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Abstract

Causal discovery algorithms have recently been applied to several climate applications. In particular,
in prior work we have developed methods to recover pathways of interaction in the global climate system,
using the classicPC algorithm. However, standard implementations of thePC algorithm cannot handle the
large number of variables and temporal models required for this application. This technical report shows
that a more efficient implementation of thePC algorithm can provide speed gains of a factor of 1,000 or
more. This in turn enables us to calculate graphs of information flow with much higher resolution grids.
Furthermore, we can now - for the first time ever - calculate information flow graphs that extend over
three dimensions, i.e. rather than just includingone layer of the planet’s atmosphere we can now capture
interactions across several height layers.

1 Introduction

Causal discovery seeks to discover potential cause-effectrelationships from observational data. While used
extensively for decades in disciplines such as social science and economics, causal discovery has only re-
cently been used in climate science. Requirements of climate applications can be challenging for existing
implementations: they often require using a large number ofvariables, distributed over large spatial regions,
and require the use of temporal (rather than static) models,which further increases complexity.

In prior work [3, 4] we have applied causal discovery algorithms in climate science to find potential cause
and effect relationships from observed atmospheric data. The key idea for this application is to interpret
large-scale atmospheric dynamical processes as information flow around the globe and to use causal discov-
ery to identify the pathways of information flow around the globe. Specifically, by introducing a discrete,
equally-spaced grid around the earth, we can use the causal discovery algorithms to calculate ”graphs of in-
formation flow”, which show the flow of information (i.e. interactions) around the globe. Which dynamical
process is tracked through this method depends on the type ofatmospheric variable observed in the data (e.g.
geopotential height) and the time scale used (e.g. daily vs.monthly data). For details of this application and
the basic methodology, please see [4, 5].
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The causal discovery algorithm we used for this applicationis the classicPC algorithm [8, 9], extended
to provide temporal models [1], and incorporating the improvements of thePC stable algorithm [2]. This
approach yielded good results for low resolution planar graphs of information flow. However, once we
wanted to move on to high resolution grids, we quickly hit thelimits of standard implementations. For
example, using a grid with200 points around the globe, and using15 time slices, the algorithm needs to
handle a total of15×200 = 3, 000 variables, which on a MacBook Pro or a standard Linux computer already
required about 4 days. We would like to drastically increasethe grid to have 400, 800, or maybe even 2,000
nodes. Furthermore, atmospheric information flow occurs in3D, not 2D, thus we also want to move on to a
spatial grid (and thus spatial graph) including more than one height layer around the earth at the same time.

2 Faster Implementation

We tried publicly available implementations of thePC algorithm, namelyTETRAD (implemented in Java),
BNT (implemented in Matlab) andpcalg (implemented in R). None of them allowed us to move considerably
beyond the3, 000 variables already required for the temporal model (15 time slices) with a planar low level
grid (200 points). We first considered other types of algorithms, such as score-based algorithms and Granger
graphical models. However, we liked the overall propertiesof constraint-based algorithms - of which thePC
algorithm is the best known example - namely we find them to be reliable and transparent, i.e. each step of
the process easy to understand. Thus we decided to try comingup with a more efficientimplementation of
the PC algorithm, rather than switching to a different algorithm.At a later time we plan to still try other
algorithms.

As mentioned above, the available implementations ofPC we found were in Java, Matlab and R. While
Matlab and R are prime environments for mathematical computing, they are not that good at actual number
crunching. C is known to be much better suited for that purpose. We thus implement the algorithms (PC, PC
stable and their temporal extension) in C, using the GNU scientific library. It turned out that once we used
tens of thousands memory localization becomes a crucial issue, as illustrated in the following example. When
we increased the number of variables to tens of thousands thealgorithm suddenly took a tremendous amount
of time (days) for the simple task of just calculating the correlation matrix from the sample data. (This task is
done once at the very beginning of the algorithm, as preparation for PC.) We solved this problem by simply
transposing the data matrix, which holds all the observed data for all variables. Originally the observed data
of an individual variable was stored in acolumn of the data matrix (withrows representingone sample of all
variables). By instead representing each variable as arow in the data matrix, we moved the values for each
variable closer together in memory, thus reducing access time to those, and in turn reducing calculation time
for the correlation matrix from days to hours. In summary, byusing C and by careful implementation and
optimization, we achieved a speed factor of300 over the Java/Matlab/R implementations. Thus calculation
with 3, 000 variables was reduced from 4 days to 20 minutes.

In the next step we added multi-threading, speeding calculations by another factor of 4 or more for most
multi-core computers, such as many standard PC or Mac computers. This already allowed us to calculate our
first spatial graphs of information flow, using400 grid points per layer, up to6 height layers and15 times
slices, i.e. requiring a total of400× 6× 15 = 36, 000 variables in thePC algorithm. First results are shown
in the following section.

3 Results - Spatial Graphs of Information Flow

This section shows results which - to the best of our knowledge - constitute the first spatial graphs of infor-
mation flow around the globe ever obtained. We use the same methodology used in [4, 5], just that with our
high-speed implementation we can now generate graphs with higher resolution and in three dimensions.

3.1 Data and Parameters Used

We use daily geopotential height data obtained from NCEP-NCAR reanalysis data [6, 7] for years 1950-2000.
In some runs we used 4 layers of geopotential height (850mb, 500mb, 250mb, 50mb), in others we used six
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height layers (925mb, 850mb, 500mb, 250mb, 50mb, 30mb)1. Furthermore, for each year only daily data for
boreal winter is used (Dec-Jan-Feb). We use 400 geographical locations around the globe, and 15 temporal
slices (of which we discard the first slices to overcome the initialization problem discussed in [4, 5]). Results
are for PC stable, usingα = 0.1. For this experiment we chose to use for the edge directions only the
temporal constraints. Therefore all edges for delay=1 or more days have directions (purely from the temporal
constraints), while none of the edges for delay=0 have a direction, where the delay denotes the approximate
time it takes for the signal to travel from cause to effect.

3.2 Figures

We provide two types of plots to show the atmospheric information flow in three dimensions: (1) Spherical
plots provide a spatial image of the earth with connections from all height layers surrounding it (at their
respective heights); and (2) Stereographic projection plots provide stereo-graphic projections of all height
layers, stacked on top of each other. While the spherical plots are more intuitive to interpret and show
information flow for both the Northern and Southern hemisphere in a single plot, it is hard to make out any
details, in particular which connections belong to which height layers. Thus the stereographic projection plots
are much more useful, even though they are less intuitive andshow only connections for one hemisphere per
plot.

To indicate connections between different layers, we use the following color code for the individual edges:

• Black: edge that is completely within a layer.

• Red: edge is going up in the atmosphere, i.e. from a lower height layer to a higher height layer.

• Green: edge is going down in the atmosphere.

• Green is also the default color, if we do not know whether an edge is going up or down, as is the case
for all zero-delay edges that are not within a single height layer.

Figures 1 to 9 show results for a run with 4 height layers, while Figures 10 and 11 show results for a run
with 6 height layers. For the 4 height layers, Figures 1 to 3 show the strongest connections that require about
0 days to travel from cause to effect (almost instantaneous). Figures 4 to 6 show the corresponding figures
for connections spanning about 1 day, and Figures 7 to 9 for connections spanning about 2 days (very few
connections span 2 days).

The most interesting plots for 4 layers are Figures 5 and 6, which show most clearly the directions of
information flow for non-instantaneous connections. As onewould expect the highest layer (at50mb) is
relatively isolated from the other layers, with no strong interaction detected with any of the other layers (only
black arrows). There is considerable interaction between the other three layers, and not all of it is exactly
vertical. Much can be learned from plots of this type. In particular, we can generate this type of plot for
different subsets of data, e.g. only using date ranges for certain atmospheric conditions. By comparing the
resulting plots for those different conditions we can learnabout specific information flow for each of those
scenarios.

Figures 10 and 11 show results from using 6 height layers for strongest connections spanning 1 day. These
figures illustrate that we can indeed run PC even with 36,000 variables, and remind us that more work needs
to be done on studying the impact that the selection of heightlayers (i.e. which height layers are included)
has on the results. For example, comparing the results in Fig. 10 to those in Fig. 5, we see that adding another
height layer at the bottom (925mb) significantly reduces thenumber of arrows at the 850mb layer in Fig. 10.
See also Section 4 which discusses future work.

3.3 Interpretation of Results

All the figures in this report were obtained from daily geopotential height data at different height layers and
thus each arrow in these plots represents the pathway oflarge-scale atmospheric waves in three dimensions.
Some of the information we can obtain from these plots are

1Note that ahigher pressure means alower layer, i.e. closer to the planet’s surface, so for example 850mb is a lower layer than
500mb.
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1. Location of the maximum wave source (largest number of upward pointing arrows).

2. Preferred pathways of wave propagation.

That type of information cannot be obtained from traditional methods, so represents new knowledge about
the inner workings of our planet’s climate. (Note also that no frequency filtering was used to obtain these
results.) Being able to generate plots like the ones shown here is useful to better understand the effect of
climate change, and to study selected dynamic processes.

4 Future work

We have only scratched the surface of the methods presented here, in terms of theory and interpretation, as
well as their use to learn more about the internal workings ofcertain dynamic processes in the atmosphere.
Some of the research to be addressed include:

• Even higher efficiency implementation:As illustrated in Section 2, optimization of local memory is
a crucial speed factor for the implementation. So far we onlylocalized the memory in a few places
(e.g. transposing the data matrix), and believe that there additional adjustments throughout the code
will result in significant additional speed-up. We are also planning to implement the message passing
interface (MPI) so that we can use several nodes on a Cray simultaneously.

• Selecting height layers:As mentioned in Section 3.3, we need to further study the effects of selecting
height layers on the results. We plan to develop guidelines for how to interpret the results based on
the chosen heights, as well as potentially find ways to compensate for varying distances between the
height layers in the causal discovery algorithms.

• Applications in climate science:Of course, we have only touched the surface of what we can do even
with the current implementation. We can now generate information flow graphs for spatial grids and
we will investigate what we can learn from them about our planet’s climate using different types of
atmospheric variables, different resolutions, etc.

• Applications in bioinformatics: This high-speed implementation of causal discovery may also be use-
ful for applications in bioinformatics that seek to identify potential cause effect relationships between
large numbers of variables. Sample applications include gene regulatory networks and finding neural
connections in the brain.
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Figure 1: Spherical plot for 4 layers, strongest connections with travel time 0 days
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Figure 2: Stereographic projection plot for 4 layers, strongest connections with travel time 0 days, Northern
hemisphere
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Figure 3: Stereographic projection plot for 4 layers, strongest connections with travel time 0 days, Southern
hemisphere
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Figure 4: Spherical plot for 4 layers, strongest connections with travel time 1 day
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Figure 5: Stereographic projection plot for 4 layers, strongest connections with travel time 1 day, Northern
hemisphere
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Figure 6: Stereographic projection plot for 4 layers, strongest connections with travel time 1 day, Southern
hemisphere
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Figure 7: Spherical plot for 4 layers, strongest connections with travel time 2 days
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Figure 8: Stereographic projection plot for 4 layers, strongest connections with travel time 2 days, Northern
hemisphere

13



Figure 9: Stereographic projection plot for 4 layers, strongest connections with travel time 2 days, Southern
hemisphere
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Figure 10: Stereographic projection plot for 6 layers, strongest connections with travel time 1 day, Northern
hemisphere
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Figure 11: Stereographic projection plot for 6 layers, strongest connections with travel time 1 day, Southern
hemisphere
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