
The Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Dynamic Resource Allocation Heuristics
that Manage Tradeoff between
Makespan and Robustness?

Ashish M. Mehta1, Jay Smith3,1, H. J. Siegel1,2,
Anthony A. Maciejewski1, Arun Jayaseelan1, Bin Ye1

1 Electrical and Computer Engineering Department
e-mail: {ammehta, hj, aam, arun, binye}@engr.colostate.edu

2 Computer Science Department
Colorado State University, Fort Collins, CO 80523–1373

3 IBM
6300 Diagonal Highway Boulder, CO 80301
e-mail: bigfun@us.ibm.com

The date of receipt and acceptance will be inserted by the editor

Abstract Heterogeneous parallel and distributed computing systems may
operate in an environment where certain system performance features de-
grade due to unpredictable circumstances. Robustness can be defined as
the degree to which a system can function correctly in the presence of pa-
rameter values different from those assumed. This work develops a model
for quantifying robustness in a dynamic heterogeneous computing environ-
ment where task execution time estimates are known to contain errors. This
mathematical expression of robustness is then applied to two different prob-
lem environments. Several heuristic solutions to both problem variations are
presented that utilize this expression of robustness to influence mapping de-
cisions.

Key words resource management – robustness – dynamic mapping –
makespan – resource allocation

? This research was supported by the DARPA Information Exploitation Office
under contract No. NBCHC030137, by the Colorado State University Center for
Robustness in Computer Systems (funded by the Colorado Commission on Higher
Education Technology Advancement Group through the Colorado Institute of
Technology), and by the Colorado State University George T. Abell Endowment.

Dynamic Resource Allocation Heuristics... 1

1 Introduction

Heterogeneous parallel and distributed computing is defined as the coor-
dinated use of compute resources—each with different capabilities—to op-
timize certain system performance features. Heterogeneous systems may
operate in an environment where system performance degrades due to un-
predictable circumstances or inaccuracies in estimated system parameters.
The robustness of a computing system can be defined as the degree to which
a system can function correctly in the presence of parameter values differ-
ent from those assumed [3]. Determining an assignment and scheduling of
tasks to machines in a heterogeneous computing system (i.e., a mapping or
resource allocation) that maximizes the robustness of a system performance
feature against perturbations in system parameters is an important research
problem in resource management.

This research focuses on a dynamic heterogeneous mapping environment
where task arrival times are not known a priori. A mapping environment
is considered dynamic when tasks are mapped as they arrive, i.e., in an
on-line fashion [25]. The general problem of optimally mapping tasks to
machines in heterogeneous parallel and distributed computing environments
has been shown in general to be NP-complete (e.g., [10, 14, 18]). Thus, the
development of heuristic techniques to find a near-optimal solution for the
mapping problem is an active area of research (e.g., [2, 5, 6, 8, 13, 15, 23, 25,
27,33]).

The tasks considered in this research are assumed to be taken from a
frequently executed predefined set, such as may exist in a military, lab or
business computing environment. The estimated time to compute (ETC)
values of each task on each machine are assumed to be known based on
user supplied information, experiential data, task profiling and analytical
benchmarking, or other techniques (e.g., [1,16,17,20,26,35]). Determination
of ETC values is a separate research problem, and the assumption of such
ETC information is a common practice in mapping research (e.g., [17, 19,
20,22,31,34]).

For a given set of tasks, estimated makespan is defined as the comple-
tion time for the entire set of tasks based on ETC values. However, these
ETC estimates may deviate from actual computation times; e.g., actual task
computation times may depend on characteristics of the input data to be
processed. For this research, the actual makespan of a resource allocation is
required to be robust against errors in estimated task execution times. Two
variations to this basic problem are considered in this work.

The first problem variation (robustness constrained) focuses on deter-
mining a dynamic mapping for a set of tasks that minimizes the estimated
makespan (using the estimated ETC values) while still being able to tol-
erate a quantifiable amount of variation in the ETC values of the mapped
tasks. Therefore, the goal of heuristics in this problem variation is to obtain
a mapping that minimizes makespan while maintaining a certain level of
robustness at each mapping event.

In the second problem variation (makespan constrained), the goal of
the heuristics is to maximize the robustness of a resource allocation while
ensuring that the makespan for the resource allocation is below a specified
limit. Maximizing robustness in this context is equivalent to maximizing
the amount of tolerable variation that can occur in ETC times for mapped
tasks while still ensuring that a makespan constraint can be met by the
resource allocation.

Dynamic mapping heuristics can be grouped into two categories: imme-
diate mode and batch mode [25]. Immediate mode heuristics immediately
map a task to some machine in the system for execution upon the task’s

2 Ashish M. Mehta et al.

arrival. In contrast, batch mode heuristics accumulate tasks until a speci-
fied condition is satisfied before mapping tasks—e.g., a certain number of
tasks accumulate, or a specified amount of time elapses. When the specified
condition is satisfied a mapping event occurs and the entire batch of tasks
is considered for mapping. A pseudo-batch mode can be defined where the
batch of tasks considered for mapping is determined upon the arrival of a
new task (i.e., a mapping event occurs) that consists of all tasks in the sys-
tem that have not yet begun execution on some machine and are not next
in line to begin execution, i.e., previously mapped but unexecuted tasks can
be remapped.

One of the areas where this work is directly applicable is the develop-
ment of resource allocations in enterprise systems that support transactional
workloads sensitive to response time constraints, e.g., time sensitive business
processes [28]. Often, the service provider in these types of systems is con-
tractually bound through a service level agreement to deliver on promised
performance. The dynamic robustness metric can be used to measure a
resource allocation’s ability to deliver on a performance agreement.

The contributions of this paper include:

1. a model for quantifying dynamic robustness,
2. heuristics for solving the two resource management problem variations,
3. simulation results for the proposed heuristics for each problem variation,

and
4. a mathematical bound on the performance feature for each of the re-

source management problem variation.

The remainder of the paper is organized as follows. Section 2 formally
states the investigated research problem. Section 3 describes the simulation
setup. Heuristic solutions to the robustness constrained problem variation
of the presented problem including an upper bound on the attainable ro-
bustness value are presented and evaluated in Section 4. Section 5 presents
heuristics for the makespan constrained problem variation of the dynamic
robustness problem along with their evaluation and a bound on the per-
formance feature. Related work is considered in Section 6 and Section 7
concludes the paper.

2 Problem Statement

In this study, T independent tasks (i.e., there is no inter-task communi-
cation) arrive at a mapper dynamically, where the arrival times of the in-
dividual tasks are not known in advance. Arriving tasks are each mapped
to one machine in the set of M machines that comprise the heterogeneous
computing system. Each machine is assumed to execute a single task at
a time (i.e., no multitasking). In this environment, the robustness of a re-
source allocation must be determined at every mapping event—recall that
a mapping event occurs when a new task arrives to the system. Let T (t)
be the set of tasks either currently executing or pending execution on any
machine at time t, i.e., T (t) does not include tasks that have already com-
pleted execution. Let Fj(t) be the predicted finishing time of machine j for
a given resource allocation µ based on the given ETC values. Let MQj(t)
denote the subset of T (t) previously mapped to machine j’s queue and let
scetj(t) denote the starting time of the currently executing task on machine
j. Mathematically, given some machine j

Fj(t) = scetj(t) +
∑

∀i∈MQj(t)

ETC(i, j). (1)

Dynamic Resource Allocation Heuristics... 3

Let β(t) denote the maximum of the finishing times Fj(t) for all machines
at time t—i.e., the predicted makespan at time t. Mathematically,

β(t) = max
∀j∈M

{Fj(t)}. (2)

The robustness metric for this work has been derived using the proce-
dure defined in [3]. In our current study, given uncertainties in the ETC
values, a resource allocation is considered robust if, at a mapping event,
the actual makespan is no more than τ seconds greater than the predicted
makespan. Thus, given a resource allocation µ at time t, the robustness ra-
dius rµ(Fj(t)) of machine j can be quantitatively defined as the maximum
collective error in the estimated task computation times that can occur
where the actual makespan will be within τ time units of the predicted
makespan. Mathematically, building on a result in [3],

rµ(Fj(t)) =
τ + β(t)− Fj(t)√

|MQj(t)|
. (3)

The robustness metric ρµ(t) for a given mapping µ is simply the minimum
of the robustness radii over all machines [3]. Mathematically,

ρµ(t) = min
∀j∈M

{
rµ

(
Fj(t)

)}
. (4)

With the robustness metric defined in this way, ρµ(t) corresponds to the
collective deviation from assumed circumstances (relevant ETC values) that
the resource allocation can tolerate and still ensure that system performance
will be acceptable, i.e., the actual makespan will be within τ time units of
the predicted makespan.

For the robustness constrained problem variation, the dynamic robust-
ness metric is used as a constraint. Let α be the minimum acceptable
robustness of a resource allocation at any mapping event; i.e., the con-
straint requires that the robustness metric at each mapping event be at
least α. Thus, the goal of the heuristics in the robustness constrained prob-
lem variation is to dynamically map incoming tasks to machines such that
the total makespan is minimized, while maintaining a robustness of at least
α i.e., ρµ(t) ≥ α for all mapping events. The larger α is, the more robust
the resource allocation is.

For the makespan constrained problem variation, let Te be the set of all
mapping event times. The robustness value of the final mapping is defined as
the smallest robustness metric that occurs at any mapping event time in Te.
The primary objective of heuristics in the makespan constrained problem
variation is to maximize the robustness value, i.e.,

maximize
(

min
∀te∈Te

ρµ(te)
)

. (5)

In addition to maximizing robustness, heuristics in this problem variation
must complete all T incoming tasks within an overall makespan constraint
(γ). Therefore, the goal of heuristics in this problem variation is to dy-
namically map incoming tasks to machines such that the robustness value
is maximized while completing all tasks within an overall makespan con-
straint (based on ETC values).

4 Ashish M. Mehta et al.

3 Simulation Setup

The simulated environment consists of T = 1024 independent tasks and
M = 8 machines for both the problem variations. This number of tasks and
machines was chosen to present a significant mapping challenge for each
heuristic and to make an exhaustive search for an optimal solution infea-
sible (however, the presented techniques can be applied to environments
with different number of tasks and machines). As stated earlier, each task
arrives dynamically and the arrival times are not known a priori. For the
robustness constrained problem variation, 100 different ETC matrices were
generated, 50 with high task heterogeneity and high machine heterogeneity
(HIHI) and 50 with low task heterogeneity and low machine heterogeneity
(LOLO) ([8]). While for the makespan constrained problem variation, 200
different ETC matrices were generated, 100 each for HIHI, and LOLO. The
larger number of ETC matrices (for the makespan constrained problem vari-
ation) was needed to produce statistically reliable results. The LOLO ETC
matrices model an environment where different tasks have similar execution
times on a machine and also, the machines have similar capabilities, e.g., a
cluster of workstations employed to support transactional data processing.
In contrast, the HIHI ETC matrices model an environment where the com-
putational requirements of tasks vary greatly and there is a set of machines
with diverse capabilities, e.g., a computational grid comprising of SMPs,
workstations, and supercomputers, supporting fast compilations of small
programs as well as time-consuming complex simulations.

All of the ETC matrices generated were inconsistent (i.e., machine A
being faster than machine B for task 1 does not imply that machine A is
faster than machine B for task 2) [8]. All ETC matrices were generated
using the gamma distribution method presented in [4]. The arrival time
of each incoming task was generated according to a Poisson distribution
with a mean task inter-arrival rate of eight seconds. In order to accentuate
the difference in performance of the pseudo-batch mode heuristics in the
robustness constrained problem variation, the mean task inter-arrival rate
was decreased to six seconds.

In the gamma distribution method of [4], a mean task execution time
and coefficient of variation (COV) are used to generate ETC matrices. In
the robustness constrained problem variation, the mean task execution time
was set to 100 seconds while, for the makespan constrained problem vari-
ation, the mean task execution time was 120 seconds. For both problem
variations, a COV value of 0.9 was used for HIHI and a value of 0.3 was
used for LOLO. The value of τ chosen for this study was 120 seconds. The
performance of each heuristic, was studied across all simulation trials, i.e.,
a trial corresponds to a different ETC matrix.

4 Robustness Constrained Heuristics

4.1 Heuristics Overview

Five immediate mode and five pseudo-batch mode heuristics were studied
for this variation of the problem. For the task under consideration, a feasible
machine is defined to be a machine that will satisfy the robustness constraint
if the considered task is assigned to it. This subset of machines is referred
to as the feasible set of machines.

Dynamic Resource Allocation Heuristics... 5

4.2 Immediate Mode Heuristics

The following is a brief description of the immediate mode heuristics for
this problem variation. Recall that in the immediate mode of heuristics,
only the new incoming task is considered for mapping. Thus, the behavior
of the heuristic is highly influenced by the order in which the tasks arrive.

4.2.1 Feasible Robustness Minimum Execution Time (FRMET) FRMET
is based on the MET concept in [?,8,25] where each incoming task is mapped
to its minimum execution time machine regardless of the number of pend-
ing tasks on that machine. However, for each incoming task, FRMET first
identifies the feasible set of machines. The incoming task is assigned to the
machine in the feasible set of machines that provides the minimum execution
time for the task. The procedure at each mapping event can be summarized
as follows:

i. for the new incoming task find the feasible set of machines. If the set is
empty, exit with error (“constraint violation”)

ii. from the above set, find the minimum execution time machine
iii. assign the task to the machine
iv. update the machine available time

4.2.2 Feasible Robustness Minimum Completion Time (FRMCT) FRMCT
is based on the MCT concept in [?,8,25] where each incoming task is mapped
to its minimum completion time machine. However, for each incoming task,
FRMCT first identifies the feasible set of machines for the incoming task.
From the feasible set of machines, the incoming task is assigned to its min-
imum completion time machine. The procedure at each mapping event can
be summarized as follows:

i. for the new incoming task find the feasible set of machines. If the set is
empty, exit with error (“constraint violation”)

ii. from the above set, find the minimum completion time machine
iii. assign the task to the machine
iv. update the machine available time

4.2.3 Feasible Robustness K-Percent Best (FRKPB) FRKPB is based on
the KPB concept in [21, 25]. FRKPB tries to combine the aspects of both
MET and MCT. FRKPB first finds the feasible set of machines for the
newly arrived task. From this set, FRKPB identifies the k -percent feasible
machines that have the smallest execution time for the task. The task is then
assigned to the machine in the set with the minimum completion time for
the task. For a given α the value of k was varied between 0 and 100, in steps
of 12.5, for sample training data to determine the value that provided the
minimum makespan. A value of k = 50 was found to give the best results.
The procedure at each mapping event can be summarized as follows:

i. for the new incoming task find the feasible set of machines. If the set is
empty, exit with error (“constraint violation”)

ii. from the above set, find the top m = 4 machines based on execution
time

iii. from the above find the minimum completion time machine
iv. assign the task to the machine
v. update the machine available time

6 Ashish M. Mehta et al.

4.2.4 Feasible Robustness Switching (FRSW) FRSW is based on the SW
concept in [21, 25]. As applied in this research, FRSW combines aspects of
both the FRMET and the FRMCT heuristics. A load balance ratio (LBR)
is defined to be the ratio of the minimum number of tasks enqueued on any
machine to the maximum number of tasks enqueued on any machine. FRSW
then switches between FRMET and FRMCT based on the value of the load
balance ratio. The heuristic starts by mapping tasks using FRMCT. When
the ratio rises above a high set point, denoted Thigh FRSW switches to
the FRMET heuristic. When the ratio falls below a low set point, denoted
Tlow FRSW switches to the FRMCT heuristic. The values for the switching
set points were determined experimentally using sample training data. The
procedure at each mapping event can be summarized as follows:

i. for the new incoming task find the feasible set of machines. If the set is
empty, exit with error (“constraint violation”)

ii. calculate the load balance ratio (LBR)
iii. initial mapping heuristic - FRMCT

if LBR > Thigh map using FRMET
else if LBR < Tlow map using FRMCT

else if Tlow ≤ LBR ≤ Thigh map using previous mapping heuristic

4.2.5 Maximum Robustness (MaxRobust) MaxRobust has been implement-
ed for comparison only, trying to greedily maximize robustness without
considering makespan. MaxRobust calculates the robustness radius of each
machine for the newly arrived task, assigning the task to the machine with
the maximum robustness radius. The procedure at each mapping event can
be summarized as follows:

i. for the new incoming task find the robustness radius for each machine,
considering the previous assignments

ii. assign task to maximum robustness radius machine
iii. update the machine available time

4.3 Pseudo-Batch Heuristics

The pseudo-batch mode heuristics implement two sub-heuristics, one to map
the task as it arrives, and a second to remap pending tasks. For the pseudo-
batch mode heuristics, the initial mapping is performed by the previously
described FRMCT heuristic (except for the MRMR heuristic). The remap-
ping heuristics each operate on a set of mappable tasks; a mappable task
is defined as any task pending execution that is not next in line to begin
execution. The following is a brief description of the pseudo-batch mode
re-mapping heuristics.

4.3.1 Feasible Robustness Minimum Completion Time-Minimum Comple-
tion Time (FMCTMCT) FMCTMCT uses a variant of Min-Min heuristic
defined in [18]. For each mappable task, FMCTMCT finds the feasible set
of machines, then from this set determines the machine that provides the
minimum completion time for the task. From these task/machine pairs, the
pair that gives the overall minimum completion time is selected and that
task is mapped onto that machine. This procedure is repeated until all of
the mappable tasks have been remapped. The procedure at each mapping
event can be summarized as follows:

i. map the new incoming task using FRMCT
ii. if set of mappable tasks is not empty

Dynamic Resource Allocation Heuristics... 7

(a) for each task, find the set of feasible machines. If the set is empty for
any task, exit with error (“constraint violation”)

(b) for each task find the feasible machine that minimizes computation
time (first Min), ignoring other mappable tasks

(c) from the above task/machine pairs, find the pair that gives the min-
imum completion time (second Min)

(d) assign the task to the machine and remove it from the set of mappable
tasks

(e) update the machine available time
(f) repeat a-e until all tasks are remapped

4.3.2 Feasible Robustness Maximum Robustness-Minimum Completion Time
(FMRMCT) FMRMCT builds on concept of the Max-Min heuristic [18].
For each mappable task, FMRMCT first identifies the feasible set of ma-
chines, then from this set determines the machine that provides the mini-
mum completion time. From these task/machine pairs, the pair that pro-
vides the maximum robustness radius is selected and the task is assigned
to that machine. This procedure is repeated until all of the mappable tasks
have been remapped. The procedure at each mapping event can be summa-
rized as follows:

i. map the new incoming task using FRMCT
ii. if set of mappable tasks is not empty

(a) for each task, find the set of feasible machines. If the set is empty for
any task, exit with error (“constraint violation”)

(b) for each task find the feasible machine that minimizes computation
time (Min), ignoring other mappable tasks

(c) from the above task/machine pairs, find the pair that gives the max-
imum robustness radius (Max)

(d) assign the task to the machine and remove it from the set of mappable
tasks

(e) update the machine available time
(f) repeat a-e until all tasks are remapped

4.3.3 Feasible Minimum Completion Time-Maximum Robustness (FMCTMR)
For each mappable task, FMCTMR first identifies the feasible set of ma-

chines, then from this set determines the machine with the maximum ro-
bustness radius. From these task/machine pairs, the pair that provides the
minimum completion time is selected and the task is mapped to that ma-
chine. This procedure is repeated until all of the mappable tasks have been
remapped. The procedure at each mapping event can be summarized as
follows:

i. map the new incoming task using FRMCT
ii. if set of mappable tasks is not empty

(a) for each task, find the set of feasible machines. If the set is empty for
any task, exit with error (“constraint violation”)

(b) for each mappable task find the feasible machine that gives maximum
robustness radius (Max), ignoring other mappable tasks

(c) from the above task/machine pairs, find the pair that gives the min-
imum completion time (Min)

(d) assign the task to the machine and remove it from the set of mappable
tasks

(e) update the machine available time
(f) repeat a-e until all tasks are remapped

8 Ashish M. Mehta et al.

4.3.4 Maximum Weighted Sum-Maximum Weighted Sum (MWMW)
MWMW builds on a concept in [30]. It combines the Lagrangian heuristic
technique [9,24] for deriving an objective function with the concept of Min-
Min heuristic [18] here to simultaneously minimize makespan and maximize
robustness. For each mappable task, the feasible set of machines is identified
and the machine in this set that gives the maximum value of the objective
function (defined below) is determined. From this collection of task/machine
pairs, the pair that provides the maximum value of the objective function
is selected and the corresponding assignment is made. This procedure is
repeated until all of the mappable tasks have been remapped.

When considering assigning a task i to machine j, let F ′
j(t) = Fj(t) +∑

ETC(i, j) for all tasks currently in the machine queue and the task cur-
rently under consideration. Let β′(t) be maximum of the finishing times
F ′

j(t) at time t for all machines. Let r′µ(F ′
j(t)) be the robustness radius for

machine j. Let maxrob(t) be the maximum of the robustness radii at time
t. Given η , an experimentally determined constant using training data, the
objective function for MWMW is defined as

s(j, t) = η

(
1−

F ′
j(t)

β′(t)

)
+ (1− η)

(
r′µ(F ′

j(t))
maxrob(t)

)
(6)

The procedure at each mapping event can be summarized as follows:

i. map the new incoming task using FRMCT
ii. if set of mappable tasks is not empty

(a) for each task, find the set of feasible machines. If the set is empty for
any task, exit with error (“constraint violation”)

(b) for each task find the feasible machine that gives maximum value of
the objective function (s(j, t)), ignoring other mappable tasks

(c) from the above task/machine pairs, find the pair that gives the max-
imum value of s(j, t)

(d) assign the task to the machine and remove it from the set of mappable
tasks

(e) update the machine available time
(f) repeat a-e until all tasks are remapped

4.3.5 Maximum Robustness-Maximum Robustness (MRMR) MRMR is pro-
vided here for comparison only as it optimizes robustness without consider-
ing makespan. When a task arrives it is initially mapped using the MaxRo-
bust heuristic. Task remapping is performed by a variant of the Max-Max
heuristic [18]. For each mappable task, the machine that provides the max-
imum robustness radius is determined. From these task/machine pairs, the
pair that provides the maximum overall robustness radius is selected and
the task is mapped to that machine. This procedure is then repeated un-
til all of the mappable tasks have been remapped. The procedure at each
mapping event can be summarized as follows:

i. map the new incoming task using MaxRobust
ii. if set of mappable tasks is not empty

(a) for each task find the machine that gives maximum robustness radius
(first Max), ignoring other mappable tasks

(b) from the above task/machine pairs, find the pair that gives the max-
imum value (second Max)

(c) assign the task to the machine and remove it from the set of mappable
task

(d) update the machine available time
(e) repeat a-d until all tasks are remapped

Dynamic Resource Allocation Heuristics... 9

4.4 Lower Bound

A lower bound on makespan for the described system can be found by
identifying the task whose arrival time plus minimum execution time on
any machine is the greatest. More formally, given the entire set of tasks S
where each task i has an arrival time of arv(i), the lower bound is given by

LB1 = max
∀i∈S

(
(arv(i) + min

∀j∈M
ETC(i, j)

)
. (7)

Unfortunately, this bound neglects any time that the task spends waiting
to execute. This can be significant in highly loaded systems. Therefore, a
second lower bound that considers the total computational load was also
used. This bound is given by,

LB2 =

T∑
i=0

{ min
∀j∈M

ETC(i, j)}

M
. (8)

The lower bound on makespan can then be given by the maximum of the
two bounds, i.e.,

LB = max(LB1, LB2). (9)

Clearly, this lower bound may not be achievable even by an optimal map-
ping, however, it is a tight lower bound because the case described by LB1

is possible if a system is very lightly loaded.

4.5 Results

In Figures 1 through 4, the average makespan results (with 95% confidence
interval bars) are plotted, along with a lower bound on makespan. Figures
1 and 2 present the makespan results for the immediate mode heuristics for
HIHI and LOLO heterogeneity, respectively. While, Figures 3 and 4 present
the makespan results for the pseudo-batch mode heuristics for HIHI and
LOLO heterogeneity, respectively. Each of the heuristics was simulated using
multiple values for the robustness constraint α. For each α the performance
of the heuristics was observed for 50 HIHI and 50 LOLO heterogeneity trials.
In Figures 1 through 4, the number of failed trials (out of 50) is indicated
above the makespan results for each heuristic, i.e., the number of trials for
which the heuristic was unable to successfully find a mapping for every task
given the robustness constraint α.

The average execution times for each heuristic over all mapping events
(on a typical unloaded 3GHz Intel Pentium 4 desktop machine) in all 100
trials are shown in Table I and Table II for immediate and pseudo-batch
mode, respectively. For the immediate mode heuristics, this is the average
time for a heuristic to map an incoming task. For the pseudo-batch mode
heuristics, this is the average time for a heuristic to map an entire batch of
tasks.

For the immediate mode heuristics, FRMET resulted in the lowest make-
span for HIHI, and FRMET and FRSW performed the best for LOLO. The
immediate mode FRMET heuristic for both HIHI and LOLO heterogene-
ity performed better than anticipated based on prior studies including a
minimum execution time (MET) heuristic in other environment (that do
no involve robustness and had different arrival rates and ETC matrices). It
should be noted, however, that its performance in the HIHI case did result
in multiple instances where it failed to find a mapping.

10 Ashish M. Mehta et al.

2000

4000

6000

8000

10000

12000

14000

16000

22.00 24.00 25.00 26.00 27.00 29.10

robustness constraint (α)

m
ak

es
pa

n

FRMET FRMCT FRKPB FRSW MaxRobust LowerBound

0

00

0

000

2

2

0
0

0

1

0 00

5

0

21

Fig. 1 Simulation results of makespan for different values of robustness constraint
(α) for immediate mode heuristics for HIHI heterogeneity.

It has been shown, in general, that the minimum execution time heuris-
tic is not a good choice for minimizing makespan for both the static and
dynamic environments [8,25], because it ignores machine loads and machine
available times when making a mapping decision. The establishment of a
feasible set of machines by the FRMET heuristic indirectly balances the
incoming task load across all of the machines. Also, because of the highly
inconsistent nature of the data sets coupled with the high mean execution
time (100 seconds), FRMET is able to maintain a lower makespan compared
to FRMCT.

To illustrate this, consider the following ETC matrix:

t0 t1 t2 t3 t4
M1 10 150 180 150 100

M2 100 70 170 100 150

M3 180 100 60 140 300

.

If the tasks arrive in the above order and the robustness constraint is α = 22,
the mapping obtained by FRMET would be:

M1 t0(10) t4(100)

M2 t1(70) t3(100)

M3 t2(60)

whereas using FRMCT results in the following mapping:

M1 t0(10) t3(150)

M2 t1(70) t4(150)

M3 t2(60)

.

Thus, the makespan obtained using FRMET is 170 while that obtained
using FRMCT is 220.

Table III shows the maximum and average number of mapping events
(out of a possible 1024) over successful trials (out of 50) for which the MET
machine was not feasible. That is, the table values were calculated based
on only the subset of the 50 trials for which FRMET could determine a
mapping that met the constraint. For each of these trials, there were 1024

Dynamic Resource Allocation Heuristics... 11

7000

8000

9000

10000

11000

12000

13000

18.00 19.00 20.00 21.00 21.21 23.00

robustness constraint (α)

m
ak

es
pa

n

FRMET FRMCT FRKPB FRSW MaxRobust LowerBound

 0 0
0

 0
 0 0

0
 0

 0

0

20

0

 0

3

 5

 00
0

3

13

Fig. 2 Simulation results of makespan for different values of robustness constraint
(α) for immediate mode heuristics for LOLO heterogeneity.

5000.00

6000.00

7000.00

8000.00

9000.00

10000.00

11000.00

12000.00

23 24 25 25.02 26

robustness constraint (α)

m
ak

es
pa

n

FMCTMCT FMRMCT FMCTMR MWMW MRMR Lower Bound

0 0
0

0

0

4
2

0

3

0
 9

6

12

19

26

14

Fig. 3 Simulation results of makespan for different values of robustness constraint
(α) for pseudo-batch mode heuristics for HIHI heterogeneity.

mapping events. Thus, even though the vast majority of tasks are mapped
to their MET machine, it is important to prevent those rare cases where
doing so would make the mapping infeasible.

The FRKPB heuristic performed better than FRMCT (in terms of
makespan) for LOLO heterogeneity and comparable to FRMCT for HIHI
heterogeneity. FRKPB selects the k -percent feasible machines that have the
smallest execution time for the task and then assigns the task to the machine
in the set with the minimum completion time for the task. Thus, rather then
trying to map the task to its best completion time machine, it tries to avoid
putting the current task onto the machine which might be more suitable
for some task that is yet to arrive. This foresight about task heterogeneity
is missing in FRMCT, which might assign the task to a poorly matched
machine for an immediate marginal improvement in completion time. This
might possibly deprive some subsequently arriving better matched tasks of
that machine, and eventually leading to a larger makespan than FRKPB.

12 Ashish M. Mehta et al.

8000.00

9000.00

10000.00

18 19 19.21 20

robustness constraint (α)

m
ak

es
pa

n

FMCTMCT FMRMCT FMCTMR MWMW MRMR LowerBound

 0 0 0
 0 0

76
8

4000

Fig. 4 Simulation results of makespan for different values of robustness constraint
(α) for pseudo-batch mode heuristics for LOLO heterogeneity.

The FRSW heuristic switches between FRMCT and FRMET depending
on the LBR. In the HIHI case Tlow was set to 0.6 and Thigh was set to 0.9.
With these values of the threshold, FRSW used FRMCT, on average, for
96% of the mapping events (out of total 1024) to map the incoming task.
In the LOLO case Tlow was set to 0.3 and Thigh was set to 0.6. For these
values of the thresholds FRSW used FRMET, on average, for 80% of the
mapping events (out of total 1024) to map the incoming task. As stated
earlier FRMET performs much better than FRMCT for both the HIHI and
LOLO cases. Thus the better performance of FRSW, for LOLO hetero-
geneity, can be attributed to the fact that it maps a large number of tasks
using FRMET as opposed to FRMCT. In contrast, for HIHI heterogeneity,
a larger number of tasks are mapped using FRMCT and so the makespan
is comparable to that of FRMCT.

An interesting observation was that the FRMCT heuristic was able to
mantain a robustness constraint of α = 27 for all 50 trials used in this
study, but only for 48 trials when α = 26 (for HIHI heterogeneity). This
could be attributed to the volatile nature of the greedy heuristics. The looser
robustness constraint (α = 26) allowed for a paring of task to machine that
was disallowed for a tighter robustness constraint (α = 27). That is, the
early greedy selection proved to be a poor decision because it ultimately led
to a mapping failure.

For the HIHI case all the heuristics (except MaxRobust) failed for at
least 4% (20% on average) of the trials (out of 50) for the robustness con-
straint achieved by MaxRobust heuristic.

When considering the performance of the pseudo-batch mode heuristics
(figures 3 and 4) recall that they were evaluated across a different set of ETC
matrices (mean task inter-arrival rate of six seconds as opposed to eight
seconds for ETC matrices for immediate mode). The MWMW heuristic
used a value of η = 0.6 for HIHI and η = 0.3 for LOLO.

For the HIHI heterogeneity trials, FMCTMCT and FMRMCT performed
comparably, in terms of makespan, though FMRMCT had a higher failure
rate than FRMCTMCT for high values of α. The inclusion of the concept of
feasible machines helped FMCTMCT and FMRMCT maintain a high level
of robustness. The FMCTMR heuristic had a higher makespan as compared
to FMRMCT. The reason being the first stage choice of machines for these

Dynamic Resource Allocation Heuristics... 13

two-stage greedy heuristics. The FMRMCT heuristic tries to minimize the
completion time in the first stage and then selects the task/machine pair
that maximizes the robustness radius, as opposed to maximizing the ro-
bustness radius in stage one and then selecting the task/machine pair that
minimizes the completion time as used by FMCTMR.

For the LOLO heterogeneity trials, FMCTMCT performed the best on
average, while MWMW performed comparably (in terms of makespan). The
motivation behind using MRMR was to greedily maximize robustness at
every mapping event. As can be seen from figures 3 and 4, the MRMR
heuristic was able to maintain a high level of robustness, however, it had
the worst makespan among the heuristics studied.

Table 1 Average execution times, in seconds, of a mapping event for the proposed
immediate mode heuristics.

heuristics avg. exec. time (sec.)

FRMET 0.001

FRMCT 0.0019

FRKPB 0.0019

FRSW 0.0015

MaxRobust 0.0059

5 Makespan Constrained Heuristics

5.1 Heuristics Overview

Five pseudo-batch mode heuristics were studied for this research. All of the
heuristics used a common procedure to identify a set of feasible machines,
where a machine is considered feasible if it can execute the task without
violating the makespan constraint that is, for a task under consideration,

Table 2 Average execution times, in seconds, of a mapping event for the proposed
pseudo-batch mode heuristics.

heuristics avg. exec. time (sec.)

FMCTMCT 0.023

FMRMCT 0.028

FMCTMR 0.028

MWMW 0.0211

MRMR 0.0563

Table 3 Maximum and average number of mapping events (over successful trials)
for which the MET machine was not feasible for HIHI and LOLO heterogeneity.

HIHI

Robustness constraint(α) 22.00 24.00 25.00 26.00 27.00

max 41 54 73 79 88

avg 14 22 30 36 42

LOLO

Robustness constraint(α) 18.00 19.00 20.00 21.00 21.21 22.00

max 5 10 14 26 26 56

avg 0 1 3 6 6 7

14 Ashish M. Mehta et al.

a machine is considered feasible if that machine can satisfy the makespan
constraint when the task is assigned to it. The subset of machines that are
feasible for the task is referred to as the feasible set of machines.

5.2 Heuristic Descriptions

5.2.1 Minimum Completion Time-Minimum Completion Time (MinCT-
MinCT) The MinCT-MinCT heuristic is similar to the FMCTMCT heuris-
tic studied in the robustness constrained problem variation but with the new
definition of the feasible machine.

5.2.2 Maximum Robustness-Maximum Robustness (MaxR-MaxR) As was
seen in the robustness constrained problem variation, the MRMR heuristic
was able to maintain a high level of robustness, but had a higher makespan.
The goal in this problem variation is to maximize the robustness at each
mapping event, and hence a variation of MRMR heuristic is employed. How-
ever, unlike the MRMR heuristic, for each mappable task, MaxR-MaxR
identifies the set of feasible machines. From each task’s set of feasible ma-
chines, the machine that maximizes the robustness metric for the task is
selected. If for any task there are no feasible machines then the heuristic will
fail. From these task/machine pairs, the pair that maximizes the robustness
metric is selected and that task is mapped onto its chosen machine. This
procedure is repeated until all of the mappable tasks have been mapped.
The procedure at each mapping event can be summarized as follows:

i. A task list is generated that includes all mappable tasks.
ii. For each task in the task list, find the set of feasible machines. If the set

is empty for any task, exit with error (“constraint violation”).
iii. For each mappable task (ignoring other mappable tasks), find the feasi-

ble machine that maximizes the robustness radius.
iv. From the above task/machine pairs select the pair that maximizes the

robustness radius.
v. Remove the task from the task list and map it onto the chosen machine.
vi. Update the machine available time.
vii. Repeat ii-vi until task list is empty.

5.2.3 Maximum Robustness-Minimum Completion Time (MaxR-MinCT)
MaxR-MinCT is similar to the FMRMCT heuristic studied in robustness
constrained problem variation, but with new definition of the feasible ma-
chine.

5.2.4 Minimum Completion Time-Maximum Robustness (MinCT-MaxR)
The MinCT-MinCT heuristic is similar to the FMCTMR heuristic studied
in the robustness constrained problem variation but with the new definition
of the feasible machine.

5.2.5 MaxMaxMinMin (MxMxMnMn) This heuristic makes use of two sub-
heuristics to obtain a mapping. It uses a combination of Min-Min with a
robustness constraint (to minimize makespan while maintaining the current
robustness value) and Max-Max (based on robustness) to maximize robust-
ness while still finishing all T tasks within the overall makespan constraint.
The mapping procedure begins execution using the Min-Min heuristic with
τ as the robustness level to be maintained—τ was chosen based on the up-
per bound discussion presented in Subsection 5.4. The procedure at each
mapping event can be summarized as follows:

Dynamic Resource Allocation Heuristics... 15

i. A task list is generated that includes all mappable tasks.
ii. Min-Min component

(a) For each task in the task list, find the set of machines that satisfy
the robustness level if the considered task is assigned to it. If the set
is empty for any task, go to step iii.

(b) From the above set of machines, for each mappable task (ignoring
other mappable tasks), find the feasible machine that minimizes the
completion time.

(c) From the above task/machine pairs select the pair that minimizes
completion time.

(d) Remove the task from the task list and map it onto its chosen ma-
chine.

(e) Update the machine available time.
(f) Repeat a-e until task list is empty, exit.

iii. Max-Max component
(g) A task list is generated that includes all mappable tasks (any task

mapped by Min-Min in this mapping event are remapped).
(h) For each task in the task list, find the set of feasible machines. If the

set is empty for any task, exit with error (“constraint violation”)
(i) For each mappable task (ignoring other mappable tasks), find the

feasible machine that maximizes the robustness metric.
(j) From the above task/machine pairs select the pair that maximizes

the robustness metric.
(k) Remove the task from the task list and map it onto the chosen ma-

chine.
(l) Update the machine available time.

(m) Repeat h-l until task list is empty.
iv. Update the robustness level to the new robustness value (the smallest

robustness metric that has occurred).

5.3 Fine Tuning (FT)

A post-processing step, referred to as fine tuning (FT) was employed to
improve the robustness value produced by a mapping. Fine tuning reorders
tasks in the machine queues in ascending order of execution time on that
machine (as done for a different problem environment in [36]), i.e., smaller
tasks are placed in the front of the queues. This procedure is performed at
each mapping event after executing one of the above heuristics. This pro-
cedure will not directly impact the overall finishing times of the machines,
but does help in getting the smaller tasks out of the machine queues faster
and thus helps reduce the numerator in equation 3, which correspondingly
improves the robustness metric.

5.4 Upper Bound

Let the provided constant τ be the upper bound on robustness. To prove
that robustness can be no higher than τ is to show that at least one machine
will have at least one task assigned to it during the course of the simulation.
When the first task is assigned to some machine in the system the robustness
radius of that machine becomes τ . In equation 3, β(t)− Fj(t) goes to zero
for the makespan machine. Because the machine with the first and only
task assigned to it is now the makespan defining machine, its robustness
radius is now τ . The robustness radius of this machine defines the robustness
metric for the system because it is the smallest of the robustness radii at
this mapping event. Because the robustness value is defined as the smallest

16 Ashish M. Mehta et al.

robustness metric over all mapping events, that value can be no greater
than τ .

5.5 Results

In Figures 5 and 6, the average robustness value (over all mapping events) for
each heuristic is plotted with their 95% confidence intervals. The average
execution time of each heuristic over all mapping events in all 200 trials
is shown in Table IV. Recall that the heuristics operate in a pseudo-batch
mode, therefore, the times in Table IV are the average time for each heuristic
to map an entire batch of tasks.

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

MinCT-MinCT MaxR-MaxR MaxR-MinCT MInCT-MaxR MxMxMnMn

ro
bu

st
ne

ss

No Fine Tuning Fine Tuning

 39

 4

 0

 0

0

 0

 0

 6

 0 0

Fig. 5 Average robustness value (over all mapping events) for the HIHI case with
γ = 14000.

19.00

19.50

20.00

20.50

21.00

21.50

22.00

22.50

23.00

23.50

24.00

MinCT-MinCT MaxR-MaxR MaxR-MinCT MinCT-MaxR MxMxMnMn

ro
bu

st
ne

ss

No Fine Tuning Fine Tuning

 72

1

 4
 0

 6

 0

 0

1

0 0

Fig. 6 Average robustness value (over all mapping events) for the LOLO case
with γ = 12500.

As can be seen from Figures 5 and 6, MxMxMnMn with fine tuning
gives the best robustness result for both the HIHI and LOLO cases (al-
though there is one failure). The good performance of MxMxMnMn can be

Dynamic Resource Allocation Heuristics... 17

11500.00

12000.00

12500.00

13000.00

13500.00

14000.00

MinCT-MinCT MaxR-MaxR MaxR-MinCT MInCT-MaxR MxMxMnMn

m
ak

es
pa

n

No Fine Tuning Fine Tuning

39

 4
 0

 0

0

 6

 0

 0 0 0

Fig. 7 Average makespan for the HIHI case with γ = 14000.

10000.00

10500.00

11000.00

11500.00

12000.00

12500.00

13000.00

MinCT-MinCT MaxR-MaxR MaxR-MinCT MinCT-MaxR MxMxMnMn

m
ak

es
pa

n

No Fine Tuning Fine Tuning

 72
1 4

00
0

 6
1

 0 0

Fig. 8 Average makespan for the LOLO case with γ = 12500.

attributed to the fact that the maintainable robustness value is by defini-
tion monotonically decreasing, and its approach tries to minimize makespan
(using Min-Min) while maintaining the current robustness value. If that is
not possible it instead maximizes robustness using Max-Max-attempting to
minimize the degradation in the robustness value.

Although, MinCT-MinCT is able to achieve one of the best makespan
(Figures 7 and 8) for both the HIHI and LOLO cases, its robustness value is
not one of the best, which confirms the fact that just minimizing the finish-
ing times of the machines does not guarantee a higher value of robustness.

The high number of failed trials for MaxR-MaxR for both the HIHI and
LOLO cases can be attributed to the fact that the heuristic tries to maximize
the robustness metric at all mapping events, but in doing so neglects the
corresponding increase in machine finishing times. For example, consider
the following two machine system with a current robustness value of 60 and
machine queues with the task execution times as shown,

m1: t1(10) t3(10)

m2: t2(50)

18 Ashish M. Mehta et al.

Assume that a new task t4 arrives with execution times of 10 and 50 time
units on machines m1 and m2, respectively. The MaxR-MaxR heuristic will
map task t4 to machine m2, which increases makespan because assigning t4
to machine m1 would decrease the robustness metric. However, mapping t4
to m1 would give a new robustness metric of 80.8 that is still greater than
the current robustness value of 60.

For both the HIHI and LOLO cases, MinCT-MaxR performed relatively
better than MaxR-MinCT in terms of robustness. This can be explained
in terms of the first stage choice of machines for this pair of two-stage
greedy heuristics. MinCT-MaxR places more emphasis on directly optimiz-
ing the primary objective of maximizing the robustness value as opposed to
minimizing makespan. By minimizing completion time in the second stage,
MinCT-MaxR is able to stay within the overall makespan constraint while
still maximizing robustness. This is evident from zero failures that occurred
for MinCT-MaxR in both the LOLO and HIHI cases.

The process of fine tuning did improve the results of the heuristics,
though not substantially (less than 12% for the best HIHI case and less than
5% for the best LOLO case). Further, it is possible that fine tuning when
used with MxMxMnMn can cause some trials to fail to meet the makespan
constraint. This occurs because fine tuning attempts to reduce the number
of tasks in the machine queues by moving small tasks up in the queues. Thus,
it is possible for the heuristic to maintain a higher robustness value over its
execution, but at certain mapping events when the Min-Min component of
the heuristic tries to map a task using a higher robustness constraint, it is
likely that it will not choose the minimum completion time machine for the
task because it is not feasible, which results in a higher finishing time. For
example, consider a two machine system with the following machine queues,

m1: t1(150)

m2: t2(30) t3(80)

Assume that a new task t4 arrives with execution times of 80 and 20 on
machines m1 and m2, respectively. If MxMxMnMn maps this task using the
Min-Min component with a robustness level of τ/

√
2, the mapping would

be:

m1: t1(150) t4(80)

m2: t2(30) t3(80)

But if MxMxMnMn uses the Min-Min component with a robustness level
of τ/2, the mapping would be:

m1: t1(150)

m2: t2(30) t3(80) t4(20)

Table 4 Average execution times, in seconds, of a mapping event for the proposed
heuristics.

heuristic average execution time (sec.)

MinCT-MinCT 0.023

MaxR-MinCT 0.028

MinCT-MaxR 0.028

MaxR-MaxR 0.0563

MxMxMnMn 0.0457

Dynamic Resource Allocation Heuristics... 19

Finally, because MxMxMnMn uses a Max-Max heuristic to maximize
robustness it is prone to the same issues discussed previously for the MaxR-
MaxR heuristic.

6 Related Work

The research presented in this paper was designed using the four step FePIA
procedure described in [3]. A number of papers in the literature have studied
robustness in distributed systems (e.g., [7, 11,29,32]).

The research in [7] considers rescheduling of operations with release dates
using multiple resources when disruptions prevent the use of a preplanned
schedule. The overall strategy is to follow a preplanned schedule until a
disruption occurs. After a disruption, part of the schedule is reconstructed
to match up with the pre-planned schedule at some future time. Our work
considers a slightly different environment where task arrivals are not known
in advance. Consequently, in our work it was not possible to generate a
preplanned schedule.

The research in [11] considers a single machine scheduling environment
where processing times of individual jobs are uncertain. Given the proba-
bilistic information about processing times for each job, the authors in [11]
determine a normal distribution that approximates the flow time associated
with a given schedule. The risk value for a schedule is calculated by using
the approximate distribution of flow time (i.e., the sum of the completion
times of all jobs). The robustness of a schedule is then given by one minus
the risk of achieving sub-standard flow time performance. In our work, no
such stochastic specification of the uncertainties is assumed.

The study in [29] defines a robust schedule in terms of identifying a
Partial Order Schedule (POS). A POS is defined as a set of solutions for
the scheduling problem that can be compactly represented within a tem-
poral graph. However, the study considers the Resource Constrained Project
Scheduling Problem with minimum and maximum time lags, (RCPSP/max),
as a reference, which is a different problem domain from the environment
considered here.

In [32], the robustness is derived using the same FePIA procedure used
here. However the environment considered is static (off-line), as opposed to
the dynamic (on-line) environment in this research. The robustness metric
and heuristics employed in a dynamic environment are substantially differ-
ent from those employed in [32].

7 Conclusion

This research presented a model for quantifying robustness in a dynamic
environment. It also involved the characterization and modeling of two dy-
namic heterogeneous computing problem environments, and examined and
compared various heuristic techniques for each of the two problem varia-
tions. This work also presented the bounds on the highest attainable value
of the system performance feature for both the problem variations.

The robustness constrained problem variation presented five immediate
and five pseudo-batch mode heuristics. For the immediate mode heuristics,
FRMET gave the lowest makespan for both the heterogeneity trials, but
it also had a high number of failed trials (for HIHI heterogeneity). The
FRKPB heuristic had the lowest number of failed trials for HIHI hetero-
geneity. For the pseudo-batch mode, FMCTMCT performed the best in
terms of both the makespan and failed number of trials. The immediate
mode heuristics described here can be used when the individual guarantee

20 Ashish M. Mehta et al.

for the submitted jobs is to be maintained (as there is no reordering of the
submitted jobs), while the pseudo-batch heuristics can be used when the
overall system performance is of importance.

For the makespan constrained problem variation five pseudo-batch heuris-
tics were designed and evaluated. A process of fine tuning was also adapted
to maximize the robustness level. Of the proposed heuristics, MxMxMnMn
with fine tuning performed the best for the proposed simulation environ-
ment.

Acknowledgements Preliminary portions of this material were accepted for pre-
sentation at the 2006 International Conference on Parallel & Distributed Process-
ing Techniques & Applications (PDPTA 2006) and the 12th International Confer-
ence on Parallel & Distributed Systems (ICPADS 2006).

References

1. S. Ali, T. D. Braun, H. J. Siegel, A. A. Maciejewski, N. Beck, L. Boloni,
M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, and B. Yao,
“Characterizing Resource Allocation Heuristics for Heterogeneous Computing
Systems,” in Advances in Computers Volume 63: Parallel, Distributed, and
Pervasive Computing, edited by A. R. Hurson, Elsevier, Amsterdam, The
Netherlands, pp. 91-128, 2005.

2. S. Ali, J.-K. Kim, Y. Yu, S. B. Gundala, S. Gertphol, H. J. Siegel, A. A.
Maciejewski, and V. Prasanna, “Utilization-based techniques for statically
mapping heterogeneous applications onto the HiPer-D heterogeneous com-
puting system,” Parallel and Distributed Computing Practices, Special Issue
on Parallel Numerical Algorithms on Faster Computers, Vol. 5, No. 4, Dec.
2002.

3. S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim, “Measuring the robust-
ness of a resource allocation,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 15, No. 7, July 2004, pp. 630-641.

4. S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali, “Represent-
ing task and machine heterogeneities for heterogeneous computing systems,”
Tamkang Journal of Science and Engineering, Special 50th Anniversary Issue,
Vol. 3, No. 3, Nov. 2000, pp. 195-207 (invited).

5. H. Barada, S. M. Sait, and N. Baig, “Task matching and scheduling in hetero-
geneous systems using simulated evolution,” 10th IEEE Heterogeneous Com-
puting Workshop (HCW 2001), 15th International Parallel and Distributed
Processing Symposium (IPDPS 2001), Apr. 2001.

6. I. Banicescu and V. Velusamy, “Performance of scheduling scientific appli-
cations with adaptive weighted factoring,” 10th IEEE Heterogeneous Com-
puting Workshop (HCW 2001), 15th International Parallel and Distributed
Processing Symposium (IPDPS 2001), Apr. 2001.

7. J. Bean, J. Birge, J. Mittenthal, C. Noon, “Matchup scheduling with multiple
resources, release dates and disruptions,” Journal of the Operations Research
Society of America, Vol. 39, No. 3, June. 1991, pp. 470-483.

8. T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, R. F. Freund, D. Hensgen,
M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, and Bin Yao,
“A comparison of eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems,” Journal of Parallel
and Distributed Computing, Vol. 61, No. 6, June 2001, pp. 810-837.

9. R. Castain, W. W. Saylor, and H. J. Siegel, “Application of lagrangian reced-
ing horizon techniques to resource management in ad-hoc grid environments,”
13th Heterogeneous Computing Workshop (HCW 2004), in the proceedings
of the 18th International Parallel and Distributed Processing Symposium
(IPDPS 2004), Apr. 2004.

10. E. G. Coffman, Jr. ed., Computer and Job-Shop Scheduling Theory, John
Wiley & Sons, New York, NY, 1976.

Dynamic Resource Allocation Heuristics... 21

11. R. L. Daniels and J. E. Carrilo, “β-Robust scheduling for single-machine sys-
tems with uncertain processing times,” IIE Transactions, Vol. 29, No. 11,
Nov. 1997, pp. 977-985.

12. J. Dorn, R. M. Kerr, and G. Thalhammer, “Reactive scheduling: Improv-
ing the robustness of schedules and restricting the effects of shop floor dis-
turbances by fuzzy reasoning,” International Journal on Human-Computer
Studies, Vol. 42, No. 6, June 1995, pp. 687-704.

13. M. M. Eshaghian, ed., Heterogeneous Computing, Norwood, MA, Artech
House, 1996.

14. D. Fernandez-Baca, “Allocating modules to processors in a distributed sys-
tem,” IEEE Transaction on Software Engineering, Vol. SE-15, No. 11, Nov.
1989, pp. 1427-1436.

15. I. Foster and C. Kesselman, eds., The Grid: Blueprint for a New Computing
Infrastructure, San Fransisco, CA, Morgan Kaufmann, 1999.

16. R. F. Freund and H. J. Siegel,“Heterogeneous processing”, IEEE Computer,
Vol. 26, No. 6, June 1993, pp. 13-17.

17. A. Ghafoor and J. Yang, “A distributed heterogeneous supercomputing man-
agement system,” IEEE Computer, Vol. 26, No. 6, June 1993, pp. 78-86.

18. O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling independent
tasks on non-identical processors,” Journal of the ACM, Vol. 24, No. 2, Apr.
1977, pp. 280-289.

19. M. Kafil and I. Ahmad, ”Optimal task assignment in heterogeneous distrib-
uted computing systems,” IEEE Concurrency, Vol. 6, No. 3, July. 1998, pp.
42-51

20. A. Khokhar, V. K. Prasanna, M. E. Shaaban, and C. Wang, “Heterogeneous
computing: Challenges and opportunities,” IEEE Computer, Vol. 26, No. 6,
June 1993, pp. 18-27.

21. J. -K. Kim, S. Shivle, H. J. Siegel, A. A. Maciejewski, T. Braun, M. Schneider,
S. Tideman, R. Chitta, R. B. Dilmaghani, R. Joshi, A. Kaul, A. Sharma, S.
Sripada, P. Vangari, and S. S. Yellampalli, “Dynamic mapping in a heteroge-
neous environment with tasks having priorities and multiple deadlines,” 12th
Heterogeneous Computing Workshop (HCW 2003), in the proceedings of the
17th International Parallel and Distributed Processing Symposium (IPDPS
2003), Apr. 2003.

22. C. Leangsuksun, J. Potter, and S. Scott, “Dynamic task mapping algorithms
for a distributed heterogeneous computing environment,” 4th IEEE Hetero-
geneous Computing Workshop (HCW ’95), 1995, pp. 30-34.

23. V. J. Leon, S. D. Wu, and R. H. Storer, “Robustness measures and robust
scheduling for job shops,” IIE Transactions, Vol. 26, No. 5, Sep. 1994, pp.
32-43.

24. P. Luh, X. Zhao, Y. Wang, and L. Thakur, “Lagrangian relaxation neural
networks for job shop scheduling,” IEEE Transactions on Robotics and Au-
tomation, Vol. 16, No. 1, Feb. 2000, pp. 78-88.

25. M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, “Dy-
namic mapping of a class of independent tasks onto heterogeneous computing
systems,” Journal of Parallel and Distributed Computing, Vol. 59, No. 2, Nov.
1999, pp. 107-121.

26. M. Maheswaran, T. D. Braun, and H. J. Siegel, “Heterogeneous distributed
computing,” Encyclopedia of Electrical and Electronics Engineering, J. G.
Webster, ed., Vol. 8, John Wiley & Sons, New York, NY, 1999, pp. 679-690.

27. Z. Michalewicz and D. B. Fogel, How to Solve It: Modern Heuristics, New
York, NY, Springer-Verlag, 2000.

28. Naik, V. K., Sivasubramanian, S., Bantz, D., and Krishnan, S., “Harmony:
A desktop grid for delivering enterprise computations,” Fourth International
Workshop on Grid Computing (GRID 03), Nov. 2003.

29. N. Policella, Scheduling with uncertainty, A proactive approach using partial
order schedules, PhD thesis, Dipartimento di Informatica e Sistemistica “An-
tonio Ruberti” Universit‘a degli Studi di Roma “La Sapienza”, 2005.

30. S. Shivle, H. J. Siegel, A. A. Maciejewski, P. Sugavanam, T. Banka, R. Cas-
tain, K. Chindam, S. Dussinger, P. Pichumani, P. Satyasekaran, W. Saylor, D.
Sendek, J. Sousa, J. Sridharan, and J. Velazco, “Static allocation of resources

22 Ashish M. Mehta et al.

to communicating subtasks in a heterogeneous ad hoc grid environment,”
Journal of Parallel and Distributed Computing, Special Issue on Algorithms
for Wireless and Ad-hoc Networks, Vol. 66, No. 4, pp. 600-611, April 2006.

31. H. Singh and A. Youssef, “Mapping and scheduling heterogeneous task graphs
using genetic algorithms,” 5th IEEE Heterogeneous Computing Workshop
(HCW ’96), 1996, pp. 86-97.

32. P. Sugavanam, H. J. Siegel, A. A. Maciejewski, M. Oltikar, A. Mehta, R.
Pichel, A. Horiuchi, V. Shestak, M. Al-Otaibi, Y. Krishnamurthy, S. Ali,
J. Zhang, M. Aydin, P. Lee, K. Guru, M. Raskey, and A. Pippin, “Robust
static allocation of resources for independent tasks under makespan and dollar
cost constraints,” Journal of Parallel and Distributed Computing, accepted,
to appear.

33. M.-Y. Wu, W. Shu, and H. Zhang, “Segmented min-min: A static mapping
algorithm for meta-tasks on heterogeneous computing systems,” 9th IEEE
Heterogeneous Computing Workshop (HCW 2000), May 2000, pp. 375-385.

34. D. Xu, K. Nahrstedt, and D. Wichadakul, “QoS and contention-aware multi-
resource reservation,” Cluster Computing, Vol. 4, No. 2, Apr. 2001, pp. 95-107

35. J. Yang, I. Ahmad, and A. Ghafoor, “Estimation of execution times on hetero-
geneous supercomputer architectures,” International Conference on Parallel
Processing, Aug. 1993, pp. I-219-I-226.

36. V. Yarmolenko, J. Duato, D. K. Panda, P. Sadayappan, “Characterization and
enhancement of dynamic mapping heuristics for heterogeneous systems,” In-
ternational Conference on Parallel Processing Workshops (ICPPW 00), Aug.
2000, pp. 437-444.

