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ABSTRACT

STATISTICAL INNOVATIONS FOR ESTIMATING SHAPE CHARACTERISTICS OF

BIOLOGICAL MACROMOLECULES IN SOLUTION USING SMALL-ANGLE X-RAY

SCATTERING DATA

Small-angle X-ray scattering (SAXS) is a technique that yields low-resolution images

of biological macromolecules by exposing a solution containing the molecule to a powerful

X-ray beam. The beam scatters when it interacts with the molecule. The intensity of the

scattered beam is recorded on a detector plate at various scattering angles, and contains

information on structural characteristics of the molecule in solution. In particular, the

radius of gyration (Rg) for a molecule, which is a measure of the spread of its mass, can

be estimated from the lowest scattering angles of SAXS data using a regression technique

known as Guinier analysis. The analysis requires specification of a range or “window”

of scattering angles over which the regression relationship holds. We have thus developed

methodology and supporting asymptotic theory for selection of an optimal window, minimum

mean square error estimation of the radius of gyration, and estimation of its variance. The

theory and methodology are developed using a local polynomial model with autoregressive

errors. Simulation studies confirm the quality of the asymptotic approximations and the

superior performance of the proposed methodology relative to the accepted standard. We

show that the algorithm is applicable to data acquired from proteins, nucleic acids and their

complexes, and we demonstrate with examples that the algorithm improves the ability to

test biological hypotheses.
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The radius of gyration is a normalized second moment of the pairwise distance distribu-

tion p(r), which describes the relative frequency of inter-atomic distances in the structure of

the molecule. By extending the theory to fourth moments, we show that a new parameter

ψ can be calculated theoretically from p(r) and estimated from experimental SAXS data,

using a method that extends Guinier’s Rg estimation procedure. This new parameter yields

an enhanced ability to use intensity data to distinguish between two molecules with differ-

ent but similar Rg values. Analysis of existing structures in the protein data bank (PDB)

shows that the theoretical ψ values relate closely to the aspect ratio of a molecular structure.

The combined values for Rg and ψ acquired from experimental data provide estimates for

the dimensions and associated uncertainties for a standard geometric shape, representing

the particle in solution. We have chosen the cylinder as the standard shape and show that

a simple, automated procedure gives a cylindrical estimate of a particle of interest. The

cylindrical estimate in turn yields a good first approximation to the maximum inter-atomic

distance in a molecule, Dmax, an important parameter in shape reconstruction.

As with estimation of Rg, estimation of ψ requires specification of a window of angles over

which to conduct the higher-order Guinier analysis. We again employ a local polynomial

model with autoregressive errors to derive methodology and supporting asymptotic theory

for selection of an optimal window, minimum mean square error estimation of the aspect

ratio, and estimation of its variance.

Recent advances in SAXS data collection and more comprehensive data comparisons have

resulted in a great need for automated scripts that analyze SAXS data. Our procedures to

estimate Rg and ψ can be automated easily and can thus be used for large suites of SAXS

data under various experimental conditions, in an objective and reproducible manner. The
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new methods are applied to 357 SAXS intensity curves arising from a study on the wild type

nucleosome core particle and its mutants and their behavior under different experimental

conditions. The resulting R̂2
g values constitute a dataset which is then analyzed to account

for the complex dependence structure induced by the experimental protocols. The analysis

yields powerful scientific inferences and insight into better design of SAXS experiments.

Finally, we consider a measurement error problem relevant to the estimation of the radius

of gyration. In a SAXS experiment, it is standard to obtain intensity curves at different con-

centrations of the molecule in solution. Concentration-by-angle interactions may be present

in such data, and analysis is complicated by the fact that actual concentration levels are

unknown, but are measured with some error. We therefore propose a model and estimation

procedure that allows estimation of true concentration ratios and concentration-by-angle in-

teractions, without requiring any information about concentration other than that contained

in the SAXS data.
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CHAPTER 1

OVERVIEW

Determining the structure of biological macromolecules (proteins, nucleic acids, and their

complexes) is fundamental to determining their function. X-ray crystallography can provide

high-resolution structural information, to the level of the atomic structure of the molecule.

But X-ray crystallography requires crystallization of the molecule, and crystallization recipes

are determined empirically and can be resource intensive. Further, many molecules resist

crystallization (see [2]). As an alternative to high-resolution methods, small-angle X-ray

scattering (SAXS) is an experimentally simple technique to acquire low-resolution informa-

tion about the structure of biological macromolecules. SAXS is relatively inexpensive and

fast and works much more generally than crystallography.

Figure 1.1 schematically depicts a SAXS experiment and the resulting output. The

sample of the molecule in solution is exposed to a high-intensity X-ray beam, which scatters

when interacting with the sample. The scattered X-ray is recorded by a two-dimensional

detector plate, which measures the intensity of the scattered pattern at different angles.

Scattering intensity at angles near zero is recorded near the center of the plate, and scattering

intensity at progressively larger angles is measured along concentric circles of increasing radii.

Angles very near zero are not recorded, as they correspond to the direct X-ray beam hitting a

“beam stop” (often, a lead plug) in the center of the detector. The two-dimensional scattering

intensity information is background-corrected (by subtracting an image of only solute, no

molecules) and then condensed into a one-dimensional curve via “radial averaging;” that is,

averaging the intensity on concentric annuli determined by a grid of angles. In Figure 1.1,

averaging along the annulus depicted by the circle of radius ‖q‖ results in the average
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intensity value plotted on a log scale in the right-hand-side figure, at the angle s ∝ ‖q‖

indicated by the vertical reference line. The one-dimensional log-intensity curve contains

shape and size properties for the molecule in solution. In this particular example, the log-

intensity data correspond to the molecule myoglobin, with known atomic structure (protein

data bank [3] entry 1WLA [4]) depicted in the upper right-hand corner of the log-intensity

plot. For a novel molecule, this structure would be unknown, and SAXS data would be used

to determine some low-resolution structural characteristics of the molecule in solution. The

use of small angle scattering in structural biology is reviewed extensively elsewhere [5–7].

Recent advances in SAXS data collection and more comprehensive data comparisons

have resulted in a great need for automated scripts that analyze SAXS data [8, 9]. We have

thus developed a statistically-rigorous algorithm that automatically estimates the radius

of gyration for a molecule, which is a measure of the spread of its mass, from the lowest

scattering angles of SAXS data.

A useful summary of the atomic structure of a molecule is given by its pairwise distance

distribution, which for a molecule with A atoms at coordinates {ai}Ai=1 is

p(r) =
#{(i, j) ∈ {1, . . . , A}2 : ‖ai − aj‖ = r}

A2
, 0 ≤ r ≤ Dmax,

with Dmax the maximum pairwise distance. As A is typically on the order of 100–1000, we

follow standard practice and use the continuous version of p(r) in what follows.

The squared radius of gyration for a molecule is

(1) R2
g =

∫ Dmax

0
r2p(r) dr

2
∫ Dmax

0
p(r) dr

=
2π
∫ Dmax

0
r2p(r) dr

I(0) ,
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X-Ray Beam

Molecule in Solution

Detector Plate

q

Figure 1.1. Schematic depiction of a SAXS experiment and resulting log-
intensity data. The sample of the molecule in solution is exposed to a high-
intensity X-ray beam, which scatters when interacting with the sample. The
scattered pattern is recorded by a two-dimensional detector plate, which mea-
sures the intensity at different angles. In the example shown, the scattered
beam intersects the detector at coordinate vector q, with the origin at the
center of the detector. The two-dimensional intensity data are reduced to one-
dimensional data by first subtracting a reference image (not shown) and then
computing an average intensity for each concentric annulus along a sequence
of increasing angles. Averaging along the annulus depicted by the circle of
radius ‖q‖ results in the average intensity value plotted on a log scale in the
right-hand-side figure, at the angle s ∝ ‖q‖ indicated by the vertical reference
line. Log-intensity data in this example correspond to the molecule myoglobin,
with known atomic structure depicted in the upper right-hand corner of the
log-intensity plot.

where I(s) denotes the theoretical scattering intensity at scattering angle s ≥ 0. Let I(s)

denote the corresponding empirical intensity from a SAXS experiment. From (1), the radius

of gyration Rg is analogous to the standard deviation of a probability density, describing the

spread of mass in a molecular model.

While p(r) can be estimated using empirical intensity data from a SAXS experiment,

such estimation requires modeling assumptions and regularization techniques to effect an

inverse Fourier transformation (e.g., [10–13]). By contrast, Rg is an example of low-resolution

structural information that can be estimated directly from SAXS data without modeling the
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molecular structure. For the theoretical log-intensity, [14] derived the approximation

(2) ln I(s) = ln I(0)− 1

3
R2

gs
2 +O

(
s4
)
.

Let Yi denote the empirical log-intensity at angle si from a SAXS experiment. Assuming

Yi is unbiased for ln I(si) leads to the now-standard method of Guinier analysis [e.g., 15,

p. 71] in which a data window of near-zero angles s1, . . . , sn is chosen such that the relation-

ship between squared angle s2i and empirical log-intensity Yi = ln I(si) appears linear. The

regression model

(3) Yi = ln I(0)− 1

3
R2

gs
2
i + εi = β0 + β2s

2
i + εi

is then fitted, and R̂2
g = −3β̂2 is used as the estimate of R2

g. See [16] for an analogous problem,

in which the memory parameter of a long-memory time series is estimated via regression of

the log-periodogram on a function of the Fourier frequencies. Based on simulated data

from idealized models of particles, Guinier recommended the now classical cutoff value sclassn ,

obtained by iteratively adjusting the data window to achieve sclassn R̂g < 1.3 [17, p. 128].

Programs exist that automatically determine R̂g, but these programs are constrained by the

classical 1.3 cutoff value [18].

The radius of gyration is analogous to the second moment of a molecule, so the value of

R2
g contains information regarding a molecule’s shape and size. Therefore, it is natural to

consider the fourth moment of a molecule in order to further distinguish subtle differences

in molecules’ shapes and sizes. This idea relates to the moments of probability distributions.

Consider the two distributions in Figure 1.2. These two distributions both have the same

first and second moment; however, they have very different shapes. Their fourth moment
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(a) Normal (0,1) distribution.
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(b) Uniform (−
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Figure 1.2. Normal (0,1) distribution (left) and Uniform (−
√
3,
√
3) distri-

bution (right). Each distribution has mean zero and variance one. However,
the fourth moment of the normal distribution is 3 and the fourth moment of
the uniform distribution is 1.8.

values can help distinguish their shapes. The fourth moment for the normal distribution on

the left is 3 and the fourth moment for the uniform distribution on the right is 1.8. Hence, we

could use SAXS data in order to differentiate between two molecules with similar Rg values

but different fourth moment values, provided we can estimate the higher-order moments.

We show that classical Guinier analysis can be extended to higher-order Guinier analysis for

estimation of higher-order moments from SAXS data.

Many SAXS experiments involve a suite of varying experimental factors (concentration

level, exposure time, etc.) with multiple replicate data for each factor. These experiments

can yield a large number of SAXS curves, which need to be analyzed in an efficient manner.

If parameter estimates for all the replicate data under varying experimental conditions are

determined, then scientific inference can be performed.

It turns out that the concentration level of a molecule in solution for a SAXS experiment

is a particularly important factor. The concentration level is often assumed to not influence
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the estimate of Rg, but this is not always the case. Frequently, a concentration by angle

interaction is present. Another issue is that the prescribed nominal concentration level may

not equal the actual concentration level of the molecule in solution. Therefore, the ability

to estimate the concentration level using SAXS data is useful.

The contributions of this dissertation are summarized here briefly. First, a natural alter-

native to the classical sclassn R̂g < 1.3 rule-of-thumb is to use statistical methods to optimize

the choice of cutoff value with respect to mean squared error (MSE), trading off the increased

bias of a larger cutoff value (due to breakdown of the Guinier quadratic approximation (2))

with the decreased variance due to larger sample size. This minimum MSE approach requires

estimation of the bias and variance, accounting for the fact that the Guinier approximation

(2) holds only for small angles. In particular, estimating the bias requires allowance for

higher-order terms in the Guinier approximation. We therefore develop an automated pro-

cedure to estimate Rg and its variance while accounting for the autocovariance structure of

the empirical intensity curve (see [19]).

It turns out that outlying log-intensities may be present among the lowest scattering

angles. These smallest angles are subject to the greatest intensity of the X-ray beam and

are adjacent to the central beam stop, both of which may lead to unusual intensity values.

It is currently standard practice for the operator to perform outlier detection and removal

manually. We develop an automated statistical procedure to detect such outliers by adapting

the standard DFBETAS criterion (e.g., [20], §10.4) in estimation of R2
g under model (3).
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The next contribution relates to determining the fourth moment of a molecule. Hence,

we define the new quantity

(4) M4 =

∫ Dmax

0
r4p(r) dr

2π
∫ Dmax

0
p(r) dr

.

Just as R2
g is analogous to the second moment of a probability distribution, M4 is the analog

of the fourth moment of a distribution. Very roughly, in statistics the fourth moment of

a distribution provides information about how much area is contained in the tails of the

distribution. Likewise, M4 provides information about how much mass is contained in the

regions of a molecule farthest from the center of mass. For example, a rod-shaped molecule

has a larger M4 value than a spherical molecule, assuming both molecules have the same Rg

value.

We wish to use these quantities to differentiate molecules based purely on shape, but

both R2
g and M

4 are dependent on molecular size. Therefore, we define a new dimensionless

ratio ψ given by

ψ =
M4

R4
g

,

which contains information concerning molecular shape but is independent of size. Fur-

thermore, ψ can be estimated from experimental SAXS data using an extension of Guinier

analysis.

To relate the SAXS data to both Rg and the quantity M4, we extend (2) to include an

extra term, resulting in a higher-order (and more accurate for small s) approximation:

(5) ln I(s) = ln I(0)− 1

3
R2

gs
2 +

(
1

60
M4 − 1

18
R4

g

)
s4 +O

(
s6
)
.
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Using this equation, Rg and M
4 can be estimated directly from experimental SAXS data for

a molecule; the ratio ψ can then be obtained easily. To determine the window of data to

estimate Rg and M4 in (5), we minimize the MSE of ψ̂ while accounting for the autocorre-

lation in the data. The parameter ψ provides a way to obtain a first approximation of the

shape of a molecule in solution from the log intensity curve. Furthermore, the parameter ψ,

in conjunction with Rg, additionally provides the means to compute the maximum pairwise

distance Dmax. Another potential benefit of both these innovations is the enhanced ability to

use intensity data to distinguish between two molecules with different but similar Rg values.

Our procedures to estimate Rg and ψ are automatic and can thus be used for a suite of

SAXS data under various experimental conditions in an objective and reproducible manner.

The new methods are applied to 357 SAXS intensity curves arising from a study on the wild

type nucleosome core particle and its mutants and their behavior under different experimental

conditions. The resulting R̂2
g values constitute a dataset which is then analyzed to account

for the complex dependence structure induced by the experimental protocols. The analysis

yields powerful scientific inferences and insight into better design of SAXS experiments.

Finally, we propose a model and estimation procedure to determine concentration ratios

of molecules in solution while accounting for a concentration by angle interaction effect. This

model does not require any information about concentration other than that contained in

the SAXS data. This model is validated with empirical data for which we have external

measurements of concentrations.

The overall structure of this dissertation is as follows. Chapter 2 and Chapter 3 are each

articles that have been submitted for publication. Therefore, there is some repeated infor-

mation in each of these chapters. Both of these chapters pertain to determining an optimal
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estimate of Rg and its variance. Chapter 2 contains the theoretical development for the

estimation of Rg along with extensive simulations and applications of the estimation proce-

dure. Chapter 3 is focused on the biological aspects of R̂g, so this chapter does not contain

the full theoretical development of the Rg estimation procedure. Chapter 4 describes the

novel molecular parameter ψ that can be estimated from SAXS curves. The full theoretical

development for the estimation of this parameter with applications to experimental data is

given in Chapter 5. Chapter 6 develops a model that can estimate the concentration ratio

for a set of molecules in solution and check for a concentration by angle interaction. Fur-

thermore, applications to experimental data are also given. Finally, the Appendix contains

simulations for the novel outlier detection procedure and instructions for implementing the

Rg estimation program.

9



CHAPTER 2

MINIMUM MEAN SQUARED ERROR ESTIMATION OF THE RADIUS OF

GYRATION IN SMALL-ANGLE X-RAY SCATTERING EXPERIMENTS

2.1. Introduction

2.1.1. Small-Angle X-Ray Scattering Experiments. Determining the structure

of biological macromolecules (proteins, nucleic acids, and their complexes) is fundamental

to determining their function. X-ray crystallography can provide high-resolution structural

information, to the level of the atomic structure of the molecule. But X-ray crystallography

requires crystallization of the molecule, and crystallization recipes are determined empiri-

cally and can be resource intensive. Further, many molecules resist crystallization (see [2]).

As an alternative to high-resolution methods, small-angle X-ray scattering (SAXS) is an

experimentally simple technique to acquire low-resolution information about the structure

of biological macromolecules. SAXS is relatively inexpensive and fast and works much more

generally than crystallography.

Figure 2.1 schematically depicts a SAXS experiment and the resulting output. The

sample of the molecule in solution is exposed to a high-intensity X-ray beam, which scatters

when interacting with the sample. The scattered X-ray is recorded by a two-dimensional

detector plate, which measures the intensity of the scattered pattern at different angles.

Scattering intensity at angles near zero is recorded near the center of the plate, and scattering

intensity at progressively larger angles is measured along concentric circles of increasing radii.

Angles very near zero are not recorded, as they correspond to the direct X-ray beam hitting a

“beam stop” (often, a lead plug) in the center of the detector. The two-dimensional scattering
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intensity information is background-corrected (by subtracting an image of only solute, no

molecules) and then condensed into a one-dimensional curve via “radial averaging”; that is,

averaging the intensity on concentric annuli determined by a grid of angles. In Figure 2.1,

averaging along the annulus depicted by the circle of radius ‖q‖ results in the average

intensity value plotted on a log scale in the right-hand-side figure, at the angle s ∝ ‖q‖

indicated by the vertical reference line. The one-dimensional log-intensity curve contains

shape and size properties for the molecule in solution. In this particular example, the log-

intensity data correspond to the molecule myoglobin, with known atomic structure (protein

data bank ([3]) entry 1WLA ([4])) depicted in the upper right-hand corner of the log-intensity

plot. For a novel molecule, this structure would be unknown, and SAXS data would be used

to determine some low-resolution structural characteristics of the molecule in solution. The

use of small angle scattering in structural biology is reviewed extensively elsewhere ([5–7]).

Recent advances in SAXS data collection and more comprehensive data comparisons have

resulted in a great need for automated scripts that analyze SAXS data ([8, 9]). We have

thus developed a statistically-rigorous algorithm that automatically estimates the radius

of gyration for a molecule, which is a measure of the spread of its mass, from the lowest

scattering angles of SAXS data.

2.1.2. Guinier Analysis. A useful summary of the atomic structure of a molecule is

given by its pairwise distance distribution, which for a molecule with A atoms at coordinates

{ai}Ai=1 is

p(r) =
#{(i, j) ∈ {1, . . . , A}2 : ‖ai − aj‖ = r}

A2
, 0 ≤ r ≤ Dmax,
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Figure 2.1. Schematic depiction of a SAXS experiment and resulting log-
intensity data. The sample of the molecule in solution is exposed to a high-
intensity X-ray beam, which scatters when interacting with the sample. The
scattered pattern is recorded by a two-dimensional detector plate, which mea-
sures the intensity at different angles. In the example shown, the scattered
beam intersects the detector at coordinate vector q, with the origin at the
center of the detector. The two-dimensional intensity data are reduced to one-
dimensional data by first subtracting a reference image (not shown) and then
computing an average intensity for each concentric annulus along a sequence
of increasing angles. Averaging along the annulus depicted by the circle of
radius ‖q‖ results in the average intensity value plotted on a log scale in the
right-hand-side figure, at the angle s ∝ ‖q‖ indicated by the vertical reference
line. Log-intensity data in this example correspond to the molecule myoglobin,
with known atomic structure depicted in the upper right-hand corner of the
log-intensity plot.

with Dmax the maximum pairwise distance. As A is typically on the order of 100–1000, we

follow standard practice and use the continuous version of p(r) in what follows.

The squared radius of gyration for a molecule is

(6) R2
g =

∫ Dmax

0
r2p(r) dr

2
∫ Dmax

0
p(r) dr

=
2π
∫ Dmax

0
r2p(r) dr

I(0) ,

where I(s) denotes the theoretical scattering intensity at scattering angle s ≥ 0. Let I(s)

denote the corresponding empirical intensity from a SAXS experiment. From (6), the radius

of gyration Rg is analogous to the standard deviation of a probability density, describing the

spread of mass in a molecular model.
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While p(r) can be estimated using empirical intensity data from a SAXS experiment, such

estimation requires modeling assumptions and regularization techniques to effect an inverse

Fourier transformation (e.g., [10–13]). By constrast, Rg is an example of low-resolution

structural information that can be estimated directly from SAXS data without modeling the

molecular structure. For the theoretical log-intensity, [14] derived the approximation

(7) ln I(s) = ln I(0)− 1

3
R2

gs
2 +O

(
s4
)
;

see Remark 1 below for motivation.

Let Yi denote the empirical log-intensity at angle si from a SAXS experiment. Assuming

Yi is unbiased for ln I(si) leads to the now-standard method of Guinier analysis [e.g., 15,

p. 71] in which a data window of near-zero angles s1, . . . , sn is chosen such that the relation-

ship between squared angle s2i and empirical log-intensity Yi = ln I(si) appears linear. The

regression model

(8) Yi = ln I(0)− 1

3
R2

gs
2
i + εi = β0 + β2s

2
i + εi

is then fitted, and R̂2
g = −3β̂2 is used as the estimate of R2

g. See [16] for an analogous

problem, in which the memory parameter of a long-memory time series is estimated via

regression of the log-periodogram on a function of the Fourier frequencies.

Based on simulated data from idealized models of particles, Guinier recommended the

now classical cutoff value sclassn , obtained by iteratively adjusting the data window to achieve

sclassn R̂g < 1.3 [17, p. 128]. A natural alternative to this physically-motivated approach is to

use statistical methods to optimize the choice of cutoff value with respect to mean squared

error (MSE), trading off the increased bias of a larger cutoff value (due to breakdown of

13



the Guinier quadratic approximation (7)) with the decreased variance due to larger sample

size. This minimum MSE approach requires estimation of the bias and variance, accounting

for the fact that the Guinier approximation (7) holds only for small angles. In particular,

estimating the bias requires allowance for higher-order terms in the Guinier approximation.

In this chapter, we develop improved Guinier analysis methods by minimizing MSE

of R̂2
g with respect to the cutoff angle sn. We use an estimated generalized least squares

(EGLS) version of the classical Guinier estimator from (8), based on the fitting of a p-th

order autoregressive model, to account properly for the autocorrelation in SAXS data. To

derive suitable bias and MSE approximations for the EGLS estimator, we extend the Guinier

equation (7) to a fourth-degree polynomial in §2.2.2, and derive the asymptotic MSE and the

optimal cutoff angle. We develop a plug-in implementation of the optimum cutoff in §2.2.3,

in which the MSE approximation is minimized over an initial window determined via outlier

removal, trend removal and changepoint detection. Quality of the asymptotic approximations

is verified via simulation in §2.3. The proposed estimation method has much smaller MSE

than the classical method across a wide range of realistic simulated conditions. Our main

motivation for this work is fast and objective analysis for large suites of SAXS experimental

data. In §2.4, the new methods are applied to 357 SAXS intensity curves arising from a

study on the wild type nucleosome core particle and its mutants and their behavior under

various experimental conditions. The resulting R̂2
g values constitute a dataset which is then

analyzed using a split-split plot model to account for the complex dependence structure

induced by the experimental protocols. The analysis yields powerful scientific inferences and

insight into better design of SAXS experiments. A brief discussion follows in §2.5.
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2.2. Theory and Methods

2.2.1. Generalized Least Squares Estimation of R2
g. We first extend the qua-

dratic working model (8) to allow for m independent replicates, with errors that have the

same autocovariance structure in each replicate:

(9) εhi = Yhi − E[Yhi] = φ1εh,i−1 + · · ·+ φpεh,i−p + Zhi.

Here, {Zhi} are independent and identically distributed with mean zero and variance σ2,

and |1 − φ1z − · · · − φpz
p| 6= 0 for |z| ≤ 1. Thus, the errors {εhi} follow a causal pth

order autoregressive process, AR(p), to capture the autocovariance structure of the empirical

intensity curve (see [19]).

While classical Guinier analysis uses ordinary least squares, we use generalized least

squares (GLS) to account for the dependence structure. Assuming the same window of angles

for each of the m independent replicate SAXS log-intensity curves, the GLS estimator of the

coefficients in the quadratic working model is

(10) β̂ββ =
(
X′Γ−1X

)−1
X′Γ−1m−1

m∑

h=1

Yh,

where Yh = [Yh1, . . . , Yhn]
′,

X′ =




1 · · · 1

s21 · · · s2n


 ,
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and Γ = [Cov(εhi, εhj)]
n
i,j=1 is an n× n covariance matrix corresponding to the AR(p) errors

for each of the m replicates. Then the estimator of R2
g is

(11) R̂2
g = e′

(
X′Γ−1X

)−1
X′Γ−1m−1

m∑

h=1

Yh,

where e = [0,−3]′.

In what follows, we consider asymptotic approximations to the bias and variance of the

GLS estimator, which is derived under the quadratic working model (8). In particular,

determining the bias of the estimator requires a higher-order model for the mean structure.

2.2.2. Theoretical Results. We seek to minimize MSE of R̂2
g with respect to the

cutoff angle sn. A straightforward Taylor linearization argument shows that this is equivalent

to minimizing MSE of R̂g with respect to sn, since

MSE
(
R̂g

)
≃ 1

4R2
g

MSE
(
R̂2

g

)
,

where R2
g does not depend on sn. In this section, we present the main theorems regard-

ing approximation and minimization of the mean squared error of R̂2
g, beginning with the

assumptions underlying these results. Lemmas and all proofs are given in the appendix.

2.2.2.1. Assumptions. Let ∆ denote the spacing between angles and write si = i∆ for

i = 1, . . . , N . We consider an asymptotic formulation in which N → ∞ with ∆ → 0. Assume

the following conditions:

(A1) The theoretical log-intensity satisfies

ln I(s) = ln I(0)− 1

3
R2

gs
2 +

f (4)(0)

24
s4 +O

(
s6
)
= f(s) + O

(
s6
)
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with f (4)(0) 6= 0.

(A2) There exists sn ≤ sN such that sn → 0 and s5n/∆ → ∞ as ∆ → 0 and N → ∞.

(A3) For si ≤ sN , the empirical log-intensity of the hth replicate satisfies

Yhi = ln I(0)− 1

3
R2

gs
2
i +

f (4)(0)

24
s4i +O

(
s6i
)
+ εhi,

where each {εhi} is an independent copy of the same causal pth-order autoregressive

process.

Remarks.

(1) The form of A1 arises because, under quite general conditions, the theoretical in-

tensity satisfies

I(s) = 4π

∫ Dmax

0

p(r)
sin(sr)

sr
dr

[e.g., 21], which can be expanded as

I(s) = 4π

∫ Dmax

0

p(r) dr − 4π
s2

3!

∫ Dmax

0

r2p(r) dr + 4π
s4

5!

∫ Dmax

0

r4p(r) dr +O
(
s6
)

= I(0)− 1

3
I(0)R2

gs
2 + c4I(0)s4 +O

(
s6
)
,

where c4 denotes a constant. Then in a neighborhood of zero,

ln I(s) = ln I(0)− 1

3
R2

gs
2 +

f (4)(0)

24
s4 +O

(
s6
)
,

resulting in a quartic polynomial as specified in the assumption.

(2) Under A2–A3, the structure of the AR(p) errors remains fixed as the spacing between

observations goes to zero. An alternative formulation would allow the dependence

17



to increase as the spacing decreases. Increasing dependence would occur if the

{εhi} are taken at a grid of points along a realization of a smooth continuous-time

stochastic process. For an Ornstein-Uhlenbeck process, it can be shown that as

∆ → 0, the variance of R̂2
g converges not to zero but to a positive constant. The

proof is omitted. Related results for such “infill asymptotics” include [22], [23],

and [24] among others. We show that our fixed-dependence asymptotic formulation

leads to useful approximations in practice, and do not pursue the infill approach

further in this paper.

2.2.2.2. Mean Square Error Approximation and Optimal Cutoff.

Theorem 1. Under A1–A3, the bias of R̂2
g is

(12) E
(
R̂2

g −R2
g

)
= − 3

28
f (4)(0)s2n +O

(
s4n
)
.

Theorem 2. Under A1–A3, the variance of R̂2
g is

(13) Var
(
R̂2

g

)
=

405σ2∆

4ms5n

(
1−∑p

j=1 φj

)2 +O
(
∆2s−6

n

)
.

The factor σ2
(
1−∑p

j=1 φj

)−2

appearing in the asymptotic variance is 2π times the

spectral density at frequency zero for an AR(p) process. It arises in other time series contexts;

for example, as limn→∞ nVar(ε̄n) [e.g., 25, pp. 218–219], increasing or decreasing the variance

of the sample mean due to positive or negative autocorrelation.

Immediate consequences of Theorem 1 and Theorem 2 are the approximate asymptotic

mean squared error of R̂2
g and the asymptotically optimal cutoff angle.
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Theorem 3. Under A1–A3, the approximate mean squared error of R̂2
g is

(14) MSE
(
R̂2

g

)
=

9

784

{
f (4)(0)

}2
s4n +

405σ2∆

4ms5n

(
1−∑p

j=1 φj

)2 +O
(
∆2s−6

n + s6n
)
,

which is minimized by

(15) soptn =


 11025σ2∆

m {f (4)(0)}2
(
1−∑p

j=1 φj

)2




1/9

.

2.2.3. Implementation. Use of the optimal cutoff angle (15) requires estimates of

f (4)(0), the autoregressive order p, the coefficients {φj}pj=1, and the white noise variance

σ2. We obtain estimates for each of these quantities by choosing an initial window of an-

gles {si}Ni=1 over which the quartic Guinier approximation in A3 is plausible, then obtaining

estimates of the autoregressive model and the quartic coefficient over this initial window.

2.2.3.1. Changepoint detection. Our approach is to preprocess the data by first removing

the trend. We difference four times

Di = Yi − 4Yi−1 + 6Yi−2 − 4Yi−3 + Yi−4

to remove quite general smooth functions of s, including the fourth-degree polynomial trend

assumed from (A1) to hold over the initial window. We then perform a statistical changepoint

analysis (see, e.g., [26] for a recent review) on the differenced data {Di} to determine where

the initial quartic model breaks. While there are many options for changepoint analysis, we

are using a parametric method that maximizes a likelihood ratio test and is implemented

in the R package changepoint ([27]). This method was chosen because it can detect an

unknown number of changes in both the mean and variance of the data. With replicate
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Figure 2.2. Left: Log intensities {Yi} from small-angle X-ray scattering ver-
sus scattering angle {si} for the molecule myoglobin. Right: Log intensi-
ties differenced four times, with initial cutoff angle sN selected via statistical
changepoint analysis and marked with a vertical reference line.

intensity curves, we determine the changepoint for each curve and then take the minimum

changepoint as the initial window for combined data.

Figure 2.2 (left) shows log-intensity versus angle for myoglobin and Figure 2.2 (right)

shows those log-intensities differenced four times. Changepoint analysis on the fourth differ-

ences estimates an initial cutoff angle as sN = 0.122, yielding N = 120 angles over which to

minimize the MSE criterion.

2.2.3.2. Outlier detection. The left-hand endpoint s1 is also of interest in a SAXS experi-

ment, as outlying log-intensities may be present among the first few scattering angles. These

smallest angles are subject to the greatest intensity of the X-ray beam and are adjacent to

the central beam stop, both of which may lead to unusual intensity values. It is currently

standard practice for the operator to perform outlier detection manually. We have devel-

oped an automated statistical procedure to detect such outliers, by adapting the standard
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DFBETAS criterion (e.g., [20], §10.4) to estimation of R2
g under model (10). Specifically, we

compute

DFBETAS
(
R̂2

g(−a)

)
=
R̂2

g − R̂2
g(−a)

SE
(
R̂2

g

) .

where R̂2
g(−a) deletes the first a observations and uses only the angles sa+1, sa+2, . . . , sn.

Therefore, we can remove one outlying point at a time or groups of observations. We remove

values if the absolute value of DFBETAS exceeds two, or if it exceeds a size-adjusted cutoff

value of 2/
√
max {n, n(−a)}, where n(−a) is the number of points used to calculate R̂2

g(−a).

In simulations not described here, this outlier detection methodology works well, for both

point outliers and groups of outliers. We assume henceforth that any initial outliers have

been removed from the log-intensity curves.

2.2.3.3. Plug-in estimation of the optimal cutoff. We first describe the case without repli-

cate intensity curves. Once the initial window of angles is finalized via changepoint detection

and outlier elimination, we fit a cubic spline to the log-intensities over the window and obtain

residuals. Over this initial window, we assume that a stationary autoregressive process is a

reasonable approximation to the dependence structure; this stationarity assumption would

break down over larger windows. We then use Yule-Walker estimation on the residuals from

the cubic spline to fit successively higher-order autoregressive models, choosing the final or-

der p by minimizing AIC and obtaining the Yule-Walker estimates {φ̂j}pj=1 and σ̂2 [e.g., 25,

§8.1]. We use the fitted autoregressive model to compute empirical generalized least squares

estimates of the parameters in the model

(16) Yi = β0 + β2s
2
i + β4s

4
i + εi (i = 1, . . . , N),
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from which f̂ (4)(0) = 24β̂4 is obtained, finalizing the set of estimates needed to plug in to

(15).

For data with replicate intensity curves, we modify this procedure slightly, allowing for

the fact that the initial angles for each replicate curve can vary due to the removal of

outliers. Over the initial window, we determine Yule-Walker estimates {φ̂hj}phj=1 and σ̂2
h for

each replicate curve, where h = 1, . . . ,m. To determine the plug-in value for (15), we average

these estimates via

1

m

m∑

h=1

σ̂2
h(

1−∑ph
j=1 φ̂hj

)2 .

Furthermore, intensity data can exhibit small vertical shifts from replicate to replicate

(due to variations in the X-ray source, exposure time, etc.), so we use the fitted autoregression

for each replicate intensity curve to fit the model

(17) Yhi = β0h + β2s
2
i + β4s

4
i + εhi

via empirical generalized least squares. From the fitted model, we obtain f̂ (4)(0) = 24β̂4 and

plug this value into (15).

2.3. Simulation Results

To evaluate our asymptotic theory and Rg estimation, we simulated artificial but realistic

SAXS data as follows. First, we used the program CRYSOL ([28]) to compute the theoretical

intensity curves for known molecular structures: DNA (a nucleic acid), glucose isomerase (a

protein), and nucleosome core particle (a complex of protein and nucleic acid). From these

theoretical curves, we determined Rg and chose nearby values of 20, 30, and 40, similar to

the DNA, glucose isomerase, and nucleosome core particle, respectively. We also determined
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f (4)(0)R−4
g ratio values from polynomial fits to the theoretical curves and chose nearby values

−0.05, 0.05, 0.10 that again are similar to DNA, glucose isomerase, and nucleosome core

particle, respectively. Finally, we considered two different AR(2) models, each obtained

from fits to real glucose isomerase data:

model I: εI = 0.26εi−1 + 0.29εi−2 + Zi, {Zi} iid N (0, σ2),

model II: εI = 0.10εi−1 + 0.18εi−2 + Zi, {Zi} iid N (0, σ2),(18)

with σ2 chosen so that Var(εi)R
−2
g = 0.0003 under model I and Var(εi)R

−2
g = 0.0004 under

model II. By crossing three Rg values, three f (4)(0)R−4
g values, and two AR(2) models, we

have 18 distinct experimental conditions to generate a wide range of realistic SAXS data.

For each of the 18 conditions, we simulated m = 1, 3, or 10 independent replicate SAXS

intensity curves at N = 99 angles. We repeated the simulation for 1000 iterations under

each of the 18 conditions at each of the three numbers of replicates.

For each simulated data set, we conducted changepoint detection as in §2.2.3.1 and used

the methods of §2.2.3.3 to determine the plug-in estimate ŝoptn of the optimal cutoff soptn from

(15). We also used the iterative Guinier approach to determine the classical cutoff sclassn

such that sclassn R̂g < 1.3. For replicated data, we first averaged the intensity curves across

replicates to yield a single curve before applying the iterative Guinier approach. Averaging

of replicate intensity curves is common in practice.

We compared these two empirical approaches to two theoretical standards: the asymp-

totic optimum given by equation (15) with known values of f (4)(0), {φj}pj=1, and σ2, and

the empirical optimum, given by choosing sn such that the empirical MSE (over the 1000

iterations) of R̂2
g is minimized.
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In Table 2.1, we present root mean squared error (RMSE) ratios, with denominator

RMSE corresponding to use of the asymptotic optimum. RMSE ratios for the empirical

optimum are all close to one, showing that the asymptotic optimum is an excellent approx-

imation to the empirical optimum under each of the conditions we consider. As expected,

RMSE ratios for the estimated soptn are larger than one, showing some loss of efficiency due to

the need to plug in parameter estimates. The worst RMSE’s for estimated soptn are about 1.3

times those attained with the (infeasible) asymptotic optimum. Finally, the RMSE ratios for

the classical cutoff sclassn are, in nearly every case, much greater than those for the estimated

soptn , showing that the proposed method is far more efficient than the classical method across

a wide range of realistic conditions.

Because the classical method effectively considers bias only, it tends to choose a small

window, while the new optimal MSE method can choose a larger window, allowing some

bias in return for a larger sample and reduced variance. These differences are most notable

with m = 1 replicate. As the number of replicates increases, the optimal method chooses a

smaller window. Therefore, the performance of the classical method generally shows some

improvement relative to the optimum or estimated optimum as the number of replicates

increases, as shown in Table 2.1. Nonetheless, the optimal method dominates the classical

method in terms of RMSE even with larger numbers of replicates.

The spacing ∆ and the corresponding number of angles depends on the resolution of the

detector plate and other features of the equipment used in data collection. Therefore, we

have conducted similar simulations (not shown here) for different values of ∆. For these

simulations, we maintained comparable autoregressive structure of the data by interpolating
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the original autocovariance function to reflect the new spacing, and we used this new autoco-

variance function to create autocorrelated data. For example, if the original autocovariance

function was γ∆(k) and the spacing was cut in half, we used the interpolated autocovariance

function

γ∆/2(k) =





1
2

{
γ∆
(
k−1
2

)
+ γ∆

(
k+1
2

)}
, k odd;

γ∆(k/2), k even

to simulate twice as many data points as the original data. The Rg estimation method was

applied to this new data set, and the new cutoff value was approximately double the original

cutoff value, as expected. Furthermore, the RMSE values were similar to the original values.

Thus, the method generalizes to the different resolutions that are common with SAXS data.
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Table 2.1. Root mean squared error (RMSE) ratios for estimation of Rg,
with RMSE’s computed from 1000 simulated realizations of m = 1, 3, or 10
replicate SAXS log-intensity curves. Denominator RMSE corresponds to use
of the asymptotic optimum cutoff angle soptn from (15). Numerator RMSE
corresponds to empirical optimum cutoff (angle yielding smallest simulation
RMSE over 1000 simulated realizations), estimated asymptotic optimum ŝoptn ,
or classical cutoff sclassn . Values for Rg of 20, 30, 40 and values for f (4)(0)R−4

g

of −0.05, 0.05, 0.10 correspond approximately to values for DNA, glucose
isomerase, and nucleosome core particle, respectively. Second-order autore-
gressive models I and II are obtained from real glucose isomerase data and are
given in (18).

Empirical opt. ŝoptn sclassn

Rg
f (4)(0)
R4

g
AR σ 1 3 10 1 3 10 1 3 10

20 -0.05 I 0.008 1.00 0.99 1.00 1.30 1.18 1.15 3.82 2.96 2.31
20 0.05 I 0.008 1.00 0.99 0.99 1.20 1.14 1.18 3.42 2.64 1.95
20 0.10 I 0.008 1.00 0.99 1.00 1.17 1.12 1.14 2.42 1.91 1.39
20 -0.05 II 0.012 0.99 1.00 1.00 1.21 1.25 1.14 4.58 3.64 2.75
20 0.05 II 0.012 0.98 1.00 0.99 1.33 1.15 1.15 4.03 3.16 2.34
20 0.10 II 0.012 0.99 0.98 0.99 1.26 1.07 1.09 2.83 2.27 1.66
30 -0.05 I 0.012 0.99 0.99 1.00 1.20 1.18 1.16 5.30 3.81 3.12
30 0.05 I 0.012 1.00 1.00 1.00 1.16 1.11 1.14 4.52 3.27 2.41
30 0.10 I 0.012 0.99 1.00 0.99 1.13 1.13 1.17 3.13 2.49 2.51
30 -0.05 II 0.019 1.00 1.00 1.00 1.26 1.16 1.24 7.37 5.04 3.69
30 0.05 II 0.019 0.98 1.00 0.98 1.18 1.09 1.07 6.14 4.30 3.27
30 0.10 II 0.019 0.96 0.98 1.00 1.08 1.10 1.18 4.42 3.10 2.74
40 -0.05 I 0.016 1.00 1.00 1.00 1.16 1.20 1.15 6.79 6.13 8.79
40 0.05 I 0.016 0.99 1.00 0.99 1.14 1.13 1.17 5.41 4.51 5.52
40 0.10 I 0.016 1.00 1.00 1.00 1.19 1.23 1.23 5.09 6.51 8.85
40 -0.05 II 0.025 0.98 1.00 0.98 1.11 1.21 1.14 8.66 6.74 7.49
40 0.05 II 0.025 0.99 1.00 0.98 1.11 1.11 1.19 6.94 5.88 5.80
40 0.10 II 0.025 0.98 0.99 1.00 1.12 1.22 1.27 6.11 5.91 8.36

2.4. Mixed Model Estimation for a Suite of SAXS Experiments

We applied the automated Rg estimation methods to a suite of 357 SAXS data sets for

wild type nucleosome core particles (NCP’s) and four mutations of NCP. For each molecule,

[29] produced both a “salt” preparation (by adding 0.05 moles of potassium chloride per

liter of solution) and a “no-salt” preparation, with two preparations of each for the wild

type NCP and one preparation of each for the four remaining mutations. From each of the
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12 preparations, samples at six different dilutions were formed; most (but not all) dilutions

were replicated three times each for 18 samples per preparation, leading to fewer than 12×18

dilution replicates. Finally, each sample was exposed for both 0.5s and 1.0s. Three of the

intensity curves were removed due to poor quality. The resulting suite of SAXS data sets

consists of n = 357 intensity curves. We applied both the automated window selection

method and preliminary outlier detection techniques to these data sets to obtain 357 R̂g

values, one at each experimental setting: we emphasize that this is not trivial without the

new semi-automated methods.

These estimates were used by [29] to conduct all 66 pairwise comparisons among the

12 preparations. Because the method yields smaller MSE’s than the classical method, it

is better able to distinguish among different Rg values, leading to a suggestion how the

nucleosome changes shape in solution as a consequence of histone mutation.

We now extend the analysis by using restricted maximum likelihood to fit a linear mixed

model of the form

R̂g = mol+ salt+ mol*salt+ dil+ mol*dil+ salt*dil+ mol*salt*dil

+exp time+ mol*exp time+ salt*exp time+ mol*salt*exp time

+dil*exp time+ mol*dil*exp time+ salt*dil*exp time

+mol*salt*dil*exp time

+prep+ dil replicate+ noise,(19)

where the first 15 terms represent fixed effects of the given experimental factors and the final

three terms represent zero-mean random effects, uncorrelated with one another. This linear
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mixed model corresponds to a split-split plot analysis, in which SAXS data from the same

preparation are correlated because they share prep values, with even greater correlation if

they are from the same dilution replicate and share dil replicate values. Coefficients of

the 15 fixed effects and the variance components for the three random effects are estimated

via maximum likelihood and restricted maximum likelihood, respectively, using standard

statistical software.

A number of biological insights, extending those of [29], are apparent from the results

of the analysis as shown in Table 2.2. For example, Rg is a measure of curvature in the

log-intensity and should not change with increased concentration or exposure time unless

the shapes of the curves change, for which there is extensive evidence. Further, it is clear

that a better experimental design to detect differences among mutations would have started

with more replicated mol*salt preparations [30].

We repeated the analysis in Table 2.2 but with a weighted approach using the estimated

standard error of the R̂g values determined from each individual intensity curve. The results

from this weighted fit are omitted since they were generally similar to the results in Table 2.2,

with only one important difference. In the weighted analysis, the mol*exp time interaction

is significant and the salt*exp time interaction is not significant, but in the unweighted

analysis these results are reversed. The similarities between the weighted and unweighted

analysis are not surprising, since the molecular structures of the NCP mutations and the

experimental conditions are similar enough that we do not expect a lot of variation in the

variance of R̂g. Indeed, in this experiment the Rg values are estimated with considerable

stability: the median estimated coefficient of variation for R̂g is 0.2% and the 95th percentile

is 0.6%.
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Table 2.2. Restricted maximum likelihood analysis for Rg estimates from a
suite of SAXS experiments. Tests of main effects and interactions for molecule
type (mol: five mutations of nucleosome core particle), salt level (salt: two
levels), dilution (dil: six levels), and exposure time (exp time: 0.5s and 1.0s)
from fitting of a linear mixed model via restricted maximum likelihood, with
random effects to account for correlations due to repeated exposures of the
same dilution replicates, and due to forming dilution replicates from the same
mol*salt preparation.

Effect Num. DF Den. DF F Value p-value

mol 4 2 30.84 0.0317
salt 1 2 110.99 0.089

mol*salt 4 2 3.76 0.2208
dil 5 125 17.41 < 0.0001

mol*dil 18 125 3.70 < 0.0001
salt*dil 5 125 8.47 < 0.0001

mol*salt*dil 16 125 2.20 0.0081
exp time 1 125 9.21 0.0029

mol*exp time 4 125 1.15 0.3384
salt*exp time 1 125 4.34 0.0393

mol*salt*exp time 4 125 2.07 0.0882
dil*exp time 5 125 0.81 0.5414

mol*dil*exp time 18 125 2.13 0.0083
salt*dil*exp time 5 125 1.37 0.2387

mol*salt*dil*exp time 16 125 1.58 0.0850

2.5. Discussion

We have shown that a largely automatic procedure, developed from asymptotic theory but

readily implemented with standard statistical tools, can be used to determine an optimal

window of angles for estimation of the radius of gyration in small-angle X-ray scattering

experiments. The fast and objective nature of this procedure makes it possible to process

large suites of SAXS experiments, allowing the use of other statistical methods such as the

split-split plot analysis described in §2.4. Use of such methods can in turn lead to better

inference from SAXS data and better design of future SAXS experiments.
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Software Availability. Example data sets and R code that implements the minimum

MSE Rg estimation procedure are freely accessible at http://hdl.handle.net/10217/167285.

The Appendix contains instructions for implementation of this code.
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2.6. Appendix

2.6.1. Lemmas. In what follows, we use the Cholesky decomposition for the covariance

matrix Γ of the autoregressive process,

(20) TΓT′ = D,
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where T′ is an upper triangular matrix given by

(21) T′ =




1 −φ1 −φ2 −φ3 . . . −φp 0 . . . 0

0 1 −φ1 −φ2 . . . −φp−1 −φp . . . 0

0 0 1 −φ1 . . . −φp−2 . . .
...

...
...

...
. . .

0 0 0 . . . 1




and D = diag(σ2, . . . , σ2); see, for example, [25] §8.6 for further details.

Lemma 1. Using the Cholesky decomposition (20),

n−1X′Γ−1X = n−1X′T′D−1TX =
1

σ2



a11 a12

a21 a22


 ,

where

a11 = n−1

n∑

i=p+1

(
1−

p∑

j=1

φj

)2

=
n− p

n

(
1−

p∑

j=1

φj

)2

+ n−1
{
1 + (1− φ1)

2 + · · ·+ (1− φ1 − · · · − φp−1)
2}

a12 = a21 = n−1

(
1−

p∑

j=1

φj

)
n∑

i=p+1

{
i2∆2 −

p∑

j=1

φj (i− j)2 ∆2

}

+ n−1{s21 + (1− φ1)
(
s22 − φ1s

2
1

)
+ . . .

+ (1− φ1 − · · · − φp−1)
(
s2p − φ1s

2
p−1 − · · · − φp−1s

2
1

)
}
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a22 = n−1

n∑

i=p+1

{
i2∆2 −

p∑

j=1

φj (i− j)2 ∆2

}2

+ n−1{s41 +
(
s2 − φ1s

2
1

)2
+ . . .

+
(
s2p − φ1s

2
p−1 − · · · − φp−1s

2
1

)2}.

Proof. By (21), we have

(22) X′T′ =




1 1− φ1 . . . 1−∑p
j=1 φj . . . 1−∑p

j=1 φj

s21 s22 − φ1s
2
1 . . . s2p+1 −

∑p
j=1 φjs

2
p+1−j . . . s2n −

∑p
j=1 φjs

2
n−j


 .

Substituting si = i∆, we can then write

n−1X′Γ−1X = n−1X′T′D−1TX =
1

σ2



a11 a12

a21 a22


 ,

where

a11 = n−1

n∑

i=p+1

(
1−

p∑

j=1

φj

)2

=
n− p

n

(
1−

p∑

j=1

φj

)2

+ n−1
{
1 + (1− φ1)

2 + · · ·+ (1− φ1 − · · · − φp−1)
2}

a12 = a21 = n−1

(
1−

p∑

j=1

φj

)
n∑

i=p+1

{
i2∆2 −

p∑

j=1

φj (i− j)2 ∆2

}

+ n−1{s21 + (1− φ1)
(
s22 − φ1s

2
1

)
+ . . .
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+ (1− φ1 − · · · − φp−1)
(
s2p − φ1s

2
p−1 − · · · − φp−1s

2
1

)
}

a22 = n−1

n∑

i=p+1

{
i2∆2 −

p∑

j=1

φj (i− j)2 ∆2

}2

+ n−1
{
s41 +

(
s2 − φ1s

2
1

)2
+ · · ·+

(
s2p − φ1s

2
p−1 − · · · − φp−1s

2
1

)2}
,

proving the result. �

Lemma 2. Using the Cholesky decomposition (20),

n−1X′Γ−1




s41

...

s4n



= n−1X′T′D−1T




s41

...

s4n



=

1

σ2



b1

b2


 ,

where

b1 = n−1

(
1−

p∑

j=1

φj

)
n∑

i=p+1

(
i4∆4 −

p∑

j=1

φj (i− j)4 ∆4

)

+ n−1{s41 + (1− φ1)
(
s42 − φ1s

4
1

)
+ . . .

+ (1− φ1 − · · · − φp−1)
(
s4p − φ1s

4
p−1 − · · · − φp−1s

4
1

)
}

b2 = n−1

n∑

i=p+1

(
i2∆2 −

p∑

j=1

φj (i− j)2 ∆2

)(
i4∆4 −

p∑

j=1

φj (i− j)4 ∆4

)

+ n−1{s61 +
(
s22 − φ1s

2
1

) (
s42 − φ1s

4
1

)
+ . . .
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+
(
s2p − φ1s

2
p−1 − · · · − φp−1s

2
1

) (
s4p − φ1s

4
p−1 − · · · − φp−1s

4
1

)
}.

Proof. By (22), we can write

n−1X′T′D−1T




s41

...

s4n



= n−1X′T′D−1




s41

s42 − s41φ1

...

s4p+1 −
∑p

j=1 φjs
4
p+1−j

...

s4n −
∑p

j=1 φjs
4
n−j




=
1

σ2



b1

b2


 ,

where

b1 = n−1

(
1−

p∑

j=1

φj

)
n∑

i=p+1

(
s4i −

p∑

j=1

φjs
4
i−j

)

+ n−1{s41 + (1− φ1)
(
s42 − φ1s

4
1

)
+ . . .

+ (1− φ1 − · · · − φp−1)
(
s4p − φ1s

4
p−1 − · · · − φp−1s

4
1

)
}

b2 = n−1

n∑

i=p+1

(
s2i −

p∑

j=1

φjs
2
i−j

)(
s4i −

p∑

j=1

φjs
4
i−j

)

+ n−1{s61 +
(
s22 − φ1s

2
1

) (
s42 − φ1s

4
1

)
+ . . .

+
(
s2p − φ1s

2
p−1 − · · · − φp−1s

2
1

) (
s4p − φ1s

4
p−1 − · · · − φp−1s

4
1

)
}.

Substituting si = i∆ yields the result. �

Lemma 3. Under A2,
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(a) For k a non-negative integer,

∆k

n

n∑

i=1

ik =
skn

k + 1
+ O

(
∆sk−1

n

)
.

(b)

a12(
1−∑p

j=1 φj

) =
∆2

n

n∑

i=p+1

{
i2 −

p∑

j=1

φj(i− j)2

}
=
s2n
3

(
1−

p∑

j=1

φj

)
+O(∆sn) .

(c)

a22 =
∆4

n

n∑

i=p+1

{
i2 −

p∑

j=1

φj(i− j)2

}2

=
s4n
5

(
1−

p∑

j=1

φj

)2

+O
(
∆s3n

)
.

(d)

b1(
1−∑p

j=1 φj

) =
∆4

n

n∑

i=p+1

{
i4 −

p∑

j=1

φj(i− j)4

}
=
s4n
5

(
1−

p∑

j=1

φj

)
+O

(
∆s3n

)
.

(e)

b2 =
∆6

n

n∑

i=p+1

{
i2 −

p∑

j=1

φj(i− j)2

}{
i4 −

p∑

j=1

φj(i− j)4

}
=
s6n
7

(
1−

p∑

j=1

φj

)2

+O
(
∆s5n

)
.

Proof. In each summation on i, let k denote the highest power of i, and use the fact

that for fixed p ≥ 0, A2 implies

∆k

n

n∑

i=p+1

ik =
∆knk+1

n(k + 1)
+ O

(
∆knk−1

)
=

skn
k + 1

+ O
(
∆sk−1

n

)
.

�
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Lemma 4. Under A1–A3, we have

(
n−1X′Γ−1X

)−1
=


 1

4
45

(
1−∑p

j=1 φj

)4
s4n

+O
(
s−4
n

)



×




s4n
5

(
1−∑p

j=1 φj

)2
+O(∆s3n) − s2n

3

(
1−∑p

j=1 φj

)2
+O(∆sn)

− s2n
3

(
1−∑p

j=1 φj

)2
+O(∆sn)

(
1−∑p

j=1 φj

)2


 .

Proof. By Lemma 1 and Lemma 3, we have

n−1X′Γ−1X =



a11 a12

a21 a22


 ,

where

a11 =

(
1−

p∑

j=1

φj

)2

+O
(
∆s−1

n

)
, a12 = a21 =

s2n
3

(
1−

p∑

j=1

φj

)2

+O(∆sn) ,

and

a22 =
s4n
5

(
1−

p∑

j=1

φj

)2

+O
(
∆s3n

)
.

Taking the inverse of nX′Γ−1X yields

(
n−1X′Γ−1X

)−1
=

sn
−4

4
45

(
1−∑p

j=1 φj

)4
+O(∆s−1

n )

×




s4n
5

(
1−∑p

j=1 φj

)2
+O(∆s3n) − s2n

3

(
1−∑p

j=1 φj

)2
+O(∆sn)

− s2n
3

(
1−∑p

j=1 φj

)2
+O(∆sn)

(
1−∑p

j=1 φj

)2
+O(∆s−1

n )


 .
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By the assumed causality in A3, 1−∑p
j=1 φj 6= 0, so we can write

sn
−4

4
45

(
1−∑p

j=1 φj

)4
+O(∆s−1

n )
=

sn
−4

4
45

(
1−∑p

j=1 φj

)4 +O
(
∆s−5

n

)
.

�

2.6.2. Proof of Theorems.

Proof of Theorem 1. By A3, the first term of the bias of R̂2
g is

E
(
R̂2

g −R2
g

)
= Bn

where

Bn =
f (4)(0)

24
e′
(
X′Γ−1X

)−1
X′Γ−1




s41

...

s4n



+ e′

(
X′Γ−1X

)−1
X′Γ−1




O(s61)

...

O (s6n)




=
f (4)(0)

24
e′
(
X′Γ−1X

)−1
X′Γ−1




s41

...

s4n



+ e′

(
X′Γ−1X

)−1
X′Γ−1




O(s6n)

...

O (s6n)




=
f (4)(0)

24
e′




(
1−∑p

j=1 φj

)2
+O(∆s−1

n ) s2n
3

(
1−∑p

j=1 φj

)2
+O(∆sn)

s2n
3

(
1−∑p

j=1 φj

)2
+O(∆sn)

s4n
5

(
1−∑p

j=1 φj

)2
+O(∆s3n)




−1

×




(
1−∑p

j=1 φj

)2
s4n
5
+O(∆s3n)

(
1−∑p

j=1 φj

)2
s6n
7
+O(∆s5n)


+O

(
s4n
)
.
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By Lemma 4,

Bn =
f (4)(0)

24
e′


 1

4
45

(
1−∑p

j=1 φj

)4
s4n

+O
(
∆s−5

n

)



×




s4n
5

(
1−∑p

j=1 φj

)2
+O(∆s3n) − s2n

3

(
1−∑p

j=1 φj

)2
+O(∆sn)

− s2n
3

(
1−∑p

j=1 φj

)2
+O(∆sn)

(
1−∑p

j=1 φj

)2
+O(∆s−1

n )




×




(
1−∑p

j=1 φj

)2
s4n
5
+O(∆s3n)

(
1−∑p

j=1 φj

)2
s6n
7
+O(∆s5n)


+O

(
s4n
)
.

Multiplying the row vector e′ through yields

Bn = −f
(4)(0)

8


 1

4
45

(
1−∑p

j=1 φj

)4
s4n

+O
(
∆s−5

n

)



×
[
− s2n

3

(
1−∑p

j=1 φj

)2
+O(∆sn)

(
1−∑p

j=1 φj

)2
+O(∆s−1

n )

]

×




(
1−∑p

j=1 φj

)2
s4n
5
+O(∆s3n)

(
1−∑p

j=1 φj

)2
s6n
7
+O(∆s5n)


+O

(
s4n
)

= − 3

24
f (4)(0)

(
45

4s4n
+O

(
∆s−5

n

))( 8

105
s6n +O

(
∆s4n

))
+O

(
s4n
)

= − 3

28
f (4)(0)s2n +O

(
s4n
)
,

since (∆sn)/(s
4
n) = ∆−2n−3 → 0 by A2. Hence, the final bias expression of R̂2

g is

(23) E
(
R̂2

g −R2
g

)
= − 3

28
f (4)(0)s2n +O

(
s4n
)
.
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Proof of Theorem 2. From (11), we have

Var
(
R̂2

g

)
= Var

{
e′
(
X′Γ−1X

)−1
X′Γ−1m−1

m∑

h=1

Yh,

}

= m−1e′
(
X′Γ−1X

)−1
X′Var(Y1)X

(
X′Γ−1X

)−1
e

= m−1e′
(
X′Γ−1X

)−1
e

=
σ2e′

mn




(
1−∑p

j=1 φj

)2
+O(∆s−1

n ) s2n
3

(
1−∑p

j=1 φj

)2
+O(∆sn)

s2n
3

(
1−∑p

j=1 φj

)2
+O(∆sn)

s4n
5

(
1−∑p

j=1 φj

)2
+O(∆s3n)




−1

e.

Next, by Lemma 4 we have

Var
(
R̂2

g

)
=
σ2e′

mn


 1

4
45

(
1−∑p

j=1 φj

)4
s4n

+O
(
∆s−5

n

)



×




s4n
5

(
1−∑p

j=1 φj

)2
+O(∆s3n) − s2n

3

(
1−∑p

j=1 φj

)2
+O(∆sn)

− s2n
3

(
1−∑p

j=1 φj

)2
+O(∆sn)

(
1−∑p

j=1 φj

)2
+O(∆s−1

n )


 e

=
405σ2

4mns4n

(
1−∑p

j=1 φj

)2 +O
(
∆2s−6

n

)
,

by Lemma 1 and Lemma 3. Writing n−1 = ∆s−1
n , we have

Var
(
R̂2

g

)
=

405σ2∆

4ms5n

(
1−∑p

j=1 φj

)2 +O
(
∆2s−6

n

)
.

This expression goes to zero as ∆ → 0 and sn → 0 by A2. �
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Proof of Theorem 3. Combining (12) and (13), the mean squared error is given by

MSE
(
R̂2

g

)
=
{
E
(
R̂2

g −R2
g

)}2

+Var
(
R̂2

g

)

=

{
− 3

28
f (4)(0)s2n +O

(
s4n
)}2

+
405σ2∆

4ms5n

(
1−∑p

j=1 φj

)2 +O
(
∆2s−6

n

)

=
9

784

{
f (4)(0)

}2
s4n +

405σ2∆

4ms5n

(
1−∑p

j=1 φj

)2 +O
(
∆2s−6

n + s6n
)
.(24)

Differentiating (24) with respect to sn yields

∂

∂sn

{
MSE

(
R̂2

g

)}
=

∂

∂sn


 9

784

{
f (4)(0)

}2
s4n +

405σ2∆

4ms5n

(
1−∑p

j=1 φj

)2




=
9

196

{
f (4)(0)

}2
s3n −

2025σ2∆

4ms6n

(
1−∑p

j=1 φj

)2 .(25)

Setting (25) equal to zero and solving for sn yields the optimal cutoff as given in (15). �
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CHAPTER 3

ESTIMATING THE RADIUS OF GYRATION FOR BIOLOGICAL

MACROMOLECULES

3.1. Introduction

Small-angle scattering is a low-resolution solution-based biophysical characterization

technique that provides information about the shape and size of molecules and complexes

in solution. The shape is approached with molecular envelopes [31]. However, scattering

can provide information that is different from information available from crystallography by

probing dynamic molecular behavior in solution. Questions about the influence of complex-

ation, substrate binding, the buffer (pH, presence or absence of specific ions), or mutations

on the global molecular properties can in theory be addressed. In practice each of these

parameters will generally only cause small changes in the global behavior of a molecule, that

is, changes in parameters measured are often small. It is therefore important to accurately

and precisely quantify small changes in these parameters and compare these changes with

the noise inherent in the experiment to ascertain that they relevant. This quantification

can be accomplished by a correct statistical treatment of the data and can be improved by

inclusion of replicate experimental data sets. This work provides a new algorithm to derive

an optimized value for the radius of gyration Rg from scattering data and further improve

this value by enabling simultaneous consideration of experimental replicates. A balanced

approach is to increase precision of Rg by considering more data points in Guinier analysis,

without compromising accuracy.
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In 1939 André Guinier published a seminal paper [14] that describes the theory, instru-

mental development and data interpretation of small-angle X-ray scattering (SAXS) data.

In this work, he demonstrated how SAXS can be applied in various disciplines, such as ma-

terial science, colloid chemistry and structural biology. Over time, Guinier’s work became

easily accessible and the method of small angle scattering became widely used [17]. Although

this technique was established decades ago, it has found a renewed interest among structural

biologists with the publication of new methods to reconstruct molecular envelopes from scat-

tering data [32, 12]. SAXS studies on biological systems can reveal important new insight,

particularly for samples that are not amenable to traditional structural analysis methods

such as X-ray crystallography. Recently published examples are intrinsically disordered pro-

teins (for example antitoxin PaaA2, [33]), nucleic acids (for example riboswitches reviewed

in [34]), and protein-nucleic acid complexes (for example DNA-methyltransferase complex,

[35]). The use of small angle scattering in structural biology is reviewed extensively elsewhere

[5, 6].

The radius of gyration is a parameter that can be derived from SAXS data without any

assumptions about the sample. It represents the square root of the average squared distance

of each electron from the center of the molecule. Thus, it depends both on size (number of

atoms) and shape (distribution of atoms) of a particle. It can be used to probe the change

of size or shape, for example in the case of a formation of a complex.

The example of the riboswitches reviewed in Zhang et al. elegantly shows that biological

information can be derived from Rg values, and how important the precision of Rg is when

comparing data from riboswitches, with and without Mg+2 and with and without ligands.

It is clear that riboswitches change their shape in response to these biologically important
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conditions and the changes can be expressed in Rg values. The comparisons are significantly

aided by increased precision.

We have developed a new algorithm that analyses the intensity of a small-angle scattering

experiment, determines the linear range of the experimental data points in Guinier analysis,

and optimizes and reports the precision of Rg.

This algorithm enables the simultaneous consideration of experimental replicates, a

method well known to improve the estimated value of parameters derived from experiments,

in this case Rg. It enables a more objective interpretation of scattering data by providing a

statistical basis for the choice of one cutoff point in the Guinier analysis. We demonstrate

advantages in practice by applying this algorithm to experimental SAXS data for nucleosome

core particles.

3.2. Materials and Methods

3.2.1. Classical Guinier analysis for estimation of Rg. Let I(s) denote the

theoretical scattering intensity at scattering angle s and let I(s) denote the corresponding

empirical intensity from a SAXS experiment. Guinier [14] derived the theoretical approxi-

mation

(26) ln I(s) ≃ ln I(0)− 1

3
R2

gs
2,

valid for small values of s. This quadratic relationship near the origin is used as the basis

for an estimation method: choose a data window of near-zero angles s1, . . . , sn such that the

relationship between squared angle s2i and empirical log-intensity ln I(si) appears linear, fit
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the linear regression model

(27) ln I(si) = ln I(0)− 1

3
R2

gs
2
i + εi = β0 + β2s

2
i + εi,

and use R̂2
g = −3β̂2 as the estimate of R2

g. An important issue is choosing the size of the

cutoff value sn.

Guinier showed by analysis of simulated data derived from idealized models of particles

that the optimal cutoff point depends on the shape of the particle under consideration. From

this work follows a rule of thumb for choosing a data window: using an iterative method,

accept scattering data only up to the “classical” cutoff sclassn that provides sclassn R̂g = 1.3 [17,

p. 128]. This method is now commonly applied [31, p. 71].

3.2.2. Mean square error of the Guinier estimator. The key innovations of

this paper are (a) choosing the data window not by the classical 1.3 rule-of-thumb but by

optimizing the window with respect to the mean squared error (MSE) of the estimator and

(b) deriving rigorous variance estimators for R̂2
g and R̂g. The theoretical MSE is defined as

(28) MSEn

(
R̂2

g

)
= Varn

(
R̂2

g

)
+
{
Biasn

(
R̂2

g

)}2

,

where Biasn

(
R̂2

g

)
= E

[
R̂2

g

]
− R2

g. As n increases, the variance Varn

(
R̂2

g

)
decreases due to

increased sample size, but the bias Biasn

(
R̂2

g

)
increases as the Guinier quadratic approxi-

mation (26), valid only near the origin, begins to break down. As n decreases, the variance

increases and the bias decreases. Figure 3.1 illustrates this behavior using log intensity ver-

sus angle for the nucleosome core particle [1]. Panel A shows the quadratic fit of the data

using the cutoff value sclassn , resulting in n = 18. This curve fits the data well, so that R̂2
g
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Figure 3.1. The number of experimental data points influences the precision

and accuracy of R̂2
g. (A) Classical cutoff with snR̂g ≈ 1.3 provides R̂g = 44.32

and V̂ar(R̂g) = 1.162. (B) Choice of n = 95 provides R̂g = 41.10 and V̂ar(R̂g)
= 0.004. (C) Optimal cutoff sn that minimizes estimated mean squared error,

MSE
(
R̂2

g

)
, provides R̂g = 43.75 and V̂ar(R̂g) = 0.028.

will have low bias; however, the curve remains quadratic well past the classical cutoff value.

Panel B shows a cutoff value chosen to yield n = 95; clearly the quadratic approximation

fails for sn so far from the origin. Panel C of Figure 3.1 shows a cutoff value chosen according

to our MSE optimization: it uses much more data (n = 63) than the classical cutoff, for

greater precision/lower variance, while maintaining a high-quality quadratic approximation,

for high accuracy/low bias.
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The MSE optimization relies on estimation of the MSE, which in turn relies on estimation

of the variance and estimation of the bias in (28). The approach to MSE estimation and

optimization will explicitly handle replicate data in an optimal way, without resorting to ad

hoc devices like averaging the replicate intensity curves prior to analysis. Let m denote the

number of replicate intensity curves used in the analysis. The results hold for general m,

including the special case of no replication, m = 1. We assume a common angle spacing ∆

across replicates, as is common in practice.

3.2.3. Accounting for correlation in Guinier estimation of R2
g. To better

estimate R2
g and its variance, we properly account for the correlation structure within a

single replicate of the log-intensity data; see [19]. We begin by choosing an initial large data

window, by performing a statistical changepoint analysis [36] on the third differences of the

log-intensity data. We fit a cubic spline [37] to the log-intensity data over the initial window,

obtain residuals {ri} from this fit, and model the residuals as a pth order autoregressive

process

ri = φ1ri−1 + · · ·+ φpri−p + ei,

where p is selected with Akaike’s information criterion (AIC) [38], and {ei} are uncorrelated,

with E[ei] = 0 and Var(ei) = σ2. We then obtain the parameter estimates φ̂1, . . . , φ̂p and

σ̂2 via Yule-Walker estimation [39]. Using this estimated autoregressive model, we fit the

regression (27) via generalized least squares to obtain R̂2
g.

3.2.4. Estimation of the variance of the Guinier estimator. For m replicates

and a given cutoff angle sn, assuming n data values in each replicate, the variance estimator
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Figure 3.2. Minimization of the mean squared error criterion for the nu-
cleosome core particle leads to optimized cutoff value for estimation of Rg in

Figure 3.1. (A) Estimated bias of R̂2
g determined using formula given in (31).

(B) Estimated variance of R̂2
g calculated using formula (29). (C) Estimated

MSE(R̂2
g).

for R̂2
g is

(29) V̂arn

(
R̂2

g

)
=

405σ̂2∆

4ms5n

(
1−∑p

j=1 φ̂j

)2 ,

where ∆ is the known spacing between consecutive angles. If the data are uncorrelated within

replicates, φ̂j values are all near zero; in practice, the factor
(
1−∑p

j=1 φ̂j

)−2

is greater than

one, reflecting the smaller information content of positively-correlated observations. The

estimated variance decreases with more replicates m and/or a larger cutoff sn.
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Panel B of Figure 3.2 shows the behavior of (29) for a single replicate of experimental

SAXS data for the nucleosome core particle over a range of sn values.

It is also of interest to estimate the variance and standard deviation = (variance)1/2 of

R̂g, in order to produce appropriate confidence intervals. A standard delta-method argument

[40] shows that an appropriate variance estimator for R̂g is

(30) V̂arn

(
R̂g

)
=

V̂arn

(
R̂2

g

)

4R̂2
g

.

3.2.5. Estimation of the bias of the Guinier estimator. The bias estimator

begins by extending (27) to an additional term to account for the breakdown of the quadratic

approximation (26) as sn increases and fitting the expanded model

ln I(si) = β0 + β2s
2
i + β4s

4
i + εi

via generalized least squares, using the estimated autoregressive model to account for the

correlation structure in the data. If the quadratic approximation (26) is good, β̂4 is near

zero, and the Guinier estimator is nearly unbiased. The resulting bias estimator is then

(31) B̂iasn

(
R̂2

g

)
= −18

7
β̂4s

2
n;

As the cutoff sn increases, the bias increases. The number of replicates, m, does not affect

the bias.

Figure 3.2 A shows the behavior of (31), applied to experimental data for the nucleosome

core particle. Overall the bias of R̂2
g increases as n increases. The increase is gradual at first
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but becomes increasingly large. This behavior is readily seen in Figure 3.1. The curve is

roughly quadratic at first, but is clearly non-quadratic for larger n values.

3.2.6. Optimal data window selection for the Guinier estimator. We choose

sn to minimize the estimated MSE, obtained by adding (29) and the squared value of (31).

Straightforward calculus then shows that the resulting optimal sn is

(32) soptn =





11025σ̂2∆

576mβ̂2
4

(
1−∑p

j=1 φ̂j

)2





1/9

.

If the quadratic approximation (26) is good, β̂4 is near zero, and the optimal window is large.

The optimal cutoff is small if the number of replicates is large.

The last panel of Figure 3.2 demonstrates determination of the optimum window. This

panel is the estimated mean squared error of R̂2
g for different values of sn, and the minimum

value of the plot is estimated by (32).

3.2.7. Metrics for evaluation. The performance of the minimum-MSE soptn cutoff

relative to the classical sclassn cutoff was evaluated through application to nine simulated data

scenarios (three molecules, each with one, three, or 15 replicates) and to a data set of two

independent wild type preparations and four mutants of the nucleosome core particle, each

with 0 mM KCl and 50 mM KCl added. Further detail on the data sets is provided below.

For each of the nine simulated scenarios, the true value of Rg is known; see details below.

For both sclassn and soptn , we compute the percent relative bias of the estimator R̂g,

%RB =
Average (estimator− truth)

truth
× 100%,

=

∑M
i=1

(
R̂g(i) −Rg

)
/M

Rg

× 100%,
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where the average is computed over M = 1000 simulated iterations. We also compute the

root mean squared error (RMSE),

RMSE =
[
Average

{
(estimator− truth)2

}]1/2

=

{
M∑

i=1

(
R̂g(i) −Rg

)2
/M

}1/2

for both cutoff values, and summarize with the RMSE ratio

RMSE
(
sclassn

)
/RMSE

(
soptn

)
.

An RMSE ratio greater than one favors the proposed method.

The true theoretical variance Var
(
R̂g

)
is well-approximated by the empirical variance

of the R̂g estimates over the M = 1000 simulated iterations,

(33) S2
M =

1

M − 1





M∑

i=1

R̂2
g(i) −

1

M

(
M∑

i=1

R̂g(i)

)2


 .

We evaluate the variance estimator (30) by computing its value V̂i for each iteration i, then

averaging over all M iterations,

(34) V̄M =
1

M

M∑

i=1

V̂i,

and comparing to S2
M . If the variance estimator is approximately unbiased (approximately

correct on average), then V̄M ≃ S2
M .

The nucleosome mutant data set is used to compare the classical and optimal cutoffs in

their respective abilities to discriminate among Rg values in an experimental setting. Let a
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denote one of the 12 scenarios (one of the wild type samples, or one of four mutants, either

without or with salt added) and let b 6= a denote another scenario; there are 66 such pairs,

as shown in Table 3.4. For each such pair, we compute

(35) tab =
R̂g(a)− R̂g(b)√

V̂arn

(
R̂g(a)

)
+ V̂arn

(
R̂g(b)

) ,

using (30) in the denominator, and using either the classical cutoff sclassn or the optimal soptn .

If |tab| > 1.96, we declare a statistically significant difference, then compare results between

classical and optimal methods.

3.2.8. Simulation data sets. Simulation studies were conducted to determine the

performance of the algorithm compared to a classical procedure when the true Rg value is

known. Nine simulation scenarios, consisting of three different molecules at three different

replication levels (one, three, or 15), are considered. The three molecules (myoglobin (PDB

entry 1WLA) [41], DNA (PDB entry 1BNA) [42], and the nucleosome core particle (PDB

entry 1AOI) [1]) have known atomic structures, and so Rg can be computed exactly from

their atomic coordinates. The molecules were selected for testing purposes based on their

varied nature, size, shape, and Rg values.

For each molecule a theoretical log-intensity curve was calculated from the crystal struc-

ture using CRYSOL [28]. One simulation scenario involves generating 1000, 3000, or 15000

log-intensity curves, depending on the number of replicates. Each such simulated replicate

is obtained by adding randomly-generated noise to the theoretical log-intensity curve. The

randomly-generated noise is independent across replicates, but correlated within replicates,
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Figure 3.3. Illustration of one iteration of the simulation process, generating
three simulated replicate intensity curves for the nucleosome; the process is
repeated 1000 times to obtain the (Nucleosome, 3 replicates) cell of Table 3.2.
(A) View of the canonical nucleosome from the crystal structure [1], with the
DNA shown in gray, the histones in color. The H3 histone is represented in
blue. (B) Theoretical log intensity curve derived from the crystal structure.
(C) One simulated iteration of three simulated replicate log intensity curves,
each formed by adding simulated noise to the theoretical log intensity curve.

as observed in real data [19]. Figure 3.3 illustrates this process for one iteration of the

nucleosome with three replicates.

3.2.9. Experimental procedure. To assess amino acid sequence-dependent confor-

mational variability in the nucleosome, [29] conducted an experiment using SAXS data for

both wild type and mutant nucleosomes. Nucleosomes are intricate complexes of histones

and DNA (Figure 3.3A). The histones contain important modification sites, that, when

acetylated or phosphorylated, influence chromatin behavior. By making mutants in the

H3 histone (blue in Figure 3.3A) [29] tested the hypothesis that modifications in that area

will change the stability and shape of the nucleosome. The sites were chosen to mimic

methylation and phosphorylation sites. Nucleosome core particle samples were prepared by

previously established methods [43]. Data collection and data processing methods were used

that follow previous work [44].
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Data sets used for radius of gyration calculations were collected at various sample dilu-

tions and exposure times and the data here reported were consistently derived from 1/16th

dilution (with a typical nucleosome concentration of 0.1 mg/ml) and 1 second exposure.

The data set contains three replicate curves for each of the two wild types WT, WT2, and

the four H3 mutants Y41E, I51A, T45E, and R42A. The samples WT and WT2 are two

independent repeats of the full experiment for the same molecule. For all preparations, wild

type and mutants, samples either have no salt added to the buffer, or have 50 mM KCl

added, leading to 12 scenarios with three replicate intensity curves each. We use these data

to compare the ability of the classical method and the optimized method to discriminate

among mutant varieties on the basis of R̂g.

3.3. Results and Discussion

3.3.1. Proposed method dominates classical method in simulation exper-

iments. Tables 3.1 and 3.2 compare the proposed method to the classical method under

nine different simulated scenarios, three different molecules at three different replication lev-

els (one, three, or 15) each. In most of the simulated scenarios, our method has a slightly

larger percent relative bias than the classical method, but its estimates of Rg are far more

precise. Our method outperforms the classical method with respect to root mean squared

error as shown in Table 3.2.

Table 3.3 demonstrates the quality of the variance estimator (30). For each simulation,

the empirical variance of the 1000 R̂g estimates, S2
M , is approximately equal to the average

estimated variances, V̂ . Thus the variance estimator (30) is an adequate approximation of

the variance of R̂g.
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Table 3.1. The classical and optimized algorithms both result in small rel-
ative bias. The bias tends to be slightly larger for the proposed algorithm.
Three examples of different nature (protein, DNA and protein-DNA complex)
were investigated. The bias estimate for either method is relative to the true
Rg value (see text). Ideally the bias should be close to zero. Increasing bias
values go hand-in-hand with decreasing accuracy for Rg.

Percent relative bias

Replicates Method Nucleosome DNA Myoglobin

1
Classical -2.44 -0.25 0.36

Optimized 0.04 -1.66 0.88

3
Classical -2.33 -0.28 0.35

Optimized 0.03 -1.24 0.80

15
Classical -2.25 -0.22 0.28

Optimized 0.01 -1.05 0.65

Table 3.2. Root mean squared error (RMSE) ratio of the classical method to
the proposed method indicates that the proposed method outperforms the clas-
sical method in simulation studies. The ratio is calculated via RMSE(classical)
/ RMSE(optimized), with values greater than one favoring the proposed
method. The calculations are based on 1000 simulated samples for each com-
bination of molecule and number of replicates (m = 1, 3, or 15).

RMSE ratio

Replicates Nucleosome DNA Myoglobin

1 14.78 4.05 2.81

3 16.05 3.19 1.95

15 16.79 1.95 1.30

3.3.2. Proposed method better discriminates among mutants of the nucle-

osome core particle. By using the optimized method to estimate Rg and its variance, we

are able to use SAXS to successfully test the hypothesis that amino acid sequence-dependent

conformational variability exists in the nucleosome. With samples of two wild types and four

mutants to which either no salt or 50 mM salt were added, there are 12 scenarios and a to-

tal of 66 possible pairwise comparisons; see Table 3.4. Among these, at the conventional

comparison of two standard deviations (which provides an approximately 95% confidence
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Table 3.3. The proposed variance estimator (30) is nearly unbiased for

the true theoretical variance Var
(
R̂g

)
. The theoretical variance is well-

approximated by S2
M in (33), the empirical variance of the R̂g estimates over

theM = 1000 simulated iterations. The comparison was done for three models
of different nature, with one, three or 15 replicates. In each simulated scenario,
the average variance estimate, V̄M from (34), is close to S2

M .

Replicates Nucleosome DNA Myoglobin

1
S2
M 0.1492 0.2592 0.1873

V̄M 0.1518 0.2469 0.1786

3
S2
M 0.0848 0.1802 0.1202

V̄M 0.0670 0.1457 0.1037

15
S2
M 0.0370 0.0963 0.0733

V̄M 0.0333 0.0957 0.0644

interval), 11 had no statistically significant difference detected by either classical Guinier

analysis or the optimized procedure (white background in Table 3.4) and 30 had a signifi-

cant comparison under both methods (yellow background in Table 3.4). One case led to a

significant difference using the classical analysis but not using the optimized procedure (green

background), while the remaining 24 cases had a non-significant difference using the classical

analysis and a significant difference using the optimized procedure (blue background). In

this practical example, the optimized method is superior in its ability to distinguish among

different Rg values, leading to a suggestion how the nucleosome changes shape in solution as

a consequence of histone mutation.
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Table 3.4. Pairwise comparisons of Rg values for wild type (WT) and H3
mutant nucleosomes shows superiority of new point and interval estimation
method over classical Guinier analysis. (A) Wild type and mutants without
extra salt in the buffer. The background color of the table entries signify if the
pair-wise Rg comparisons are not significant (no color), significant for the new
algorithm but not for the old (blue), or significant for both algorithms (yellow).
The values in the table are the result of a t-test as defined in equation 35. In
each field in this table, the top value is derived from the classical Guinier
analysis, the bottom value from the new algorithm. A value greater than
1.96 indicates a statistically significant difference. (B) As (A) but samples
to which 50 mM KCl was added to the buffer. (C) As (A), cross-comparison
with 50 mM KCl data in columns and 0 mM KCl data in rows. The green
background indicates that a significant difference was detected by conventional
algorithm, but not with the optimized algorithm.

A: 0 mM KCl added

WT WT2 Y41E I51A T45E R42A

0 0.4 1.2 2.5 1.6 0.6

0 0.6 3.8 5.1 6.8 5.8
WT

0 1.8 3.5 2.5 1.4

0 3.2 4.0 5.7 4.8
WT2

0 1.2 0.1 1.1

0 0.5 0.9 0.1
Y41E

0 1.9 4.9

0 4.6 2.0
I51A

0 2.6

0 2.2
T45E

B: 50 mM KCl added

WT WT2 Y41E I51A T45E R42A

0 1.9 1.9 3.6 4.8 3.4

0 1.2 2.3 9.5 11.7 7.6
WT

0 1.1 3.1 6.7 3.5

0 1.8 10.6 16.7 9.7
WT2

0 0.1 0.5 0.3

0 4.6 4.6 2.2
Y41E

0 1.1 1.1

0 1.1 4.6
H3I

0 3.7

0 6.2
T45E

C: Cross-comparison of 0 mM (→) and 50 mM KCl (↓)

WT WT2 Y41E I51A T45E R42A

0.9 1.1 1.4 3.2 4.8 3.0

2.7 2.2 0.4 7.1 8.5 4.4
WT

0.6 2.0 1.7 4.0 6.2 4.1

3.2 2.9 0.0 6.4 7.4 3.5
WT2

1.9 0.4 0.9 2.2 3.9 1.8

6.2 6.4 2.4 2.9 2.6 0.8
Y41E

3.0 2.5 0.5 1.7 4.8 1.1

8.5 12.5 2.4 4.6 7.4 0.5
I51A

2.3 0.8 0.9 2.7 6.4 3.0

10.3 16.0 3.4 3.2 4.4 3.5
T45E

1.6 1.3 1.3 4.1 9.9 6.2

9.2 13.5 2.9 3.9 5.7 1.8
R42A
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3.4. Conclusions

The radius of gyration of biological macromolecules gives insight into the size and shape

of the molecule, and can aid in testing hypotheses about the molecular shape. We have devel-

oped a semi-automated, statistically sound procedure that estimates the radius of gyration

for a molecule and gives a reliable variance estimate. Simulation results show that this esti-

mate of Rg has favorable mean squared error properties compared to the classical method.

Furthermore, this method is shown to be more powerful when experimental replicates are

present. Results for the procedure applied to experimental data show an improved ability to

differentiate Rg values over the classical Guinier method. Therefore implementation of this

new procedure will yield more precise estimates of Rg and its variance, enabling improved

experimental hypothesis testing.
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CHAPTER 4

A NEW SHAPE CHARACTERISTIC BASED ON HIGHER-ORDER

MOMENTS

4.1. Introduction

Small-angle X-ray scattering (SAXS) is a technique that gives low-resolution information

about a molecule in solution. In particular, the radius of gyration (Rg) of a molecule can

be estimated using the log intensity curve from a SAXS experiment. Guinier [14] derived

an approximation to estimate R2
g, which is analogous to the second moment of a molecule.

The value of R2
g contains information regarding a molecule’s shape and size. Moreover, two

molecules of similar atomic weight but different shape can be distinguished using their R2
g

values. We extend this idea to estimate the fourth moment, denoted by M4, of a molecule

in order to distinguish subtle differences in molecules’ shapes and sizes.

This idea relates to the moments of probability distributions. Consider the two distribu-

tions in Figure 4.1. These two distributions both have the same first and second moment;

however, they have very different shapes. Their fourth moment values can help distinguish

their shapes. The fourth moment for the normal distribution on the left is 3 and the fourth

moment for the uniform distribution on the right is 1.8. Our goal is to extend this idea

to SAXS data in order to differentiate between two molecules with similar Rg values but

different fourth moment values.
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(a) Normal (0,1) distribution.
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(b) Uniform (−
√
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√
3) distribution.

Figure 4.1. Normal (0,1) distribution (left) and Uniform (−
√
3,
√
3) distri-

bution (right). Each distribution has mean zero and variance one. However,
the fourth moment of the normal distribution is 3 and the fourth moment of
the uniform distribution is 1.8.

4.2. Definition of ψ

In essence, Rg describes the mass spread present in a molecule. Since the variance (also

known as the second moment) of a probability distribution is also a measure of spread, R2
g

can be thought of as an analog to variance.

We define Rg using the function p(r), which is the distribution of the distances r between

all pairwise points of a molecule:

(36) R2
g =

∫ Dmax

0
r2p(r) dr

2π
∫ Dmax

0
p(r) dr

,

where Dmax is the maximum pairwise distance in the molecule. We further define the new

quantity

(37) M4 =

∫ Dmax

0
r4p(r) dr

2π
∫ Dmax

0
p(r) dr

.
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Just as R2
g is analogous to the second moment of a probability distribution, M4 is the

analog of the fourth moment of a distribution. Very roughly, the fourth moment provides

information about how much area is contained in the tails of the distribution. Likewise, M4

provides information about how much mass is contained in the regions of a molecule farthest

from the center of mass. For example, a rod-shaped molecule has a larger M4 value than a

spherical molecule, assuming both molecules have the same Rg value.

We wish to use these quantities to differentiate molecules based purely on shape, but

both Rg and M
4 are dependent on molecular size. Therefore, we define a new dimensionless

ratio ψ given by

ψ =
M4

R4
g

,

which contains information concerning molecular shape but is independent of size. Fur-

thermore, ψ can be estimated from experimental SAXS data using an extension of Guinier

analysis.

4.3. Calculating ψ for Geometric Shapes

We first determine the ψ value for cylinders of varying height/radius ratios, and then we

use this information to estimate the shape of a molecule using its ψ value. The quantity

ψ for a cylinder depends solely on the cylinder’s height/radius ratio, and this relationship

is illustrated by the curve in Figure 4.2. The plot shows ψ versus increasing height/radius

ratios of cylinders. The ψ value for a cylinder with a fixed height/radius ratio is independent

of its size. Furthermore, as the height/radius ratio increases ψ will converge to 4.8 since this

is the ψ value for a line (infinitely long cylinder on finite radius) of any length. A cylinder

of height zero is a circle, and its ψ value is 10/3, which is independent of the circle’s radius.
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The minimum value of the curve in Figure 4.2 has a ψ value of 2.89 and a height/radius

ratio of approximately 1.7.

Given a ψ value we wish to estimate a cylinder’s height/radius ratio. However, for values

of ψ in the range 2.8 to 3.3 there are two possible height/radius ratios as can be seen in

Figure 4.2. Therefore, we have an identifiability problem for values in this range.

The plot in Figure 4.2 shows the ψ versus aspect ratio (H/R) curve for ellipsoids and

rectangles. The black curve represents varying cylinders, the dashed red curve represents

varying ellipsoids, and the dotted blue curve represents varying rectangles. For the larger

values on the curve, ψ is larger for ellipsoids and smaller for rectangles compared to cylinders.

The ellipsoid curve touches the line 20/7 at height/radius = 2 since this is the exact ψ value

for a sphere. The ψ value for the rectangle curve, the dotted blue line, converges to 3.4 as

its height goes to zero. This is the ψ value for a square. The ψ value for the ellipsoid curve

converges to 10/3 as its height goes to zero since, like a cylinder, it converges to a circle. For

the rest of this paper we will focus on ψ values for cylinders, but a different shape could be

used instead if desired.

4.4. Estimating the Height/Radius Ratio for a Molecule Given its Atomic

Structure

We use principal component analysis (PCA) to determine the aspect ratio of the best

fitting cylinder for a molecule, given its atomic structure [45]. Let X be the n × 3 matrix

containing the 3-dimensional coordinates for a molecule with n atoms, and let S be the

3 × 3 covariance matrix for X. From principal component analysis theory, the eigenvalues

and eigenvectors of S contain the spread and direction of most variability in X. Let λ1, λ2,

and λ3 be the largest, second-largest, and smallest eigenvalues of S, respectively, and let

61



v1,v2, and v3 be the corresponding mutually orthogonal eigenvectors. Then, the direction

of largest variability in X is v1 with relative length
√
λ1, and the direction of second-largest

variability in X is v2 with relative length
√
λ2.

For molecules with 20
7
< ψ ≤ 10

3
, the method yields two good-fitting cylinders. A similar

ambiguity occurs when estimating the height/radius (H/R) ratio using PCA. There are two

alternate approximations that may be used to find the H/R ratio of a molecule:

H

R
≈ 2

√
λ1
λ2
, and

H

R
≈ 2

√
λ3
λ1
.

In the first approximation, it is assumed that the direction of greatest variability corresponds

to the cylinder’s height, so the resulting cylinder has a height greater than its diameter. In

the second approximation, the opposite is true: the direction of least variability corresponds

to height, resulting in a cylinder with height smaller than diameter. We therefore select the

approximation that best represents the actual shape of the molecule.

4.5. ψ Plot for Molecules

For a molecule of arbitrary shape with known p(r) function, its height/radius ratio can

be approximated using principal component analysis, and ψ can be computed using the

previously discussed methods. Figure 4.2 contains a plot of ψ versus height/radius ratio for

3,430 molecules; the atomic structures for these molecules were obtained from the database

at PDB.org. The black curve is again ψ versus height/radius ratio for cylinders of various

dimensions, which one can see provides a good fit for the molecular data, with coefficient of

determination 0.91. Therefore, on average, cylinders yield an adequate fit for the molecules.
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Figure 4.2. Plot of φ versus aspect ratio for three shapes along with exam-
ples of cylinders that fit different height/radius ratios. The gray points are the
estimated height/radius ratio calculated using principal component analysis
versus the exact ψ value determined from the atomic structure of theoreti-
cal molecules. The black represents varying cylinders, the dashed red curve
represents varying ellipsoids, and the dotted blue curve represents varying rect-
angles. Selected cylinders of different height/radius ratios are also given on
the plot.

From the atomic structure of the molecule, we calculate ψ, and using this value with

Figure 4.2 we determine a height/radius ratio for the cylinder corresponding to the molecule.

Additionally, from the molecule’s atomic structure we estimate the height/radius ratio of

a cylinder using principal component analysis. A plot of H/R estimated from principal

component analysis versus H/R estimated via cylinder fitting along with the identity line is
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Figure 4.3. Plot of H/R estimated from principal component analysis versus
H/R estimated via cylinder fitting, along with the identity line.

shown in Figure 4.3. This plot illustrates the high degree of correlation between these two

methods of fitting a cylinder to the molecule.

Using the atomic structure of the molecules in Figure 4.2, we calculate the true Dmax

value for each molecule. Furthermore, from the atomic structure we calculate ψ and Rg

and using (59) along with Figure 4.2 we determine a good-fitting cylinder for each molecule.

Then, we estimate Dmax for each molecule from this cylinder. A plot of true Dmax versus

estimated Dmax from this cylinder fitting process along with the identity line is given in

Figure 4.4. The correlation for these two values is 0.98. Therefore, the fitted cylinder give a

good estimate of the Dmax value for a molecule.
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Figure 4.4. Plot of theoretical Dmax for molecules calculated from their
atomic structure versus their Dmax value estimate using the cylinder fitting.

4.6. Discussion

We develop a new molecular shape parameter, ψ, that gives the aspect ratio of a mole-

cule. Previous work has been able to estimate a molecule’s radius of gyration; however, as

shown show in several examples two molecules can have similar radius of gyration values but

vastly different shape. Some of this different shape can be accounted for comparing the two

molecules’ fourth moment values. The fourth moment and the radius of gyration is related

to the parameter ψ. This new parameter can be used to determine a low-resolution shape

and size of the molecule in solution.
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CHAPTER 5

STATISTICAL INFERENCE FOR THE ASPECT RATIO VIA

HIGHER-ORDER GUINIER ANALYSIS

5.1. Introduction

Guinier derived an equation relating Rg and the scattering curve:

(38) ln I(s) = ln I(0)− 1

3
R2

gs
2 +O

(
s4
)
.

This equation can be used along with quadratic regression to estimate Rg from a molecule’s

experimental SAXS intensity curve. To relate the SAXS data to both Rg and the quantity

M4, we extend (38) to include an extra term, resulting in a higher-order (and more accurate

for small s) approximation:

(39) ln I(s) = ln I(0)− 1

3
R2

gs
2 +

(
1

60
M4 − 1

18
R4

g

)
s4 +O

(
s6
)
.

Using this equation, Rg and M
4 can be estimated directly from experimental SAXS data for

a molecule; the ratio ψ can then be obtained easily.

5.2. Estimating R2
g and M4

To estimate R2
g and M4, consider the model written as

(40) ln I(si) = β0 + β2s
2
i + β4s

4
i + εi,
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where i = 1, . . . , n. We can estimate R2
g and M4 using the relation

ln I(si) = ln I(0)− 1

3
R2

gs
2 +

1

60
M4s4 − 1

18
R4

gs
4 +O

(
s6
)

= ln I(0)− 1

3
R2

gs
2 +

(
1

60
M4 − 1

18
R4

g

)
s4 +O

(
s6
)
.(41)

Therefore, we need to determine the relationship between the βi’s and R
2
g andM

4. Equating

the coefficients in the formulas (40) and (41) yields the approximations for R2
g and M4. To

estimate R2
g and M4, we fit (40) and use the approximations given by

R̂2
g = −3β̂2 and(42)

M̂4 = 60β̂4 + 30β̂2
2 .(43)

5.3. Minimizing the MSE of ψ̂ With AR(p) Errors

First, we calculate the MSE of β̂2 and β̂4. Let f(·) be the true log intensity curve.

The empirical log intensity curve values are Y1, . . . , Yn measured at the angles s1, . . . , sn.

Furthermore, let

si = i∆,

where ∆ is the spacing between points. We consider an asymptotic formulation in which

n→ ∞ with ∆ → 0, and the goal is to minimize MSE(ψ̂).

Thus, the model for this problem is given by

Yi = f(si) + εi,
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where E[εi] = 0 and i = 1, . . . , n. Therefore, we have E[Yi] = f(si) and the errors {εi}

follow a causal pth order autoregressive process, AR(p), with covariance matrix Γ. We fit

the model

Yi = β0 + β2s
2
i + β4s

4
i + εi

to the observed data using generalized least squares. The estimator of βββ is

β̂ββ =
(
X′Γ−1X

)−1
X′Γ−1Y,

where Y = [Y1, . . . , Yn]
′ and

X =




1 s21 s41

...
...

...

1 s2n s4n




is an n× 3 matrix. Then, the estimator of β2 is

β̂2 = e2
′
(
X′Γ−1X

)−1
X′Γ−1Y,

where e2 is the 3× 1 vector given by e2 = [0, 1, 0]′ and the estimator of β4 is

β̂4 = e4
′
(
X′Γ−1X

)−1
X′Γ−1Y,

where e4 is the 3× 1 vector given by e4 = [0, 0, 1]′ . Next let M = [f(s1), f(s2), . . . , f(sn)]
′ .

Thus, the expected value of β̂ββ is given by

Eβ̂ββ = E
{(

X′Γ−1X
)−1

X′Γ−1Y
}
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=
(
X′Γ−1X

)−1
X′Γ−1E(Y)

=
(
X′Γ−1X

)−1
X′Γ−1M.(44)

Now, we employ the Taylor series of f(si) to rewrite (44). Since the log intensity curve can

be written as a polynomial containing only even powers of s, its Taylor series centered at 0

is given by

f(si) = f(0) +
f ′′(0)

2
s2i +

f (4)(0)

24
s4i +

f (6)(0)

720
s6i +O

(
s8
)
.

Hence, M can be written as

M = X




f(0)

1
2
f ′′(0)

1
24
f (4)(0)




+
f (6)(0)

720




s61

...

s6n




+O
(
s8
)
.

Therefore, the first term in this expansion of Eβ̂ββ is

e′i
(
X′Γ−1X

)−1
X′Γ−1X




f(0)

1
2
f ′′(0)

1
24
f (4)(0)




= e′i




f(0)

1
2
f ′′(0)

1
24
f (4)(0)




= βi
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for i = 2, 4. Thus, the bias of β̂i is given by

E
(
β̂i − βi

)
=
f (6)(0)

720
e′i
(
X′Γ−1X

)−1
X′Γ−1




s61

...

s6n




+O
(
s8
)
.

Therefore, if f(s) = β0 + β2s
2 + β4s

4 for some constants β0, β2, β4 ∈ R, then β̂i is unbiased.

In order to compute the leading term in the bias of β̂i we use the following lemmas.

The first lemma is the Cholesky decomposition of the covariance matrix Γ for the au-

toregressive error process (see [25] §8.6 for more details). This lemma is used to determine

the inverse of Γ in future computations.

Consider the Cholesky decomposition for the matrix Γ,

(45) TΓT′ = D,

where T′ is an upper triangular matrix given by

T′ =




1 −φ1 −φ2 −φ3 . . . −φp 0 . . . 0

0 1 −φ1 −φ2 . . . −φp−1 −φp . . . 0

0 0 1 −φ1 . . . −φp−2 . . .
...

...
...

...
. . .

0 0 0 . . . 1




and D = diag(σ2, . . . , σ2).
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Lemma 5. Using the Cholesky decomposition (45), we can write

n−1X′Γ−1X = n−1X′T′D−1TX =
1

σ2




a11 a12 a13

a21 a22 a23

a31 a32 a33




,

where

a11 =
n− p

n

(
1−

p∑

j=1

φj

)2

+ n−1
{
1 + (1− φ1)

2 + · · ·+ (1− φ1 − · · · − φp−1)
2}

a12 = a21 = n−1

(
1−

p∑

j=1

φj

)
n∑

i=p+1

{
i2∆2 −

p∑

j=1

φj (i− j)2 ∆2

}

+ n−1{s21 + (1− φ1)
(
s22 − φ1s

2
1

)
+ · · ·+

(1− φ1 − · · · − φp−1)
(
s2p − φ1s

2
p−1 − · · · − φp−1s

2
1

)
}

a13 = a31 = n−1

(
1−

p∑

j=1

φj

)
n∑

i=p+1

{
i4∆4 −

p∑

j=1

φj (i− j)4 ∆4

}

+ n−1{s41 + (1− φ1)
(
s42 − φ1s

4
1

)
+ . . .

+ (1− φ1 − · · · − φp−1)
(
s4p − φ1s

4
p−1 − · · · − φp−1s

4
1

)
}

a22 = n−1

n∑

i=p+1

{
i2∆2 −

p∑

j=1

φj (i− j)2 ∆2

}2

+ n−1
{
s41 +

(
s22 − φ1s

2
1

)2
+ · · ·+

(
s2p − φ1s

2
p−1 − · · · − φp−1s

2
1

)2}
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a23 = a32 = n−1

n∑

i=p+1

{
i2∆2 −

p∑

j=1

φj (i− j)2 ∆2

}{
i4∆4 −

p∑

j=1

φj (i− j)4 ∆4

}

+ n−1{s61 +
(
s22 − φ1s

2
1

) (
s42 − φ1s

4
1

)
+ . . .

+
(
s2p − φ1s

2
p−1 − · · · − φp−1s

2
1

) (
s4p − φ1s

4
p−1 − · · · − φp−1s

4
1

)
}

a33 = n−1

n∑

i=p+1

{
i4∆4 −

p∑

j=1

φj (i− j)4 ∆4

}2

+ n−1
{
s81 +

(
s42 − φ1s

4
1

)2
+ · · ·+

(
s4p − φ1s

4
p−1 − · · · − φp−1s

4
1

)2}
.

Proof. Applying the Cholesky decomposition (45) of the matrix Γ, we have

X′Γ−1X = X′T′D−1TX.

First, we have

(46) X′T′ =




1 1− φ1 . . . 1−∑p
j=1 φj . . . 1−∑p

j=1 φj

s21 s22 − φ2
1 . . . s2p+1 −

∑p
j=1 φjs

2
p+1−j . . . s2n −

∑p
j=1 φjs

2
n−j

s41 s42 − φ2
1 . . . s4p+1 −

∑p
j=1 φjs

4
p+1−j . . . s4n −

∑p
j=1 φjs

4
n−j




.

Substituting si = i∆, we can write n−1X′T′D−1TX as

1

σ2




a11 a12 a13

a21 a22 a23

a31 a32 a33




,
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where

a11 =
n− p

n

(
1−

p∑

j=1

φj

)2

+ n−1
{
1 + (1− φ1)

2 + · · ·+ (1− φ1 − · · · − φp−1)
2}

a12 = a21 = n−1

(
1−

p∑

j=1

φj

)
n∑

i=p+1

{
i2∆2 −

p∑

j=1

φj (i− j)2 ∆2

}

+ n−1{s21 + (1− φ1)
(
s22 − φ1s

2
1

)
+ . . .

+ (1− φ1 − · · · − φp−1)
(
s2p − φ1s

2
p−1 − · · · − φp−1s

2
1

)
}

a13 = a31 = n−1

(
1−

p∑

j=1

φj

)
n∑

i=p+1

{
i4∆4 −

p∑

j=1

φj (i− j)4 ∆4

}

+ n−1{s41 + (1− φ1)
(
s42 − φ1s

4
1

)
+ . . .

+ (1− φ1 − · · · − φp−1)
(
s4p − φ1s

4
p−1 − · · · − φp−1s

4
1

)
}

a22 = n−1

n∑

i=p+1

{
i2∆2 −

p∑

j=1

φj (i− j)2 ∆2

}2

+ n−1
{
s41 +

(
s22 − φ1s

2
1

)2
+ · · ·+

(
s2p − φ1s

2
p−1 − · · · − φp−1s

2
1

)2}

a23 = a32 = n−1

n∑

i=p+1

{
i2∆2 −

p∑

j=1

φj (i− j)2 ∆2

}{
i4∆4 −

p∑

j=1

φj (i− j)4 ∆4

}

+ n−1{s61 +
(
s22 − φ1s

2
1

) (
s42 − φ1s

4
1

)
+ . . .

+
(
s2p − φ1s

2
p−1 − · · · − φp−1s

2
1

) (
s4p − φ1s

4
p−1 − · · · − φp−1s

4
1

)
}
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a33 = n−1

n∑

i=p+1

{
i4∆4 −

p∑

j=1

φj (i− j)4 ∆4

}2

+ n−1
{
s81 +

(
s42 − φ1s

4
1

)2
+ · · ·+

(
s4p − φ1s

4
p−1 − · · · − φp−1s

4
1

)2}
,

proving the result. �

Lemma 6. Using the Cholesky decomposition (45),

n−1X′Γ−1




s61

...

s6n




= n−1X′T′D−1T




s61

...

s6n




=
1

σ2




b1

b2

b3




,

where

b1 = n−1

(
1−

p∑

j=1

φj

)
n∑

i=p+1

(
i6∆6 −

p∑

j=1

φj (i− j)6 ∆6

)

+ n−1{s61 + (1− φ1)
(
s62 − φ1s

6
1

)
+ . . .

+ (1− φ1 − · · · − φp−1)
(
s6p − φ1s

6
p−1 − · · · − φp−1s

6
1

)
}

b2 = n−1

n∑

i=p+1

(
i2∆2 −

p∑

j=1

φj (i− j)2 ∆2

)(
i6∆6 −

p∑

j=1

φj (i− j)6 ∆6

)

+ n−1{s81 +
(
s22 − φ1s

2
1

) (
s62 − φ1s

6
1

)
+ . . .

+
(
s2p − φ1s

2
p−1 − · · · − φp−1s

2
1

) (
s6p − φ1s

6
p−1 − · · · − φp−1s

6
1

)
}
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b3 = n−1

n∑

i=p+1

(
i4∆4 −

p∑

j=1

φj (i− j)4 ∆4

)(
i6∆6 −

p∑

j=1

φj (i− j)6 ∆6

)

+ n−1{s101 +
(
s42 − φ1s

4
1

) (
s62 − φ1s

6
1

)
+ . . .

+
(
s4p − φ1s

4
p−1 − · · · − φp−1s

4
1

) (
s6p − φ1s

6
p−1 − · · · − φp−1s

6
1

)
}.

Proof. By (46), we have

n−1X′T′D−1T




s61

...

s6n




= n−1X′T′D−1




s61

s62 − s61φ1

...

s6p+1 −
∑p

j=1 φjs
6
p+1−j

...

s6n −
∑p

j=1 φjs
6
n−j




=
1

σ2




b1

b2

b3




,

where

b1 = n−1

(
1−

p∑

j=1

φj

)
n∑

i=p+1

(
i6∆6 −

p∑

j=1

φj (i− j)6 ∆6

)

+ n−1{s61 + (1− φ1)
(
s62 − φ1s

6
1

)
+ . . .

+ (1− φ1 − · · · − φp−1)
(
s6p − φ1s

6
p−1 − · · · − φp−1s

6
1

)
}

b2 = n−1

n∑

i=p+1

(
i2∆2 −

p∑

j=1

φj (i− j)2 ∆2

)(
i6∆6 −

p∑

j=1

φj (i− j)6 ∆6

)

+ n−1{s81 +
(
s22 − φ1s

2
1

) (
s62 − φ1s

6
1

)
+ . . .
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+
(
s2p − φ1s

2
p−1 − · · · − φp−1s

2
1

) (
s6p − φ1s

6
p−1 − · · · − φp−1s

6
1

)
}

b3 = n−1

n∑

i=p+1

(
i4∆4 −

p∑

j=1

φj (i− j)4 ∆4

)(
i6∆6 −

p∑

j=1

φj (i− j)6 ∆6

)

+ n−1{s101 +
(
s42 − φ1s

4
1

) (
s62 − φ1s

6
1

)
+ . . .

+
(
s4p − φ1s

4
p−1 − · · · − φp−1s

4
1

) (
s6p − φ1s

6
p−1 − · · · − φp−1s

6
1

)
},

by substituting si = i∆, proving the result. �

Lemma 7. (a) For k a non-negative integer,

∆k

n

n∑

i=1

ik =
skn

k + 1
+ O

(
∆sk−1

n

)
.

(b)

a12(
1−∑p

j=1 φj

) =
∆2

n

n∑

i=p+1

{
i2 −

p∑

j=1

φj(i− j)2

}
+O(∆sn) . =

s2n
3

(
1−

p∑

j=1

φj

)
+O(∆sn) .

(c)

a13(
1−∑p

j=1 φj

) =
∆2

n

n∑

i=p+1

{
i4 −

p∑

j=1

φj(i− j)4

}
+O

(
∆s3n

)
=
s4n
5

(
1−

p∑

j=1

φj

)
+O

(
∆s3n

)
.

(d)

a22 =
∆4

n

n∑

i=p+1

{
i2 −

p∑

j=1

φj(i− j)2

}2

+O
(
∆s3n

)
=
s4n
5

(
1−

p∑

j=1

φj

)2

+O
(
∆s3n

)
.
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(e)

a23(
1−∑p

j=1 φj

) =
∆2

n

n∑

i=p+1

{
i2 −

p∑

j=1

φj(i− j)2

}{
i4 −

p∑

j=1

φj(i− j)4

}
+O

(
∆s5n

)

=
s6n
7

(
1−

p∑

j=1

φj

)
+O

(
∆s5n

)
.

(f)

a33 =
∆4

n

n∑

i=p+1

{
i4 −

p∑

j=1

φj(i− j)4

}2

+O
(
∆s7n

)
=
s8n
9

(
1−

p∑

j=1

φj

)2

+O
(
∆s7n

)
.

(g)

b1(
1−∑p

j=1 φj

) =
∆6

n

n∑

i=p+1

{
i6 −

p∑

j=1

φj(i− j)6

}
+O

(
∆s5n

)
=
s6n
7

(
1−

p∑

j=1

φj

)
+O

(
∆s5n

)
.

(h)

b2 =
∆8

n

n∑

i=p+1

{
i2 −

p∑

j=1

φj(i− j)2

}{
i6 −

p∑

j=1

φj(i− j)6

}
+O

(
∆s7n

)

=
s8n
9

(
1−

p∑

j=1

φj

)2

+O
(
∆s7n

)
.

(i)

b3 =
∆10

n

n∑

i=p+1

{
i4 −

p∑

j=1

φj(i− j)4

}{
i6 −

p∑

j=1

φj(i− j)6

}
+O

(
∆s9n

)

=
s10n
11

(
1−

p∑

j=1

φj

)2

+O
(
∆s9n

)
.
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Proof. In each summation on i, let k denote the highest power of i, and use the fact

that for fixed p ≥ 0, we have

∆k

n

n∑

i=p+1

ik =
∆knk+1

n(k + 1)
+ O

(
∆knk−1

)
=

skn
k + 1

+ O
(
∆sk−1

n

)
.

�

Lemma 8. We can write

(
n−1X′Γ−1X

)−1
=





sn
−12

256
496125

(
1−∑p

j=1 φj

)4 +O
(
∆s−13

n

)







c11 c12 c13

c21 c22 c23

c31 c32 c33




,

where

c11 =
4s12n
2205

(
1−

p∑

j=1

φj

)2

+O
(
∆s11n

)

c12 = c21 = −8s10n
945

(
1−

p∑

j=1

φj

)2

+O
(
∆s9n

)

c13 = c31 =
4s8n
525

(
1−

p∑

j=1

φj

)2

+O
(
∆s7n

)

c22 =
16s8n
225

(
1−

p∑

j=1

φj

)2

+O
(
∆s7n

)

c23 = c32 = −8s6n
105

(
1−

p∑

j=1

φj

)2

+O
(
∆s5n

)

c33 =
4s4n
45

(
1−

p∑

j=1

φj

)2

+O
(
∆s3n

)
.
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Proof. By Lemma 5 and Lemma 7, we have

n−1X′Γ−1X =




a11 a12 a13

a21 a22 a23

a31 a32 a33




,

where

a11 =

(
1−

p∑

j=1

φj

)2

+O
(
∆s−1

n

)

a12 = a21 =
s2n
3

(
1−

p∑

j=1

φj

)2

+O(∆sn)

a13 = a31 =
s4n
5

(
1−

p∑

j=1

φj

)2

+O
(
∆s3n

)

a22 =
s4n
5

(
1−

p∑

j=1

φj

)2

+O
(
∆s3n

)

a23 = a32 =
s6n
7

(
1−

p∑

j=1

φj

)2

+O
(
∆s5n

)

a33 =
s8n
9

(
1−

p∑

j=1

φj

)2

+O
(
∆s7n

)
.

Taking the inverse of n−1X′Γ−1X yields

(
n−1X′Γ−1X

)−1
=

sn
−12

256
496125

(
1−∑p

j=1 φj

)4
+O(∆s−1

n )

1

σ2




c11 c12 c13

c21 c22 c23

c31 c32 c33




,
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where

c11 =
4s12n
2205

(
1−

p∑

j=1

φj

)2

+O
(
∆s11n

)

c12 = c21 = −8s10n
945

(
1−

p∑

j=1

φj

)2

+O
(
∆s9n

)

c13 = c31 =
4s8n
525

(
1−

p∑

j=1

φj

)2

+O
(
∆s7n

)

c22 =
16s8n
225

(
1−

p∑

j=1

φj

)2

+O
(
∆s7n

)

c23 = c32 = −8s6n
105

(
1−

p∑

j=1

φj

)2

+O
(
∆s5n

)

c33 =
4s4n
45

(
1−

p∑

j=1

φj

)2

+O
(
∆s3n

)
.

Assuming causality in the autoregressive process, 1−∑p
j=1 φj 6= 0, we can write

sn
−12

256
496125

(
1−∑p

j=1 φj

)4
+O(∆s−1

n )
=

sn
−12

256
496125

(
1−∑p

j=1 φj

)4 +O
(
∆s−13

n

)
.

�

5.3.1. MSE of β̂2. The first term of the bias of β̂2 is given by

E
(
β̂2 − β2

)
=
f (6)(0)

720
e′2
(
X′Γ−1X

)−1
X′Γ−1




s61

...

s6n



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+
f (6)(0)

720
e′2
(
X′Γ−1X

)−1
X′Γ−1




O(s81)

...

O (s8n)




=
f (6)(0)

720
e′2
(
X′Γ−1X

)−1
X′Γ−1




s61

...

s6n




+
f (6)(0)

720
e′2
(
X′Γ−1X

)−1
X′Γ−1




O(s8n)

...

O (s8n)




.

From Lemma 8, we write

E
(
β̂2 − β2

)
=
f (6)(0)

720
e′2





sn
−12

256
496125

(
1−∑p

j=1 φj

)4 +O
(
∆s−13

n

)







c11 c12 c13

c21 c22 c23

c31 c32 c33




×




s6n
7

(
1−∑p

j=1 φj

)2
+O(∆s5n)

s8n
9

(
1−∑p

j=1 φj

)2
+O(∆s7n)

s10n
11

(
1−∑p

j=1 φj

)2
+O(∆s9n)




+O
(
s6n
)
,
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where

c11 =
4s12n
2205

(
1−

p∑

j=1

φj

)2

+O
(
∆s11n

)

c12 = c21 = −8s10n
945

(
1−

p∑

j=1

φj

)2

+O
(
∆s9n

)

c13 = c31 =
4s8n
525

(
1−

p∑

j=1

φj

)2

+O
(
∆s7n

)

c22 =
16s8n
225

(
1−

p∑

j=1

φj

)2

+O
(
∆s7n

)

c23 = c32 = −8s6n
105

(
1−

p∑

j=1

φj

)2

+O
(
∆s5n

)

c33 =
4s4n
45

(
1−

p∑

j=1

φj

)2

+O
(
∆s3n

)
.

Thus, we have the final expression for the bias:

E
(
β̂2 − β2

)
=
f (6)(0)

720





sn
−12

256
496125

(
1−∑p

j=1 φj

)4 +O
(
∆s−13

n

)




{
− 256

1091475
s16n +O

(
∆s15n

)}

×
(
1−

p∑

j=1

φj

)4

+O
(
s6n
)

= − 1

1584
f (6)(0)s4n +O

(
s6n
)
.(47)

Next, we calculate the variance of β̂2. Therefore, consider

Var
(
β̂2

)
= Var

{
e′2
(
X′Γ−1X

)−1
X′Γ−1Y

}
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= e′2
(
X′Γ−1X

)−1
X′Γ−1Var(Y)Γ−1X

(
X′Γ−1X

)−1
e2

= e′2
(
X′Γ−1X

)−1
e2

=
σ2

n
e′2





sn
−12

256
496125

(
1−∑p

j=1 φj

)4 +O
(
∆s−13

n

)







c11 c12 c13

c21 c22 c23

c31 c32 c33




e2,

where

c11 =
4s12n
2205

(
1−

p∑

j=1

φj

)2

+O
(
∆s11n

)

c12 = c21 = −8s10n
945

(
1−

p∑

j=1

φj

)2

+O
(
∆s9n

)

c13 = c31 =
4s8n
525

(
1−

p∑

j=1

φj

)2

+O
(
∆s7n

)

c22 =
16s8n
225

(
1−

p∑

j=1

φj

)2

+O
(
∆s7n

)

c23 = c32 = −8s6n
105

(
1−

p∑

j=1

φj

)2

+O
(
∆s5n

)

c33 =
4s4n
45

(
1−

p∑

j=1

φj

)2

+O
(
∆s3n

)
,

Finally, we have

Var
(
β̂2

)
=

2205σ2

16ns4n

(
1−∑p

j=1 φj

)2 +O
(
∆2s−6

n

)
.
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Then since n−1 = ∆s−1
n , the variance of β̂2 can be written as

(48) Var
(
β̂2

)
=

2205σ2∆

16s5n

(
1−∑p

j=1 φj

)2 +O
(
∆2s−6

n

)
.

Combining (47) and (48), the mean squared error of β̂2 is given by

MSE
(
β̂2

)
=
{
E
(
β̂2 − β2

)}2

+Var
(
β̂2

)

=

{
− 1

1584
f (6)(0)s4n +O

(
s6n
)}2

+
2205σ2∆

16s5n

(
1−∑p

j=1 φj

)2 +O
(
∆2s−6

n

)

=
1

2509056

{
f (6)(0)

}2
s8n +

2205σ2∆

16s5n

(
1−∑p

j=1 φj

)2 +O
(
s10n +∆2s−6

n

)
.(49)

Now, we minimize MSE
(
β̂2

)
with respect to sn. Therefore, differentiating (49) with respect

to sn yields

∂

∂sn

{
MSE

(
β̂2

)}
=

∂

∂sn


 1

2509056

{
f (6)(0)

}2
s8n +

2205σ2∆

16s5n

(
1−∑p

j=1 φj

)2




=
1

313632

{
f (6)(0)

}2
s7n −

11025σ2∆

16s6n

(
1−∑p

j=1 φj

)2 .(50)

Setting (50) equal to zero and solving for sn yields the minimum of MSE
(
β̂2

)
and is given

by

(51) sn =


 216112050σ2∆

{f (6)(0)}2
(
1−∑p

j=1 φj

)2




1/13

.

84



5.3.2. MSE of β̂4. The first term of the bias of β̂4 is given by

E
(
β̂4 − β4

)
=
f (6)(0)

720
e4
(
X′Γ−1X

)−1
X′Γ−1




s61

...

s6n




+
f (6)(0)

720
e4
(
X′Γ−1X

)−1
X′Γ−1




O(s81)

...

O (s8n)




=
f (6)(0)

720
e′4
(
X′Γ−1X

)−1
X′Γ−1




s61

...

s6n




+
f (6)(0)

720
e′4
(
X′Γ−1X

)−1
X′Γ−1




O(s8n)

...

O (s8n)




.

Using Lemma 8, we have

E
(
β̂4 − β4

)
=
f (6)(0)

720
e′4





sn
−12

256
496125

(
1−∑p

j=1 φj

)4 +O
(
∆s−13

n

)







c11 c12 c13

c21 c22 c23

c31 c32 c33



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×




s6n
7

(
1−∑p

j=1 φj

)2
+O(∆s5n)

s8n
9

(
1−∑p

j=1 φj

)2
+O(∆s7n)

s10n
11

(
1−∑p

j=1 φj

)2
+O(∆s9n)




+O
(
s4n
)
,

where

c11 =
4s12n
2205

(
1−

p∑

j=1

φj

)2

+O
(
∆s11n

)

c12 = c21 = −8s10n
945

(
1−

p∑

j=1

φj

)2

+O
(
∆s9n

)

c13 = c31 =
4s8n
525

(
1−

p∑

j=1

φj

)2

+O
(
∆s7n

)

c22 =
16s8n
225

(
1−

p∑

j=1

φj

)2

+O
(
∆s7n

)

c23 = c32 = −8s6n
105

(
1−

p∑

j=1

φj

)2

+O
(
∆s5n

)

c33 =
4s4n
45

(
1−

p∑

j=1

φj

)2

+O
(
∆s3n

)
.

Thus, the final bias expression of β̂4 is given by

E
(
β̂4 − β4

)
=
f (6)(0)

720





sn
−12

256
496125

(
1−∑p

j=1 φj

)4 +O
(
∆s−13

n

)




{
256

363825
s14n +O

(
∆s13n

)}

×
(
1−

p∑

j=1

φj

)4

+O
(
s4n
)
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=
1

528
f (6)(0)s2n +O

(
s4n
)
.(52)

Now, we calculate the variance of β̂4 given by

Var
(
β̂4

)
= Var

{
e′4
(
X′Γ−1X

)−1
X′Γ−1Y

}

= e′4
(
X′Γ−1X

)−1
X′Γ−1Var(Y)Γ−1X

(
X′Γ−1X

)−1
e4

= e′4
(
X′Γ−1X

)−1
e4

=
σ2

n
e′4





sn
−12

256
496125

(
1−∑p

j=1 φj

)4 +O
(
∆s−13

n

)







c11 c12 c13

c21 c22 c23

c31 c32 c33




e4,

where

c11 =
4s12n
2205

(
1−

p∑

j=1

φj

)2

+O
(
∆s11n

)

c12 = c21 = −8s10n
945

(
1−

p∑

j=1

φj

)2

+O
(
∆s9n

)

c13 = c31 =
4s8n
525

(
1−

p∑

j=1

φj

)2

+O
(
∆s7n

)

c22 =
16s8n
225

(
1−

p∑

j=1

φj

)2

+O
(
∆s7n

)

c23 = c32 = −8s6n
105

(
1−

p∑

j=1

φj

)2

+O
(
∆s5n

)
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c33 =
4s4n
45

(
1−

p∑

j=1

φj

)2

+O
(
∆s3n

)
.

Finally, we have

Var
(
β̂4

)
=

11025σ2

64ns8n

(
1−∑p

j=1 φj

)2 +O
(
∆2s−10

n

)
.

Then since n−1 = ∆s−1
n , the variance of β̂4 can be written as

(53) Var
(
β̂4

)
=

11025σ2∆

64s9n

(
1−∑p

j=1 φj

)2 +O
(
∆2s−10

n

)
.

Combining (52) and (53), the mean squared error of β̂4 is given by

MSE
(
β̂4

)
=
{
E
(
β̂4 − β4

)}2

+Var
(
β̂4

)

=

{
1

528
f (6)(0)s2n +O

(
s4n
)}2

+
11025σ2∆

64s9n

(
1−∑p

j=1 φj

)2 +O
(
∆2s−10

n

)

=
1

278784

{
f (6)(0)

}2
s4n +

11025σ2∆

64s9n

(
1−∑p

j=1 φj

)2 +O
(
s6n +∆2s−10

n

)
.(54)

Next, we minimize MSE
(
β̂4

)
with respect to sn. Therefore, differentiating (54) with respect

to sn yields

∂

∂sn

{
MSE

(
β̂4

)}
=

∂

∂sn


 1

278784

{
f (6)(0)

}2
s4n +

11025σ2∆

64s9n

(
1−∑p

j=1 φj

)2




=
1

69696

{
f (6)(0)

}2
s3n −

99225σ2∆

64s10n

(
1−∑p

j=1 φj

)2 .(55)
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Setting (55) equal to zero and solving for sn yields the minimum of MSE
(
β̂4

)
and is given

by

(56) sn =


 108056025σ2∆

{f (6)(0)}2
(
1−∑p

j=1 φj

)2




1/13

.

5.3.3. Minimizing the MSE of ψ̂. We minimize the mean squared error of ψ̂. Recall

ψ =
M4

R4
g

=
60β4 + 30β2

2

(−3β2)
2

=
20

3

β4
β2
2

+
10

3
.

Hence, minimizing the MSE
(
ψ̂
)
is equivalent to minimizing the MSE

(
β̂4/β̂

2
2

)
. Therefore,

consider the approximation

β̂4

β̂2
2

≈ β4
β2
2

+
1

β2
2

(
β̂4 − β4

)
− 2β4

β3
2

(
β̂2 − β2

)
.

Thus, we can write

Var

(
β̂4

β̂2
2

)
≈ 1

β4
2

Var
(
β̂4

)
+

4β2
4

β6
2

Var
(
β̂2

)
− 4β4

β5
2

Cov
(
β̂4, β̂2

)

=
1

β4
2


 11025σ2∆

64s9n

(
1−∑p

j=1 φj

)2


+

4β2
4

β6
2


 2205σ2∆

16s5n

(
1−∑p

j=1 φj

)2




− 4β4
β5
2


 −4725σ2∆

32s7n

(
1−∑p

j=1 φj

)2


+O

(
∆2s−10

n

)
.
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Furthermore, the bias of β̂4/β̂
2
2 becomes

E

(
β̂4

β̂2
2

− β4
β2
2

)
=

1

β2
2

(
Eβ̂4 − β4

)
− 2β4

β3
2

(
Eβ̂2 − β2

)

=
1

β2
2

{
1

528
f (6)(0)s2n

}
− 2β4

β3
2

{
− 1

1584
f (6)(0)s4n

}
+O

(
s6n
)
.

Therefore, the MSE
(
β̂4/β̂

2
2

)
is given by

MSE

(
β̂4

β̂2
2

)
=Var

(
β̂4

β̂2
2

)
+

{
Bias

(
β̂4

β̂2
2

)}2

≈ 1

β4
2


 11025σ2∆

64s9n

(
1−∑p

j=1 φj

)2


+

4β2
4

β6
2


 2205σ2∆

16s5n

(
1−∑p

j=1 φj

)2




+
4β4
β5
2


 4725σ2∆

32s7n

(
1−∑p

j=1 φj

)2


+O

(
∆2s−10

n

)

+

{
1

β2
2

(
1

528
f (6)(0)s2n

)
+

2β4
β3
2

(
1

1584
f (6)(0)s4n

)
+O

(
s6n
)}2

=
1

β4
2


 11025σ2∆

64s9n

(
1−∑p

j=1 φj

)2


+

4β2
4

β6
2


 2205σ2∆

16s5n

(
1−∑p

j=1 φj

)2




+
4β4
β5
2


 4725σ2∆

32s7n

(
1−∑p

j=1 φj

)2


+

1

278784β4
2

{
f (6)(0)

}2
s4n

+
β2
4

209748β5
2

{
f (6)(0)

}2
s6n +

β2
4

627264β6
2

{
f (6)(0)

}2
s8n +O

(
∆2s−10

n + s10n
)
.
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We minimize MSE
(
β̂4/β̂

2
2

)
with respect to sn. Therefore, differentiating with respect to sn

yields

∂

∂sn

{
MSE

(
β̂4

β̂2
2

)}
=− 99225σ2∆

64s10n

(
1−∑p

j=1 φj

)2
β4
2

− 11025σ2∆β2
4

4s6n

(
1−∑p

j=1 φj

)2
β6
2

− 33075σ2∆β4

8s8n

(
1−∑p

j=1 φj

)2
β5
2

+
1

69696β4
2

{
f (6)(0)

}2
s3n

+
β2
4

34958β5
2

{
f (6)(0)

}2
s5n +

β2
4

78408β6
2

{
f (6)(0)

}2
s7n.(57)

Setting (57) equal to zero yields

− 99225σ2∆

54
(
1−∑p

j=1 φj

)2 − 33075σ2∆β4

8β2

(
1−∑p

j=1 φj

)2 s2n −
11025σ2∆β2

4

4β2
2

(
1−∑p

j=1 φj

)2 s4n+

1

69696

{
f (6)(0)

}2
s13n +

β2
4

34958β2

{
f (6)(0)

}2
s15n +

β2
4

78408β2
2

{
f (6)(0)

}2
s17n = 0.(58)

Unfortunately, a closed-form solution in terms of sn does not exist for the minimum MSE(ψ̂),

but (58) can be solved for sn via a numerical procedure once estimates of β2, β4, and f
(6)(0)

are determined.

5.4. ψ Estimation for Nucleosome Core Particle

We estimate ψ using an experimental log intensity curve for the molecule nucleosome

core particle. Then given ψ̂, we determine from the curve one (or two)

Height

Radius
.
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In addition, we can estimate Rg from its experimental log intensity curve and using the

equation

(59) R2
g =

Radius2

2
+

Height2

12
.

we can determine the height and radius of a cylinder with the same shape of the molecule.

Experimental SAXS data for the molecule nucleosome core particle (NCP) is given in Fig-

ure 5.1. For this molecule, we determine ψ̂ = 3.0 which from Figure 4.2 corresponds to

a height/radius of 1.1 or 2.4. Furthermore, from the log intensity curve we can calculate

R̂g = 41.4Å. Then, we use (59) to determine two possible cylinders for this molecule. The

first cylinder has dimensions height = 57.1Å and radius = 53.8Å, and the second cylinder

has dimensions height = 101.2Å and radius = 41.5Å. Figure 5.2 depicts a digitally created

image of the molecule NCP suspended within each of the first cylinder. We see that the

first cylinder provides an excellent fit for the molecule. This example illustrates how we can

determine a rough estimate for the size and shape of a molecule using only experimental

SAXS data.
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Figure 5.1. Plot of experimental SAXS data consisting of log intensity versus
scattering angle s for the molecule nucleosome core particle (NCP).

Figure 5.2. Digitally created images of the molecule NCP suspended within
each of the good-fitting cylinders with height = 101.2 Å, radius = 41.5 Å. (a)
Front view of the cylinder. (b) Side view of the cylinder. (c) Top view of the
cylinder
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5.5. Calculating Dmax for a Molecule

From the estimated cylinder for a molecule, we can approximate Dmax for the molecule.

Given the height and radius of the cylinder, Dmax is given by

Dmax =

√
Height2 + 4× Radius2.

We calculate Dmax for replicates of the molecule nucleosome core particle. Figure 5.3

contains a confidence interval for Dmax from estimating the cylinder for each log intensity

curve. The variance of Dmax is computed by using a bootstrapping approach on the residuals

of the fit of the log intensity curve. Figure 5.3 has results for two wild type and four

mutants of the molecule nucleosome core particle. For each molecule, there is a separate

95% confidence interval for the smaller and larger cylinder. All of these confidence intervals

were calculated using three replicate intensity curves. The first 12 confidence intervals are for

the unsalted samples and the second 12 confidence intervals are the same samples with 50mM

of added salt. These Dmax values can be used as an initial estimate for further analysis.
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Figure 5.3. Results calculating Dmax for two wild type and four mutants
of the molecule nucleosome core particle. For each molecule, there is a sepa-
rate 95% confidence interval for the smaller and larger cylinder. The first 12
confidence intervals are for the unsalted samples and the second 12 confidence
intervals are the same samples with 50mM of added salt.

5.6. Experimental Data Example

Next, we consider an example involving the molecules aldolase and tyrosinase. Figure 5.4

contains an image of both molecules. For each molecule, we have ten replicate intensity

curves and we estimate both Rg and ψ using the new procedure. Table 5.1 contains the

results of estimating these values and their standard deviation. The estimated Rg value

for both molecule is similar and cannot be differentiated given the size of their standard

deviations. However, the ψ̂ value for the two molecules is significantly different. Using the

new parameter ψ, we are able to distinguish between these two molecules when Rg alone

was insufficient.
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Figure 5.4. Digitally created images of the two different molecules. (a)
Aldolase (b) Tyrosinase

Table 5.1. Results for estimating Rg and ψ using the new procedure for the

molecules aldolase and tyrosinase. For each molecule, R̂g and its standard
deviation are given for both methods.

Molecule R̂g SD(R̂g) ψ̂ SD(ψ̂)

Aldolase 40.1 0.3 4.08 0.02

Tyrosinase 39.9 0.1 3.64 0.01

5.7. Limitations

We develop a semi-automatic procedure for estimating ψ and Rg from the log intensity

curve for a molecule. With these two values, we estimate a good-fitting cylinder for the

molecule in solution. The initial points in the estimation procedure can be removed using

the modified DFBETAS procedure. However, this procedure is not ready to fully replace

good judgment when determining the window of data points to fit to the log intensity

curve. Furthermore, for ψ̂ values in the range 2.86 to 3.33 two cylinders are possible in the

estimation.
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5.8. Appendix

5.8.1. Extended Guinier Analysis Derivation. Guinier analysis involves estimat-

ing a molecule’s radius of gyration from its experimental SAXS intensity curve. The equation

relating Rg and the intensity curve is given by

(60) ln I(s) = ln I(0)− 1

3
R2

gs
2 +O

(
s4
)
.

Using analysis similar to Guinier’s, we derive an equation relating Rg andM
4 to the intensity

curve for SAXS data. Given the p(r) function for a molecule, its corresponding intensity

curve is be defined by

(61) I(s) = 4π

∫ Dmax

0

p(r)
sin(sr)

sr
dr.

Then using Taylor series expansion for sin(sr)/sr we can write

I(s) = 4π

∫ Dmax

0

p(r)

{
1− (sr)2

3!
+

(sr)4

5!
− ...

}
dr

= 4π

∫ Dmax

0

p(r) dr − 4π
s2

3!

∫ Dmax

0

r2p(r) dr + 4π
s4

5!

∫ Dmax

0

r4p(r) dr +O
(
s6
)

= I(0)− 1

3
I(0)R2

gs
2 +

1

60
I(0)M4s4 +O

(
s6
)

= I(0)
{
1− 1

3
R2

gs
2 +

1

60
M4s4 +O

(
s6
)}

.

Therefore, for small values of s, we obtain the approximation

I(s)/I(0) ≈ 1− 1

3
R2

gs
2 +

1

60
M4s4.
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Taking the natural log of both sides gives

(62) ln {I(s)/I(0)} ≈ ln

(
1− 1

3
R2

gs
2 +

1

60
M4s4

)
.

Next, consider the Taylor series expansion of ln(1− x) centered around x = 0:

ln(1− x) = ln(1)− x− 1

2
x2 − ...

≈ −x− x2

2
.

Substituting x = 1
3
R2

gs
2 − 1

60
M4s4 yields

ln

(
1− 1

3
R2

gs
2 +

1

60
M4s4

)
≈ −

(
1

3
R2

gs
2 − 1

60
M4s4

)
− 1

2

(
1

3
R2

gs
2 − 1

60
M4s4

)2

= −1

3
R2

gs
2 +

(
1

60
M4 − 1

18
R4

g

)
s4.

Therefore, (62) can be rewritten as

ln {I(s)/I(0)} ≈ ln

(
1− 1

3
R2

gs
2 +

1

60
M4s4

)

≈ −1

3
R2

gs
2 +

(
1

60
M4 − 1

18
R4

g

)
s4.

Thus, the final approximation relating ln I(s) to Rg and M4 is given by

(63) ln I(s) ≈ ln I(0)− 1

3
R2

gs
2 +

(
1

60
M4 − 1

18
R4

g

)
s4.

This approximation can estimate Rg and M4 from experimental SAXS data; therefore, it

can estimate ψ as well.
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5.9. Estimating the Variance of R̂2
g and M̂4

We have an approximation for R̂2
g and M̂4 and we need to determine an estimate for

their variance. First, to estimate Var
(
R̂2

g

)
using the approximation given in (42), we write

Var
(
R̂2

g

)
≈ Var

(
−3β̂2

)

= 9Var
(
β̂2

)
.

To estimate the variance of M̂4 using the approximation given in (43), we write

Var
(
M̂4
)
≈ Var

(
60β̂4 + 30β̂2

2

)

= 3600Var
(
β̂4

)
+ 900Var

(
β̂2
2

)
+ 3600Cov

(
β̂4, β̂

2
2

)
.

Thus, we estimate Var
(
β̂2
2

)
, so consider the first two terms of the Taylor series of β̂2

2 centered

around β2 given by

β̂2
2 ≈ β2

2 + 2β2

(
β̂2 − β2

)
.

Taking the variance of each side yields

Var
(
β̂2
2

)
≈ Var

{
β2
2 + 2β2

(
β̂2 − β2

)}

= 4β2
2Var

(
β̂2

)

≈ 4β̂2
2Var

(
β̂2

)
.
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To complete the estimate for Var
(
M̂4
)
, we determine Cov

(
β̂4, β̂

2
2

)
. Again, we use the first

two terms of the Taylor series of β̂2
2 centered around β2 given by

β̂2
2 ≈ β2

2 + 2β2

(
β̂2 − β2

)
.

Therefore, we write

Cov
(
β̂4, β̂

2
2

)
≈ Cov

{
β̂4, β

2
2 + 2β2

(
β̂2 − β2

)}

= Cov
(
β̂4, β

2
2

)
+ Cov

(
β̂4, 2β2β̂2

)
+ Cov

(
β̂4,−2β2

2

)

= 2β2Cov
(
β̂4, β̂2

)

≈ 2β̂2Cov
(
β̂4, β̂2

)
.

Finally, combining each of these results yields the final estimate for Var(M̂4) given by

Var
(
M̂4
)
≈ 3600Var

(
β̂4

)
+ 900

{
4β̂2

2Var
(
β̂2

)}
+ 3600

{
2β̂2Cov

(
β̂4, β̂2

)}

= 3600Var
(
β̂4

)
+ 3600β̂2

2Var
(
β̂2

)
+ 7200β̂2Cov

(
β̂4, β̂2

)
.

5.10. Estimating Var

{
M̂4/

(
R̂2

g

)2}

We determine an estimate of the variance of M̂4/
(
R̂2

g

)2
. Consider a first-order Taylor

series expansion for M̂4/
(
R̂2

g

)2
given by

M̂4

(
R̂2

g

)2 ≈ M4

(
R2

g

)2 +
1

(
R2

g

)2
(
M̂4 −M4

)
− M4

(
R2

g

)4
{(

R̂2
g

)2
−
(
R2

g

)2
}
.
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Taking the variance of each side yields

Var





M̂4

(
R̂2

g

)2





≈ Var

[
M4

(
R2

g

)2 +
1

(
R2

g

)2
(
M̂4 −M4

)
− M4

(
R2

g

)4
{(

R̂2
g

)2
−
(
R2

g

)2
}]

=
1

(
R2

g

)4Var
(
M̂4
)
+

(M4)
2

(
R2

g

)8 Var
{(

R̂2
g

)2}

− (M4)
2

(
R2

g

)6 Cov
{
M̂2,

(
R̂2

g

)2}
.(64)

To determine the final result, we estimate Var

{(
R̂2

g

)2}
. Therefore, consider the Taylor

series of
(
R̂2

g

)2
centered around R2

g given by

(
R̂2

g

)2
≈
(
R2

g

)2
+ 2R2

g

(
R̂2

g −R2
g

)
.

Taking the variance of both sides yields

Var

{(
R̂2

g

)2}
≈ Var

{(
R2

g

)2
+ 2R2

g

(
R̂2

g −R2
g

)}

= 4
(
R2

g

)2
Var

(
R̂2

g

)

≈ 4
(
R̂2

g

)2
Var

(
R̂2

g

)
.

Finally, we estimate Cov

{
M̂4,

(
R̂2

g

)2}
. Again using the Taylor series of

(
R̂2

g

)2
centered

around R2
g yields

Cov

{
M̂4,

(
R̂2

g

)2}
≈ Cov

{
M̂4,

(
R2

g

)2
+ 2R2

g

(
R̂2

g −R2
g

)}

= 2R2
gCov

(
M̂4, R̂2

g

)
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≈ 2R̂2
gCov

(
M̂4, R̂2

g

)
.

Combining this result with (64) yields the final estimate for Var

{
M̂4/

(
R̂2

g

)2}
,

Var





M̂4

(
R̂2

g

)2





≈ 1
(
R̂2

g

)4Var
(
M̂4
)
+

(
M̂4
)2

(
R̂2

g

)8 4
(
R̂2

g

)2
Var

(
R̂2

g

)

+





−M̂4

(
R̂2

g

)6





{
2R̂2

g

}
Cov

(
M̂4, R̂2

g

)

=
1

(
R̂2

g

)4Var
(
M̂4
)
+

4
(
M̂4
)2

(
R̂2

g

)6 Var
(
R̂2

g

)
− 2M̂4

(
R̂2

g

)5Cov
(
M̂4, R̂2

g

)
.

5.11. ψ Software

The ψ software program was written in R. The output contains a plot of log intensity

versus s2 with the range of data points used to estimate ψ. Furthermore, the program

estimates Rg, and then uses R̂g and ψ̂ to estimate one or two cylinders for the molecule.

Additionally, the program outputs Dmax for each of the two cylinders. Figure 5.5 is the

output of the program for one replicate the molecule nucleosome core particle.
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Figure 5.5. Output of the ψ program for the molecule nucleosome core particle.
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CHAPTER 6

ESTIMATION OF CONCENTRATION RATIOS FROM SAXS

EXPERIMENTS WITH APPLICATION TO DETERMINING THE RADIUS

OF GYRATION

6.1. Introduction

The concentration of a molecule in solution affects the scattering of the intensity curve

for small-angle X-ray scattering (SAXS) data. Figure 6.1 depicts the intensity curves for

the molecule nucleosome core particle generated from four different concentrations. Overall,

as concentration decreases, there is a negative vertical translation of the intensity curve;

however, there may also be a concentration by angle interaction effect. That is, the intensity

curves may not be parallel.

Let ci (i = 1, . . . ,m) denote true concentrations. Assuming the multiplicative model

Iij = ci exp

(
β0 + βs2j + γ

ci
c1
s2j + εij

)
,

we have

(65) ln Iij = (ln ci + β0) + βs2j + γ
ci
c1
s2j + εij.

The model assumes that the only difference between expected intensities at two different

concentrations i and i′ is due to concentration; that is, there are no other differences due

to exposure time, X-ray intensity, etc. If the ci’s are known without error, model (65) can

be fitted using standard regression techniques. In practice, however, concentrations are not
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Figure 6.1. Log intensity curves for four different concentrations for the
molecule nucleosome core particle. The concentration ratios are given in the
legend.

achieved exactly due to variation in laboratory procedures (such as successive dilutions of a

solution), and only nominal concentrations cNi are known.

It is of interest to estimate the true concentration ratios ci/c1 and the model (65). To

this end, it is convenient to reparameterize (65) as

ln Iij = αi + βs2j + γ exp (ln ci + β0 − ln c1 − β0)s
2
j + εij

= αi + βs2j + γ exp (αi − α1)s
2
j + εij,(66)

where αi = ln ci + β0. In this formulation, the αi’s (though not the ci’s) can be consistently

estimated via nonlinear least squares and so the concentration ratios

ci
c1

= exp (αi − α1)

can also be consistently estimated.
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6.2. Fitting the Model

Equation (66) is a nonlinear regression model, so we use iterative numerical methods

rather than standard linear regression techniques to estimate the unknown parameter vector

and its corresponding covariance matrix. To this end, we minimize the sum of squares given

by

(67)
∑

ij

[
ln Iij −

{
αi + βs2j + γ exp (αi − α1) s

2
j

}]2

with respect to the parameters αi, β, and γ. This minimization is accomplished using the

Gauss-Newton method. We must first obtain reasonable initial values α̂
(0)
i , β̂(0), and γ̂(0) to

begin the iterative procedure. We therefore consider the model

(68) ln(Iij) = δi + θis
2
j + εij

for i = 1, . . . , nc where nc is the number of different concentrations, and j = 1, . . . , ni. This is

a linear regression model containing different parameters for the intercept and slope for each

concentration level. Observe that model (66) contains fewer parameters than model (68),

making model (66) advantageous over model (68) provided it adequately fits the data. The

parameter estimates for model (68) can be found using standard linear regression techniques,

yielding δ̂i and θ̂i, i = 1, . . . , nc.

The initial values for the αi are given by

α̂i
(0) = δ̂i.
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To determine initial values for β and γ, we use the first two concentration levels (i = 1, 2)

and equate the coefficients of the s2j terms for models (66) and (68). This results in the

system of equations 



θ1 = β + γ

θ2 = β + γ exp (α2 − α1) .

Solving this system yields the initial values

γ̂(0) =
θ̂2 − θ̂1

exp
(
α̂
(0)
2 − α̂

(0)
1

)
− 1

and β̂(0) = θ̂1 − γ̂(0).

We next describe the iterative procedure. Define the vector of parameters

βββ := [α1, α2, . . . , αc, β, γ, ]
⊤ .

The Jacobian matrix is given by

J(βββ) =




∂f11
∂α1

∂f11
∂α2

. . . ∂f11
∂γ

∂f12
∂α1

∂f12
∂α2

. . . ∂f12
∂γ

...
...

. . .
...

∂fcn[c]

∂α1

∂fcn[c]

∂α2
. . .

∂fcn[c]

∂γ




,
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where fij(βββ) = αi + βs2j + γ exp(αi − α1)s
2
j . Finally, define

Y (βββ) :=




ln I11 − f11

ln I12 − f12

...

ln Icn[c] − fcn[c]




.

The parameter estimates are then found using the iterative scheme given by

βββ(m+1) = βββ(m) +
{
J(βββ(m))′J(βββ(m))

}−1
J(βββ(m))′Y (βββ(m)).

Convergence can be assessed by iterating until (65) is sufficiently small to achieve a specified

level of convergence yields final estimates α̂i, β̂, and γ̂.

Using the Jacobian matrix, we compute the variance-covariance matrix Σ for the param-

eter estimates from model (66) via

Σ = σ2 (J ′J)
−1
,

where σ2 = Var(ε). Then asymptotically

[

α̂1 α̂2 . . . α̂c β̂ γ̂

]′
∼ N

([

α1 α2 . . . αc β γ

]′
,Σ

)
.

The matrix Σ is estimated by

Σ̂ = σ̂2
(
Ĵ ′Ĵ
)−1

,
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where Ĵ is the Jacobian matrix evaluated at the final parameter estimates α̂i, β̂, and γ̂. The

value σ̂2 is found by evaluating (67) at the parameter estimates and dividng by the proper

degrees of freedom.

The confidence interval for ci/c1 = exp (αi − α1) is determined by first finding the confi-

dence interval for αi − α1. Thus, consider

Var(α̂i − α̂1) = Var(α̂i) + Var(α̂1)− 2Cov(α̂i, α̂1).

Using this variance formula and standard statistical techniques, we can find a confidence

interval for αi − α1. Exponentiating the lower and upper bound for this confidence interval

yields the final confidence interval for ci/c1.

6.3. Radius of Gyration Estimation

In addition to providing estimates of concentration ratios, an advantage of model (66)

allows estimation of the radius of gyration, Rg, of the molecule while accounting for the

concentration by angle interaction effect. Recall, Guinier’s formula for obtaining Rg from

SAXS data, given by

ln I(s) = ln I(0)− 1

3
R2

gs
2 +O

(
s4
)
.

Thus, the approximations

R̂2
g ≈ −3β̂ and Var(R̂2

g) ≈ 9Var(β̂)

give the estimates for R2
g and its variance, respectively, using model (66).
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6.4. Example using SAXS Data

In this example, we compare the estimated concentration ratios, which use only the

SAXS data, to ratios obtained through an external measurement. We use the four intensity

curves from Figure 6.1, each corresponding to a different concentration. The values in

columns two through four of Table 6.1 are obtained external to the SAXS experiment from

UV absorption spectra. It is of interest to see if the approach using only SAXS data can

reproduce the concentration ratios from the independent UV absorption spectra data. Using

this external measurement data, the last column of Table 6.1 is the ratio cUV
i /cUV

1 , where

cUV
i is the estimate for concentration ci, obtained independently from SAXS data.

Table 6.2 contains the parameter estimates for model (66) using the SAXS data. This

table also contains an estimate for the ratio ci/c1 given by exp(α̂i − α̂1) as well as a confi-

dence interval. Comparing the last column of Table 6.1 with the corresponding confidence

interval in Table 6.2 shows that each value fits well within the bounds of the confidence

interval. Therefore the SAXS-based estimate of the ratio of concentrations is accurate and

independently verified for this data set.

We may also estimate the radius of gyration of the molecule along with its standard

deviation using the aforementioned procedure. This method results in the estimate R̂g =

42.90Å with a standard deviation of 1.92 Å.

Table 6.1. Estimates for UV absorption spectra data for SAXS concentration
data shown in Figure 6.1.

Nominal Ratio Estimate 1 Estimate 2 Estimate 3 cUV

i
/cUV

1

1:1 21.40 23.22 – 1

1:1.5 14.97 15.16 13.57 0.65

1:3 7.97 7.16 7.17 0.33

1:6 4.16 4.06 4.45 0.19
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Table 6.2. Results of fitting model (66) to SAXS concentration data shown
in Figure 6.1.

Parameter Estimate exp(α̂i − α̂1) CI of exp(αi − α1)

α1 7.50 1 –

α2 7.07 0.65 (0.56,0.76)

α3 6.48 0.36 (0.29,0.44)

α4 5.93 0.21 (0.17,0.26)

β -607.13 – –

γ -7.05 – –

6.5. Example using Replicate SAXS Data

In the following example we have data for the molecule nucleosome core particle. This

data contains intensity curves for this molecule at five different concentration levels. A plot of

the data is shown in Figure 6.2. This picture illustrates the vertical shift of the log intensity

curves due to the different concentrations.

Table 6.3 contains the parameter estimates from model (66) along with their correspond-

ing standard deviation estimates. The fourth column in Table 6.3 contains the estimate of

the concentration ratios, ĉi/ĉ1, based on the model. The fifth column in Table 6.3 contains

the corresponding confidence interval for ci/c1. The last column of Table 6.3 consists of

the UV concentration ratios, cUV
i /cUV

1 . All of these UV concentration ratios are within the

confidence interval for the estimated concentration ratios in Table 6.3 except for the fifth

estimate, which is just outside the confidence interval.

For this set of SAXS data, we also estimate the radius of gyration of the molecule using

the aforementioned procedure. The estimate of Rg is 41.50 Å with a standard deviation of

1.54.
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Figure 6.2. Log intensity curves for five different concentrations for the mol-
ecule nucleosome core particle.

Table 6.3. Results of fitting model (66) to SAXS concentration data shown
in Figure 6.2.

Parameter Estimate Std. Dev. exp(α̂i − α̂1) CI of exp(αi −
α1)

cUV

i
/cUV

1

α1 7.77 0.10 1 – 1

α2 7.37 0.08 0.67 (0.63,0.71) 0.66

α3 6.60 0.08 0.31 (0.29,0.33) 0.33

α4 6.04 0.09 0.18 (0.17,0.19) 0.17

α5 5.42 0.09 0.09 (0.08,0.10) 0.06

β -612.11 48.30 – – –

γ 2.87 85.45 – – –

6.6. Example with Concentration-Dependent Data

In the following example, we have more data for the molecule NAP. This data contains

intensity curves for this molecule at four different concentration levels, and a plot of the data

is shown in Figure 6.3. This picture illustrates the vertical shift of the log intensity curves
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due to the different concentrations. There is also a subtle concentration by angle interaction

effect.

Table 6.4 contains the parameter estimates from model (66) along with their correspond-

ing standard deviation estimates. The fourth column in Table 6.4 contains the estimate of

the concentration ratios based on the model. The last column in Table 6.4 contains the

corresponding confidence interval for ci/c1.

For this set of SAXS data, we also estimate the radius of gyration of the molecule using

the aforementioned procedure. The estimate of Rg is 37.20 Å with a standard deviation of

1.81.
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Figure 6.3. Log intensity curves for four different concentrations for the
molecule NAP.
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Table 6.4. Results of fitting model (66) to SAXS concentration data shown
in Figure 6.3.

Parameter Estimate Std. Dev. exp(α̂i − α̂1) CI of exp(αi − α1)

α1 8.76 0.05 1 –

α2 7.61 0.04 0.32 (0.28,0.36)

α3 7.61 0.04 0.32 (0.28,0.36)

α4 8.23 0.04 0.59 (0.53,0.65)

β -461.32 44.80 – –

γ 188.05 69.67 – –

6.7. Conclusions

We devise a model for estimating concentration ratios in the presence of measurement er-

ror for concentration, while including a concentration by angle interaction effect in a unified

statistical model that requires only standard SAXS data. This model is validated empiri-

cally with data for which we have external measurements of concentrations; however, these

external measurements are not needed for the model. This model also provides the ability

to estimate the molecule’s radius of gyration with an estimate of its standard error.
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APPENDIX A

IMPLEMENT RG PROGRAM

A.1. Rg Software

The files described in this document are available at

http://hdl.handle.net/10217/167285.

A.2. Download R

In order to run this program you need to use the free, publicly available program “R”.

R is a commonly used programming language for statistical computing and graphics. To

download R, visit the site “http://cran.us.r-project.org” and follow the instructions.

A.3. Set Up the Estimation Routines and Examples

(1) Start the application R.

(2) Within R, the working directory must first be changed in order to conveniently

select the data. Click “File” > “Change dir...” and then select the folder containing

the SAXS intensity curve data. Now it is simple to use any data sets in this folder.

(3) Open the files file1.R, file2.R and file3.R from the R drop-down menu: click “File”

> “Open script” and then navigate to the correct file location and click “Open.”

Do this for each file.

(4) If this is the first time you have run this program in R, you must install the R

package “changepoint.” From the R drop-down menu:

(a) Click “Packages” > “Install packages.”
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(b) Select a geographic location from the “CRAN mirror” menu that pops up; it

is best to select a location near you for fast download speed. Click “OK.”

(c) Select the “changepoint” package from the “packages” menu that pops up; click

“OK.” The package will automatically download and install.

Once the package has been installed, you do not need to repeat Step 4 upon subse-

quent runs.

(5) Highlight everything in file1.R and run the code (Ctrl+A, Ctrl+R for Windows

machines).

The program is now ready to analyze the example data sets or user-supplied SAXS data.

Data in the input file must be organized into three columns, delimited by spaces or tabs if

using a text file (.txt, .dat, etc.), or by commas for a .csv file. The columns must contain

the following data in the following order:

angle (s) intensity standard deviation

The second column should NOT contain log intensity.

The R code in file2.R describes the analysis of a single replicate, using a sample SAXS

data set for the molecule ovalbumin. The code also describes alternate file formats. See

Section A.4 Section A.5 below. The R code in file3.R describes the analysis of multiple

replicates, using 10 sample SAXS data sets for the molecule myoglobin. See Section A.6

below.

A.4. Single Replicate Example: User-Specified Initial Angle

Included in this folder is a sample SAXS data set for the molecule ovalbumin. The

following R code is included in file2.R. The code runs the analysis using the ovalbumin data
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set and should yield Figure A.1, Figure A.2, and Figure A.3. The function estimate Rg has

three arguments: the first argument is the name of the data object read from the file, the

second argument is the number of replicates, and the third (optional) argument indicates

the index i of the initial angle si to be used in the analysis (that is, excluding the first i− 1

data points near zero from the analysis). If the third argument is not included, then the

program defaults to automatically determining any initial outlying data points.

data = read.table("oval_01C_S008_0_01.dat", header = FALSE)

estimate_Rg(data, 1, 5)

The program output is three plots (one may be concealed by the other) containing several

pieces of information:
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Figure A.1. Plot of log intensity vs. s with the estimated Rg value and its
standard deviation for a single replicate of ovalbumin.

A.4.1. Plot of log-intensity versus angle.

• Data points (open blue dots and solid red dots) represent log intensity vs. angle s

of the input data; this plot can be used to ensure the input data are correct.
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• Specifically, the solid red data points are those that have been chosen for use in

curve fitting by minimizing the bias-variance criterion.

• A quadratic fit of the solid red data points is indicated by the solid black curve.

This curve is used to estimate Rg and its standard deviation. This curve does not

need to fit the data perfectly; some bias is acceptable in return for smaller standard

deviation.

• The resulting estimates of Rg and its standard deviation are given.

• A black horizontal dashed line indicates the range of possible values over which the

bias-variance criterion is optimized.
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Figure A.2. Plot of log intensity vs. s2 with the estimated Rg value and its
standard deviation for a single replicate of ovalbumin.

A.4.2. Plot of log-intensity versus squared angle.

• Data points (open blue dots and solid red dots) represent log intensity vs. angle

squared s2 of the input data over which the bias-variance criterion is optimized.

• Specifically, the solid red data points are those that have been chosen for use in

curve fitting by minimizing the bias-variance criterion.
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• A fit of the solid red data points is indicated by the solid black line. This line is

used to estimate Rg and its standard deviation. This line does not need to fit the

data perfectly; some bias is acceptable in return for smaller standard deviation.

• The resulting estimates of Rg and its standard deviation are given.
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Figure A.3. Plot of residuals vs. s for a single replicate of ovalbumin.

A.4.3. Plot of residuals from quadratic fit.

• The points (open blue dots and solid red dots) represent residuals vs. angle s of

the input data; this residual plot can be used to ensure that the data window is a

reasonable fit.

• Specifically, the solid red data points are those that have been chosen for use in

curve fitting by minimizing the bias-variance criterion, and the open blue dots are

not used in the fit.

To save a plot as a PDF file, first select the plot by clicking on it. Then, from the R

drop-down menu, click “File” > “Save as” > “PDF...” Then select the save location, enter

a name for the file, and click “Save.”
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A.5. Single Replicate Example: Automatic Selection of Initial Angle

By default, the program will automatically determine any initial outlying data points

using a modified DFBETAS procedure. If the user does not enter any values for the initial

angle, then the program will determine these points automatically and output the number

of points removed from the curve. The following R code is included in file2.R. It runs

the program using the data set for the molecule ovalbumin and should yield Figure A.4,

Figure A.5, and Figure A.6.

data = read.table("oval_01C_S008_0_01.dat", header = FALSE)

estimate_Rg(data, 1)
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Figure A.4. Plot of log intensity vs. s with the estimated Rg value and its
standard deviation for a single replicate of ovalbumin with automatic outlier
detection.
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Figure A.5. Plot of log intensity vs. s2 with the estimated Rg value and its
standard deviation for a single replicate of ovalbumin with automatic outlier
detection.
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Figure A.6. Plot of residuals vs. s for a single replicate of ovalbumin with
automatic outlier detection.
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A.6. Multiple Replicates Example

An important innovation of this new procedure is the ability to incorporate replicate

SAXS intensity curves to determine a more accurate and precise estimate of Rg and its

variance. The code below is included in file3.R and demonstrates how to apply this program

with replicate data for the molecule myoglobin. First, the replicate data are read in from 10

different files:

data1 = read.table("myo2_07D_S215_0_01.dat", header = FALSE)

data2 = read.table("myo2_07D_S215_0_02.dat", header = FALSE)

data3 = read.table("myo2_07D_S215_0_03.dat", header = FALSE)

data4 = read.table("myo2_07D_S215_0_04.dat", header = FALSE)

data5 = read.table("myo2_07D_S215_0_05.dat", header = FALSE)

data6 = read.table("myo2_07D_S215_0_06.dat", header = FALSE)

data7 = read.table("myo2_07D_S215_0_07.dat", header = FALSE)

data8 = read.table("myo2_07D_S215_0_08.dat", header = FALSE)

data9 = read.table("myo2_07D_S215_0_09.dat", header = FALSE)

data10= read.table("myo2_07D_S215_0_10.dat", header = FALSE)

See file2.R for alternate file formats.

Next, the data are combined into a matrix with the following columns in the following

order:

angle (s), intensity for first replicate, . . . , intensity for last replicate

In this example, we first combine all data into a matrix with all ten replicates, then use

subsets of the data to illustrate estimation with one, three, and ten replicates:
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# For illustration, look at one replicate, three replicates, and ten

replicates.

# First combine the data into one big ten-replicate matrix.

# Keep angle and intensity from replicate 1 (columns 1 and 2 but not 3),

# intensity from replicate 2 (column 2 only),

# intensity from replicate 3 (column 2 only),...,

# intensity from replicate 10 (column 2 only).

#

combined_data = cbind(data1[1:400,-3],data2[1:400,2],data3[1:400,2],

data4[1:400,2],data5[1:400,2],data6[1:400,2],

data7[1:400,2],data8[1:400,2],data9[1:400,2],

data10[1:400,2])

It remains to specify the initial angle, or let it be selected via automatic outlier detection.

In this example, we specify in each case (one, three or ten replicates) that no points are to

be deleted:

# Run the estimation code with one replicate

# (only the first two columns of the combined data), with no points deleted:

estimate_Rg(combined_data[,1:2], 1, 1)

# Run the estimation code with three replicates

# (only the first four columns of the combined data), with no points

deleted:

estimate_Rg(combined_data[,1:4], 3, rep(1,3))

# Run the estimation code with all ten replicates
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# (all eleven columns of the combined data), with no points deleted:

estimate_Rg(combined_data, 10, rep(1,10))

Table A.1 summarizes the results. In each case, the estimate of Rg is similar but using more

replicates increases the precision of the estimate.

As with the single replicates case, the program output is three plots (one may be concealed

by the other). The only difference is that all the replicate data are plotted. See Figure A.7,

Figure A.8, and Figure A.9 for the case of ten replicates.
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Figure A.7. Plot of log intensity vs. s with the estimated Rg value and its
standard deviation for ten replicates of myoglobin.

Table A.1. Results for estimating Rg using the new procedure for the mol-
ecule myoglobin with one, three, and ten replicate SAXS intensity curves. In

each case, R̂g and its standard deviation are given.

Replicates R̂g SD(R̂g)

1 16.469 0.030

3 16.452 0.029

10 16.452 0.019
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Figure A.8. Plot of log intensity vs. s2 with the estimated Rg value and its
standard deviation for ten replicates of myoglobin.
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Figure A.9. Plot of residuals vs. s for ten replicates of myoglobin.

The third argument can be altered to select different initial points from each replicate.

For example, if you want to eliminate the first three points of the fourth replicate while

deleting no points from the other nine replicates, you would use the following code:

estimate_Rg(combined_data,10,c(1,1,1,4,1,1,1,1,1,1))
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Alternatively, you can delete the third argument, in which case the program uses the

modified DFBETAS criterion as an outlier detection algorithm to determine one, common

initial point for all of of the replicate curves. For automatic selection of the common initial

point in the example with three replicates, use

estimate_Rg(combined_data[,1:4],3)

Similarly, for automatic selection of the common initial point in the example with ten repli-

cates, use

estimate_Rg(combined_data, 10)

A.7. Problems and Possible Solutions

Problem: The following error message appears when executing the program. “Error in

[.data.frame(M, , 2) : undefined columns selected”

Solution: Make sure there is only a one-line header in the data file.

Problem: The following warning message appears when reading in a file. “Incomplete

final line found by readTableHeader on ‘filename’”

Solution: The final line of your text or CSV doesn’t have a line feed or carriage return.
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APPENDIX B

USING MODIFIED DFBETAS TO DETECT OUTLIERS

B.1. DFBETAS Criterion for R̂2
g

We have developed an automated statistical procedure to detect outliers, by adapting

the standard DFBETAS criterion (e.g., [20], §10.4) to estimation of R2
g under model (10).

Specifically, we compute

DFBETAS
(
R̂2

g(−a)

)
=
R̂2

g − R̂2
g(−a)

SE
(
R̂2

g

) .

where R̂2
g(−a) deletes the first a observations and uses only the angles sa+1, sa+2, . . . , sn.

Therefore, we can remove one outlying point at a time or groups of observations. We remove

values if the absolute value of DFBETAS exceeds two, or if it exceeds a size-adjusted cutoff

value of 2/
√
max {n, n(−a)}, where n(−a) is the number of points used to calculate R̂2

g(−a).

B.2. DFBETAS Criterion for ψ̂

We are also interested in determining the influence of the ith data point on the estimate

of ψ̂. Thus, similarly to our definition of the DFBETAS criterion for R̂2
g we define the

DFBETAS value for ψ̂ as

DFBETAS
(
ψ̂(−a)

)
=
ψ̂ − ψ̂(−a)

SE{ψ̂}
,

where a is the number of consecutive data points deleted in calculating ψ̂. The analogous

cutoff value is 2/
√
max {n, n(−a)}, where n is the number of data points used to determine
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ψ̂ and n(−a) is the number of data points used to determine ψ̂(−a). In the following section,

we will describe simulations to test the new DFBETAS criterion for ψ̂.

B.3. Outlier Simulation Results

To test the performance of the new outlier detection method for R̂2
g and ψ̂, we will create

a simulation comparing this new outlier detection method to the standard method with no

outlier detection. For this simulation, we fit a cubic spline to the model of the molecule, and

we will add noise to this fit. Figure B.1 is a plot of s versus log intensity for the molecule

myoglobin. The standard method estimates R2
g and ψ starting at the first point of the curve,

and the new method determines which initial points are outliers before determining the

final estimates R2
g and ψ. Once the initial outlying points are determined, the new method

estimates R2
g and ψ the same as the standard algorithm.

There are two common types of outlying behavior that occur with SAXS data. The

first type is outlying trend behavior that can be caused by aggregation or interparticle

interference. Figure B.2 contains a plot of strong and weak versions of this type of outlying

trend. The second type of outlying behavior is single outlying points which is often the

result of beam stop scatter. Figure B.3 is an example of this type of single point outlying

behavior.

Outlying trend behavior is simulated as follows. A knot is chosen Unif(5, 20), and the

coefficient of the first spline is then given random variability that increases or decreases the

outlying trend for the initial part of the curve. Finally, appropriate noise is added to the

curve and then both methods are used to determine R̂g and ψ̂. Using this procedure we are

able to test the new outlier detection algorithm on models of molecules. Figure B.4 shows

the results of the outlier detection method for ψ̂ for a specific example of outlying trend.
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For both types of outlying behavior, we will compare the root MSE values of R̂g and

ψ̂ using both the regular estimation method without outlier detection and the new outlier

detection method. Table B.1 contains the results for trend outlying behavior, and Table B.2

shows the results for single point outlying behavior. In both cases, the root MSE is much

smaller for the procedure with the new outlier detection method.
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Figure B.1. Plot of the theoretical intensity curve for the molecule myoglobin.
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Figure B.2. Left: Plot of simulated experimental data with weak outlying
trend for the molecule myoglobin. Right: Plot of simulated experimental data
with strong outlying trend for the molecule myoglobin.
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Figure B.3. Left: Standard method for a single outlying point. Right: Stan-
dard method for a single outlying point.
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Figure B.4. Left: New outlier diagnostics method for a single outlying point.
Right: Standard method for outlying trend.

Table B.1. Results comparing the root MSE of R̂g and ψ̂ using the regular
estimation method without outlier detection and the new outlier detection
method. Simulation results are based on a sample size of 1000 for the molecule
myoglobin with trend outlying behavior.

Reg. ψ̂ Out. ψ̂ Reg. R̂g Out. R̂g

RMSE 0.4833 0.1275 1.0097 0.2610

Table B.2. Results comparing the root MSE of R̂g and ψ̂ using the regular
estimation method without outlier detection and the new outlier detection
method. Simulation results are based on a sample size of 1000 for the molecule
myoglobin with single point outlying behavior.

Reg. ψ̂ Out. ψ̂ Reg. R̂g Out. R̂g

RMSE 0.1950 0.0846 0.4200 0.1814

We also conduced a similar simulation comparing the two procedures on data with no

outlying behavior and data with both outlying trend and single point outliers. Figure B.5

contains an example of each of these two simulation setups. Table B.3 contains the results
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comparing the two procedures on a simulation with no outlying behavior. The outlier de-

tection method performed slightly better, but both procedures have comparable root MSE

values. Finally, Table B.4 compares the two procedures for a simulation with both trend and

single point outlying behavior, and the outlier detection method yields smaller root MSE

values, as desired.
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Figure B.5. Left: Molecule myoglobin with no outlying behavior. Right:
Molecule myoglobin with both outlying trend and a single point outlying be-
havior.

Table B.3. Results comparing the root MSE of R̂g and ψ̂ using the regular
estimation method without outlier detection and the new outlier detection
method. Simulation results are based on a sample size of 1000 for the molecule
myoglobin with no outlying behavior.

Reg. ψ̂ Out. ψ̂ Reg. R̂g Out. R̂g

RMSE3 0.1341 0.1330 0.1853 0.1851
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Table B.4. Results comparing the root MSE of R̂g and ψ̂ using the regular
estimation method without outlier detection and the new outlier detection
method. Simulation results are based on a sample size of 1000 for the molecule
myoglobin with both trend and single point outlying behavior.

Reg. ψ̂ Out. ψ̂ Reg. R̂g Out. R̂g

RMSE3 1.0222 0.1307 1.6468 0.3652
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