have been observed strutting on ≥ 2 occasions (i.e., visits) in the last 

5 years during the March-May breeding season, and an “active lek” as any known lek site with  

≥ 1 strutting males observed in the survey year of interest. This definition is intended to restrict 

leks to just those locations where males regularly strut by excluding temporary or aberrant 

strutting locations. We assigned all newly discovered strutting locations a status of “potentially 

active” until strutting males had been confirmed on ≥ 2 occasions (i.e., visits). However, our 

dual-frame survey design required the use of lek status definitions specific to a single year to 

determine sample units and summarize annual survey results and estimates. For this reason, all 

potentially active strutting locations were included in our list of known lek sites and used to 

determine sampling units prior to each survey season (see Supplement B for details). Using 

potentially active locations to identify survey cells was appropriate because detectability of leks 

is imperfect and these locations are sometimes only confirmed as active leks by a second 

observation in a subsequent year. 

 

Dual-Frame Surveys 

We used an overlapping dual-frame survey methodology wherein point-based sample 

units in the list frame (i.e., known lek sites) occur within area-based sample units (i.e., cells) in 

the area frame (Haines & Pollock 1998). When data from known list-frame points are excluded 

from area-frame cells (a process known as unduplication; Haines & Pollock 1998, Otto and 

Sauer 2007), the remaining data can be used to estimate the number of unknown points not 
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currently in the list frame (i.e., unknown leks). Unduplication allows estimators for the total 

number of points and their associated variances in each frame to be independent of each other 

and therefore, they can be combined to estimate the total number of points (i.e., total number of 

leks) in the entire study area (Otto and Sauer 2007). These estimators are referred to as screening 

estimators because points included in the estimator for each frame are excluded, or screened, 

from the other frame (Hartley 1962, Haines & Pollock 1998). 

 

Helicopter Surveys 

We used dual-frame surveys to estimate the number of active leks in the PPR for three 

consecutive spring breeding seasons from 2012-2014. We compiled a list of known lek sites in 

the PPR from CPW’s statewide lek database and used that list as our initial list frame (LF) in the 

first survey season in 2012 (Figure 6). We then overlaid the study area (i.e., the area frame [AF]) 

with a grid of 1-km2 cells such that the entire study area was captured within the AF cell grid and 

all AF cells were either partially or completely within the study area boundaries. An advantage 

of dual-frame surveys is the AF can be stratified based on habitat type, geography or other 

attributes (Haines & Pollock 1998). We divided the AF into two strata, area frame 1 (AF1) and 

area frame 2 (AF2). Area frame1 included all AF cells that overlapped ≥ 1 known lek sites in the 

LF. AF2 consisted of all remaining cells in the study area (i.e., those that did not overlap a LF 

lek). We used the reversed randomized quadrant-recursive raster (RRQRR) in ArcGIS (Theobald 

et al. 2001) to select a spatially balanced random sample of AF2 cells with equal inclusion 

probabilities each year and updated LF, AF1, and AF2 prior to conducting surveys in the 

following year to incorporate new leks discovered the previous year (Figure 6). Sampling  
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Figure 6. Dual-frame sample units for greater sage-grouse leks in the Parachute-Piceance-Roan 

population in northwestern Colorado in 2012 (top), 2013 (middle), and 2014 (bottom). 

 

units in these frames had an inclusion probability of 1 because we surveyed all LF points and 

AF1 cells each year. We surveyed the maximum possible number of AF2 cells each year within 

the constraints imposed by flight logistics and funding.  

We searched for and counted strutting males at all known lek sites in the LF, in all AF1 

cells, and in our sample of AF2 cells by helicopter on three sampling occasions (on average once 

every 6 days) within each season. Surveys were conducted between 17 April and 4 May each 

year to capture the period of peak male attendance in the PPR (CPW unpublished data) and 

followed CPW’s standard lek count protocols (restricting counts to 0.5 hours before sunrise to 
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1.5 hours after sunrise on days with little or no precipitation and wind speeds < 15 mph). We 

divided the study area into five sections with pre-determined flight paths to maximize survey 

efficiency and minimize flight distance. Consecutive surveys on each route were flown in the 

opposite direction to reduce any influence of time of day on counts and areas of obviously 

unsuitable habitat (e.g., cliffs and conifer forest) were not surveyed (see Supplement C for 

details). 

 

ANALYSIS 

Revision of Potential Lek Habitat 

Some habitat areas within AF2 were found to be unsuitable for sage-grouse leks (e.g., 

steep, thickly-vegetated hillsides, patches of forest, etc.). Therefore, to increase the precision of 

dual-frame survey estimates, we excluded portions of AF2 with little or no potential to support a 

lek. Following the conclusion of dual-frame surveys, CPW produced and validated a resource 

selection model to identify greater sage-grouse breeding habitat (i.e., pre-nesting, lekking, 

nesting, and early brood-rearing habitat) in the PPR (Walker et al. 2016). Lek sites represent a 

subset of breeding habitat, and, in the PPR, leks only occur on ridges with relatively gentle 

slopes. We used the boundaries of known lek arenas to determine minimum thresholds for 

breeding resource selection function (RSF) scores, topographic position index, and slope, and 

then applied those thresholds across the study area to develop a potential lek habitat layer (Figure 

7). We then identified the minimum proportion of potential lek habitat in an AF2 cell known to 

support a lek and, prior to analysis, removed all AF2 cells (both surveyed and unsurveyed) below 

that minimum threshold. 
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Figure 7: Predicted potential greater sage-grouse lek habitat in the Parachute-Piceance-Roan 

population in northwestern Colorado (CPW unpublished data). 

 

We excluded new leks discovered incidentally (i.e. those discovered from helicopter 

while traveling between survey cells) from occupancy analysis in the year they were first 

discovered. This was necessary because these leks occurred outside our sampling frames and 

were typically visited < 3 times that year. However, we included high male counts at incidental 

leks for calculating average males per area-frame lek to improve point estimates of the total 

number of males attending area-frame leks. We included incidental leks when truncating lower 

confidence interval values for the estimated total number of active leks in a given year. 
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Occupancy Analysis 

We used “Occupancy Estimation with Detection < 1” models in Program MARK (White 

and Burnham 1999) to estimate the proportion of active leks in the list frame ( ˆ
LF ) and the 

probability of detecting an active lek in the list frame ( ˆ
LFp ) and in each area-frame stratum         

( 1
ˆ

AFp , 2
ˆ

AFp ). Assumptions for occupancy models included: 1) constant within-season occupancy 

of each sample unit, and 2) independence of sample units. We used attribute groups to 

distinguish the three sampling frames and analyzed occupancy data for each year separately. We 

ran a total of five models, estimating occupancy (̂ ) by group (sampling frame) and allowing 

detection probability (p) to vary over time and by group, for each year’s analysis (Table 1).  

 

Table 1. Occupancy models for dual-frame surveys of greater sage-grouse leks in the Parachute-

Piceance-Roan population in northwestern Colorado, 2012-2014. 

Model 

p(.) Psi(g) 

p(g) Psi(g)  

p(t) Psi(g) 

p(g+t) Psi(g) 

p(g*t) Psi(g) 

 

We used model averaging based on Akaike’s Information Criteria values adjusted for 

small sample size (AICc) to obtain parameter estimates in program MARK. We were unable to 

estimate 2
ˆ

AFp  due to the low incidence of leks in AF2. We assumed detection probability of all 

new leks in both area frames was the same and set 1
ˆ

AFp = 2
ˆ

AFp  for all group-varying models. 

This is a reasonable assumption because all newly discovered leks during the study were small in 

size (1-9 males) and should therefore have similar detection probabilities. 
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Estimators 

We used Hartley’s screening estimator (Hartley 1962, Haines & Pollock 1998), modified 

to account for imperfect detectability, to estimate the total number of active leks in the 

population ( T̂ ) and its associated variance ( ˆ( )Var T ). In our analysis, occupancy in the LF refers 

to the proportion of LF leks that were active, and occupancy for AF1 and AF2 refers to the 

proportion of 1-km2 cells containing ≥ 1 active leks (excluding known lek sites already in the 

LF). 

Following Haines & Pollock (1998), we estimated the total number of active leks in the 

LF total using the equation, 

ˆ
LF LF LFt N y where, 

NLF = the number of lek sites on the current LF and,  

LFy = a proportion equal to the number of LF lek sites that were active (
On ) divided by the 

number of lek sites sampled from the list frame (
LFn )  

Importantly, this estimator is unbiased only when detection probability, 1p    as assumed 

by Haines & Pollock (1998). This proportion is equivalent to the naïve estimate of occupancy in 

an occupancy analysis (MacKenzie et al. 2006).  We used the encounter history information from 

multiple surveys to estimate the per visit detection probability and adjusted the estimate for the 

proportion of lek sites that were active for imperfect detectability. This is equivalent to an 

adjusted estimate of an occupancy rate in an occupancy analysis (MacKenzie et al. 2006). For 

our adjusted estimate of the proportion of active leks in the LF, we use the symbol   as in an 
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occupancy analysis. Therefore, the total number of active leks in the LF was estimated using the 

equations, 

0ˆ
naive

LF

n
y

n
  , following Haines & Pollock (1998) screening estimator with, 

*0ˆ /adj LF
LF

n
y p

n
   

 
, to adjust for imperfect detectability and, 

ˆ ˆ
LF LF LFt N  , to estimate of the total number of active leks in the LF with variance, 

*

2

*

ˆ ˆ(1 )ˆ ˆ(1 )
ˆvar( )

ˆ
LF

LF

LFLF LF
LF LF

LF LF

p
N

n n p

 


 
  

  

 where, 

L̂Ft = the estimated number of active leks in the LF 

LFN = total number of known lek sites in the current LF 

LFn  = number of LF lek sites surveyed 

0n  = number of sites from the 
LFn sampled sites that had active leks 

ˆ
LFp = per sample occasion detection probability 

k = number of surveys 

*ˆ ˆ(1 (1 ) )
LF

k

LFp p   = estimated probability of detecting ≥ 1 males on ≥ 1 occasion at a LF lek 

site in a single season with k sampling occasions (based on the probability of ≥ 1 detection, 

MacKenzie et al. 2006) 



46 
 

We estimated the number of active leks in AF1 using the equation, 

1 1 1ÂF AF AFt N y where, 

1

11

11

1 AF

AF

n

AF i

iAF

y y
n 

  = sample mean number of active leks detected in AF1 

1AFN  = number of 1-km2 cells in AF1 

1AFn  = number of AF1 cells surveyed 

1AFiy  = number of active leks detected in AF1 sample cell i  

The probability of detection for active leks was unknown, so we derived an estimate of 

the per-visit detection probability 1
ˆ

AFp and 1
ˆ ˆvar( )AFp from the AF1 encounter histories using 

program MARK using the equation, 

1 1
1

1

ˆ
ˆ *

AF AF
AF

AF

N y
t

p
 , (Thompson 2012) with variance, 

1

22

1 1
1 1 12 2

1 1 1

ˆ1 *
ˆ ˆvar( ) var( * )

ˆ ˆ* *

AFAF AF
AF AF AF

AF AF AF

yN p
t y p

p N p

  
   

   

 where, 

1

*

1
ˆ ˆ(1 (1 ) )

AF

k

AFp p   = estimated probability of detecting ≥ 1 males on ≥ 1 occasion at an active 

AF1 lek in a single season with k sampling occasions 

The variance equation for AF1 does not include a finite correction factor ( ) /N n N , because all 

cells within this frame were sampled. 
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We estimated the number of active leks in AF2 using the equation, 

2 2 2ÂF AF AFt N y  where, 

2

22

12

1 AF

AF

n

AF i

iAF

y y
n 

  = sample mean number of leks detected in AF2 

2AFN = number of 1-km2 cells in AF2 

2AFn = number of AF2 cells surveyed 

2AFiy  = number of active leks detected in AF2 sample cell i  

As with AF1, detection of probability for active leks in AF2 was unknown, but we derived 

estimates as before using the equation, 

2 2
2

2

ˆ
ˆ *

AF AF
AF

AF

N y
t

p
 with variance, 

2

22 2

2 2 2 2
2 2 22 2

2 2 2 2 2

ˆ1 *
ˆ ˆvar( ) var( * )

ˆ ˆ* *

AFAF AF AF AF
AF AF AF

AF AF AF AF AF

yN N n ps
t y p

p N n N p

     
      

     
 (Thompson 

2012) where, 

2

*

2
ˆ ˆ(1 (1 ) )

AF

k

AFp p   = estimated probability of detecting ≥ 1 males on ≥ 1 occasion at an active 

AF2 lek in a single season with k sampling occasions and,  

2

2

2 2

2

12

1
( )

1

AF

AF

n

i AF

iAF

s y y
n 

 

  = sampling variance for mean number of active leks per cell in 

AF2 
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We estimated the total number of active leks in the study area using the combined 

estimator equation, 

1 2
ˆ ˆ ˆ ˆ

LF AF AFT t t t    with variance, 

1 2
ˆ ˆ ˆ ˆ( ) var( ) var( ) var( )LF AF AFVar T t t t    

We estimated the proportion of active leks known and counted using the number of active 

leks detected in the LF divided by our estimates for the total number of active leks in all three 

frames. Known lek sites in the LF represent those that would have been surveyed during standard 

lek monitoring efforts by CPW, based on a total of 3 helicopter visits with no additional lek 

survey efforts to search for unknown leks. We truncated 95% lower confidence intervals for our 

estimates using the total number of active leks actually observed during dual-frame survey 

efforts each year, including incidental leks, as these values represent the minimum number of 

known active leks in the PPR. We also calculated the proportion of males attending leks that 

were known and counted in the PPR. 

 We estimated the number of males attending leks in the PPR using the average high male 

count for active leks detected in the LF and AF strata multiplied by the estimated number of 

active leks in each frame or stratum. For each lek, we used the within-year maximum number of 

males detected over the 3 survey occasions to estimate the mean number of males per lek in the 

study area. We then estimated the number of males in the LF using the equation, 

ˆˆ
LF LF LFm t x  where, 

ˆ
LFm = the estimated number of males attending active leks in the LF 
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L̂Ft = total number of active leks in the LF 

LFx = the estimated mean number of males per active lek in the LF, based on the within-year 

maximum male count with variance,  

2 2ˆ ˆ ˆˆvar( ) var( )( ) var( )( ) var( ) var( )LF LF LF LF LF LF LFm t x x t t x   (Goodman 1962) 

Equations to estimate the number of males attending leks were the same for both AF 

strata with, 

ˆˆ
AFi AFi AFim t x  where, 

ˆ
AFim = the estimated number of males attending active leks in AF stratum i 

ÂFit = total number of active leks in AF stratum i 

AFix = the estimated mean number of males per active lek in AF stratum i based on the 

maximum male count, with variance, 

2 2ˆ ˆ ˆˆvar( ) var( )( ) var( )( ) var( ) var( )AF AFi AFi AFi AFi AFi AFim t x x t t x    

To estimate the total number of males attending leks in the study area we used the 

combined estimator, 

1 2
ˆ ˆ ˆ ˆ

LF AF AFM m m m   with variance, 

1 2
ˆ ˆ ˆ ˆ( ) var( ) var( ) var( )LF AF AFVar M m m m    
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We conducted two separate occupancy analyses to address uncertainty over whether to 

include or exclude potentially active leks because a failure to designate these sites as active leks 

may be the result of imperfect detection or imperfect attendance of males at leks. Results from 

our primary analysis (see RESULTS below) used only data from confirmed active lek sites each 

year, and our secondary analysis also included data from potentially active lek sites that were 

never confirmed by a second observation (see Supplement D and Appendix A). 

 

RESULTS 

 We surveyed LF points and AF cells for lekking males from mid-April to early May in 

three consecutive years, 2012-2014. We surveyed 49-66 LF points, 39-57 AF1 cells, and 36-45 

AF2 cells during each study year. The number of unsurveyed AF2 cells in each year ranged from 

587-598 out of a total of 631-634 available cells. 

The total number of active leks we detected differed between our sampling frames, with 

the most leks detected in the LF and the fewest in AF2. Total leks detected per frame were 

similar across years with 17-23 detected in the LF, 3-4 in AF1 and 0-1 in AF2. Between-year 

turnover in observed use of known lek sites with data for consecutive years was 26.9% (14/52) 

from 2012-2013 and 25.0% (16/64) from 2013-2014. 

We discovered a total of 21 new leks during dual-frame surveys during the three survey 

seasons, including observations in the AF and incidental leks (Table 2). We observed a total of 3-

4 AF1 cells with   ≥ 1 new leks in each year and one AF2 cell with ≥ 1 leks in 2012 and 2014; we 

observed no active leks in AF2 in 2013 (Table 3). A total of two new leks (both discovered 

incidentally in 2013) were identified as historical lek locations that had been inactive for more 

than 10 years prior to the 2012 season. In addition to leks newly discovered during surveys, 
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Table 2. Summary of new leks detected in the area frame by year in the Parachute-Piceance-

Roan greater sage-grouse population, 2012-2014. 

 

   

2012           2013            2014 

Area Frame 1 (dual-frame surveys) 3 4 4 

Area Frame 2 (dual-frame surveys) 1 0 1 

Incidental Leks* (dual-frame surveys) 2 3 3 

Total New Leks Detected (dual-frame surveys) 6 7 8 

Total New Leks Detected (other CPW surveys) 4 1 4 

Total New Leks Detected (all surveys combined) 10 8 12 

* Leks detected in the area frame during dual frame surveys but outside sampled units (i.e. while 

travelling between sample units) 

 

Table 3. Total sampling units with ≥ 1 active greater sage-grouse leks detected in each sampling 

frame by year in the Parachute-Piceance-Roan, 2012-2014. 

 2012 2013 2014   

List Frame 22 17 23   

Area Frame 1  3    3* 4   

Area Frame 2 1 0 1   

*One AF1 cell in 2013 had 2 new leks detected 

 

additional leks were discovered each year during the course of field work for other CPW 

research projects. The number of additional leks discovered was 4 in 2012, 1 in 2013, and 4 in 

2014. The number of new leks discovered each year as a result of all research efforts in the PPR, 

including dual-frame surveys, was 10 in 2012, 8 in 2013, and 12 in 2014; a total of 30 over the 

three-year period. 

Estimates of the total number of males for all combined leks across all sample frames, 

based on the within-year maximum number of males detected at each lek across all three visits, 

were similar in 2012 and 2013 but increased by more than a factor of two in 2014 (Table 4). The 
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Table 4. Estimates of the total number of greater sage-grouse males for all combined leks by 

year, based on the high count of males detected per lek across all 3 visits, in the Parachute-

Piceance-Roan, 2012-2014. 

 2012 2013 2014 

List Frame 69 63 148 

Area Frame 1  22 12 14 

Area Frame 2*  8 5 16 

Total All Frames 99 80 178 

*Includes incidental leks found in the frame to improve estimates. 

 

mean high male count per active lek (all lek sites with ≥ 1 males observed in a given year) and 

per known lek site (all lek sites with ≥ 1 males in the past 5 years) varied among years and 

sampling frames (Tables 5 and 6). The number of males per new lek for combined years  

 

Table 5. Mean high count of greater sage-grouse males per active lek by year in the Parachute-

Piceance-Roan, 2012-2014. 

 2012  2013 2014 

List Frame 3.14  3.71 6.43 

Area Frame 1 7.33  3.00 3.50 

Area Frame 2*  2.67  1.67 4.00 

Total All Frames 3.54  3.33 5.74 

*Includes incidental leks found in the frame to improve estimates. 

 

Table 6. Mean high count of greater sage-grouse males per known lek site by year in the 

Parachute-Piceance-Roan, 2012-2014. 

 2012 2013 2014 

List Frame  1.41 1.03 2.21 

Area Frame 1 7.33 3.00 3.50 

Area Frame 2* 2.67 1.67 4.00 

Total All Frames 1.8 1.21 2.37 

*Includes incidental leks found in the frame to improve estimates. 
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ranged from 1-9 with a mean of 3.7 (N=21, SE 2.44). The mean number of new leks detected per 

AF cell, for combined years, was 1.1 for AF1 and 1.0 for AF2. 

 Our top occupancy estimation model varied by year, with group (g) and constant (.) 

detection probability (p) models receiving the most support given our data (Table 7). Model-

averaged estimates of the proportion of known leks in the LF that were active (ψLF) varied by 

year from 0.29-0.57 during the three-year study period (Table 8). Model-averaged detection 

probability estimates for leks in the list frame were lowest in 2012 ( ˆ
LF

p  = 0.39-0.41) and similar 

 

Table 7. Program MARK model summaries by year for dual-frame survey analysis of greater 

sage-grouse leks in the Parachute-Piceance-Roan population. 

 

 

Year and Model AICc Delta 

AICc 

  AICc        

Weights 

Model 

Likelihood 

Num. 

Param.  

Deviance 

2012       

p(.) Psi(g) 205.94 0.00 0.580 1.000 4 10.96 

p(g) Psi(g); pAF1=pAF2 207.62 1.68 0.251 0.432 5 10.48 

p(t) Psi(g) 209.19 3.24 0.114 0.197 6 9.86 

p(g+t) Psi(g);  pAF1=pAF2 210.94 5.00 0.048 0.082 7 9.37 

p(g*t) Psi(g);  pAF1=pAF2 214.82 8.88 0.007 0.012 9 8.69 

2013       

p(g) Psi(g);  pAF1=pAF2 179.89 0.00 0.272 1.000 5 12.24 

p(.) Psi(g)  180.11 0.22 0.244 0.898 4 14.60 

p(g+t) Psi(g);  pAF1=pAF2 180.47 0.58 0.204 0.749 7 8.45 

p(t) Psi(g) 180.68 0.79 0.183 0.674 6 10.86 

p(g*t) Psi(g);  pAF1=pAF2 181.96 2.07 0.097 0.356 9 5.45 

2014       

p(g) Psi(g);  pAF1=pAF2 236.85 0.00 0.573 1.000 5 15.34 

p(.) Psi(g) 238.15 1.29 0.300 0.524 4 18.76 

p(g+t) Psi(g);  pAF1=pAF2 240.92 4.06 0.075 0.131 7 15.05 

p(t) Psi(g) 242.16 5.31 0.040 0.070 6 18.48 

p(g*t) Psi(g);  pAF1=pAF2 244.76 7.90 0.011 0.019 9 14.42 
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Table 8. Model-averaged estimates of the proportion of known greater sage-grouse lek sites that 

were active in the List Frame (ψLF) by year, with standard error (SE) and 95% upper (UCI) and 

lower (LCI) confidence intervals, in the Parachute-Piceance-Roan, 2012-2014. 

Proportion active leks (ψLF) by year                     Estimate SE 95% LCI 95% UCI 

2012 0.57 0.11 0.36 0.76 

2013 0.29 0.06 0.19 0.43 

2014 0.37 0.06 0.25 0.50 

     

 

to detection probabilities in the area frame that year ( ˆ
AF

p = 0.43-0.45); detection probabilities in 

the area frame were relatively constant across all survey years (see Appendix B). Average 

detection probabilities per year for the sampling frames were 0.40, 0.62, and 0.64 in the LF for 

2012, 2013 and 2014, respectively; with 0.44, 0.42, and 0.42 for AF1 and AF2. Estimates of p* 

(the probability of detecting an active lek at least once across 3 visits during a season) were 

lowest in the first year (2012) in the LF at 0.78, then increased to 0.95 in 2013 and 2014; 

estimates for p* in the AF varied from 0.80-0.82 across years (Figure 8). 

Estimates of the proportion of leks previously known and counted (i.e. surveyed) each 

year by standard lek flights were 0.45 in 2012, 0.74 in 2013 and 0.45 in 2014, and the estimated 

proportion of males known and counted were 0.43, 0.78, and 0.57, respectively for the three 

years (Table 9). These results suggest that, during our study, lek counts based exclusively on 

monitoring known lek sites (i.e., leks in the list frame) over 3 visits would have failed to survey 

26-55% of the total number of leks and 22-57% of males attending leks in the PPR (Table 9). 

Results from the supplemental analysis (see Appendix A) were similar to those of the primary 

analysis, concluding that standard lek counts would have failed to include 32-55% of the total 

number of active leks and 26-55% of males attending leks in the PPR. 
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Figure 8. Estimated probability of detecting ≥ 1 greater sage-grouse males at a lek (List Frame) 

or ≥ 1 males at ≥1 leks (Area Frame) across three sampling occasions (p*), with 95% confidence 

intervals, from dual-frame lek surveys in the Parachute-Piceance-Roan, 2012-2014. 
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Table 9. Total number of detected and estimated active leks, proportion of active leks known and 

counted, and total estimated number of males attending leks from dual-frame lek surveys in the 

Parachute-Piceance-Roan greater sage-grouse population, 2012-2014. 

Survey Year 2012 2013 2014 

Total Leks Detected     

(List Frame) 22 17 23 

Total Males Detected 

(List Frame) 69 63 148 

 

 

Est.

/No. 

95% 

LCI 

95% 

UCI  

 

Est.

/No. 

95% 

LCI 

95% 

UCI  

 

Est.

/No. 

95% 

LCI 

95% 

UCI 

 

Estimated No. Active 

Leks (List Frame)  28.1 22 36.9 17.9 17 25.2 24.2 23 32.2 

 

Estimated No. Active 

Leks (Area Frame 1)          3.6 3 5.7 5.0 4 8.4 5.00 4 8.3 

 

Estimated No. Active 

Leks (Area Frame 2)  17.0 1 49.8 0.0 0.0 0.0 21.9 1 65.1 

 

No. Incidental Leks 

Observed  2   3   3  

 

Total No. Estimated 

Active Leks  48.8 28* 82.8 22.9 24* 30.9 51.1 31* 95.1 

          

Total Estimated High 

Count Males 160 99* 360 81 80* 203 260 178* 665 

 

Est. Proportion Active 

Leks Known & Counted 0.45 0.79* 0.27 0.74 0.71* 0.55 0.45 0.74* 0.24 

 

Est. Proportion Males 

Known & Counted 0.43 0.70* 0.19 0.78 0.79* 0.31 0.57 0.83* 0.22 

          

          

* The LCI was truncated to the number of active leks/high count males observed during dual frame 

surveys, including incidental lek locations. 
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DISCUSSION 

Our results suggest that, if standard lek monitoring flights only monitor known and 

potentially active lek sites in the PPR, as many as 26-55% of active leks and 22-57% of males 

attending leks may be missing from count records each year. These findings are supported by the 

number of new leks discovered during this study; a total of 30 leks across the three-year study 

period and an additional 8 leks during the 2015-2017 lekking seasons, resulting from continued 

CPW survey efforts. Failure to survey unknown lek sites, even if they only support a relatively 

small number of males each (< 10 males), may result in substantial underestimation of the total 

abundance of lekking males and may affect assessment of population trend, particularly if the 

proportion of leks and males missed varies among years, as suggested by our results. At best, 

based on 95% confidence limits, a minimum of 20-30% of active leks and 17-30% of lekking 

males in the PPR may go unsurveyed in any given year. Although new leks are occasionally 

discovered during standard flight surveys, a concerted effort to survey for new leks may be 

required in the PPR.  

 We estimated the number of leks in the PPR greater sage-grouse population using dual-

frame survey estimators from Haines & Pollock (1998) with two key differences: 1) we 

conducted repeated surveys of sample units to estimate detection probability to account for 

imperfect detection of leks, and 2) we stratified area-frame cells into two frames based on the 

presence of known leks from the list frame. Estimating detection probability allowed us to 

account for variation in factors known to affect detectability of males on leks, including lek size, 

environmental conditions, male behavior, and daily, seasonal, or age-related lek attendance 

(Fremgen et al. 2016). Even if males regularly attend leks during the breeding season, they may 

be absent at the time of a helicopter survey; for example, if males were flushed by a predator or 
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vehicle prior being visited by the helicopter or if they left the lek early because no females were 

present. Our use of two area-frame strata was based on observations that the majority of new leks 

in the PPR are discovered in close proximity to known leks and, for that reason, cells including 

known leks were expected to have a higher likelihood of supporting additional leks. Encounters 

of new leks not on the LF supported defining two area-frame strata because AF1 cells 

consistently contained more previously unknown leks than AF2. Approximately 85% of leks 

discovered in the area frame were found in AF1 cells. 

Estimates of detection probability estimates in this study may be specific to the PPR 

population, and it is unknown if they are representative of other greater sage-grouse populations. 

The estimated number of active leks in the PPR was lowest in 2013 when total maximum male 

counts were also the lowest. Even though the population was estimated to have more active leks 

in 2012, the average number of males per occupied lek in 2014 was more than twice that of 

2012, resulting in a much larger total maximum male count in 2014. Annual turnover in apparent 

use of leks by males (i.e., not corrected for detection probability <1), based on leks surveyed in 

consecutive years, was observed in ~25% of known lek sites. The cause of turnover between 

years in the PPR is unknown, but may be related to within or between year inter-lek movement 

caused by low male or female population density, rapidly changing population density, highly 

fragmented and limited available breeding habitat (Hagen 1999, Walker et al. 2016), or changing 

availability of potential lek arenas over time due to natural or anthropogenic disturbance (e.g., 

fires, construction of well pads and pipelines). We suspect that larger populations with more 

stable lek dynamics and those inhabiting more stable landscapes will have higher rates of lek 

occupancy and detectability, and lower rates of lek turnover among years, but dual-frame lek 

surveys in such populations are needed to test those ideas. 
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In theory, as the number of leks on the list frame increases, surveys should eventually 

include almost all existing active leks. Our list frame increased in size each year as newly 

discovered leks were added based on detections in the area frame in the previous year. However, 

if new leks continue to form, obtaining a complete list frame may not be possible. During our 

study (2012-2014), and in the years that followed (2015-2017), survey efforts in the PPR 

continued to discover new leks. However, nearly all new leks discovered during the study period 

were near (<1 km from) previously known leks. In populations with more stable leks, the 

discovery of new leks should increase the proportion of leks that are known (and counted) each 

year and the sampling frame may be nearly complete after several survey seasons. The 

applicability of our findings regarding detectability and proximity of lek sites will need to be 

evaluated in larger or higher density populations, or those with more contiguous habitat. 

In dual-frame surveys, the area frame can be stratified based on attributes of interest to 

increase sampling efficiency (Haines & Pollock 1998). We divided the area frame into two strata 

to take advantage of the patchy distribution of breeding habitat in the PPR and clustering of leks 

within those areas. Indeed, nearly all new leks discovered during the study period were in the 

vicinity of previously known leks. For this reason, stratification of the area frame may be 

especially important in populations where potential lek habitat is restricted and naturally 

fragmented, like in the PPR. Additionally, the use of a potential lek habitat layer to better define 

the sampling frame is important for maximizing sampling efficiency and obtaining accurate point 

estimates from dual-frame lek surveys. Our original definition of AF2 included all 1-km2 cells 

that intersected occupied range and we originally allocated survey effort under the assumption 

that all AF2 cells could support a lek. However, we found that some portions of occupied range 

had vegetation and topographic characteristics inconsistent with sage-grouse leks (e.g., steep 
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slopes, patches of forest), so our original designation of AF2 included numerous cells with little 

or no potential to support a lek. Including data from those cells would have substantially 

overestimated the total number of active leks in AF2 each year, and the variance of those 

estimates. Restricting sampling of AF2 cells using a potential lek habitat layer allowed us to 

improve dual-frame estimates by appropriately restricting AF2 cells to just those that would 

reasonably support a lek. We removed both available and sampled AF2 cells from analyses under 

the assumption that they should have not been surveyed to begin with. This adjustment was 

important to avoid overestimating the total number and variance of occupied leks in both AF2 

and in the population as a whole. We recommend that any future dual-frame lek survey efforts 

delineate potential lek habitat prior to determining the area-frame strata to maximize survey 

efficiency and minimize estimator variance. 

We pooled data for AF1 and AF2 to estimate detection probabilities by setting 1
ˆ

AFp  equal 

to 2
ˆ

AFp   in each of our models that allowed p to vary with sampling frame (i.e., “group”). We 

had insufficient data to estimate 2
ˆ

AFp  because so few leks were detected in AF2. This may be a 

limitation of dual-frame lek surveys when monitoring either low-density or well-studied 

populations where few new leks are expected. Our decision to pool data across area-frame strata 

assumed that detection probability of new leks was equal in all area-frame cells, regardless of 

proximity to known lek sites. We this was defensible because lek size is thought to be a major 

influence on lek detectability (WAFWA 2015) and all new leks detected in either area-frame 

stratum were of similar size (fewer than 10 males per lek with an average of <4). Dual-frame 

estimators were sensitive to sparse data in the area frame. We detected no leks in AF2 in 2013. 

For that reason, it is likely that we underestimated the total number of leks in AF2 that year. This 

conclusion is supported by the fact that our point estimate for the number of leks in 2013 was 
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below the number of leks we actually observed (Table 9) after accounting for incidentally 

discovered leks. This effect may be diminished in future dual-frame lek surveys by focusing 

area-frame sampling in areas with greater potential to support leks. 

Estimated detection probabilities for leks in area-frame strata were relatively constant 

throughout the study (0.34-0.50). However, estimated detection probabilities for leks in the list 

frame were lower in 2012 (0.39-0.41) and similar to those in the area-frame strata that year 

(0.43-0.45). The reason for lower detection probability in the list frame the first year is unknown, 

however, it is possible that observers (and pilots) unfamiliar with the location of known leks 

were less likely to detect strutting males if they flushed from the lek prior to being detected. 

Familiarizing observers with the location of known lek sites prior to surveys may lessen this 

effect in subsequent years. For this reason, managers that implement dual-frame surveys 

(especially from aircraft) should consider familiarizing observers (and pilots) with all list-frame 

leks prior to dual-frame surveys to eliminate this possibility. 

Our estimates of the detectability of leks relied on two assumptions: (1) that within-

season occupancy of sample units did not change, and (2) that sample units were independent. 

These assumptions may be violated if inter-lek movement of males (Fremgen et al. 2017) causes 

some leks to be abandoned or reoccupied during the sampling period. Because dual-frame 

surveys require multiple observations per sample unit, inter-lek movement of males between 

sampling occasions would violate these assumptions. This would result in underestimation of lek 

detection probability and the proportion of leks known and counted, and overestimation of the 

total number of leks and males. If the majority of leks in a population are known, inter-lek 

movement would cause any analysis method based on based on summed high male counts across 

leks to overestimate the number of lekking males in the population. Additional information is 
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needed on the frequency of inter-lek movements by males to quantify its effects on detection 

probability of leks and on high male counts to better understand how it affects results of dual-

frame lek surveys and other lek-based monitoring methods. In addition to potential bias from 

movement of males, dual-frame estimates of the total number of leks and maximum number of 

males do not account for observer bias or variation in detection probability of individual males, 

lek attendance, or inter-lek movement and estimates are still subject to these potential sources of 

bias. Dual-frame sampling also does not address other key assumptions regarding the use of lek-

count data for monitoring populations, such as variation in count effort or sex ratio, and 

information on annual variation in sex ratio is required if trying to extrapolate male count data to 

estimate the female population or the entire population. 

An important consideration when planning dual-frame surveys is how to allocate 

sampling effort among sampling frames to balance the cost of surveys (e.g., the number and 

length of helicopter flights, survey effort by ground crews) with precision of estimates. We 

examined various scenarios for how to optimize allocation of area-frame surveys in relation to 

estimator precision given budget limitations (Table C1, Appendix C). We recommend sampling 

the area-frame strata as proportionally as possible (i.e., sampling the same proportion of total 

available sample units in each strata) to minimize expected standard errors while also attempting 

to ensure that neither area-frame effort results in occupancy values of zero. For the PPR, 

optimizing sampling by more proportionally surveying the two area-frame strata (i.e. surveying 

20 AF1 and 140 AF2 cells) is expected to reduce the magnitude of the standard error for 

estimated total number of leks by nearly 40% (Table C1, Appendix C) compared to our results. If 

enough resources and funding are available, increasing the number of sampling occasions from 

three to four can reduce the standard error by approximately 45%. Still, decisions about sampling 
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allocation also need to consider other potential trade-offs specific to the study population. For 

example, if the study area is large in size or leks are widely dispersed within a population, it may 

make the most sense from a logistical standpoint to sample AF1 cells around all sampled LF leks 

to increase survey efficiency and save both fuel and time during flights. Increasing the number of 

sampling occasions, and therefore, the duration of the sampling period, may also exacerbate any 

bias caused by inter-lek movement of males. 

 

MANAGEMENT IMPLICATIONS 

State wildlife agencies often have little or no quantitative information about how many 

greater sage-grouse leks exist in specific populations, and therefore, how many are included in 

(or excluded from) assessments of population size and trend used to assess population status and 

inform management actions. This is a primary criticism of lek-based monitoring strategies and a 

major concern for wildlife managers. Dual-frame surveys, when accompanied by estimates of 

detection probability, may be useful, particularly when combined with lek habitat models, to 

obtain baseline estimates of the proportion of leks being surveyed. This would enable managers 

to better assess the need for additional lek survey efforts or to adjust lek-count index data based 

on high male counts to better represent population size and trend of lekking males. The method 

may also help identify specific areas where managers should focus additional efforts to survey 

for new leks.  

A key advantage of dual-frame lek surveys is that they are compatible with, and easily 

incorporated into, existing lek-count monitoring efforts, particularly for populations already 

monitored via aircraft. Standard lek counts already require multiple visits to all, or a subset of 
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known leks (i.e., the list frame) during a specified sampling period, and count protocols for dual-

frame surveys and standard counts are identical. However, dual-frame surveys require additional 

effort to define, stratify, and survey for leks within area frames, preferably from aircraft to 

increase survey efficiency. 

Dual-frame surveys conducted over multiple years would also be useful to quantify 

annual variation in the proportion of leks that are known and counted in specific populations of 

interest. Our data suggest that this proportion may vary substantially over time in small, low-

density populations. In populations with stable lek dynamics, it may be possible to obtain a 

nearly complete list frame after just a few years of surveys, particularly in more well-studied 

populations.  

We encourage managers to use caution when interpreting data from any monitoring 

efforts that rely on male high count data collected over multiple visits to assess trend in 

populations. Quantifying the frequency, extent, and annual variation in male detectability on 

leks, male lek attendance, and inter-lek movements in greater sage-grouse populations should be 

a priority for further research to assess the potential impacts on lek-count data and trend analysis. 

For dual-frame surveys conducted by helicopter, it may be possible to partially offset the impacts 

of male movement by pooling male counts for all leks surveyed on a single day (i.e. the total 

male count from all leks surveyed in a region) to determine seasonal high counts, rather than 

using high counts from each lek individually. If males visit neighboring leks more often than 

distant leks, this would reduce the chance that those males would inflate the high male count for 

each lek. 
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CHAPTER 3: NON-INVASIVE GENETIC MARK-RECAPTURE ANALYSIS OF FECAL 

PELLETS TO ESTIMATE PRE-BREEDING ABUNDANCE OF GREATER SAGE-GROUSE 

(CENTROCERCUS UROPHASIANUS) IN NORTHWESTERN COLORADO3 

 

SUMMARY 

 The greater sage-grouse (Centrocercus urophasianus) is a species of conservation 

concern throughout its range. Since the 1950s, high counts of males at leks have been used as an 

index for monitoring populations and are often assumed to represent overall population trend. 

However, the relationship between the lek index and true population size is unclear and the 

reliability of these counts for monitoring populations has been questioned. In addition, lek-count 

data do not provide useful information about the female population, a crucial demographic 

component to assess a population’s growth potential. There is a need to develop and evaluate 

alternative methods to obtain reliable estimates of population trend and to test key assumptions 

underlying the lek-count index. We used non-invasive genetic mark-recapture to estimate pre-

breeding abundance in a small, low-density population of greater sage-grouse in northwestern 

Colorado during two consecutive winter seasons in 2012-2013 and  
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2013-2014. We estimated population size as 335 (95% C.I. 287-382) in the first winter and 745 

(95% C.I. 627-864) in the second, an apparent doubling of population size during the two-year 

study period. The change in male abundance estimates from genetic mark-recapture paralleled 

the trend observed in high male count data from lek observations, but the lek-count index poorly 

represented estimated annual male abundance. Our data suggest that, while lek counts may be 

useful for detecting relatively large changes in population size over time, they may not 

sufficiently detect significant changes in the size of small populations. Unbiased estimates of 

population size are essential to inform management decisions, particularly for small populations 

and populations experiencing rapid, large-scale land-use change. 

 

INTRODUCTION 

Lek-Count Index 

Defensible estimates of population abundance are essential for effective management of 

wildlife species. They are critical for determining federal and state conservation status, 

establishing land-use strategies or regulations to manage species and their habitats, and assess the 

effectiveness of management and conservation efforts. This is particularly true for species of 

conservation concern, such as the greater sage-grouse (Centrocercus urophasianus; hereafter 

“GRSG”), which have experienced recent population declines and significant reductions in 

geographic range (Connelly & Braun 1997, Connelly et al. 2004, Schroeder et al. 2004, Aldridge 

et al. 2008, Garton et al. 2015). These declines, in combination with ongoing habitat loss, 

degradation, and human land-use conflicts, have prompted repeated petitions for federal listing 

of the species under the Endangered Species Act. A major concern when evaluating listing 

proposals is the methods used to estimate population trend and the utility of the underlying data. 



72 
 

The primary monitoring state variable for sage-grouse is the annual lek-count index data, based 

on the maximum number of males observed at a lek over multiple surveys (Connelly et al. 2004). 

Use of this index dates back to the 1950s, and the index is still widely used by state wildlife 

agencies throughout the western United States to detect evidence of population trends (WAFWA 

2015).  

Despite its frequent application for population assessment and management decisions, the 

use of the lek-count index for making reliable inference to population trend has been extensively 

criticized (Beck & Braun 1980, Applegate 2000, Walsh et al. 2004, Walsh et al. 2010). The lek-

count index is based on seasonal high counts of males detected at leks. However, detectability of 

males is affected by many factors and the index may only represent the subset of males that 

attend leks in their respective population. This has led to questions regarding the use of count 

data as an index of population abundance and the relationship between the lek-count index and 

the true number of males attending leks remains unclear. Attempts to infer trend or extrapolate 

total abundance from lek-count data rely on untested assumptions regarding detectability of 

males, the number of leks known and counted, rates of male lek attendance and inter-lek 

movement of males during the count period, observer variability, and sex ratio (when attempting 

to estimate total population abundance). The extent to which many of these factors affect count 

data remains unknown for sage-grouse populations. For these reasons, the development of 

innovative methods to test assumptions underlying the lek-count index is critical for attaining 

unbiased estimates of population abundance and trend.  

In recent years, attempts have been made to evaluate and improve lek-count protocols for 

GRSG to generate unbiased estimates of population abundance and trend (Connelly et al. 2003, 

Walsh et al. 2004, Naugle & Walker 2007, Walsh et al. 2010, Fedy & Aldridge 2011, Blomberg 
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et al. 2013, Monroe et al. 2016, McCaffrey & Lukacs 2016, McCaffrey et al. 2016). In addition 

to research evaluating the reliability of standard lek counts, alternatives to traditional ground and 

aerial lek monitoring strategies, such as the use of unmanned aircraft and infrared imagery to 

locate and count leks, are being investigated (Gillette et al. 2013, Christie et al. 2016). Emphasis 

on survey methods that reduce disturbance to birds is important for improvement, and 

development, of methods.  

 

Genetic Mark-Recapture 

Non-invasive genetic monitoring is a promising tool for assessing the status and trend of 

wildlife populations and can provide information often unattainable using traditional monitoring 

methods (Schwartz et al. 2006). Genetic mark-recapture (GMR) techniques take advantage of the 

unique genetic fingerprint of every individual in a population, which allows the determination of 

individual identities from samples obtained in the environment, and therefore replace invasive 

capture techniques and the need for physical tags or markers. Recent advances in non-invasive 

GMR techniques using passive collection of DNA sources such as scat, feathers and hair have 

created new opportunities to apply mark-recapture theory (Lukacs & Burnham 2005a). Genetic 

mark-recapture has been used to estimate population size in a variety of vertebrate taxa including 

grizzly and brown bears (Mowat & Strobeck 2000, Boulanger et al. 2004, Bellemain et al. 2005), 

black bears (Coster et al. 2011), northern pike (Miller et al. 2001), northern goshawks (Bayard de 

Volo et al. 2005), capercaillie (Rosner et al. 2014), Gunnison sage-grouse (Oyler-McCance and 

St. John 2010, unpublished report) and humpback whales (Palsboll 1997). The use of fecal DNA 

in GMR studies was first attempted in coyotes (Kohn et al. 1999). 



74 
 

While genetic mark-recapture techniques have previously been used to estimate the 

number of sage-grouse individuals attending specific lek breeding sites (Oyler-McCance and St. 

John, unpublished report), the technique has yet to be used to estimate total population 

abundance. The use of GMR methods to estimate GRSG abundance is appealing since the 

methods are largely non-invasive and have the potential to yield precise estimates of 

demographic parameters not attainable from lek-count data. However, challenges remain because 

DNA from passively collected genetic samples, such as feces and shed feathers, is often of low 

quality (Tablerlet et al. 1996, Buchan et al. 2005, Broquet et al. 2007, Hogan et al. 2007, Panasci 

et al. 2011) and quality can be highly variable among samples (Miquel et al. 2006). Problems 

arising from poor quality DNA samples include amplification failure, allelic dropout, and 

mutation during amplification (Lukacs & Burnham 2005a, Buchan et al. 2005), each of which 

may result in genotyping error. Such error violates a key assumption of mark-recapture models 

that “marks” are correctly identified and recorded. Lukacs & Burnham (2005b) showed that 

genotyping error can result in biased abundance estimates from closed mark-recapture models. 

However, it is possible to address many of the challenges of low quality DNA by altering field 

collection methods and using laboratory protocols that minimize the occurrence, and therefore 

the impact, of low genotyping success rates and genotyping error in GMR studies (Paetkau 2003, 

Panasci et al. 2011, Marucco et al. 2011, Lampa et al. 2013).  

Despite the logistical challenges of genetic sampling during the winter, the advantages 

for monitoring species such as the GRSG are promising. In most studies, GRSG exhibit 

relatively low mortality during the winter, with survival estimates ranging from 0.82 to 1.0 

(Robertson 1991, Wik 2002, Hausleitner 2003, Beck et al. 2006, Batazzo 2007). Low mortality 

rates minimize the risk of violating the assumption of demographic closure and allow for the use 
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of more robust closed mark-recapture models. Additionally, because GRSG are primarily 

ground-dwelling, winter snow cover facilitates detection of flocks and sampling of genetic 

samples left behind by birds as they forage.  

We evaluated the use of a non-invasive, GMR method based on GRSG fecal (and 

feather) samples collected in winter to estimate total pre-breeding population abundance in a 

small, geographically isolated, low-density population in Colorado. Specifically we, 1) estimated 

pre-breeding abundance of male and female greater sage-grouse using primarily non-invasively 

collected fecal pellet and feather samples from winter flock locations, and 2) investigated the 

sampling effort required to obtain desired levels of precision for abundance estimates from non-

invasive sampling of winter flocks. 

 

Study Area 

The Parachute-Piceance-Roan (PPR) population of GRSG is located in northwestern 

Colorado (Figure 9), is one of seven currently recognized populations in the state (CGSSC 

2008). This low-density population constitutes approximately 4% of Colorado’s total GRSG 

population based on lek-count data (CGSSC 2008). Approximately 35% of sage-grouse occupied 

range in the PPR is owned and managed by state or federal agencies with the remaining 65% 

privately owned by energy companies and ranches (PPR-GSGWG 2008). 

The PPR is characterized by diverse terrain with broad ridgetops that drop off into steep 

drainages and canyons on the western and southern extents. Vegetation on ridgetops and plateaus 

is dominated by a mosaic of mountain big sagebrush (Artemisia tridentata vaseyana), mixed  
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Figure 9. Study area map showing the current (2012) occupied range boundary for the core 

Parachute-Piceance-Roan greater sage-grouse population in northwestern Colorado, with shaded 

relief to illustrate topography. 

 

sagebrush-mountain shrubs, and pinyon-juniper (Pinus edulis, Juniperus spp.) woodlands with 

scattered patches of aspen (Populus tremuloides) and other conifers. 
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In the PPR, GRSG are largely restricted to sagebrush, sagebrush-grassland, and mixed 

sagebrush-mountain shrub on ridge tops, plateaus, and shallow drainages (Figure 10) at 

elevations from 2,150–2,750m in elevation (Krager 1977, Hagen 1999, CGSSC 2008, Walker et 

al. 2016). Winters in the PPR are generally characterized by deep snow and sage-grouse habitat 

use is restricted by the availability of exposed sagebrush cover. The study area is covered by a 

network of developed oil and gas access roads and undeveloped ranch two-tracks along ridgetops 

and drainages that facilitate access. The population is geographically isolated, but not genetically 

distinct, from other Colorado populations (PPR-GSGWG 2008). 

 

Figure 10. Winter resource selection function map showing areas of greater predicted relative 

intensity of use by greater sage-grouse within the Parachute-Piceance-Roan occupied range 

boundary (Walker et al. 2016). 
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Located on the southern edge of the species’ range in Colorado, the PPR population was 

monitored irregularly until 2005 when managers recognized the potential for impacts from 

increasing energy development. As a result, the population lacks a rigorous long-term lek-count 

dataset for assessing population status and trend. Colorado Parks and Wildlife (CPW) lek-count 

data from 2005-2016 (Figure 11), show a fluctuating pattern in annual high male counts. These   

 

Figure 11. Colorado Parks and Wildlife lek-count data showing high male counts summed across 

leks and the three-year running average in the Parachute-Piceance-Roan greater sage-grouse 

population in northwestern Colorado from 2005-2016. 

 

data suggest a population drop in 2013 and a strong rebound in 2014, the two years 

corresponding to our study (see Supplement A for details).  
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METHODS 

Sage-Grouse Captures and Survival Monitoring 

We trapped and marked GRSG in the study area from mid-July through early November 

in 2012 and 2013 to estimate winter survival. Colorado Parks and Wildlife’s (CPW, USDA 

Registration #84-R-0045) Animal Care and Use Committee approved all trapping, handling and 

marking methods with Colorado State University (CSU) inter-agency approval (#07-2011 and 

#08-2012; Appendices E-I). We trapped birds using bumper-mounted and stationary net 

launchers (Giesen et al. 1982), night-time spotlight trapping and hoop-netting (Wakkinen et al. 

1992), drop-nets, and hand-held, compressed-air net guns (Wildlife Capture Services, Flagstaff, 

AZ) from trucks, all-terrain vehicles, and on foot.  

We aged and sexed captured birds using plumage characteristics, molt patterns, weight, 

tarsal length, and head length. Colorado Parks and Wildlife (CPW) affixed adult and yearling 

males with 30g rump-mounted, solar-powered global positioning system (GPS) platform 

transmitter terminal (PTT) satellite transmitters (Northstar Science and Technology, King 

George, VA) as part of an ongoing collaborative project. Leg loop attachments for GPS 

transmitters were based on the method B design described in Bedrosian and Craighead (2007). 

We equipped adult and yearling females with 22-g, battery-powered, VHF necklace collars 

equipped with mortality sensors (Advanced Telemetry Systems, Isanti, MN). Uniquely 

numbered, state-issued, aluminum leg identification bands were attached to all captured birds. 

We collected a feather sample for genetic analysis from the flanks of each bird using a sterile 

nitrile glove and stored the sample in Whirlpak© bags or paper envelopes. A small number of 

additional samples used in our study were collected from birds captured by CPW during the 

lekking season. 
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  We monitored collared birds daily (GPS-marked males) or bi-weekly (VHF-collared 

females) to detect potential mortalities that occurred throughout our winter sampling seasons. 

Females were primarily monitored using truck-mounted omnidirectional and Yagi hand-held 

antennas to detect mortalities. We used fixed-wing aircraft to confirm the status of females just 

prior to the start and end of our winter sampling periods and to locate missing females as needed 

in 2012-2013. More intensive aerial monitoring to confirm status and obtain location data on 

females was conducted every 2-4 weeks during the 2013-2014 winter season. This allowed 

monitoring movement of females into, and out of, areas crews could not access. Suspected 

mortalities were investigated on the ground ensure lack of movement was not the result of a 

slipped transmitter and to confirm cause of mortality.  

 

Non-Invasive Genetic Sampling  

We conducted non-invasive genetic sampling of GRSG fecal pellets and shed feathers 

during two consecutive winter seasons from early November to mid-March in 2012-2013 and 

2013-2014. We divided the study area into 200 x 200 m plots and selected a spatially-balanced 

random sample of approximately 1,000 plots using a reversed randomized quadrant-recursive 

raster (RRQRR) algorithm (Theobald et al. 2007, Figure 12). Plots were pre-stratified using 

resource selection function (RSF) values representing predicted relative intensity of use by 

GRSG during the breeding season (Walker 2010, Figure 13). Stratification allowed us to focus 

sampling in habitats with higher probability of GRSG use and to increase capture probability (p). 

We used breeding RSF values to inform sampling because winter RSF layers were not available 

when our study began and GRSG select habitats with similar vegetative and topographic features 

during breeding and winter (Walker et al. 2016). We divided plots into sets consisting of 30 plots  
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Figure 12. A subset of spatially-balanced random sample plots used for genetic mark-recapture 

sampling during winter seasons in 2012-2013 and 2013-2014, shown here with winter resource 

selection function maps, showing predicted relative intensity of use by greater sage-grouse from 

Walker et al. (2016). 

 

per set based on the order in which they were selected by RRQRR. We were initially concerned 

that high winter site fidelity of GRSG might result in few recaptures and low detection 

probability if new sample plots were surveyed each occasion, so we surveyed plot sets in a 

rotating panel to increase recapture probability and balance this concern with spatially 

representative sampling of the population. We selected 60 plots (two sets) to sample during each 

sampling occasion in a rotating fashion (i.e., occasion 1 included sets 1 and 2, occasion 2  
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Figure 13. Breeding habitat map, showing areas of greater predicted relative intensity of use by 

greater sage-grouse, used to pre-stratify genetic mark-recapture sampling plots within the 

Parachute-Piceance-Roan occupied range boundary (Walker et al. 2010). 

 

included sets 3and 4, occasion 3 included sets 1 and 5, occasion 4 included sets 2 and 6, and so 

on) so that no plot was sampled on more than 2 occasions. Sampling occasions were allowed to 

overlap temporally but not spatially, to facilitate more intensive sampling during periods of good 

weather and snow conditions and to reduce commute times to distant or difficult to access 

portions of the study area. 
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To collect fecal pellet and feather samples for analysis, we accessed plots by truck or 

snowmobile and surveyed on foot/snowshoe to locate sites used by flocks. Plot surveys involved 

walking transects sufficiently close together (approximately 50 meters) to allow full visibility of 

the area between transects; binoculars were used to scan plots and adjacent habitats for signs of 

use by GRSG including tracks, pellets, feathers, and live birds. Transects varied to ensure full 

coverage of each plot given variation in terrain, vegetation, snow, and weather conditions that 

influenced visibility of, and therefore the probability of detecting, bird sign. Plot areas 

characterized as non-habitat, such as pinyon-juniper woodlands and cliffs, were not surveyed. 

We avoided conducting surveys during adverse weather (e.g. during precipitation or winds 

sufficient to cover bird tracks) and surveys were delayed for a minimum of 24 hrs following a 

wind or snow event to allow birds time to utilize habitats. Time since the last snow or wind event 

was tracked to balance the total number of days allowed for accumulation of tracks and other 

sign prior to surveys in different regions of the study area. We were unable to sample some plots 

in the southern half of the study area due to restrictions on private property. 

Because of the low density of birds in our study area, we surveyed additional GRSG 

habitat on foot and used binoculars to add detections while traveling to and from random plots. 

All sampled incidental flocks were assigned the sample occasion number of the associated plot. 

Location data for GPS and VHF-marked birds was withheld from crews conducting field surveys 

and telemetry searches were performed separately from random surveys to avoid sampling bias 

associated with prior knowledge of GRSG use locations. 

When a flock was detected, technicians searched the area for evidence of a roost site, 

estimated the number of birds in the flock, and marked the locations of individual pellets and 

roost piles with colored pin flags. For flock sites where roost piles were not detected and track 
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density suggested a large number of birds had been present, we flagged off a 20 ft length of the 

track paths and collected all pellet and feather samples within the area. This track distance was 

based on field observations that individual birds generally defecate at least once every 20 ft 

while foraging. We collected pellets and feathers using fresh nitrile gloves for each sample to 

avoid cross-contamination. We removed snow and debris from each fecal pellet sample without 

scraping the pellet surface to avoid accidentally removing DNA. We collected a total of 8-10 

pellets from each roost pile and collected caecal samples only when other sources of DNA were 

not available. We placed samples in 4-oz Whirlpak© bags (eNasco, Fort Atkinson, WI) with 1-

gram silicone desiccant packets (Fisher Scientific, Houston, TX) to absorb excess moisture. We 

packed samples in snow until we transferred them to a -20ᵒ F, manual defrost freezer for 

temporary storage, and later to a -80ᵒ F freezer until analysis. We avoided thawing, re-freezing, 

and exposing samples to UV radiation to maintain DNA integrity. We combined individual 

pellets in the same sample bag only if they came from the same roost pile or were otherwise 

known to be from the same bird because GRSG in the same flock often use the same path. 

Feathers located at flock-use sites were always packaged separately.  

We attempted to collect at least one fecal or feather sample from each individual bird 

present at each flock-use site. This was possible due to the relatively small size of flocks in the 

population. Because GRSG often cross paths and walk on top of each other’s tracks while 

foraging, making identification of pellets from a single bird difficult in most cases, we targeted 

roost piles (piles of pellets deposited by a single individual while roosting) (Figure 14) for 

sampling to minimize the number of samples required for collection. When roost piles were not 

present, sampling often required collecting more pellets than birds present to obtain a 

representative sample from each bird. Roost piles are produced by a single bird, so sampling 
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Figure 14. Greater sage-grouse fecal pellet roost pile and caecal dropping (upper left).  

 

from roost piles reduces the likelihood of individual birds being represented multiple times 

(Baumgardt et al. 2013) and provides confidence that all birds present at a flock site were 

represented in the samples collected. 

 

Power Analysis 

  We performed preliminary data simulations for closed mark-recapture models in program 

MARK (White and Burnham 1999) prior to our study by manipulating values for N (true 
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population size), p (capture probability), heterogeneity in p with varied mixture proportions (pi), 

and the number of sampling occasions. Simulations indicated that we would need to achieve 

capture probabilities ≥ p = 0.1 for a minimum of four sampling occasions to obtain unbiased 

estimates of abundance given a true population size of 500-1,000 individuals (≥ 95% of 

simulations with confidence intervals including the true population size; Appendix J). 

Simulations also indicated that high heterogeneity in p among individuals would significantly 

lower the precision of abundance estimates (Appendix K).  

Following the conclusion of this study, we re-ran our analysis using modified input files 

based on our data to simulate variation in sampling effort to make recommendations to the 

minimum number of sampling occasions required to obtain desired levels of precision for 

abundance estimates. We performed these simulations using data from completed sampling 

occasions in this study with variation in the number of completed sampling occasions (4, 6, or 8) 

in each season (see Appendix L). 

 

ANALYSIS 

Genetic Analysis of Samples  

We isolated DNA from fecal pellet and caecal samples following the Qiagen (Hilden, 

Germany) protocol from Human Stool DNA isolation using QIAmp DNA Stool Mini Kits, 

QIAmp Fast DNA Mini Kits, or in 96-well plates using the DNeasy 96 Blood and Tissue Kit 

(Qiagen) following the Animal Tissues protocol. Fecal pellet extractions were performed under a 

ventilation hood dedicated to low-quality DNA extractions. DNA from fecal pellets was obtained 

by cutting fecal tissue from the surface of larger pellets, or using a lengthwise section of smaller 
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pellets, that maximized the inclusion of the pellet surface. DNA extractions from feather samples 

were performed using DNeasy Blood and Tissue Kits (Qiagen) following a user-developed 

protocol for purification of DNA from nails, hair, or feathers. DNA from feather samples was 

obtained by removing the proximal tip of the rachis. Extraction negatives were included in each 

set of extractions. QIAmp fast DNA Mini Kits performed poorly for fecal samples and ~250 

samples extracted using these kits were re-extracted using the DNeasy 96 Blood and Tissue Kits 

with greater success. 

We used seven microsatellite loci to identify individual GRSG, including six 

polymorphic loci (BG6; Piertney and Hoglund 2001, SGMS06.6 and MSP11 (Oyler-McCance 

and St. John 2010) and SG29, SG36, and SG39 (Fike et al. 2015)) and one sexing locus (a region 

of the CDH gene using the primers 1237L (GAGAAACTGTGCAAAACAG) and 1272H 

(TCCAGAATATCTTCTGCTCC; Kahn et al. 1998)). These microsatellite loci were known to 

be the most polymorphic and reliable based on previous work on Gunnison sage-grouse (Oyler-

McCance and St. John 2010). Loci were amplified using a multiplex pre-amplification method 

(Piggott et al. 2004). Because DNA from non-invasively collected sources, particularly fecal 

DNA, are typically low in quality and at increased risk for genotyping error (e.g. allelic dropout 

during PCR), we repeated the amplification process to confirm results for all samples. We 

amplified all samples twice with the aim of obtaining two complete matching multi-locus 

genotypes. In addition, we ran positive and negative controls within each set to maximize quality 

and consistency of genotyping. Samples with unsuccessful amplification of most loci were re-

extracted and re-amplified at least twice. Detailed protocols for all modified extractions and PCR 

steps are described in Appendix M. 
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 Repeated amplifications generated multiple multi-locus genotypes for each sample. We 

compared corresponding genotypes and generated a consensus genotype for each sample. As is 

common with low quality DNA, some genotypes did not match across all amplification attempts. 

In these cases, we re-amplified mismatching loci to confirm a consensus genotype with matching 

scores. If there was still a mismatch after two rounds of re-amplification, we determined 

genotypes conservatively, and scored individuals as heterozygous at a locus if they were 

heterozygous at least once with a homozygous match for one of the alleles in that heterozygote. 

Loci were scored as “no data” if the genotypes were complete mismatches for each amplification 

attempt or could not otherwise be confirmed. Two rounds of review were performed on sample 

pairs with genotypes that differed by a single locus, by referencing all genetic analysis results 

and collection data, to ensure correct assignment of scores.  

To be included in our data analysis, samples were required to have a minimum of six out 

of seven successful loci determinations. Unique individuals and their capture histories were 

determined using Dropout Utility 1.2 & Dropout 2.3.1 (McKelvey & Schwartz 2005). Dropout 

analysis was performed a total of three times using separate data for the two winter sampling 

seasons, and combined data to identify individuals detected in consecutive seasons. Feather 

samples from captures of radio-collared birds that died prior to the start of each winter sampling 

season were excluded from the data. We included feather samples from captures of juveniles in 

our analysis for seasons they were known to be alive, either by detection in our non-invasive 

samples or a later recapture event. In order to use data from captured juveniles with unknown 

fate (those with no recapture events) we needed to determine how many would be expected to 

survive until the start of the winter season. We assigned a juvenile survival rate of 0.76 for the 

period between the end of the trapping period and the start of winter sampling efforts each year. 
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This estimate was based on apparent survival estimates from our radio-collared adult females 

during that time period and was similar to previously recorded mean adult GRSG survival of 

0.75 for the months of September and October (Thompson 2012). We first accounted for all 

juveniles with known fates, then randomly selected juveniles of unknown fate to achieve 

inclusion of the number of capture histories equal to the number of juveniles expected to have 

survived until the start of each winter sampling period. We excluded data from a total of 2 

juveniles of unknown fate in 2012-2013 and 3 in 2013-2014. 

 

Mark-Recapture Analysis 

Estimates of pre-breeding abundance were obtained using “Huggins’ Closed Mark-

Recapture” models (Program MARK; White and Burnham 1999) with initial capture probability 

equal to subsequent captures (p=c). Sex was used as a group covariate to derive separate 

estimates of abundance and detection for males and females. A spatial (region) covariate 

(“North” or “South”; Figure 15) was used to model possible heterogeneity in capture 

probabilities between individuals in the southern part of the study area, where winter access was 

not permitted on private property, and individuals in the northern part of the study area where 

access was comparatively unrestricted. Assignment of covariate values to individuals was based 

on the location of their first detection. Restricted access in the South resulted in unequal 

sampling effort for that region. Models for various combinations of group and time effects 

(Table 10) were fitted and model results averaged based on Akaike’s Information Criteria (AICc) 

values. Feather sample data from captures constituted our first GMR sampling occasion with the 

remainder of sampling occasions based on non-invasive sampling of fecal and feather samples. 
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Figure 15. Map of the Parachute-Piceance-Roan greater sage-grouse occupied range with line 

delineating “North” and “South” regions of the study area. 

 

Table 10. List of closed p=c mark-recapture models, varying by time (t) and group (g) effect, 

with regional covariate “region” used in genetic mark-recapture analysis of greater sage-grouse 

winter genetic sample data from the Parachute-Piceance-Roan, 2012-2014. 

Model Name 

p(t) = c + region 

p(g+t) = c + region 

p(g*t) = c + region 

p(.) = c + region 

p(g) = c + region 
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Model Assumptions 

Closed-population mark-recapture models have four key assumptions: (1) demographic 

closure during the sampling period, (2) no individual heterogeneity in detection probability, (3) 

unique IDs are correctly recorded (genotypes are assigned correctly), and (4) no markers are lost. 

First, we assumed demographic and geographic closure of the population requiring no births, 

deaths, immigration, or emigration. We assumed that there was no unexplained heterogeneity in 

the probability of detection and capture (collection of DNA samples) of individuals at flock-use 

sites. We assumed that genotypes used in our analysis were correctly determined. In addition, we 

assumed that differences in DNA extraction and amplification success from passively-collected 

genetic samples were the result of random environmental conditions that affect DNA quality and 

not differences between individual birds. Loss of markers is not relevant to genetic-mark 

recapture because there is no use of a physical tag that can become damaged or lost. 

 

RESULTS 

 We collected 116 feather samples during two seasons of GRSG captures and used 91 

samples from telemetered adults and non-telemetered juveniles in our mark-recapture analysis 

(Table 11). Colorado Parks and Wildlife deployed a total of 22 rump-mounted PTT collars on 

adult and yearling males in 2012 and 6 additional males in 2013, 16 of which survived until the 

start of the winter sampling season in 2012 and 11 (including males collared the previous year) 

survived until the start of the 2013 winter sampling season. We deployed VHF necklace collars 

on 34 adult and yearling females in 2012 and 13 additional females in 2013. Twenty-four 

females survived until the start of the first winter sampling season and 23 females (including 

several surviving from the previous season) survived until the start of the 2013 winter season. 
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Table 11. Feather collection summary from greater sage-grouse captures in the Parachute-

Piceance-Roan for sampling season one (2012-2013) and season two (2013-2014). 

 

Adult/Yearling 

Males 

Adult/Yearling 

Females 

Juvenile 

Males 

Juvenile 

Females Total 

Season 1 (2012-2013)      

No. Samples Collected 22 36 7 8 73 

Season 2 (2013-2014)      

No. Samples Collected 6 14 15 8 43 

No. Samples Used in 

Analysis 

22 36 18 15 91 

 

Naïve estimates of overwinter survival of males from 1 November through 15 March was 0.875 

(14/16) in 2012-2013 (hereafter season one) and 0.909 (10/11) in 2013-2014 (hereafter season 

two), and for females 0.958 (23/24) in season one and 0.913 (21/23) in season two. Four of six 

winter mortalities occurred near the end of the sampling seasons in late February and early 

March. This suggests that 95% of collared adult and yearling birds in season one and 97% of 

birds in season two were available for sampling for the majority of the season. 

We sampled random plots and incidental flock-use sites from 11 November to 14 March 

in season one and 4 November – 14 March in season two. We collected non-invasive genetic 

samples from 120 flock-use sites in season one and 146 flock-use sites in season two. Flock site 

detections were based on tracks (65%), roost piles (19%), and the presence of birds (13%) with 

the remaining 3% from other sign including fecal pellets on bare ground, feathers, and caecal 

piles. We assumed most non-invasive samples were deposited since the last wind or snow event 

and were ≤ 9 days old in season one and ≤ 14 days old in season two. Fecal pellet samples from 

2 flocks in season one and 11 flocks in season two were assumed to be old and we were unable 

to predict the age of these samples. As we expected, detection of GRSG sign in sample plots was 

low, with evidence of use only detected in 2.5% of plots sampled in season one and 3.5% in 
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season two. The majority of flock-use sites (95.5%; n = 266) were sampled as incidental flock-

use sites.  

Collection locations for all genetic samples used in this study, including captures and 

flock-use sites, are shown in Figure 16. Based on large-scale area use patterns from all available 

GPS and VHF location data (Figure 17), our genetic samples generally occurred in the same 

areas of use as marked birds. 

 

 

Figure 16. Greater sage-grouse genetic mark-recapture sample locations in season one (2012-

2013) and season two (2013-2014), with winter resource selection function map layer, in the 

Parachute-Piceance-Roan population. 
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Figure 17. Greater sage-grouse winter locations of GPS-marked male and VHF-marked female 

locations, with winter resource selection function map layer, in the Parachute-Piceance-Roan for 

combined winter seasons, 1-November through 14 March. 

 

We collected 1089 genetic samples from multiple source types across seven sampling 

occasions in season one (2012-2013) and 1,268 across eight occasions in season two for a total 

of 2,357 samples during the two-year study period (Table 12). Roost piles were discovered at 

40% (48/120) of flock-use sites sampled in season one and 52% (76/146) of sites in season two. 

We terminated the last sampling occasion in both seasons early (on 14 March) to avoid potential 

sampling bias caused by birds (esp. males) moving toward leks at the start of the breeding 



95 
 

season. Sampling in occasion seven in season two was also incomplete because sampling efforts 

were hindered by adverse weather conditions. 

 

Table 12. Summary of samples collected and used in genetic mark-recapture analysis by sample 

type and year in the Parachute-Piceance-Roan greater sage-grouse population in northwestern 

Colorado in two winter seasons. 

 

Fecal 

Pellets 

Capture 

Feathers 

Flock 

Feathers Caecum Total 

Season 1 (2012-2013) 
     

No. Samples Collected 1,003 52 34 0 1,089 

No. Samples used in Analysis 929 52 15 0 996 

Season 2 (2013-2014) 
     

No. Samples Collected 1,198 39 29 2 1,268 

No. Samples used in Analysis 906 39 14 0 959 

 Seasons 1 and 2 combined 
    

  

No. Samples Collected 2,201 91 63 2 2,357 

No. Samples used in Analysis 1,835 91 29 0 1,955 

 

DNA from capture feathers had the highest rate of success for extraction and 

amplification with 100% (n = 91) of samples successfully analyzed (≥ 6 loci successfully 

analyzed), followed by DNA from fecal pellets (83%, n = 2,201), and feathers collected at flock-

use sites (46%, n = 63). Caecal samples had 0% success (n=2), and were not included in the 

analysis. Pellet samples constituted our largest data source (n = 2,201 of 2,357 total samples) and 

the majority (1,835) were successfully analyzed (Figure 18). QIAmp Fast Mini Stool Kits 

performed poorly for fecal samples and ~250 samples extracted using these kits were re-

extracted using the DNeasy 96 Blood and Tissue Kits with greater success. 
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Figure 18. Number of genetic samples collected and successfully genotyped (≥ 6 loci 

successfully analyzed) and used in genetic mark-recapture analysis, by sample type, collected at 

winter flock-use sites of greater sage-grouse in the Parachute-Piceance-Roan population in 

northwestern Colorado, 2012-2013 and 2013-2014. 

 

Each microsatellite loci used in our analyses performed well for fecal pellet samples with 

success rates > 90% for the sexing, SG29, SG36 and SG39 loci (Figure 19). Success rates for 

DNA from feathers collected at flock sites were much lower but with the same relative success 

rate for each locus. Capture feathers had the highest percentage of samples with seven 

successfully analyzed loci, followed by fecal pellet samples (77%) and flock site feathers (38%) 

(Figure 20). We found the MSP11 locus to be the most polymorphic with the greatest number of 

unique alleles (n=16), followed by SGMS06.6 and WY BG6 (n=11), SG29 and  
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Figure 19. Extraction and amplification success rates by microsatellite locus for non-invasively 

collected fecal pellets and feather samples collected at winter flock-use sites of greater sage-

grouse in the Parachute-Piceance-Roan population in northwestern Colorado, 2012-2013 and 

2013-2014. 

 

  

Figure 20. Percent of genetic samples with 0-7 successfully analyzed loci by sample type, 

collected at winter flock-use sites of greater sage-grouse in the Parachute-Piceance-Roan 

population in northwestern Colorado, 2012-2013 and 2013-2014. 
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SG39 (n=9), and SG36 (n=5). Observed heterozygosity for each locus was 0.69 (SGMS06.6), 

0.64 (Sexing), 0.77 (WY BG6), 0.79 (MSP11), 0.69 (SG29), 0.62 (SG36), and 0.66 (SG39). 

We identified 543 unique individual GRSG during the two sampling seasons (Table 13). 

The majority of individuals identified during our study (57% in season one and 76% in season 

two) had only one capture event in a single season (Figure 21), with the maximum of five 

captures for one individual in each of the winter sampling seasons. 

 

Table 13. Number of unique individual greater sage-grouse detected in each of two winter 

sampling seasons in the Parachute-Piceance-Roan population in northwestern Colorado. 
 

Season 1 

(2012-2013) 

Season 2 

(2013-2014) 

Combined 

Seasons* 

Males 62 154 195 

Females 173 236 348 

Total 235 390 543 

*Some individuals were detected in both seasons. 

 

 

Figure 21. Frequency of capture events per unique individual greater sage-grouse identified 

during winter genetic mark-recapture sampling efforts in the Parachute-Piceance-Roan 

population in season one (2012-2013) and season two (2013-2014). 
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We estimated flock sizes using the number of unique individuals identified at flock-use 

sites from genetic data. Winter flock sizes in the PPR ranged from 1-25 birds with an average of 

7.67 birds per flock in season one and 7.39 birds per flock in season two (Figure 22). The 

Figure 22. Observed winter flock sizes of greater sage-grouse in the Parachute-Piceance-Roan 

population in northwestern Colorado based on the number of unique individuals detected at 

flock-use sites in season one (2012-2013) and season two (2013-2014). 

 

majority of flocks were small with 73% of flocks having ≤ five unique individuals, 17% with 6-

10 individuals, and only 10% of flocks with > 10 individuals. We were unable to successfully 

analyze genetic samples from five flocks in season one and 12 flocks in season two due to poor 

quality DNA. As a result, those flock sites contributed no information to flock size statistics. 

Estimates of the number of birds present, based on track observations and the number of samples 

collected, suggest that those flocks were small, consisting of only 1-2 birds each. 
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 For flocks with sample extraction and amplification success rates < 25% (n=20), one 

consisted of a single down feather sample and one a single caecal sample. Of the other 18 flocks, 

four consisted of single fecal pellet samples and ≥ 10 had fecal pellets that were found in melted 

snow or were waterlogged, windblown, or appeared old (i.e. desiccated). 

 We collected and analyzed repeat fecal pellet samples for some individuals at flock-use 

sites in both winter seasons. While a large number of flock sample sets contained no repeat fecal 

pellet samples, a total of 75 flocks (63%) had ≥ 1 repeat sample in season one and 65 flocks 

(45%) in season two (Figure 23). An average of 28% (SD 0.27) of fecal pellet samples per flock  

 

Figure 23. Frequency of repeat greater sage-grouse fecal pellet samples for unique individuals 

collected and analyzed at the same flock location in season one (2012-2013) and season two 

(2013-2014). 
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fecal pellet samples; only 2 feather samples in season one and 3 feather samples in season two 

resulted in identification of unique individuals not already detected by fecal DNA. 

Based on AICc rankings, we found the greatest support for our interactive group (i.e., 

sex) and time effect model (p[g*t]) in season one, and our time varying model (p[t]) in season 

two (Table 14). These results suggest a difference in detection probability between the two sexes 

in season one but not in season two. 

 

Table 14. Table of model-averaged AICc results for Huggins’ Closed Mark-Recapture models in 

Program MARK, season one (2012-2013) and season two (2013-2014). 

Model Name AICc Delta AICc AICc 

Weights 

Model 

Likelihood 

No.  

Param. 

Deviance 

Season 1 (2012-2013)       

p(g*t) = c + region 1,618 0.00 0.736 1.00 14 1,590 

p(g+t) = c + region 1,621 2.50 0.211 0.287 8 1,605 

p(t) = c + region 1,624 5.26 0.053 0.072 7 1,610 

p(g) = c + region 1,646 27.07 0.00 0.00 2 1,642 

p(.) = c + region 1,648 29.80 0.00 0.00 1 1.646 

Season 2 (2013-2014)       

p(t) = c + region 2,077 0.00 0.727 1.00 8 2,061 

p(g+t) = c + region 2,079 1.98 0.271 0.373 9 2,061 

p(g*t) = c + region 2,089 11.85 0.002 0.003 16 2,057 

p(.)= c + region 2,471 394.26 0.000 0.000 1 2,469 

p(g) = c + region 2,473 396.23 0.000 0.000 2 2,469 

 

 

Model-averaged detection probabilities ranged from 0.100-0.326 for males and 0.085-

0.225 for females in season one (Table 15) and 0.00-0.168 for males and 0.00-0.167 for females 

in season two (Table 16). Based on model-averaged estimates of p, probability of being captured 

at least once during a sampling season (p*) was 0.797 for males and 0.674 for females in season 

one, and 0.525 for males and 0.522 for females in season two. 
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Table 15. Table of model-averaged capture probability parameter (p) estimates for Huggins’ 

Closed Mark-Recapture models by attribute group (sex), season one (2012-2013). 

  Capture Probability (p) by Sex 

Males Estimate SE LCI UCI 

Occasion 1 0.220 0.052 0.134 0.339 

Occasion 2 0.228 0.049 0.145 0.338 

Occasion 3 0.214 0.056 0.124 0.345 

Occasion 4 0.157 0.045 0.088 0.265 

Occasion 5 0.162 0.042 0.095 0.262 

Occasion 6 0.326 0.059 0.223 0.450 

Occasion 7 0.100 0.048 0.037 0.242 

Females 
    

Occasion 1 0.128 0.023 0.089 0.181 

Occasion 2 0.200 0.028 0.150 0.261 

Occasion 3 0.107 0.022 0.070 0.159 

Occasion 4 0.085 0.019 0.055 0.129 

Occasion 5 0.142 0.024 0.102 0.195 

Occasion 6 0.225 0.030 0.171 0.289 

Occasion 7 0.141 0.026 0.098 0.200 

 

Table 16. Table of model-averaged capture probability parameter (p) estimates for Huggins’ 

Closed Mark-Recapture models by attribute group (sex), Season two (2013-2014). 

Capture Probability (p) by Sex     

Males Estimate SE LCI UCI 

Occasion 1 0.039 0.008 0.026 0.058 

Occasion 2 0.158 0.019 0.124 0.198 

Occasion 3 0.066 0.011 0.048 0.091 

Occasion 4 0.168 0.020 0.133 0.210 

Occasion 5 0.129 0.016 0.100 0.165 

Occasion 6 0.131 0.017 0.102 0.167 

Occasion 7 0.000 0.000 0.000 0.000 

Occasion 8 0.001 0.001 0.000 0.004 

Females 
    

Occasion 1 0.039 0.008 0.026 0.057 

Occasion 2 0.156 0.018 0.125 0.194 

Occasion 3 0.066 0.010 0.048 0.089 

Occasion 4 0.167 0.018 0.134 0.207 

Occasion 5 0.128 0.016 0.101 0.162 

Occasion 6 0.130 0.016 0.102 0.164 

Occasion 7 0.000 0.000 0.000 0.000 

Occasion 8 0.001 0.001 0.000 0.004 



103 
 

Pre-breeding abundance estimates were similar for all fitted models within each year (77-

88 males and 243-261 females in season one (Table 17); 290-310 males and 451-487 females in 

season two (Table 18)). Model-averaged estimates of total pre-breeding abundance were 335 (78  

 

Table 17. Huggins’ Closed Mark-Recapture pre-breeding abundance estimates by model for 

male and female greater sage-grouse in the Parachute-Piceance-Roan with SEs and 95% lower 

and upper confidence intervals in season one (2012-2013). 

Model Name Est. N Males SE LCI UCI 

p(g*t) = c + region 77 5.92 69 94 

p(g+t) = c + region 78 6.03 70 94 

p(t) = c + region 87 6.86 77 105 

p(g) = c + region 78 6.20 70 96 

p(.) = c + region 88 7.03 78 106  
Est. N Females 

   

p(g*t) = c + region 257 17.63 229 300 

p(g+t) = c + region 258 17.67 230 300 

p(t) = c + region 243 13.79 221 276 

p(g) = c + region 261 18.18 232 304 

p(.) = c + region 246 14.17 223 279 

 

Table 18. Huggins’ Close Mark-Recapture pre-breeding abundance estimates by model for male 

and female greater sage-grouse in the Parachute-Piceance-Roan with SEs and 95% lower and 

upper confidence intervals in season two (2013-2014). 

Model Name Est. N Males SE LCI UCI 

p(t) = c + region 294 23.46 255 348 

p(g+t) = c + region 291 30.38 243 364 

p(g*t) = c + region 290 30.31 242 363 

p(.) = c + region 314 26.05 271 374 

p(g) = c + region 310 33.88 256 392  
Est. N Females 

   

p(t) = c + region 451 32.76 396 526 

p(g+t) = c + region 455 39.53 390 547 

p(g*t) = c + region 455 39.57 390 547 

p(.) = c + region 483 36.58 421 565 

p(g) = c + region 487 44.23 414 590 
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males and 257 females) in season one and 745 (293 males and 452 females) in season two 

(Tables 19-20). 

 

Table 19. Model-averaged estimates of pre-breeding abundance ( N̂ ) for male and female greater 

sage-grouse in the Parachute-Piceance-Roan with SEs and 95% lower and upper confidence 

intervals in season one (2012-2013). 

Sex Estimate ( N̂ ) SE LCI UCI 

Male 78 6.39 65 90 

Female 257 17.75 222 292 

Total 335 
 

287 382 

 

Table 20. Model-averaged estimates of pre-breeding abundance ( N̂ ) for male and female greater 

sage-grouse in the Parachute-Piceance-Roan with SEs and 95% lower and upper confidence 

intervals in season two (2013-2014). 

Sex Estimate ( N̂ ) SE LCI UCI 

Male 293 25.59 243 344 

Female 452 34.79 384 520 

Total 745 
 

627 864 

     

 

Our estimates suggest that pre-breeding abundance increased by 410 individuals (an 

approximate doubling of population size) from winter season one (2012-2013) to winter season 

two 2013-2014) (Tables 19-20). Males showed a greater increase in population size (376%) than 

females (176%). The change in pre-breeding abundance estimates of males from GMR analyses 

between winter 2012-2013 and winter 2013-2014 paralleled CPW lek-count index data between 

spring 2013 and spring 2014, with both showing a steep increase (Figure 24). 
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Figure 24. Graph of Colorado Parks and Wildlife lek-count index data showing summed high 

male counts across leks vs. estimates of male abundance from genetic mark-recapture analysis, 

including 95% confidence intervals, for the Parachute-Piceance-Roan greater sage-grouse 

population in northwestern Colorado. 

 

Based on our power analysis, we found that reducing the number of sampling occasions 

from six to four would increase SEs of our estimates by a factor of 2-3 for season one estimates 

and 1.5-1.7 for season two estimates. Even if precision of estimates for a smaller number of 

sampling occasions are acceptable, we still need to be cautious of potential bias in our estimates 

when using data from ≤ five sampling occasions with potential detection probabilities of ≤ 0.1, 

as was suggested by the results from our preliminary power analysis.  Increasing the number of 

complete occasions to eight would have reduced SEs by a factor of 0.47-0.59 in season one and 

0.62-0.66 in season two.  
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DISCUSSION 

We were able to obtain precise estimates of abundance for a small, low-density 

population of GRSG using non-invasive winter sampling of fecal pellets (and to a lesser extent, 

feathers) at flock-use sites. We estimated more than a doubling in pre-breeding abundance 

between the two sampling seasons. Our GMR estimates paralleled data from the lek-count index 

and the results collectively suggest that the GRSG population in the PPR was at a relative low 

point in 2013 and rebounded strongly in 2014.  

Population dynamics of GRSG are similar to other ground-nesting, upland game birds in 

that they often exhibit large annual fluctuations in population size due to environmental factors  

(Connelly et al. 2011, Fedy & Doherty 2011), most likely driven by annual variation in 

productivity (Holloran 2005, Huwer et al. 2008, Taylor et al. 2012). Large fluctuations can be 

either attributed to local recruitment, resulting from high (and possibly correlated) annual 

variation in key vital rates that drive population growth, including nest success, chick and 

juvenile survival, and female survival (Taylor et al. 2012), or movement of animals between 

populations (i.e., immigration and emigration). Large annual fluctuations in lek-counts have been 

observed throughout the species’ range (Rich 1985, Fedy & Aldridge 2011, WAFWA 2015). 

However, based on life-stage simulation analyses (Walker 2008, Taylor et al. 2012), the 

magnitude of increase in abundance we observed (female-based lambda = 1.75; 95%, C.I. 1.40-

2.12) represents a fairly extreme population growth rate requiring high rates of nest initiation, 

nest success, and juvenile survival , if based solely on local recruitment. Because demographic 

and geographic contributions to the population were not monitored during this study, it is 

unknown whether the increase in population size can be attributed solely to an excellent year for 

recruitment or immigration from neighboring populations. There has been no evidence of marked 



107 
 

birds emigrating from the PPR population in more than 10 years of intensive study (CPW, 

unpublished data), and the PPR is a geographically isolated population at the southern edge of 

the species’ range in Colorado, so high rates of immigration are unlikely. However, rates of 

immigration into the PPR from other larger, neighboring populations to the north are currently 

unknown.  

We propose that the apparent large increase in population size in the PPR was likely the 

result of extensive recruitment of juveniles following the 2013 breeding season. Our estimates of 

male and female population size increased by a factor of 3.77 and 1.76, respectively, between 

winter 2012-2013 and winter 2013-2014. Because mortality rates of juvenile males increase as 

they mature and enter the breeding population (Zablan et al. 2003), the disproportionate increase 

in males in the population in season two can be explained by low abundance of males in the 

previous year combined with the fact that we estimated sex ratio prior to high breeding-season 

mortality of males. The result would be a significant increase in the proportion of juvenile males 

in the population in the second year of our study. Several studies estimated male-to-female sex 

ratio at hatch to be 1:1 (Atamian and Sedinger 2010, Guttery et al. 2013) with male and female 

juveniles shown to have no difference in survival from September through March (Beck et al. 

2006). If true for most populations, any contribution to the population from recruitment is 

expected to be approximately the same for males and females through the end of their first 

winter. Because male numbers in the PPR were estimated to be much lower than females in 

season one, a subsequent year of high productivity and juvenile survival would result in a much 

larger proportional increase in the male population.  

While the magnitude of increase for our GMR estimates and CPW’s lek-count index data 

were similar, high male counts at leks did not closely match male abundance estimates in either 
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year. Based on our current understanding of the PPR population, we are uncertain which factors 

most influence high male counts, though we suspect that an interaction of factors may be 

responsible for the differences. In 2013, the lek-count index high male count was 129, compared 

to our estimates of 78 males (95% C.I. 65-90). We speculate that the higher number of males 

counted on leks may be due to inter-lek movement of males in the population during the count 

period, resulting in some males being counted at > 1 lek. Some researchers have reported that 

inter-lek movement of males is rare (Gibson et al. 2014), but males in other studies have been 

shown to attend multiple leks within a season (Fremgen et al. 2017). In support of this 

possibility, a concurrent CPW study of the same population revealed that some males attended 

multiple leks during our sampling period (B. Walker, CPW, unpublished data). The frequency of 

these movements and whether they are consistent among years is unclear. Multiple counts of 

individual males are more likely to occur, rather than males being missed altogether, because 

CPW’s lek monitoring protocols require multiple visits to each lek within a season. Moreover, 

the number of lek-count surveys increased during this study as a result of more intensive survey 

efforts from combined field research crew surveys, early-season survey flights and dual-frame 

flights that resulted in ≥ six visits to some lek sites. In contrast, CPW’s high male count in 2014 

(249) was lower than our GMR estimates (293; 95% C.I. 243-344), though still contained within 

the 95% confidence interval. While there was also evidence of inter-lek movement of males in 

2014, lower attendance rates of yearling males may have been a larger factor, particularly if a 

large increase in the proportion of yearlings occurred prior to the 2014 breeding season. Yearling 

males exhibit lower lek attendance rates than adult males (Walsh et al. 2004), a factor that may 

have reduced lek-count index values in 2014. The three-year running-average used by CPW to 

smooth out uncontrolled annual environmental variation was even further from male GMR 
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estimates than raw annual lek counts during the two years of our study, suggesting that these 

averages more poorly correspond to true population size.  

Genetic mark-recapture methods may be useful for larger populations if methods are 

adjusted to reduce costs (e.g., by randomly selecting a subset of samples to analyze from each 

flock). However, these cost savings may come at the expenses of lower precision of estimates. 

Sampling only roost piles would also minimize (or perhaps eliminate) the probability of 

sampling individuals multiple times at flock sites and the cost associated with analyzing those 

additional samples. In our study, we attempted to collect ≥ 1 genetic sample from each individual 

present at each flock-use site. This was possible due to the relatively small size of flocks (≤ 25 

individuals) in this population. Sampling of roost piles, when available, was the most efficient 

and cost effective strategy. However, roost piles were only found at 40% of flock locations in 

season one and at 52% in season two, so sampling only roost piles would have substantially 

reduced our sample size and precision of estimates. In the absence of roost piles, sampling of 

individual pellets (i.e., those found along tracks) resulted in a number of repeat samples being 

analyzed for the same individuals at some flock locations; ~25% of fecal pellet samples collected 

were repeat samples from individuals already detected in the same flock. We recommend 

collecting samples from roost piles when possible. We also recommend collecting individual 

pellets from flock-use sites, then selecting a random sample from each site for genetic analysis if 

necessary. This strategy would require little additional effort in the field, and provides the option 

to analyze additional samples later if the project budget allows or additional funding becomes 

available. The collection and analysis of feather samples from flock-use sites offered little 

benefit to our mark-recapture datasets due to small sample sizes and lower success rates for 

DNA analysis. In our study, flock feathers contributed only 5 unique identifications for 
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individuals not already identified using DNA from fecal pellets and may not warrant the 

additional cost of genetic analysis. 

We believe we adequately met assumptions of population closure, both demographic and 

geographic, required for unbiased mark-recapture estimates of abundance. First, the PPR 

population of GRSG is geographically isolated from neighboring populations, which reduces the 

likelihood of immigration or emigration in winter. In GRSG, dispersal occurs primarily among 

yearlings in spring (Thompson 2012). Second, unlike other populations in Colorado, there is no 

evidence of marked birds moving into or out of the population during our study or indeed, during 

winter or any other season from 2006-2016 (B. Walker, CPW, unpublished data). Third, 

sampling in winter ruled out any possibility of local recruitment from births. Fourth, mortality 

likely had little impact on our abundance estimates. We observed high overwinter survival of 

both GPS and VHF-marked birds during our study, with 95-97% of marked adults and yearlings 

alive and available for sampling throughout the majority of our winter sampling seasons. 

The majority of birds were sampled non-invasively using fecal pellets as a DNA source, 

resulting in little disturbance to the population. Unlike traditional mark-recapture studies that 

involve invasive trapping, marking, and either recapture or resighting of animals, non-invasive 

sampling largely eliminates concerns about negative impacts on individual or population-level 

behavior or survival and concerns about animals becoming trap-happy or trap-shy. Only a small 

number of birds in our sample were physically captured and marked and this was done primarily 

to test the closed-population assumptions of our models or as part of other research.  

Based on previous work on Gunnison sage-grouse pellets (Oyler-McCance and St. John, 

unpublished report), we anticipated a low rate of success in amplification of GRSG DNA from 
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fecal samples. In that pilot study, fecal pellets were collected on leks during the spring when 

temperatures were generally warmer and more variable, which may have contributed to faster 

degradation of DNA. Factors that contributed to our high amplification success rates likely 

included: (1) sample handling and storage methods that minimized thawing, refreezing and 

exposure to UV radiation; (2) sampling in winter means most samples became frozen, or 

remained cold, in snow after defecation, reducing degradation of DNA; (3) sampling only pellets 

deposited since the last wind of snow event which resulted in most fecal pellet samples being 

relatively fresh (recently deposited since the last snow or wind event), (4) sampling pellets (e.g., 

from the middle of roost piles) which were relatively protected from UV radiation and absorption 

of excess moisture from contact with snow; and (5) removal of excess snow and the use of 

desiccant packets to reduce excess moisture. Baumgardt et al. (2013) suggest that DNA from 

GRSG fecal pellets have slow rates of degradation in the winter, based on samples with ≤ 34 

exposure days—the majority of our samples were exposed for ≤ 14 days. Fecal pellet samples 

from flocks with low success rates for genetic analysis suggest that environmental factors (e.g., 

UV exposure, fluctuating temperatures, desiccating winds), and thawing (e.g., warm daily 

temperatures that caused melting snow and allowed pellets to thaw, then refreeze when 

temperatures dropped overnight), impacted the quality of DNA in fecal pellet samples. Previous 

studies suggest an effect of diet on amplification success of some fecal DNA (Murphy et al. 

2007, Panasci et al. 2011) including success rates for GRSG (Baumgardt et al. 2013).  Exclusive 

consumption of sagebrush by GRSG may have influenced the success rate of DNA analysis (e.g. 

by reducing the presence of extraction inhibitors in our samples) but this possibility needs to be 

investigated. Each of these factors potentially contributed to our ability to maintain the integrity 

of DNA quality and successfully extract and amplify DNA. Our two-step amplification process 
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was also designed to increase success rates for low quality DNA obtained from passively-

collected sources. Low analysis success rates of feather samples collected at flock sites was not 

surprising because those samples consisted of small down feathers for which a very small 

amount of quality DNA was present at the tip of the rachis. As with any project involving the use 

of genetic materials, particularly those involving low quality sources of DNA, proper training 

and supervision of field and laboratory technicians is also critical for obtaining high-quality 

results and preventing cross-contamination of samples.  

We observed relatively low detection probabilities that differed by sex in one of our two 

sampling seasons. We suspect that segregation of birds by sex in winter, and possibly also male 

age composition, may have influenced these detection probabilities. Male and female GRSG are 

reported to segregate during winter months with male and female-dominated flocks using 

slightly different habitats (Beck 1977). To address this possibility, we modeled our data using sex 

as a grouping covariate to account for heterogeneity in capture probabilities resulting from 

variation in habitat use or flock size between the sexes. We found strong support for a sex effect 

in season one, but not in season two. Two factors may have contributed to lower detectability in 

2013-2014. First, more frequent winter storms in the latter part of the season may have resulted 

in fewer detections because tracks and pellets were more often covered by wind or fresh 

snowfall. For example, estimated capture probabilities were extremely low in sampling 

occasions seven and eight in season two (0.000 and 0.001, respectively), a consequence of 

adverse weather conditions that largely inhibited sampling. Second, an increase in the abundance 

of GRSG in season two may also have lowered capture probabilities because the presence of 

more birds, and presumably more flocks, meant we were likely unable to sample the same 

proportion of flock-use locations with the same amount of survey effort. 
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The use of a spatial covariate was necessary to model heterogeneity in capture 

probabilities between individuals residing in different regions of the study area. Winter access 

restrictions for some private property in the southern half of the study area prevented equal 

sampling effort in all areas. While we did observe frequent movements of marked GRSG 

between accessible and inaccessible areas, birds that remained in inaccessible areas were 

expected to have lower capture probabilities. Two areas in the southwest portion of the study 

area, 4A Mountain and Kimball Mountain, also were not sampled due to logistical and safety 

issues in winter. However, we believe these areas support few, if any, GRSG during breeding 

and winter due to limited and poor quality habitat and extremely few observations of sage-grouse 

in these areas in the past decade (based on extensive helicopter surveys). If these areas did host a 

small number of birds, failing to account for them may have led to a small negative bias in our 

GMR abundance estimates. Additionally, the majority of our pellet samples were collected from 

incidental flock locations detected while traveling along roads to and from random plot locations. 

It is unknown if this introduced any biases to our estimates, however, we believe this is unlikely 

given that nearly all GRSG habitat in the PPR contains access roads and we sampled a large 

number of random plots to ensure adequate spatial coverage of the study area. 

While we found that genetic mark-recapture can provide robust estimates of abundance in 

small populations, both field data collection and laboratory analyses were expensive and labor 

intensive, likely making genetic mark-recapture analyses impractical for annual monitoring of 

GRSG populations. Cost per sample for DNA analysis will depend on multiple factors including 

costs for laboratory analysis, volume of samples analyzed, number of microsatellite loci 

amplified, and number of samples requiring repeated analysis. In general, our analysis costs were 

~$100 per fecal pellet sample and slightly less for feather samples. Multiple amplification rounds 
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on each of our samples to confirm genotypes added to analysis costs. However, costs may be 

reduced if researchers elect to rely on methods to test for and model genotyping error rates (e.g., 

blind samples) rather than repeating analysis for each individual sample to obtain a consensus 

genotype. Field sampling costs are associated with multiple factors including study area size, 

difficulty of winter access, sampling strategy, and number of sampling occasions. Despite the 

high cost of these methods, GMR may be justified in years when precise estimates of population 

size are critical for management decisions, to provide baseline estimates of abundance prior to 

changes in land-use or experimental habitat treatments, or at regular intervals to calibrate less 

robust estimates of abundance such as the lek-count index.  

Our abundance estimates provide insights into the relationship between the lek count and 

true population size in the PPR. During our period of study, we estimated an approximate 

doubling of the male population, an increase in population size reflected in both the GMR 

estimates and the lek-count index. However, it is unclear if these two monitoring methods would 

lead to similar inference in years with a smaller magnitude of change in population size. 

 

MANAGEMENT IMPLICATIONS 

Application of genetic mark-recapture methods using winter fecal pellet samples can 

provide accurate baseline estimates of pre-breeding abundance of GRSG for small populations 

that are crucial for assessing both current and future status of GRSG populations. However, the 

methodology is expensive, time consuming and logistically challenging to employ. In contrast, 

the lek-count index, widely used to monitor sage-grouse populations, is cheaper and easier to use 

but the relationship between those counts and true population size is largely unknown. 
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Additionally, the lek index has no associated estimates of precision, provides no insights to the 

abundance of females, and is subject to several unmeasured sources of sampling bias.  

Our estimates suggest that the lek-count index (and especially use of a three-year moving 

average) may mask actual fluctuations in population size rather than controlling for unmeasured 

biases. In contrast to GMR estimates, the lek-count index is subject to numerous factors that 

affect the index including inconsistent attendance of leks by males, inter-lek movement of males 

leading to over-counting, and an unknown number of leks that are not surveyed. Collectively, not 

accounting for these factors may significantly undermine the utility of the lek-count index as a 

reliable method to infer status and trend of GRSG populations in the PPR.  
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CHAPTER 4: ESTIMATING WINTER SEX RATIO AND FLOCK COMPOSITION OF 

GREATER SAGE-GROUSE (CENTROCERCUS UROPHASIANUS) FROM NON-INVASIVE, 

GENETIC MARK-RECAPTURE ANALYSIS OF FECAL PELLETS IN NORTHWESTERN 

COLORADO4 

 

SUMMARY 

A population’s sex ratio, and the extent to which it varies over time, is an important 

factor for management and conservation of wildlife species. However, this population metric can 

be difficult to quantify in species where the sexes are not equally detectable. The greater sage-

grouse (Centrocercus urophasianus) is a species of conservation concern throughout its range in 

North America due to historical range-wide declines in abundance and distribution. Sage-grouse 

populations are primarily monitored using counts of males at traditional breeding grounds, or 

“leks”, in the spring as an index of population size and trend. Unfortunately, lek counts provide 

little information about female abundance, a key driver of sage-grouse population growth. 

Available estimates of sex ratio for many sage-grouse populations are thought to be biased due to 

the sampling methodologies used. There is a need for managers to obtain reliable estimates of  
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sex ratio, and to understand the extent to which it varies annually, to estimate effective 

population size and likelihood of persistence. We estimated pre-breeding sex ratio during two 

consecutive winter seasons using data from a mark-recapture study in a small, low-density 

population of greater sage-grouse in northwestern Colorado. Sex ratio varied markedly between 

the two years, with male-to-female estimates of 1:3.29 in winter 2012-2013 and 1:1.54 in 2013-

2014. We found evidence of segregation of males and females in winter flocks in 2012-2013 but 

not in 2013-2014, a year of much higher overall abundance. Wildlife agencies should consider 

the potential for large annual variation in sex ratio of sage-grouse populations if extrapolating 

female or total abundance from male lek-count data. 

 

INTRODUCTION 

Population Sex Ratio 

A population’s sex ratio, and the extent to which it varies annually, is an important factor 

for management and conservation of wildlife species. For species of conservation concern, 

reliable information on sex ratios are required to estimate effective population sizes and as inputs 

to population viability analyses (Frankham 1995, Lens et al. 1998, Brook et al. 2000 Saether 

2004). Effective population size provides key insights into a population’s persistence likelihood 

(Lande and Barrowclough 1987, Frankham 1995). However, adult sex ratios, and their patterns 

of variation, are often poorly understood and quantifying these metrics can be challenging, 

particularly if one sex is more difficult to detect (Donald 2007). In these cases, information on 

population sex ratio is required to make inference to total abundance. 



128 
 

The greater sage-grouse (Centrocercus urophasianus) (hereafter “sage-grouse”) is a 

species of conservation concern that has experienced range-wide declines in population 

abundance and distribution throughout the past century, (Autenrieth 1981, Connelly & Braun 

1997, Schroeder et al. 1999, Schroeder et al. 2004, Aldridge et al. 2008, Garton et al. 2015). 

Sage-grouse populations are commonly monitored using high counts of males during the spring 

breeding season as they gather to display on traditional strutting grounds known as leks 

(Patterson 1952, Connelly et al. 2003). Lek counts typically follow standardized protocols that 

specify season dates, recommended number of visits per lek per season, time of day, and weather 

conditions suitable for counting strutting males (Connelly et al. 2003). These counts serve as an 

index for populations over large areas and are widely used by state wildlife agencies throughout 

the western United States (Connelly et al. 2004). However, because female sage-grouse are more 

difficult to detect and do not regularly attend leks, lek counts provide little information about 

female abundance or population trend. For this reason, many wildlife agencies either do not 

record female counts or consider data on female detections unreliable. However, female 

population size is a critical metric for management because it directly reflects the growth 

potential of a population, and is particularly relevant for polygamous species for which not all 

males successfully breed in a given year (Johnson & Rowland 2007).  

A key untested assumption of monitoring programs based on the lek-count index is that 

sex ratio remains constant across years, however, few reliable data are available to test that 

assumption (Walsh et al. 2004, Connelly et al. 2011, Sedinger 2007). Available estimates of 

male-to-female sex ratios favor females, and wildlife agencies often assume a ratio of 

approximately 1:2 (PPR-GSGWG 2008, CGSSC 2008, Atamian and Sedinger 2010, USFWS 

2010, Garton et al. 2011). However, using lek-count data to estimate female and total population 
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size is questionable if sex ratios have not been validated (CGSSC 2008, Guttery et al. 2013). 

Estimating this metric is difficult because sex ratios of sage-grouse populations are known to 

vary seasonally (Shyvers 2017, Chapter 3) as a result of differential survival of males and 

females, with male mortality increasing as birds age (Patterson 1952, Braun 1984, Swenson 

1986, Zablan et al. 2003). In addition, sage-grouse show substantial annual and geographic 

variation in survival that affects both sex ratio and population age structure (Connelly et al. 2011, 

Taylor et al. 2012).  

Variation in sex ratio estimates among sage-grouse populations throughout the species’ 

range have been documented (Connelly et al. 2011). Unfortunately, no studies to date have 

investigated annual variation in sex ratio, and many available estimates may not be applicable to 

spring breeding populations. Studies have estimated a male-to-female sex ratio of ~1:1 at hatch 

(Bush 2005, Atamian and Sedinger 2010, Guttery et al. 2013) and at 42 days of age (Guttery et 

al. 2013). However, because of differential mortality of juvenile and adult males, and variation in 

annual rates of juvenile mortality, these ratios are not useful for estimating sex ratio of breeding 

populations the following spring. Sex ratios have been estimated in several states using data from 

hunter-harvested birds (Connelly et al. 2011). These estimates, obtained from an analysis of birds 

harvested in the fall using wing characteristics to classify birds to sex and age class (Eng 1955, 

Crunden 1963, Braun et al. 2015), were generally greater than 1:2, but varied markedly among 

years and locations (Connelly et al. 2011, Braun et al. 2015). While estimates from fall harvest 

data suggest that sex ratios are consistently female-biased, they are unlikely to accurately reflect 

breeding-season sex ratio due to annual variation in fall and winter mortality rates for different 

age and sex classes, selective harvest of specific age and sex classes, and differential 

vulnerability of certain age or sex classes to harvest (Connelly et al. 2000, Wik 2002). 
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Sex ratio estimates for pre-breeding (winter) populations may accurately represent sex 

ratio of breeding populations if they are based on unbiased sampling methods. Overwinter 

survival of sage-grouse is typically high (Robertson 1991, Wik 2002, Hausleitner 2003, Beck et 

al. 2006, Batazzo 2007, Connelly et al. 2011), so an estimate of winter sex ratio should be 

representative of sex ratio at the start of the breeding season. Visual estimates of the sex 

composition of winter flocks yielded male-to-female sex ratio estimates of 1:1.56 to 1:1.63 in 

Colorado (Beck 1977). However, visual estimates may be biased by misidentification of the sex 

of juvenile birds (which can be difficult to distinguish from females in the field at a distance), 

lower detection probability of small flocks that may have a different sex composition, or missing 

data (e.g., ~15% of 5,105 birds on winter counts in Colorado could not be correctly sexed; Beck 

1977). Estimates of sex ratios from spring counts at leks (Keller et al. 1941, Patterson 1952) are 

not considered reliable because of high temporal variation in both female and male lek 

attendance (Patterson 1952, Johnson & Rowland 2011). More recent studies using mark-resight 

estimates of male and female abundance estimated spring male-to-female sex ratios for greater 

and Gunnison sage-grouse to be less than 1:2 (Walsh 2004, Stiver et al. 2008). However, these 

studies were not based on random population sampling and did not investigate annual variation 

within the study populations.  

 

Genetic Sampling 

Recently, several authors have suggested that genetic analysis of winter fecal samples 

would provide more reliable estimates of pre-breeding sex ratio (Garton et al 2011, Baumgardt et 

al. 2013). Sex determination of birds from DNA samples, using amplification of the CHD gene, 

has proven to be useful in several studies (Lens et al. 1998, Whittingham and Dunn 2000, 
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Baumgardt et al. 2013). Non-invasive genetic sampling using non-invasively collected sources of 

DNA (e.g., fecal pellets or shed feathers) is a promising tool for conservation and management 

of wildlife species and can provide valuable information that cannot be obtained using traditional 

monitoring approaches (Schwartz et al. 2006). However, challenges arise because passively 

collected genetic samples, such as feces and shed feathers, are often characterized by low quality 

DNA and frequently result in genotyping errors (e.g., allelic dropout and PCR-generation of false 

alleles) (Tablerlet et al. 1996, Panasci et al. 2011, Buchan et al. 2005, Broquet et al. 2007, Hogan 

et al. 2007, Baumgardt et al. 2013) that can be highly variable among samples (Miquel et al. 

2006). Fortunately, it is possible to overcome challenges of low quality DNA with improved 

field collection methods and laboratory protocols that minimize the occurrence of low 

genotyping success rates and genotyping error (Paetkau 2003, Panasci et al. 2011, Marucco et al. 

2011, Lampa et al. 2013).  

We used data from a genetic mark-recapture study (Chapter 3) to estimate pre-breeding 

sex ratio during two consecutive winter seasons in a geographically isolated greater sage-grouse 

population in northwestern Colorado. Specifically, we: 1) estimated annual variation in sex ratio 

based on sex-specific population estimates derived from genetic analysis of fecal pellets and 

feathers (Chapter 3); 2) quantified sex composition of winter flocks; and 3) investigated sample 

size requirements for obtaining accurate sex ratio estimates. 

 

Study Area 

The Parachute-Piceance-Roan (PPR) population is one of seven recognized greater sage-

grouse populations in northwestern Colorado (Figure 25; CGSSC 2008). This small, low-density  
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Figure 25. Study area map of the current (2012) occupied range boundary for the core Parachute-

Piceance-Roan greater sage-grouse population in northwestern Colorado, with shaded relief. 

 

population constitutes approximately 4% of Colorado’s total population based on lek-count data 

(CGSSC 2008, PPR-GSGWG 2008). The PPR is characterized by diverse terrain with broad 

ridge tops that drop off into steep drainages and canyons on the western and southern extents. 

Greater sage-grouse in this population are largely restricted to sagebrush, sagebrush- grassland, 

and to a lesser extent, mixed sagebrush-mountain shrub on ridge tops, plateaus, and shallow 

drainages (Figure 26) at elevations from 2,000 – 2,750 m. (PPR-GSGWG 2008, Walker at al. 

2016).  
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Figure 26. Winter resource selection function map showing areas of greater predicted relative 

intensity of use within the Parachute-Piceance-Roan greater sage-grouse occupied range 

boundary (Walker et al. 2016). 

 

Vegetation on ridge tops is dominated by a mosaic of mountain big sagebrush (Artemisia 

tridentata vaseyana), mixed sagebrush and mountain shrubs, and pinyon-juniper (Pinus edulis, 

Juniperus spp.) woodlands with scattered patches of aspen (Populus tremuloides) and conifers. 

Winters in the PPR are generally characterized by deep snow and sage-grouse habitat use is 

restricted by the availability of exposed sagebrush cover. The area is covered by a network of 

developed oil and gas access roads and undeveloped two-tracks along ridge tops and drainages 
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that facilitate access. The PPR is geographically isolated, but not genetically distinct, from other 

Colorado populations (PPR-GSGWG 2008). While male-to-female sex ratio for the breeding 

population in Middle Park, Colorado was estimated in one year (e.g., 1:2.2 in 2001, Walsh 2002, 

Walsh et al. 2004), there are currently no estimates of sex ratio available for other populations, 

including the PPR. 

 

METHODS 

Sage-Grouse Captures and Survival Monitoring 

We trapped and marked GRSG in the study area from mid-July through early November 

in 2012 and 2013 to estimate winter survival. Colorado Parks and Wildlife’s (CPW, USDA 

Registration #84-R-0045) Animal Care and Use Committee approved all trapping, handling, and 

marking methods and we obtained inter-agency approval from Colorado State University (CSU) 

(#07-2011 and #08-2012; Appendices E-I). We aged and sexed captured birds using plumage 

characteristics, molt patterns, weight, tarsal length, and head length, then banded all captured 

birds with uniquely numbered aluminum leg bands. Non-juvenile males were affixed with 30-g, 

rump-mounted, solar-powered GPS PTT satellite transmitters (Northstar Science and 

Technology, King George, VA) or 22-g, battery-powered, and juvenile males and females VHF 

necklace collars equipped with mortality sensors (Advanced Telemetry Systems, Isanti, MN). 

We collected a feather sample for genetic analysis from the flanks of each captured bird using a 

sterile nitrile glove, and stored samples in Whirlpak© bags or paper envelopes. A small number 

of additional samples were collected from birds captured by CPW during the lekking season. See 

METHODS in Chapter 3 for trapping, collar-attachment, and monitoring details. 
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Non-Invasive Genetic Sampling  

We performed non-invasive genetic sampling of greater sage-grouse fecal pellets and 

shed feathers during two consecutive winter seasons, early November to mid-March in 2012-

2013 and 2013-2014. We divided the study area into 200 x 200 m plots and selected a spatially-

balanced random sample of approximately 1,000 plots using a reversed randomized quadrant-

recursive raster (RRQRR) algorithm (Theobald et al. 2007) and divided plots into sets of 30; a 

subset of which was sampled (Figure 27). Plots selection was stratified using values from 

breeding habitat resource selection function layers (Walker 2010). 

We were initially concerned that high winter site fidelity of greater sage-grouse might 

result in few recaptures and low detection probability if new sample plots were surveyed each 

occasion. We surveyed plot sets in a rotating panel to balance this concern with sufficient 

sampling of the population. This was accomplished by selecting two sets (60 plots total) in a 

rotating fashion (i.e. occasion 1 included sets 1 and 2, occasion 2 included sets 3 and 4, occasion 

3 included sets 1 and 5, occasion 4 included sets 2 and 6, and so on) so that no plot was sampled 

on more than 2 occasions. Sampling occasions were allowed to overlap temporally but not 

spatially to facilitate more intensive sampling during good weather and snow conditions and to 

reduce overall commute times to distant or difficult-to-access parts of the study area. 

To collect fecal pellet and feather samples for analysis, we accessed plots by truck or 

snowmobile and surveyed on foot/snowshoe to locate sites used by flocks. Survey transects 

varied in width to ensure full coverage of each plot given variation in terrain, vegetation, snow, 

and weather conditions that influenced visibility of bird sign. We did not survey areas of non- 

habitat, such as pinyon-juniper woodlands and cliffs, and we did not conduct surveys during  
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Figure 27. A subset of a spatially-balanced random sample of plots used for sex ratio sampling 

during winter seasons in 2012-2013 and 2013-2014, with winter resource selection function 

maps from Walker at al. 2016. 

 

adverse weather conditions (i.e., heavy snow or wind) that would substantially reduce our 

detection probability. Surveys were delayed for a minimum of 24 hrs following a wind or snow 

event to allow birds time to leave tracks and deposit pellets. Because of the low density of birds 

in our study area, we surveyed additional suitable habitat on foot and used binoculars to add 

detections while traveling to and from random plots. All incidental flocks sampled were assigned 

the sample occasion number of the associated plot. We withheld location data for GPS and VHF-



137 
 

collared birds from crews conducting field surveys, and telemetry searches were performed 

separately from random surveys to avoid sampling bias associated with prior knowledge of 

marked bird use locations. 

When a flock was detected, we searched the area for evidence of a roost site, estimated 

the number of birds in the flock, and marked the locations of individual pellets and roost piles 

with colored pin flags. For flock sites where roost piles were not detected and track density 

suggested a large number of birds had been present, we marked a 20 ft length of the track paths 

with flagging and collected all pellet and feather samples within the marked area. Pellets and 

feathers were collected using fresh nitrile gloves for each sample to avoid cross-contamination 

and carefully removed snow and debris from each fecal pellet sample without scraping the pellet 

surface to avoid accidental removal of DNA. We collected a total of 8-10 pellets from each roost 

pile. Individual pellets were combined in the same sample bag only if they came from the same 

roost pile or were otherwise known to be from the same bird. Feathers located at flock-use sites 

were always packaged separately. Caecal samples were collected only when other sources of 

DNA were not available. Samples were placed in 4-oz Whirlpak© bags (eNasco, Fort Atkinson, 

WI) with 1-g silicone desiccant packets (Fisher Scientific, Houston, TX) to absorb excess 

moisture, packed in snow until transferred to a -20ᵒ F, manual defrost freezer for temporary 

storage. Samples were later transferred to a -80ᵒ F freezer until analysis. We avoided thawing, re-

freezing, and exposure of samples to UV radiation to maintain DNA integrity.  

We attempted to collect at least one fecal or feather sample from each individual bird 

present at each flock-use site. We targeted roost piles (Figure 28) for sampling to minimize the 

number of samples required for collection. Because they are produced by a single bird, sampling 

from roost piles reduces the likelihood of individual birds being represented multiple times 
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(Baumgardt et al. 2013) and provides confidence that all birds present at a flock site were 

represented in the samples collected. When roost piles were not present, sampling often required 

collecting more pellets than birds present to ensure we obtained ≥ 1 sample from each bird.  

 

 

Figure 28. Example of a greater sage-grouse fecal pellet roost pile (center), targeted for genetic 

sampling, and caecal dropping (upper left). Photo credit: J. Shyvers 
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ANALYSIS 

Genetic Analysis of Samples  

We isolated DNA from fecal pellet and caecal samples following the Qiagen (Hilden, 

Germany) protocol from Human Stool DNA isolation using QIAmp DNA Stool Mini Kits, 

QIAmp Fast DNA Mini Kits, or in 96-well plates using the DNeasy 96 Blood and Tissue Kit 

(Qiagen) following the Animal Tissues protocol. Fecal pellet extractions were performed under a 

ventilation hood dedicated to low-quality DNA extractions. DNA extractions from feather 

samples were performed using DNeasy Blood and Tissue Kits (Qiagen) following a user-

developed protocol for purification of DNA from nails, hair, or feathers.  

We used 7 microsatellite loci to identify individual GRSG, including 6 polymorphic loci 

(BG6; Piertney and Hoglund 2001, SGMS06.6 and MSP11 (Oyler-McCance and St. John 2010) 

and SG29, SG36, and SG39 (Fike et al. 2015)) and one sexing locus (a region of the CDH gene 

using the primers 1237L (GAGAAACTGTGCAAAACAG) and 1272H 

(TCCAGAATATCTTCTGCTCC; Kahn et al. 1998)). These microsatellite loci were known to 

be the most polymorphic and reliable based on previous work on Gunnison sage-grouse by 

Oyler-McCance and St. John (2010). Loci were amplified using a multiplex pre-amplification 

method (Piggott et al. 2004). Because DNA from non-invasively collected sources, particularly 

fecal DNA, are typically low in quality and at increased risk for genotyping error (e.g. allelic 

dropout during PCR), we repeated the amplification process to confirm results for all samples. 

We amplified all samples twice with the aim of obtaining two complete matching multi-locus 

genotypes. In addition, we ran positive and negative controls within each sample set to maximize 

quality and consistency of genotyping. Samples with unsuccessful amplification of most loci 
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were re-extracted and re-amplified at least twice. Detailed protocols for all modified extractions 

and PCR steps are described in Appendix M. 

We compared corresponding genotypes and generated a consensus genotype for each 

sample. We defined a successful locus determination as a score confirmed by one or more rounds 

of amplification (see Appendix M for details). To be included in our data analysis, samples were 

required to have a minimum of 6 of 7 successful loci determinations. Unique individuals and 

their capture histories were determined using Dropout Utility 1.2 & Dropout 2.3.1 (McKelvey & 

Schwartz 2005). Feather samples from captures of radio-collared birds that died prior to the start 

of each winter sampling season were excluded from the data. Inclusion of data from juveniles 

with unknown fates was determined using survival estimates from the literature (see ANALYSIS 

in Chapter 3 for details on mark-recapture analysis). 

 

Sex Ratio Analysis Models 

Estimates of pre-breeding abundance of both males and females (i.e., naïve estimates of 

sex ratio) were obtained using “Huggins’ Closed Mark-Recapture” models (Program MARK; 

White and Burnham 1999) with initial capture probability equal to that of subsequent captures 

(p=c). Sex was used as a group covariate to derive separate estimates of abundance and detection 

for males and females. A spatial (region) covariate (“North” or “South”; Figure 29.) was used to 

model possible heterogeneity in capture probabilities between individuals in the southern part of 

the study area, where winter access was restricted, and individuals in the northern part of the 

study area where access was comparatively unrestricted. Assignment of covariate values to 

individuals was based on the location of their first detection. Restricted access in the South 
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resulted in unequal sampling effort for that region. Models for various combinations of group 

and time effects (Table 21) were fitted and model results averaged based on Akaike’s 

Information Criteria adjusted for small population size (AICc) values. Feather sample data from 

captures constituted our first GMR sampling occasion with the remainder of sampling occasions 

based on non-invasive sampling of fecal and feather samples. 

 

 

Figure 29. Map of the Parachute-Piceance-Roan greater sage-grouse occupied range with winter 

resource selection function layer (Walker et al. 2016) and line delineating “North” and “South” 

regions of the study area. 
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Table 21. List of closed p=c mark-recapture models, varying by time (t) and group (g) effect, 

with regional covariate “region” used in genetic mark-recapture analysis of greater sage-grouse 

data from the Parachute-Piceance-Roan, 2012-2014. 

Model Name 

p(t) = c + region 

p(g+t) = c + region 

p(g*t) = c + region 

p(.) = c + region 

p(g) = c + region 

 

We re-ran the same models using Closed Robust Design Multi-State data types with 

“Huggins’ p and c with state probabilities” with p = c to estimate omega (Ω), the probability of 

being a male, equivalent to the estimated percentage of males in the population. We used a 

dummy primary occasion (representing a second season with two sampling occasions consisting 

of all zeros) to enable the robust design model to estimate this parameter using data from only 

one season (Kendall et al. 2012). This analysis provided us with confidence intervals for the 

omega parameter that are not provided by other closed mark-recapture models in program 

MARK. 

We investigated whether male and female grouse segregated in winter flocks in both 

study years by testing for equality of mean proportions of males in observed flocks compared to 

expected proportions of males in the population based on our estimates of Ω (Zar 1999). We 

assumed that the proportion of males in observed flocks would be approximately equal to the 

proportion of males in the population if individuals from each sex were randomly distributed 

among flocks. 
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Sample Size Requirements 

To determine the minimum effort required to achieve precise and unbiased estimates of 

sex ratio with different population sizes, we investigated the impact of sampling effort on 

precision of estimates. We ran closed mark-recapture models with data type full p & c 

simulations (n=500) in Program MARK using detection probability pmale = 0.115 & pfemale = 

0.114 for population sizes of 300, 600, and 1,000. We calculated the percentage of simulations 

that included the true proportion of males in the 95% confidence interval to assess bias of 

estimates, the coefficient of variation (CV) for male and female abundance estimates, and the 

range of estimates for proportion of males.  We re-ran “Huggins’ p and c Closed Robust Design 

Multi-State models” using modified input files with variation in the number of sampling 

occasions to determine the level of precision achieved. 

 

RESULTS 

We collected feather samples during two seasons of sage-grouse capture efforts between 

April and November, and non-invasive winter samples from random plots and opportunistic 

encounters with flocks from 11 November 2012 – 14 March 2013 (season one) and from 4 

November 2013 – 14 March 2014 (season two). Our analyses were based on genetic data from a 

total of 116 captures, and non-invasive genetic samples from a total of 120 flock use sites in 

season one and 146 flock use sites in season two (Figure 30). We non-invasively collected a total 

of 1,089 genetic samples from multiple source types across 7 sampling occasions in season one 

(2012-2013) and 1,268 across 8 occasions in season two, for a combined total of 2,357 samples 

collected during the two-year study period.   



144 
 

 

Figure 30. Greater sage-grouse genetic sample locations in season one (2012-2013) and season 

two (2013-2014) overlaid with a winter resource selection function layer from Walker at al. 2016 

in the Parachute-Piceance-Roan population. 

 

DNA from capture feathers produced the highest rate of success for analyzing the CDH 

sexing locus (100%; n = 91), followed by DNA from fecal pellets (95.5%; n = 2,201), feathers 

collected at flock use sites (81%; n = 63), and caecal samples (50.0%; n=2). The CDH locus was 

successfully analyzed and confirmed by at least two amplifications in 95.3% of all genetic 

samples. Pellet samples constituted the largest proportion of the data used in our analysis with 

83.4% of all samples collected (n = 2,201) successfully analyzed (≥6 loci successfully analyzed). 
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We detected a total of 235 unique sage-grouse individuals in 2012-2013 and 390 in 2013-

2014 (Table 22). Correcting for the number of birds detected in both winter seasons (82 

individuals; 21 males and 61 females), the total number of unique individuals detected during 

our study period was 543. Naïve estimates of sex ratio, based on the number of unique male and 

female sage-grouse detected without correction for differences in detectability between sexes, 

were 1:2.79 in season one (2012-2013) and 1:1.53 in season two (2013-2014) with an average 

sex ratio of 1:1.89 for both seasons combined (Table 22). 

 Eighty percent of winter sage-grouse flocks contained females in season one and 70% 

contained females in season two. In season one, 41% of flocks consisted of only females, 23% 

consisted of only males, and 39% were mixed-sex flocks. Flock composition was more evenly 

distributed in season two, with 39% of flocks consisting of only females, 30% consisting of only  

 

Table 22. Number of unique individual greater sage-grouse detected and naïve sex ratio 

estimates in each of two winter sampling seasons in the Parachute-Piceance-Roan population in 

northwestern Colorado. 

 
Season 1 

(2012-2013) 

Season 2 

(2013-2014) 

Combined 

Seasons* 

Males 62 154 195 

Females 173 236 348 

Total 235 390 543 

Naïve Sex Ratio (Male-to-Female) 1.2.79 1:1.53 1:1.78 

*Some individuals were detected in both seasons. 
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males, and 31% mixed-sex (Figure 31). We found strong evidence of non-random distribution of 

males and females within winter flocks in season one (p = 0.0337) but not in season two (p = 

0.1681). The majority of single-sex flocks were small, with 62/70 (89%) containing ≤ 5 birds in 

season one and 80/92 (87%) in season two (Figures 32-33). On average, mixed flocks of all sizes 

had more females than males, with females constituting 66% of all mixed flock birds in season 

one and 53% in season two (Figure 34). 

 

 

Figure 31. Percent of winter greater sage-grouse flocks that were female-only, male-only, and 

mixed-sex in the Parachute-Piceance-Roan in season one (2012-2013) and season two (2013-

2014). 
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Figure 32. Frequency of winter greater sage-grouse flocks of different size by composition; 

female-only, male-only and mixed-sex in the Parachute-Piceance-Roan, season one (2012-2013). 

 

 

Figure 33. Frequency of winter greater sage-grouse flocks of different size by composition; 

female-only, male-only, and mixed-sex in the Parachute-Piceance-Roan, season two (2013-

2014). 
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Figure 34. Average percent females in greater sage-grouse winter flocks of varying sizes in the 

Parachute-Piceance-Roan in season one (2012-2013) and season two (2013-2014). 

   

We used model averaging to obtain pre-breeding estimates of male and female abundance 

and omega (Ω, the proportion of males in the population). We estimated that the pre-breeding 

abundance of sage-grouse increased by ~410 individuals, an approximate doubling in population 

size, from season one (2012-2013; total N1 = 335) to season two (2013-2014; total N2 = 745) 

(lambda = 2.22; Table 23). We estimated a much greater increase in the size of the male 

population (lambda = 3.76) between years than females (lambda = 1.76). Our estimated sex 

ratios, based on model averaging, were 1:3.29 in season one and 1:1.54 in season two with a 

combined average for both seasons of 1:2.42. 
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Table 23. Model-averaged estimates of pre-breeding abundance ( N̂ ) for male and female greater 

sage-grouse with standard errors and 95% lower and upper confidence intervals, omega (Ω; the 

proportion of males in the population) with 95% confidence intervals, and estimated sex ratio in 

the Parachute-Piceance-Roan in season one (2012-2013) and season two (2013-2014). 

 

 Sex Estimate 

( N̂ ) 

SE LCI UCI Omega 

(Ω) 

LCI UCI   Sex 

Ratio 

(M:F) 

Season 1 

(2012-2013) 

      

 N (Male) 78 6.387 65 90 0.233 0.179 0.298  

 N (Female) 257 17.745 222 292 0.767 0.702 0.821  

 N (Total) 335 
 

287 382    1:3.29 

Season 2  

(2013-2014) 

       

 N (Male) 293 25.592 243 344 0.393 0.339 0.451  

 N (Female) 452 34.786 384 520 0.607 0.549 0.661  

 N (Total) 745  627 864    1:1.54 

 

 

We investigated the sample size required to achieve desired precision of sex ratio 

estimates needed for population conservation and management. Simulation options for the 

parameter Ω were not available, so we were unable to account for co-variances arising from non-

independence of male and female population proportions in our simulated confidence intervals 

for Ω. For that reason, we report approximate estimates (Figure 35). Using conservative 

estimates for capture probability, sex ratio estimates obtained from a minimum of two sampling 

occasions for population sizes 300-1,000 will be both unbiased and precise (Figure 36), however, 

precision decreases with lower sampling effort (Figures 37-38). Based on our study, we found 

that a minimum of 4-5 full sampling occasions were required to obtain sex ratio  
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Figure 35. Closed mark-recapture model simulation results (500 repetitions): percentage of 

simulations including the true proportion of males (0.25) with detection probability pmale = 0.115 

and pfemale = 0.114; and population sizes 300, 600 and 1,000. 

 

estimates with levels of precision (coefficient of variation ≤ 0.15) but more than 6 occasions 

offered little additional benefit (Figure 38). 

90.0%

91.0%

92.0%

93.0%

94.0%

95.0%

96.0%

97.0%

98.0%

99.0%

100.0%

2 4 6 8

P
er

ce
n
ta

g
e 

S
im

u
la

ti
o
n
s 

In
cl

u
d
in

g
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

T
ru

e 
P

ro
p
o
rt

io
n
 M

al
es

Number of Sampling Occasions

N = 300

N = 600

N = 1,000



151 
 

 

Figure 36. Closed mark-recapture model simulation results (500 repetitions): coefficient of 

variation for simulated male (top) and female (bottom) abundance estimates for 2, 4, 6, and 8 full 

sampling occasions with detection probability pmale = 0.115 & pfemale = 0.114; and population 

sizes 300, 600 and 1,000. 
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Figure 37. Closed mark-recapture model simulation results (500 repetitions): range of simulated 

estimates for number of full sampling occasions vs. estimated proportion males; with true 

proportion males = 0.25, detection probability pmale = 0.115 and pfemale = 0.114; and population 

sizes 300, 600 and 1,000.  

 

 

Figure 38. Sampling effort vs. precision, results of simulations using data from this study to 

determine the number of sampling occasions needed to achieve specific SE values. 
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DISCUSSION 

We provide the first pre-breeding sex ratio estimates for a greater sage-grouse population 

based on genetic sampling of winter flock use locations. As in other studies, we observed 

strongly female-biased sex ratios. However, we also observed a significant change in male-to-

female sex ratio estimates during a two-year period that corresponded with a large increase in 

estimated population size. We speculate that the increase in the male-to-female sex ratio between 

seasons one and two, from 1:3.29 to 1:1.54, was due to the combination of a year of low male 

abundance in winter 2012-2013 combined with high reproductive success and juvenile 

recruitment in 2013. Male-to-female sex ratios of winter (and breeding) sage-grouse populations 

with female-biased adult sex ratios are expected to increase (i.e., shift closer to 1:1) following 

years of high reproductive success because of a 1:1 sex ratio at birth coupled with a large influx 

of juvenile males with higher survival, compared to adult males (Patterson 1952, Braun 1984, 

Swenson 1986, Zablan et al. 2003), results in a relatively larger increase in the male population 

compared to females. The lower the male population size in the preceding year, the larger the 

magnitude of increase will be in male abundance in a subsequent year following a period of high 

reproductive success. 

The two-year average sex ratio estimate from our study (1:2.42) was similar to the values 

often assumed by wildlife agencies for estimating total population size (1:2). However, our 

results demonstrate that sex ratio can vary substantially among years. Our sex ratio estimates 

were higher than those based on fall harvest data ranging from 1:1.15-1:2.4 (Rogers 1964, 

Swenson 1986, Broms 2007, CGSSC 2008, Guttery et al. 2013, Braun et al. 2015), but closer to 

results obtained using mark-recapture estimates of abundance in spring (1:2.3 to 1:3.2) for 

greater sage-grouse (Walsh 2002) and 1:2.1 for Gunnison sage-grouse (Stiver et al. 2008). Lower 
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sex ratio estimates from our study, compared to those from birds harvested in the fall, may be the 

result of annual or seasonal variation in true sex ratio, or they may reflect a bias in harvest data 

due to differential harvest of males and females (Connelly et al. 2000, Wik 2002). 

We found evidence of sex-based segregation of sage-grouse in winter-flocks in season 

one when population abundance was relatively low, but no evidence of segregation in season 

two. These results reflected in pronounced differences in male and female capture probabilities 

during season one (Chapter 3). If male and female-dominated flocks use slightly different 

habitats in the winter, as previously observed (Beck 1977), the result may be differences in 

detection probability between flocks dominated by either males or females. We suspect that if 

juvenile males remain in flocks with females during their first winter, segregation of sexes may 

be more evident in years with older male age structure (e.g., following ≥ 1 years of low 

reproductive success or recruitment) but may be masked in years following high recruitment 

(Chapter 3). Unfortunately, genetic data provide no information on age composition of winter 

flocks, so we were unable to determine whether males in mixed flocks were primarily juveniles 

or adults. It is possible that adult males segregate from females to a greater extent than yearling 

sage-grouse, but this needs to be further investigated.  

We believe our study methods adequately met assumptions of closed-population mark-

recapture models (Chapter 3). We made an additional assumption to accompany laboratory 

methods that assign sex based on non-invasively collected genetic samples; we assumed that 

successful DNA analysis of fecal pellet and feather samples did not differ between individuals or 

sexes. A previous study investigating the potential for use of field-collected fecal pellet samples 

to identify sex ratio of greater sage-grouse found that success rates for extraction of DNA 

differed between males and females, but the resulting bias was minimal particularly if based on 



155 
 

relatively fresh pellet samples (≤ 34 days of age; Baumgardt et al. 2013). We believe we met the 

assumption of unbiased genetic analysis for several reasons: 1) nearly all fecal pellet samples 

used in this study were known to be ≤ 14 days old, 2) we used very few samples of unknown 

age; 3) we used a pre-amplification PCR method (Piggot et al. 2004) to improve microsatellite 

amplification and error rates; 4) we observed success rates > 95% for our sexing locus, and 5) we 

confirmed genotyping scores for ≥ 6 loci using ≥ 2 repetitions of PCR amplification to avoid 

misidentification of individual birds. 

 

MANAGEMENT IMPLICATIONS 

 Accurate estimates of pre-breeding population sex ratio, and its annual variability, are 

required to extrapolate male-based lek-count data to abundance of females and to overall 

population size. Reliable estimates of pre-breeding population sex ratio can be obtained using 

non-invasive genetic data for mark-recapture analyses. Our findings support the conclusions of 

Baumgardt et al. (2013) that the use of fecal DNA for estimating sex ratio has great potential and 

the method may be feasible for estimating sex ratio in populations throughout the species’ range. 

Our study demonstrates that applications of genetic mark-recapture sampling in the field can 

provide robust estimates of sex ratio for small, low-density populations.  

 Variability of sex ratio estimates between the first and second years of our study suggests 

that managers should exercise caution when using an average sex ratio estimate (e.g., 1:2) to 

extrapolate female population size from male lek-count data due to the potential for annual 

variation in population sex ratio. Managers should also consider the potential for sex ratio to vary 

in relation to age structure of males in the population. Age structure of the male population will 
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be biased toward juveniles following years of high reproductive success, and those years are 

likely to produce increases in annual lek counts. We recommend against using sex ratios based 

on fall harvest data to estimate female population size from lek-count data because they appear 

to underestimate the proportion of males in spring breeding populations. 
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SUPPLEMENTAL MATERIALS 

 

Supplement A 

Colorado Parks and Wildlife (CPW) uses lek-count index data, based on seasonal high 

counts of males attending leks, to monitor greater sage-grouse in this population and to guide 

habitat management and prioritization efforts. Located on the southern edge of the species’ range 

in Colorado, the PPR was not closely monitored until 2005 when managers recognized the 

potential for impacts from increasing energy development. As a result, managers lack a rigorous 

long-term dataset for assessing the status and trend of the population. Colorado Parks and 

Wildlife (CPW) lek-count data dating back to 2005 (Figure S1) demonstrates a fluctuating 

pattern in annual high male counts. These data suggest the population dropped in 2013 and then 

rebounded in 2014, two of the years corresponding to our study. CPW is aware of the limitations 

of the lek-count index and currently uses trend in annual male high counts to inform 

management decisions, without attempting to generate either male-specific or overall population 

estimates. A three-year running average is used by CPW to control for factors that may impact 

attendance of males and annual variation in detectability. Still, supplemental information on how 

lek-count index data relate to true population abundance and trend would be extremely valuable 

to the agency. The PPR population faces several challenges to persistence, specifically habitat 

loss and disturbance resulting from widespread energy development and pinyon-juniper 

encroachment into sagebrush (PPR-GSGWG 2008). Due to its small size, the population is 

considered vulnerable and subject to adverse impacts from rapidly expanding oil and natural gas 

extraction activities in the area that involve exploration, increased vehicle traffic, increased 

number of roads, well pad construction, and associated pipelines, powerlines and buildings 
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Figure S1. Lek-count data showing high male counts summed across leks and the three-year 

running average in the Parachute-Piceance-Roan greater sage-grouse population in 

northwestern Colorado from 2005-2016 (data courtesy of Colorado Parks and Wildlife). 

 

(PPR-GSGWG 2008). Managers currently have a critical need to assess the status of this 

population and better understand how lek count trend data relate to true population size. 

We defined the study area as the CPW 2012 occupied range boundary for the core PPR 

population, excluding the Magnolia area. This population supports approximately 4% of the total 

greater sager-grouse males counted on leks in Colorado (CGSSC 2008). Disturbance associated 

with major anthropogenic land uses (e.g., livestock grazing, oil and gas development) may 

influence lek turnover in this population by increasing the number and distribution of openings 

within sagebrush habitat that are suitable for strutting, or by influencing strutting activity at leks 

over time. 
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Colorado Parks and Wildlife uses lek-count data based on seasonal high counts of males 

attending leks to monitor populations of greater sage-grouse and to guide habitat management 

and prioritization efforts. Annual total high counts of males from CPW lek counts ranged from 

77–249 males at 55–92 known leks per year from 2005-2016 (Colorado Parks and Wildlife, 

unpublished data). The population was monitored inconsistently from the 1970’s through 2005 

due to the logistical difficulties of accessing high-elevation areas in early spring. Intensive, 

standardized monitoring of leks from helicopter began in 2006. The recent increase in 

monitoring efforts to obtain baseline monitoring data in the PPR was motivated by the need to 

assess impacts of future land use changes in the area given that the Piceance Basin is currently 

experiencing widespread development from oil and gas extraction that are expected to increase 

considerably in the next 20-30 years (CGSSC 2008). Despite the increase in monitoring, there 

are currently no defensible estimates of population abundance or trend for the population as a 

result of untested assumptions. CPW recognizes the limitations of using lek-count data as an 

index of abundance (CGSSC 2008), however, there is a lack of information to assess potential 

sources of bias in lek-count data (i.e., the number of leks known and counted). This creates 

challenges for determining conservation status and implementing proper management strategies 

for the population.  

 

Supplement B 

Our study was based on lek definitions for small populations in the Colorado greater 

sage-grouse conservation plan (CGSSC 2008). CPW defines a “lek” (i.e., a lek site or lek arena) 

as any open area on the ground (represented in the statewide database as a central point location) 

where ≥ 1 males have been observed strutting on ≥ 2 occasions (i.e., visits) within, or across 
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years, during the March-May breeding season. Lek arenas typically must be >150 m apart and 

separated by otherwise unsuitable topography or vegetation to be considered separate leks in 

CPW’s database. The agency defines the current status of a lek as “Active” if it has had ≥ 1 

males observed on ≥ 2 visits in the previous 5 years. This definition is intended to restrict leks to 

just those locations where males regularly strut by excluding temporary or aberrant strutting 

locations. All newly discovered strutting locations are assigned a status of “Unknown” (referred 

to in Chapter 2 as “potentially active”) until strutting males have been observed on ≥ 2 occasions 

(i.e., visits). As a result, locations with “Unknown” status in the CPW database sometimes 

require more than one year of visits to document males on ≥ 2 occasions and confirm the 

location as an “Active” lek. Our dual-frame study design required the use of lek definitions that 

were specific to a single year to enable determination of sample units and summarize annual 

survey results and estimates, so we used slightly modified version of CPW’s terminology. For 

this study, we defined a “known lek site” as any location with a CPW lek status of “Active” or 

“Unknown” and an “active lek” as any known lek with ≥ 1 males observed in the survey year of 

interest. Our inclusion of “Unknown” leks (i.e., “potentially active”) leks was necessary for 

designating sample units in the year following their discovery; their inclusion, or exclusion, in 

our final analysis was based on subsequent confirmation of these sites as leks per CPW’s 

definitions and will be discussed further in our methods section. 

 

Supplement C 

We typically flew 15-70m above the ground to facilitate visibility. Whenever we detected 

a lek, we typically hovered ≥ 100m away (horizontally) and counted the number of males and 

females present. The number of observers remained the same for each flight and consisted of the 
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pilot and one primary observer as the passenger. Observers used binoculars as needed to help 

distinguish non-strutting and yearling males from females and minimize flushing of birds. Any 

birds of unknown sex that flushed from the lek were followed until we determined number and 

sex. After counting, we increased altitude to ≥100m to avoid disturbing birds as much as 

possible, flew over the center of the lek, and recorded its location with a global positioning 

system (GPS) unit.  

 

Supplement D 

We conducted two separate occupancy analyses to address uncertainty over whether to 

treat “Unknown” (i.e., “potentially active”) status locations as known leks. First, we analyzed 

data excluding counts from locations categorized as “Unknown” status during and after the study 

(based on CPW data thorough 2016) so our analysis was consistent with the lek definition for 

small populations in the Colorado State Plan (CGSSC 2008). Subsequently, we conducted a 

supplementary analysis that included counts from “Unknown” status locations to see if their 

inclusion significantly changed our results (Appendix A). 

 

Supplement E 

Prior to this study, CPW had no estimates for this proportion specific to the PPR, though 

they assumed the percentage of active leks that were not known to be approximately 10% for 

other larger populations in northwestern Colorado (CGSSC 2008). During surveys, we 

incidentally discovered males strutting at two locations later determined to be “Historic” lek sites 

where males had not been observed for at least 10 years. These locations were not included in 
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CPW’s list of active and unknown status leks that comprised our list frame strata in 2012 and 

2013 and were therefore not included in the proportion of known leks prior to their discovery. 

The proportion of leks that are unknown and therefore missing from lek-count data may be 

further reduced if CPW also monitors all leks of “Historic” or “Inactive” status (defined as a 

previously known lek site with < 2 detections in the previous 5 years) on a regular basis as part 

of the list frame. 

Leks in the PPR generally have few males and may be more dynamic than in many other 

populations, and detection probabilities are known to be imperfect, which poses difficulties for 

determining the status of leks over time. Our supplementary analysis (Appendix A) employed a 

different definition of the term “lek” than is currently used by CPW for small populations. 

However, occupancy and detectability estimates in the supplementary analysis were similar to 

those in our original analysis and did not meaningful change our conclusions. 
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APPENDICES 

 

Appendix A: Supplemental dual-frame analysis, including data from all active and potentially 

active lek locations. 

We conducted dual frame flights to survey list frame points and area frame cells during 

the lekking season in the PPR from mid-April to early May in three consecutive years from 

2012-2014. We surveyed 50-72 LF points, 39-57 AF1 cells, and 36-45 AF2 cells during each 

study year (Table 1A).  

 

Table 1A. Supplemental analysis: Summary of dual-frame survey effort for greater sage-grouse 

leks in the Parachute-Piceance-Roan, 2012-2014. 

 

 2012 2013 2014 

List Frame Points Surveyed 50 66 72 

Area Frame 1 Cells Surveyed 39 54 57 

Area Frame 2 Cells Surveyed 45 36 36 

Area Frame 2 Cells Not Surveyed  587 598 595 

Total Available Area Frame 2 Cells 632 634 631 

 

    

The total number of leks we detected differed between our sampling frames, with the 

most leks detected in the LF and the fewest in AF2. Total leks detected per frame were relatively 

stable across years with 17-23 detected in the LF, 3-4 in AF1 and 0-1 in AF2 (Table 3A). 

Between-year turnover in observed use of known lek sites with data for consecutive years was 

26.9% (14/52) from 2012-2013 and 25.0% (16/64) from 2013-2014. 
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We discovered a total of 25 new leks during the three survey seasons of, including 

observations in the area frame and incidental leks (Table 3A). We observed a total of 3-5 AF1 

cells with ≥ 1 leks in each year and one AF2 cell with ≥ 1 leks in 2012 and 2014; we observed no 

active leks in AF2 in 2013 (Table 2A). In addition to leks newly discovered during surveys, 

additional leks were discovered each year during the course of field work for other CPW 

research projects. The number of additional leks discovered was 8 in 2012, 1 in 2013, and 4 in 

2014. The total number of new leks discovered each year as a result of all research efforts in the 

PPR, including dual frame sampling, were 15 in 2012, 10 in 2013, and 13 in 2014; a total of 38 

over the three-year period. 

 

Table 2A. Supplemental analysis: Total sampling units with ≥ 1 active leks detected in each 

sampling frame by year. 

 

 2012 2013 2014   

List Frame 22 17 23   

Area Frame 1  3    4* 4   

Area Frame 2 1 0 1   

*One AF1 cell in 2013 had 2 new leks detected 

 

Table 2A. Supplemental analysis: New greater sage-grouse leks detected in the area frame by 

year during dual frame sampling in the Parachute-Piceance-Roan, 2012-2014. 

 

   

2012           2013            2014 

Area Frame 1 (Dual Frame) 3 5 4 

Area Frame 2 (Dual Frame) 1 0 1 

Incidental Leks* (Dual Frame) 3 4 4 

Total New Leks Detected (Dual Frame) 7 9 9 

Total New Leks Detected (Other CPW Surveys) 8 1 4 

Total New Leks Detected (Dual Frame + other Surveys) 15 10 13 

* Leks detected in the area frame during dual frame surveys but outside the sampled units (i.e. 

while travelling between sample units) 
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Estimates of the total number of males for all combined leks across all sample frames, 

based on the maximum number of males detected at a given lek across for all three visits, were 

similar in 2012 and 2013 but increased by more than a factor of two in 2014 (Table 4A). The 

mean maximum number of males per active lek (all lek sites with ≥ 1 male observed in a given 

year) and males per known lek site (all lek sites with ≥ 1 males in the past 5 years) varied 

between year and sampling frame (Tables 5A and 6A). The maximum count of males per new 

lek for combined years ranged from 1-9 males with a mean of 3.24 (N=25, SE 2.44). The mean 

number of leks detected per occupied area frame cell, for combined years, was 1.09 for AF1 and 

1.0 for AF2. 

 

Table 4A. Supplemental analysis: Estimates of the total number of greater sage-grouse males for 

all combined leks by year, based on the high count males detected per lek across all three visits, 

in the Parachute-Piceance-Roan, 2012-2014. 

 

 2012 2013 2014 

List Frame 69 63 148 

Area Frame 1  22 13 14 

Area Frame 2*  9 6 17 

Total Max Count Males 100 82 179 

*Includes incidental leks found in the frame to improve estimates. 

  

Table 5A. Supplemental analysis: Mean high count of greater sage-grouse males per lek by year 

in the Parachute-Piceance-Roan, 2012-2014. 

 

 2012   2013 2014 

List Frame 3.14   3.71 6.43 

Area Frame 1 7.33   2.60 3.50 

Area Frame 2*  2.25   1.50 3.40 

Total All Frames 3.33   3.15 5.59 

*Includes incidental leks found in the frame to improve estimates. 
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Table 6A. Supplemental analysis: Mean high count of greater sage-grouse males per known lek 

site by year in the Parachute-Piceance-Roan, 2012-2014. 

 

 2012 2013 2014 

List Frame  1.39 0.95 2.03 

Area Frame 1 7.33 2.60 3.50 

Area Frame 2* 2.25 1.50 3.40 

Total All Frames 1.75 1.09 2.18 

*Includes incidental leks found in the frame to improve estimates. 

 

 Models were used to estimate the proportion of known leks in the LF that were active in a 

given year (ψLF) and the probability of detection for leks in all sampling frames (p). Our top 

estimation model varied by year, with group (g), group/time additive (g+t), and constant (.) 

detection probability (p) models receiving the most support given our data (Table 7A) 

 

Table 7A. Supplemental analysis: Estimation model ranking by year for dual frame data, 

determined using Akaike Information Criteria (AICc) rankings and weights, based on finite 

sample size in Program MARK. 

Year and Model AICc Delta 

AICc 

AICc 

Weights 

Model 

Likelihood 

Num. 

Param. 

Deviance 

2012       

p(.) Psi(g) 207.11 0 0.580 1 4 10.96 

p(g) Psi(g), AF1(p)=AF2(p) 208.79 1.68 0.251 0.432 5 10.48 

p(t) Psi(g) 210.36 3.25 0.114 0.197 6 9.86 

p(g+t) Psi(g), AF1(p)=AF2(p) 212.11 4.99 0.048 0.083 7 9.38 

p(g*t) Psi(g), AF1(p)=AF2(p) 215.98 8.87 0.007 0.012 9 8.69 

2013       

p(g+t) Psi(g), AF1(p)=AF2(p) 190.53 0 0.347 1 7 8.35 

p(g) Psi(g), AF1(p)=AF2(p) 191.15 0.62 0.255 0.735 5 13.32 

p(g*t) Psi(g), AF1(p)=AF2(p) 192.11 1.57 0.158 0.455 9 5.45 

p(t) Psi(g) 192.39 1.86 0.137 0.395 6 12.40 

p(.) Psi(g) 192.97 2.43 0.103 0.2965 4 17.28 

2014       

p(g) Psi(g), AF1(p)=AF2(p) 241.71 0 0.573 1 5 15.34 
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Our model-averaged estimates of the proportion of known lek sites that were active, or 

potentially active, in the list frame (ψLF) varied by year from 0.29 – 0.576 during the three-year 

study period (Table 8A).  

 

Table 8A. Supplemental analysis: Modeled-averaged estimates of the proportion of known 

greater sage-grouse lek sites that were active in the List Frame (ψLF) by year, with standard error 

(SE) and 95% upper (UCI) and lower (LCI) confidence intervals, in the Parachute-Piceance-

Roan, 2012-2014. 

 

Proportion of active leks (ψLF) by 

year                                         Estimate SE 95% LCI 95% UCI 

2012 0.56 0.11 0.35 0.75 

2013 0.27 0.06 0.17 0.40 

2014 0.34 0.06 0.23 0.46 

 

 

 Model-averaged detection probability estimates for leks in the list frame were lowest in 

2012 and similar to detection probabilities in the area frame that year; detection probabilities in 

the area frame were relatively constant across all survey years (Table 9A). Average detection 

probabilities per year for the sampling frames were 0.40, 0.62, and 0.64 in the LF for 2012, 2013 

and 2014, respectively; with 0.44, 0.32, and 0.42 for AF1 and AF2. Estimates of p* (the 

probability of detecting a lek at least once during a season) were lowest in the first year (2012) in 

p(.) Psi(g) 243.01 1.30 0.300 0.523 4 18.76 

p(g+t) Psi(g), AF1(p)=AF2(p) 245.76 4.05 0.076 0.132 7 15.05 

p(t) Psi(g) 247.01 5.30 0.041 0.071 6 18.48 

p(g*t) Psi(g), AF1(p)=AF2(p) 249.59 7.87 0.011 0.020 9 14.42 
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the list frame at 0.78, then increased to 0.95 in 2013 and 2014; estimates for p* were 0.69 – 0.82 

in the area frame (Figure 1A). 

 

Table 9A. Supplemental analysis: Model-averaged probability of detection (p) estimates, by 

year, with SE and 95% upper (UCI) and lower (LCI) confidence intervals, for greater sage-

grouse in the Parachute-Piceance-Roan, 2012-2014.      

                                    

Detection Probability Parameter (p) Estimate SE 95% LCI 95% UCI 

2012     

List Frame, Occasion 1 0.41 0.08 0.26 0.58 

List Frame, Occasion 2 0.40 0.08 0.26 0.57 

List Frame, Occasion 3 0.39 0.08 0.24 0.56 

Area Frame, Occasion 1 0.45 0.13 0.22 0.70 

Area Frame, Occasion 2 0.44 0.13 0.22 0.70 

Area Frame, Occasion 3 0.43 0.13 0.21 0.68 

2013     

List Frame, Occasion 1 0.59 0.11 0.38 0.78 

List Frame, Occasion 2 0.73 0.13 0.43 0.91 

List Frame, Occasion 3 0.55 0.12 0.32 0.76 

Area Frame, Occasion 1 0.31 0.23 0.05 0.79 

Area Frame, Occasion 2 0.43 0.29 0.07 0.89 

Area Frame, Occasion 3 0.22 0.21 0.02 0.76 

2014     

List Frame, Occasion 1 0.64 0.07 0.49 0.76 

List Frame, Occasion 2 0.63 0.07 0.48 0.76 

List Frame, Occasion 3 0.64 0.07 0.49 0.77 

Area Frame, Occasion 1 0.42 0.20 0.13 0.78 

Area Frame, Occasion 2 0.41 0.20 0.13 0.77 

Area Frame, Occasion 3 0.42 0.20 0.13 0.78 
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Figure 1A. Supplemental analysis: Estimated probability of detecting ≥ 1 greater sage-grouse 

males at a lek (List Frame) or ≥ males at ≥1 leks (Area Frame) across three sampling occasions 

(p*), with 95% confidence intervals, from dual-frame lek surveys in the Parachute-Piceance-

Roan, 2012-2014. 

 

 The estimate of the proportion of leks previously known and surveyed each year by 

standard lek flights was 0.45 in 2012, 0.68 in 2013 and 0.45 in 2014, and the proportion of males 

known and counted to be 0.45, 0.74, and 0.60, respectively for the three years (Table 11A). 

These results suggest that, during our study, lek counts based exclusively on monitoring known 

lek sites (i.e., leks in the list frame) would have failed to survey 32-55% of the total number of 

leks and 26-55% of males attending leks in the PPR. 
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Table 10A. Supplemental analysis: Total detected and estimated active leks, proportion of active 

leks known and counted, and total estimated number of males attending leks from dual-frame lek 

surveys in the Parachute-Piceance-Roan population of greater sage-grouse, 2012-2014. 

 

Survey Year 2012 2013 2014 

Total Leks Detected     

(List Frame) 22 17 23 

Total Males Detected 

(List Frame) 69 63 148 

 

 

Est.

/No. 

95% 

LCI 

95

% 

UCI  

 

Est.

/No. 

95% 

LCI 

95% 

UCI  

 

Est.

/No. 

95% 

LCI 

95% 

UCI 

 

Estimated No. Active 

Leks (List Frame)  28.1 22 36.9 17.9 17 25.2 24.2 23 32.3 

 

Estimated No. Active 

Leks (Area Frame 1)          3.6 3 5.7 7.2 5 14.4 5.00 4 8.3 

 

Estimated No. Active 

Leks (Area Frame 2)  17.0 1 49.8 0.0 0.0 0.0 21.9 1 65.1 

 

No. Incidental Leks 

Observed  3   4   4  

 

Total No. Estimated 

Active Leks  

 

48.8 

 

29* 

 

82.8 

 

25.1 

 

26* 

 

35.3 

 

51.1 

 

32* 

 

95.2 

 

Estimated Total No. 

Males 

 

153 

 

100* 

 

349 

 

85 

 

82* 

 

209 

 

247 

 

179* 

 

642 

 

Est. Proportion Active 

Leks Known & Counted 0.45 0.75* 0.27 0.68 0.65* 0.48 0.45 0.72* 0.24 

 

Est. Proportion Males 

Known & Counted 0.45 0.69* 0.20 0.74 0.77* 0.30 0.60 0.83* 0.23 

 

* LCI truncated to the number of occupied leks observed by during dual frame sampling, including 

incidental lek locations. 
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Appendix B: Additional dual frame results summary tables. 

Table B1. Summary of dual-frame survey effort for greater sage-grouse leks in the Parachute-

Piceance-Roan, 2012-2014. 

 2012 2013 2014 

List Frame Points Surveyed 49 61 66 

Area Frame 1 Cells Surveyed 39 54 57 

Area Frame 2 Cells Surveyed 45 36 36 

Area Frame 2 Cells Not Surveyed  587 598 595 

Total Available Area Frame 2 Cells 632 634 631 

 

Table B2. Model-averaged probability of detection (p) estimates, by year, with SEs and 95% 

upper (UCI) and lower (LCI) confidence intervals for greater sage-grouse in the Parachute-

Piceance-Roan, 2012-2014.    

                                       

Detection Probability Parameter (p) Estimate SE 95% LCI 95% UCI 

2012     

List Frame, Occasion 1 0.41 0.08 0.26 0.58 

List Frame, Occasion 2 0.40 0.08 0.26 0.57 

List Frame, Occasion 3 0.39 0.08 0.24 0.56 

Area Frame, Occasion 1 0.45 0.13 0.22 0.70 

Area Frame, Occasion 2 0.44 0.13 0.22 0.70 

Area Frame, Occasion 3 0.43 0.13 0.21 0.68 

2013     

List Frame, Occasion 1 0.60 0.10 0.40 0.77 

List Frame, Occasion 2 0.69 0.12 0.42 0.87 

List Frame, Occasion 3 0.56 0.11 0.34 0.76 

Area Frame, Occasion 1 0.42 0.25 0.09 0.84 

Area Frame, Occasion 2 0.50 0.27 0.11 0.89 

Area Frame, Occasion 3 0.34 0.24 0.06 0.81 

2014     

List Frame, Occasion 1 0.64 0.07 0.49 0.76 

List Frame, Occasion 2 0.63 0.07 0.48 0.76 

List Frame, Occasion 3 0.64 0.07 0.49 0.77 

Area Frame, Occasion 1 0.42 0.20 0.13 0.78 

Area Frame, Occasion 2 0.41 0.20 0.13 0.77 

Area Frame, Occasion 3 0.42 0.20 0.13 0.78 
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Table B3. Model-averaged probability of detecting ≥ 1 males at a lek (List Frame) or ≥ 1 males 

at ≥ 1 leks (Area Frame) across three sampling occasions within a single season (p*), with SEs 

and 95% upper (UCI) and lower (LCI) confidence intervals for greater sage-grouse in the 

Parachute-Piceance-Roan, 2012-2014.     

                                             

Probability of ≥1 Detection (p*) Estimate SE 95% LCI 95% UCI 

2012     

List Frame 0.78 0.08 0.64 0.95 

Area Frame 0.82 0.12 0.62 1.00 

2013     

List Frame 0.95 0.03 0.88 1.00 

Area Frame 0.81 0.23 0.51 1.00 

2014     

List Frame 0.95 0.04 0.87 1.00 

Area Frame 0.80 0.20 0.51 1.00 

 

 

Appendix C: Sampling Effort vs Precision 

 

Table C1: Table of Estimated Standard Error (SE) given variations in the number of Area Frame 

cells sampled per stratum and number of sampling occasions, for the Parachute-Piceance-Roan 

greater sage-grouse population.   

 

Plots Sampled 
 

Plots Available Standard Error (SE) 
 

LF AF1 AF2 Total Plots Sampled LF AF1 AF2 LF AF1 AF2 SE (   ) 
 

Sampling Occasions = 2 

75 60 100 160 75 60 630 4.80 2.84 14.00 15.07 

75 40 120 160 75 60 630 4.80 3.70 12.84 14.20 

75 20 140 160 75 60 630 4.80 5.54 11.94 14.01 

75 60 60 120 75 60 630 4.80 2.84 17.90 18.75 

75 40 80 120 75 60 630 4.80 3.70 15.58 16.71 

75 20 100 120 75 60 630 4.80 5.54 14.00 15.80 

75 60 40 100 75 60 630 4.80 2.84 21.82 22.52 

75 40 60 100 75 60 630 4.80 3.70 17.90 18.90 

75 20 80 100 75 60 630 4.80 5.54 15.58 17.21 

Sampling Occasions = 3 

75 60 100 160 75 60 630 4.45 1.85 11.08 12.08 

75 40 120 160 75 60 630 4.45 2.69 10.09 11.35 
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75 20 140 160 75 60 630 4.45 4.32 9.32 11.19 

75 60 60 120 75 60 630 4.45 1.85 14.37 15.16 

75 40 80 120 75 60 630 4.45 2.69 12.42 13.46 

75 20 100 120 75 60 630 4.45 4.32 11.08 12.70 

75 60 40 100 75 60 630 4.45 1.85 17.65 18.29* 

75 40 60 100 75 60 630 4.45 2.69 14.37 15.28 

75 20 80 100 75 60 630 4.45 4.32 12.42 13.88 

Sampling Occasions = 4 

75 60 100 160 75 60 630 4.33 1.42 9.85 10.85 

75 40 120 160 75 60 630 4.33 2.26 8.94 10.19 

75 20 140 160 75 60 630 4.33 3.8 8.23 10.04 

75 60 60 120 75 60 630 4.33 1.42 12.87 13.65 

75 40 80 120 75 60 630 4.33 2.26 11.08 12.11 

75 20 100 120 75 60 630 4.33 3.8 9.85 11.41 

75 60 40 100 75 60 630 4.33 1.42 15.85 16.49 

75 40 60 100 75 60 630 4.33 2.26 12.87 13.76 

75 20 80 100 75 60 630 4.33 3.8 11.08 12.49 

Input values for simulations were based on average occupancy (ψLF=0.41, ψAF1=0.08, 

ψAF2=0.02), detection probability (pLF=0.63, pAF=0.43), and variance estimates (var( *ˆ
AF

p )=0.032, 

s2
AF=0.02) obtained from this study.  

*Equivalent to sampling effort used in this study. 
 

 

Appendix D: Preliminary Power Analysis 

The power of a statistical test is the probability that the test will reject the null hypothesis 

(e.g. a wildlife population is stable or growing) when the null hypothesis is false.  I conducted an 

analysis to investigate the statistical power to detect a 5%, 7.5% and 10% change in occupancy 

(the proportion of sample units containing one or more leks) based on lek activity observed 

during dual-frame surveys.  Simulations were conducted in Program Mark (White and Burnham 

1999) using input parameter values expected to represent the true population occupancy and 

anticipated sampling effort for the list and area frames.  Capture histories were simulated based 

on input data (expected occupancy rate, detection probability and number of sample units 

surveyed) and analyzed in Program Mark to obtain standard errors (Runge et al. 2007).  Power 
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calculations were generated using Program R (Table D1).  Results indicate that with expected 

sampling effort, power to detect a minimum of 7.5% annual rate of decline in occupancy will be 

approximately 0.95 with 15 years of surveillance. 

 

Runge, J.P., Hines, J.E., and J.D. Nichols. 2007. Estimating species-specific survival and 

movement when species identification is uncertain. Ecology 88:282-288. 
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Table D1: Dual-frame surveys, power to detect percent change in population over time, Parachute-Piceance-Roan greater sage-grouse 

population. 
 

 

 

Plots Occupied Psi List Psi Area p

Total 2000 100 0.90 0.05 0.90

List Area Total

List Frame Area Frame E[SE(ψ)] E[SE(ψ)] E[SE(ψ)] E[CV] 5 years 10 years 15 years 20 years 5 years 10 years 15 years 20 years 5 years 10 years 15 years 20 years

30 100 0.07 0.02 0.02 0.45 0.32 0.72 0.85 0.91 0.41 0.83 0.94 0.97 0.51 0.92 0.98 0.99

40 100 0.06 0.02 0.02 0.44 0.32 0.72 0.86 0.91 0.41 0.85 0.94 0.98 0.52 0.92 0.98 0.99

50 100 0.05 0.02 0.02 0.40 0.33 0.71 0.87 0.92 0.41 0.87 0.95 0.98 0.51 0.93 0.98 1.00

60 100 0.04 0.02 0.02 0.40 0.34 0.74 0.87 0.92 0.44 0.84 0.95 0.98 0.53 0.94 0.99 1.00

Number of plots Power to detect a 5% annual decline Power to detect a 7.5% annual decline Power to detect a 10% annual decline

Assumed Occupancy
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Appendix E: Colorado Parks and Wildlife Animal Care and Use Committee animal use proposal 

approval letter #07-2011 
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Appendix F: Colorado Parks and Wildlife Animal Care and Use Committee animal use proposal 

approval letter #08-2012 
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Appendix G: Colorado State University Institutional Animal Care and Use Committee inter-

agency proposal approval letter #07-2011 
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Appendix H: Colorado State University Institutional Animal Care and Use Committee inter-

agency proposal approval letter #08-2012 
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Appendix I: Colorado Division of Wildlife (Colorado Parks and Wildlife) Animal Care and Use 

Committee addendum to ongoing research 

COLORADO DIVISION OF WILDLIFE ANIMAL CARE AND USE COMMITTEE 

(CDOWACUC) ADDENDUM TO ONGOING, APPROVED WILDLIFE RESEARCH 

PROJECTS 

 

Note: This form may not be used for new wildlife research projects. 

 

1. CDOW ACUC File #07-2011 

2. Principal Investigator(s): Brett Walker                                  Phone: 970-255-6125 

 

3. Title of project: Evaluating Lek-Based Monitoring and Management Strategies for 

GRSG in the Parachute-Roan Population in Northwestern Colorado 

 

4. Fiscal year of this project’s initiation: FY11-12 

 

5. List names of all new personnel associated with this project: No new personnel 

 

6. Are sample sizes or numbers of animals to be used the same as originally described 

with no substantive changes (i.e., 10% of original proposal)?  If sample sizes or animal 

numbers are substantially greater or less than described in original study plan, provide 

a justification for this change: I propose to deploy up to 45 VHF transmitters 

(15/year) on females and juvenile males over three years to help field crews to 

locate and capture adult/yearling males in the field.  Juvenile males will be 

recaptured as yearlings in spring and redeployed with GPS transmitters. VHF 

females can later be used to augment sample sizes for an upcoming PhD project 

at CSU (a proposal for the CSU project will be submitted for approval this 

winter). 
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7. Is the animal component of the project the same as originally described with no 

substantive changes (e.g., anesthesia, analgesia, capture methods, euthanasia, species, 

surgical procedures, etc.)? 

 

Yes                    No  X             .  If No, describe changes: We have been unable to 

capture any yearling/adult males along roads using net launchers or spotlighting 

(as originally proposed) after two weeks of field work. This suggests that we need 

to attempt additional capture methods.  One capture method we’ve used 

successfully in the past is the “Judas bird” method, in which we track and go in 

on birds with VHF transmitters, and use a CODA shoulder-mounted net gun 

during the day or hoop net at night to capture other birds in the same flock.  I 

propose to deploy standard 21-g VHF necklace collars on females and on juvenile 

males in summer and fall, track and go in on those birds to help us find males, 

and use shoulder-mounted net guns (day) or hoop nets (night) to capture 

yearling/adult males that are with VHF birds. All juvenile males with VHF 

transmitters in fall will be recaptured as yearlings as soon as possible the 

following spring and outfitted with GPS transmitters (per my original proposal). 

Any females encountered with functioning or non-functioning VHF transmitters 

will be recaptured as soon as possible after the nesting season in the final year of 

the study (summer 2014) and transmitters will be removed. Hoop nets are 

standard for use with spotlighting and have already been approved as part of the 

original proposal.  Few data are available on injury rates with CODA shoulder-

mounted net guns.  In previous field work, 2 of 9 females captured with net guns 

were injured during capture, but what part of the capture process (netting, 

securing, or handling) caused the injury wasn’t clear. One injured bird died 

within a week of capture, the other died within a month of capture (unpub. data). 

Because such small sample sizes are not conclusive, we will keep track of injury 

rates for shoulder-mounted net gun captures and report those to ACUC for 

review.  We will discontinue use of the shoulder-mounted net gun (and only 

conduct hoop-netting at night) if net guns cause > 2 major injuries (abrasions that 

cause excessive bleeding, lacerations, broken wings or legs, etc.) among the first 

10 males captured. 

 

8. Will the foregoing changes result in greater levels of pain, suffering, stress, discomfort, 

deprivation, etc., experienced by experimental animals than those originally described 

and approved?  

Yes ____ No_X__ 
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If answered yes, attach detailed justification and indicate here the date of search, 

source of literature search, date range searched, and key words an combination of key 

words searched to document the lack of alternative methods: 

 

9. Will additional pain and suffering be controlled?       Yes _____ No _____ N/A _X___ 

If answered no, attach a detailed justification. 

 

If answered yes, attach a detailed description of how pain and suffering will be 

controlled. 

 

10. If required, was the attending veterinarian consulted when planning these changes?    

Yes ____ No_X__ 

 

11. Does the proposed project now include planned euthanasia of animals?   Yes ____ 

No_X__ 

 

  

Date: ________________     Signed:   _____________________________ 

                                                              Principal Investigator 

Date: ________________      Signed:  _____________________________ 

                                                              ACUC Attending Veterinarian 

Date: ________________      Signed:  _____________________________ 

                                                                                  Chairperson (or designee), CDOW 

ACUC 

Updated 9/13/2007, M. Michaels  
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Appendix J: Preliminary results from closed mark-recapture simulations in Program MARK 

using manipulated values for N (true population size), p (capture probability), and number of 

sampling occasions with no heterogeneity in p with 500 repetitions. 

 

Figure J1: Simulation results for true population size (N)=500 (red arrow) with 5 sampling 

occasions and no heterogeneity. 

 

 

Figure J2: Simulation results for true population size (N)=800 (red arrow) with 5 sampling 

occasions and no heterogeneity. 
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Figure J3: Simulation results for true population size (N)=1,000 (red arrow) with 5 sampling 

occasions and no heterogeneity. 

 

 

Figure J4: Simulation results for coefficient of variation (CV) with varied values for true 

population abundance (N) and capture probability (p), with 5 sampling occasions and no 

heterogeneity. 
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Figure J5: Graph of simulation results with varied number of sampling occasions and capture 

probability (p) for true population size N = 1,100; no heterogeneity. 
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Appendix K: Preliminary results from closed mark-recapture simulations in Program MARK 

accounting for heterogeneity in capture probabilities (p). 

Table K1: Table of simulation results using mixture proportions (pi) to model heterogeneity in, 

and varying values of, capture probability (p), with true population size N = 500. Simulation 

results with coefficient of variation (CV) values greater than 0.20 are (orange). 
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Appendix L: Post-analysis simulations based on collected data. Predicted variation in standard 

error of abundance estimates with 4, 6 and 8 complete sampling occasions with standards error. 

 

Figure L1: Simulated results for standard errors with varied sampling efforts (4, 6, or 8 sampling 
occasions), season one (2012-2013). 

 

 

Figure L2: Simulated results for standard errors with varied sampling efforts (4, 6, or 8 sampling 
occasions), season two (2013-2014). 
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Appendix M: Detailed protocols for extraction and genotype scoring of DNA from feather, fecal 

pellet samples, and caecal samples. 

Protocols for the Stool Mini Kits used a modified elution step using 80µL Buffer AE 

after five minutes of incubation at room temperature with extractions performed by hand or with 

steps automated on a QiaCube (Qiagen). Protocols for the DNeasy 96 kits were modified to 

include an overnight digestion consisting of 900 µL Buffer ATL, 20µL Proteinase K, and 20µL 

1M DTT and an elution in 80µL Buffer AE after five minutes of incubation at room temperature. 

Protocols for the DNeasy Blood and Tissue Kits modified the elution step for samples to be 

eluted in 120 µL Buffer AE after five minutes of incubation at room temperature. 

The multiplex pre-amplification method is a two-step procedure that requires an initial 

PCR using a pool of primer pairs with a final concentration of 0.01 µM. This initial step involved 

a primer pool consisting of unlabeled primers for the 7 loci and was performed following the 

conditions outlined in Piggott et al. (2004) with the exception of using 10 µL fecal DNA as the 

template for the 50 µL reaction. The 2nd step used 3 µl of the PCR product produced in the 1st 

step as template for 12.5 µL reactions containing 0.2 mM of each dNTP, 1X GoTaq Flexi Buffer 

(Promega, Madison, WI),  1.5mM MgCl2, 1X BSA, 0.5 M of each primer (dye-labeled 

forward), and 1 U of Taq DNA polymerase (Promega). The amplification conditions for the 2nd 

step were: 94oC for 2 min, then 94oC for 30 sec, annealing temp (52°C for MSP11, 57°C for 

SGMS06.6, BG6, and sexing, and 60°C for SG29, SG36, and SG39) for 30 sec, 72oC for 30 sec 

for 40 cycles, then 60oC for 45 min and a final extension at 72oC for 10 min. PCR products were 

multi-loaded based on product size and primer label, combined with GeneScan LIZ 600 internal 

lane size standard (Applied Biosystems, Foster City, CA), and electrophoresed through a 
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capillary gel matrix using an AB3500 Automated DNA Sequencer (Applied Biosystems). Allele 

sizes were determined for each locus using GeneMapper v5 software (Applied Biosystems).  

Repeated amplifications generated multiple multi-locus genotypes for each sample.  We 

compared corresponding genotypes and generated a consensus genotype for each sample. As is 

common with low quality DNA, some genotypes did not match across all amplification attempts. 

In these cases, we re-amplified mismatching loci to confirm a consensus genotype with matching 

scores. If there was still a mismatch after two rounds of re-amplification, we determined 

genotypes conservatively, and scored individuals as heterozygous at a locus if they were 

heterozygous at least once with a homozygous match for one of the alleles in that heterozygote. 

Loci were scored as “no data” if the genotypes were complete mismatches for each amplification 

attempt or could not otherwise be confirmed. Two rounds of review were performed on sample 

pairs with genotypes that differed by a single locus, by referencing all genetic analysis results 

and collection data, to ensure correct assignment of scores. 

 

 


