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ABSTRACT 

EFFICIENT MULTIDIMENSIONAL UNCERTAINTY QUANTIFICATION OF HIGH SPEED 

CIRCUITS USING ADVANCED POLYNOMIAL CHAOS APPROACHES 

 

 With the scaling of VLSI technology to sub-45 nm levels, uncertainty in the nanoscale 

manufacturing processes and operating conditions have been found to result in unpredictable circuit 

behavior at the chip, package, and board levels of modern integrated microsystems. Hence, modeling the 

forward propagation of uncertainty from the device-level parameters to the system-level response of high-

speed circuits and systems forms a crucial requirement of modern computer-aided design (CAD) tools. 

This thesis presents novel approaches based on the generalized polynomial chaos (gPC) theory for the 

efficient multidimensional uncertainty quantification of general distributed and lumped high-speed circuit 

networks. The key feature of this work is the development of approaches which are more efficient and/or 

accurate comparing to recently suggested uncertainty quantification approaches in the literature. Main 

contributions of this thesis are development of two individual approaches for improvement of the 

conventional linear regression uncertainty quantification approach, and development of a sparse 

polynomial expansion of the stochastic response in an uncertain system. The validity of this work is 

established through multiple numerical examples. 

  



iii 

 

ACKNOWLEDGEMENTS 

I like to express my gratitude to my adviser, Dr. Sourajeet Roy, and my master’s committee 

members, Dr. Branislav Notaros, Dr. Chuck Anderson and Dr. Ali Pezeshki. Besides I thank my 

collaborators and coauthors in my publications, including but not limited to Aditi Krishna Prasad, 

Muhammad Kabir and Dr. Roni Khazaka as this work would not be possible without their contributions. 

Finally, I appreciate support of my friends and family which made my experience in the Colorado State 

University a truly wonderful one. 

  



iv 

 

DEDICATION 

This work is dedicated to my parents for their endless love and support. 

  



v 

 

TABLE OF CONTENTS 

ABSTRACT ...................................................................................................................................... ii 

ACKNOWLEDGEMENTS................................................................................................................ iii 

DEDICATION .................................................................................................................................. iv 

CHAPTER I: INTRODUCTION ......................................................................................................... 1 

1.1 Problem statement......................................................................................................................... 1 

1.2 Goals of the thesis ......................................................................................................................... 3 

1.3 Organization of the text ................................................................................................................. 4 

CHAPTER II: EXISTING UNCERTAINTY QUANTIFICATION APPROACHES ............................... 6 

2.1 Generalized Polynomial Chaos Theory ........................................................................................... 6 

2.1.1 Basics of the gPC theory ............................................................................................................. 6 

2.1.2 Generation of 1-D orthonormal polynomials ................................................................................ 8 

2.1.3 Generation of multidimensional orthonormal polynomials .......................................................... 10 

2.1.4 Derivation of statistical information using PC coefficients .......................................................... 11 

2.1.4.1 Arithmetic mean of random outputs ........................................................................................ 12 

2.1.4.2 Variance and standard deviation of random outputs  ................................................................. 13 

2.1.4.3 Higher order moments and the probability distr ibution function ................................................ 14 

2.2 Intrusive approaches.................................................................................................................... 15 

2.2.1 Stochastic Galerkin (SG) approach ............................................................................................ 15 



vi 

 

2.2.1.1 Three term inner products ...................................................................................................... 16 

2.2.1.1 Stochastic Galerkin approach for linear circuit elements........................................................... 16 

2.2.1.3 Stochastic Galerkin approach for nonlinear circuit elements ..................................................... 19 

2.2.1.4 Stochastic Galerkin approach for a general network ................................................................. 20 

2.2.1.5 Pros and cons of the stochastic Galerkin approach ................................................................... 21 

2.2.2 The intrusive stochastic testing (ST) approach ............................................................................ 22 

2.2.2.1 Basics of develkopement of an intrusive solver for the ST approach.......................................... 22 

2.2.2.2 Determination of testing nodes for the ST approach ................................................................. 24 

2.2.2.3 An alternative nonintrusive ST approach ................................................................................. 25 

2.2.2.4 Pros and cons of the stochastic testing approach ...................................................................... 25 

2.3 nonintrusive approaches .............................................................................................................. 26 

2.3.1 Pseudo spectral approach .......................................................................................................... 26 

2.3.1.1 Integration with Gaussian quadrature rules .............................................................................. 27 

2.3.1.2 Application of Gaussian quadrature rules to the pseudo spectral PC approach............................ 28 

2.3.1.3 Pros and cons of the PC approach ........................................................................................... 29 

2.3.2 Conventional linear regression approach .................................................................................... 29 

2.3.2.1 Linear least squares technique ................................................................................................ 30 

2.3.2.2 Application of least squares technique to the PC theory............................................................ 32 

2.3.2.3 Pros and cons of the linear regression approach ....................................................................... 33 

2.3.3 Stochastic collocation (SC) approach based on the Lagrange interpolation ................................... 34 



vii 

 

2.3.3.1 Basics of the SC approach with Lagrange interpolation ............................................................ 34 

2.3.3.2 Pros and cons of the SC approach with Lagrange interpolation ................................................. 36 

2.3.4 Stroud cubature based stochastic collocation approach ................................................................ 37 

2.3.4.1 Stroud cubature rules and their application to uncertainty quantification.................................... 37 

2.3.4.2 Pros and cons of the Stroud based stochastic collocation approach ............................................ 40 

2.4 A numerical example................................................................................................................... 41 

CHAPTER III: PROPOSED FAST LINEAR REGRESSION APPROACHES ..................................... 45 

3.1 The search algorithm in the linear regression approach .................................................................. 46 

3.1.1 D-optimal criterion ................................................................................................................... 46 

3.1.2 Greedy search algorithm to identify DoE (classical Fedorov)  ...................................................... 48 

3.2 Development of the SPLINER approach ....................................................................................... 50 

3.2.1 SPLINER with sparse node selection ......................................................................................... 51 

3.2.2 Modified Fedorov algorithm ..................................................................................................... 51 

3.2.2.1 Prunning the search space ...................................................................................................... 52 

3.2.2.2 Constrained exchange criterion ............................................................................................... 52 

3.2.3 Computational cost analysis ...................................................................................................... 53 

3.2.3.1 Cost of the modified Fedorov search algorithm........................................................................ 54 

3.2.3.2 SPICE simulation cost ........................................................................................................... 55 

3.2.4 Numerical examples regarding the SPLINER approach............................................................... 56 

3.2.4.1 Example 1 ............................................................................................................................. 57 



viii 

 

3.2.4.2 Example 2 ............................................................................................................................. 60 

3.2.4.3 Example 3 ............................................................................................................................. 63 

3.3 Additional enhancements to the linear regression approach ............................................................ 65 

3.3.1 Expediting the search algorithm for high dimensional random spaces .......................................... 65 

3.3.1.1 Substituting the K worst DoE ................................................................................................. 65 

3.3.1.2 Implicit matrix inversion ........................................................................................................ 66 

3.3.1.3 Numerical efficiency of the modified search algorithm............................................................. 67 

3.3.2 Comparative analysis of overall CPU costs ................................................................................ 69 

3.3.2.1 Proposed linear regression approach ....................................................................................... 69 

3.3.2.2 Other approaches ................................................................................................................... 70 

3.3.3 Numerical examples ................................................................................................................. 72 

3.3.3.1 Example 1 ............................................................................................................................. 73 

3.3.3.2 Example 2 ............................................................................................................................. 75 

3.3.3.3 Example 3 ............................................................................................................................. 78 

CHAPTER IV: HYPERBOLIC POLYNOMIAL CHAOS EXPANSION (HPCE) ................................ 82 

4.1 Generation of multidimensional polynomial bases ......................................................................... 82 

4.2 Sparsity of effects ....................................................................................................................... 86 

4.3 Hyperbolic scheme for truncation of the PC expansion .................................................................. 88 

4.4 Derivation of statistical information using HPCE coefficients ........................................................ 92 

4.5 Development of the adaptive HPCE approach ............................................................................... 93 



ix 

 

4.5.1 Range of the hyperbolic factor u ................................................................................................ 93 

4.5.2 Determining the hyperbolic factor by gradually increasing it  ....................................................... 94 

4.5.3 Closed-form technique for determination of the critical hyperbolic factors ................................... 96 

4.5.4 Application of HPCE on the nonintrusive ST based approach...................................................... 97 

4.5.5 Enrichment of the adaptive HPCE approach ............................................................................... 99 

4.5.6 The program flow of the adaptive HPCE approach ................................................................... 100 

4.5.7 Computational cost of the proposed adaptive HPCE approach ................................................... 102 

4.5.7.1 Upper bound on number of polynomial bases in the HPCE approach ...................................... 102 

4.5.7.2 Comparing computational cost of HPCE with other nonintrusive PC approaches ..................... 104 

4.5.7.2.1 Total computational cost of the HPCE approach ................................................................. 104 

4.5.7.2.2 Stochastic collocation approach ......................................................................................... 105 

4.5.7.2.3 The conventional linear regression approach....................................................................... 106 

4.5.7.2.4 Nonintrusive stochastic testing based approach ................................................................... 107 

4.6 Numerical examples .................................................................................................................. 108 

4.6.1 Example 1.............................................................................................................................. 108 

4.6.2 Example 2.............................................................................................................................. 111 

4.6.3 Example 3.............................................................................................................................. 115 

CHAPTER V: CONCLUSION ........................................................................................................ 117 

REFERENCES............................................................................................................................... 119 

APPENDIX a: LIST OF PUBLICATIONS ...................................................................................... 128 



1 

 

CHAPTER I: INTRODUCTION 

 In today’s fast paced environment of electrical design and fabrication, simulation tools have 

proved to be a great asset to electrical engineers [1]. In the past decades, we have been able to predict the 

behavior of a circuit through simulation before any physical implementation. These tools are essential to 

the industry since they save a great deal of time and money. Today instead of fabricating expensive 

prototypes and time consuming electromagnetic compatibility tests [2], it is possible to predict a lot of 

details a priori to the fabrication phase. This has been made practical due to great advancements in high 

speed computations and numerical analysis, which has resulted in development of advanced SPICE-like 

circuit simulators [3], finite element and finite volume analysis, and several advanced new techniques 

which provide more efficient and accurate results. However, by advancements of the fabrication 

technology to nanoscales, new challenges have raised which motivates new areas of research. This thesis 

is the report of an endeavor in addressing such problems.  

1.1 Problem statement 

With the scaling of VLSI technology to sub-45 nm levels, uncertainty in the nanoscale 

manufacturing processes and operating conditions have been found to result in unpredictable behavior of 

high speed circuits. As a result, contemporary computer aided design (CAD) tools need to be flexible 

enough to be able to predict the impact of parametric uncertainty on general circuit responses. 

Traditionally, uncertainty quantification of circuit networks has been performed using the brute-force 

Monte Carlo approach [4]-[9]. Despite the simplicity of this approach, its slow convergence translates to a 

prohibitively large number of deterministic simulations of the original network model in order to achieve 

accurate statistical results. This makes the Monte Carlo approach computationally infeasible for analyzing 

large networks [10]. 

Recently, more robust uncertainty quantification techniques based on the generalized polynomial 

chaos (PC) theory have been reported for various high-speed circuit, electromagnetic (EM) and electronic 
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packaging problems [10]-[44]. These techniques attempt to model the uncertainty in the network response 

as an expansion of predefined orthogonal polynomial basis functions of the input random variables. The 

coefficients of the expansion form the new unknowns of the system and are evaluated via intrusive or 

non-intrusive approaches [37].  

The existing literature in circuit and EM simulation has been dominated by the highly accurate 

but intrusive stochastic Galerkin (SG) approach [10]-[25]. This approach requires the solution of a single 

but augmented coupled deterministic network model to determine the PC coefficients. This issue is 

further exacerbated for nonlinear networks since the pertinent inner product operations have to be 

approximated using a quadrature method where each quadrature term is represented using a large number 

of additional dependent voltage/current sources [18]. Overall, the simulation costs of such large models 

scale in a near-exponential manner with the number of random dimensions. While recent works such as 

the decoupled PC algorithm [20] and the stochastic testing method [40], [41] can mitigate the time and 

memory costs of the standard SG approach, both these approaches require the development of intrusive 

codes that preclude the direct exploitation of SPICE-like legacy circuit simulators. These bottlenecks have 

limited the applicability of the SG approach to problems featuring only low-dimensional random spaces 

[45], [46]. 

On the other hand, non-intrusive PC approaches such as the stochastic collocation (SC) approach, 

pseudo-spectral collocation approach and linear regression approach, among others, have recently been 

explored for circuit and EM problems as well [26]-[39]. The advantage of these non-intrusive approaches 

over the intrusive SG approach lies in their ability to compute the PC coefficients of the network 

responses by simply probing the original model at a sparse set of nodes located within the random space 

[45]. The deterministic simulation of the network at each node can be performed by a direct invocation of 

SPICE without the need for any intrusive coding. In addition, the relevant deterministic simulations can 

be parallelized unlike the conventional SG approach where the augmented network is always coupled. 
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1.2 Goals of the thesis  

Among non-intrusive approaches, the linear regression approach has been found to be highly 

popular [27], [28], [46]. This approach probes the PC expansion of the network responses at an 

oversampled set of multidimensional nodes located within the random space, thereby leading to the 

formulation of an overdetermined set of linear algebraic equations. These equations can be solved in a 

least-square sense to directly evaluate the PC coefficients of the network responses [46]. Typically, the 

multidimensional regression nodes are chosen from the tensor product grid of one dimensional (1D) 

quadrature nodes [27], [28]. Since the number of nodes in the tensor product grid increases exponentially 

with the number of random dimensions, realistically only a sparse subset of the nodes, also referred to as 

design of experiments (DoE), can be chosen. In the work of [39], it was demonstrated that blindly 

choosing the DoE can lead to inaccurate evaluation of the PC coefficients. However, the contemporary 

literature on linear regression based PC analysis of EM and circuit problems have not identified any 

specific formal criterion for choosing the best set of DoE [27], [28]. Recently, the stochastic testing 

approach has developed a reliable technique to select possible DoE where the number of DoE is equal to 

the number of unknown PC coefficients [40], [41]. However, this technique does not choose the DoE 

using any optimal criterion and hence does not guarantee the maximum possible accuracy of results. 

This thesis firstly presents new techniques for improvement of the linear regression methodology 

in order to address the above issues. The first contribution is development of a sparse linear regression 

(SPLINER) approach and then more improvements are suggested based on the D-optimal criterion for 

choosing the DoE. The proposed approaches insist that for the most accurate evaluation of the PC 

coefficients, the corresponding DoE have to be so chosen such that the determinant of the information 

matrix in the linear regression problem is maximized [39]. In other words, this thesis proposes greedy 

search algorithms in order to identify the D-optimal DoE from multidimensional random spaces. The 

proposed search algorithm begins with an arbitrary set of DoE chosen from the tensor product grid of 1D 

quadrature nodes and then sequentially replaces each DoE in that initial set with the best possible 
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substitute selected from the remaining set of quadrature nodes. The best possible substitute DoE is chosen 

to be the one that increases the current determinant of the information matrix by the largest amount. This 

step-by-step refinement of the starting set of DoE continues till all of them have been replaced at which 

point the new set forms the D-optimal DoE [39]. Novel numerical strategies to expedite the search of the 

substitute DoE for problems involving high-dimensional random spaces have been developed in this 

thesis. 

Furthermore, in order to increase the efficiency of PC approaches a novel methodology for 

curbing the scaling of computational costs with respect to number of random variables is provided. In 

fact, in most of the state of the art PC approaches the computational cost increases in an exponential or 

near exponential rate with respect to number if random variables. This increase in CPU cost is called 

curse of dimensionality and is the main bottleneck for PC approaches which has limited their use to a 

relatively limited number of dimensions. In this thesis a novel approach is suggested to address the curse 

of dimensionality. In this approach based on sparsity of effects [47], [48] more impactful polynomial 

bases are selected by switching the linear criterion of the regular PC approach to a hyperbolic criterion. 

Coefficients of these polynomial bases can be found using any state of the art PC approach; however, in 

this thesis the focus is on nonintrusive approaches. Then the desired statistics are found from the 

coefficients with marginal loss in accuracy. Since number of new unknowns is noticeably less than the 

regular PC approach the CPU cost and number of deterministic simulations is only a fraction of the 

original amount. Moreover, an adaptive methodology is developed to determine how many impactful 

bases are needed based on the desired accuracy. The main advantage of this approach is reducing the 

increase rate of CPU costs with minimal loss in accuracy. This claim has been proved through multiple 

examples including distributed and nonlinear networks.  

1.3 Organization of the text 

 This thesis tries to be self-explanatory and without a major need to previous knowledge in 

uncertainty quantification for the reader. Most of the state of the art PC approaches are reviewed.  
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Exploited techniques are explained in details, and novel ideas are supported with extensive numerical 

examples and discussions. The rest of text is organized as follows: Chapter II  provides a review of basics 

of the generalized PC theory and the most common intrusive and nonintrusive uncertainty quantification 

approaches including stochastic Galerkin [10]-[25], stochastic collocation [49] and the linear regression 

approach [27], [28]. Moreover, the major advantages and disadvantages of these approaches are provided 

in this chapter. Chapter III  is dedicated to improvements to the linear regression approach. This chapter is 

divided to three main sections; the first section reviews the D-optimal criterion and the Fedorov search 

algorithm for the linear regression approach. In the second section the proposed SPLINER approach is 

discussed, and in the third section more improvements on the linear regression approach are suggested. 

All contributions in this chapter are validated by numerical examples. In Chapter IV , firstly further details 

about the PC theory is provided which is used in rest of the chapter, then the improvement on PC 

approaches with the use of the hyperbolic criterion and its adaptive methodology are discussed. This 

approach is mainly compared with a nonintrusive stochastic testing based approach [37] and the 

contributions are validated using multiple numerical examples. Finally the thesis is ended with a 

conclusion in Chapter V.  
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CHAPTER II: EXISTING UNCERTAINTY QUANTIFICATION APPROACHES 

 In this chapter an extended review of currently available uncertainty quantification approaches is 

discussed. To do so, it is imperative to be familiar with the generalized Polynomial Chaos (gPC) theory. 

Therefore gPC is introduced at the beginning of this chapter. Then we discuss the uncertainty 

quantification problem using different intrusive and nonintrusive approaches. The considered intrusive 

approaches are Stochastic Galrekin (SG) [10]-[25] and Stochastic Testing [40], [41]. On the other hand, in 

the nonintrusive section since the focus of this work is on nonintrusive methods more methods are 

discussed. This includes Pseudo Spectral Stochastic Collocation [29], classical linear regression [27], [28] 

Stochastic Collocation [49] and Stroud cubature rules [50], [51]. At the end of each section comparative 

analysis of that approach with respect to other techniques is discussed. Finally, at the end of this chapter a 

numerical example is provided to present the application of numerical uncertainty approaches.  

2.1 Generalized Polynomial Chaos Theory 

The concept of the orthogonal polynomials has been in mathematics records for a long time [52], 

[53]. However, due to emergence of uncertainty problems and its challenges, orthogonal polynomials 

have become popular among engineers, especially in mechanical and electrical engineering. The work of 

[54] revived the idea of generalized polynomial chaos (gPC) expansion and exploits it to analyze 

stochastic differential equations. Afterwards the idea flourished and was expanded to different fields and 

applications [10], [55], [56]. To name a few, polynomial chaos is exploited in the Stochastic Galerkin 

[10]-[25], stochastic testing [40], [41], pseudo spectral gPC [29] and linear regression [27], [28], which 

will be discussed later in this chapter. 

2.1.1 Basics of the gPC theory 

One noticeable application of gPC is to extract statistics of stochastic systems by modeling the 

output as an expansion of orthogonal polynomials. Based on the [55], output of a system with a one-

dimensional random variable can be written as:  
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
0

)()(
i

iicX                                                          (2.1) 

where λ is the random variable, X is the output, ci is a scalar coefficient and )(λk represents orthogonal 

bases with respect to probability distribution function (PDF) of λ. In order to make (2.1) practical it is 

truncated to: 

 m

i
iicX

0

)()(                                                            (2.2) 

where m represents the order of expansion and there are m + 1 terms in the expansion. 

The property that makes the orthogonal polynomials attractive is that the bases are orthogonal 

with respect to the PDF of λ; hence, 

  jiijiji d ,
2)()()()(),(                                    (2.3) 

where ,  denotes the inner product, Ω is the random space, ρ represents the PDF of λ, αi
2 is a constant 

scaler and įi,j represents the delta function. It is worth noting in (2.3) the inner product of bases is zero 

unless i = j. In this thesis the polynomial bases are normalized by a factor of αi for simplicity purposes. 

Hence they are called orthonormal polynomials. 

The above mentioned polynomials are chosen based on the Wiener-Askey scheme [55], where it 

can be decided which bases gives a faster convergence rate for a certain distributions. The corresponding 

class of orthogonal polynomials with respect to common standard distributions can be found in Table 2.1, 

however, theoretically orthogonal polynomials can be derived for any arbitrary distribution.  
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Table 2.1 Common distributions and the corresponding Wiener-Askey polynomials 
Distribution of λ Wiener-Askey chaos polynomials Support 

Gaussian 

Uniform 

Gamma 

Beta 

Hermite 

Legendre 

Laguerre 

Jacobi 

(-∞, +∞) 

[-1,1] 

[0, +∞) 

[-1,1] 

 

2.1.2 Generation of 1-D orthonormal polynomials  

Consider the standard normal distribution N(0,1) where ρ(λ) = 
ଵ√ଶ� ݁−�22 . By using (2.3) it can be 

proven that Hermite polynomials are orthogonal to this distribution. These polynomials can be generated 

either analytically [10]:  

2/2/ 22

)1()(    e
d

d
e

i

i
i

i
                                                    (2.4) 

or recursively: 

)()()( 11    iii i                                                      (2.5) 

where 1)(0  ,  )(1 and i > 1. As mentioned before, all polynomials in this thesis are normalized 

by αi
2 in (2.2), which can be found as: 

!)(),(2 iiii                                                          (2.6) 

 Furthermore, the uniform distribution U(-1,1) is defined as: 

�ሺ�ሻ = {Ͳ.ͷ,    − ͳ ≤ � ≤ ͳͳ,     Otherwise                                                  (2.7) 

and by using (2.3) it can be proven that Legendre polynomials are orthogonal to this distribution. These 

polynomials can be generated either analytically [10]: 

       �௜ሺ�ሻ =  ଵଶ೔௜! �೔��೔ ሺ�ଶ − ͳሻ௜                                                   (2.8) 
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or recursively: 

�௜+ଵሺ�ሻ = ଶ௜+ଵ௜+ଵ ��௜ሺ�ሻ − ௜௜+ଵ �௜−ଵሺ�ሻ                                                (2.9) 

where �଴ = ͳ, �ଵ = � and i > 1. As mentioned before, all polynomial in this thesis are normalized by α i
2 

in (2.2), which can be found as:  

12

1
,2 

iiii                                                                (2.10) 

For illustration purposes the first six univariate orthonormal Hermite and Legendre polynomials 

are listed in Table 2.2.  

Table 2.2 The first six univariate orthonormal Hermite and Legendre polynomials  
Bases Orthonormal Hermite Polynomial Orthonormal Legendre Polynomial 

Ф0(λ) 1 1 

Ф1(λ) λ √͵ λ 

Ф2(λ) (λ2 -1) / √ʹ √ͷ ( 
ଷଶ λ2 - 

ଵଶ ) 
Ф3(λ) (λ3 - 3λ) / √͸ √͹ ( 

ହଶ λ3 - 
ଷଶ λ ) 

Ф4(λ) (λ4 - 6λ2 + 3) / (2√͸ሻ  3 ( 
ଷହ଼

 λ4 - 
ଷ଴଼

 λ2 + 
ଷ଼ ) 

Ф5(λ) (λ5 - 10λ3 + 15λ) / (2√͵Ͳሻ √͹ ( 
଺ଷ଼

 λ5 - 
଻଴଼

 λ3 + 
ଵହ଼ λ ) 

 

In the general case, the corresponding i+1th degree orthogonal monic polynomial function can be 

generated via the three term recurrence relation [45] 








df

df

df

df

fff

i

i

i

i

i

i

iiiii

 
 












)()(

)()(
        ;

)()(

)()(

)()()()(

2

2
1

12

2

21

                                       (2.11) 

where f-1(λ) = 0, f0(λ) = 1, and β0 = 1. 
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2.1.3 Generation of multidimensional orthonormal polynomials 

 In the topic of uncertainty most of the practical problems involve more than one random 

variable; therefore, in order to analyze these problems it is essential to consider multidimensional 

polynomials. However, basics of gPC stay the same. In (2.2) λ changes to the vector λ = [λ1, λ2,…, λn]
T , 

with T being the transpose sign, which represents n mutually uncorrelated random variables. In other 

words 

 P

i
iicX

0

)()( λλ                                                            (2.12) 

where �௜ሺ�ሻ represents multidimensional orthonormal polynomials, and P+1 is number of polynomial 

bases in the multidimensional case and is equal to 

� + ͳ = (௠+௡௠ ) = ሺ௠+௡ሻ!௠!௡!                                                   (2.13) 

with m being the common expansion degree of each dimension. Also in (2.3) in addition to polynomials, 

ρ(λ) turns to the joint PDF of all random variables and the search space Ω converts to a multidimensional 

random space i.e. for orthonormal multidimensional polynomial bases we have 

  jijiji d ,)()()()(),(  λλλλλλ                                   (2.14) 

It is worth noting, in this thesis even for multidimensional cases αi
2 is equal to one since normalized 

univariate polynomials are used in (2.14). 

The multivariate polynomials are presented as product of 1D bases as shown in: 

��ሺ�ሻ = ∏ ��ೕሺ�௝ሻ௡௝=ଵ                                                       (2.15) 

with dj being the index of j-th 1D basis. It should be noted that 1D bases of (2.15) can be from different 

families. The traditional scheme to determine dj indices of polynomials is [10]: 
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݀ଵ + ݀ଶ + ⋯ + ݀௡  ≤ �                                                     (2.16) 

The graphical interpretation of this scheme for the case of two random variables and the third order 

expansion, m = 3, is illustrated in Fig. 2.1. This illustration can be expanded to the general case of n 

random variables, where the polynomials are located at positive coordinates and are bounded by an n 

dimensional surface noted as:  ∑ ݀௜ = �.  

 For illustration purposes the first 10 orthonormal Hermite polynomials for two random variables 

with the standard normal distribution and also Legendre polynomials for two random variables with the 

uniform distribution are listed in Table 2.3. 

2.1.4 Derivation of statistical information using PC coefficients  

 As stated before, the main goal of this thesis is derivation of statistical information of stochastic 

systems. Most of the statistical information are defined by integration over the random space, and 

entering PC expansions in the integration formulas, helps to derive an analytical formula to obtain them. 
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Fig. 2.1: Graphical illustration of the scheme for selection of multivariate polynomials for the case of n = 2 and 
m = 3. 
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Table 2.3 The first ten orthonormal two-dimensional Hermite and Legendre polynomials  
Bases Orthonormal Hermite Polynomial Orthonormal Legendre Polynomial Total degree 

Ф0(λ) 1 1 0 

Ф1(λ) λ1 √͵ λ1 1 

Ф2(λ) λ2 √͵ λ2 1 

Ф3(λ) (λ1
2 -1) / √ʹ √ͷ ( 

ଷଶ λ1
2 - 

ଵଶ ) 2 

Ф4(λ) λ1*  λ2 3*λ1*  λ2 2 

Ф5(λ) (λ2
2 -1) / √ʹ √ͷ ( 

ଷଶ λ2
2 - 

ଵଶ ) 2 

Ф6(λ) (λ3 - 3λ) / √͸ √͹ *  ( 
ହଶ λ1

3 - 
ଷଶ λ1) 3 

Ф7(λ) λ2 * (λ1
2 -1) / √ʹ √ͳͷ *  λ2 * ( 

ଷଶ λ1
2 - 

ଵଶ ) 3 

Ф8(λ) λ1 * (λ2
2 -1) / √ʹ √ͳͷ *  λ1 * ( 

ଷଶ λ2
2 - 

ଵଶ ) 3 

Ф9(λ) (λ2
3 - 3λ2) / √͸ √͹ *  ( 

ହଶ λ2
3 - 

ଷଶ λ2) 3 

 

2.1.4.1 Arithmetic mean of random outputs  

 The first and most common statistical moment is the arithmetic mean since it indicates the central 

value which has random outputs spread around it. The definition of arithmetic mean for a random output 

is: 

  
ȍ

λλλλ dxxE )()())((                                                     (2.17) 

where x is the random output, and the integral is multidimensional with n dimensions. By replacing (2.12) 

in (2.17) we would have:  

 
 P

i
ii

P

i
ii dcdcxE

0
0

0

)()()()()())((
ȍȍ

λλλλλλλλ                           (2.18) 

It is worth noting )(0   is always equal to 1 for all orthonormal polynomials. By comparing the right 

hand side of (2.18) and (2.14), we can write: 
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  
 P

i

P

i
iiii cccxE

0
0

0
0,0 )(),())(( λ                                      (2.19) 

Therefore, the arithmetic mean of a random output is coefficient of the first polynomial in its PC 

expansion disregard of the distribution and number of random variables. 

2.1.4.2 Variance and standard deviation of random outputs  

 The second statistical moment is the variation. This parameter shows how far samples can get 

from the mean value; hence, a lower variation is desirable. The mathematical definition of variation is: 

   




ȍȍ

λλλλλλλ

λλλ

dcdcc

xExExVar
P

i
ii

P

i
ii )())(()())()((

])))(()([())((

2

1

2
00

0

2

                                (2.20) 

Expansion of the right hand side of this equation results in all possible combinations of ji which would 

convert the formula of variance to:  

 
 P

i

P

j
jjii ccx

1 1

)(),())(var( λλλ                                                  (2.21) 

However, only when i = j, the inner product results in a nonzero answer; therefore: 

 
 P

i
i

P

i
iiii cccx

1

2

1

)(),())(var( λλλ                                              (2.22) 

Or in other words summation of square of every coefficient except the first one. 

 The other popular statistical measurement tool is the standard deviation or σ which is the square 

root of variance; thus, variance is also shown as σ2. The equation for standard deviation is:  

 P

i
ic

1

2                                                                    (2.23) 
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Standard deviation is favorable over the variance because it has the same order of mean; hence, it is 

comparable with the mean value. 

2.1.4.3 Higher order moments and the probability distribution function 

Higher order moments provide more information about the behavior of a random output. 

Although it is not very common to see these moments in the mainstream literature, they can be a 

noticeable help in special problems. In general statistical moments are defined as [57]: 

λλλλλ
ȍ

dxExx MM )()))(()(())((                                                 (2.24) 

where M represents order of the moment and ))(( λxM is the M-th order moment. The third order 

moment is skewness and demonstrates asymmetry of the PDF. A high skewness means the PDF has high 

asymmetry. After simplification this parameter can be shown as: 

323 ))(())((3))(())(( λλλλ xExxExs                                              (2.25) 

where s(x(λ)) indicates skewness of x(λ). The next statistical moment is called kurtosis and has an order of 

4. This parameter demonstrates the form of tails of the PDF and after simplification can be shown as: 

4224 ))(())(())((6))(())((4))(())(( λλλλλλλ xExExxExsxExk                    (2.26) 

where k(x(λ)) indicates kurtosis of x(λ). Unfortunately for statistical moments greater than two the inner 

product approach cannot be used because third degree polynomials with different random variables 

appear in the integral. However, knowledge of the coefficients in (2.12) allows us to find higher order 

moments in a different way. In order to do so, an approach similar to Monte Carlo is taken.  

Statistical analysis with Monte Carlo is done by performing numerous experiments. Then 

statistical information of experiments’ results are computed. However, this approach is not practical in the 

cases where one instance of the experiment takes a considerable time to perform. Nevertheless, a faster 
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method is generating the experiments’ results by using (2.12). In this approach, first M random sample 

nodes are generated, where M is a great number. The number of dimensions and distribution of these 

samples is same as random variables λ in the system. By having coefficients, polynomials and random 

samples, the right hand side of (2.12) is known; therefore, the result of M instances of the experiment can 

be approximated. The final step is computing statistical information from these approximated results. 

The final statistical information discussed in this section is the PDF which holds information from 

all previously introduced statistical moments, and in many cases is the most desirable statistical 

information. The approach to find PDF is same as higher order moments. M experiments’ results are 

generated by sampling (2.12) and the PDF is constructed by drawing the normalized histogram of all that 

data. It is worth noting, using Monte Carlo to find higher order moments and PDF does not disvalue the 

PC approach because performing one single experiment often takes significantly more time comparing to 

calculation of (2.12). 

2.2 Intrusive approaches 

 Intrusive approaches are the ones which require intrusive coding and development of a new 

circuit solver. In this section two intrusive approaches are discussed which are the Stochastic Galerkin 

and the stochastic testing approaches. 

2.2.1 Stochastic Galerkin (SG) approach 

 The first PC based stochastic analysis technique that we discuss is the stochastic Galerkin 

approach [10]-[25], which is intrusive and requires intrusive coding and cannot be done in a black box 

manner. However, this effort makes the stochastic Galerkin to have a higher accuracy comparing to 

nonintrusive methods. In this approach, the equations governing the system are augmented with means of 

gPC theory. The resultant augmented equations are in fact equivalent to an expanded and coupled 

deterministic system. The PC coefficients can be derived after one single simulation of this system. 
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Before discussing this approach in details it is necessary to introduce one more PC based integration 

formula. This formula is explained in the next section.  

2.2.1.1 Three term inner products 

 In previous sections we mentioned that we are interested in inner product of two polynomials 

because of the orthogonality condition. However, in the stochastic Galerkin approach a new expression, 

)(),()(  ijk , appears, which is the inner product of multiplication of two polynomials and another 

polynomial. The result for Hermite polynomials would be [10]: 

)!()!()!(
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deijkijk                  (2.27) 

where m = (k+j+i)/2 is an integer and m > k , i, j. If m does not meet these two conditions the result is zero. 

Furthermore, result of the abovementioned inner product for Legendre polynomials would be 

[10]: 
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where s = (k+j+i)/2, p = max (0, i - j) and q = min (j+i, k, i). The above equation works only when s is 

even and values before factorial signs are non-negative. Otherwise the result is null. 

2.2.1.2 Stochastic Galerkin approach for linear circuit elements 

 The SG approach is desirable in systems being governed by simple equations. Therefore, it can be 

easily applied to passive elements [18]. Consider the single resistor pictured in Fig. 2.2 (a). Assuming this 

resistor is affected by random variables λ, the equation relating voltage and current for this element is: 

),()),(),()((),( 21 λλλλλ tGvtvtvGti                                          (2.29) 
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where G is the conductivity. The first step is applying (2.12) to random functions in (2.29), which yields:  

.)()()()()(
0 00
  

 P

k

P

j
jkjk

P

i
ik tvGti λλλ                                            (2.30) 

Since random variable(s) are embedded in the resistor and G(λ) is known, Gk in (2.30) can be found using 

the orthogonal projection technique: 

k

P

j
kjjk

P

j
jjk GdcdGG 


    00

)()()()()()()(),( λλλλλλλλλλ
ȍ

ȍ

               (2.31) 

The next step is applying the Galerkin projection on (2.30) which means calculating inner product of left 

and right hand sides with the m-th polynomial.  

.)(,)()()()(,)()(
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λλλλλ m
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k

P

j
jkjkm

P

i
ik tvGti    

                                 (2.32) 

Considering the orthogonality condition we would have: 

 P

j
jmjm tvGti

0

)(
~

)(                                                                 (2.33) 

where G
~

 is the augmented conductance matrix: 

v- v+
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          (a)                                                                                (b) 

     Fig. 2.2: Application of SG on a single resistor. (a) The resistor element. (b) The m-th spectral circuit. 
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j
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0

~
                                                          (2.34) 

And: 

.)()()()()(),()( 
ȍ

λλλλλλλλ dmjkmjkkjm                              (2.35) 

After applying (2.32) to all )(λm polynomials, P+1 similar equations would be generated which can be 

organized as: 

)(~~
)(

~
tt vGi                                                              (2.36) 

where ,)](),....([)(
~

0
T

P titit i  ,)](),....([)(~
0

T
P tvtvt v  G

~  denotes the augmented conductance matrix 

described in (2.34), and T is the transpose sign. It is worth noting (2.36) represents a deterministic circuit 

which can be simulated by circuit simulator software. In this augmented circuit, there are P+1 branches 

and as depicted in Fig. 2.2 (b) each of them possesses a resistor equal to 1/� mm. Each branch is coupled to 

other branches with a factor of � mj modeled by parallel voltage dependent current sources. Afterwards, 

coefficients of output voltages or currents can be easily obtained by probing the augmented circuit. In 

other words, V+
j is equal to the voltage at the end of the j-th branch. 

 This process can be done likewise for stochastic capacitors and inductors, where the PC 

expansion, Galerkin projection and augmentation are done on dttdvCti /),()(),( λλλ  and 

dttdiLtv /),()(),( λλλ  respectively. A general circuit usually involves a lot of deterministic elements 

as well. By writing the expansion it can be easily proven these elements appear as themselves in every 

branch of the augmented circuit. Finally, independent deterministic sources appear as themselves in the 

first branch and with zero amplitude in other branches. 

 In the case of distributed networks, same principals apply. Consider a set of coupled transmission 

lines. They can be modeled by partial differential equations [10], and the PC expansion and Galrekin 
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projection can be applied to these equations similar to passive elements [10]. Moreover, the coupled 

equations describing the augmented system can be generated from Galerkin projection of expanded 

version of the partial differential equations and the )(λm basis. The result represents a deterministic 

augmented circuit which can be simulated by circuit simulator software. In this augmented circuit, there 

are P+1 times more transmission lines and all of them are coupled to others. Afterwards, coefficients of 

output voltages or currents can be easily obtained by probing the augmented circuit.  

2.2.1.3 Stochastic Galerkin approach for nonlinear circuit elements 

 One major challenge in the SG approach is determination of integrals similar to the one in (2.32) 

which are necessary for finding coefficient in PC expansion of equations describing network’s elements. 

In case of passive elements and even transmission lines this is a relatively easy task. However, it is 

different for nonlinear elements like diodes which are governed by a nonlinear function as in ݅ሺݐሻ =�ሺݒሺݐሻሻ because after the Galerkin projection the result would be: 

  



ȍ

λλλλ dtvFti m

P

k
kkm )()()()()(

0

                                         (2.37) 

 Therefore the work of [18] suggests a numerical approach to solve this integral by generating Q = 

(m+1)n companion cells where each cell includes the nonlinear element and a dependent voltage source. 

And the nonlinear element is replaced by a dependent current source in the m-th spectral branch of the 

main augmented circuit representing im.  

This process can be done likewise for three terminal nonlinear elements such as transistors by 

modeling them as Q companion cells, where each cell includes the transistor and two dependent voltage 

sources, in addition to m spectral networks with two dependent current sources in each of them. 
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2.2.1.4 Stochastic Galerkin approach for a general network 

 Consider the general nonlinear network consisting of distributed and lumped circuit elements 

characterized by the modified nodal analysis (MNA) equations. After introducing the random variables λ 

to the network the stochastic version of the MNA equation would be [19], [25], [61]: 

)(),()),(()),((
),(

)(),()(
1

tttt
dt

td
t

tN

i

T
iii BλXTλYTλXF

λXλCλXλG                (2.38) 

where G, C matrices contain the stamp of all the memoryless and memory lumped circuit elements 

respectively, X is the vector of stochastic voltage/current responses, F contains the stamp of nonlinear 

circuit elements, Ti is the selector matrix mapping the vector of port currents ii(t) for the i-th distributed 

network into the nodal space of the circuit, Yi is the corresponding time-domain Y-parameter macromodel 

of the i-th distributed network, B represents the input vector of independent voltage and current sources 

and ‘∗’ denotes the temporal convolution which is performed in a recursive manner in SPICE.  

The intrusive SG approach begins by expanding the stochastic processes of (2.38) using 

multivariate orthogonal polynomial bases as [19]: 
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Then the matrices Gk, Ck and Yk of (2.39) are obtained from the explicit knowledge of G(λ), C(λ) and 

Y(λ) respectively. The expansion of (2.39) is then replaced in (2.38) and a Galerkin projection of both 

sides of the equation is performed, thereby converting the stochastic equations of (2.38) into a set of 

augmented deterministic coupled equations as [19]: 

)()())(())((
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CXG                      (2.40) 
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where Ga, Ca are augmented matrices constructed using the Gk, Ck block matrices respectively, 

Tia is a purely diagonal matrix composed of Ti, Yia(t) is the augmented time-domain macromodel of the i-

th distributed network constructed from the Yik block matrices of (2.39), Ba = [B, 0,…, 0]T, Xa = [X0, X1 

,…, XP]T and Fa(.) denotes the augmented vector of nonlinear circuit elements.  

The overall MNA equations of (2.40) represent an augmented deterministic network which can be 

solved within a SPICE environment. Once the PC coefficients Xk(t) are known, the statistical moments of 

the system can be easily evaluated via the PC expansion of (2.39). 

2.2.1.5 Pros and cons of the stochastic Galerkin approach 

With no doubt the described SG approach provides a high level of accuracy [10]-[25]. One reason 

is that unlike nonintrusive approaches the distribution of output is not assumed to be the joint PDF of 

input random variables λ. The higher accuracy allows SG to choose lower orders of expansion which in 

turn saves computational costs. Moreover, SG is able to extract all PC coefficients from one single 

experiment or simulation, while nonintrusive and sampling approaches perform a great number of calls to 

the simulation software. 

However the SG approach requires intrusive coding to automate the conversion of the stochastic 

equations describing the network into the augmented deterministic network. Thus, this approach cannot 

directly exploit existing sophisticated deterministic solvers such as SPICE. Moreover, the augmented 

deterministic equations denote the augmentation of the network by a factor of P+1. This translates to a 

near-exponential scaling of the CPU time and memory costs with respect to the number of random 

dimensions. Finally, the multidimensional integrals of nonlinear equations are computed using numerical 

techniques where the terms of the numerical approximation are represented in SPICE using lumped 

dependent sources, thus leading to further augmentation of the network [18]. Due to these factors, the 

application of the SG approach is only limited to problems involving small-dimensional random spaces 

[10]-[25]. 
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2.2.2 The intrusive stochastic testing (ST) approach 

 In order to address the inefficiencies of the SG technique recently the intrusive stochastic testing 

approach which is able to extract PC coefficients by exploiting an intrusive solver is suggested in [40]. 

For simplicity in discussion of the ST approach, instead of (2.38) the following differential algebraic 

equation (DAE) is considered: 

)()),,((
)),,((

tBt
dt

td
uλλxf

λλxq                                              (2.41) 

where u(t) denotes the input signal, x represents voltages and currents in the network and q and f are 

stamps of memory and memoryless elements respectively. Similar to other PC approaches solution of the 

network is approximated as: 

 P

i
ii tt

0

)()(ˆ),(ˆ λxλx                                                        (2.42) 

Replacing (2.42) in (2.41) yields the following residual function: 

)()),,(ˆ(
)),,(ˆ(

()),(( tBt
dt

td
tRES uλλxf

λλxqλX                              (2.43) 

where )](ˆ),....(ˆ[),( 1 txtxt PλX . The goal of ST is developing an intrusive solver to solve (2.43) and 

extract PC coefficients. In the following sections basics for developing ST’s intrusive solver, selection of 

sample nodes required for ST analysis, an alternative nonintrusive ST approach, and finally a discussion 

on pros and cons of the approach are provided. 

2.2.2.1 Basics of development of an intrusive solver for the ST approach 

 The basic idea behind the ST approach starts with calculating (2.43) for P+1 testing nodes 

denoted as λ(1),…. λ(P+1), and enforcing the residue to be zero: 
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where: 
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 The ST approach proposed in [40], solves (2.45) by developing an intrusive transient solver 

where adaptive time stepping and decoupling can be used. After solving (2.45), this approach directly 

provides PC coefficients. This solver can be implemented by using different integration schemes such as 

backward Euler, trapezoidal and Gear-2 techniques. Next, without any loss of generality, backward Euler 

is selected to demonstrate application of the ST approach; however, it can be applied to other integration 

schemes likewise.  

 Using the backward Euler integration scheme discretization of (2.44) yields in [1] 

  0
~

)()()()( 1   kkkkkk uBXFXQXQXR                                      (2.46) 

where: 
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It is worth noting in this approach the local truncation error (LTE) is exploited to adaptively set the 

timestep. εoreover, the Newton’s iterative technique is used to determine Xk in (2.47) by starting from 

random guess of Xk
0. In other words the equation 
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kJ XRXX                                                              (2.48) 

where )( j
kJ X is the Jacobian matrix of )( j

kXR , is solved. Then the j
kX  is updated: 
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until the solution gets converged. Equation (2.48) may be solved for j
kX  using a matrix solver which 

would be costly. Therefore, [40] suggests an iterative and decoupled technique. Interested readers are 

encouraged to read [40] for extra details. Once the PC coefficients are extracted, the statistical moments 

can be generated same to previously mentioned PC approaches. Next the algorithm to find the testing 

node in (2.44) is discussed. 

2.2.2.2 Determination of testing nodes for the ST approach 

 One major challenge in the ST approach is determination of testing nodes since poor selection of 

nodes results in ill-conditioned matrices in (2.45) which in turns makes the solution inaccurate or 

impossible to obtain. In order to address this issue, the ST approach of [40] starts with the (m+1)n nodes 

inspired by the Wiener-Askey scheme. These nodes are set to be the tensor product of roots of the (m+1)-

th polynomial orthogonal to the joint distribution of input random variables. The ST approach tries to 

obtain PC coefficients from the least possible number of samples which is equal to number of coefficients 

i.e. P+1. In order to have accurate results two criteria are set for selecting nodes. The first one is giving 

the preference to quadrature nodes with a higher corresponding weight since they are statistically more 

important. The second criterion is based on the following A matrix generated from the selected nodes λ(1), 

λ(2),…, λ(P+1): 
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This criterion states the final A matrix needs to be full rank and well-conditioned. The algorithm for 

finding testing nodes starts with constructing the (m+1)n quadrature nodes and their corresponding 

weights. Then nodes are sorted from the highest weight to the lowest, and the first testing node, λ(1) is 

selected as the one with the highest weight. In order to generate the remaining P nodes the rest of the 

quadrature nodes are considered in the same order as their weight. Assuming r-1 nodes are selected at 

step r the following vector space is constructed: 
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  )(),....( )1()1(  rλHλHV                                                     (2.51) 

where T
P )](),...(),([ = )( 10 λλλλH  . Next, from the remaining )1()1(  rm n  nodes, the node with the 

highest weight, λ(i), is tested to see if the H(λ(i)) vector has large enough orthogonal component to V. If 

this condition is met )(iλ is added to selected nodes and the algorithm moves to step r+1, otherwise other 

remaining nodes in the quadrature space are tested. Once P+1 nodes are obtained the algorithm stops. 

2.2.2.3 An alternative nonintrusive ST approach 

 The ST approach introduced in [40] provides noticeable advances in accuracy comparing to 

nonintrusive approaches and in efficiency comparing to the intrusive SG approach. However, the 

intrusive nature impedes its application on many sophisticated problems. To address this issue the work 

of [37] suggests a nonintrusive approach. The nonintrusive stochastic testing asks for doing the 

deterministic simulation of the system at only P+1 nodes and arranges the result as: 
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                                    (2.52) 

where I is the identity matrix. Since the matrix A is square, the solution can be found as X̃=A-1E, with 

X̃=[X0,… XP]T and E=[X(λ(1)),… X(λ(P+1))]T. 

The arbitrary selection of P+1 nodes is not guaranteed to yield accurate results; therefore, the 

main contribution of [37] is selection of the P+1 nodes in (2.52). In order to do this task the nonintrusive 

stochastic testing takes advantage of the node selection algorithm described in section 2.2.2.2, claiming 

the ST’s node selection algorithm is strong enough to yield accurate results.  

2.2.2.4 Pros and cons of the stochastic testing approach 

 The ST approach suggests well designed technique to find the PC coefficients. Comparing to the 

SG method, the modified network which ST needs to solve is less complicated and also according to [40] 
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it can be decoupled; therefore, it is more efficient. This approach also provides a high accuracy comparing 

to nonintrusive approaches and although it has a higher CPU cost comparing to some PC approaches, it 

presents the potential to find the coefficients faster than some nonintrusive approaches which have an 

exponential rate with respect to number of random variables since the ST approach presents a 

polynomials scaling rate. 

 On the other hand the original ST approach is intrusive after all, and intrusive coding is not 

practical in all cases. This issue impedes ST’s application for sophisticated networks which can only be 

simulated by commercial software with no open source code. Although, the nonintrusive version of ST is 

very efficient comparing to other PC approaches, and tries to address the issue of being intrusive, it is 

proven in [61] that results obtained from (2.52) may not be accurate enough because the ST’s criteria for 

selection of the nodes is not optimal. 

2.3 Nonintrusive approaches  

 Nonintrusive approaches are the ones which don’t require intrusive coding or development of a 

new solver. These approaches take advantage of commercial software to find the result at a set of sample 

nodes. In this section four nonintrusive approaches are discussed which are the pseudo spectral PC, 

conventional linear regression, stochastic collocation and Stroud cubature based stochastic collocation 

approaches. 

2.3.1 Pseudo spectral PC approach 

 The nonintrusive pseudo spectral approach seems to be the most straightforward among PC 

methods. Being nonintrusive, this approach does not need any simulation tool development, modification 

of the circuit or even knowledge of internal equations governing the circuit. In this approach the PC 

expansion of (2.12) is directly applied to the outputs of the system and by means of numerical integration 

methods PC coefficients are found. Then, these coefficients are used to find statistical information. In the 
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following sections first we introduce the used numerical integration technique which is integration with 

Gaussian quadrature rules and then mathematical details of this approach are discussed. 

2.3.1.1 Integration with Gaussian quadrature rules 

Gaussian quadrature rules are numerical integration tools used to approximate the integral of a 

certain function f(λ) with distribution ρ(λ) [58], [10]. The approximation is in form of a weighted 

summation of function f(λ) at predetermined sample nodes. This can be written as: 
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where Q is number of the sample nodes, λk = [λ1
(k), λ2

(k), … , λn
(k)] is the k-th discrete node in the random 

space, ω(λk) is the corresponding weight to node λk and f(λk) is the value of function f(λ) at node λk.  

Order of a quadrature rule is associated with number of nodes and is noted as q. In the one 

dimensional case Q is equal to (q+1), and inspired by the Wiener-Askey scheme sample nodes are set to 

be the roots of the (q+1)-th polynomial orthogonal to the ρ(λ) distribution. In problems with n dimensions 

Q = (q+1)n and sample nodes are obtained by generating tensor product of the one dimensional nodes. 

Finally, ω(λk) is equal to product of the weights of one dimensional nodes λi
k which depends on the 

distribution of λ. 

For the normal distribution, nodes are generated from roots of Hermite polynomials. Another way 

to generate nodes which also yields corresponding weights is solving an eigenvalue problem which is 

known as Golub-Welsch algorithm [59], [10]. In order to do so, consider the matrix A(q+1)x(q+1) with the 

following entries:  

          �ሺ݅, ݆ሻ = {√݅                 ݆ = ݅ − ͳ√݆                ݅ = ݆ − ͳͲ               �ݐℎ݁(2.54)                                                     ݁ݏ݅ݓݎ 
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nodes are equal to eigenvalues of A and corresponding weights are squares of first element of each 

eigenvector in the same order. 

 For the uniform distribution nodes are generated from roots of the Legendre polynomials. 

Corresponding weight to λk is obtained from the following formula [60]: 
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where 1q  is the (q+1)-th Legendre polynomial. 

 In the general case, parameters αi and βi of (2.12) can be used in the Golub-Welsh algorithm to 

compute the quadrature nodes and weights [59]. This algorithm requires first constructing the symmetric 

tridiagonal matrix A where  
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Let A = UΛUT be the eigenvalue decomposition of A where U is the unitary matrix. This makes Λ(i,i) the 

ith Gaussian quadrature node and (U(1,i))2 the corresponding weight. 

2.3.1.2 Application of Gaussian quadrature rules to the pseudo spectral PC approach 

 As stated before, the pseudo spectral PC approach takes advantage of numerical integration to 

find the PC coefficients. Since polynomials used in this approach are orthonormal, coefficients can be 

found using the orthogonal projection technique, or in other words calculation of inner product of a 

function and a polynomial: 
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Replacing (2.12) in (2.57) yields:  
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Therefore, the only remaining step is numerical approximation of the integral in (2.57), which is: 
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 where X(λ(k)) are provided by performing Q experiments and the rest is done analytically. 

2.3.1.3 Pros and cons of the PC pseudo spectral approach 

 Being nonintrusive the pseudo spectral approach is advantageous since it can be done by using 

commercial software. Moreover, for a moderate number of random variables it would be much faster than 

Monte Carlo. Comparing to other nonintrusive PC approaches, pseudo spectral demonstrates a higher 

accuracy because it exploits a higher number of deterministic samples. 

On the other hand the scaling rate of the CPU cost is a major challenge in the pseudo spectral 

approach since it increases exponentially with respect to number of random variables; therefore, for 

problems with a higher number of random variables, which can be addressed easily by other PC methods, 

the pseudo spectral approach might even need more samples comparing to Monte Carlo. The exponential 

rate increases CPU cost so drastic that the use of intrusive techniques might be both more efficient and 

accurate comparing to the pseudo spectral approach. 

2.3.2 Conventional linear regression approach  

Another nonintrusive approach is the conventional linear regression [27], [28]. This approach 

takes advantage of the linear least squares technique to determine the best fit for PC coefficients. In the 

next section a brief review of the linear least squares method is done and then its application in the PC 

theory is discussed. 



30 

 

2.3.2.1 Linear least squares technique  

 The linear least squares is a common technique in statistics to fit a model to the gathered data 

[62]. As an example Fig. 2.3 pictures a set of data, blue dots, gathered from M experiments or simulation. 

It is desirable to find a model such as the red curve which represents the experiment’s result, y, at an 

arbitrary x. In the general case, the equation describing the result for the i-th sample, x(i), can be written 

as: 

                                                (2.60)  

where 1 ≤ i ≤ M, y(i) represents the result of experiment or simulation at the i-th sample x(i), Fj(x
(i)) is a 

function of x, N < M, F1(x
(i))=1, and cj are unknown coefficients. After doing this for M samples, the M 

linear equations can be written as: 

yAc                                                                          (2.61) 

where:   
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Fig. 2.3: Demonstration of fitting a model to stochastic data using the linear least square technique. 
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Although Fj does not have to be linear, this technique is called linear least square because (2.61) 

is a linear combination of Fj functions. Moreover, since N < M the system is overdetermined and usually 

does not have an answer. Therefore, the linear least square technique tries to find coefficients cj in the 

best way to fit the equations and minimize sum of squares of errors: 

 )(minarg~ cScc                                                            (2.63) 

where: 

 ,                                (2.64) 

Equation (2.64) is minimum when its gradient is zero because it is a convex function. Therefore 

the following equation needs to be solved: 

 

                               (2.65) 

 

The simplified form of (2.65) would be: 

                                (2.66) 

which in the matrix form is: 

                                                    (2.67) 

Equation (2.67) has a solution when XT is full column rank which makes XTX positive definite. This 

solution is:  

                                                    (2.68) 

and yields the coefficient vector in (2.61). 
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2.3.2.2 Application of least squares technique to the PC theory 

The conventional linear regression approach [27], [28], [46] begins by approximating the 

uncertainty in the network response of (2.38) using a PC expansion as  

 P

0j
jj tt )()(),( λXλX                                                     (2.69) 

As stated before the goal of a stochastic analysis approach is to find coefficients Xj(t); 

nevertheless, the polynomials   are known beforehand and their value can be computed at any sample 

node λ(i). Therefore, we can write down )( )(
0

iλ  to )( )(i
P λ  in a certain vector Ai as: 
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where I represents the identity matrix and is added to support multiple responses. Using (2.60), the 

summation in (2.69) can be expressed as: 
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where ,)](),....(),([
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P ttt XXXX   and ),( )(it λX is the simulation result at λ(i). The conventional linear 

regression approach suggests doing (2.71) at M = 2(P+1) or M = 3(P+1) nodes located within the random 

space Ωn resulting in the formulation of an overdetermined system of linear algebraic equations: 
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The vector E consists of the network responses obtained by probing the original stochastic network at the 

M multidimensional nodes λ(k) = [λ1
(k), λ2

(k),…, λn
(k)]T; Mk 1 . Since the minimum number of rows in 

j
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(2.72) to have a unique answer is (P+1), this method is called oversampling. It is worth noting that (2.72) 

is similar to (2.61) and it can now be solved in a least-square sense to evaluate the PC coefficients of the 

network response:  

                                                    (2.74) 

Once the PC coefficients are obtained from (2.74), all statistical moments of the network 

responses can be obtained from the PC expansion. 

2.3.2.3 Pros and cons of the linear regression approach 

As a nonintrusive method one benefit of the conventional linear regression approach is that 

sophisticated deterministic solvers such as SPICE can be directly used to populate the matrix E in (2.72) 

without any intrusive coding as required in the SG approach as well as the stochastic testing approach. 

More importantly, the M simulations of (2.72) can be easily parallelized unlike the conventional SG 

approach. It is appreciated that the matrix A is time independent and the nodes and their evaluation needs 

to be found only once and thereafter can be stored for future reuse. Furthermore, this approach is 

significantly more efficient comparing to the pseudo spectral approach because it scales as 2(P+1) or 

3(P+1) with respect to number of random variables. 

On the other hand the conventional linear regression holds general disadvantages of nonintrusive 

approaches mentioned in section 2.3.1.3. Moreover it is noted that existing works on the linear regression 

approach for circuit simulation have not provided any methodology to select the M regression nodes [27], 

[28]. Some works suggest choosing the M multidimensional nodes of (2.72) from the full tensor product 

grid of one dimensional (1D) Gaussian quadrature nodes. However, it is stressed that blindly choosing the 

M nodes from the tensor product grid is not guaranteed to give accurate results, and since the linear 

regression approach is less accurate because of its nonintrusive nature, it would have a poor accuracy. 

Nevertheless, in the field of estimation theory and data analysis various criteria to intelligently select the 

most important M quadrature nodes based on minimizing/maximizing some attribute of the information 

  EAAAX TT 1~ 
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matrix ATA of (2.74) have been reported [63]. Of these, the D-optimal criterion is the most popular and 

requires choosing the M nodes in such a way that the determinant of the information matrix ATA is 

maximized. Interested readers are directed to the references [63]-[65] for more details on the D-optimal 

criterion.  

2.3.3 Stochastic collocation (SC) approach based on the Lagrange interpolation 

This section provides a brief review of a nonintrusive stochastic collocation approach, in general 

all classical sampling methods like Monte Carlo are collocation techniques [49]; nevertheless, the focus in 

this section is on a SC approach based on Lagrange interpolation [67].  First basics of the Lagrange 

interpolation and its application to SC are presented, and then pros and cons of this approach are 

discussed. 

2.3.3.1 Basics of the SC approach with Lagrange interpolations 

For the problem of a single random variable λ = λ, the SC approach expands the stochastic 

solution of (2.38) into a sum of weighted interpolation functions as [67], [68] 
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where m+1 is number of the collocation nodes. li(.) represents the univariate Lagrange interpolation 

function expressed as 
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It is noted that although the Lagrange polynomial of (2.76) is a highly popular interpolation 

function, other interpolation functions such as the piecewise multi-linear function has also been employed 

in the context of the SC approach [68]. In (2.76), λ(i) represents the ith collocation node out of a total of 

m+1 nodes and li(λ(j)) = įij, where įij is the Dirac delta function. Typically, the m+1 one dimensional (1D) 
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collocation nodes of (2.76) are the roots of the m+1th order polynomial basis chosen from the Weiner-

Askey scheme [67], [68].  

Extending the above methodology to the general multivariate problem, the SC expansion of 

(2.75) can be rewritten as: 
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where Li(λ) is the multivariate Lagrange interpolation function and ti
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multidimensional collocation node (out a total of M+1 multidimensional nodes).  This multivariate 

Lagrange interpolation function can be constructed from the product of univariate Lagrange interpolation 

functions as  
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Based on (2.75) and (2.77), it is noted that unlike previously mentioned PC approaches 

coefficients of the SC expansion are always known. Within the context of interconnect networks, these 

coefficients can be obtained by deterministic SPICE simulations of the original model of (2.38) at the 

collocation nodes λ(i), Mi 0 . Once the coefficients of (2.77) are obtained from SPICE, the mean and 

variance of a particular quantity of interest ),(),( λXλ ttx   of (2.38) can be computed as 

 

(2.79) 

The multidimensional integrals of (72) can be easily performed numerically using suitable 

quadrature rules [67].  
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2.3.3.2 Pros and cons of the SC approach with Lagrange interpolations  

One advantage of the SC approach is its simplicity and being easy to implement since the 

coefficients in (2.77) are obtained merely from SPICE simulations and there is no post-analysis 

computation cost in order to extract these coefficients. Moreover, as a nonintrusive approach SC has 

major benefits which are mentioned in previous sections i.e. there is no restriction on the macromodeling 

algorithm used in the deterministic solution at each node and hence direct exploitation of sophisticated 

macromodeling techniques can be supported. Moreover, these simulations do not involve augmentation of 

the overall circuit model caused by the need to perform cumbersome inner product computations such as 

the ones which are required for the SG approach. Finally, the M+1 deterministic SPICE simulations at the 

collocation nodes are all independent of each other and can be easily parallelized unlike the SG approach 

where the augmented model of (2.40) is typically coupled. 

On the other hand, it is noted from the above discussion that the CPU cost of the SC approach is 

proportional to the number of multidimensional collocation nodes (i.e. M+1) since for each node a new 

deterministic simulation of the network of (2.38) is required to evaluate each coefficient of (2.77). These 

multidimensional nodes are typically obtained from a tensor product of the 1D nodes of (2.76) thereby 

leading to an exponential scaling of the number of nodes (and deterministic SPICE simulations) with 

respect to the number of random dimensions. As a more efficient alternative, an intelligent choice of only 

a sparse subset of the tensor product nodes can also be used where the choice of the sparse nodes is 

guided by the Smolyak algorithm [69], [67]. The Smolyak algorithm leads to a significant reduction in the 

number of collocation nodes from (m+1)n, for full tensor product grids, to approximately (2n)m/m!. 

However, despite the comparative benefits of the sparse grids, the number of collocation nodes for this 

approach still scales in a polynomial fashion with respect to the number of random dimensions, thereby 

providing only limited benefits for large multidimensional random spaces. In order to address this poor 

scalability of the classical SC approach with respect to the number of random dimensions, in the next 

section a Stroud cubature based approach is proposed. 
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2.3.4 Stroud cubature based stochastic collocation approach 

This section begins with a brief review of the Stroud cubature rules and its application to 

stochastic collocation approach. Moreover, pros and cons of the Stroud cubature approach are presented. 

2.3.4.1 Stroud cubature rules  and their application to uncertainty quantification 

In the work of [51], Stroud cubature rules were introduced in order to compute multidimensional 

integrals weighted by arbitrary weighting functions over the hypercube space [-1,1]n as 
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where w(λ) is the arbitrary weighting function, ωi is the weight associated with the ith cubature node λ(i) 

and )(λf  is any integrand that can be approximated using a second or maximum third degree 

polynomials. When )(λf  is approximated using a second degree polynomial, the second degree Stroud 

cubature rule (also called the S2 rule) dictates that the number of multidimensional cubature points in 

(2.80) is equal to M+1 = n+1. The location of the ith cubature node within the [-1,1]n hypercube space is 

given as [51], 
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for r = 1,2,…,  2/n  provided n is an even number where  2/n  represents the greatest integer less than 

or equal to n/2. If n is an odd number, the location of the ith cubature node along the last (i.e. nth 

dimension) is given by [51] 
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It is noted that all weights ωi for the S2 rule of (2.81), (2.82) are equal to 1/(n+1).  
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Similarly, when )(λf  is approximated using a third degree polynomial, the third degree Stroud 

cubature rule (also called the S3 rule) dictates that the number of multidimensional cubature nodes in 

(2.80) is equal to M+1 = 2n. The location of the ith cubature node within the [-1,1]n hypercube space is 

given by [51], 
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for r = 1,2,…,  2/n  provided n is an even number. If n is an odd number, the location of the ith cubature 

node along the last (i.e. nth dimension) is given by [51]  
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All weights ωi for the S3 rules of (2.83), (2.84) are equal to 1/(2n).  

One of the drawbacks of the Stroud cubature rules of (2.81)-(2.84) was that they were originally 

proposed for integrals performed over a hypercube space [-1,1]n which, in the context of the SC approach, 

is applicable for random variables exhibiting a uniform or beta probability distribution functions. 

However, for other probability distribution functions such as the normal distribution, the 

multidimensional integral of (2.80) is performed over the n],[  space instead of the [-1,1]n hypercube, 

and hence the results of (2.81)-(2.84) are not directly applicable for such problems. Recently, in the work 

of [34], the Stroud cubature nodes and weights for normal distribution functions have been reported and 

these results have been provided in Table 2.4. Since the uniform and normal distributions are the most 

commonly encountered distribution functions, the proposed Stroud cubature based SC approach of this 

section can directly utilize the results of Table 2.4. 

By setting the collocation nodes of (2.75) as the Stroud cubature nodes of (2.81), (2.82) or (2.83), 

(2.84) depending on whether X(t,λ) is well approximated by a second or third degree polynomial 
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Table 2.4 Stroud nodes and weights for common probability distributions 
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respectively, and applying the cubature approximation of (2.80) to the multidimensional integrals of 

(2.79), after some algebraic manipulations, the mean can be expressed as  
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where the weighting function w(λ) has been set equal to the joint probability distribution function ρ(λ). 

By using the same methodology of above and the added knowledge that multiplication of 

Lagrange polynomials yields ijji LL )()( λλ , the expression of the variance in (2.79) can also be 

simplified to  
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where the mean term E(x(t,λ)) in (2.86) can be obtained from (2.85). It is noticed from (2.85) and (2.86) 

that the mean and variance (i.e. first and second order statistical moments) of any quantity of interest can 

be analytically computed directly from the SPICE results of the stochastic network of (2.38) evaluated at 



40 

 

M+1 sparse Stroud nodes of (2.81)-(2.84). This feature of the proposed Stroud based SC approach can 

also be extended for any general higher order statistical moment of x(t,λ). Equation (2.85) and (2.86) can 

be used for other distributions in Table 2.4 as well. 

It is emphasized that since the work of Stroud [51], many other cubature rules for varying number 

of dimensions and degrees greater than 3 have been reported, a comprehensive list of which is provided in 

[70], [71]. However, none of the reported methods preserve the highly attractive linear scalability feature 

of the Stroud rules, though many of them still scale far better than the polynomial scalability of the SC 

approach based on sparse grids. Furthermore, since the gPC theory assumes that the output of interest 

exhibits a smooth dependence on the random variables, a third order polynomial expansion has been 

found to be sufficient for most contemporary interconnect problems [10]. For the above reasons, the 

Stroud method still remains a highly effective cubature rule for efficient uncertainty quantification.  

2.3.4.2 Pros and cons of the Stroud cubature based stochastic collocation approach 

 The main advantage of the Stroud cubature approach is its scaling rate. Unlike other stochastic 

analysis methods which scale at a polynomial or exponential rate, this approach scales linearly with 

respect to number of random variables since number of sample nodes and SPICE simulation is n+1 for the 

S2 rule and 2n for the S3 rule. Therefore, the Stroud cubature rule overcomes the curse of dimensionality, 

mentioned in Chapter I, for random variables which can be approximated by second or third degree 

polynomials. Moreover, this approach is able to extract any statistical moment merely from SPICE 

simulations and without post analysis costs. It is worth noting in the PC approach it is necessary to 

analyze data after SPICE simulations to extract PC coefficients, and even after that the coefficients can 

provide a closed form solution for up to the second order statistical moment i.e. the variance. And for 

higher order moments it is necessary to generate thousands of MC samples using the PC coefficients. 

Finally it goes without saying that the Stroud cubature approach is nonintrusive and therefore it can use 

commercial software and do parallelization. 
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 On the other hand, the main disadvantage of the Stroud cubature approach is being limited to the 

third degree polynomials. And despite the higher order cubature rules are able to address this issue, they 

do not provide the optimal scaling rate of the Stroud cubature approach. In other words, although majority 

of stochastic variables are smooth and can be approximated with a maximum of third degree polynomials, 

this issue causes lack of generality for the Stroud approach. Moreover, Stroud cubature rules apply to 

specific distributions, while in practical examples the distribution of output might be non-standard which 

increases the error; therefore, the Stroud cubature rule would not be able to handle some of possible 

outcomes. It is worth noting in the PC approaches the mismatch in distribution can be compensated by 

increasing the order of expansion; however, it is not possible to increase the order more than three in 

Stroud cubature rules.  

2.4 A numerical example  

As an example, in order to exhibit the application of uncertainty quantification methods, the 

interconnect network of Fig. 2.4 is considered and the pseudo spectral PC and Monte Carlo approaches 

are taken for computation of statistical results. The microstrip traces are of length 625 mils, width 50 mils, 

separated by a distance of 20 mils and located 61.4 mils above the ground plane. The stripline traces are 

of length 625 mils, width 12.4 mils, separated by a distance of 57.6 mils and located 16.4 mils above the 

ground plane. The microstrip and stripline traces are connected by via posts of height 45 mils and 

diameter 20 mils passing through a dielectric layer of relative  permittivity İr = 4. This system is 
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  (a)                                                                             (b) 

Fig. 2.4: Topology of microstrip-stripline-microstrip structure analyzed using ANSYS Designer 3D planar MOM 
solver. (a) 3D view. (b) Cross-section view (all dimensions are shown in mils). 
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characterized by its 4-port S-parameters computed using the commercial ANSYS Designer 3-D planar 

EM solver based on the method of moments (MoM). Moreover, the stochastic Loewner matrix (LM) 

technique [29] is used to generate the root macromodels S(s,λ(k)) in (2.59) from the sampled data. 

In the first test case, the width of the microstrip traces is a stochastic parameter with the nominal 

values of above and exhibiting a +/- 10% relative uniform variation. This requires a third order Legendre 

polynomial expansion of the S-parameters as in: 
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(a)                                                                                   (b) 

Fig. 2.5: Comparison of S-parameter statistics of the example of Fig. 2.4 with the width of microstrip traces as a 
stochastic parameter using proposed LM macromodel and Monte Carlo (10,000 samples). (a) Mean of S11 in dB. (b) 
Standard deviation of S11 in dB. 

 
Fig. 2.6: PDF comparison between the proposed LM macromodel and Monte Carlo (20,000 samples) of S11 of Fig. 
2.4 at 5.22 GHz. 
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where S(s,λ(k)) is the S-parameter data at λ(k) which can be easily obtained using deterministic full-wave 

EM solvers. Using a Gaussian-Legendre quadrature rule, the number of quadrature nodes is Q = 4 in 

(2.87) and are located at the roots of the fourth order Legendre polynomial. The accuracy of the pseudo 

spectral approach is compared against the MC simulation using 10,000 random samples of the uniform 

random variable. The mean and standard deviation of the S-parameter S11 is shown in Fig. 2.5 over the 

bandwidth 10 MHz – 10 GHz where both the above techniques show excellent agreement. The gray lines 

illustrate the S-parameter variation using 1,000 MC samples. Fig. 2.6 shows the probability distribution 

function of S11 at the minima of 5.22 GHz using the above two approaches. In order to achieve the 

excellent agreement of Fig. 2.6, the number of MC simulations had to be increased to 20,000. 

 In the next test case, in addition to the trace width, the microstrip trace separation is another 

stochastic parameter with the nominal value of above and a +/-  10% relative uniform variation. The order 

of the Legendre polynomial expansion of (2.12) is still kept at 3. In this case, the same Gaussian-

Legendre quadrature rule is used leading to Q = 16 quadrature nodes in (2.87). The comparison between 

the pseudo spectral approach and MC simulations are performed similar to the previous test case. The 

mean and standard deviation of the S-parameter S32 is shown in Fig. 2.7 where both the above 

approaches show excellent agreement. The gray lines illustrate the S-parameter variation using 1,000 MC 

samples. It is appreciated that for this case the proposed LM based macromodeling strategy required only 

                   
                              (a)                                                                                   (b) 

Fig. 2.7: Comparison of S-parameter statistics of the example of Fig.2.4 with the width and separation of the 
microstrip traces as stochastic parameters using proposed LM macromodel and Monte Carlo (10,000 samples). 
(a) Mean of S32 in dB. (b) Standard deviation of S32 in dB. 
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16 deterministic simulations while the MC required a total of 10,000 samples leading to over two orders 

of magnitude in speedup. 
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CHAPTER III: PROPOSED FAST LINEAR REGRESSION APPROACHES 

 Among multidimensional uncertainty approaches introduced in Chapter II , the nonintrusive linear 

regression seems to have the highest potential for stochastic analysis of high-speed circuits. Firstly, being 

nonintrusive this approach is able to take advantage of the available commercial software and easily do 

parallelization on the required deterministic simulations at sample nodes. Moreover, this approach 

provides a desirable accuracy and by adding an optimal design of experiments it is able to extract the 

most critical sample nodes. The number of sample nodes is equal to 2(P+1) or 3(P+1); however, by 

taking some consideration this number can be further reduced, while maintaining the accuracy. Finally, it 

is worth noting, linear regression is available for different distributions and orders of expansion. 

This chapter starts with a through explanation of the search algorithm of the linear regression 

approach. This includes description of the rationale behind the D-optimal criterion and the Fedorov search 

algorithm. Then noble ideas for improvement on the nonintrusive linear regression approach are 

introduced in the next two sections. The first discussed approach is called Sparse Linear Regression 

(SPLINER) which we have published in [61]. The contributions in this approach are developing a sparse 

node selection technique and then modifying it further to be faster through limiting the search space and 

reducing number of matrix inversions. The second approach is another modified linear regression 

methodology and we have published it in [72], this approach expedites the node selection technique by 

reducing number of iterations and exploiting a fast matrix inversion method.  

In order to validate these techniques and compare their scaling rate with other PC approaches, 

multiple numerical examples on high-speed circuits and microwave/RF networks are presented. Although 

both approaches can be applied at the same time, in numerical examples we apply them separately to 

demonstrate their individual impact. 
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3.1 The search algorithm in the linear regression approach 

 As mentioned in Chapter II, it is noted that existing works on the linear regression approach for 

circuit simulation have not provided any methodology to select the M regression nodes [27], [28]. Some 

works suggest choosing the M multidimensional nodes of (2.72) from the full tensor product grid of one 

dimensional (1D) Gaussian quadrature nodes. However, it is stressed that blindly choosing the M nodes 

from the tensor product grid is not guaranteed to give accurate results, and since the linear regression 

approach is less accurate because of its nonintrusive nature, it would have a poor accuracy. Nevertheless, 

various criteria to intelligently select the most important M quadrature nodes based on 

minimizing/maximizing some attribute of the information matrix ATA of (2.74) have been reported in the 

literature [63]. Of these, the D-optimal criterion is the most popular and requires choosing the M nodes in 

such a way that the determinant of the information matrix ATA is maximized. The selection of the D-

optimal nodes is commonly performed using the classical Fedorov search algorithm [66]. In this section, 

first the reasoning for selection of the D-optimal criterion is presented and then the Fedorov search 

algorithm for selecting the nodes is described. 

3.1.1 D-optimal criterion  

 Based on the discussion in Section 2.3.2.2 the linear regression approach tries to solve the 

following system of algebraic equation: 
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with I being the identity matrix. 
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The importance of the D-optimal criterion to the accuracy of the evaluated PC coefficients of 

(3.1) is revealed using the following Lemma. 

Lemma 1: Assuming that the truncation error Mjj 1,  at all M design of experiments (DoE) of (3.1) are 

independent of each other and exhibit a normal distribution of zero mean and same variance σ2, then in 

order to achieve the maximum accuracy of the PC coefficients the DoE must be chosen such that the 

determinant of the information matrix ATA of (3.1) is maximized.  

Proof: Based on the PC expansion of the network responses of (2.69), it is understood that the presence of 

the random truncation error İ makes the PC coefficients themselves random variables. The variance of the 

evaluated PC of (3.1) can be computed as  

ttttttt VarVarVar )))((()())(()
~

( 111 AAAEAAAEAAAX                               (3.3) 

Knowing that the truncation error for each DoE (i.e. İj) is independent and has a constant variance σ2, 

Var(E) = σ2I where I is the identity matrix. Replacing this in (3.3) the variance of the PC coefficients of 

(3.3) can be compactly expressed as  

21)()
~

(  AAX tVar                                                                 (3.4) 

From (3.4) we understand that to ensure the maximum accuracy of the PC coefficients we have to reduce 

the uncertainty in the solution X
~

 (i.e. the variance of X
~

). Since the variance of X
~

 is inversely 

proportional to the determinant of the information matrix ATA, a simple way to minimize the variance of 

X
~

 is to maximize the determinant. Therefore, the M DoE for the linear regression of (3.1) must be chosen 

so as to maximize the determinant of the information matrix. This criterion is referred to as the D-optimal 

criterion [63], [65]. It is noted that other optimal criterions besides the D-optimal criterion also exists 

although the D-optimal criterion has been deemed the most effective and popular till now [63]. The next 

challenge is to develop a search algorithm that can efficiently identify the D-optimal nodes from 

multidimensional random spaces. 
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3.1.2 Greedy search algorithm to identify DoE (classical Fedorov) 

 In this section a detailed description of the greedy search algorithm to identify the D-optimal DoE 

from multidimensional random spaces is presented. This greedy search algorithm is based on the Fedorov 

algorithm commonly used in the field of estimation theory and data analysis [66], [73]. This algorithm 

begins by considering a set of M = 2(P+1) or M = 3(P+1) starting DoE selected from the tensor product 

grid of (m+1)n multidimensional quadrature nodes and creating the corresponding information matrix ATA 

of (3.1). Thereafter, each DoE in the starting set is replaced by the best possible substitute DoE taken 

from the remaining (m+1)n-M quadrature nodes such that the determinant of the information matrix 

increases by the maximum amount in the process. This step-by-step refinement of the starting DoE 

continues till all the initial set of nodes has been replaced [39]. 

As per the above description, at the rth step it is assumed that the first r-1 nodes have been 

replaced by their best possible substitutes. Now if the rth DoE (λ(r)) of the starting set is removed from A, 

then the new determinant of the information matrix can be expressed as 
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where R(λ(r)) is the row vector contributed by the rth DoE (λ(r)) in A. Similarly, if any arbitrary k th DoE 

(λ(k)) from the remaining (m+1)n-M quadrature nodes is included into A, the new determinant of the 

information matrix can be expressed as 
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Combining the results of (3.5) and (3.6), after exchanging the rth DoE (λ(r)) of the starting set with any 

arbitrary k th DoE (λ(k)) from the remaining (m+1)n-M quadrature nodes, the new determinant of the new 

information matrix can be mathematically expressed as a recursive function 
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where Ψ(r-1) represents the inverse of the information matrix obtained after the previous (i.e. r-1th) 

exchange. From (3.7) it is understood that in order to achieve D-optimality, the k th node λ(k) needs to be so 

chosen to satisfy the optimization criterion 

 )(max 2
rrkkkrrrkk ddddd                                                   (3.8) 

Once the best possible node λ(k) has been found to satisfy (3.8) and the relevant exchange has been made, 

the new determinant can be directly updated using (3.7) and the substitution process moves on to the r+1th 

node. Once all M starting DoE have been replaced the new set of DoE will represent the D-optimal 

selection. 

 It is noted that the total computational cost of the search algorithm is due to two main factors. 

Firstly, identifying the D-optimal DoE requires searching through (m+1)n-M quadrature nodes for each 

DoE in the starting set – in other words, a total of M((m+1)n-M) searches. The associated CPU cost can be 

expressed as 

11 )1)(1(2))1(2)1)((1(2 CmPCPmPC nn
a                                 (3.9) 

where C1 is the CPU cost of computing the terms in the brackets of (3.7) assuming that the inverse Ψ(r-1) is 

known. It is noted that based on (3.5) and (3.6) C1 can be expressed as  

))1()1((3 2
1  PPkC                                                      (3.10) 

where the first term is the cost of the matrix-vector multiplication Ψ(r-1)Rt(λ(r)), the second term is the cost 

of the vector-vector multiplication of R(λ(r)) with Ψ(r-1)Rt(λ(r)), and the factor 3 is due to the fact that the 

above operations needs to be performed for three scalars drr, dkk, and dkr of (3.7). Also k  is assumed to be 

the cost of each floating point operation. Combining (3.9) and (3.10), it can be concluded that the overall 
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search cost (Ca) scales in an exponential manner with the number of random dimensions (n), quantified as 

O((P+1)3(m+1)n)) ))1(( 3 nm mnO  .  

The other source of computational effort arises from the fact that for each substitution, the 

information matrix changes and the inverse Ψ(r-1) has to be reevaluated. This CPU cost is expressed as 

2)1(2 CPCb                                                                 (3.11) 

where C2 is the CPU cost of each matrix inversion. Note that for direct inversion methods C2 scales as 

O((P+1)3) thereby ensuring that the cumulative cost of the matrix inversions (Cb) scales as O((P+1)4) 

)( 4mnO with respect to the number of random dimensions (n). Given that for typical PC problems 

52  m , this suggests a near exponential scaling of the associated CPU costs. 

The above two features of the search algorithm significantly slow down its performance for high-

dimensional problems and may even render it infeasible for some problems. In fact, the cost of 

implementing the search algorithm can often become a significant fraction of the cost of performing the 

M deterministic SPICE simulations of (3.1) as will be demonstrated in the numerical examples section. In 

order to address these computational constraints of the search algorithm, in coming sections two main 

approaches to expedite the search algorithm for problems involving high-dimensional random spaces is 

presented. 

3.2 Development of the proposed SPLINER approach 

In this section the proposed SPLINER approach based on sparse node selection is described. 

Thereafter, the modified Fedorov search algorithm for expeditiously locating the sparse nodes from a 

high-dimensional random space is presented. Moreover an in-depth analysis of the computational cost of 

the SPLINER approach compared against that of conventional non-intrusive PC approaches, is provided. 

Finally, this section concludes with numerical examples in order to validate the proposed approach and 

study its computational cost scaling rate with respect to number of random variables.  
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3.2.1 SPLINER with sparse node selection 

It is noted that the matrix A in (3.1) being time independent, the optimal nodes needs to be 

constructed only once and can be stored for future reuse. However, the conventional linear regression 

approach oversamples the PC expansion of (2.69) resulting in 2(P+1) or 3(P+1) deterministic SPICE 

simulations [46]. This may lead to an unsustainably high CPU time and memory costs in order to extract 

the PC coefficients of large circuit networks. In order to curb the CPU costs of the SPICE simulations, in 

this work only the minimum number of nodes required for a self-consistent evaluation of the PC 

coefficients of (2.69) is selected. This means that the number of nodes for the SPLINER approach is set to 

M = P+1 whereby the matrix A of (3.1) becomes a square matrix. Now, (3.1) can be solved directly to 

accurately evaluate the PC coefficients of the network provided the matrix A is full rank, well-

conditioned, and composed of the most important P+1 quadrature nodes. In this work, the D-optimal P+1 

nodes extracted by the Fedorov search algorithm is considered to represent the most important quadrature 

nodes. It is appreciated that the Fedorov search algorithm is sufficiently robust such that selecting this 

sparse P+1 D-optimal nodes (instead of the 2(P+1) or 3(P+1) D-optimal nodes required by the 

conventional linear regression approach) will still lead to a very high determinant of the information 

matrix ATA. Since the determinant of AT is equal to that of A, this in turn means that the Fedorov 

algorithm will automatically ensure that the determinant of A itself is very large. This indicates that the 

matrix A is full rank and well-conditioned. 

3.2.2 Modified Fedorov algorithm 

 In the previous section, the characteristics of the proposed SPLINER approach (i.e. use of only a 

sparse set of P+1 nodes for the linear regression) was presented. While using a sparse set of nodes 

reduces the number of deterministic SPICE simulations required, it is noted from Section 3.1.2 that 

locating these nodes from a high-dimensional random space using the classical Fedorov search algorithm 

still remains a time-intensive process. In order to expedite the search process, a modified Fedorov search 

algorithm based on the following two novel features is proposed next. 
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3.2.2.1 Pruning the search space  

Based on the discussion of Section 3.1.2, it is appreciated that one major challenge facing the 

classical Fedorov algorithm is the fact that the search space for locating the D-optimal nodes consists of 

(m+1)n Gaussian quadrature nodes. This means that the search space grows exponentially with the 

number of random dimensions, thereby slowing down the Fedorov search algorithm for even small-

dimensional problems. In the modified Fedorov algorithm, initially a subset consisting of 10(P+1) 

Gaussian quadrature nodes with the largest quadrature weights will be chosen. If the number of random 

dimensions (n) is small enough, then the total number of Gaussian quadrature nodes may be less than 

10(P+1) nodes (i.e. (m+1)n < 10(P+1)). e.g., if n = 4, m = 3. In such cases, the total set of quadrature 

nodes is small enough to be directly probed to locate the best possible substitutes. Once the 10(P+1) 

nodes are extracted, from this reduced set of nodes the starting set of M = P+1 nodes will be randomly 

selected to populate the A matrix. The remaining 9(P+1) quadrature nodes will represent the new reduced 

search space from which the D-optimal nodes will be selected. Therefore, in this methodology, for each 

starting node, the best possible substitute node will be selected from the subset of 9(P+1) nodes rather 

than the massive set of (m+1)n-M nodes thereby significantly expediting the Fedorov algorithm. 

3.2.2.2 Constrained exchange criterion 

 It is further noted from Section 3.2.1 that for each refinement of the starting nodes the 

information matrix changes and its inverse needs to be recomputed for use in (3.7). This translates to a 

maximum of P+1 inversions of the information matrix for the proposed SPLINER. Since P+1 scales in a 

polynomial fashion with the number of random dimensions, for high-dimensional problems a large 

number of matrix inversions needs to be evaluated thereby once again slowing down the classical 

Fedorov search algorithm.  In the modified Fedorov algorithm, rather than simply exchanging a node 

from the starting set with one from the reduced search space that yields the maximum increase in the 

determinant, an additional constraint criterion 
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111  rr                                                             (3.12) 

is considered before making an exchange. Based on (3.7), the constraint of (3.12) translates to the new 

criterion for the substitution of nodes expressed as   

102  rrkkkrrrkk ddddd                                                      (3.13) 

This criterion will ensure that unless and until the substitute node is able to increase the determinant of the 

information matrix significantly (i.e. by more than 10 times) then that node is not considered to be a 

viable replacement. In other words, by adding the constraint of (3.12), the exchange criterion of (3.13) 

becomes stricter thereby substantially reducing the number of possible substitutions, and consequently, 

the number of matrix inversions than what would be required by the classical Fedorov algorithm. 

Nevertheless, the constraint of (3.12) will still ensure that the improvement in the determinant of the 

information matrix for every valid exchange is large enough so that the determinant of matrix A 

ultimately reaches a very large value. 

 Overall, the proposed modified Fedorov algorithm will address both the two major sources of 

inefficiency of the classical Fedorov algorithm for high-dimensional problems – the exponential increase 

in the search space and the large number of matrix inversions. This along with the reduction in number of 

deterministic SPICE simulations will results in a more CPU-efficient approach to evaluate the PC 

coefficients. 

3.2.3 Computational cost analysis  

 This section quantifies the overall CPU time costs incurred by the proposed SPLINER approach 

and contrasts that against conventional non-intrusive PC approaches. It is observed that no comparative 

analysis with respect to the intrusive stochastic Galerkin (SG) approach is performed since it is well-

established that for high-dimensional problems most non-intrusive approaches will outperform the SG 

approach [45]. This is particularly true for nonlinear circuits where the multidimensional integral of (2.37) 



54 

 

using the SG approach has to be represented in SPICE using massive number of additional 

voltage/current dependent sources.    

Based on the discussion of Section 3.2.1 and 3.2.2, it is appreciated that the CPU time required 

for the proposed SPLINER approach can be divided into two parts – the cost  incurred during selecting 

the P+1 regression nodes using the modified Fedorov algorithm and the cost incurred while performing 

the P+1 deterministic SPICE simulations. Each of these two parts of the algorithm is studied separately. 

3.2.3.1 Cost of modified Fedorov search algorithm  

 The cost of the modified Fedorov search algorithm can be further divided into the cost of finding 

the suitable exchange nodes and that required for re-evaluating the inverse of the information matrix. 

Beginning with the cost of finding the suitable exchange nodes, for each of the P+1 starting nodes, the 

value of Δr of (3.7) is computed 10(P+1) times. This makes a total of 10(P+1)2 computations of Δr and 

the associated time costs can be mathematically quantified as: 

1
2)1(10 CPCex                                                              (3.14) 

where C1 is the costs of performing all the matrix-vector and vector-vector multiplications of (3.7) 

assuming that the inverse of the information matrix is known. Next, assuming that due to the constraint 

condition of (3.12), (3.13) only R matrix inversions ( 1 PR ) are required, the total time costs required 

to implement the modified Fedorov algorithm can be quantified as the sum 

21
2)1(10 RCCPCt                                                         (3.15) 

where C2 is the time cost to perform one matrix inversion. It is appreciated that the cost C1 scales as 

O(n2m) with respect to the random dimensions (n). On the other hand, the cost C2 scales as O(n3m) or 

O(n2m) depending on whether a direct or indirect approach for matrix inversion is used. 

 This overall CPU time cost is contrasted with that incurred by the classical Fedorov algorithm 

expressed as 
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where the first term on the right hand side of (3.16) represents the CPU cost required to compute Δ r of 

(3.7) (m+1)n-K(P+1) times for each node of the starting set while the second term represents the CPU cost 

of the requisite matrix inversions. By comparing (3.15) with (3.16) and recalling that (m+1)n >> 10(P+1) 

for even moderate number of random dimensions and always )1(  PKR , it is concluded that the 

modified Fedorov algorithm is substantially more efficient than its classical counterpart. 

3.2.3.2 SPICE simulation cost 

 From the discussion of Section 3.2.1, it is understood that the proposed SPLINER approach 

requires only P+1 SPICE simulations. This is smaller than the 2(P+1) or 3(P+1) SPICE simulations 

required by the conventional linear regression approach [27], [28], [46]. Hence, the SPLINER approach 

incurs only a fraction of the cost of the conventional linear regression approach when performing the 

deterministic SPICE simulations. 

Overall, the SPLINER approach is demonstrated to be computationally far more efficient than the 

conventional linear regression approach both in implementation of the Fedorov search algorithm and the 

number of SPICE simulations required, especially for high-dimensional problems. It is further 

emphasized that the proposed SPLINER approach is significantly more efficient than the rigorous 

pseudo-spectral collocation approach for even moderate dimensional problems [29]. This is due to the 

fact that although the pseudo-spectral collocation does not involve the cumbersome Fedorov search 

algorithm, the nodes of the SPICE simulations represent the full tensor product grid of 1D Gaussian 

quadrature nodes [45]. Thus, the number of deterministic SPICE simulations required by the pseudo-

spectral collocation approach scales in an exponential manner as (m+1)n,where even for moderate  

number of random dimensions (m+1)n >> P+1. This massive number of SPICE simulations renders this 

approach too computationally expensive compared to the SPLINER approach even after considering the 



56 

 

CPU costs incurred for implementing the modified Fedorov algorithm. In fact, given that the SPLINER 

approach requires the minimum P+1 number of SPICE simulations to solve for the PC coefficients in 

(3.1), it is appreciated that this approach is expected to be more efficient than even the SC approach based 

on sparse grids [30]-[33] which requires only a fraction of the total tensor product nodes. 

 Among other non-intrusive approaches, that based on the ST approach introduced in Section 

2.2.2.3 is highly popular and powerful [37]. This approach does not involve any matrix inversions (i.e. R 

= 0). Moreover, it is based on a non-optimal node selection criterion which requires a smaller number of 

matrix-vector multiplications than the proposed modified Fedorov algorithm, thereby making it relatively 

more time-efficient. However, since the modified Fedorov algorithm is still based on a D-optimal 

criterion, it is more accurate than the work of [37] where a non-optimal (relaxed) selection criterion is 

used to expedite the ST search algorithm. In addition, for most problems the SPICE simulation costs 

dominate over that of the search algorithm. Since both the proposed SPLINER and nonintrusive ST based 

approaches perform the same number of SPICE simulations, their difference in overall CPU time costs is 

usually small. The comparison of the computational complexity of the SPLINER approach with existing 

non-intrusive PC approaches is further illustrated using numerical examples in the next section. 

3.2.4 Numerical examples regarding the SPLINER approach 

 In this section, three examples are presented to compare the accuracy and scalability of the 

proposed SPLINER approach against existing non-intrusive PC approaches. All relevant computations 

are performed using MATLAB 2013b while the deterministic transient simulations are performed using 

HSPICE [3]. In particular, the transmission line networks of the presented examples are modeled using 

the W-element transmission line model provided by HSPICE which can consider frequency dependent 

per-unit-length parameters [3]. The above simulations are run on a workstation with 8 GB RAM, 500 GB 

memory and an Intel i5 processor with 3.4 GHz clock speed. 
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3.2.4.1 Example 1  

 The objective of this example is to compare the performance of the proposed SPLINER approach 

with the nonintrusive ST based approach [37], and the conventional linear regression approach [27], [28]. 

For this purpose, the multiconductor transmission line (MTL) network of Fig. 3.1 terminated by inverters 

made up of SPICE level 49 CMOS transistor models is considered. The lengths of the MTL networks are 

set to 5 cm and their layout and geometric dimensions are shown in Fig. 3.2. This network is driven by a 

voltage source with a trapezoidal waveform of rise/fall time Tr = 0.1 ns, pulse width Tw = 1 ns and 

amplitude of 5V. The uncertainty in the network is introduced via six random variables (n = 6) whose 

characteristics are listed in Table 3.1 and a Legendre PC expansion of degree m = 3 is considered. 
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Fig. 3.1: Multiconductor transmission line (MTL) network for Example 1 in Section 3.2.4.1.  
                                                            

200 
ȝm

W1

Dielectric Layer Ɛr = 4.1

30 ȝm

150 ȝmd1 150 ȝm

W1 W1

200 
ȝm

W2

Dielectric Layer
Ɛr = 4.1

W2

20 ȝm

150 ȝm
d2

200 
ȝm

W3

Dielectric Layer
Ɛr = 4.1

W3

40 ȝm

150 ȝm
d3

 
 

(a)                                                     (b)                                                         (c) 
Fig. 3.2: Geometrical and physical layout of transmission lines of Example 1 in Section 3.2.4. (a) Subnetwork 1. 
(b) Subnetwork 2. (c) Subnetwork 3 
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Table 3.1 Characteristics of random variables of example 1 in Section 3.2.4 (Fig. 3.1) 
Random 
Variables 

Mean 
% Standard Deviation 
(Uniform Distribution)   

d1 100 ȝm 

+/- 20 % 

d2 140 ȝm 
d3 70 ȝm 
W1 150 ȝm 
W2 130 ȝm 
W3 170 ȝm 

In order to demonstrate the accuracy of the proposed SPLINER approach, the mean and standard 

deviation (σ) of the transient responses at the output nodes N1 and N2 of Fig. 3.1 are computed using the 

SPLINER approach where a total of P+1 = 84 regression nodes are required. These results are compared 

against those obtained using the nonintrusive ST based approach [37] and the brute-force Monte Carlo 

approach where 20,000 samples are considered. The comparison of the above results is shown in Fig. 3.3 

where both PC approaches exhibit good agreement with the Monte Carlo approach. Furthermore, the 

SPLINER approach exhibits good agreement with the Monte Carlo approach when comparing the 

probability distribution function of the transient response at node N2 evaluated at the time point of 

maximum mean crosstalk (t = 1.83 ns) in Fig. 3.4. 

  

 

                                                                            
   (a)                                                                                           (b) 

Fig. 3.3: Comparison of the statistics of the transient response of Example 1 in Section 3.2.4 obtained using the 
proposed SPLINER approach, the nonintrusive ST based approach, and the Monte Carlo approach. (a) Statistical 
results of the transient response at N1. (b) Statistical results of the transient response at N2. 
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Next, the third order statistical moment (skew) at the output node N1 of Fig. 3.1 is computed using 

the proposed SPLINER approach and the nonintrusive ST based approach [37]. These results are 

compared against the Monte Carlo results as shown in Fig. 3.5. It is worth noting in this example the 

classical Fedorov (2(P+1) nodes) approach exhibits near-perfect agreement with Monte Carlo. More 

importantly, it is observed from Fig. 3.5 that the SPLINER approach is more accurate than the 

nonintrusive ST based approach. This is reflected in the fact that the SPLINER approach incurs an L2 

error norm of 1.27x10-6 which is nearly 4 times as small as that incurred by the nonintrusive ST based 

approach (L2 error norm of 5.04x10-6) when compared against Monte Carlo.   

 
Fig. 3.4: Probability distribution at the time point of maximum mean crosstalk (t = 1.83 ns) obtained using 20,000 
samples of Example 1 in Section 3.2.4. 
 

                                                                                   
    (a)                                                                                          (b) 

Fig. 3.5: Accuracy comparison between the proposed SPLINER and the nonintrusive ST based approach for 
Example 1 in Section 3.2.4. (a) Third statistical moment (skew) of the transient response of node N1. (b) Enlarged 
plot showing the relative error of the nonintrusive ST based approach. 
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Finally, the CPU times taken by the SPINER approach, the nonintrusive ST based approach, and 

the conventional linear regression approach are listed in Table 3.2. It is observed from Table 3.2 that both 

the SPLINER and the nonintrusive ST based approach incur very similar overall CPU time costs although 

the nonintrusive ST approach can identify the nodes faster. This is due to the fact that the SPICE 

simulation costs dominate over the cost of the search algorithm as noted in Section 3.2.3. On the other 

hand, the SPLINER approach is more than 2 times faster than the conventional linear regression 

approach. This speedup is due to both the efficiency provided by the modified Fedorov algorithm as well 

as the smaller number of SPICE simulations involved. 

Table 3.2 CPU Time costs using SPLINER, conventional linear regression and stochastic testing for example 1 in 
Section 3.2.4. 

 
Number 
of RVs  

CPU Time  
(SPLINER) 

CPU Time  
(Conventional Linear Regression) 

CPU Time  
(Stochastic Testing [33])  

Modified  
Fedorov (s) 

SPICE 
Simulations (s) 

Classical  
Fedorov (s) 

SPICE 
Simulations (s) 

Stochastic 
Testing (s) 

SPICE 
Simulations (s) 

6 1.5 56.28 14 112.56 0.012 56.28 

 

3.2.4.2 Example 2 

The objective of this example is to compare the performance of the proposed SPLINER approach 

with the ST based approach [37], and the conventional linear regression approach [27], [28] for an RF 

amplifier. For this purpose, network of Fig. 3.6 is considered [41]. This LNA utilizes an NXP BFG425W 

wideband BJT, which is represented as a level-1 (Gummel-Poon) SPICE model. This network is driven 

by a voltage source with a sinusoidal waveform of frequency 2 GHz and amplitude of 1V. The supply 

voltage of the network is set to Vs = 4.5 V. The uncertainty in the network is introduced via eight random 

variables (n = 8). These random variables are the first eight variables (out of the total 12 variables) whose 

characteristics are listed in Table 3.3. A Hermite PC expansion of degree m = 3 is considered for this 

example. 
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Table 3.3 Characteristics of random variables of example 2 and 3 in Section 3.2.4 (Fig. 3.6) 
Random 
Variables Mean 

% Standard Deviation 
(Normal Distribution)   

w1 200 ȝm 

+/- 20 % 

w2 250 ȝm 
w3 300 ȝm 
w4 700 ȝm 
w5 λ00 ȝm 
Βf 145 
Cjs 667.5 fF 
R1 50 Ω 
R2 100 Ω 
R3 15 KΩ 
R4 22 Ω 
R5 84 Ω 

 

In order to demonstrate the accuracy of the proposed SPLINER approach, the mean and standard 

deviation (σ) of the transient response at the output node N1 of Fig. 6 is computed using the SPLINER 

approach where a total of P+1 = 165 regression nodes are required. These results are compared against 

those obtained from the nonintrusive ST based approach [37] and the Monte Carlo approach using 20,000 

samples in Fig. 3.7(a). It is observed from Fig. 3.7(a) that both PC approaches exhibit good agreement 

with the Monte Carlo approach. In addition, , the SPLINER approach exhibits good agreement with the 

Monte Carlo approach for the probability distribution of the transient response at node N1 evaluated at the 

time point of maximum standard deviation (t = 0.91 ns) as shown in Fig. 3.7(b).  
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        (a)                                                                                    (b) 

Fig. 3.6: LNA network of Example 2 in Section 3.2.4. (a) Circuit schematic. (b) Cross -section view of the 
transmission lines. 
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Next, the third order statistical moment (skew) at the output node N1 of Fig. 3.6 is computed using 

the proposed SPLINER approach and the nonintrusive ST based approach [37]. Both these results are 

compared against the Monte Carlo results as shown in Fig. 3.8. Similar to Example 1, even for this 

example the SPLINER approach is found to be more accurate than the ST based approach. This is 

reflected in the fact that the SPLINER approach incurs an L2 error norm of 1.07x10-5 which is nearly 3 

times as small as that incurred by the nonintrusive ST based approach (L2 error norm of 3.23x10-5) when 

compared against Monte Carlo. 

Finally, the CPU times taken by the SPLINER approach, the nonintrusive ST based approach, 

and the conventional linear regression approach are listed in Table 3.4. It is observed from Table 3.4 that 

both the SPLINER and the nonintrusive ST based approach incur very similar overall CPU time costs 

although once again the nonintrusive ST approach can identify the nodes far faster. This is as expected 

from the discussion in Section 3.2.3. Additionally, for this example the SPLINER approach is roughly 18 

times faster than the conventional linear regression approach.  

 

 

     
      (a)                                                                                       (b) 

Fig. 3.7: Comparison of the statistics of the transient response of Example 2 in Section 3.2.4 obtained using the 
proposed SPLINER approach, the ST based approach, and the Monte Carlo approach. (a) Statistical results of the 
transient response at N1. (b) Probability distribution of the response at N1 at the time point of maximum standard 
deviation (t = 0.91 ns) using 20,000 samples. 
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Table 3.4 CPU time costs using SPLINER, conventional linear regression and nonintrusive ST for example 2 in 
Section 3.2.4 

 
Number 
of RVs  

CPU Time  
(SPLINER) 

CPU Time  
(Conventional Linear Regression) 

CPU Time  
(Stochastic Testing [33])  

Modified  
Fedorov 

(s) 

SPICE 
Simulations 

(s) 

Classical  
Fedorov (s) 

SPICE 
Simulations (s) 

Stochastic 
Testing (s) 

SPICE 
Simulations (s) 

8 13 38 838 76 0.031 38 
 

3.2.4.3 Example 3 

 The objective of this example is to compare the scalability of the proposed SPLINER approach 

against that of conventional non-intrusive PC approaches. For this purpose the same RF low noise 

amplifier (LNA) network of Fig. 3.6 is considered [41]. The uncertainty in the network is expanded to 

include twelve random variables (n = 12) whose characteristics are listed in Table 3.3 and a Hermite PC 

expansion of degree m = 3 is considered. 

 In order to demonstrate the scalability of the proposed work the number of random dimensions is 

progressively increased from 3 to 12 as shown in Table 3.5. For the same test cases of Table 3.5, the total 

PC problem is solved using three methods – the proposed SPLINER approach, the conventional linear 

regression approach [27], [28], and the nonintrusive ST based approach  [37]. The CPU time incurred by 

each approach for each test case is noted in Table 3.5 and scaling of the overall CPU costs is 

demonstrated in Fig. 3.9. It is observed from Fig. 3.9 that the SPLINER and the nonintrusive ST based 

                                                                         
    (a)                                                                                       (b) 

Fig. 3.8: Accuracy comparison between the proposed SPLINER and the nonintrusive ST based approach for 
Example 2 in Section 3.2.4. (a) Third statistical moment (skew) of the transient response of node N1. (b) Enlarged 
plot showing the relative error of the nonintrusive ST based approach. 
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approach are significantly more efficient than the conventional linear regression approach. This is due to 

both the relatively slow classical Fedorov algorithm as well as the fact that conventional linear regression 

approach requires twice as many SPICE simulations as the other approaches. Moreover, while the ST 

based approach is much faster than the modified Fedorov algorithm in locating the nodes (see Table 3.5), 

due to the very large SPICE simulation costs, their overall CPU costs turn out to be very similar. For 

example, when considering n = 12, the nonintrusive ST approach is nearly 118 times faster than the 

modified Fedorov algorithm, although after taking the SPICE simulation into account this speedup 

reduced to less than 2 times. Besides, the improved efficiency of the nonintrusive ST based approach is 

counterbalanced by the lower accuracy as demonstrated in the previous examples. These results are as 

expected from the discussion of Section 3.2.3.   

Table 3.5 Scaling of CPU time costs using proposed, conventional linear regression and nonintrusive ST for 
example 3 in Section 3.2.4 

 Number of RVs 
(Random 
Variables) 

CPU Time  
(SPLINER) 

CPU Time  
(Conventional Linear 

Regression) 

CPU Time  
(Stochastic Testing [33])  

Modified 
Fedorov (s) 

SPICE 
Simulations 

(s) 

Classical  
Fedorov (s) 

SPICE 
Simulations 

(s) 

Stochastic 
Testing (s) 

SPICE  
Simulations 

(s) 
3 (w1, w2, w3) 0.014 4.60 0.016 9.20 0.007 4.60 

4 (w1, w2, w3, w4) 0.18 8.10 0.69 16 0.007 8.10 
5 (w1, w2, w3, w4, 

w5) 
0.52 13 2.40 26 0.011 13 

6 (w1, w2, w3, w4, 
w5, Βf) 

1.50 19 14 38 0.012 19 

7 (w1, w2, w3, w4, 
w5, Βf, Cjs) 

3.40 28 87 56 0.017 28 

8 (w1, w2, w3, w4, 
w5, Βf, Cjs, R1) 

13 38 838 76 0.031 38 

9 (w1, w2, w3, w4, 
w5, Βf, Cjs, R1, R2) 

30 51 3031 102 0.069 51 

10  
(w1, w2, w3, w4, 

w5, Βf, Cjs, R1, R2, 
R3) 

52 66 7432 132 0.179 66 

11  
w1, w2, w3, w4, 

w5, Βf, Cjs, R1, R2, 
R3, R4) 

76 84 14803 168 0.417 84 

12  
(w1, w2, w3, w4, 

w5, Βf, Cjs, R1, R2, 
R3, R4, R5) 

99 105 25911 210 0.839 105 
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3.3 Additional enhancements to the linear regression approach 

This section proposes another novel approach for improving the linear regression method. It 

begins by the numerical strategies to accelerate the search algorithm for problems involving high-

dimensional random spaces. Then a detailed analysis of the improvements provided by the said strategies 

over the original search algorithm presented in [39] is provided. Finally, this section concludes with 

numerical examples in order to validate the proposed approach and study its computational cost scaling 

rate with respect to number of random variables.  

3.3.1 Expediting the search algorithm for high dimensional random spaces  

In this section, two modifications to the original Fedorov search algorithm are presented. This 

approach is applied to the original linear regression approach with 2(P+1) sample nodes [27], [28], in 

order to observe the individual improvement caused by the suggested strategies. 

3.3.1.1 Substituting the K worst DoE 

 This strategy is based on the rationale that once a reasonably large determinant of the information 

matrix has been reached, any further enrichment of the determinant will translate to only marginal 

improvement in the accuracy of the evaluated PC coefficients. Thus, instead of substituting all M DoE (as 

 
Fig. 3.9: Scaling of overall CPU time costs for SPLINER, conventional linear regression, and the nonintrusive ST 
based approach with increasing number of random variables for Example 3 in Section 3.2.4. 
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suggested previously), in this strategy only the K worst DoE in the starting set will be identified and 

substituted. The substitution of the K worst DoE will result in a sufficiently large increase of the 

determinant of the information matrix, thereby eliminating the need for exchanging the remaining 

KM   DoE. Thus, this strategy will reduce the number of searches from M((m+1)n-M) searches to 

K((m+1)n-M) – a reduction of the search cost (Ca) of (3.9) by a factor of M/K. 

 In this work, K is initially set to [M/5] where [.] is the ceiling function. Next, from (3.5) it is noted 

that the depreciation in the value of the determinant caused by removing the rth DoE (λ(r)) is proportional 

to the term 

trr
rrd )()( )()0()( λRΨλR                                                     (3.17)  

where Ψ(0) is the inverse of the original information matrix consisting of the starting M DoE. Thus, the K 

worst DoE are identified as those DoE in the starting set that have the smallest possible value of the scalar 

drr. It is appreciated that computation of the drr term of all 2(P+1) DoE can be performed cheaply since 

the matrix inverse Ψ(0) needs to be computed only once. Once the K worst DoE have been identified, the 

Fedorov search algorithm is run for only these DoE. Thereafter, a check is made to ascertain if the 

determinant of the information matrix ATA is reasonably high. If not, then the next worst DoE (i.e. K+1th 

worst DoE) is identified using (3.17) and substituted as before. This sequential process continues until the 

determinant of the information matrix ATA is deemed to be sufficiently large. It is observed from 

numerous examples that K = [M/5] is a good starting guess for K and rarely does this value need to be 

increased further. 

3.3.1.2 Implicit matrix inversion 

 Although the above strategy will reduce the number of searches, and consequently, the 

number of matrix inversions, given that the cost to directly invert the information matrix even once scales 

in a near-exponential manner with the number of random dimensions (see (3.11)), the overall cost of 

matrix inversions may still remain prohibitively large for high-dimensional random spaces. 
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 In this section, a new strategy is adopted whereby Ψ(0) (i.e. inverse of the information matrix for 

the starting set of DoE) is computed once and stored. Thereafter, the substitution of any rth DoE (λ(r)) (r < 

K) will change the information matrix. The inverse of the new information matrix (i.e. Ψ(r) of (3.7)) will 

now be expressed as a P+1 rank correction to the previous inverse Ψ(r-1) using the Sherman-Morrison-

Woodbury formula as [58]. 
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Based on the recursive expressions of (3.18) and (3.19), it is observed that for the substitution of any rth 

DoE (λ(r)) (r < K) the new inverse Ψ(r) will be updated efficiently using numerically cheap matrix-vector 

and vector-vector multiplications as opposed to the direct matrix inversions. 

3.3.1.3 Numerical efficiency of the modified search algorithm 

 In this section numerical efficiency of the proposed approach is discussed where only effect of 

substituting the K worst DoE and implicit matrix inversion on the classical linear regression are 

considered and improvements of the SPLINER approach are not considered. It is emphasized that the 

modified search algorithm described above offers two clear benefits. Firstly, the number of searches will 

decrease from M((m+1)n-M) searches to K((m+1)n-M) where K = [M/5]. This automatically reduces the 

search cost of (3.9) approximately by a factor of 5 to  

11 )1(
5

)1(2
))1(2)1(( Cm

P
CPmKC nn

a 


                                       (3.20) 
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 Secondly, the CPU cost of performing the matrix inversions for the modified search algorithm 

will also decrease significantly as quantified using the following lemma. 

 Lemma 2: Utilization of the Sherman-Morrison-Woodbury formula of (3.18) and (3.19) will 

ensure that the total CPU costs to perform the matrix inversions in the modified search algorithm will 

scale as O((P+1)3) )( 3mnO with respect to the number of random dimensions (n). 

 Proof: Based on (3.19) it is noted that the main computations required in order to evaluate Vk is a 

matrix-vector multiplication of dimensions P+1 where Ψ(r-1) is assumed to be known. The cost of this 

operation will be C3 = k(P+1)2 where k  is the cost of each floating point operation. Next, to compute the 

matrix k
t
kVV  a vector-vector multiplication of dimensions P+1 is required. This will incur an additional 

CPU cost of C4 = k(P+1)2. Finally, to compute the denominator of the scalar term wk, another matrix-

vector multiplication of dimensions P+1 will be required at the cost C3 = k(P+1)2. Thus, the overall CPU 

cost to evaluate the second term in (3.18) (i.e. wk k
t
k VV ) will be 

2
343 )1(3  PkCCC                                                     (3.21) 

It is observed that computing the third term in (3.18) (i.e. wr r
t
rUU ) proceeds exactly in the same way as 

that of the second term. Hence, the associated cost too will equal to that of (3.21). Adding all the above 

CPU costs for K substitutions along with the cost of directly inverting the starting information matrix (i.e. 

computing Ψ(0)), the total CPU cost incurred to perform the matrix inversions in the modified search 

algorithm can be quantified as  

  22 16  PKkCCb                                                        (3.22) 

It is observed that for K = [M/5] both the first and the second terms of (3.22) will scale as O((P+1)3) 

)( 3mnO with respect to the number of random dimensions (n). Thus, it is concluded that the overall 

costs of performing the matrix inversions for the modified search algorithm will also scale as O((P+1)3) 
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)( 3mnO . Comparing this result with that of (3.11) reveals a distinct improvement in the CPU cost to the 

order of O(n) – a major numerical benefit for high-dimensional problems (i.e. for large n). 

 Finally, it is remarked that the cost of identifying the K worst nodes will require the additional 

computation of the scalar drr in (3.17) for the entire 2(P+1) starting DoE. This cost can be expressed as 

3
)1(2 1C

PCc                                                                (3.23) 

where C1 is defined in (3.10). Comparing (3.20) and (3.23) it is evident that the cost of identifying the K 

worst DoE is a negligible fraction of the search cost Ca and can be safely ignored. Overall, it is 

appreciated that the proposed modified search algorithm will be able to significantly reduce both the 

search cost Ca  of (3.9) and the cost of the matrix inversions Cb of (3.11), thereby substantially 

accelerating the original search algorithm of Section 3.1.2. This benefit will be validated in the numerical 

examples section. 

3.3.2 Comparative analysis of overall CPU costs  

 In this section, the CPU cost of the proposed D-optimal linear regression approach is compared 

against that of conventional non-intrusive PC approaches. Comparison with the intrusive SG approach is 

not included since the relative efficiency of non-intrusive approaches over the SG approach is well-

documented in the literature [26], [46]. This is particularly true for nonlinear circuits where the 

multidimensional integral of (2.37) using the SG approach have to be represented in SPICE using massive 

number of additional voltage/current dependent sources (also demonstrated in Example 2 of Section 

3.3.3.2). 

3.3.2.1 Proposed linear regression approach 

 Based on the discussion of Section 3.3.1, it is appreciated that the CPU cost required for the 

proposed linear regression approach can be divided into two parts – the cost incurred by the modified 
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search algorithm and the cost incurred to perform the M deterministic SPICE simulations to extract the E 

matrix of (3.2). The cost of the modified search algorithm is expressed using (3.20) and (3.22) as 

  221 16)1(  PKkCCmKC n
t                                             (3.24) 

where typically K = [M/5]. As for the SPICE simulation cost, it is assumed that each of the M simulations 

requires the same CPU cost which is a reasonable assumption since the variation in the unknowns of the 

MNA equations of (2.38) from one DoE to another will be typically small. Thus, the SPICE simulation 

cost can be quantified as 

0)1(2 CPCS                                                                 (3.25) 

where C0 is the cost of each deterministic SPICE simulation. Thus, the overall cost of the SPICE 

simulations scales as )2( mnO  with respect to the number of random dimensions (n). It is pointed out that 

the substantial numerical advantages of this proposed algorithm over the work of [36] lies in the 

acceleration of the modified search algorithm as explained in details in Section 3.3.1.3.  

3.3.2.2 Other approaches 

 The proposed linear regression approach has some interesting features compared to the stochastic 

testing algorithm of [40], [41]. Firstly, the modified search algorithm allows only K substitutions as 

opposed to the significantly larger P+1 substitutions required by the stochastic testing algorithm. Further, 

the proposed linear regression approach can directly utilize the SPICE results of the M DoE without the 

need of any intrusive coding or access to the internals of the SPICE engine, thereby making the proposed 

approach truly non-intrusive in nature. These benefits are offset by the fact that the stochastic testing 

algorithm requires only P+1 sample nodes as opposed to the 2(P+1) sample nodes required by the 

proposed D-optimal linear regression approach. However, by combining this approach with the one in 

Section 3.2, this issue can be addressed too. However, it is assumed the proposed D-optimal approach is 

applied to the conventional linear regression approach of Section 2.3.2.  
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 Furthermore, stochastic collocation (SC) has been a very popular nonintrusive PC approach [32], 

[33], [45], [46]. In this approach, if the non-intrusive multidimensional nodes are selected to be the full 

tensor product of 1D quadrature nodes, then M = (m+1)n. These nodes can be analytically identified at 

negligible computational costs (i.e. Ct = 0). Thus, the cumulative costs of the entire SC approach is equal 

to that of the SPICE simulations and is expressed as 

0)1( CmC n
S                                                                  (3.26) 

This corresponds to an exponential scaling of the time costs with respect to the number of random 

dimensions (n), quantified as O((m+1)n). This means that for even moderate dimensional problems, the 

massive cost of SPICE simulations in (3.26) will make this approach highly cost intensive compared to 

the proposed linear regression approach. 

 In order to mitigate this prohibitive scaling, an intelligent choice of only a sparse subset of the 

tensor product nodes guided by the Smolyak algorithm has been proposed [32], [33], [45], [69]. Once 

again, this method allows the fast identification of the sparse nodes (i.e. Ct = 0 compared to the proposed 

linear regression approach). This approach results in a decrease in the number of multidimensional nodes 

from M = (m+1)n to approximately M = (2n)m/m!, thereby improving the CPU time costs of the SC 

algorithm from that of (3.26) to 

0!
)2(

C
m

n
C

m

S                                                                   (3.27) 

For this approach, it is observed that the number of deterministic SPICE simulations required scales as 

O(2mnm) which is still 2m-1 times more than that required for the proposed linear regression approach (see 

(3.25)). Thus, for large variation in the random dimensions requiring high degrees of PC expansion (m), 

the proposed linear regression approach may still be more cost effective than even this sparse collocation 

approach.  
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 Among other existing non-intrusive approaches, the pseudo-spectral collocation has been recently 

reported for full-wave EM problems [29]. However, this approach suffers from the same exponential 

scaling of the SPICE simulation costs as the classical SC approach. Other methods based on the Stroud 

low order cubature methods has also recently been explored for packaging problems [26], [34], [36], [38]. 

This approach can easily locate the multidimensional nodes using simple analytic formulas and exhibits 

only a linear scaling of the number of SPICE simulations with number of random dimensions (i.e. O(n)). 

However, this excellent scaling with the number of random dimensions only exists for a second and third 

degree PC expansion and cannot be extended to higher degree expansions [26]. 

 Finally, we remark the promising non-intrusive stochastic testing based approach which has been 

proposed in [37]. In this approach the selection of the non-intrusive nodes is determined exactly as 

proposed in the stochastic testing approach of [40]. As a result, this approach too relies on the costly P+1 

substitutions as opposed to the relative smaller K substitutions used in the modified search algorithm. On 

the other hand, this approach requires only P+1 SPICE simulations as opposed to the 2(P+1) simulations 

required by the proposed D-optimal linear regression approach. However, this decrease in number of 

SPICE simulations comes at the cost of loss of accuracy [61]. 

From the above analysis, it is observed that the proposed linear regression approach offers clear 

benefits over the state-of-the-art non-intrusive PC approaches and this is validated through multiple 

lumped and distributed microwave network examples in the next section. 

3.3.3 Numerical examples 

 In this section, three examples are presented to compare the accuracy and scalability of the 

proposed D-optimal linear regression approach against existing intrusive and non-intrusive PC 

approaches. All relevant PC computations are performed using MATLAB 2013b while the deterministic 

transient simulations, whether using intrusive or non-intrusive PC approaches, are performed using 

HSPICE [3]. In particular, for Example 2 and 3 the transmission line networks are modeled using the W-
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element transmission line model provided by HSPICE which can automatically consider frequency 

dependent per-unit-length parameters [3]. The above simulations are run on a workstation with 8 GB 

RAM, 500 GB memory and an Intel i5 processor with 3.4 GHz clock speed. 

3.3.3.1 Example 1 

 The objective of this example is to demonstrate the accuracy of the proposed linear regression 

approach. For this purpose, the RF low noise amplifier (LNA) network of Fig. 3.10 comprising of three 

SPICE level-49 CMOS transistor models are considered. The RF input to the network is a sinusoidal 

wave with amplitude of 1V and a frequency of 1 GHz. The uncertainty in the network is introduced via 

six normally distributed random variables (n = 6) whose characteristics are listed in Table 3.6. A Hermite 

PC expansion of degree m = 3 is required for this example. 

Table 3.6 Characteristics of random variables of example 1 in Section 3.3.3 (Fig. 3.10) 

Random Variables Mean 
% Standard Deviation 
(Normal Distribution)   

w1 (width of M1) 7.5µm 

+/- 10 % 
 

w2 (width of M2) 7.5µm 

w3 (width of M3) 7.5µm 

L1 13 nH 

L2 0.9 nH 

R3 120 Ω 

 
In order to evaluate the accuracy of the proposed approach, the mean and standard deviation (σ) 

of the transient response at the output node N1 of Fig. 3.10 is computed using two methods – the proposed 

AC

50Ω L2 M1

L1

M3

M2

2.3V 

400Ω 
255Ω 

R3

C1

1.19V

N1

 
Fig. 3.10: Circuit schematic of the CMOS low-noise amplifier network of Example 1 in Section 3.3.3. 
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D-optimal linear regression approach described in Section 3.3.1 and the pseudo-spectral collocation 

approach based on Gauss-Hermite quadrature techniques [29]. For the proposed approach, only K = 

[2(P+1)/5] = 33 substitutions are performed as described in Section 3.3.1. The comparison of the above 

results is shown in Fig. 3.11(a) where the proposed linear regression approach is found to exhibit good 

agreement with the pseudo-spectral collocation approach. 

Next, in order to test the accuracy for higher order statistical moments, the probability distribution 

function of the transient response at node N1 evaluated at the time point of maximum standard deviation (t 

= 2.81 ns) is computed using the above two approaches and the results are displayed in Fig. 3.11(b). As 

expected, the probability distribution results for 20,000 analytically generated samples exhibit good 

agreement demonstrating the accuracy of the proposed linear regression approach. 

Finally, it is noted that the proposed approach requires 15 seconds for completing the K 

substitutions and another 13.44 seconds for the 2(P+1) = 84 SPICE simulations. On the other hand, the 

pseudo-spectral collocation approach requires 327.68 seconds to perform the necessary 4096 SPICE 

simulations at the Gauss-Hermite quadrature nodes. This amounts to a speedup of 11.5 provided by the 

proposed algorithm over the pseudo-spectral collocation approach. This is as expected from the 

discussion of Section 3.3.2. 

                
(a)                                                                                                            (b) 

Fig. 3.11: Comparison of mean, standard deviation and PDF of the transient response of Example 1 in Section 3.3.3 
computed using the proposed linear regression approach and pseudo-spectral collocation approach. (a) Input, mean 
and statistical corners (+/- 3σ) of the transient response at N1. (b) Probability distribution function of transient 
response at N1 at the time point of maximum standard deviation (t = 2.81ns) using 20,000 samples. 
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3.3.3.2 Example 2 

 The objective of this example is to compare the performance of the proposed linear regression 

approach with the existing intrusive SG approach for a large distributed network. For this purpose, the 

multiconductor stripline network driven by nonlinear transmission lines shown in Fig. 3.12(a) is 

considered. The layout of the stripline network is illustrated in Fig. 3.12(b). The nonlinear transmission 

lines are represented using cascaded lumped nonlinear RLGC segments as shown in Fig. 3.13 where the 

nonlinear capacitance C(V) is represented as 

             )))1(()( /aV
a ebbCVC                                                           (3.28) 

and V is the potential difference across the capacitor [74]. It is noted that (3.28) is a strongly nonlinear 

function used for benchmarking the proposed approach. For the network in Fig. 3.12(a), 10 nonlinear 

RLGC segments are considered. The input to the network is a trapezoidal waveform with rise/fall time Tr 

= 10 ns, pulse width Tw = 400 ns and amplitude equal to 5V. The uncertainty in the network is introduced 
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NLETL 2

NLETL 3
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15 µm 300 µm

120 µm30 µm

175 µm

       
                                  (a)                                                                                           (b) 

Fig. 3.12: Transmission line network of Example 2 in Section 3.3.3. (a) Circuit schematic. (b) Geometry of coupled 
transmission lines. 
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Fig. 3.13: Equivalent lumped RLGC model of nonlinear transmission lines of Fig. 3.12. 
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via five random variables (n = 5) whose characteristics are listed in Table 3.7. A mixed Legendre-Hermite 

PC expansion of degree m = 2 is required for this example. 

 Table 3.7 Characteristics of random variables of example 2 in Section 3.3.3 (Fig. 3.12) 
Random Variables Mean Distribution % Relative Variation 

“a” parameter in Nδ capacitors of NδETδ 1 2.137 

Normal 

+/- 10 % 

“a” parameter in Nδ capacitors of NδETδ 2 2.637 

“a” parameter in NL capacitors of NLETL 3 1.637 

“b” parameter in Nδ capacitors of NδETδ 1 6.037 e-3 
Uniform 

“b” parameter in Nδ capacitors of NδETδ 2 9.108 e-3 

 

In order to evaluate the accuracy of the proposed approach, the mean and standard deviation (σ) 

of the transient response at the output nodes N1 and N2 of Fig. 3.12(a) is computed using two methods – 

the proposed D-optimal linear regression approach described in Section 3.3.1 and the SG approach [18]. 

For the proposed approach, only K = [2(P+1)/5] = 8 substitutions are performed as described in Section 

3.3.1. The comparison of the above results is shown in Fig. 3.14 where the proposed linear regression 

approach is found to exhibit good agreement with the SG approach. 

 
   (a)                                                                           (b) 

Fig. 3.14: Comparison of mean and standard deviation of the transient response of Example 2 in Section 3.3.3 
computed using the proposed linear regression approach and the stochastic Galerkin approach. (a) Input, mean and 
statistical corners (+/- 3σ) of the transient response at N1. (b) Mean and statistical corners (+/- 3σ) of the transient 
response at N2. 
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To further probe the accuracy of the proposed approach, the PC expansion of the voltage response 

at node N1 is computed using the same above two methods where the input sources in Fig. 3.12 are 

changed to random pulse trains with rise/fall time Tr = 10 ns, pulse width Tw = 410 ns and amplitude 

equal to 1V. From the PC expansion the eye diagram is generated as shown in Fig. 3.15 (a). The 

probability distribution function of the eye height is then extracted using both the above methods and 

compared in Fig. 3.15 (b). It is observed from Fig. 3.15 (b) that the proposed linear regression approach 

matches very well the result of the SG approach. 

 It is appreciated that the proposed approach requires 1.022 seconds for completing the K 

substitutions and another 23.94 seconds for the 2(P+1) = 42 SPICE simulations. On the other hand, the 

SG approach requires 4722.45 seconds to perform the solitary augmented SPICE simulation. This is 

because the augmented network is 21 times larger than the original model and includes an additional 

(m+1)n  = 243 companion circuits to model the uncertainty in each nonlinear capacitor [18]. Thus, the 

proposed approach provides a speedup of roughly 189 over the SG approach. If the size of the network 

and/or the number of random dimensions is increased, the achieved speedup will be even higher, thereby 

clearly validating the advantage of the proposed linear regression approach over the intrusive SG 

approach. 

            
     (a)                                                                          (b) 

Fig. 3.15: Eye diagram comparison for Example 2 in Section 3.3.3 computed us ing the proposed linear regression 
approach and the stochastic Galerkin approach. (a) 100 eye diagram samples analytically produced at N1. (b) 
Probability distribution function of the eye height. 
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3.3.3.3 Example 3 

 The objective of this example is to compare the computational complexity of the proposed linear 

regression approach against that of conventional non-intrusive PC approaches as the number of random 

dimensions increases. For this purpose the example of Section 3.2.4.2 is considered once again. Because 

of changes in random variables, the low noise amplifier (LNA) network is presented in Fig. 3.16 

again[41]. As a reminder, this LNA utilizes an NXP BFG425W wideband BJT, which is represented as a 

level-1 (Gummel-Poon) SPICE model. This network is driven by a voltage source with a sinusoidal 

waveform of frequency 2 GHz and amplitude of 1V. The supply voltage of the network is set to Vs = 4.5 

V. The uncertainty in the network is introduced via twelve random variables (n = 12) whose 

characteristics are listed in Table 3.8 and a Hermite PC expansion of degree m = 4 is considered. 

 First, the number of random dimensions is set to n = 8 represented as the first eight dimensions of 

Table 3.8. For this case, in order to demonstrate the accuracy of the proposed linear regression approach, 

the mean and standard deviation (σ) of the transient response and output power at the output node N1 is 

computed using two methods – the proposed linear regression approach described in Section 3.3.1 and the 

Monte Carlo approach. For the proposed approach, only K = [2(P+1)/5] = 198 substitutions are performed 

as described in Section 3.3.1. The comparison of the above results is shown in Fig. 3.17 where the 

proposed linear regression approach is found to exhibit good agreement with the Monte Carlo approach. 

AC

BFG425W
4.7 pF

2.7 pF

DC 4.5 V

100 nF

Rl = 50Ω  50 Ω 

5.6 pF 1 nF

15 kΩ 

TL1

TL2

TL3

TL4 TL5

22 Ω 82 Ω 

N1

R2

h

2 ȝm

w

Dielectric Layer
Ɛr = 4.6 

 
  (a)                                                                             (b) 

Fig. 3.16: Circuit schematic of the BJT low-noise amplifier network of Example 3 in Section 3.3.3. (a) Circuit 
schematic. (b) Geometry of transmission lines. 
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Table 3.8 Characteristics of random variables of Example 3 in section 3.3.3 (Fig. 3.16) 

Random Variables Mean % Relative Variation 

w1 (width of TL1) 0.2 mm 

+/- 25% 
Normal Distribution 

w2 (width of TL2) 0.25 mm 
w3 (width of TL3) 0.3 mm 
w4 (width of TL4) 0.7 mm 
w5 (width of TL5) 0.9 mm 

Bf (Current gain of BJT) 145 
Cjs (Junction Cap. Of 

BJT) 
667.5 fF 

Rl 50 Ω 
h1 (height of TL1) 0.4 mm 
h2 (height of TL2) 0.45 mm 
h3 (height of TL3) 0.5 mm 
h4 (height of TL4) 0.55 mm 
h5 (height of TL5) 0.6 mm 

R2 100 Ω 
 

Next, to demonstrate the efficiency offered by the modified search algorithm over the classical 

Fedorov search algorithm of [39], the number of random dimensions is progressively increased from 4 to 

14. For each test case, the original Fedorov search algorithm of [39] and the proposed modified search 

algorithm described in Section 3.3.1 are implemented. The total time cost for each algorithm is 

decomposed into two parts – the CPU cost incurred in identifying the regression nodes (compared in 

Table 3.9) and the CPU cost incurred in the matrix inversion after every node exchange (compared in 

      
                                          (a)                                                                                        (b) 

Fig. 3.17: Comparison of mean and standard deviation of the transient response of Example 3 in Section 3.3.3 
computed using the proposed linear regression approach and the Monte Carlo approach. (a) Input, mean and 
statistical corners (+/- 3σ) of the transient response at N1. (b) Mean and statistical corners (+/- 3σ) of the output 
transient power at N1. 
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Table 3.10). From Table 3.9 it is observed that the speedup achieved using the K worst nodes compared to 

the full set of 2(P+1) regression nodes are consistently 5. This is exactly as expected from (3.20) in 

Section 3.3.1.3. Similarly, from Table 3.10 it is observed that the speedup provided by the Sherman-

Morrison-Woodbury method compared to the explicit matrix inversion method closely matches the 

expected scaling of O(nm) as illustrated in Fig. 3.18(a). This too is as expected from the comparison of 

(21) with (15) in Section 3.3.1.3.  

Table 3.9 Scaling of CPU time for identifying D-optimal nodes using proposed and classical search algorithms for 
example 3 in Section 3.3.3 (Fig. 3.16) 

 
Random Variables 

CPU Time for Proposed Algorithm 
using K Worst Nodes (sec) 

CPU Time for Classical Search 
Algorithm using 2(P+1) nodes (sec) 

 
Speedup 

 Simulation Cost Analytic Cost Simulation Cost Analytic Cost  

4 (w1, w2, w3, w4) 0.0005 0.0003 0.0026 0.0014 

5 

6 (w1, w2, w3, w4, w5, 
Bf) 

0.0055 0.0077 0.0277 0.0383 

8 (w1, w2, w3, w4, w5, 
Bf, Cjs, Rl ) 

0.0615 0.1001 0.3074 0.5008 

10 (w1, w2, w3, w4, 
w5, Bf, Cjs, Rl, h1, h2 ) 

0.6806 0.8274 3.4034 4.1373 

12 (w1, w2, w3, w4, 
w5, Bf, Cjs, Rl, h1, h2, 
h3, h4) 

6.3336 4.9714 31.668 24.8570 

14 (w1, w2, w3, w4, 
w5, Bf, Cjs, Rl, h1, h2, 
h3, h4, h5, R2) 

23.6232 23.6219 118.1160 118.1098 

 
 

It is further noted that the simulation CPU cost for both the modified search algorithm and the 

classical Fedorov search algorithm for Tables 3.9 and 3.10 have been compared with an analytic 

estimation of the CPU cost possible using (13)-(15) and (19)-(21). The analytic and simulation CPU cost 

results of Table 3.9 show good agreement. Even for Table 3.10, for higher dimensional problems (i.e. n > 

6) the analytic CPU costs are within a factor of 1.6 – 2 times the simulation CPU costs for the proposed 

approach and within a factor of 0.57 – 0.80 times the simulation CPU costs for the classical search 

algorithm. 
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Finally, for the same test cases of Table 3.9 and 3.10, the total PC problem is solved using three 

methods – the proposed linear regression approach, the original linear regression approach of [39], and 

the pseudo-spectral collocation approach [29]. The total CPU time incurred by each approach is noted in 

Table 3.11 and plotted in Fig. 3.18 (b). For all methods, the time costs of the corresponding search 

algorithms have been added with the time cost for the 2(P+1) SPICE simulation costs. It is observed from 

Table 3.11 that the pseudo-spectral collocation exhibits an exponential scalability with respect to the 

number of random dimensions [29]. Thus, the pseudo-spectral collocation approach runs out of memory 

for more than 8 random variables. Similarly, for the linear regression approach of [39], the cost of the 

original search algorithm quickly becomes very large and also runs out of memory for more than 8 

random variables. The CPU costs for n = 10, 12, and 14 for these methods is estimated via extrapolation 

and added in Fig. 3.18 (b) for completeness. As seen from Fig. 3.18 (b), the proposed linear regression 

approach which uses the more efficient modified search algorithm provides far superior scalability of the 

total CPU costs with respect to the number of random dimensions than the original linear regression 

approach of [39] or the pseudo-spectral collocation approach [29]. Interestingly, here too the total savings 

in CPU times increases with the number of random dimensions, thereby validating the benefits of the 

proposed linear regression approach for high-dimensional problems. 

       
                                        (a)                                                                                         (b) 

Fig. 3.18: Comparison of CPU time required by proposed linear regression approach with state -of-the-art 
approaches for example 3 in section 3.3.3 (Fig. 3.16). (a) Speedup achieved during matrix inverse computation by 
proposed algorithm compared to expected speedup. (b) Scaling of total CPU time cost of proposed linear regression 
algorithm compared against the pseudo-spectral approach and the original linear regression approach. 
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CHAPTER IV: HYPERBOLIC POLYNOMIAL CHAOS EXPANSION (HPCE) 

 In this chapter a new methodology for applying the gPC theory to uncertainty quantification 

problems is proposed. In this approach unlike the traditional gPC theory where orthogonal polynomial 

bases are selected based on a linear criterion introduced in Chapter II , a new hyperbolic criterion is 

suggested [75]. This criterion determines the most important polynomial bases based on the sparsity of 

effects [47], [48]; thus, it provides an sparse set of polynomial bases which is much shorter than the 

original set of bases; meanwhile, the loss of accuracy in results would be negligible. 

 This chapter starts with a detailed discussion on generation of multidimensional polynomial bases 

which is necessary for better understanding of the proposed approach. Then the new criterion for the 

hyperbolic approach is introduced and the new pattern for polynomial bases is presented graphically. 

Af terwards, an adaptive methodology for applying this approach on nonintrusive methods and in 

particular the nonintrusive ST based approach is proposed. Moreover, an upper bound on the 

computational cost of the proposed approach and its scaling with respect to number of random variables is 

evaluated and it is compared with other PC methods. Finally the accuracy and computational costs scaling 

of the proposed approach is validated through multiple numerical examples. 

4.1 Generation of multidimensional polynomial bases 

 In Section 2.1.3 we discussed generation of multidimensional orthonormal polynomial bases 

which are obtained as a product of one-dimensional polynomial bases: 

 n

j
jdd j

1

)()(  λ                                                              (4.1) 

where λj is the j-th random variable, n is number of random variables, λ represents all random variables in 

a vector as λ = [λ1, λ2,…, λn]
t, dj is the order of the j-th one-dimensional polynomial, 

jd shows the j-th 

one-dimensional polynomial, d represents all dj values in a vector as d = [d1, d2,…, dn]
t, and d is the 
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multidimensional polynomial basis made up of one dimensional polynomials whose order is mentioned in 

d. 

 In conventional methods the following criterion from the traditional gPC is used to determine 

order of each one-dimensional polynomial in a multidimensional polynomial basis: 

mddd n  ....|||| 211d                                                        (4.2) 

where ||.||1 represents the L1 norm, and  m is the common maximum expansion order for one dimensional 

polynomials.  

 For illustration purposes, Fig. 4.1 (a) demonstrates the graphical presentation of a simple example 

where m=5 and n=2, and Fig. 4.1 (b) demonstrates the graphical presentation of another example where 

m=5 and n=3. In these figures filled blue circles represent indices of selected polynomial bases and empty 

red circles represent indices of not selected polynomial bases. For instance in Fig. 4.1 (a) 

)()()( 2113,1]3[  λ is selected because 54||]1,3[|| 1  . However, )()()( 2412,4]2[  λ is not selected 

because 56||]4,2[|| 1  . More examples of the two dimensional case are presented in Table 2.3. 

 

 

(a)                                                                                      (b) 
Fig. 4.1: Graphical illustration of the traditional gPC scheme for selection of multivariate polynomials. (a) The 
case of n = 2 and m = 5. (b) The case of n = 3 and m = 5. 
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Likewise, in Fig. 4.1 (b) )()()()( 312212,2,1]2[  λ is selected because 55||]1,2,2[|| 1  . However, 

)()()()( 322213,2,2]3[  λ is not selected because 57||]2,2,3[|| 1  . It is worth noting the number of 

polynomial bases provided by (4.2) and demonstrated in Fig. 4.1 is equal to P+1 in (2.13) which can be 

proved to be right using the following lemma. This Lemma and its proof are provided for comparison 

with the proposed hyperbolic scheme in following sections. 

Lemma 4.1: The number of possible combinations in ||d||1 = d1+ d2+…+dn ≤ m, where dj are integer values 

is: 
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                                                     (4.3) 

Proof: The equation ||d||1 ≤ m can be written as: 

0||||OR ....  OR  1||||  OR  |||| 111  ddd mm                                          (4.4) 

Number of possible combinations for each individual condition in (4.4) is easy to find. It is similar to the 

problem where there are m balls and they should be divided between n people. In order to divide m balls 

between n people, n-1 barriers are needed, and number of possible permutations for m balls and n-1 

barriers is (m+n−1)!. Since all balls are similar to each other and all barriers are similar to each other too, 

number of possible combinations in this problem is 
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therefore number of possible combinations in (4.4) is 
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The last tem in the right hand side of (4.6) is equal to 1; hence, (4.6) can be written as 
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In order to continue this proof we take advantage of the Pascal’s rule in combinatorics theory [76] 


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The Pascal’s rule can be interpreted as a problem where k  elements are selected out of n elements. The 

result can be partitioned into two groups, the ones including a particular element X and the ones without 

this element. Numbers of possible combinations for each group are the terms on the right hand side of 

(4.8) respectively [76].  

 Using (4.8), (4.3) can be written as 
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It is worth noting the first term on the right hand side of (4.9) is equal to the first term on the right hand 

side of (4.7). The Pascal’s rule can be applied on the second term on the right hand side of (4.λ) 
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where the second term on the right hand side is equal to the second term on the right hand side of (4.7). 

By continuing this pattern and applying the Pascal’s rule for m times, the produced equation would be 

same as (4.7); therefore, Lemma 4.1 is proved. 

 Although the conventional scheme provides a relatively good scaling of computational cost with 

respect to number of random variables, it still faces cumbersome computational costs for problems with 

moderately high number of random variables since rate of scaling is O(P+1) ≈ O(nm/m!) according to 

(4.3). The near-exponential or polynomial increase in computational cost is referred to as curse of 
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dimensionality and in order to address this issue a new scheme for selection of multidimensional bases is 

suggested in this chapter. This scheme is inspired by the sparsity of effects which is reviewed in the next 

section. 

4.2 Sparsity of effects  

 Sparsity of effects is a common observation in factorial experiments, which are experiments 

involving the effect of two or more factors. In other words, in a factorial experiment there are more than 

one element such as A and B with different levels which can affect the output in different ways. The 

primary change caused in the response by the individual change in a factor is called a main effect, and 

variation caused in impact of a factor by changes in other factors is called an interaction. Furthermore, if 

A has a levels and B has b levels, the output can be impacted in ab ways, which is number of possible 

combinations of A and B. The study of factorial experiments is called factorial design [48]. 

 Uncertainty problems can be treated as factorial experiments since every random variable is a 

factor which affects the response individually and also in interaction with other random variables. 

Likewise, in the PC expansion, each one-dimensional polynomial basis is a factor and its order of 

expansion is the level of that factor. In addition, the interaction between factors is equal to 

multidimensional polynomials bases. 

 A general rule in factorial experiments which can be proven heuristically is the sparsity of effects. 

Based on this rule, in a factorial experiment the number of relatively important effects is small, and lower 

effects are more likely to be important than higher order effects; moreover, effects with the same order are 

equally likely to be important [47]. In other words, in a system with several random variables, it is more 

likely for main effects and low order interactions to primarily impact the response since most of the high 

order interactions are possibly negligible [47]. This phenomenon is validated through several examples in 

the literature [48],[47]. 
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The sparsity effect applies to the PC theory too. It is appreciated that in the PC expansion a lot of 

interactions are already discarded. In other words, in an example with n random variables and the 

common order of expansion of m, there are (m+1)n possible combinations. However, the PC expansion 

only considers P+1 polynomial bases. Although this number of polynomial bases is practical to 

implement in problems with a moderate number of random variables, it increases in a near exponential 

rate when the number of random variables is further increased. This problem is called the curse of 

dimensionality and prohibits application of the gPC theory in problems with relatively high number of 

dimensions. Therefore, further reduction in number of polynomial bases is desired. 

Using the sparsity of effects, it is possible to discard more polynomial bases without a major loss 

in accuracy. In general lower degree polynomials have a higher impact on the output. For instance, in a 

case with 10 dimensions, n=10, and fourth order of expansion, m=4, where P+1=1001, Table 4.1 shows 

number of polynomial bases with degrees 0 to 4. However, if only the polynomials falling into the first 

two or three rows of this table are used, it is not possible to accurately report statistics of outputs with a 

fourth degree behavior. 

Table 4.1 Number of polynomial bases with degrees 0 to 4 for the case of n=10 and m=4 
Degree Number of polynomial bases 

0 1 

1 10 

2 55 

3 220 

4 715 

Total 1001 

 
In order to reduce number of polynomial bases without loss of accuracy, the works of [77] and 

[78] suggest considering the rank of polynomials, where rank is defined as the number of dimensions in a 

polynomial basis, for example )()()()( 312211,2,1]1[  λ is a rank 3 while )()( 13,0,0]3[  λ is a 

rank 1. Table 4.2 shows number of polynomial bases with ranks 0 to 4. Although, this scheme provides an 

improvement in efficiency of the gPC theory, for a general nonintrusive approach since higher order 
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interactions will be missing, it fails to converge to the true model response [75]. Inspired by these 

approaches and [75] another sparse selection scheme is introduced in the next section. 

Table 4.2 Number of polynomial bases with ranks 0 to 4 for the case of n=10 and m=4 
Rank Number of polynomial bases 

0 1 

1 40 

2 270 

3 480 

4 210 

Total 1001 

 

4.3 Hyperbolic scheme for truncation of the PC expansion 

 As stated before, based on the sparsity of effects lower interaction polynomial bases have a higher 

impact on the response; therefore, in this section an alteration on the conventional scheme of (4.2) for 

truncation of the PC expansion is suggested to obtain the most important polynomial bases. This scheme 

results in selection of M < P+1 polynomial bases which are able to approximate the response as 

 1

0

)()(
M

i
iicX λλ                                                               (4.11) 

In this approach, the constraint is put on the Lu
th norm of the indices’ vector d, where u ≤ 1, and the Lu

th 

norm is casually defined as the u-th root of summation of each member of d to the power of u. Replacing 

the L1 norm in (4.2) with Lu
th would result in 

  mdddd
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u
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21 ...                                         (4.12) 

In this scheme, the indices are limited between positive axis and a hyperbola which is represented by 

  mddd
uu

n
uu  /1

21 ...                                                       (4.13) 

Hence, this scheme is called hyperbolic, and u is called the hyperbolic factor. This technique would 

significantly reduce number of selected indices while preserving the accuracy in PC approaches. For 
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instance, in the case of 10 dimensions, n=10, and fourth order of expansion, m=4, where P+1=1001, 

Table 4.3 shows number of added polynomial bases when increasing the hyperbolic factor u.  

Table 4.3 Number of added polynomial bases when increasing the hyperbolic factor u for the case of n=10 and m=4 
Hyperbolic factor u Number of  added polynomial bases 

u ≈ 0, u > 0 41 

0.5 45 

0.7 90 

0.8 120 

1 705 

Total 1001 

 

In order to further illustrate this truncation scheme, Fig. 4.2 (a) demonstrates the graphical 

presentation of a simple example where m=5, n=2, and u=0.73. Fig. 4.2 (b) demonstrates the graphical 

presentation of another example where m=5, n=3, u=0.76. In these figures filled blue circles represent 

indices of selected polynomial bases and empty red circles represent indices of not selected polynomial 

bases. For instance in Fig. 4.2 (a) )()()( 2113,1]3[  λ is selected because 598.4||]1,3[|| 73.0  . 

However, )()()( 2212,2]2[  λ is not selected because 517.5||]2,2[|| 73.0  . It is worth noting that 

(a)                                                                                       (b) 
Fig. 4.2: Graphical illustration of the proposed hyperbolic scheme with u=0.76 for selection of multivariate 
polynomials. (a) The case of n = 2 and m = 5. (a) The case of n = 3 and m = 5. 
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Table 4.4 Equivalent orthonormal two-dimensional Hermite and Legendre polynomials of specified indices in Fig. 
4.1 (b) 

Bases 
Orthonormal Hermite 

Polynomial 
Orthonormal Legendre 

Polynomial 
Total 

degree 
Rank L0.73

th 
norm 

Ф0(λ) 1 1 0 0 0 

Ф1(λ) λ1 √͵ λ1 1 1 1 

Ф2(λ) λ2 √͵ λ2 1 1 1 

Ф3(λ) (λ1
2 -1) / √ʹ √ͷ ( 

ଷଶ λ1
2 - 

ଵଶ ) 2 1 2 

Ф4(λ) λ1*  λ2 3*λ1*  λ2 2 2 2.58 

Ф5(λ) (λ2
2 -1) / √ʹ √ͷ ( 

ଷଶ λ2
2 - 

ଵଶ ) 2 1 2 

Ф6(λ) (λ1
3 - 3 λ1) / √͸ √͹ *  ( 

ହଶ λ1
3 - 

ଷଶ λ1) 3 1 3 

Ф7(λ) λ2 * (λ1
2 -1) / √ʹ √ͳͷ *  λ2 * ( 

ଷଶ λ1
2 - 

ଵଶ ) 3 2 3.82 

Ф8(λ) λ1 * (λ2
2 -1) / √ʹ √ͳͷ *  λ1 * ( 

ଷଶ λ2
2 - 

ଵଶ ) 3 2 3.82 

Ф9(λ) (λ2
3 - 3λ2) / √͸ √͹ *  ( 

ହଶ λ2
3 - 

ଷଶ λ2) 3 1 3 

Ф10(λ) (λ1
4 - 6 λ1

2+3) / 2√͸ 
ଵ଴ହ଼  λ1

4 - 
ସହସ  λ1

2+
ଽ଼
 4 1 4 

Ф11(λ) (λ1
3 λ2 - 3 λ1 λ2) / √͸ √ʹͳ *  ( 

ହଶ λ1
3 λ2 - 

ଷଶ λ1 λ2) 4 2 4.98 

Ф12(λ) (λ2
3 λ1 - 3 λ2 λ1) / √͸ √ʹͳ *  ( 

ହଶ λ2
3 λ1 - 

ଷଶ λ2 λ1) 4 2 4.98 

Ф13(λ) (λ2
4 - 6 λ2

2+3) / 2√͸ 
ଵ଴ହ଼  λ2

4 - 
ସହସ  λ2

2+
ଽ଼
 4 1 4 

Ф14(λ) (λ1
5 - 10 λ1

3+15 λ1) / 2√͵Ͳ √ͳͳ *  ( 
଺ଷ଼

 λ1
5 - 

଻଴଼
 λ1

3+ 
ଵହ଼

 λ1) 5 1 5 

Ф15(λ) (λ2
5 - 10 λ2

3+15 λ2) / 2√͵Ͳ √ͳͳ *  ( 
଺ଷ଼

 λ2
5 - 

଻଴଼
 λ2

3+ 
ଵହ଼

 λ2) 5 1 5 

 

)(,1]3[ λ and )(,2]2[ λ both are of the same degree of four, and they also have the same rank of two; 

therefore they cannot be distinguished using schemes suggested in previous sections which put the 

constraint on the degree or rank. The equivalent orthonormal Hermite and legendre polynomials of filled 

blue circles are presented in Table 4.4. Likewise, in Fig. 4.2 (b) )()()( 2212,2,0]2[  λ is selected 

because 598.4||]0,2,2[|| 76.0  . However, )()()()( 312112,1,1]2[  λ is not selected because 

558.5||]1,1,2[|| 76.0  . It is worth noting that )(,2,0]2[ λ and )(,1,1]2[ λ both are of the same degree of four; 
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therefore, they cannot be distinguished by putting the constraint on the degree. Moreover,

)()()()( 312111,1,1]1[  λ is selected because 524.4||]1,1,1[|| 76.0  . However, 

)()()()( 312211,2,1]1[  λ is not selected because 558.5||]1,2,1[|| 76.0  . In this case, both )(,1,1]1[ λ and 

)(1,2,1][ λ have the same rank of 3; hence, they cannot be distinguished using the approach which puts the 

constraint on the rank of polynomials. 

It is worth noting that the proposed HPCE approach does not depend on which uncertainty 

quantification approach is used. In fact all PC approaches mentioned in Chapter II , either intrusive or 

nonintrusive, could be used. This is merely because HPCE is another orthonormal expansion and does not 

affect the process of finding the coefficients and extracting statistics. However, the rest of this thesis is 

focused on nonintrusive approaches and particularly the linear regression and the nonintrusive stochastic 

based approaches because of their superior characteristics explained in previous chapters. 

It can be interpreted from (4.12) and examples provided in this section that different values of the 

hyperbolic factor u result in different number of polynomials. This is demonstrated in Fig. 4.3 for the case 

with n=5 and m=4, where the conventional truncation scheme is depicted on the left side of the figure and 

the two other plots show that decreasing u results in a sparser set of polynomial bases. In other words u=1 

is equivalent to the conventional PC expansion since with u=1 (4.12) converts to (4.2); besides, a larger u 

results in a higher number of polynomial bases and better accuracy while a smaller u results in a lower 

number of polynomials and lower accuracy.  

Based on this argument, the main goal in HPCE is obtaining the hyperbolic factor u beacuse it 

determines accuracy and efficiency. Since the effect of u in a particular example is not known beforehand, 

this is not a trivial task. Therefore, this thesis proposes a novel adaptive approach for obtaining u which is 

described in the next section. 
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4.4 Derivation of statistical information using HPCE coefficients  

 The main goal in this thesis is the derivation of statistical information of the response. When 

using the HPCE this task is done similar to conventional PC approaches which is discussed in Section 

2.1.4; nevertheless, in this approach a more limited set of polynomial bases is used. As for the first 

statistical moment or the arithmetic mean, (4.11) is entered in the integration formula of (2.17) and by 

considering the definition of inner product and the orthonormality condition it is simplified to the very 

first coefficient 
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 In order to find variance and standard deviation (4.11) is entered into the variance’s integration 

formula of (2.20), and again by considering the definition of inner product and the orthonormality 

condition it is simplified to summation of square of every coefficient up to cM except the first one. 
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For finding the PDF and higher order statistical moments, like skewness and kurtosis, the 

technique similar to Monte Carlo, introduced in Section 2.1.4.3 is taken. In this method, first Q random 

λ1

λ2

λ1

λ2

λ1

||d||1 ≤ m ||d||u  ≤ m; u1<1 
1

||d||u  ≤ m; u2<u1
2

λ2

                                                                     
Fig. 4.3 Graphical interpretation of the truncation schemes using a 2D example (n = 2, m = 5), showing the 
traditional linear truncation scheme, the proposed hyperbolic truncation scheme, and the effect of decreasing the 
hyperbolic factor on the proposed approach, from left to right. 
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sample nodes are generated. The number of dimensions and distribution of these samples is same as 

random variables λ in the system. By having coefficients, polynomials 0  to 1M , and random samples, 

the right hand side of (4.11) is known; therefore, after finding coefficients c0 to cε−1 the result of Q 

instances of the experiment can be approximated. The final step is computing the PDF and higher order 

statistical moments from these approximated results. 

4.5 Development of the adaptive HPCE approach 

 This section takes advantage of the scheme introduced in Section 4.3 to develop an efficient 

uncertainty quantification methodology to derive statistical information of the stochastic MNA equation 

of (2.38). One of the main contributions of this approach is the adaptive selection of the hyperbolic factor 

u; hence, it starts with discussing the possible range of u and then proposes techniques to find candidate 

hyperbolic factors which play an important role in this range. Afterwards, an iterative approach for 

application of the HPCE scheme on the nonintrusive ST based approach is introduced, and then an 

accuracy constraint in the form of HPCE coefficients’ enrichment for stopping the algorithm is suggested. 

Having all the required tools, the overall program flow of the HPCE approach is discussed next. And at 

the end the computational cost of the proposed approach is computed and compared with other state of 

the art uncertainty quantification approaches.  

4.5.1 Range of the hyperbolic factor u 

 The hyperbolic factor u has a great influence on the accuracy-sparsity tradeoff in constructing the 

HPCE.  As it is mentioned before, when u = 1 the HPCE converges to the full-blown PCE which is highly 

accurate but computationally expensive to construct. On the other end of the spectrum, if the value of u is 

very small then only the one-dimensional bases are considered and all multidimensional bases are 

neglected. This leads to the sparsest expansion but is limited in its predictive accuracy. Here by one-

dimensional bases we mean polynomial bases which have a rank up to 1. These bases are the ones located 

on the multidimensional axis in the graphical presentation. Since the common order of expansion is m and 
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there are n dimensions, the total number of one-dimensional bases is m*n+1, where the single basis at the 

center of the graphical presentation is loosely defined as one-dimensional too. Therefore, the spectrum of 

the hyperbolic factor u is equal to (0,1], where 0 is excluded because (4.12) would have no answer at u=0. 

The variation of u on its spectrum is presented in Fig. 4.4. Based on this demonstration and the previous 

explanation it is safe to say the main challenge of the proposed PC approach is how to adaptively tune the 

hyperbolic factor u for a general circuit problem. In the next section a simple approach is suggested. 

4.5.2 Determining the hyperbolic factor by gradually increasing it 

 In the work of [79] we have suggested a greedy iterative approach to adaptively increase the 

hyperbolic factor from a very small starting value u0 till the HPC expansion becomes enriched enough to 

satisfy a predefined error tolerance. Thus, for any j th iteration, the value of u is increased as 

uuu jj  1                                                               (4.16) 

                                                                      

λ1

λ2

Increasing u in the 

range of (0,1]

Fig. 4.4 The effect of increasing the hyperbolic factor u on selection of polynomial bases, when u is increased 
from a near zero value to 1. 
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where the subscript j is the iteration count and Δu is a fixed step size. This increase in u is intended to 

translate to the enrichment of the expansion from the previous (j-1)th iteration by adding new PC basis 

terms. 

 Although this technique is proven to be practical in [79], it is not the most efficient approach. The 

main reason is if ∆u is very small there would be no difference in number of polynomial bases at some 

steps, and if ∆u is too big there would be a big change in number of polynomial bases at some steps 

which could be broken down into two steps by taking finer steps. For instance, in the case of  n = 10 and 

m = 4, five hyperbolic factors and their corresponding number of polynomial bases are presented in Table 

4.3, these u values can be placed in a vector as u = [u0, 0.5, 0.7, 0.8, 1] where u0 ≈ 0 and greater than zero, 

this will result in M = [41, 86, 176, 296, 1001] polynomial bases respectively. By considering a very fine 

∆u, it can be proved that it is impossible to distinguish polynomial bases to groups smaller than what is 

mentioned in the second column of Table 4.3. Therefore, if ∆u is smaller than 0.1 there would be 

iterations with no change in the expansion; moreover, if ∆u is greater than 0.1, number of selected 

polynomials might directly jump from 86 to 296 and force the algorithm to do extra computations. This is 

due to the fact that multidimensional indices are located on integer coordinates. Hence, it is possible to 

meet all indices’ coordinates using a limited number of hyperbolas. In this example only five hyperbolas 

are needed, and they can be described using (4.13) and hyperbolic factors of u = [u0, 0.5, 0.69, 0.79, 1]; 

thus, we call these u values critical hyperbolic factors. 

 Since u values are unknown, the safest practice is to choose a very small ∆u and check for 

enrichment only when there is a change in number of polynomials. However, this approach results in 

unnecessary computational costs and it fails to provide a strong argument to prove it has not missed any 

critical hyperbolic factor. In order to address this issue a closed-form technique for finding these critical 

hyperbolic factors is suggested in the next section. 
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4.5.3 Closed-form technique for determination of the critical hyperbolic factors  

 In this section a closed-form technique is suggested to initially find critical hyperbolic factors i.e. 

u values which by crossing them there would be a change in number of polynomial bases. As mentioned 

in the previous section, all integer coordinates showing multidimensional bases can be met with a limited 

number of hyperbolas; therefore, all critical hyperbolic factors can be found by solving (4.13) for u. It can 

be done since in a specific example n and m are known and di values are selected from the P+1 indices, 

which are selected by the conventional PC scheme i.e. (4.2). For instance when n = 3, m = 5 and d = 

[1,2,1] we solve the following equation  

  5
/1

321  uuuu ddd                                                          (4.17) 

Where the answer is u = 0.8248. Therefore, the polynomial basis )()()()( 312211,2,1]1[  λ  is 

discarded when u = 0.76, but it is selected when u = 0.83. Inspired by this characteristic of 

multidimensional indices, we solve (4.13) P+1 times for all d values which were originally selected by 

the conventional PC scheme i.e. (4.2). The result is a limited set of u values which is common for many 

of the equations. These u values are the critical hyperbolic factors, they can be organized in a new vector 

u  

],....,,[ 10 kuuuu                                                            (4.18) 

where k  is number of critical hyperbolic factors,  and it is guaranteed when moving from uj-1 to uj, with 1 

≤ j ≤ k , there would be a change in the number of selected polynomial bases. In other words, if every 

polynomial basis is tagged with an index vector di, by moving to the next critical hyperbolic factor there 

would be one or more polynomial basis index where 

  mm
jj uiui 


dd ;

1
                                                        (4.19) 
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Therefore, unlike the scheme in the previous section the computational cost for classification of 

polynomial bases is minimized and it is proved the algorithm does not miss any critical hyperbolic factor. 

4.5.4 Application of HPCE on the nonintrusive ST based approach 

 As mentioned before the HPCE scheme can be applied to any PC approach; however, in this 

chapter the focus is on the nonintrusive ST based approach [37], introduced in Section 2.2.2.3, because of 

its efficiency. This technique starts with setting the hyperbolic factor to u0 ≈ 0 and u0 > 0. Based on the 

discussion in Section 4.5.1 this will result in M0 = m*n+1 polynomial bases 0  to nm* . Then, the system 

of linear algebraic equations in (2.52) is modified for this number of polynomial bases: 

 000

~
EXA                                                                    (4.20) 
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where I represents the identity matrix, M is the length of the PC expansion which in this case is m*n+1, 

Xi is PC coefficient of the i-th polynomial basis, and X(t,λ(i)) is the response probed at the sample node 

λ(j). These sample nodes are selected by exploiting the  ST node selection technique introduced in Section 

2..2.2.2, where instead of the conventional PC expansion with P+1 bases only m*n+1 one-dimensional 

bases are used in the selection process for m*n+1 nodes. 

 In the next step, the hyperbolic factor is set to u1, which in turns results in M1 polynomial bases 

0  to 11M , where M1 > M0. Afterwards, M1 sample nodes are generated using the ST technique of 

Section 2.2.2.2 with one small change. This time instead of starting with one single node with the highest 

quadrature weight, the node selection technique starts with the M0 nodes that it had chosen in the previous 

step and generates the vector space of (2.51) using the M1 new polynomial bases 
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where 
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Then the remaining M1 – M0 are selecting by continuing the ST node selection approach in the regular 

way and selecting nodes which have a H(λ(i)) vector with a large enough component orthogonal to V. 

Next, (4.20) is written for M1 polynomial bases and nodes. It is worth noting this time we already have the 

first M0 elements in E, which means only M1 – M0 new SPICE simulations are needed since the first M0 

SPICE simulations are already done in the previous step. Besides the first M0 columns in the first M0 rows 

of matrix A are in common with the previous step and the rest needs to be computed. Moreover, all 

coefficients in X are recomputed and the first M0 coefficients are not necessarily the same as coefficients 

in the previous step. Therefore, the new version of system of linear algebraic equations can be written as 
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 This process can continue for u2, u3, … uk, by expanding the A matrix, doing more SPICE 

simulations and solving for the new set of HPCE coefficients, in the same way. In other words the general 

format of system of linear algebraic equations at step j can be written as 
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                                                               (4.26) 

where 
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However, between each two steps an accuracy check needs to be done to stop the algorithm if the desired 

accuracy is met. This is done by computing the normalized enrichment of PC coefficients gained by 

increasing the hyperbolic factor from uj-1 to uj. This process is explained in the next section. 

4.5.5 Enrichment of the adaptive HPCE approach 

 Knowing the critical hyperbolic factors, we have a strong tool to distinguish between polynomial 

bases and divide them to smaller groups. The decision on how many of these groups should be exploited 

in a particular example is based on the desired accuracy. In this section, the accuracy measures used in 

making this decision are introduced. 

 Adding each group of the nodes to the process, results in an increase in the accuracy. This is due 

to the fact that, by solving (4.26) and using the least square technique the new HPCE coefficients are so 

chosen to minimize the residual error of the approximation. In other words 
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when (4.28) converges to zero it results in the error between two set of coefficients from two subsequent 

steps to be very small too, which in practice translates to coefficients of new polynomial bases be close to 

zero and the change in coefficients of old polynomial bases be trivial. 

This thesis suggests putting the accuracy constraint on the variation of the response, since this 

statistical moment is usually requested and is more sensitive to changes in HPCE coefficients comparing 

the arithmetic mean. Once coefficients of step j, j ≥ 1, are evaluated, the normalized enrichment of the 

variance of the circuit responses due to the additional new bases can be analytically measured as 
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where qj = Mj − Mj−1 is the number of added polynomial bases at step j and it is placed in the enrichment 

formula to show the average value of added polynomial bases. It is worth noting that at later steps of the 

algorithm, qj increases and En(t) decreases since on average the contribution of each added polynomial 

basis reduces. Provided the time average of this enrichment is greater than a prescribed tolerance, the 

iteration will continue. Once the enrichment measure of (4.29) falls below the tolerance, it is assumed that 

the point of diminishing return has been reached and then the iterations are stopped. The resultant PC 

expansion is referred to as the HPCE.  

4.5.6 The program flow of the adaptive HPCE approach 

 In this section a summary of the overall program flow of the algorithm which controls the 

adaptive HPCE approach is presented. Flowchart of this process is demonstrated in Fig. 4.5, this approach 

starts with setting the hyperbolic factor as u0 ≈ 0 and finding the corresponding polynomial bases, then 

using the nonintrusive ST approach M0 sample nodes are selected and SPICE simulations are done at 

these nodes. Afterwards by replacing the simulation results in (4.20) and solving the equation in the least 

square manner, the first set of coefficients i.e. X0 are found. In the next step, the hyperbolic factor is 
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updated to u1, M1 corresponding polynomial bases and sample nodes are found and by doing M1 – M0 

SPICE simulations and placing them in (4.24) the new set of coefficients are calculated. Then, the 

normalized enrichment from step one to step two is computed using (4.29) and the result is compared 

against a prescribed scalar accuracy threshold which is set by user and depends on the example. If time 

average of the normalized enrichment is greater than the threshold, the process is stopped and X0 is 

reported as the HPCE coefficients. However, if the normalized enrichment is less than the threshold, the 

algorithm continues to update the hyperbolic factor to the next u value. This process continues until time 

average of the normalized enrichment falls below the threshold or the hyperbolic factor reaches 1 which 

means HPCE is converted to the conventional PC expansion. However, through multiple numerical 

examples at the end of this chapter it is observed that if the threshold is set realistically, it will be met 

before the hyperbolic factor reaches 1. It is noted that provided u < 1 when the iterations are stopped, 

sparsity in the HPCE is guaranteed. εoreover, since all experiments’ results are reused the total number 

of SPICE simulations stays as a fraction of the conventional PC approach. 

                                                                      
    

  
Fig. 4.5 Flowchart of the algorithm controlling the adaptive HPCE approach. 
 

No

Yes
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4.5.7 Computational cost of the proposed adaptive HPCE approach 

 This section starts with finding an upper bound for number of polynomial bases in the adaptive 

HPCE approach, and then it quantifies the CPU time cost of this approach and contrasts that against 

conventional non-intrusive PC approaches. Based on the discussion of Section 4.5.4 it is appreciated that 

the CPU time required for determination of nodes is negligible compared to computations cost of SPICE 

simulations since the nonintrusive ST based approach is used for node selection. This node selection 

technique is very time efficient because it does not involve any matrix inversion when studying candidate 

nodes. This can also be verified from numerical examples of Chapter III  and particularly CPU times of 

the nonintrusive ST approach presented in Table 3.5 which shows the CPU time of the node selection 

approach to be less than one percent of SPICE simulations. Therefore, only the CPU cost of SPICE 

simulations is considered in this section. 

4.5.7.1 Upper bound on number of polynomial bases in the HPCE approach 

 Based on the discussion of Section 4.1 and Lemma 4.1 we proved that the number of polynomial 

bases in the conventional PC approach is equal to P+1=C(m+n, n). However, the same technique cannot 

be used to find number of polynomial bases as a function of u because the left hand side of (4.12) might 

involve non-integer values. Therefore, assuming u < 1, in this section we propose an upper bound on 

number of polynomial bases in the proposed approach, which still shows a great speed up comparing to 

the conventional PC. This upper bound is found by exploiting the following Lemma. 

Lemma 4.2: An upper bound on number of possible combinations in ||d||u = (d1
u+ d2

u+…+dn
u)1/u ≤ m, 

where dj are integer values and u < 1, is: 
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Proof: By observing the graphical presentation of two and three dimensional indices of the conventional 

PC approach, demonstrated in Fig. 4.1, it is noted that the nodes located on the surface, except the ones 
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which are also on one-dimensional axes, cannot be distinguished using the HPCE approach, and in 

general this is true for any n dimensional PC expansion. It is merely because the hyperbola described in 

(4.13) with u=1, is the first hyperbola to cross all these nodes which means in the HPCE approach they 

are considered to have the same value and by slightly decreasing u all of them would be discarded from 

HPCE. The nodes which are also on the axes are exception because they represent the one-dimensional 

polynomials; hence, they would be selected even with a near zero hyperbolic factor.  

 Since when u is less than one all nodes on the surface, except the ones in common with one-

dimensional axes, are discarded, and in a successful HPCE u is always less than 1, we can argue by 

subtracting number of these nodes from P+1 it is possible to find an upper bound on the number of 

polynomial bases in the HPCE approach. 

 Number of nodes on the surface can be determined by finding number of possible combinations 

for d in  

mddd n  ....|||| 211d                                               (4.31) 

Thus, based on (4.5) number of nodes on the surface is 
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And since there are n nodes in common with one-dimensional axes, number of discarded nodes for a u 

which is slightly less than 1 would be  

n
nm

nm 


)!1(!

)!1(                                                            (4.33) 

Therefore, after subtracting number of discarded nodes from number of total nodes in the conventional 

PC, the upper bound can be found as 
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Hence, Lemma 4.2 is proved. 

 It is worth noting, (4.33) also shows number of polynomial bases for the penultimate critical 

hyperbolic factor in u since based on the discussion in Section 4.5.3 there would be no difference in 

HPCE if u is greater than or equal to uk-1 and smaller than 1.  

4.5.7.2 Comparing computational cost of HPCE with other nonintrusive PC approaches  

This section quantifies the CPU time cost of the proposed adaptive HPCE approach, and 

compares it with conventional non-intrusive PC approaches. It is observed that no comparative analysis 

with respect to the intrusive SG approach is performed since it is well-established that for high-

dimensional problems most non-intrusive approaches will outperform the SG approach [45]. This is 

particularly true for nonlinear circuits where the multidimensional integral of (2.37), using the SG 

approach, has to be represented in SPICE using massive number of additional voltage/current dependent 

sources. 

4.5.7.2.1 Total computational cost of the adaptive HPCE approach 

 As mentioned before, the major computational cost in the adaptive HPCE approach is spent on 

SPICE simulations and the CPU time for node selection is negligible. In this section we calculate the 

CPU cost in the upper bound case of HPCE with M ̃ polynomial bases. Based on the discussion in Section 

4.5.7.1 it is known that the CPU cost is always equal or less than this upper bound case.  

For the SPICE simulation cost, it is assumed that each of the ε  simulations requires the same 

CPU cost which is a reasonable assumption since the variation in the unknowns of the MNA equations of 
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(2.38) from one SPICE simulation to another will be typically small. Thus, the SPICE simulation cost or 

in other words the total computational cost can be quantified as 

0

~
CMCT                                                                      (4.35) 

where C0 is the cost of each deterministic SPICE simulation. Thus, the overall cost of the proposed 

approach scales as )( 1mnO  with respect to the number of random dimensions (n). This scaling can be 

easily derived by simplification of (4.34). 

4.5.7.2.2 Stochastic collocation approach  

 Stochastic collocation (SC) has been a very popular nonintrusive PC approach [32], [33], [45], 

[46]. In this approach, if the non-intrusive multidimensional nodes are selected to be the full tensor 

product of 1D quadrature nodes it will result in M = (m+1)n sample nodes. These nodes can be 

analytically identified at negligible computational costs (i.e. CPU time of node selection = 0). Thus, the 

cumulative costs of the entire SC approach is equal to that of the SPICE simulations and is expressed as 

0)1( CmC n
T                                                                (4.36) 

This corresponds to an exponential scaling of the time costs with respect to the number of random 

dimensions (n), quantified as O((m+1)n). This means that for even moderate dimensional problems, the 

massive cost of SPICE simulations in (4.36) will make this approach highly cost intensive compared to 

the proposed adaptive HPCE approach. 

 In order to mitigate this prohibitive scaling, an intelligent choice of only a sparse subset of the 

tensor product nodes guided by the Smolyak algorithm has been proposed [32], [33], [45], [69]. Once 

again, this method allows the fast identification of the sparse nodes. This approach results in a decrease in 

the number of multidimensional nodes from M = (m+1)n to approximately M = (2n)m/m!, thereby 

improving the CPU time costs of the SC algorithm from that of (4.36) to 
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For this approach, it is observed that the number of deterministic SPICE simulations required scales as 

O(2mnm) which is still 2mn times more than that required for the proposed adaptive HPCE approach. Thus, 

adaptive HPCE still remains more cost effective than even this sparse collocation approach. 

4.5.7.2.3 The conventional linear regression approach 

 The conventional linear regression approach, introduced in Section 2.3.2, takes advantage of the 

traditional Fedorov search algorithm and needs to do SPICE simulations at 2(P+1) or 3(P+1) sample 

nodes [27], [28]. In this approach the computational cost of finding the nodes cannot be neglected because 

of the high number of the matrix inversions and matrix vector multiplications. In fact this process might 

cause a computational cost comparable to the CPU time of SPICE simulations in a moderately high 

number of random variables. 

 Based on the discussion of Section 3.1.2, the computational cost of the node selection process for 

the conventional linear regression approach is 
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                                   (4.38) 

where the first term on the right hand side of (4.38) represents the CPU cost required to compute Δ r of 

(3.1) (m+1)n-k(P+1) times for each node of the starting set with C1 as the costs of performing all the 

matrix-vector and vector-vector multiplications of (3.1) assuming that the inverse of the information 

matrix is known, the second term represents the CPU cost of the requisite matrix inversions with C2 as the 

time cost to perform one matrix inversion. It is appreciated that the cost C1 scales as O(n2m) with respect 

to the random dimensions (n). On the other hand, the cost C2 scales as O(n3m) or O(n2m) depending on 

whether a direct or indirect approach for matrix inversion is used. 

 Furthermore the cost of K(P+1) SPICE simulations would be  
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0)1( CPKCS                                                                 (4.39) 

It is clear from (4.38) and (4.39) that the proposed adaptive HPCE approach is far more efficient than the 

conventional linear regression approach since its CPU time for node selection is negligible compared to 

(4.38) and in SPICE simulations it is Kn times more efficient than the conventional linear regression 

approach.   

4.5.7.2.4 Nonintrusive stochastic testing based approach 

 The promising nonintrusive stochastic testing based approach which has been proposed in [37] 

and reviewed in Section 2.2.2.3 is one of the most efficient available approaches. However, as described 

in Section 4.5.4, the proposed adaptive HPCE approach has improved the efficiency of this method even 

further.  

The nonintrusive ST based approach requires only P+1 SPICE simulations as opposed to the 

2(P+1) simulations required by the linear regression approach, and since the cost for selecting the nodes 

is negligible the total computational cost of this approach would be 

0)1( CPCT                                                                  (4.40) 

This in turns translates to a total scaling rate of )( mnO for computational cost of the nonintrusive ST based 

approach which can be derived by simplification of (4.3). As it can be seen, the proposed adaptive HPCE 

approach is about n times faster than the nonintrusive ST based approach. 

Among other existing non-intrusive approaches, there is the pseudo-spectral collocation approach 

which is introduced in Section 2.3.1. However, this approach suffers from the same exponential scaling of 

the SPICE simulation costs as the classical SC approach. Other methods based on the Stroud low order 

cubature methods, introduced in Section 2.3.4, have also been reported. This approach can easily locate 

the multidimensional nodes using simple analytic formulas and exhibits only a linear scaling of the 

number of SPICE simulations with number of random dimensions (i.e. O(n)). However, this excellent 



108 

 

scaling with the number of random dimensions only exists for a second and third degree PC expansion 

and cannot be extended to higher degree expansions [26]. 

From the above analysis, it is observed that the proposed adaptive HPCE approach offers clear 

benefits over the state-of-the-art PC approaches and this is validated through multiple examples in the 

next section. 

4.6 Numerical examples   

In this section, three examples are presented to compare the accuracy and scalability of the 

proposed adaptive HPCE approach against state of the art nonintrusive PC approaches. All relevant 

computations are performed using MATLAB 2013b while the deterministic transient simulations are 

performed using HSPICE [3]. In particular, the transmission line networks of the presented examples are 

modeled using the W-element transmission line model provided by HSPICE which can consider 

frequency dependent per-unit-length parameters [3]. The above simulations are run on a workstation with 

8 GB RAM, 500 GB memory and an Intel i5 processor with 3.4 GHz clock speed. 

4.6.1 Example 1  

 The objective of this example is to compare the performance of the proposed adaptive ST based 

approach with the nonintrusive ST based approach [37]. For this purpose, the multiconductor 

transmission line (MTL) network of Fig. 4.6 terminated by inverters made up of SPICE level 49 CMOS 

transistor models is considered. The lengths of the MTL networks are set to 5 cm and their layout and 

geometric dimensions are shown in Fig. 4.7. This network is driven by two voltage sources with a 

trapezoidal waveform of rise/fall time Tr = 0.1 ns, pulse width Tw = 1 ns and amplitude of 5V. The 

uncertainty in the network is introduced via ten random variables (n = 10) whose characteristics are listed 

in Table 4.5 where the last four random variables are related to characteristics of NPN and PNP 

transistors used to construct inverters in the termination. For this example a Legendre PC expansion of 

degree m = 4 is considered. 
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 In order to demonstrate the accuracy of the proposed adaptive HPCE approach, the mean and 

standard deviation (σ) of the transient responses at the output nodes N1 and N2 of Fig. 4.6 are computed 

using the methodology described in Section 4.5. By running the closed-form technique of Section 4.5.3, 

five critical hyperbolic factors are obtained, these values are u=[u0≈0, 0.5, 0.69, 0.79, 1]. In this example, 

the threshold on the accuracy constraint of standard deviation is set as 5e-3; hence, the adaptive HPCE 

approach runs until it meets this accuracy. Table 4.6 shows the enrichment at different steps. This table is 
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Fig. 4.6: Multiconductor transmission line (MTL) network for Example 1 in Section 4.6.  
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Fig. 4.7: Geometrical and physical layout of transmission lines of Example 1 in Section 4.6 

 
Table 4.5 Characteristics of random variables of example 1 in Section 4.6 (Fig. 4.6 and Fig. 4.7) 

Random Variables Mean % Standard Deviation    

h 100 ȝm 

+/- 30 % 
Uniform Distribution 

W λ0 ȝm 

d 30 ȝm 
s 200 ȝm 

Transmission line conductivity 5.8e7 
Permittivity 4.1 

NPN channel length 0.1 ȝm 
NPN channel width 10 ȝm 
PNP channel length 0.2 ȝm 
PNP channel width 20 ȝm 
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filled by finding the time average of (4.29) at different steps. As it can be seen, the accuracy is met when 

the hyperbolic factor is equal to the penultimate critical hyperbolic factor i.e. u = 0.79. Nevertheless, we 

have continued the approach for u = 1 for illustrations purposes. The penultimate critical hyperbolic 

factor u=0.79 is results in selection of M ̃ = 2λ6 sample nodes while the nonintrusive based ST approach 

needs P+1 = 1001 sample nodes.  

Table 4.6 Time average of enrichment of responses of example 1 in Section 4.6 at different s teps. 

 
After step 2 W. 86 

bases 
After step 2 W. 176 

bases 
After step 2 W. 296 

bases 
After step 2 W. 

1001 bases 
Enrichment of 
response at N1 

0.0134 0.0064 0.0038 9.04e-4 

Enrichment of 
response at N2 

0.0146 0.0057 0.0033 9.14e-4 

 

Next the mean and standard deviation results are compared against those obtained using the 

nonintrusive ST based approach. The comparison of the above results is shown in Fig. 4.8 where both PC 

approaches exhibit good agreement. 

 Next the PDFs of the transient response at outputs N1 and N2 are obtained at the time point of 

maximum standard deviation of transient response at N1 (t = 1.5ns) and at the time point of maximum 

standard deviation of transient response at N2 (t = 2.26ns) respectively. The PDF at these time points is 

obtained using resultant coefficients of the proposed adaptive HPCE approach and the nonintrusive ST 

    
(a)                                                                                               (b) 

Fig. 4.8: Comparison of the statistics of the transient response of Example 1 in Section 4.6 obtained using the 
proposed adaptive HPCE approach and the nonintrusive ST based approach. (a) Statistical results of the transient 
response at N1. (b) Statistical results of the transient response at N2.  
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based approach and by taking advantage of the analytical technique explained in Section 2.1.4.3. Using 

this technique, 30000 analytical samples are generated and the PDFs are generated from them. The result 

is presented in Fig. 4.9, where both approaches demonstrate a good agreement. 

 Finally, the CPU times taken by the proposed adaptive HPCE approach and the nonintrusive ST 

based approach are 65 seconds and 220 seconds respectively. It is observed that the HPCE approach is 

more efficient compared to the nonintrusive ST approach and represents a speedup greater than 3 over 

this method. This speedup is due to the smaller number of SPICE simulations involved. 

4.6.2 Example 2 

 The objective of this example is to compare the performance of the proposed adaptive HPCE 

approach with the nonintrusive ST based approach. For this purpose, the multiconductor transmission line 

(MTL) network of Fig. 4.10 terminated by inverters made up of SPICE level 49 CMOS transistor models 

is considered. The lengths of the MTL networks are set to 6 cm and their layout and geometric 

dimensions are shown in Fig. 4.11. This network is driven by a voltage source with a trapezoidal 

waveform of rise/fall time Tr = 0.1 ns, pulse width Tw = 1 ns and amplitude of 5V. The uncertainty in the 

network is introduced via thirteen random variables (n = 13) whose characteristics are listed in Table 4.7. 

For this example a Legendre PC expansion of degree m = 4 is considered. 

    
                                                   (a)                                                                                                  (b) 
Fig. 4.9: PDFs of Example 1 in Section 4.6 obtained using 30,000 samples. (a) PDF of response at N1 at the time 
point of maximum standard deviation of response at N1 (t = 1.5 ns). (b) PDF of response at N2 at the time point of 
maximum standard deviation of response at N2 (t = 2.26 ns).    
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In order to demonstrate the accuracy of the proposed adaptive HPCE approach, the mean and 

standard deviation (σ) of the transient responses at the output nodes N1 and N2 of Fig. 4.10 are computed 

using the methodology described in Section 4.5. By running the closed-form technique of Section 4.5.3, 

five critical hyperbolic factors are obtained, these values are same as the case of ten random variables and 

equal to u=[u0≈0, 0.5, 0.69, 0.79, 1]. In this example, the threshold on the accuracy constraint of standard 

deviation is set as 1e-4; hence, the adaptive HPCE approach runs until it meets this accuracy. Table 4.8 

shows the enrichment at different steps. This table is filled by finding the time average of (4.29) at 

different steps. As it can be seen, the accuracy is met when the hyperbolic factor is equal to the 
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Fig. 4.10: Multiconductor transmission line (MTL) network for Example 2 in Section 4.6.  
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Fig. 4.11: Geometrical and physical layout of transmission lines of Example 2 in Section 4.6 where i = [1,2,3] refers 
to the i-th subnetwork. 
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penultimate critical hyperbolic factor i.e. u = 0.79. Nevertheless, we have continued the approach for u = 

1 for illustrations purposes. The penultimate critical hyperbolic factor u=0.79 results in selection of M ̃ = 

573 sample nodes while the nonintrusive based ST approach needs P+1 = 2380 sample nodes.  

Table 4.7 Characteristics of random variables of example 2 in Section 4.6 (Fig. 4.10 and Fig 4.11) 

Random Variables Mean % Standard Deviation 

d1 100 ȝm 

+/- 30 % 
Uniform Distribution 

d2 140 ȝm 
d3 70 ȝm 
W1 150 ȝm 

W2 130 ȝm 
W3 170 ȝm 
h1 30 ȝm 

h2 20 ȝm 
h3 40 ȝm 

Transmission line conductivity 5.8e7 

C1 1 pF 
C2 0.5 pF 
C3 1.5 pF 

 
Table 4.8 Time average of enrichment of responses of example 2 in Section 4-6 at different steps. 

 
After step 2 W. 131 

bases 
After step 2 W. 287 

bases 
After step 2 W. 573 

bases 
After step 2 W. 2380 

bases 

Enrichment of 
response at N1 

7.52E-04 3.36E-04 6.95E-05 2.55E-05 

Enrichment of 
response at N2 

9.18E-04 4.11E-04 7.67E-05 1.91E-05 

 
Next the mean and standard deviation results are compared against those obtained using the 

nonintrusive ST based approach. The comparison of the above results is shown in Fig. 4.12 where both 

PC approaches exhibit good agreement. 

Next the PDFs of the transient response at outputs N1 and N2 are obtained at the time point of 

maximum standard deviation of transient response at N1 (t = 2.89ns) and at the time point of maximum 

standard deviation of transient response at N2 (t = 2.01ns) respectively. The PDF at these time points is 

obtained using resultant coefficients of the proposed adaptive HPCE approach and the nonintrusive ST 

based approach and by taking advantage of the analytical technique explained in Section 2.1.4.3. Using 
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this technique, 30000 analytical samples are generated and the PDFs are generated from them. The result 

is presented in Fig. 4.13, where both approaches demonstrate a good agreement. 

Finally, the CPU times taken by the proposed adaptive HPCE approach and the nonintrusive ST 

based approach are 974 seconds and 4046 seconds respectively. It is observed that the HPCE approach is 

more efficient compared to the nonintrusive ST approach and represents a speedup greater than 4 over 

this method. This speedup is due to the smaller number of SPICE simulations involved. 

                                              
(a)                                                                                                 (b)       

Fig. 4.12: Comparison of the statistics of the transient response of Example 2 in Section 4.6 obtained using the 
proposed adaptive HPCE approach and the nonintrusive ST based approach. (a) Statistical results of the transient 
response at N1. (b) Statistical results of the transient response at N2.  

  
       (a)                                                                                      (b) 

Fig. 4.13: PDFs of Example 2 in Section 4.6 obtained using 30,000 samples. (a) PDF of response at N1 at the time 
point of maximum standard deviation of response at N1 (t = 2.89ns). (b) PDF of response at N2 at the time point of 
maximum standard deviation of response at N2 (t = 2.01ns). 
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Table 4.9 Scaling of CPU time costs using adaptive HPCE and nonintrusive ST for example 3 in Section 4.6 

Number of RVs (Random Variables) CPU Time (Proposed 
adaptive HPCE approach) (s) 

CPU Time (Nonintrusive 
ST based approach) (s) 

5 (d1, d2, d3,w1, w2) 104 214 
6 (d1, d2, d3,w1, w2, w3) 153 357 

7 (d1, d2, d3,w1, w2, w3,h1) 216 561 
8 (d1, d2, d3,w1, w2, w3,h1,h2) 294 841 

9 (d1, d2, d3,w1, w2, w3,h1,h2,h3) 389 1215 
10 (d1, d2, d3,w1, w2, w3,h1,h2,h3,g

* ) 503 1701 

11 (d1, d2, d3,w1, w2, w3,h1,h2,h3,g,C1) 637 2320 

12 (d1, d2, d3,w1, w2, w3,h1,h2,h3,g,C1,C2) 794 3094 
13 (d1, d2, d3,w1, w2, w3,h1,h2,h3,g,C1,C2,C3) 974 4046 

 

4.6.3 Example 3 

The objective of this example is to compare the scalability of the proposed adaptive HPCE 

approach against that of the nonintrusive ST based approach. For this purpose the same multiconductor 

transmission line (MTL) network of Fig. 4.10 is considered. The uncertainty in the network is expanded 

to include between five and thirteen random variables (n = 5…13) whose characteristics are listed in 

Table 4.7 and a Legendre PC expansion of degree m = 4 is considered. 

In order to demonstrate the scalability of the proposed work the number of random dimensions is 

progressively increased from 5 to 13 as shown in Table 4.9. For the same test cases of Table 4.9, the total 

PC problem is solved using both of the adaptive HPCE approach and the nonintrusive ST based approach. 

 
Fig. 4.14: Scaling of overall CPU time costs for example 3 in Section 4.6 for the proposed adaptive HPCE 

approach, and the full-blown PC nonintrusive ST based approach with increasing number of random variables. 
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The CPU time incurred by each approach for each test case is noted in Table 4.9 and scaling of the overall 

CPU costs is demonstrated in Fig. 4.14. It is observed from Fig. 4.14 that the proposed HPCE approach 

outperforms the nonintrusive ST based approach when number of random variables is relatively high. 

This is due fact that based on (4.35) and (4.40) the proposed approach is in the order of O(n) faster than 

the ST based approach, which is more visible when number of random variables increases.  
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CHAPTER V: CONCLUSION 

 With the advent of sub-90 nm technology, the effect of random manufacturing process variations 

and unpredictable operating conditions on the performance of microwave and radio-frequency (RF) 

circuits can no longer be neglected. In order to include the impact of such parametric uncertainty in the 

design optimization process, numerical methods to predict the effect of this uncertainty on the circuit 

response are required. The generalized polynomial chaos (PC) theory has emerged as a highly robust and 

versatile approach for the statistical analysis of high-speed circuits and electromagnetic (EM) systems. 

Typically, PC approaches model the uncertainty in network responses as a polynomial expansion of 

predefined orthonormal functions of the input random variables. 

 In this thesis, a number of techniques for advancement of PC approaches are suggested. The first 

major contributions is a novel sparse linear regression approach for the fast multidimensional uncertainty 

quantification of high-speed circuits within a SPICE environment. The next contribution is another 

approach which exploits and expedited version of D-optimal design of experiments to accurately evaluate 

the PC coefficients of the network responses. This approach provides fast search algorithms to identify 

the design of experiments from large multi-dimensional random spaces. Both approaches are based on 

modified versions of the Fedorov search algorithm that quickly locates a small set of regression nodes 

within the random space. By probing the PC expansion of the circuit current and voltage quantities at 

these sparse nodes the uncertainty in the circuit response can be efficiency quantified. Overall, the 

proposed approaches provides excellent CPU savings for high-dimensional circuit problems compared to 

contemporary intrusive and nonintrusive PC methods. 

 Next a novel improvement on truncation of the polynomial bases in the generalized PC theory is 

suggested. This approach promises to alleviate the exponential or near exponential scaling of 

computational costs with respect to number of random variables, by adopting a new hyperbolic truncation 

scheme in place of the conventional linear truncation scheme used for PC expansions. This scheme is 
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based on the sparsity of effects principle which states that the low-degree interactions between the 

random variables are statistically more significant than the higher-degree interactions. This suggests that 

if the high-degree multidimensional bases can be pruned from the full-blown PC expansion, a sparser 

expansion can be achieved without significantly sacrificing the accuracy. In order to adaptively generate 

such a sparse PC expansion based on only the low-degree interactions, an adaptive methodology is 

proposed in this thesis. All contributions in this thesis are validated through multiple numerical examples. 
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