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ABSTRACT

EVALUATION OF THE STORAGE OF DIFFUSE SOURCES OF
SALINITY IN THE UPPER COLORADO RIVER BASIN

Specific electrical conductance (EC) was found to correlate highly

(r2 = 0.99) with the total dissolved solids (TDS) concentration of

aqueous solutions derived from mixtures of distilled water and sediment

samples collected in the Mancos Shale lowlands of the Upper Colorado

River Basin. The effects of suspended sediment presence, turbulence and

particle size on the EC of partially equilibrated mixtures appeared

negligible. The mixing time necessary to approach equilibrium decreased

with an increase of salt content (of the dissolving sediment) and with a

decrease of sediment concentration, and the time span required for equi-

librium ranged from a few minutes to several days.

2+ 2+
The chemical quality of the aqueous mixtures is of the Ca -Mg

Nal+_S02'~_HCOl- type. Sodium and magnesium hydrated sulfates appear to
4 3

dissolve faster than gypsum or calcite. Moreover, it was determined

that the relative abundance of Nal +, Mg2+ and SO~- decreases with a de-

crease in the sediment:water ratio. An increase in sediment:water ratio

was followed by an increase in TDS concentration due to the addition of

soluble minerals. A decrease in sediment:water ratio produced an oppo-

site trend. However, the TDS decrease was smaller than warranted by di-

lution for 95 percent of the samples. This dilution effect, in which

the mass of dissolved matter increases as much as 500 percent, may be

partly explained by gypsum and calcite dissolution but in undersaturated
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solutions it calls for the existence of slightly soluble coatings on

mineral particles.

There is a large inherent variability in the soluble mineral con-

tent of sampled sediments. Soluble mineral content (calculated from

the EC of 1:99 sediment:water mixtures) of Mancos Shale from hillslopes

(2 percent, calculated as a weight per weight ratio) is significantly

larger than that of terrace alluvium (0.62-0.29 percent) and bed mater-

ials (0.93-0.81 percent) of North Miller and West Salt Creeks, respec-

tively. The most saline deposits (10 percent) are efflorescent bed

crusts. Terrace and bed materials in narrow valleys where shallow al-

luvium overlies shale are highly saline (1.6 percent) and show an in-

crease in soluble mineral content with depth. Terrace crusts are well

leached; some bed material crusts accumulate salts while others do not.

Results from the experiments on the amount of dissolution and dis-

solution rates upon dilution indicate that the true salt load from dif-

fuse sources of salinity may be much larger than presently assumed.

Chemical analyses of samples from a single low magnitude flow event in

West Salt Creek show that stormflow salinity is considerably influenced

by the soluble mineral content of bed and lower bank materials. Results

also confirm that major areas of diffuse sources of salinity in the

Upper Colorado River Basin are also major sediment contributors. Hence,

gullying will significantly increase the sediment and salt load of

channels in saline alluvium and in Mancos Shale bedrock.

Jonathan Benjamin Laronne
Department of Earth Resources
Colorado State University
Fort Collins, Colorado 80523
Summer, 1977
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CHAPTER I

INTRODUCTION

1.1 Statement of Problem

Colorado River water serves millions of people is such diverse

ways as industrial and municipal needs, recreation, irrigation and the

production of electrical energy. The variety of demands on this water

places great emphasis not only on the quantity of water but also on

water quality. The situation is complicated internationally by Mexico's

use of Colorado River water.

The most serious water quality problem in the Colorado River Basin

is salinity and the progressive increase of salinity. The average

annual salinity of the Colorado River at Imperial Dam, California, as

well as in all the major tributaries of the Upper and Lower Colorado

River Basin lowlands has almost doubled during this century (Iorns,

Hembree and Oakland, 1965). Although irrigation return flow con­

tributes significantly to this salinity increase, salts from diffuse

and point sources of natural origin are the largest contributors

(Maletic, 1973). Sources of salinity may be divided into point and

non-point, or diffuse types. Point sources include saline seeps and

springs as well as industrial and urban effluents. Diffuse sources

originate from the entire drainage basin.

Geologic sources of salt have been identified regionally but,

except for the recent investigation by Ponce (1975), the storage and

release mechanisms of salts and the variation of salt content within
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high salt producing areas have not been studied. Such a study of

natural salt storage and release processes should improve the possi­

bility for control of salt production from these diffuse sources of

salt.

1.2 Objectives

The objectives of this study may be divided into two groups. The

first group involved the determination of amounts of salt. i.e.,

soluble mineral content. stored in alluvium (bed materials of alluvial

channels and terrace deposits including gully walls) and in associated

Mancos Shale (both weathered and unweathered) bedrock. These determi­

nations are required in order to evaluate the salinity potential of

such deposits. The diffuse source areas studied are heavy contributors

of dissolved solids. An additional objective was to determine the re­

lation between sediment yield and salt yield by studying the physical

and chemical dissolution processes of these geologic materials upon

contact with water.

The second set of objectives was oriented toward the identifica­

tion of the relationship between salt release and the erosion of valley

alluvium. The hypothesis to be tested was that salt is stored in allu­

vium and released after alluvium is eroded. This goal may be achieved

by comparing morphological differences between basins of high and those

of low salt release and by comparing aggrading and degrading channel

reaches in channels of high salt release.

It was apparent in the early stages of this study that there are

very few natural basins contributing significant salt yields to the

Upper Colorado River Basin that are appreciably unaffected by irrigation
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and, at the same time, for which water quality data is available. Com-

parison of potentially low and high salt yielding areas was therefore

limited to reaches within one of the studied basins. Moreover, interp-

retation of aerial photographs and topographic maps as well as a low-

level flight over large areas of the Upper Colorado River Basin sub-

stantiated the field observation that most channels are incised or

gullied. Because no typical aggrading reach (one with a high width/

depth ratio and/or with thick fresh deposits) was located, no compari-

son was undertaken between aggrading and degrading reaches.

1.3 Salinity in Arid Regions
and in the Upper Colorado River Basin

Natural water in the atmosphere, hydrosphere and lithosphere con-

tains varying amounts of dissolved constituents. The concentration of

dissolved solids in precipitation is very low (Carroll, 1962) although

it may increase locally such as in coastal areas (Fanning and Lyels,

1964). Channelized and overland flow, soil water and ground water

dissolve gases, liquids and solids with which they come in physical

contact. The total dissolved solids (TDS) concentration of these na-

tural aqueous solutions becomes very high if the material in contact

with the solution is highly soluble or when evaporation of the water

concentrates the solutions.

Arid and semiarid regions are by definition regions of low annual

precipitation and high potential evaporation. The natural waters of

these regions become more concentrated with dissolved solids, or 'salt

loaded', as evaporation occurs. Therefore, saline accumulations appear

on the surface and in the soils of these regions. The saline deposits
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are composed of highly soluble minerals, the most soluble of which are

the nitrates, chlorides and sulfates. The arid and semiarid environ­

ment is, therefore, conducive to the formation of saline deposits such

as saline playa deposits (Hardie, 1968; Lotspeich et al., 1969), and

it is characterized by saline soils and by runoff and groundwater of

low chemical quality.

Large parts of the Southwest and, specifically, the lowlands of

the Colorado River Basin, sizeable areas in the Rio Grande Basin and in

the San Juaquin Valley, California, as well as major areas in Wyoming,

Montana and Idaho are characterized by saline soils. Saline and sodic

(i.e., sodium rich) soils are common in the Middle East, in the Asian

subcontinent, in Australia and in western South America. The saline

bedrock and consequently the saline surficial materials of these

regions are the diffuse sources of salinity of the rivers that drain

them.

Most of the water in the Upper Colorado River Basin, defined as

the drainage area (276800 km2 or 109500 mi2) drained by the Colorado

River above Lees Ferry, Arizona, originates from spring snow melt in

the high country of the Rocky Mountains. The upper parts of the drain­

age basin are vegetated mountain ranges exposing outcrops of Pre­

cambrian crystalline rocks. These rocks and their derived soils pro­

duce relatively insoluble weathering products, and they are

characterized by low sediment production. However, the lower areas of

the Upper Colorado River Basin are underlain by Paleozoic to Recent

sedimentary rocks. Various marine shales are interlayered in the thick

sedimentary sequence of the Colorado Plateau and the saline Mancos

Shale formation of Upper Cretaceous age occurs over rather large areas.
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Shales, although relatively impermeable, are erodible materials.

Marine shales contain soluble minerals which were precipitated from

marine water. Therefore, it is expected that Mancos Shale areas will

yield high sediment and salt loads to the Colorado River. The percent

of the total flow and the percent of the total salt and suspended

sediment load discharged from the Upper Colorado River Basin measured

at selected gaging stations are shown in Figures 1.1 and 1.2. The

percentages were calculated from the total runoff, salt load and sus­

pended sediment yield at Lees Ferry, Arizona. The Price and Dirty

Devil Rivers are characterized by low water yields (0.66 and 0.58 per­

cent, respectively) and by very high sediment yields (3.73 and 4.81

percent, respectively). It is particularly noticeable that these basins

also contribute high yields of solutes (2.79 and 2.28 percent). Mun­

dorff (1972) and Ponce (1975) clearly demonstrated the relation of

high salinity to presence of Mancos Shale in the Price River Basin.

Similar patterns of high sediment and salt loading occur in the central

reach of the Gunnison Valley in the Delta-Montrose area of Colorado,

throughout the Grand Valley and in the San Juan River drainage basin

between Shiprock, New Mexico, and Bluff, Utah. All these basins,

valleys and reaches are extensively underlain by Mancos Shale. There­

fore, several of them were chosen as field areas for intensive

sampling of surficial Mancos Shale and associated alluvial deposits in

order to determine their potential as diffuse sources of salinity.

The major diffused sources of salinity yield a mixed cation

(calcium, magnesium and sodium) sulfate-bicarbonate type runoff, as

opposed to the low sodium and low sulfate runoff from most other areas

(Price and Waddell, 1973). The natural diffuse source areas yield
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approximately one-half the total salt load of the Colorado River, with

the remainder contributed by point sources (one-fifth) and sources

affected by man such as irrigated agriculture (about one-third) CU. S.

Environmental Protection Agency, 1972). Therefore, it is essential to

identify the sources of salinity and to understand the processes of

salt storage, dissolution and loading from these natural sources of

salinity. For the purpose of this study the research was concentrated

on the high salt producing areas of the Mancos Shale.

1.4 The Mancos Shale Terrain

The Mancos Shale crops out south of the east-west trending Book

Cliffs of west central Colorado and east central Utah in a broad band

of rolling hills to the south and as steep hillslopes with deeply in­

cised bedrock channels, arroyos and gullies to the north. The forma­

tion in places appears at the margins of pediments which are gravel­

capped. The Mancos Shale also outcrops extensively in the central

Dirty Devil and San Rafael Basins, in the central Gunnison Valley and

in the Four Corners area near the town of Mancos and in the Chaco River

Basin; there are additional outcrops throughout major tributary basins

of the central to lower San Juan, Green and Colorado Rivers.

Mancos Shale and stratigraphically associated formations dip 10°

to the north in the Grand Valley, south of which the Uncompahgre Uplift

exposes Paleozoic to Precambrian rocks (Figure 1.3). Similarly, in

the Price Basin area the Mancos Shale encircles the center of the basin

dipping 10° away from the San Rafael Swell.

Mancos Shale is a shallow marine formation of Upper Cretaceous

age. The lower shales of the formation are of late Cenomanian to early
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Turonian age and the upper shales in the sequence are Campanian

(Fisher, Erdmann and Reeside, 1960). It is a westward facies of parts

of the Pierre Shale which crop out east of the Rocky Mountains and in

the Great Plains. Its thickness ranges between 1050 m (3450 ft) and

1265 m (4150 ft) in most areas. It is a saline monotonous marine

shale, drab gray where weathered and dark gray, thinly bedded and lack­

ing pronounced fissility when fresh. The dark shale abounds in

veinlets of gypsum and calcite and it is often covered with patches of

"white alkali" or salt efflorescence. The weathering of the shale

produces a friable semi-powdery mass that is sticky and impervious when

wet.

Mancos Shale generally includes thin sandstone layers which inter­

tongue eastwards with shales. The thickness and abundance of these

increases to the northwest. Minor, gas-rich, hogback-forming sandstone

beds are found at different places and horizons. In the Price River

area the Mancos Shale has been divided into several members (Stokes and

Cohenour, 1956). In ascending stratigraphic sequence these are the

Tununk member, a gray marine siltstone and claystone, the concretionary

fluviatile partly marine Ferron Sandstone, the light gray and calcare­

ous Blue Gate Shale, the marine to deltaic light colored Emery Sand­

stone and the gray marine Masuk Shale.

The fluviatile Dakota Sandstone conformably underlies the Mancos

Shale and usually crops out as prominent hogbacks or cuestas. The

lower part of the Mesa Verde Group, which conformably overlies the

Mancos Shale, are interlayered cliff-forming sandstones, coal seams and

saline marine shales. Deposition of the late Cretaceous Mesa Verde

Group began earlier to the northwest. The Wasatch and Green River
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Formations, which unconformably overlie the Mesa Verde Group, are all

terrestrial rocks.

Generally, the drainage density is high (100) due to the low in­

filtration rates and high erodibility of weathered Mancos Shale

(Schumm, 1964). Where relief is high, intricate drainage patterns

resembling badlands form. Rolling hills characterize only the lower

parts of the drainage basins. The shale slopes steepen appreciably

toward the Mesa Verde cliffs, and active mass wasting occurs which in­

cludes creep, mudflows and rockfalls. These processes are very active

in the incised bedrock channels as North Miller Creek.

The climate in the lowlands of the Upper Colorado River Basin is

of a semiarid continental type with frequent high intensity convective

storms of small areal coverage. Maximum monthly precipitation occurs

in July-August. Daily and seasonal temperatures vary widely with

extremes of from 42°C (108°F) to -41°C (-42°F) in the Price River Basin

(Mundorff, 1972). The average potential evaporation measured with a

class-A pan at the Grand Junction airport was 233.0 cm (92.1 in)

during the years 1954-1960, and the maximum monthly average was 46.5 cm

(18.3 in) during July (Lusby, Reid and Knipe, 1971). Annual precipita­

tion at Fruita in the Grand Valley ranged from 117.9 mm (4.64 in) to

459.2 mm (18.08 in) during 1954-1966. Mean annual precipitation is

250 rom (10 in) at Price, 200 mm (8 in) at Woodside in the lower Price

Basin, and 215.9 mm (8.5 in) at Badger Wash with a gradual increase

eastward (Mundorff, 1972; Branson and Owen, 1970). The mean annual

precipitation at Cortez, Colorado, is 381 rom (15.0 in) (U. S. Dept. of

Commerce, 1956).



12

Soils in parts of the study areas have been investigated and

classified by the Soil Conservation Service (Swenson et aZ., 1970),

by the interagency study group at Badger Wash (Lusby, Rheid and Knipe,

1971) and by Knobel et al. (1955). Generally, the area is underlain

by three Lithosol soil types that are represented by the Chipeta and

Persayo soil series. The Billings soil series represents the Alluvial

soil group. The lithosols are of the loose sandstone type, reddish

loam soils of low salinity and high pH (9.3). The thin gray and brown

silty shale loam soils that develop on Mancos Shale have high salinity

and a lower pH (8.0). The third lithosol is a mixture of the sandy and

shaly soils. It has been determined (Schumm, 1964) that fresh and

somewhat weathered Mancos Shale swell considerably when wetted with

25-58 percent volume increase in free swell tests.

Vegetation on most of the Mancos Shale and associated alluvium is

of the salt-desert shrub type with subtypes reflecting local differen­

ces in soil characteristics and available soil moisture. Except in

local areas, the plant cover is sparse with crowns of living perennial

plants covering 10-20 percent of the surface (Lusby, Reid and Knipe,

1971). Plant cover is somewhat increased in early summer and in wet

years.



CHAPTER 2

PROCEDURE

2.1 Introduction

Two separate research plans were required for this study. The

determination of soluble mineral content in surficial deposits re­

quires abundant sampling of these materials at the surface and at

depth. Field sites where alluvium and shale were collected are all in

Mancos Shale terrain because of the high solute yields from diffuse

sources in these areas. Based on two reconnaissance trips to the

area, fieldwork was planned such that samples would be collected from

sampling units of both alluvium (bed, bank and mass wasted materials)

and bedrock (from bedrock channels and from hillslopes). Laboratory

experimentation was planned to determine the effects of various para­

meters on the kinetics of dissolution and on the dissolution potential

of the samples. Based on these results, a procedure was adopted to de­

termine salt content.

2.2 Selection of Study Areas

2.2a Location

The study areas were selected to meet the following requirements:

they are located in accessible tributary basins of the Upper Colorado

River Basin that are known to be high salt contributors to the river

system; no irrigation takes place in the study areas.



14

Soils and surficial sediments were sampled in four such basins

during the field season of 1975. The samples of surficial alluvium and

Mancos Shale were collected from the unnamed northern branch of Miller

Creek (herein called North Miller Creek) in the Price Basin, Utah, from

Leach and West Salt Creeks in the Grand Valley, Colorado, and from the

unnamed 'Mesa' Creek, a tributary of McElmo Creek near Cortez, Colo-

rado (Figure 2.1).

All of the study areas are located in the High Plateaus and

Canyonland sections of the Colorado Plateau Physiographic Province

(Fenneman, 1931), and they are partly or completely underlain by Mancos

Shale.

2.2b Description of Study Areas

2North Miller Creek, with a drainage area of about 10.5 km (4.1

miZ) above the lower sampling section denoted by number U6, was chosen

because of its location in the Price River Basin, one of the single

largest contributors of salt from diffuse sources in the Upper Colorado

River Basin, and because man's influences are minimal. The U. S.

Geological Survey monitors water discharge and specific conductance of

the Price River at Woodside, Utah. Moreover, several researchers from

Utah State University have also been involved in salinity studies in

the Price River Basin (e.g., Ponce, 1975).

Numbers of samples from North Miller Creek and from other studied

basins are comprised of a first character which identifies the general

sampling area (IU' stands for the Price Basin, Utah, 'G' for the Grand

Valley and 'M' for Mesa Creek). For samples from North Miller Creek,

the second character identifies a channel reach, the third corresponds
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to a channel section, the fourth corresponds to a sampling unit and

the last character corresponds to a given sampling depth. Because only

one section was sampled intensively within each studied reach in West

Salt, Leach and Mesa Creeks, samples from these areas are denoted by

four characters. The course of the main channel of North Miller Creek

is parallel to the Wattis coal mine road. Samples USB1 to USZ1B

correspond to locations sequentially more upstream in the upper reach

as shown in Figure 2.2. The upper reach of North Miller Creek that was

chosen for detailed study is deeply cut into the Mancos Shale bedrock

and it is bounded by unstable vertical walls which may reach 15 m

(49 ft) in height. As the channel meanders shifted and downcut through

the shaley bedrock, alluvial aprons formed on the abandoned bends (the

convex or inside banks). The channel bed is presently downcutting and

bedrock is exposed throughout the studied reach. Most of the alluvial

deposits are terraces 2-15 m (6-49 ft) above the present elevation of

the channel bed. The alluvium, which is primarily comprised of sands

and gravel, together with the unstable shaley bedrock, provides a large

sediment load as it mass wastes from the gully walls.

The Mancos Shale 'desert' of the northern Grand Valley has been

studied for a number of years in connection with sediment yields

(Lusby, Reid and Knipe, 1971) and with the salt contribution of the

valley to the Colorado River (e.g., Skogerboe, 1972). Leach Creek

(Figure 2.3) drains the Book Cliffs and the adjacent Mancos Shale low­

land, which is partly occupied by large dissected pediments. The basin

is small (22 km
2 or 8.7 mi2) and a road follows the creek up to its

headwaters in the Book Cliffs. In the lower area of the drainage basin

(above the Government Highline Canal) the channel bed is only slightly
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gullied and overlies 5-8 m (16-26 ft) of alluvial fill like the neigh~

boring Indian Wash (U. S. Dept. Agr., 1964).

2 2West Salt Creek drains an area of 435 km (170 mi ) and it is

located in the westernmost extremity of the Grand Valley (Figure 2.3).

The headwater channels drain the southern face of the Roan Cliffs which

are underlain by the lower Green River siltstones and marls. The upper

part of the basin is underlain by sandstones and shales of the Mesa

Verde Group and below section GIl (Figure 2.3) the valley broadens as

West Salt Creek enters the Mancos Shale. A Geological Survey station

is located in the southernmost area broadly underlain by shale. Be-

tween this gaging station and the confluence with the Colorado River,

West Salt Creek flows over the deep alluvial fill of the Grand Valley.

West Salt Creek is unique in having a gaging station and an EC metering

facility.

Sections G7 through GIO are in the main West Salt channel (Figure

2.3) where it is incised in alluvium (100-150 m or 320-480 ft thick) to

a depth of 5-10 m (16-32 ft) below the upper terrace. This terrace

constitutes the valley floor. At section G8, the junction of the chan-

nel with the Mitchell Pass Road, the channel abutts against a Mancos

Shale slope where a small saline seep is perenially active. Salt

efflorescence is very conspicuous downstream of the seep. Section GIl

is located in the main channel above the confluence with South Canyon

Gulch. Here the valley narrows between the steep slopes and cliffs of

alternating sandstones and shales, and the channel, which is incised

into the alluvium, is a source of many small saline seeps. These seeps

become more numerous upstream.
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McElmo Creek is a highly saline tributary of the San Juan River.

Grab samples (U. S. Geol. Survey, 1969-75) indicate a large range in

TDS with a relatively high (1.6-2.7) sodium absorption ratio. The

salinity of McE1mo Creek is considered to originate from diffuse

sources including irrigation in the basin. Several of the tributaries

of McE1mo Creek are underlain by Mancos Shale. Among these, only the

unnamed 'Mesa' Creek (Figure 2.4) has a stage recording gaging station

but data from this station is not available. Mesa Creek is essentially

a smaller version of Leach Creek although it is not accessible in its

headwaters which lie within Mesa Verde National Park. Therefore, data

was collected only in three lower reaches.

Ml and M2 samples represent a reach where the channel abutts

against an actively mass wasting Mancos Shale bluff. The M3 samples

were taken to determine variations in salt content with depth in an

alluvial reach. The M3 and M4 reaches are similar except for the

coarser bed of the latter.

2.3 Methodology

2.3a Sampling Techniques and Sampling Error

Soils and surficial sediments were drilled with a 10 em diameter

bucket-type auger. Drilling direction was perpendicular to the sur­

face. Salt efflorescence and crusts were sampled by hand. Crusts

normally form in semiarid regions and crusts were present at many

sampling sites except on terraces and in some sandy channels. Because

crust thickness (0.1-10 em or 0.04-4 in) may vary with the sediment

size distribution, mineralogy and antecedent moisture conditions, the

crusts were collected in their entirety.
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Sampling holes were drilled in the bed, banks and in the terrace

of each channel cross section. These morphologic units. in conjunction

with hillslopes. are herein referred to as sampling units. Sections

were chosen to represent a fairly long channel reach. More than one

set of samples of a given sampling unit was taken whenever variability

was either noted or expected.

These sampling errors may be identified. The first is related to

the drilling process whereby the sampled material includes matter

originating from previously-sampled parts of the same drilling hole.

Another, more significant, sampling error results from the large

natural variability in salt content of sampled materials. The third

sampling error results during splitting of a sample in the laboratory

and it is related to the variability in salt content of the given

samples. Yet another error may arise when a selected cross section

or sampling unit does not adequately represent a channel reach.

Drilling in dry sand and in gravelly sand often disturbed over­

lying materials which, in turn. fell into the sampler bucket. Table

2.1 summarizes the size distributions of samples G8l4 to G8l7 and

G8Hl and G8H2. The G8R samples were drilled horizontally into the

vertical bank of West Salt Creek 60 cm (24 in) below the terrace and

they represent a sandy layer lacking gravel with a thickness of about

20 cm or 8 in (i.e., extending approximately 50-70 cm or 20-28 in

below the terrace). The G8R samples were drilled vertically in the

terrace proper. Comparison between the size distribution of samples

G8I4 and G8lS reveals their similarity (gravelly coarse sand) while

samples G8Rl and G8HZ are also similar (sandy). Although samples

GBI6 and G81? are supposed to represent the sandy layer, they both



Table 2.1- Size distribution (percent finer than) data for selected terrace (G81) and gully wall (G8R)
samples from West Salt Creek.

Sample Depth Particle Size (mm)
Number (cm) 0.061 0.125 0.250 0.500 1.000 2.000 4.000 8.000 16.00 32.00

N

G814 25-35 3.37 8.18 20.46 34.27 44.71 58.54 70.34 80.54 91.61 100.01 w

G8lS 35-45 2.71 7.49 22.20 36.79 45.67 55.46 63.07 72.21 89.98 100.00

G8I6 45-57 5.17 16.50 53.55 79.21 85.87 90.53 93.19 96.03 98.31 100.00

G8Il 57-73 4.00 14.93 58.25 93.37 97.45 98.76 99.46 99.90 100.01

G8Rl 0-13 3.64 14.60 69.41 98.48 99.59 99.83 100.00

G8R2 13-21 3.66 14.80 71.09 98.50 99.53 99.76 99.89 99.99
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(but to a lesser extent G817) contain appreciable amounts of coarse

sand and gravel, the percentage of which is an indicator of in-place

sampling error.

Unlike sediment size, soluble mineral content will be subject to

change after deposition. Slightly soluble sediment particles remain

stationary after sedimentation while salt may be dissolved and trans­

ported by percolating ground water. Soluble mineral content is expec­

ted to vary with aspect, being higher on slopes where evaporation is

also higher and gives rise to accumulations of saline crusts, and it

varies with surface elevations. The thalweg, being the lowest surface

in any given cross section is wettest and it collects water even during

low flows and consequently it will be rich in salts upon evaporation

of the water.

Specific conductance of saturated paste extracts of Mancos Shale

crusts from two large scale sampling grids reportedly varies as much

as tenfold (Ponce, 1975). This variation in salt content decreases as

the sampled area decreases, which is most likely due to the greater

homogeneity in lithology, aspect and moisture content in a given

locale. Ponce (1975) also shows that one salt content determination is

inadequate for areal representation of salinity. The standard devia­

tion of many of the soluble mineral contents of specific sampling

units is indeed very large, as will be discussed in detail in Chapter

4.

In addition to the forementioned variability in soluble mineral

content of surficial materials it appears that there is a small but

significant variation within parts of a sample. Portions of a given

sediment mass were randomly sampled by splitting. Samples G8GI and
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U5DlA were mixed with water at 1:999, 1:99 and 1:9 ratios. Five to

six subsamples at each sediment concentration were shaken until equi­

librium was approached. The determinations of specific conductance

at given contact times are summarized in Tables A3.1 and A3.2 of the

Appendix. Mean EC and standard deviation (0) for each contact time are

also included. The variability index, 100(a/EC), in percent, is

equal to the coefficient of variation times 100 and it is used to com­

pare the variability of mixtures of different ionic strengths.

The variability in EC, and hence in soluble mineral content, de­

creases with increased sediment concentration for the equilibrated

alluvial (G8Gl) mixtures. The variability index is 34.7, 5.0 and 2.0

percent for the equilibrated 1:999. 1:99 and 1:9 mixtures. No such

trend is obtained with sample USDlA. Because more material is in­

volved as mixture concentration increases (0.4, 4.0 and 40.0 g,

respectively) it might be argued that the larger subsamples better

represented the sample as a whole, thus explaining the variability

trend of sample G8Gl. The variability index of the GBGl 1:999 mixture

is large (0 ~ EC/3) due to the late acceleration in dissolution rate

of the third subsample. The variability is, however, reasonably small

(i.e., one standard deviation is equal to less than 12.7 percent of

the mean) for all other mixtures. It may therefore be inferred that

the standard deviation of soluble mineral content within a given sub­

sample is in the order of ± 10 percent for most samples. Additionally,

no significant trend of variability decrease with contact time was

noted.
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2.3b Laboratory Procedure

Agronomists and agricultural engineers use filtered saturated­

paste extracts or 1:1 sediment:water ratio extracts to determine the

salt content of soil materials (U. S. Dept. Agr., 1954). These de­

terminations are based on a shaking time of one hour or, at times, of

24 hours. The extracts are obtained in order to evaluate the amounts

of dissolved solids present in soils with moisture contents ranging

from a few percent to a maximum of about 50 percent. The effects of

contact time and sediment:water ratios reported in this study were

found to be crucial in the determination of the amount of solutes re­

leased from soils and surficial sedimentary deposits and therefore,

a new procedure was adopted which is based on these effects.

Because the 'salt content' of a sediment ultimately depends on

the contact time and on the amount and quality of the diluting agent

as demonstrated in Chapter 3, it was decided to simulate the behavior

of alluvium and Mancos Shale sediments in channel flow by using a 1:

99 sediment:water mixture (i.e., equivalent to 10,000 ppm solid sedi­

ment concentration). Hence, soluble mineral (SM) content (in percent)

was calculated as follows:

SM content =

[(TDSl :
99

mg/l) (g/103mg) (liter/l0 3ml) (99 ml/g)] 100 =

(TDS
l

: 99) 0.0099

Samples were air dried at room temperature for several days. The

sediment:water mixtures were shaken in 500 ml Erlenmeyer flasks. For

1:1 weight ratios of sediment:water, 200-300 g of sample were placed



27

in the flask to which the same volumetrically measured weight of

water was added. The flasks were closed with rubber stoppers to

eliminate evaporation and then were shaken one hour on a horizontal

IS-bottle capacity shaker at 110-130 cycles per minute. The mixture

was allowed to stand in contact with air for several minutes prior to

EC measurement. During this time 25 ml of the mixture was poured into

the EC meter cup and its temperature was recorded. A 'Lectro Mho

Meter' (Lab-line Instruments, Inc.) EC meter was used throughout the

laboratory experiments. The solvent and diluting agent in all experi­

ments was distilled water of 8 > EC > 1.5 ~mho cm-1 at 25°C and of

5.5 < pH < 6.5.

In order to maintain a consistent degree of turbulence in the

mixing flasks, the preparation of the samples consisted of splitting

them (in order to ensure a representative size distribution) so that

the total volume in the mixing flask was approximately constant (400

3cm). The coarsest particles used in 1:99 mixtures of gravelly samples

were eliminated by the splitter or by the operator because of the small

weight (4.0 g) of sediment used. Mixture temperatures varied with

room temperature, with mixing time due to heating by the shaker, and

with location on the shaker plate. Mixture temperatures were mostly

in the 23-27°C range with recorded minimum and maximum values of 21°C

and 33°C, respectively. The EC at 25°C was ensured by a temperature

calibrating dial on the EC meter.

Plots of EC VB time (Figures 3.la and 3.1b) were used to determine

the approximate time necessary to shake 1:4, 1:9 and 1:99 mixtures.

From these plots the one-hour EC
l

:
l

was plotted against the time (t gO)

necessary to reach 90 percent of the approached 24-hour equilibrium
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(EC
90

) for 1:4, 1:9 and 1:99 mixtures (Figure 2.5). For most samples

which appear in Figures 3.la and 3.lb, t 90 increases as the sediment:

water ratio increases. t gO increases as the potential soluble mineral

content decreases. Because of the approach towards equilibrium,

(ECl:99)/(ECl:9) ratios remain essentially constant with time during

late dissolution stages. Therefore, the longer mixing times of 1:9 as

opposed to 1:99 mixtures ensure that the more concentrated mixtures

are in the same dissolution stage (in terms of equilibrium approach)

as are the dilute mixtures.

The chemical analyses of soil solutions and runoff samples were

undertaken by the Colorado State University Soils Laboratory using

d ( 1954) 1 2+ M 2+ N 2+standard metho s U. S. Dept. Agr., . On y Ca , g , a ,

2- 1-S04 and RC0
3

were analyzed in most solutions. For the large ma-

jority of the analyses, 100 I(LC.z- - LC. z
+) / LC. z-!< 10 percent,

~ 1 1

where C. denotes concentration in meql-1 of the i th ion, and Z+
~

and z- are the charges of the cations and anions, respectively.

Following the recommendation of the American Public Health Association

(1965, in Lane, 1975), most of the present analyses fall within the

acceptable limits of

LC. Z+ - LC. z- = ±(0.165 + 0.0155 Ic. z+).
1 1 1

This range is reportedly ± one standard deviation of an average ana-

lytical error.
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CHAPTER 3

THE POTENTIAL FOR MINERAL DISSOLUTION

In order to determine the amount and the type of salts that are

stored in geologic formations, one may study the samples mineralogi­

cally or petrographically, or else dissolve them in water for chemical

analysis. A review of the vast literature on dissolution of minerals

reveals that both the type and the amount of dissolved matter, which

is released from geologic materials in contact with water, depend on

the dominant soluble minerals, temperature, pressure, turbulence, con­

tact time, particle size and sediment:water ratios (i.e., sediment con­

centration). In this chapter the results and analyses pertaining to

the dissolution potential of alluvium and related surficial Mancos

Shale will be presented and discussed.

Minerals are soluble to some extent in any solvent. Some minerals

such as halite or mirabilite (NaZS04 . lOHZO) are highly soluble in

water; but most rock-forming minerals such as calcite, feldspar and

quartz are only slightly soluble. Solubility is defined as the mass

of a substance contained in a solution which is in equilibrium with an

excess of the substance (Weast, 1975, p. FI09). The solubility of

minerals is given by their concentration in the solvent. The magnitude

of individual or specific ionic concentrations also depends on the

presence of dissolved matter derived from other mineral sources. The

concentration of ion species is given by their solubility product,

which is related to the mineral that precipitates from solutions
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The solubility product (K ) of a mineral issp

an intrinsic parameter that varies with temperature, pressure and the

concentration of the solution.

3.1 Electrical Conductance as an Index of Dissolution

Dissolved matter includes electrically charged ions and charged

1+ l-ion complexes (e.g., Na and NaS04 ,respectively) as well as un-

charged molecules such as CO
2

and H
2

C0
3

and uncharged associated mole­

cules, ion pairs in true solution such as CaSo4. The capability of a

solution to transmit electrical current depends on the characteristics

of the solvent and on the presence of electrically charged dissolved

matter. Specific electrical conductance) usually referred to as spe-

cific conductance and herein abbreviated EC, is therefore used as an

index of total dissolved solids (TDS) concentration. EC is the elec-

trical conductance of a substance between opposite sides of a cube,

one centimeter in each direction. The units of EC are ohm-1 em-lor

-1
mho em

It can be shown (Stumm and Morgan, 1970, p. 37) that the equilib-

rium product (K ) and, therefore, the solubility product and the EC
eq

are dependent on temperature and on pressure. In general, the effect of

pressure on mineral dissolution is smaller than the effect of tempera-

ture. Gypsum and calcite are common in the geological materials sampled

in this study and, therefore, it may be added that the solubility of

gypsum (i.e., also the EC of such a solution) increases while that of

calcite decreases with increase in temperature at atmospheric pressure.

The effect of contact time on EC is shown in Figures 3.la and 3.lb

where EC is plotted against time for seven alluvial samples at different
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sediment:water ratios. For all the samples EC increases with contact

time. The dissolution rates are similar to several diffusion functions

but the reaction paths are of many varied types and the only general

equation to which they fit is a high-ordered logarithmic function of the

form:

nEC = a + b log t

where a and b are constants and n»l.

Non-metalic and uncharged solid matter in contact with a solution

does not enhance the transfer of electrical current through the solu-

tion. Therefore, the presence of varying amounts of such solids (e.~.,

quartz particles) will not affect the EC of the suspension. However,

clay particles with charged surfaces as well as with non-perfect

crystal lattices with charged broken edges may orient themselves (a

plating phenomenon) and actually enhance the transfer of current. The

degree of plating may increase with the duration of direct current (DC)

transfer. Therefore, with merely several (1-5) seconds available for

the measurement (with AC current) of the resistance of the mixture,

plating effects should be minimal.

EC data for various types of suspension and their filtered solu-

tionsare summarized in Table 3.1. From this table it appears that the

amount and presence of solid matter does not affect EC substantially.

The change of concentration with time (Berner, 1971, p. 26) may

be derived from Fick's laws of diffusion and be described by

dC/dt = DA(C - C)/l
s

(3.1)

where A is the total surface area of material being dissolved per

unit volume of solvent,

rapidly mixed solution,

C is the non-equilibrated concentration in the

C is the concentration at the surface of the
s
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Table 3.l. Equilibrium EC (~mhos cm-l @ 25°C) values of selected
mixtures (unfiltered) and solutions (filtered or centri-
fuged).

Sample Number Na lQb 40c Cd

G9FI (1:99) 63 85.5 86 62

G9Fl (1:9) 277 300 290 250

G9Fl (1:4) 520 480 460 452

G9Gl (1:99) 132 161 148 135

G9G1 (1:9) 708 713 681 720

G9Gl (1:4) 1490 1440 1280 1510

GIICI (1:99 440 443 430 448

GUCl (1:9) 3310 3100 3100 3385

GllCl (1:4) 6400 6000 5940 6500

aN settled solution, remixed for test.

blQ filtered through #1 Qualitative Whattman paper.

c40 = filtered through #40 Ashless Whattman paper.

dC centrifuged at 4500 rpm and 5 em radius for 5 minutes.

dissolving mineral minus the equilibrium solubility, and 1 is the

thickness of a layer which is formed near the dissolving surface if

the solution is not quiescent. This equation (3.1) shows that the

rate of dissolution increases with increase in surface area of the sol-

vent. Hence, as particle size decreases the surface area per unit

volume increases and, therefore, at least initially, finer material

should dissolve faster than coarser material.

Figures 3.2a and 3.2b describe the dissolution paths of a silty

shale (number U5DlA) and a gravelly sandy alluvium (number G8Gl) in

distilled water. Both samples were individually sieved into 1 phi in-
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Glossary of
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8-16

Figure 3.2a. Dissolution kinetics of a shale-rich sample (U5DIA,
1:99) by size groups.
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Figure 3.2b. Dissolution kinetics of an alluvial sample (G8Gl, 1:99) by
size groups.
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terval size units. It was observed for each of the 1 phi size groups

of sample U5DlA that the rate of decrease of particle size with sieving

time was very high. The derived particles of this sample were essen­

tially aggregates of shale and silty particles. These aggregates also

broke down very fast « 30 min) during shaking in the subaqueous en­

vironment. Hence, the 1 phi interval size distribution, acquired after

5 min of sieving, must be regarded as artificial. Certainly, because

of the fast subaqueous breakdown of the aggregates it is only meaning­

ful to regard the first few minutes of the dissolution experiment. The

1 phi size group curves of Figure 3.2a do not show an increase in

dissolution rate with decrease of particle size. The same is true for

Figure 3.2b. The discrepancy between theory and measurement is most

probably a result of the use of non-pure solids comprised of mineral

aggregates.

The effect of turbulence on the magnitude of the electrical con­

ductance is directly deduced from equation 3.1, where 1 is the

thickness of a layer surrounding a dissolving particle. Because 1 is

by definition inversely proportional to the extent of mixing (i.e., to

the magnitude of turbulence) then dC/dt increases as turbulence in-

creases.

Table 3.2 summarizes EC VB time data for samples U5D1A and G8Gl

for 1:9 and 1:99 sediment:water ratios. The EC measurement for a given

sediment:water ratio applies to the EC of a particular shaking time of

a subsamp1e undergoing a given amount of turbulence. Turbulence must

decrease as the total mixture volume increases in a given container.

This is due to the increase in burial of part of the sediment (which,

therefore, progressively experiences less turbulence) as its amount in­

creases. The results of these experiments (Table 3.2) do not demon­

strate the effect of turbulence. It is inferred that the heterogeneous
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EC (llmhos
-1

Table 3.2. cm @25°C) values of aqueous mixtures at vary-
ing levels of turbulent mixing. a

Weight -1
Sample Number (g) EC (llmhos em @25°C) Values

Contact Time: 10 130 218 483 690

G8G1 (1:9) 5 2190 2820 2920 3060 3100
10 1940 2780 2860 2980 3000
20 2210 2820 2900 3005 3040
40 980 1840 2240 2620 2760

Contact Time: 14 54 ··159 894

G8Gl (1:99) 0.5 553 739 801 316
1.0 563 737 773 775
2.0 525 722 830 857
4.0 253 485 652 712

Contact Time: 14 31 78 367

U5D1A (1:9) 5 1110 1238 1350 1320
10 880 1055 1205 1295
20 940 1050 1320 1330
40 361 560 735 1045

Contact Time: 16 43 114 1894

U5DIA (1:99) 0.5 120 13.7 150.5 184
1.0 ? 170.5 212 226
2.0 ? 183 194 210
4.0 ? 246 322 341

aNote : The following table summarizes the magnitude (qualitative)
of turbulent mixing for 1:99 and 1:9 sediment:water ratios.

Weight of Sample
(g)

0.5

l.0

2.0

4.0

particles saltate and suspend

particles move fast on "bed"

particles move slowly on "bed"

coarse particles stagnant, some
fines are in suspension
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composition of these sediments precludes the determination of the

turbulence effect.

The ionic strength of a solution must increase as more solid

matter is added to it unless saturation (i.e., equilibrium) is ob­

tained. Conversely, as the sediment:water ratio decreases so must the

ionic strength of the solution decrease for ionic activities below

saturation. The plots of EC VB mixing time shown in Figure 3.la and

Figure 3.lb indeed show that at any given mixing time the EC, and hence

the ionic strength of the mixture of a given sample, increases as the

sediment:water ratio increases. For example, after 24 hours of mixing

the EC in ~mho cm-l at 25°C is 300 and 40 for sediment:water ratios of

1:9 and 1:99 of sample G7Al; the respective EC values for sample

GIOXCI are 70 and 20.

The following discussion excludes highly concentrated solutions

(e.g., G8Bl and GllCl in Figure 3.la) that approach saturation with re­

spect to any of the major dissolving minerals. The data of Table Al of

the Appendix confirm the general statement that the mixtures of many

surficial alluvial and shale samples of EC larger than about 2 mho cm-l

approach saturation with respect to gypsum, the least soluble among

the major dissolving minerals (see, for example, the calculations in

Table A4 of the Appendix). This solubility is approached whenever

(ca2+) (S04 2-) ~ 2.5 . 10-5 M2 1-2 .

Using the regression equation of Figure 3.3 to solve for the TDS

(mg 1-1) values of the 1:9 and the 1:99 mixtures of samples G7Al and

G7XCl, we arrive at 11 (TDSl:99)/(TDSl:9) = 11 (21.0)/(201.0) = 1.15

and 11(TDSl:99)/(TDSl:9) = 11(9.65)/39.3 = 2.70, respectively. The

multiplier is used to account for the eleven-fold dilution. The above
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l' 1 line

CII
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~
C

log (105)"-0.47413+-1.1212 log (EC)
r 2 ,. 0.96
S.E =1.02

2.5 3 3.5

log (EC),Amho cm-1@2S'C
4.5

Figure 3.3. Total dissolved solids (TDS, in mg 1-1) concentration de­
pendence on electrical conductance (EC).
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calculated ratios are larger than unity. This might imply incorrectly

that saturation with respect to a major dissolving mineral is attained

at 1:9 mixtures. These larger-than-unity ratios therefore prove that

there is a dissolution limiting phenomenon which is more effective at

larger sediment:water ratios. A discussion of such a phenomenon fol­

lows in section 3.3.

3.2 Specific Ion Data

The concentration of specific ions extracted from or in contact

with geologic materials depends on temperature and pressure, as dis­

cussed previously, and on the nature of the dissolved matter and that

of the solvent. An example of a solvent effect is the increased solu­

bility of most minerals when contacting an acidic solution. The 'com­

mon ion' and 'salt ion' phenomena are solute effects.

The rate at which mineral dissolution takes place is governed by

kinetic principles as outlined in section 3.1. When a sediment:water

mixture is filtered before approaching equilibrium it will contain less

soluble matter than it ultimately would have contained. Equilibrium is

useful as a concept denoting the kinetic equivalence of forward (V
f

)

and backward (Vb) rates of reaction such as dissolution and precipita­

tion during solid-solution contact and also to denote that the solid

is completely dissolved (Vf = Vb = 0). However, true equilibrium for

dissolution, hydrolysis and redox reactions in nature is rarely

achieved (Morgan, 1967). For instance, partial equilibrium is attained

when all the gypsum and calcite have dissolved from a soil contributing

mostly Ca2+, 5°4 2- and HCo
3
l- to a solution with which it is in con­

tact. This is not a total equilibrium because other minerals such as

silicates and oxides have not as yet approached equilibrium with the
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aqueous environment. None of the dissolution processes investigated

in this study are considered to have attained true equilibrium.

Sample G8Gl, a sandy-pebbly thin crust of the alluvial bank of

West Salt Creek was diluted at 1:1, 1:9 and 1:99 sediment:water ratios.

Electrical conductance readings were taken after 1/3, 1, 3, 9 and 25

hours of contact time. These mixtures were filtered and were subse-

quently analyzed for the major ion species. These included Ca2+, Nal +,

Note that various dilute

f 1­o HC0
3

.

The data reported in Table 3.3 show that the relative abundance

Mg2+, S042-, HC0
3
1- and Cll - (Table 3.3).

solutions contained less than 0.1 meq 1-1

of several specific ions changes with contact time. Ca2+ tends to in­

crease while Nal + and Mg2+ decrease in relative abundance with in-

crease of contact time of the 1:9 and 1:99 mixtures. The major ionic

species point to a fast dissolving soluble mineral phase of CaS0
4

.

2HZO, hydrated Na ZS04 and hydrated MgS04 . The dissolution of these

minerals is apparently governed by a rate limiting process which

accounts for the faster dissolution of the more soluble minerals. This

process might be identical to the one which accounts for the dilution

effect (see section 3.2). The changes in abundance of specific

cations with contact time is not realized in the 1:1 derived solutions.

The changes of specific ion abundance with contact time account

for the shift from a Na-Ca-Mg-S04 to a predominantly Ca-S04 type water

with increase of the residence time df these sediments in their

aqueous environment. Most of this change apparently takes place during

the first hour of contact. The corresponding anionic change is too

small to be considered herein. Whatever these total changes might be,

those summarized in Table 3.3 incorporate the effects of inherent

variability of dissolution rates among subsamples of the same material

as well as random variations of soluble mineral content (see section

Z.2a).



Table 3.3. Summary of specific ion concentrations (meq 1-1) of G8Gl aqueous mixtures at progressively increasing contact times.

Computed -1
Contact

meq 1

Sedilllent:Water EC TDS Time
(mg 1-1) Ca 2+ 2+ I- SO 2- HCO 1- el1-Ratio (~mhos/cm @ 25·C) (hours) Mg Na 4 3

1:1 5700 5410 1/3 13.4(17.2)a 21.6(27.7) 42.9(55.1) 77.7(96.8) 0.4(0.49) 2.1(2.62)

1:1 6500 6270 1 20.7(22.5) 17.3(18.9) 53.8(58.6) 29.1(96.4) 0.5(0.54) 2.8 (3. 08)

1:1 6000 5870 3 24.1(27.4) 17.4<19.7) 46.6(52.9) 82.8(96.3) 0.6(0.70) 2.6(3.02)

1:J. 6000 6180 9 20.3(22.4) 16.7(18.4) 53.8(52.9) 87.1(96.0) . 0.8(0.81\) 2.8(3.09)

1:1 6000 7110 25 24.5(22.4) 23.8(21. 7) 61.3(55.9) 99.3(96.2) 0.6(0.58) 3.30.20)

1:9 938 645 1/3 4.4(46.3) 1.1(11.6) 4.0(42.1) 9.4 b c

1:9 1610 1300 1 12. 5(64 .8) 1.9 (9.6) 4.9(25.4) 19.0 b c .t:>-

1:9 2210 1980 3 19.7(66.1) 3.6(12.1) 6.5 (21. 8) 29.0 b c
..,..

1:9 2520 2590 9 25.5(73.3) 3.6(10.3) 5.7(16.4) 33.3 b c

1:9 2710 2520 25 27.6(71.0) 3.9(10.0) 7.4(19.0) 36.5 b c

1:99 298 148 1/3 1.4(63.6) 0.2 (9.1) 0.6(27.3) 2.0 b c

1:99 610 . 394 1 5.0(83.3) 0.3 (5.0) 0.7(11.7) 5.7 b c

1 :99 430 226 3 2.7(79.4) 0.2 (5.9) 0.5(14.7) 3.3 b c

1:99 958 706 9 9.6(88.9) 0.4 (3.7) 0.8 (7.4) 10.2 b c

1:99 828 590 25 7.6(85.4) 0.5 (5.6) 0.8 (9.0) 8.6 b c

aNumbers in parentheses are abundance ratios (GiZ+/ECiz+ or CiZ-IECiz-), in percent.

b(IICO/-j 1-< 0.1 Illeq 1

cNot determined.
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Specific ion information on the solutions of the 1 phi size groups

(Table 3.4) of samples U5DlA and G8Gl (see Figures 3.2a,b) may explain

part of the inconsistency between available relative magnitudes of

dissolution rates and those derived from theory. Referring

back to Figure 3.2b, the 8-16 mm sample denoted by 1 has a

very high initial dissolution rate; it is comprised of the

largest particles but dissolves faster than all other samples

coarser than 0.125 rom. This sample, comprised of two granule aggre-

gates, contains a higher soluble mineral content than the finer par-

ticles do. If availability to dissolve (i.e., availability of soluble

minerals) increases as soluble mineral content increases it explains

the dissolution behavior of the two granules. However, this assumption

is certainly not universal. For instance, the initial dissolution

rates of the size groups denoted by 2, 3 and 4 of Figure 3.2b are

small but their relative soluble mineral content is high. An inspec-

tion of the ratio 100[Nal+J/LC~+ may, however, explain part of this
1

behavior. In decreasing particle size (excluding the siltstone par-

ticle) this abundance ratio (derived from the data in Table 3.4) is

5.9, 5.1, 8.2, 9.6, 10.7, 7.3, 7.3, 5.9 and 6.7 percent. Thus, number

5 (0.5-1 mm) might initially dissolve fast due to a relatively high

Na2S04 hydrate content (see Chapter 3.3) even though the total soluble

mineral content is the smallest of all. The generalization that avail-

ability for immediate dissolution is related to high soluble mineral

contents applies to all the samples of Figure 3.2b except numbers 2, 3

and 4. A similar situation is also encountered in the shale sample of

Figure 3.2a.



Table 3.4. Specific ionic concentrations (meq 1-1) of equilibrated solutions derived from 1:99 mixtures of separate
1 phi particle size groups.a

Size K1+ Na1+ M 2+ Ca2+ [C z+ [C. z- RCO I- SO 2- Fe3+
Sample Number (rom) < g i 1 3 4 (ppm)

U5DIA (1: 99) 8-16 0.2 0.7 0.2 0.4 1.5 1.3 0.6 0.7 1.50

4-8 0.1 0.8 0.2 0.4 1.5 1.2 0.6 0.6

2-4 0.1 0.9 0.2 0.4 1.6 1.5 0.8 0,7 0.06

1-2 0.1 0.9 0.2 1.3 2.5 2.2 0.6 1.6

0.5-1 0.1 0.9 0.2 1.0 2.2 1.8 0.5 1.3

0.25-0.5 0.1 0.8 0.2 1.0 2.0 1.8 0.5 1.3

0.125-0.25 0.1 0.9 0.2 1.0 2.2 1.8 0.4 1.4

0.061-0.125 0.1 0.7 0.2 0.9 1.9 1.6 0.3 1.3

< 0.061 0.1 0.7 0.2 1.1 2.1 1.7 0.4 1.3
.p-
O'

G8G1 (1:99) >16 0.4 0.3 0.6 1.3 1.'. 0.5 0.9

8-16 0.6 0.4 9.1 10.1 9.6 0.2 9.4

4-8 0.5 0.3 9.1 9.9 9.4 . 0.3 9.1

2-4 0.7 0.4 7 .t~ 8.5 8.2 0.2 8.0

1-2 0.7 0.5 7.3 8.5 8.2 0.2 8.0

0.5-1 0.8 0.5 6.2 7.5 7.1 0.2 6.9

0.25-0.5 0.6 0.4 8.2 9.2 9.0 0.2 8.8

0.125-0.25 0.5 0.2 6.2 6.9 6.8 0.2 6.6

0.061-0.125 0.6 0.4 9.2 10.2 10.2 0.1 10.1

< 0.061 0.9 0.6 12.0 13.5 13.2 0.2 13.0

alt has been shown that the detected Fe3+ is essentially a precipitate in suspension. Those samples for which

Fe3+ and Kl+ concentrations are not listed contained <0.05 ppm and <0.01 meq 1-1 of these respective ions.



47

Table AI of the Appendix summarizes 1:1, 1:9, 1:99 and some 1:4

and 1:999 sediment:water ratio data of 52 different samples of surfi-

cial shale and alluvium. The measured EC, as well as the calculated

TDS concentration are supplied in addition to the specific ion concen-

trations. In general, most of the cationic analyses are more complete

than the anionic ones; the sum of the former in meq 1-1 is larger than

that of the latter.

Several of the solutions of Table Al are saturated with respect to

gypsum. The following discussion will, therefore, apply to lower con­

centrations of dissolved species for which [Ca2+) [80
4

2-J <

2.5 . 10-5 M2 1-2 unless stated otherwise. Analyses are also excluded

for which the stochiometric concentration of Ca2+, Mg2+, Nal +, SO 2-
4

1- -1
and HC0 3 is smaller than 0.1 meq 1 or those for which no specific

ion concentration decrease is attained upon dilution.

The specific ion concentrations tabulated in Table Al consistently

increase with increase in sediment:water ratio. This is expected for

unsaturated solutions to which potentially soluble minerals are added.

It is noteworthy that upon dilution, the decrease in specific ion con-

centration is not identical for all major ions. This variability is

diagrammatically shown in Figure 3.4 where the mean 1:99/1:9 concentra-

tion ratio is shown for the five major dissolved species of solutions

undersaturated with respect to gypsum. This ratio should be 9/99 =

1/11 = 0.09 for every ion due to the eleven-fold dilution. However,

the decrease in ionic concentration is roughly 1/6, 1/3.5 and 1/2.5 of

the expected values for Hc0
3

l -, Ca2+ and for the Nal +, Mg2+ and 8°42­

group, respectively. Thus, two and one-half times Nal +, Mg2+ or s042-,
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three and one-half times Ca2+ and six times higher HC03
1- concentra­

tions are attained upon the eleven-fold dilution. These additional

amounts of solutes have their source in the sediments although bicar-

bonate may be partly derived from the atmosphere. It may therefore be

inferred that under concentrated conditions the dissolution of sodium

and magnesium sulfates is less inhibited than that of gypsum, calcite

and possibly dolomite.

Similarly, it was shown earlier that these more soluble sulfates

dissolve faster than gypsiferous and carbonate minerals. An explana-

tion for the faster and more complete dissolution of highly soluble

sulfates is attempted in the following discussion.

3.3 Discussion

Solutions that are in partial equilibrium or that are approaching

true equilibrium contain concentrations of specific ions which can be

computed from equilibrium theory. Therefore, the concentration of the

major dissolved solids will remain constant upon dilution of a concen-

trated solution as long as the dissolving minerals are present. When

a solution is undersaturated with respect to the minerals contributing

its major dissolved constituents it is surmised that these minerals

have been completely dissolved. If, however, the concentration of the

dissolved matter decreases upon dilution less than does the dilution

factor then there must be an additional source for the dissolved

matter, a source which had not been exhausted under conditions of

higher ionic strengths.

(C 2+) 2-As an example consider a solution for which a free (8°4 free) =

Such a solution should
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-4 -1 2+
contain 10 M 1 of rCa total] upon a ten-fold dilution. The

[ 2+ I [CaZ+ Jratio 10 Ca ttl] 1
o a final tota initial

is unity for this

example. Ratios smaller than unity imply accelerated precipitation

upon dilution. Ratios larger than unity prove that there is an incom-

plete exhaustion of the source of major dissolved constituents at

higher ionic strengths.

Tables Al and A2 of the Appendix list the 11(TDSl:99)/(TDSl:9)

ratios for all the samples. It is most noticeable that the ratio is

larger than unity for 95 percent of the samples. Therefore, it is

inferred that most of the studied sediment samples contain salts that

continuously dissolve upon dilution, even under conditions of under-

saturation with respect to gypsum.

From a comparison with Reitemeier's (1946) study it is suggested

that although ion exchange processes may very well be operable in the

studied mixtures, they do not explain the results. Some of the studied

solutions are saturated with respect to calcite. Whenever this situa-

tion arises it is expected that calcium and bicarbonate concentrations

would not decrease substantially upon dilution. Calcite dissolution

and bicarbonate dissociation, as well as dissolution of gypsum and

other minerals are considered in the calculations of Appendix Table A4.

The calculations for sample U5E3C at different concentrations of sedi-

2+ 1-ment show that one of the Ca and HC03 sources is carbonate minerals.

This source cannot, however, account for the increased dissolution of

these ions in solutions originally undersaturated with respect to cal­

cite, nor can it account for the continued dissolution of Nal +, Mg2+

and SO 2- upon dilution.
4
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An explanation of the dilution effect is based on a hypothesis of

particle coating. It may be postulated that the studied sediments com­

prise particles of all sizes which are surrounded with coatings of

slightly soluble minerals. These might be siliceous or ferric oxide

coatings, the latter being very common in arid environments. It may

further be postulated that particle coating takes place contemporane­

ously with the precipitation of evaporites. During the continuous

concentration of the soil solution due to evaporation, the slightly

soluble minerals are the first to precipitate out of the solution.

This precipitation continues indefinitely during the concentration

process. Therefore, a slightly soluble mineral such as gypsum is ex­

pected to be surrounded by a more complete and thicker coating than

that on more soluble minerals such as sodium and magnesium sulfates,

which begin to precipitate (when the solution is initially under­

saturated with them) at a later stage. Upon contact with water the

most soluble minerals, least coated with the slightly soluble ferric

oxides, will dissolve rapidly and more completely than, say, gypsum or

calcite. Moreover, if the coating is thick enough some of the par­

ticles comprised of gypsum or calcite (and to a lesser extent, those

of more soluble minerals) may not, in fact, dissolve in the soil solu­

tion. Although such a solution amy be saturated with respect to a

ferric oxide, it may be undersaturated with respect to gypsum.

In conclusion, it is evident that soluble minerals continuously

dissolve upon addition of water even under conditions that at first

imply that these minerals are already completely dissolved. Particle

coating with slightly soluble minerals provides a possible explanation

for this dilution phenomenon.



CHAPTER 4

DISTRIBUTION OF SOLUBLE MINERAL CONTENT
IN SURFICIAL DEPOSITS

The amount and type of minerals present in sediments is a func-

tion of storage, leaching and accumulation processes. The various

sources of soluble minerals are rainfall, which may only account for

small amounts due to its relative purity (Carroll, 1962), leaching

from overlying layers and upward solute transport as well as in situ

soluble matter.

4.1 Soluble Mineral Content of Surficial
Mancos Shale and Alluvium

The Mancos Shale is a deposit that has been in contact with sea-

water. Upon erosion and mixing with aqueous solutions (overland and

channelized flow) it is therefore expected that this formation will

yield appreciable amounts of common (19°~O chlorinity; pH = 8.1) ions.

. 1+ 2+ 2- 2+ 1+In decreas~ng order of molal abundance, Na ,Mg ,S04 ,Ca ,K ,

1- 2-HC03 and C03 make up practically all of the dissolved mass of sea-

water (Garrels and Thompson, 1962). These ions should be readily

available in Mancos Shale. The alluvium is, however, derived from

particulate matter originally transported by channelized flow which,

upon contact with the sediment, depleted it of much of its potentially

soluble minerals.

The mean soluble mineral content of Mancos Shale derived from

hillslopes is 1.99 percent. The mean for terraces in North Miller
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Creek, West Salt Creek and Mesa Creek is 0.62, 0.30 and 1.69 percent,

respectively (Table 4.1). The surficial shale deposits contain more

soluble minerals and are therefore a greater potential salinity hazard.

With 95 percent confidence limits the mean soluble mineral content of

the shale is significantly larger than that of North Miller Creek and

West Salt Creek surficial terrace alluvium. It is noteworthy that the

soluble mineral content is largest for Mesa Creek and lowest for West

Salt Creek terraces. The North Miller Creek alluvium is richer in

soluble minerals than the alluvium of the wide West Salt Creek valley

due to the physical closeness to the source, i.e., Mancos Shale. In­

deed, the alluvium in West Salt Creek consistently contains low soluble

mineral contents except where it approaches Mancos bedrock outcrops,

such as in section G8 and upstream, where it encroaches close to the

marine shales of the Mesa Verde Group (section GIl, see Table A2 of the

AppendiX).

In fact, the influence of distance to Mancos Shale is well demon­

strated in Leach Creek. Section G2 is located in the lower basin where

the channel is gullied about I m but meanders in a narrow valley be­

tween Mancos slopes. For this section the soluble mineral content of

the terrace and bed materials is exceptionally high, 2.21 and 3.67 per­

cent, respectively (Table A2). The soluble mineral content of Mesa

Creek alluvium is also rather high and it is postulated that this re­

sults from the proximity to bedrock.

The dominant soluble mineral in Mancos Shale is gypsum but ap­

preciable amounts of sodium and magnesium hydrated sulfates and some

carbonates are present. The clorides are leached, which is character­

istic of other saline shales throughout the world (Billings and



Table 4.1. Summary of mean soluble mineral content (X), itR standard deviation (a), and the number of
samples (n) of sampling units in North Miller, West Salt and Mesa Creeks. a

- - - North Miller Creek - - - - - - - - - - - - -
--fL T CUMh1 UMW -SL A CLMW Ult, EB _B_ CHSb MSb

X 0.186 0.620 0.760 0.690 1.037 1.118 1.067 0.974 10.098c 0.936 0.703 1.987

CJ 0.066 0.778 0.275 0.445 0.954 1.020 0.699 0.634 l4.884 c 0.525 0.030 0.301

n 7 22 12 7 3 9 10 13 13 21 3 9

West Salt Creek - - - - - -
-.£L T -9L __W__A_ CB B

X 0.141 0.296 0.323 1.009d 1.335 0.509 0.665,
a 0.043 0.196 0.292 1.606 1.562 0.544 0.813

n 7 26 4 24 13 21 60
Ln
.p..

- - - Mesa Creek -

_T_ W ~ B

X 1. 690 1.734 1.130 2.081

0 0.622 0.509 0.430 1.630

n 14 8 9 55

aC=crustj T=terracej U=upper; L=lower; M=Mancos Shale; S=hillslope; W=gully wall, A=mass wasted material;
B-bed material; E=efflorescence or salt crust.

bYram North Miller and Mesa Creeks.

~ithout one value the mean and standard deviation change to 6.281 and 4.090, respectively.

d - .-
These wall samples include two Mancos-affected G8 sites; excluding these, the X, 0 and n are 0.314,

0.284 and 17, respectively.
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Williams, 1967). In the alluvium the dominant soluble minerals are

calcite, dolomite (x-ray diffraction studies by L. Whittig, personal

corom., 1976) and gypsum. The relative abundance of the sulfate ion is

larger in the Mancos Shale samples from North Miller Creek than in

the West Salt Creek alluvium; the mean S042-/LCiZ- concentration

ratios are 3.09 and 0.46, respectively. Figure 4.1 shows the 95 per­

cent confidence interval on the mean Nal+/LC. z+ and on the
1

(Nal + + Mg2+) / LC
i

Z+ concentration ratios for Mancos Shale and for

alluvial samples. The former contains significantly and appreciably

higher contents of highly soluble sulfate minerals.

4.2 Distribution of Soluble Minerals

4.2a Salt Buildup in Crusts

Soil crusts form due to cementing of materials on the soil sur-

face. The cement may be a ferric oxide, but more commonly it is cal-

careous. Encrustation may also take place during drying due to ad-

herence of fine silt and clay particles to the rest of the soil mass.

When soil water is highly concentrated with dissolved constituents,

these will precipitate from it during evaporation after being trans-

ported to the surface by capillary action (or, possibly, due to thermal

gradients and their effect on diffusion). These precipitates will

cement the surface layer to form a saline crust.

Materials rich in soluble minerals should develop saline crusts

under proper conditions. An example is the efflorescent crusts de-

veloped on the bed of North Miller Creek. Because this is a bedrock

channel incised in the slightly permeable Mancos Shale formation, most
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of the overland flow reaching the channel does not percolate into the

bed and bed materials dry primarily by evaporation rather than by in­

filtration thereby forming very saline crusts. Thus, the mean salt

content of bed crusts developed in North Miller Creek is 10.10 percent

compared with 0.94 percent in the bed proper (see Table 4.1).

The crusts of the lower and of the upper Mancos Shale gully walls

of North Miller Creek contain 1.07 and 0.76 percent soluble minerals.

The lower and upper walls beneath the crusts contain 0.63 and 0.69 per­

cent respectively (Table 4.1). The crusts are slightly richer in

soluble minerals than their source (i.e., the wall) but the difference

is not statistically significant. It is believed that the apparent

difference between the upper and lower walls is due to the low moisture

content of the upper wall which prevents formation of saline crusts.

However, the lower wall comes in contact with water frequently enough

that transport of solutes to the outer surface is more pronounced than

in the upper wall.

Where permeability is very high the upper part of the surficial

materials will be thoroughly leached. This applies to the coarse allu­

vial terraces of North Miller, West Salt and Leach Creeks. The mean

soluble mineral content of the crusts is significantly lower (p<0.05)

than that of underlying materials (Table 4.1). No significant differ­

ence among the means of salt contents of the crust and that of under­

lying materials exists for the permeable alluvial bed materials, in­

cluding fresh bank material deposited on the channel bed, where leaching

and evaporation are both active. However, a mean soluble mineral con­

tent comparison between the surface layer and material immediately

underlying shows the crust to be richer in soluble minerals. This
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difference was found to be significant (p < 0.05 with a 95 percent con-

fidence interval) for the bed of Mesa Creek (see the following section).

This difference suggests that solutes are transferred to the saline

crust surface primarily from the soil layer immediately underlying the

crust.

The preceding analysis shows that soil crust salinity increases as

the permeability decreases and as the soluble mineral content of the

underlying material increases. Much of the soil buildup in saline

crusts appears to originate from the material in immediate contact with

them.

4.2b Variation of Soluble Mineral
Content with Depth

Figures 4.2 and 4.3 show the variations in soluble mineral content

with depth in bed materials as determined from 1:99 mixtures. The mean

salt contents for the 6-, 15- and 50-em depths in the bed of section M3

of Mesa Creek (Figure 4.2) are 1.13, 0.91 and 1.46 percent, respec-

tively; these means are significantly different (p < 0.025). With in-

crease in depth the mean salt content increases to an average maximum

5.6 percent at a depth of 2.8 m. The bed material in section M3 is

coarse alluvium that overlies saturated and deeply weathered Mancos

Shale at a depth of 2.5 m. Because the alluvial fill of this channel

is shallow it is expected that a strong gradient of salt content with

depth would appear in the bed material. The effect of solute concentra-

tion due to increased evaporation at the surface is also well defined

in this section, where the crust is somewhat enriched in comparison with

the layer immediately beneath it.
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The increase in soluble mineral content with depth is not noted

in the bed of West Salt Creek (Figure 4.3). Although the mean content

of the crust is higher than that at any other depth the difference is

not significant (i.e., F not significant in analysis of variance). An

explanation for the constant soluble mineral content in these bed

materials is the general sterility of West Salt Creek alluvium and its

remoteness from contamination by ground water which was formerly in con­

tact with Mancos Shale. Samples G8A, G8B and GaC were taken from the

bed of West Salt Creek where the channel abutts against Mancos Shale

(see Table A2). Moreover, the alluvial fill of the present channel is

very shallow at this section. Therefore, the soluble mineral content

of the bed at section G8 increases with depth as at the M3 section.

These data are plotted in Figure 4.3..

Figures 4.4 and 4.5 show the variability in soluble mineral content

with depth for the Mesa Creek terrace and gully wall and for the various

gully walls of North Miller Creek. No trend is apparent in these de­

posits. Although there is no statistically significant change in soluble

mineral content with depth in the sterile terraces of West Salt and

North Miller Creeks, an increase with depth appears to ta~e place. The

significance of this trend, as shown in Figure 4.6, is obscured by the

general large variability in salt content throughout the deposits.

In summary, soluble mineral content increases with depth in shallow

alluvium overlying Mancos Shale. A uniform soluble mineral content

with depth characterizes deep and leached bed materials and terrace de­

posits.
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4.2c The Soluble Mineral Content
of Sampling Units

Differences in soluble mineral content between sampling units are

marked by the generally large inherent variability of this parameter.

In other words, the variance within any group defining, say, a terrace,

is larger than the variance in soluble mineral content between a terrace

and banks of Mancos Shale. The extent of this variability is shown in

Table 4.1, in which a summary is given of the mean and the standard de-

viation about the mean soluble mineral content of sampling units.

An analysis of variance of the mean soluble mineral content of all

sampling units (excluding Mancos Shale slopes) in West Salt Creek re-

veals that a difference (p < 0.05) between them does exist. This dif-

ference, however, is not significant at a 95 percent confidence inter-

val about the means. In this connection it should be noted that the

standard deviation of the compared property must be approximately equal

in all groups (i.e., sampling units) undergoing an analysis of variance.

Note, however, that the soluble mineral content of the terrace crusts

has a considerably smaller standard deviation than that of other groups.

Deleting the data of terrace crusts and mass wasted materials ('A' of

Table 4.1, with a very large standard deviation) does not alter the

situation. It is therefore inferred that the variability within an

alluvial unit is almost as large or larger than it is between units.

This conclusion also applies to North Miller Creek (significant F with

p < 0.05) as well as to the alluvium of Mesa Creek. It may be added

that the analysis of variance for the Mesa Creek units showed no signi-

ficant difference whatsoever (i.e., F not significant) in salt content.
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Notwithstanding the large inherent variability in soluble mineral

content, one significant difference (at a confidence interval about

the means of 95 percent) stands out clearly. This is between the

soluble mineral content of alluvial materials in West Salt and North

Miller Creeks and the Mancos Shale walls, bed and slopes. These slopes

are significantly richer in soluble minerals than any other sampling

unit excluding the efflorescent crusts. Also, the lower Mancos walls

and bed material of North Miller Creek contain more soluble minerals

than the overlying terraces (though only at a confidence interval

slightly less than 90 percent). Figure 4.7 shows these differences in

a schematic diagram.

Mancos Shale is the main source of soluble minerals. The shale

contains approximately 2 percent soluble minerals in 1:99 mixtures. It

is conceivable, however, that the surficial part of Mancos Shale is

more leached than the deeper layers. For instance, Leythaeuser (1973)

has shown that surficial Mancos Shale (50 cm depth) contains 0.9 per-

cent organic carbon, which increases to 1.05 percent for underlying

layers; the soluble organic matter component (in mg per gram organic

carbon) is 16.5 at a depth of 50 cm and for underlying layers it in-

creases to a value of 30.0.

4.3 Functional Relationship between Inorganic Water Quality
and Soluble Mineral Content of Bed Materials

Texture and structure of fluVial sediments are causally related to

hydraulics, channel form and channel shape (Schumm, 1960; Karcz, 1968;

Reineck and Singh, 1975). This means that information on the shape,

form and hydrologic regime of a channel may be acquired via the
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alluvium which it deposits. Similarly, a hypothesis can be advanced

that a cause and effect relationship exists between the salinity of

runoff and the soluble mineral content of channel deposits. Specifi­

cally, it is proposed that salt content of bed materials is an indica­

tion of the water quality of storm runoff.

Various studies such as those of Davis (1961), Hembree and Rain­

water (1961) and Miller (1961) have shown that water quality of low

flows is strongly correlated with the lithology and geochemistry of the

country rock. Feth, Robenson and Polzer (1964) also attribute much

significance to the role of climate in weathering and, hence, to its

effect on water quality of low flows. The chemical quality of storm

runoff is, however, primarily influenced by the availability of soluble

minerals on the surface and in crusts. This dependency may be more

easily studied in ephemeral channels of semiarid and arid regions where

the overland flow component of the hydro graph may be separated from

the small low-flow contributions due to the peakedness of most flow

events. Ponce (1975) has shown that there is a high correlation (r

0.955) between the 1:1 EC of the crust (0-2.5 rom) and the EC of runoff

produced on hillslope segments by simulated rainfall on Mancos Shale

and related formations. His study also showed a generally high correla­

tion between specific ion concentrations in 1:1 crust extracts and

those in overland flow.

Grab samples of water were collected in sections G7 through GIl on

July 10, 1975, during a small runoff event in West Salt Creek. The

center of the storm appeared to have been located due west of the G10X

site (see Figure 2.3 for this location). High intensity precipitation

lasted for 40 minutes and it produced a maximum estimated discharge of
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at the GIOX section and a maximum re-

3 -1 3-1corded discharge of 0.920 m sec (32.4 ft sec ) at the gaging sta-

tion (section G7).

The chemical quality of the collected water samples is summarized

in Table AS of the Appendix. The table also includes chemical analyses

of samples collected at the gaging station (G7) and one at section GIl

during low flow produced by a small storm on July 9, 1975. A list of

the mean 1:99 EC of bed material crust mixtures at each site is summar-

ized in Table 4.2 together with the EC of the water samples. A com-

parison between the EC of the bed material curst mixtures and that of

the runoff reveals a difference between sections G7, G9, GIG and GlOX

and sections G8 and GIl. The former group of sediments is low in

soluble mineral content (0.6 percent) and includes channel reaches in

the center of the alluvial valley. Both G8 and GIl sections are close

to Mancos and Mesa Verde shales, respectively, and this proximity is

manifested by the occurrence of saline seeps and the generally high salt

content (1.8 percent) of the bed materials. As the storm runoff passed

through the reaches characterized by saline bed materials its quality

definitely deteriorated.

The Nal+/EC. z+ ratios listed in Table 4.2 indicate the effect of
1

soluble minerals in bed materials on the ionic composition of the storm

runoff. As the runoff passed sections GIl and G8 it dissolved sodium

and magnesium sulfates; it also mixed with the saline seeps, which con-

tain high concentrations of Nal +, Mg2+ and 804
2- (see the chemical

composition of the seep at section G8 in Table AS of the Appendix). In

this connection it might be noted that all the water samples described

in Table AS are saturated or supersaturated with respect to calcite.



Table 4.2. Mean Ee of 1:99 aqueous mixtures of bed materials and water discharge, EC and Na1++Mg2+ abundance ratios of run-
off samples at the studied sections in West Salt Creek.

Estimated Discharge 1:99 Be of Bed (Na1+ +MgZ+)/Ci~+
Material CrustsSample Collection

(m3/sec) (it
3
/sec)

Ee -1 (meq 1-1(meq 1-1)Section Date Time pH (JJmhos cm-1) ()Jmhos cm )

GI0 7-10-75 15:25 2.83'10-2 1.00 7.7 1400 0.531
60.0

GIO 7-10-75 16:00 7.7 1200 0.503

CIUX 7-10-75 16:00 8.50'10-2 3.00 7.9 1300 58.7 0.797

G9 7-10-75 15:00 1.10.10-3 • 0.04 7.6 2100 0.449·

5.66'10-2 61.0
G9 7-10-75 16:20 2.00 7.7 2000 0.625

G7 7-9-75 12:00 6.50'10-3 0.23a 7.7 2800 0.588

G7 7-9-75 23:45 2.83'10-3 0.10b 7.7 3400 0.371

1.29'10-1
68.3

~
G7 7-10- 75 16:55 4.54 a 7.9 2700 0.302 0

G7 7-10-75 17:25 1. 22'10-1 4.30b 7.9 3500 0.439

G7 7-10-75 18:20 1.13.10-1 4.00b 8.0 3200 0.365

G8 7-10-75 14 :35 1.42'10-3 0.05 B.l 8700 0.809

5.50.10-4
170.7c

G8 7-10-75 16:40 0.02 7.9 1900 0.437

Gll 7-10-75 13:00 1.42.10-3 0.05 B.7 12000 0.883

2.80.10- 3
196.3

GIl 7-10-75 13:45 0.10 8.1 8700 0.886

GIl 7-10-75 13:35 8.00.10-4
0.03 8.0 12000 0.897

GIl 7-11-75 12:00 8.00'10-4 0.03 8.7 12000 0.890

aMeasured discharge; preliminary U. S. Geological Survey data subject to revision.

bBased on stage discharge relationship; preliminary U. S. Geological Survey data subject to revision.

cExludes one efflorescent crust; if it 15 included, the mean EC1 : 99 • 823 IImhos cm
-1
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Moreover, the samples collected in sections G7, G8 and GIl (excluding

the first G7 sample) are also saturated or supersaturated with respect

to gypsum. It is therefore inferred that West Salt Creek transported

incompletely dissolved soluble minerals (as its sediment load) in these

reaches. It must be recognized, however, that the contribution of

solutes from such saline reaches cannot be separated at this stage to

that part directly contributed by the flowing seep and to the saline bed

materials contaminated by earlier seep flows. A distinction between

point and diffuse sources of salts is therefore not warranted in this

context.

In summary, it may be concluded that water quality of storm runoff

in ephemeral semiarid channels is affected substantially by the salt

content of bed and lower gully wall crust materials. This conclusion is

based on a single low magnitude, high frequency event in one channel.

Additional information is clearly needed to substantiate this phenomenon

and to determine its significance for flow events of higher magnitude.



CHAPTER 5

CONCLUSIONS

5.1 Summary and Conclusions

Specific electrical conductance (EC) was found to be a reliable

estimate of the total dissolved solids (TDS) concentration of aqueous

solutions derived from mixtures of distilled water and alluvium and

Mancos Shale samples collected in the Upper Colorado River Basin. The

effect of solids (i.e., no filtration) on the EC of such mixtures

appeared negligible and, therefore, fast and low cost determinations

of the EC of several hundred unfiltered mixtures of samples of bed,

bank, terrace and slope materials provided information on the TDS con­

centration of the mixtures. Dissolution continued with contact time

but reached an asymptotic value which represents partial equilibrium.

The initial dissolution rate of soluble compounds in surficial Mancos

Shale and alluvium generally increased as particle size decreased but

particle size alone or increased turbulence did not exert an influence

on the equilibrated concentration of the mixtures.

An increase in sediment concentration (i.e., in the sediment:water

ratio) was followed by an increase in the TDS concentration of the mix­

tures. The source of additional dissolved minerals is the soluble

matter in the added sediment. From the change in specific ion concen­

trations with contact time it appears that sodium and magnesium hydrated

sulfates dissolve faster than gypsum or calcite. Also, it is evident

that in most of the samples, not all potentially soluble minerals
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dissolved in mixtures containing high (100,000 ppm) sediment concentra­

tions. Dissolution of the samples was more complete as sediment con­

centration decreased. The main added dissolved constituents were Ca2+

and HC03l-.

The dilution effect mentioned above also takes place in 1:9 mix­

tures undersaturated with respect to both gypsum and calcite as shown in

the calculations of Table A4 of the Appendix. Hence, there exists a

dissolution limiting phenomenon which probably takes place due to the

coating of particles by slightly soluble minerals such as ferric

oxides. This coating is assumed to be less complete and thinner on

highly soluble mineral particles (such as NaZS04 . 10HZO and MgS04 •

7H20 with solubilities of 4 and 6.4 Normal, respectively) which usually

precipitate later than do gypsum or calcite from a solution undergoing

evaporation.

Surficial alluvium and Mancos Shale were sampled in four basins

located in areas known to contain appreciable diffuse sources of salts.

The basins are underlain in whole or partly by the saline marine Mancos

Shale. The variability in soluble mineral content of the sampled

materials is very large with a range in standard deviation of 0.03 to

14.88. Lower variability is associated with Mancos Shale slope samples

and with crusts of terraces. The large inherent variability in soluble

mineral content masks clear trends of change in this parameter.

Mancos Shale from hillslopes, the source of most of the soluble

minerals in the area, contains an appreciably higher content of soluble

minerals (2 percent) than alluvial samples. The highest salt concen­

trations (10 percent) are found in efflorescent crusts on the bedrock

(Mancos Shale) bed of North Miller Creek. Soluble minerals also tend
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to accumulate in the upper 5 cm of the Mesa Creek bed, being transported

upward by capillary action from the layer immediately underlying it.

Salt buildup in crusts does not take place in highly permeable alluvial

sediment such as on the bed of West Salt Creek. In fact, soluble

minerals are leached from the crusts of terraces of North Miller and

West Salt Creeks. Soluble mineral content increases with depth in

shallow alluvium overlying Mancos Shale. The mean salt content.of these

alluvial bed materials and those in the vicinity of saline shale hill­

slopes (e.g., section GIl) is very high (3-5 percent). No apparent

trend in soluble mineral content with depth takes place in the generally

sterile alluvium of terraces or in the bed of West Salt Creek.

The finding that thick alluvial deposits have low salt contents

prompted sampling of alluvium retained by stockponds. Samples from

stockponds (all GIC and G4 data summarized in Table A2 of the Appendix)

were analyzed for soluble mineral content. Site GI is located in the

middle Leach Creek Basin (see Figure 2.3) where a stockpond receives

runoff from Mancos Shale terrain that is appreciably covered by sandy

soil and coarse alluvium capping pediment benches. The data from Table

A2 show that the stockpond sediment (BIC samples) is not more saline

than the bed materials in the upstream channel reach (GIB samples). The

sediment which accumulated in the Crow Stockpond (site G4) does con­

tain high amounts of soluble minerals. However, this salinity is

attributed to the highly dissected Mancos Shale basin above this

sediment-retaining structure. Therefore, it may be concluded that ag­

gradation or sedimentation does not necessarily imply a high soluble

mineral content in the deposited sediments. In fact, the measured high

salinities of seeps originating downstream from stockponds afford an
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explanation for the relatively low salt content of the retained sedi­

ments. Thus, not only do deep alluvial fills lack high salt content,

but even artificially retained sediments loose much of their soluble

minerals initially during transport and thence by leaching.

Mancos Shale is widely recognized as the largest major source of

salinity in the Upper Colorado River Basin. However, the presence of

a large number of saline seeps, the high salinity of section GIl in

West Salt Creek (Table 4.2) as well as the overall high soluble mineral

content of selected samples from the Mesa Verde marine Shales (samples

G20 of Tables Al and A2 of the Appendix) leave little doubt that the

Mesa Verde Formation is also an important contributor of salinity to

the Colorado River. A study of this source is recommended.

Hem (1970) and Lane (1975) have summarized much of the literature

on the relations between water quantity and water quality. In general,

TDS concentration decreases with increase in discharge due to dilution.

However, TDS concentration initially increases on the rising limb of

hydrographs (Miller and Drever, 1977) and especially in runoff from

basins contributing substantial salinity from diffuse sources (Mun­

dorff, 1972). Ponce (1975) has shown that the quality of overland flow

follows a similar pattern. It is therefore suggested that saline crust

accumulations constitute a major contributing source of salts to the

storm runoff. Analysis of samples from a single low magnitude runoff­

producing storm in West Salt Creek (Table 4.2) substantiates this

hypothesis.

5.2 Implications

The rate of dissolution of the soluble constituents of Mancos Shale

and alluvium varies considerably. The time required for a sediment:
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water mixture to approach partial chemical equilibrium increases as

sediment concentration increases and as the soluble mineral content of

the mixed sediment decreases. This time interval ranges from a few

minutes to several days. These results imply that the aqueous composi­

tion of stormwater changes downstream and may become constant over

varying lengths of channel. Runoff from tributaries with a high sus­

pended sediment concentration may very likely be chemically unequili­

brated at the confluence with the main stem of the drainage basin.

Additional soluble minerals will dissolve upon mixing with the more

dilute water of the main stem. This dilution effect certainly applies

to tributary runoff supersaturated or saturated with respect to a major

potentially-soluble mineral that is present in the transported sediment;

it also applies to runoff undersaturated with respect to such minerals

because of the postulated presence of particle coatings.

The yield of dissolved solids from the semiarid drainage basins

of the Upper Colorado River Basin should be greater than that calcu­

lated from EC measurements at gaging stations or from the analysis of

water samples from tributary runoff. The chemical analyses fail to

consider the dilution effect (which might increase the dissolved yield

by as much as 500 percent) while the EC measurements also fail to con­

sider whether the runoff is kinetically equilibrated with the trans­

ported sediment. It may be added that higher solute yields mean that

the rate of chemical denudation is higher. In fact, the ratio of

chemical denudation to denudation by erosion of particulate matter may

therefore increase considerably.

Efflorescent crusts, Mancos Shale slope materials and shallow

alluvium overlying Mancos Shale contain the highest quantities of
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soluble minerals. Storm flow from bedrock channels in Mancos Shale

terrain and in shallow alluvium should therefore contain very high TDS

concentrations. Mancos Shale should also be the source of sodium-rich

runoff. These high salt-yielding areas also contribute the highest

sediment yields. The mean sediment yield from ungrazed Badger Wash

basins (Lusby, Reid and Knipe, 1971) is 4700-6100 metric tons/km2/yr

(2000-2600 tons/mi2/yr) with a maximum of 38,500 metric tons/km2/yr

(16,400 tons/mi2/yr) using an average specific weight of 85 pounds/ft3 .

These figures are very high in comparison with the mean worldwide

maximum of 3520 metric tons/km2/yr (1500 tons/mi2/yr) in semiarid re~

gions (Langbein and Schumm, 1958).

One of the objectives of this study is to relate potential yield

of salts of surficial deposits (i.e., their soluble mineral content) to

sediment yield and to channel morphology. Mancos Shale and associated

alluvial materials are gullied throughout the entire Upper Colorado

River Basin. The gullies may have been formed at the end of the 19th

century by climatic changes and/or by overgrazing (Schumm and Hadley,

1957). It is concluded that areas underlain by Mancos Shale and asso­

ciated shallow alluvial deposits are presently major diffuse sources of

salts and that they contribute significant amounts of both sediment and

solutes at any time but especially when gullied. Therefore, another

recommendation is the need to delineate or map the Mancos Shale

bedrock exposures and associated shallow alluvial areas considered

herein to be major producers of dissolved solids. Such a delineation

would require careful mapping and additional sampling of the saline

materials to determine their salt content, but it would serve to iden­

tify the critical salt-producing areas within the much larger Mancos

Shale outcrop area.
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5.3 Recommendations

The role of moisture conditions on the salt content of alluvium

and weathered bedrock was not determined in this study. The soluble

mineral content of crusts of surficial materials and especially of bed

and lower bank materials is expected to decrease during a precipitation

event and subsequently to increase due to upward capillary movement and

evaporation of soil water. It is suggested that this topic be studied

in detail. The role of aeolian transport of dry saline surficial

deposits may be more difficult to determine but it should not be al­

together neglected.

EC measurements of stream water are inadequate for estimating the

solute contribution from diffuse sources of salinity such as the Price

River or West Salt Creek drainage basins. An analysis of the chemical

quality of water samples is necessary in order to determine the rela­

tionship of EC to TDS concentration. Half of each water sample should

be filtered immediately in order to determine whether the solution had

attained equilibrium. Several of the unfiltered solutions should be

diluted (to the equivalent TDS value of the Colorado River at the time

of sampling) and the additional dissolution taking place should be

studied. Upon addition of distilled water the TDS of the solution may

increase as much as SOD percent, as shown by the 11(TDSl:99/TDS1:9)

dilution ratios of Tables Al and A2 of the Appendix.
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Mixtures of surficial deposits and water undersaturated with re­

spect to gypsum and calcite should be further studied to determine the

mechansim which limits complete dissolution of soluble minerals. X-ray

diffraction studies underway at the University of California at Davis

may throw light on the mineralogic composition and quantities of

particle coatings.

Erosion control in the semiarid Southwest is very costly. In­

stead of constructing numerous sedimentation reservoirs (which, as Wein

and West (1973) showed, accumulate sediment that is too saline for

revegetation and from which saline water seeps downstream) in small

(1 km2) basins it is proposed that the economics of building larger

sediment retaining earth structures for channels draining at least 100

km2 but preferably 500 km2 (about 200 mi2 ) be studied. These should be

capable of retaining a flow event of about a five-year recurrence.

Larger events should be allowed by proper design to leave the structure

intact. Several days after a flow event, when most of the sediment has

already settled in the ponded area, the water should be pumped into a

nearby closed basin (such as a neighboring plugged gully) lined with an

impermeable bottom. After complete evaporation of the saline ponded

water, the precipitated soluble minerals could be collected and removed.

Reduction of high sediment and solute yields require conservation

techniques which may be achieved by inducing local aggradation of chan­

nel reaches where the channel beds incise into Mancos Shale or where the

alluvial fill is very shallow. A second recommended conservation

technique is to keep the channel away from Mancos Shale outcrops by

straightening reaches or defelcting them away from the valley sides

such that the main channel will remain in the center of the valley

floor.
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One important recommendation which stems from this study is the

need to map and thereby to classify those areas in the Upper Colorado

River Basin known to be serious contributors of dissolved solids. Such

a classification would be based on an index of salinity potential which

in turn would depend on the soluble mineral content of surficial ma­

terials in these diffuse source areas. Upon completion of the salinity

map it may be used by government and state officials to indicate spe­

cific hazard areas.

The compilation of a map showing the salinity hazard within the

Upper Colorado River Basin must also be based on the erodibility of the

terrain, which indicates the yield of sediment and associated soluble

minerals. Also, the geomorphic and hydrologic characteristics of

the area and the hydraulic regimen of the channelways must be specified

because they describe the transport capacity of the channels.
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Table AI. Summary of chemical analyses of solutions derived from aqueous mixtures (1:999, 1:99, 1:9, 1:4 and 1:1) of selected sediment samples.

It':;,;-":-)I tOO
Mil1eguivalents per Liter Calculated

( TDS 1 '99)Coneen- Sample Ee -1 TDS 11 ~
tration Number (umhos cm ) Ca Mg Na K S04 HC03 C1 N03 C03 (in %) (mg/l) 1:9

1:99 ti5ElA 124.0 0.4 0.1 0.5 0.0 0.5 04 0.0 0.0 0.0 11.1 81.2 3.41

1:9 USE1A 390.0 0.7 0.2 2.7 0.0 2.8 0.8 0.0 0.0 0.0 0.0 261.8

1:1 USEIA 1600.0 0.7 0.5 16.4 0.4 16.4 1.8 0.0 0.1 0.0 1.1 1316.5

1:99 USEIB 145.0 0.25 0.15 0.9 0.0 0.5 0.8 0.0 0.0 0.0 0.0 100.4 3.3S

1:9 USEIB 432.0 0.1 0.1 4.2 D.D 1.6 2.5 0.0 0.0 0.0 7.3 329.2

1:1 U5EIS 1600.0 0.2 0.4 16.4 0.4 14.1 3.5 0.0 0.1 0.0 1.1 1298.5

1:99 U5EJB 134.0 0.3 0.1 0.8 0.0 0.5 0.7 0.0 0.0 0.0 0.0 92.4 2.47

1:9 U5ElB 635.0 0.5 0.2 5.2 0.0 3.8 1.6 0.0 0.0 0.0 9.3 412.2

1:99 USE2A 127.0 0.5 0.1 0.5 0.0 0.6 0.5 0.0 0.0 0.0 0.0 82.1 2.85

1:9 U5E2A 540.0 1.5 0.5 2.7 0.0 3.4 0.9 0.0 0.0 0.0 9.3 316.4

1:1 U5E2A 2400.0 8.4 4.7 15.9 0.7 27.7 0.9 0.0 0.0 0.0 3.9 2003.8

1:99 U5E2B 168.0 0.7 0.2 0.6 0.0 0.8 0.5 0.0 0.0 0.0 15.4 99.2 2.51 (Xl
0\

1:9 U5EZll 650.0 1.4 0.6 4.6 0.0 6.1 0.0 0.0 0.0 0.0 8.2 434.1

1:1 USE28 3800.0 12.8 7.6 33.3 0.7 51.6 0.7 0.0 0.4 0.0 3.2 3687.7

1:99 U5E2C 185.0 0.8 0.3 0.6 0.0 1.0 0.4 0.0 0.0 0.0 21.4 507.1 2.30

1:9 USE2C 725.0 2.1 0.9 4.6 0.0 6.9 0.4 0.0 0.0 0.0 2.7 3837.7

1:1 iJ5E2C 4200.0 17.6 8.6 28.9 0.8 53.9 0.8 0.1 0.8 0.0 0.9 105.9

1:99 U5E2D 321.0 0.9 0.3 1.6 0.0 2.4 0.2 0.0 0.0 0.0 7.7 185.9 1.65

1:9 U5E2D 1770.0 3.2 1.5 14.1 0.0 16.9 0.4 0.0 0.0 0.0 8.7 1242.6

1:1 U5E2D 11200.0 21.1 17.9 123.0 1.4 152.3 0.8 5.0 2.5 0.0 1.7 11058.0

1:99 U5E3A 476.0 4.9 0.1 0.2 0.0 4.6 0.2 0.0 0.0 0.0 10.4 337.2 3.18

1:9 U5E3A 1350.0 17.4 0.3 0.2 0.0 16.1 0.6 0.0 0.0 0.0 7.2 1166.8

1:1 U5E3A 2100.0 30.8 0.7 0.2 0.4 30.5 0.6 0.0 0.1 0.0 2.9 2153.7

1:99 U5E311 426.0 3.9 0.3 0.2 0.0 3.9 0.2 0.0 0.0 0.0 7.3 285.9 5.34
1:9 U5E3B 800.0 8.0 0.7 0.4 0.0 B.2 0.4 0.0 0.0 0.0 5.8 596.3

1:1 U5E311 2200.0 30.2 3.3 0.9 0.7 32.4 0.6 0.0 0.1 0.0 6.0 2292 .4



Table AI. Continued.

I("~';_":-)I '00
Concen- Sample Mi11equiva1ents per Liter Calculated

( TDS1 :99)EC -1 TDS 11 ros--traci"n Number (UlIlhos cm ) Ca Mg Na K 5°4 HC03 C1 N03 C03 (in %) (1:Ig/0 1:9

1:99 U5E3C 423.0 4.3 0.1 0.1 0.0 3.9 0.2 0.0 0.0 0.0 4.9 289.2 3.06

1:9 U5E3C 1200.0 14.2 0.7 0.4 0.0 15.1 0.2 0.0 0.0 0.0 0.0 1039.7

1:1 U5E3C 3800.0 28.1 7.6 19.1 0.8 54.7 0.5 1.6 0.1 0.0 2.3 3846.6

1:99 U5E4A 317.0 1.0 0.4 1.6 0.0 2.3 0.5 0.0 0.0 0.0 7.1 202.7 1.59

1:9 U5E4A 2150.0 4.2 3.5 13.8 0.0 20.0 0.0 0.0 0.0 0.0 7.5 1404.6

1:1 V5E4A 15000.0 21. 5 41.8 168.0 1.4 222.6 0.7 12.7 0.6 0.0 1.7 16077 .8

1 :99 U5E4B 187.0 0.9 0.3 0.5 0.0 0.9 0.6 0.0 0.0 0.0 13.3 113.0 0.94

1:9 U5E4B HIOO.O 3.9 1.8 14.9 0.0 18.0 0.3 0.0 0.0 0.0 12.3 1325.4

1:1 U5E4B 3300.0 13.7 8.4 22.1 0.6 44;5 0.5 0.5 0.0 0.0 1.5 3093.8

1:99 U5E4C 85.6 0.3 0.1 0.3 0.0 0.6 0.0 0.0 0.0 0.0 16.7 42.9 1.49

1:9 U5E4C 450.0 1.0 0.5 3.2 0.0 3.5 0.8 0.0 0.0 0.0 9.3 316.6

1:1 U5E4C 1700.0 1.2 1.0 15.4 0.3 16.0 1.1 0.1 0.0 0.0 2.9 1241.1 0::>
........

1:99 V6A1 6100.0 5.4 19.5 57.4 0.0 76.4 0.5 1.8 0.0 0.0 4.3 5428.8 1.48

1:9 V6Al 35000.0 26.9 158.1 421.2 0.0 578.1 1.9 10.0 0.0 0.0 2.8 40381.5

1:1 U6Al 95000.0 23.5 2100.0 2700.0 23.8 4600.0 12.1 190.0 0.6 1.0 0.9 317519.6

1:99 M1Cl 77 .2 0.4 0.1 0.1 0.0 0.5 0.0 0.0 0.0 0.0 20.0 35.5 1.68

1:9 ~11Cl 422.0 2.8 0.7 0.2 0.0 3.4 0.0 0.0 0.0 0.0 11.8 232.5

1:1 M2C1 1300.0 11.0 3.6 0.2 0.4 14.8 0.8 0.0 0.1 0.0 3.2 1050.3

1:99 M2C2 106.0 0.5 0.2 0.2 0.0 0.7 0.2 0.0 0.0 0.0 0.0 62.9 6.76

1:9 M2C2 284.0 0.3 0.2 0.8 . 0.0 0.3 1.0 0.0 0.0 0.0 0.0 102.3

1:1 M2C2 1500.0 13.3 3.3 1.1 0.3 16.9 0.7 0.0 0.3 0.0 0.6 1216.7

1:99 M2C3 35.8 0.2 0.1 0.1 0.0 0.3 0.0 0.0 0.0 0.0 33.3 21.9 3.33

1:9 M2C3 139.0 0.6 0.2 0.2 0.0 0.6 0.4 0.0 0.0 0.0 0.0 72.3

1:1 M2C3 400.0 2.8 0.9 0.1 0.2 3.0 0.6 0.0 0.1 0.0 8.1 264.1

1:99 M2D1 72.0 0.55 0.1 0.15 0.0 0.3 0.45 OJ) 0.0 0.0 6.7 57.6 6.30

1:9 M20l 165.0 0.9 0.1 0.4 0.0 0.7 0.7 0.0 0.0 0.0 0.0 104.8

1:1 mOL 400.0 4.2 0.3 0.2 0.3 3.1 1.9 0.0 0.0 0.0 0.0 368.9

1:99 1'1204-5 173.0 1.2 0.1 0.1 0.0 1.0 0.1,5 0.0 0.0 0.0 3.5 87.8 1.42

1:9 M2D4-5 841.0 8.9 1.0 0.2 0.0 9.8 0.7 0.0 0.0 0.0 1.0 678.0

1:1 11204-5 2400.0 26.9 6.1 0.5 0.2 31.2 1.9 0.0 0.0 0.0 l.8 2173.8



Table A1. Continued.

1("::,;-";-)1'00
Concen- Sample Milleguivalents per Liter Calculated

CDSl:99)EC -1 TDS 11~tration Number (llmhos em ) Ca Mg Na K 504 HC03 Cl N03 C03 (in %) (l:Ig/1) 1 :9

1:99 M2D8-9 388.0 2.3 0.7 0.4 0.0 3.0 0.3 0.0 0.0 0.0 3.0 22&.2 2.73

1:9 112D8-9 1140.0 8.2 3.6 2.3 0.0 13.0 0.4 0.0 0.0 0.0 ';, 2 909.8

1:1 M2D8-9' 4800.0 20.6 29.0 18.1 0.4 &l.4 0.7 0.8 0.1 0.0 8.1 4229.3

1:99 M3Al 108.0 1.0 0.2 0.2, 0.0 l.0 0.3 0.0 0.0 0.0 7.7 93.4 1.54

1:9 M3A1 920.0 7.5 2.1 1.1 0.0 9.2 0.4 0.0 0.0 0.0 12.5 &67.4

1:1 113Al 2200.0 :U.O 7.7 5.8 0.3 30.2 0.7 0.0 0.1 0.0 7.1 2038.7

1:99 M3A12-13 235.0 1.6 0.2 0.1 0.0 1.& 0.3 0.0 0.0 0.0 0.0 132.0 3.03

1:9 113A12-I3 642.0 5.1 1.4 0.9 0.0 6.7 0.3 0.0 0.0 0.0 5.7 480.0

1:1 M3A12-13 2400.0 15.2 8.6 7.1 0.3 30.2 0.7 0.0 0.0 0.0 l.0 2077.4

1:99 M3A23-24 900.0 9.9 0.5 0.3 0.0 9.5 0.3 0.0 0.0 0.0 9.2 68&.0 4.15

1:9 M3A23-24 1980.0 24.2 2.7 1.8 0.0 25.8 0.3 0.0 0.0 0.0 10.0 1810.7

1:1 M3A23-24 3700.0 25.1 16.1 11.9 0.4 47.4 0.7 0.1 0.1 0.0 10.8 3295.2 00

1:99 M3A33-34 832.0 9.0 0.6 0.2 0.0 8.5 0.3 0.0 0.0 0.0 11.4 618.8 3.98 00

1:9 M3A33-34 1950.0 22.4 3.0 1.7 0.0 24.3 0.3 0.0 0.0 0.0 10.2 1710.0

1:1 M3A33-34 3500.0 25.2 18.0 8.6 0.5 48.4 0.7 0.1 0.1 0.0 6.1 3318.8

1:99 mill &7.1 0.4 0.1 0.1 0.0 0.2 0.4 0.0 0.0 0.0 0.0 45.& 5.13

1:9 MJ81 199.0 1.15 0.35 0.2 0.0 0.7 1.05 0.0 0.0 0.0 2.9 97.7

1:1 M31l1 500.0 3.8 0.5 0.2 0.6 2.8 2.0 0.0 0.0 0.0 6.3 343.4

1:99 HJB9 329.0 2.3 0.4 0.2 0.0 2.6 0.0 0.0 0.0 0.0 U.S 180.4 2.27

1:9 113B9 1090.0 10.3 1.9 1.3 0.0 12.5 0.2 0.0 0.0 0.0 &.3 872.7

1:1 mB9 noo.o 28.3 16.9 11. 7 0.2 46.0 1.4 6.2 1.9 0.0 4.8 3681.8

1:99 M3B17-18 271.0 1.9 0.2 0.2 0.0 2.0 0.2 0.0 0.0 0.0 4.6 153.4 2.10

1:9 M3817-18 881.0 B.O 1.2 0.7 0.0 8.B 0.2 0.0 0.0 0.0 10.0 625.9

1:1 M3B17-18 3200.0 29.2 9.9 5.1 0.5 37.6 1.1 4.0 2.0 0.0 0.0 2981. 2

1:99 M3Hl-2 448.0 3.5 0.4 0.3 0.0 4.0 0.0 0.0 0.0 0.0 5.0 274.0 1.56

1:9 M3Hl-2 2100.0 23.6 3.5 2.6 0.0 28.2 0.0 0.0 0.0 0.0 5.3 1929.7

1:1 M3H1-2 3200.0 24.5 12.1 16.6 0.0 49.0 0.0 0.0 0.0 0.0 9.8 3380.5

1:99 M3lQ6-18 795.0 7.9 0.5 0.2 0.0 8.5 0.0 0.0 0.0 0.0 1.3 577 .3 3.61

1:9 113lQ6-18 2100.0 23.4 2.2 1.4 0.0 25.6 0.0 0.0 0.0 0.1) 5.5 1757.5

1:1 M3lQ6-18 2610.0 23.9 13.8 9.4 0.0 46.2 0.0 0.0 0.0 0.0 2.0 3081.9



Table AI. Continued.

It'\,;_"r)/,oo
Mil1equivalents per Liter Calculated

( TDSl : 99)Conc.en- Sample EC -1 TDS 11~
tration Number (llmhos em ) Ca Mg Na K 504 HC03 Cl N03 C03 (in %) (mg/l) 1:9

1:99 M3K22-24 922.0 10.2 0.3 0.2 0.0 10.3 0.0 0.0 0.0 0.0 4.9 707.4 4.49

1:9 M3K22-24 2050.0 22.2 2.7 1.7 0.0 25.3 0.0 0.0 0.0 0.0 5.1 1732.0

1:1 M3K22-24' 2670.0 24.9 6.9 5.2 0.0 36.0 0.0 0.0 0.0 0.0 2.8 2431. 5

1:99 M3Ll 372.0 3.0 0.2 0.1 0.0 2.6 0.0 0.0 0.0 0.0 26.9 226.3 3.22

1:9 M3Ll 958.0 9.9 1.2 0.7 0.0 10.2 0.9 0.0 0.0 0.0 6.3 773.9

1:1 M3L1 2900.0 29.3 7.2 3.7 0.7 37.5 1.7 1.4 0.2 0.0 0.2 2754.1

1:1 M3L4-5 3400.0 28.8 15.9 4.0 0.4 41. 7 1.3 4.4 0.6 0.0 2.3 3153.5

1:99 113L8-9 203.0 1.3 0.2 0.2 0.0 1.2 0.2 0.0 0.0 0.0 21.4 102.9

1:1 M3L8-9 3200.0 27.1 11.2 5.9 0.6 37.5 0.7 6.0 0.2 0.0 0.9 2907.3

1:99 ~~4Bl 760.0 5.9 0.8 1.4 0.0 7.8 0.0 0.0 0.0 0.0 3.9 534.8 2.94

1:9 11481 2460.0 15.2 3.9 11.2 0.0 29.0 0.0 0.0 0.0 0.0 4.5 2002.4

1:1 11481 10500.0 19.5 29.7 92.6 0.0 123.4 1.3 7.9 0.0 0.0 6.9 8807.7
00

1:99 G10XCI 114.0 0.9 0.1 0.1 0.0 0.1 0.9 0.0 0.0 0.0 10.0 81.3 \0

1:99 G7Bl 112.0 0.9 0.2 0.1 0.0 0.3 0.8 0.0 0.0 0.0 9.1 86.0

1:4 G7B1 465.0 3.4 0.9 0.3 0.0 3.1 1.3 0.0 0.0 0.0 4.5 314.2

1:99 C7Al 148.0 1.2 0.0 0.0 0.0 0.7 0.8 0.0 0.0 0.0 0.0 110.1 3.75

1:9 G7Al 500.0 4.1 0.6 0.1 0.0 3.8 0.8 0.0 0.0 0.0 4.4 323.1

1:4 C7Al 860.0 8.6 1.1 0.2 0.0 9.0 0.9 0.0 0.0 0.0 0.0 677 .5

1:1 C7Al 2000.0 22.5 3.5 0.3 0.3 24.9 0.4 0.0 0.3 0.0 5.9 1751.0

1:99 GSAl 2350.0 3.1 1.3 16.2 0.0 25.2 0.9 0.0 0.0 0.0 14.5 1715.6 1.11

1:9 GSA! 16000.0 21.2 86.3 163.6 0.0 237.0 35.6 5.1 0.0 0.6 2.6 17012.9

1:4 GSA1 36000.0 23.3 191.2 361.2 0.0 540.8 5.1 12.0 0.0 1.9 2.8 37921. 6

1:999 t;8Gl 122.5 1.0 0.1 0.1 0.0 0.9 0.2 0.0 0.0 0.0 0.0 79.0 1.68

1:99 G8Gl 801.0 6.6 0.3 0.7 0.1 7.3 0.2 0.0 0.0 0.0 2.7 518.7
1:9 G8Gl 3040.0 28.7 3.6 6.4 0.1 34.9 0.4 0.0 0.0 0.0 11.3 2476.6
1:1 G7A2-3 2400.0 25.2 6.0 1.8 0.3 31.8 0.6 0.0 0.1 0.0 3.7 2201.3
1:1 G7A4-5 1600.0 12.2 4.6 3.5 0.2 19.7 0.5 0.0 0.0 0.0 1.5 1365.4
1:1 G7A6-7 1600.0 10.6 3.3 4.6 0.2 17.7 0.4 0.0 0.1 0.0 2.8 1246.9

1:1 G7Cl 900.0 3.1 2.0 3.6 0.2 7.6 0.5 0.0 0.4 0.0 4.7 597.4

1:1 G7C2 600.0 1.5 1.2 3.5 0.2 4.9 0.6 0.0 0.1 0.0 14.3 411.1



Table Al. Continued.

I~" .-)l:C
i
l:C;_l:C

i 1100
Mi11equiva1ents per Liter Calculated

CDS1:99)ConcE:,~- Sample EC -1 TDS 11 ~tration Number (\lmhos em ) Ca Mg Na K 5°4 HC03 C1 N03 C03 (in %) (",gil) 1:9

1:1 G7C3 700.0 2.0 1.2 3.9 0.2 6.1 0.7 0.0 0.1 0.0 5.8 494.1

1:1 G7C4 600.0 1.5 0.9 3.5 0.2 5.5 0.6 0.0 0.1 0.0 1.6 436.3

1:1 G7El 300.0 2.2 0.5 0.2 0.4 0.6 0.8 0.0 1.9 0.0 0.0 265.8

1:1 G7E2 200.0 1.0 0.5 0.3 0.4 0.9 1.0 0.0 0.2 0.0 4.8 165.3

1:1 G7E3-4 200.0 0.8 0.6 0.2 0.6 0.6 1.1 0.0 0.1 0.0 18.2 153.5

1:1 G7E5-6 1500.0 15.1 1.9 1.0 0.4 16.9 0.5 0.0 0.1 0.0 5.1 1212.8

1:99 G8G1-0.061 1162.0 12.0 0.6 0.9 0.0 13.0 0.2 0.0 0.0 0.0 2.3 905.1

1:99 G8GI0.061- 940.0 9.2 0.4 0.6 0.0 10.1 0.1 0.0 0.0 0.0 0.0 694.2

1:99 GBG10.125 710.0 6.2 0.2 0.5 0.0 6.6 0.2 0.0 0.0 0.0 1.5 467.4

1:99 G8Gll- 768.0 7.3 0.4 0.7 0.0 8.0 0.2 0.8 0.0 0.0 6.7 592.1

1:99 G8G10.25- 825.0 B.2 0.4 0.6 0.0 8.8 0.2 0.0 0.0 0.0 2.2 617.9

1:99 GBGI0.5- 685.0 6.2 0.5 0.8 0.0 6.9 0.2 0.0 0.0 0.0 5.6 492.3 '-C
0

1 :99 GBG12- 789.0 7.4 0.4 0.7 0.0 B.O 0.2 0.0 0.0 0.0 3.7 565.7

1:99 G8G14- 830.0 9.1 0.3 0.5 0.0 9.1 0.3 0.0 0.0 0.0 5.3 652.9

1:99 G8G18- 985.0 9.1 0.4 0.6 0.0 9.4 0.2 0.0 0.0 0.0 5.2 664.7

1:99 (G8G18-) 112.5 0.6 0.3 0.4 0.0 0.9 0.5 0.0 0.0 0.0 7.1 90.6

1:99 U5DIA-0.061 182.0 1.1 0.2 0.7 0.1 1.3 0.4 0.0 0.0 0.0 23.5 131.3

1:99 U501AO.061- 186.5 0.9 0.2 0.7 0.1 1.3 0.3 0.0 0.0 0.0 18.8 121.2

1:99 U5DIAO.125- 234.5 1.0 0.2 0.9 0.1 1.4 0.4 0.0 0.0 0.0 22.2 138.5

1:99 U5DIAO.25- 223.5 1.0 0.2 0.8 0.1 1.3 0.5 0.0 0.0 0.0 16.7 137.5

1:99 U5D1AO.5- 224.0 1.0 0.2 0.9 0.1 1.3 0.2 0.0 0.0 0.0 46.7 143.6

1:99 U5DIAl- 234.0 1.3 0.2 0.9 0.1 0.6 0.6 0.0 0.0 0.0 108.3 118.5

1:99 U5DIA2- 120.0 0.4 0.2 0.9 0.1 0.7 0.8 0.0 0.0 0.0 6.7 167.5

1:99 USD1A4- 128.5 0.4 0.2 0.8 0.1 0.6 0.6 0.0 0.0 0.0 25.0 98.2

1:99 U5DIA8- 110.0 0.4 0.2 0.7 0.2 0.7 0.6 0.0 0.0 0.0 15.4 104.6

1:1 G20A 2250.0 30.6 0.4 0.2 0.5 28.9 1.1 0.0 0.0 0.0 5.7 2097.4

1:1 G20D 2220.0 32.6 0.9 0.2 0.6 29.9 1.1 0.0 0.0 0.0 10.7 2195,S



Table A2. Summary of EC, calculated TDS concentrations and dilution factors of aqueous mixtures of samples collected in the
studied basins.

EC TDS
TDS1 :99Depth (\JI!lhos cm-1 at 2S'C) (mg 1-1) 11

Sample Numbers (cm) Typeb 1:1 1:9 1:99 1:9 1:99 TnSl :9

U5Al 0.0- 1.0 CHS 2300 762.0 132.0 571.6 80.1 1.54

U5A2 0.0- 14.0 MS 2200 1038.0 318.0 808.4 214.6 2.92

U5A) 14.0- 25.0 MS 3900 1235.0 296.0 982.3 198.0 2.22

USB1 0.0- 1.5 CT 1700 655.0 140.0 482.4 85.5 1.95

U5B2 1.5- 16.0 T 1900 898.0 66.0 687.2 36.8 0.59

U5B3 16.0- 24.0 T '1800 357.0 79.7 244.3 45.5 2.05

U5B4 24.0- 32.5 T 2200 442.0 93.8 310.4 54.6 1.93

U5B5 32.5- 38.0 T 1700 446.0 68.1 313.5 38.1 1. 34

U5C1A (1 of 2) 0.0- 1.5 CA.'! 3400 724.0 132.0 539.8 80.1 1.63

U5CIA (2 of 2) 0.0- 1.5 CAM 2400 600.0 92.7 437.3 53.9 1.36

U5CIB-C 1.5- 32.0 At'! 4000 569.0 142.0 412.0 86.9 2.32

U5CID-E 32.0- 50.0 AM 4400 761.0 147.0 570.8 90.3 1. 74

U5ClF-G 50.0- 70.0 AM 4400 650.0 121.0 478.3 72.6 1.67 'D
f-'

U5C2A 0.0- l.0 CAM 2900 542.0 135.0 390.1 82.1 2.32

U5C2B 1.0- 12.0 AM 2200 563.0 147.0 407.1 90.3 2.44

U5C2C ·12.0- 21.0 AM 3100 466.0 88.5 329.4 51.1 1.71

U5C2D 21.0- 33.0 AM 2400 792.0 149.0 596.9 91. 7 1.69

U5C2E 33.0- 43.0 AM ~400 722.0 142.0 538.1 86.9 1. 78

U5C3A 0.0- 1.5 CLT 1400 439.0 97.2 308.0 56.8 2.03

U5C3B 1.0- 15.0 LT 1600 459.0 87.2 323.8 50.3 1.71

U5C3C-D 15.0- 34.0 LT 1700 641.0 214.0 47'1.9 137.6 3.21

U5C3E-F 34.0- 53.0 LT 1700 666.0 127.0 491.5 76.7 1.72

U5C4A 0.0- 1.0 EB 6500 1420.0 242.0 1148.7 158.0 1.51

U5C4B 1.0- 8.0 II 1900 618.0 104.0 452.0 61.3 1.49

1,;5C4C 8.0- 16.0 B 3700 71d.O 129.0 554.0 78.0 1.55

U5C5A 0.0- 2.0 EB 10000 1810.0 453.0 1507.9 319.1 2.33

U5C5B 2.0- 16.0 B 3700 694.0 193.0 514.8 122.6 2.62

U5C6A (1 of 2) 0.0- 0.3 EB 32600 9200.0 1345.0 9334.0 1080.9 1.27

U5C6A (2 of 2) 0.0- 1.5 CB fi100 1420.0 2(08.0 1148.7 177 .1 1. 70

U5c6B 1.5- 10.0 .B 2300 608.0 112.0 443.8 66.6 1.65

U5C7A 0.0- l.5 CA 1920 877.0 325.0 669.2 219.9 3.61



Table A2. Continued.

EC TDS
TD51 :99Depth (}!mhos em-1 at 25°C) (mg e 1) 11

5ample Number8 (em) Typeb 1:1 1:9 1:99 1:9 1:99 TD51 : 9

USC7B 1. 5-10. 0 A 2300 1325.0 305.0 1062.9 204.8 2.12

U5C7C 10.0- 15.0 A 2900 989.0 512.0 765.7 366.0 5.26

U5C7D 15.0- 22.0 A 3200 846.0 134.0 642.7 81.4 1.39

U5cn 22.0- 30.0 A 4200 635.0 85.3 466.0 49.1 1.16

USDIA 0.0- 5.0 CAM 4300 736.0 192.0 549.8 121.9 2.44

U5DIB 5.0- 16.0 AM 5200 1100.0 147.0 862.7 90.3 1.14

U5DIC 16.0- 27.0 AM 4400 642.0 129.0 471. 7 78.0 1.82

U5D2A 0.0- 3.0 CUMW 3500 552.0 131.0 398.2 79.4 2.19

U5D2B 3.0- 10.0 UMW 2600 660.0 146.0 486.6 89.6 2.03

U5D3A 0.0- l.0 EB 29000 3680.0 668.0 3341.2 493.2 1.62

USD3B 1.0- 14.0 B 4000 499.0 133.0 355.6 80.7 2.50

USD3C 14.0- 20.0 B 3300 486.0 127.0 345.2 76.7 2.44

U5030 20.0- 27.0 B 2400 491.0 85.7 349.2 49.3 1.55

U5D4A 0.0- 2.0 CAM 4700 664.0 123.0 489.9 74.0 1.66 \,()

N
U5D4B 2.0- 9.0 A.'! 3500 592.0 185.0 430.7 116.9 2.99

U504C 0.0- 2.0 CAM 7700 935.0 146.0 719.0 89.6 1.37

U5ElA S 0.0- 3.0 CUMW 1600 348.0 104.4 237.4 61.6 2.85

U5EIB S 3.0- 13.0 UMW 1600 555.0 250.0 400.7 163.8 4.50

U5E21>. 5 0.0- 2.0 CAM 2400 497.0 103.6 354.0 61.0 1.88

U5E2B S 2.0- 27.0 AM 3800 664.0 145.0 489.9 89.0 2.00

U5E2C S 27.0- 41.0 AM 4200 750.0 162.0 561.6 100.7 1.97

U5E20 S 0.0- 2.0 CLAM 11200 1840.0 325.0 1536.0 219.9 1.57

U5E3A S 0.0- 2.5 CT 2152 1380.0 482.0 1112.5 342.1 3.38

U5l:3B S 2.5- 13.0 T 2005 955.0 428.0 736.3 299.4 4.47

U5E3C 5 13.0- 21.0 T 3037 1205.0 438.0 955.6 307.2 3.54

U5E4A 5 0.0- 0.5 EB 15000 2180.0 314.0 1857.6 211.6 1.25

U5E4B 5 0.5- 13.0 B 3300 1940.0 lfiO.O 1629.9 99.3 0.67

U5E4C S 13.0- 22.0 B 1700 407.0 75.1 283.0 42.5 1.65

U5Hl 0.0- 3.0 CUMW 1900 693.0 130.5 513.9 79.0 1.69

U5H2A 0.0- 2.0 CA 2400 539.0 145.0 387.7 89.0 2.52

U5H2B 2.0- 10.0 A 4700 542.0 197.0 390.1 1'25.4 3.54

U5H3A 0.0- 16.0 A 1600 279.0 71. 7 185.3 40.4 2.40



Table A2. Continued.

EC TDS
TDS1 : 99

(/Jrnhos em
-1 at 25°C) -1Depth (mg 1 ) 11

Sample Number" (em) Typeb 1:1 1:9 1:99 1:9 1:99 TDS 1 :9

U5H3B 0.0- 2.0 CA 500 123.0 44.3 74.0 23.5 3.50
U5H3C 16.0- 23.0 A 1900 362.0 84.8 248.1 48.8 2.16

U5H4A 0.0- 15.0 T 1100 335.0 54.0 227.5 29.4 1.42

U5H4B 0.0- 2.0 CT 200 68.8 35.5 38.6 18.4 5.23
U5H5A 0.0- 2.0 CT 200 70.6 30.3 39.7 15.4 4.26
U5H5B 2.0- 19.0 T 900 135.0 45.2 82.1 24.1 3.23
U5H5C 19.0- 26.0 T 200 58.9 33.2 32.4 17.0 5.78

U5H6A 0.0- 2.0 CUMW 3700 765.0 133.0 574.2 80.7 1.55
U5H6B 2.0- 7.0 UMW 3500 533.0 92.1 382.9 53.5 1.54

U5H6C 7.0- 16.0 UNW 3500 795.0 87.1 599.5 50.2 0.92

U5H7A 0.0- 3.0 CUNW 3200 525.0 116.0 376.5 69.3 2.02

U5H7B 3.0':' 9.0 UNW 7800 975.0 159.0 753.6 98.6 1.44

U511A 0.0- 3.0 CUMW 1600 418.0 109.0 291.6 64.6 2.44

U5118 0.0:" 3.0 CLMW 4400 689.0 149.0 510.6 91. 7 1.98 \0
V..lU512A 0.0- 0.5 BB 17400 4100.0 711.0 3771.6 528.9 1.54

U512B 0.5- 15.0 B 2400 603.0 129.0 439.7 78.0 1.95

U512C 15.0- 24.0 B 1900 369.0 83.3 253.5 47.8 2.07

U5I3A 0.0- 0.5 EB 40000 8450.0 1270.0 8485.2 1013.6 1. 31

U513B 0.5- 13.0 B 5200 935.0 255.0 719.0 167.5 2.56

U514A 0.0- 1.5 CUMW 1500 284.0 59.9 189.0 33.0 2.21

U51411 1. 5- 14.0 UMW 1400 251.0 60.4 164.6 33.3 2.23

U5I4C 14.0- 23.0 UMW 1200 255.0 59.7 167.5 32.9 2.16

U51-3 0.0- 10.0 AM 4300 1660.0 450.0 136B.5 316.7 2.55

USLIA 0.0- 0.5 EB 13100 2810.0 422.0 2469.2 294.7 1.:n

U5LlB 0.5- 7.5 B 2600 763.0 133.0 572.5 80.7 1.55

U5HlA 0.0- 0.5 EB 5300 8400.0 1589.0 8428.9 1303.1 1. 70

U5H1B 0.5- 11.0 B 3600 545.0 133.0 392.6 80.7 2.26

U5N2A 0.0- 0.5 BB 38700 6700.0 1230.0 6541. 3 977.8 1.64

U5H2B 0.5- 16.0 B 3600 724.0 156.0 539.8 96.6 1.97

U5M3A 0.0- 3.0 CUMW 3300 524.0 184.0 375.7 116.2 3.40

U5M3B 0.0- 3.0 CUMW 2590 765.0 195.0 574.2 124.0 2.38

U5P1A 0.0- l.0 EB 46200 6950.0 711.0 6815.6 528.9 0.85

U5P1B 1.0- 11.0 B 3900 715.0 158.0 532.3 97.9 2.02



Table A2. Continued.

EC TDS
TD51 : 99Depth (lJmhos em

-1 at 25 DC) -1
(mg 1 ) 11

Sample Numbera (em) Typeb 1 :1 1:9 1:99 1:9 1:99 TDS1 :9

u5P2A 0.0- 3.0 CUMW 4600 a02.0 103.0 605.4 60.6 1.10

U5P2B 0.0- 3.0 CUMW 1300 a85.0 206.0 676.1 131.9 2.15

U5P2C 0.0- 3.0 CUNW 900 379.0 145.0 261.2 89.0 3.75

U5P2D 0.0- 2.0 GLMW 8400 2200.0 388.0 1876.7 268.2 1.57

U5P3A 1.0- 13.0 UB 4200 1121.0 212.0 881.2 136.2 1. 70

U5P4A 1.0- 16.0 UB 2590 1310.0 286.0 1049.4 190.5 2.00

U5P4B 16.0- 27.0 13 3900 852.0 147.0 647.9 90.3 1.53

AT U5PA 0.0- 1.5 eLT 800 365.0 63.6 250.4 35.3 1.55

AT u5PB 1. 5- 13.5 LT 2210 1020.0 56.0 792.7 30.6 0.42

AT u5PG 13.5- 24.5 LT 1200 345.0 72.5 235.1 40.9 1.91

AT U5PO 24.5- 32.0 LT 2500 569.0 150.0 412.0 92.4 2.47

AT l:5PE 32.0- 40.0 LT 3900 574.0 174.0 416.1 109.1 2.81

U5RIA 0.0- l.5 CT 600 131.0 39.5 79.4 20.7 2.87

U5Rl11 1.5- 20.0 T 800 584.0 94.6 424.2 55.1 l.43 '0
./::'-

U5RIC 20.0- 28.0 T 1600 624.0 103.0 456.9 60.6 1.46

U5R2A 0.0- 2.0 EA 15800 3020.0 495.0 2677.0 352.4 1.45

U5R2B 2.0- 18.0 A 1800 676.0 141.0 499.8 86.2 1.90

u5R2C ·18.0- 22.0 A 2570 577 .0 120.3 418.5 72.2 1.90

U5R20 22.0- 32.0 T DOD 529.0 95.3 379.7 55.6 1.61

U5R3A 0.0- 0.5 Ell 56500 9500.0 1400.0 9676.0 1130.6 1.29

U5RJB 0.5- 16.0 B 4700 859.0 169.0 643.8 105.6 1. 78

U5R4A 0.0- 1.0 EA 24600 4395.0 479.0 4077 .1 339.7 0.92

U5R48 1.0- 5.0 A 12100 2540.0 550.0 2204.8 396.6 1.98

U5RI.C 5.0- 12.0 A 6500 1950.0 250.0 1639.3 163.8 1.10

U5UA 0.0- 1.0 CT 200 84.2 30.9 48.4 15.7 3.57

USUB 1.0- 13.0 T 200 57.2 37.3 31.4 19.4 6.80

USUC 13.0- 25.0 T 100 57.7 33.0 31. 7 16.9 5.87

U5UD 25.0- 33.0 T 200 67.8 29.5 37.9 14.9 4.33

U5Z1A 0.0- LO CT 800 217.0 45.9 139.8 24.5 1.93

U5Z1B 2.0- 15.0 T 700 314.0 143.0 211.6 87.6 4.55

U6A1 S 0.0- 0.5 EB 95000 30000.0 6000.0 35125.2 5780.1 1.81

U6A2 0.5- 3.0 EB 12200 2160.0 369.0 1838.5 253.5 1.52



Table A2. Continued.

EC TOS
TDS1 :99Oepth (~mhos cm-1 at 25·C) -1

11
Typeb

(mg 1 )
TDS1: 9Sample Numbera (em) 1:1 1:9 1:99 1:9 1:99

Doh3 3.0- 20.0 B 3600 951.0 217 .0 732.8 139.8 2.10

UoA4 20.0- 32.0 B 3100 1560.0 408.0 1276.4 283.8 2.45

V6A5 32.0- 43.0 II 2900 864.0 260.0 658.1 171. 2 2.86

V611 0.0- 3.0 CW 2900 1090.0 288.0 854.0 192.0 2.47

U6Cl 0.0- 3.0 ELW 25100 3900.0 571.0 3565.9 413.6 1.28

U6C2 3.0- 16.0 LW 8600 1630.0 312.0 1340.8 210.0 1.72

V6C3 1&.0- 24.0 LW 6700 1490.0 287.0 1212.4 191.3 1. 74

V6Dl 0.0- 2.0 CUW 1200 414.0 103.0 288.4 60.6 2.31

U&02 2.0- 15.0 Uk' 1500 552.0 152.0 398.2 93.8 2.54

U&D3 15.0- 27.0 Uk' 1000 289.0 67.5 192.8 37.7 2.15

V6El 0.0- 2.0 CT 200 74.3 32.2 42.0 16.5 4.31

V6E2 2.0- 15.0 T 100 59.2 35.8 32.6 18.5 6.2&

U6E3 15.0- 27.0 T 100 66.4 33.9 37.1 17.4 5.17

V6Fl 0.0- 1.0 CMS 2400 682.0 121.0 504.8 72.& 1.58
I,()

l./l

V6F2 1.0- 11.0 MS 5600 1060.0 378.0 827.6 260.5 3.46

U6F3 11. 0- 21. 0 MS 10000 1200.0 241.0 951.1 157.2 1.82

U6F4 21.0- 27.0 MS 11100 1590.0 297.0 1304.0 198.8 1.60

V6F5 27.0- 32.0 MS 10000 1170.0 298.0 924.5 199.5 2.37

D6Gl 0.0- 12.0 euw 6700 1390.0 371.0 1121.5 255.1 2.50

U6G2 12.0- 23.0 UW 8400 1420.0 308.0 1148.7 207.0 1.98

UoG3-4 23.0- 40.0 1JW 10000 1760.0 105.0 1461.3 61.9 0.47

U6G5-6 40.0- 62.0 tIW 8600 1920.0 332.0 1611.0 225.2 1.54

U6G7-8 62.0- 82.0 UW 8400 1920.0 369.0 1611.0 253.5 1.73

Gl11l 0.0- 2.0 Cll 1915 181.0 114.1

GIR2 2.0- 13.0 B 1940 234.0 152.1

G1R3 13.0- 22.0 II 1380 209.0 134.0

G1R4 22.0- 31.0 R 1040 141.0 86.2

GillS 31.0- 41.0 B 1725 75.4 42.7

G1B6 41.0- 47.0 8 1145 155.0 95.9

GIB7 47.0- 54.0 II 2100 122.0 73.3

G1C1 0.0- 2.0 CR 603 53.0 28.8

G1C2-3 2.0- 22.0 R 1030 89.0 51.5



Table A2. Continued.

EC TDS
TDSl : 99Depth (llmhos em-1 at 25'C) -1

11
Typeb

(mg 1 )
TDS1 : 9Sample Numbera (em) 1:1 1:9 1:99 1:9 1:99

G10.-5 22.0- 44.0 R 2150 104.0 61.3

G1C6-7 44.0- 67.0 R 2440 98.0 57.3

G1C(2)1 0.0- 1.0 CR 350 47.0 25.2

G1C(2)2 1.0- 11.0 R 555 49.0 26.4

G1C(2)3 11.0- 21.0 R 1950 94.0 54.7

G1C(2)4 21.0- 32.0 R 2080 158.0 98.0

GlC(2)5 32.0- 41.0 R 1970 180.0 113.4

G1C(2)6 41. 0- 51. 0 R 1950 112.0 66.6

G1C(2)7 51.0- 58.0 R 1650 95.0 55.4

G1C(2)B 58.0- 65.0 R 1350 BO.O 45.7

G1C(3}l 0.0- 9.5 DR 600 54.0 29.4

G1C(3) 2 9.5- 17.0 R 580 56.0 30.6

G1CO)3 17.0':' 26.0 R 860 64.0 35.6

G1CO)4 26.0- 34.0 R 875 59.5 32.8 \0
0'\

GlC(3)5 34.0- 42.0 R 1655 156.0 96.6

GlC(3)6 42.0- 51.5 R 1850 195.0 124.0

GIDl 0.0- 1.0 CLAM 6400 305.0 204.8

G1DZ 1.0- 9.0 LAM 6250 293.0 195.8

GlD3 9.0- 14.0 LAM 2640 186.0 117.6

G1D4 14.0- 23.5 LAM 1920 174.0 109.1

GllJ5 23.5- 31. 5 LAM 1910 555.0 400.7

GIEI 0.0- 0.8 CMS 249 48.0 25.8

GlE2 0.8- 14.5 MS 1880 220.0 142.0

GlE3 14.5- 24.0 MS 3220 760.0 570.0

GIE4 24.0- 35.0 MS 6500 570.0 412.8

GlE5 missing

GlE6 44.0- 51.0 MS 9300 485.0 344.5

GIE7 51.0- 61. 5 MS 8800 420.0 293.1

G2/U 0.0- 13.0 B 2140 670.0 494.8

G2A2 13.0- 22.0 B 2250 490.0 348.4

G2A3 22.0- 38.0 B 2130 450.0 31b.7

G2A4 38.0- 45.0 B 2180 510.0 364.4



Table A2. Continued.

EC TDS
TDSl :99

Depth (\lmhos em-1 at 2S·C) (mg 1-1) 11
Sample Numbera (em) Typeb 1:1 1:9 1:99 1:9 1:99 TDSl : 9

G2Dl 0.0- 1.0 CT 2070 207.0 132.6

G2D2-3 1.0- 26.0 T 21S0 465.0 328.6

G2D4-S 26.0- 47.5 T 2S40 126.0 76.0

G4A1 0.0- 1.0 CR 3200 420.0 293.1

G4A2 1. 0- 12.0 R 3200 280.0 186.0

G4A3 12.0- 22.0 R 2550 217.0 139.8

G4A4 22.0- 30.S R 264C) 310.0 208.5

G4A5 30.5- 42.0 R 2600 290.0 193.5

G4A6 42.0- 48.S R 2900 330.0 223.7

G4Bl 0.0- 1.0 CR 5300 628.0 460.2

G4B2 1.0- 11.5 R 3000 297.0 198.8

G4B3 11.5- 21.0 R 2480 235.0 152.9

G4B4 21. 0- 31.0 R 2040 220.0 142.0

G4B5 31. 0- 40.0 R 2130 198.0 126.2 \D
-....J

G4B6 40.0- 49.0 R 2310 242.0 158.0

G4B7 49.0- 61.0 R 1550 288.0 192.0

G4B8 61.0- 71.0 R 2460 148.0 91.0

G4B9 71.0- 80.0 R 2400 166.0 103.5

G4Cl 0.0- 5.0 UR 3800 338.0 229.8

G4C2 5.0- 13.0 R 2700 177 .0 111.3

G4C3 13.0- 29.0 R 2550 175.0 109.8

G4C4 29.0- 37.0 R 2550 208.0 133.3

G4C5 37.0- 46.0 R 2350 214.0 137.6

G4C6 46.0- 58.5 R 2430 241.0 157.4

G5Cl 0.0- 3.0 CMS 2860 277 .0 183.8

G5C2 3.0- 14.5 MS 8500 2170.0 360.0 1848.0 246.6 1.47

G5C3 14.5- 21.0 HS 6250 227.0 147.0

G5El 0.0- 3.0 CMS 9200 126.0 76.0

G4E2 3.0- 16.0 MS 9700 360.0 246.6

G5E3 16.0- 26.0 HS 9000 288.0 192.0

G5E4 26.0- 35.0 MS 7600 330.0 233.8

G20A 0.0- 2.0 C-MesaVerde 1975 1050.0 222.0 881.9 143.4 1. 79



Table A2. Continued.

EC TOS
TDSl : 99Depth (\lmhos em

-1 at 25·C) -1

Typeb
(mg 1 ) 11

TUSl : 9Sample Numbera (ern) 1:1 1:9 1:99 1:9 1:99

G20C 0.0- 2.0 C-MesaVerde :1060 550.0 98.B 396.6 57.9 1.60

G20E 0.0- 2.0 C-MesaVerde 239 106.5 42.0 62.9 22.2 3.88

G7A1 S 0.0- 13.0 UB 2000 435.0 61.0 304.9 33.7 1.22

G7A2-3 S 13.0- 33.0 B 2400 413.0 63.6 287.7 35.3 1.35

G7A4-5 S 33.0- 51.5 B 1600 353.0 58.3 241.2 32.0 1.46

G7A6-7 S 51. 5- 64.5 B 1600 373.0 72.8 256.6 41.1 1. 76

G7B1 S 0.0- 9.5 UB 600 168.0 36.9 104.9 19.2 2.01

G7ll2 9.5- 24.5 B 600 215.5 46.8 138.7 25.0 1.98

G7ll3-4 24.5- 42.0 B 600 170.0 42.6 106.3 22.5 2.33

G7B5-6 42.0- 60.5 B 500 199.0 48.5 126.9 26.1 2.26

G7B7-8 60.5- 73.5 B 500 269.0 52.0 177 .9 28.2 1. 74

G7C1 S 0.0- 13.5 UB 900 166.0 40.3 103.5 21.2 2.25

G7C2 S 13.5- 24.0 B 600 171.0 43.3 107.0 22.9 2.35

G7C3 S 24.0- 33.0 B 700 127.0 38.5 76.7 20.1 2.88 \0
00

G7C4 S 33.0- 41.5 B 600 174.0 49.3 109.1 26.5 2.67

G7Ul 0.0- 1.7 CB 3000 1164.0 135.0 919.2 82.1 0.98

G7D2 1. 7- 25.0 B 600 166.0 54.6 103.5 29.8 3.17

G7D3-4 25.0- 44.5 B 500 135.0 37.5 82.1 19.5 2.61

G7D5-6 44.5- 62.5 B 300 111.0 38.1 65.9 19.9 3.32

G7D7-8 62.5- 72.0 B 300 92.7 38.5 53.9 20.1 4.10

G7E1 S 0.0- 12.0 DT 300 64.8 29.7 36.1 15.0 4.57

G7£2 S 12.0- 19.0 T 200 47.7 29.1 25.6 14.7 6.32

G7E3-4 S 19.0- 39.5 T 200 58.8 29.9 32.3 15.1 5.14

GlE5-6 S 39.5- 55.5 T 1500 374.0 74.0 257.4 41.8 1. 79

G8Al S 0.0- 2.0 CB 4600 1239.0 281.0 985.9 186.8 2.08

C8A2 2.0- 13.0 B 3700 859.0 93.1 653.8 54.1 0.91

G8A3-4 13.0- 31.0 B 3300 960.0 199.0 740.6 126.9 1.88

G8A5-6 31.0- 48.5 B 4800 990.0 138.0 766.6 84.2 1.21

G8A7UP 48.5- 58.0 B 3900 1100.0 126.0 862.7 76.0 0.97

GBAlLOW 48.5- 5B.0 B 8400 2250.0 520.0 1924.6 372.4 2.13

G8AS 58.0- 69.0 B 8400 2160.0 417.0 1838.5 290.8 1. 74

GBA9-10 69.0- 93.0 B 9100 1930.0 392.0 1620.5 271. 3 1.B4

G8Al1-12 93.0-118.5 R 7700 1470.0 450.0 1194.2 316.7 2.92



Table A2. Continued.

EC TDS
TDS1 :99Depth (ymhas em-1 at 25·C) (mg 1-1) 11

Sample NumberS (em) Typeb 1:1 1:9 1:99 1:9 1:99 TD51 :9

GBB1 0.0- 0.3 EB 71600 12500.0 2130.0 13162.1 1809.9 1.51
G8B2 0.3- 14.5 B 7400 1320.0 223.0 1058.4 144.1 1.50

G8B3 14.5- 25.5 B 5400 971.0 113.0 750.1 67.3 0.99

G8B4UP 25.5- 35.5 B 5900 970.0 120.0 749.3 72.0 1.06

GBJl4LOW 35.5- 41.5 B 5400 1425.0 239.0 1153.:1 155.B 1.49

GBB5 41. 5- 54.0 B 6100 1190.0 270.0 942.3 17B.6 2.08

G8B6 54.0- 70.0 B 5700 950.0 194.0 732.0 123.3 1.85

G8B7-8 70.0- 9B.O B 5000 1590.0 243.0 1304.0 158:7 1.:14

GBCl 0.0- 5.0 UB 800 335.0 60.3 227.5 :13.3 1.61

G8e2 5.0- 14.0 B 3300 1395.0 223.0 1126.1 144.1 1.41

G8C3 14.0- 21.0 11 5200 1551.0 340.0 1268.2 231.3 2.01

GeC4 21.0- 39.0 B 4000 1749.0 359.0 1451.1 245.8 1.86

G8El 0.0": 17.0 UA 2800 1150.0 224.0 906.8 144.9 1. 76

G8E2 17.0- 26.0 A 3900 1500.0 31B.0 1221.5 214.6 1.93 v:>
v:>

G8E3-4 26.0- 45.5 A 5300 1851.0 497.0 1546.3 354.0 2.52

G8E5-6 45.5- 62.0 A 4200 2410.0 751.0 2078.7 562.4 2.98

C8Fl 0.0- 2.0 UW 5400 2140.0 172.0 1819.4 107.7 0.65

G8F2 2.0- 13.0 W 6300 1835.0 200.0 1531. 3 127.6 0.92

G8F3 13.0- 27.0 W 2100 1050.0 173.0 818.9 108.4 1.46

G8F4 27.0- 35.0 IV 2600 935.0 177.0 719.0 111.2 1. 70

G8P5 35.0- 53.0 IV 3100 950.0 139.0 732.0 84.8 1.27

GBGI S 0.0- 12.5 OW 5400 1930.0 551.0 1620.5 397~4 2.70

GBG2 12.5- 18.5 W 3500 1990.0 599.0 1677.0 436.4 2.86

GBG3 18.5- 22.0 W 3300 2375.0 857.0 2044.9 652.1 3.51

GaG4 22.0- 28.0 W 3600 2210.0 609.0 1886.3 444.6 2.59

G8H1 0.1- 12.5 UW 200 56.3 28.8 30.8 14.5 5.18

GBH2 12.5- 20.5 W 100 47.6 24.3 25.5 12.0 5.18

G8R3 20.5- 36.0 W 200 50.8 20.6 27.4 10.0 4.01

G8ll4 36.0- 46.5 W 400 59.7 21.2 32.9 10.3 3.44

G811 0.0- 1.0 GT 200 102.0 22.8 60.0 11.2 2.05

G812-3 1.0- 24.5 T 100 46.8 26.4 25.0 13.2 5.81

GBI4-5 24.5- 45.5 T 200 80.5 30.3 46.0 15.4 3.68



Table A2. Continued.

EC TDS
TDS1 : 99Depth (fJmhos em-1 at 25°C) (mg 1-1) 11

Sample Numbers (em) Typeb 1:1 1:9 1:99 1:9 1:99 TDS1 :9

G816-7 45.5- 72.5 T 1400 419.0 64.3 292.3 35.7 1.34

GflI8-9 72.5- 90.5 T 1200 323.0 54.3 218.4 29.6 1.49

G8ll0-11 90.5-106.5 T 2000 550.0 65.3 396.6 49.1 1.36

G9Al 0.0- 1.5 CB 2000 458.0 81.1 323.0 46.4 1.58

G9A2 1. 5- 7.5 B 640 111.0 36.2 65.9 18.8 3.14

G9A3 7.5- 21.0 B 400 113.0 36.2 67.3 18.8 3.07

G9A4 21.0- 29.0 B 200 80.3 36.0 45.9 18.7 4.48

G9A5 29.0- 39.5 B 200 65.7 35.4 36.6 18.3 5.50

G9A6UP 39.5- 48.0 B 200 70.5 34.8 39.6 18.0 5.00

G9A6LOW 39.5- 48.0 B 200 65.6 35.3 36.6 18.2 5.47

G9A7 48.0- 59.5 B 200 54.3 28.5 29.6 14.4 5.35

G9A8-9 59.5- 82.5 B 200 55.1 33.8 30.1 17.4 6.36

G9A10-11 82.5-102.0 B 300 87.3 40.1 50.4 21.1 4.61
I-'

G9A12-13 102.0-128.0 B 300 79.3 39.3 45.2 20.6 5.01 0
0

G9A14-15 128.0-144.5 B 200 71.9 42.0 40.5 22.2 6.03

G9A16-17 144.5-165.0 B 200 90.2 42.0 52.2 22.2 4.68

G9A18-19 165.0-184.0 B 500 75.3 39.3 42.7 20.6 5.31

G9A20-21 184.0-206.0 B 300 93.5 41.4 54.4 21.8 4.41

G9Bl 0.0'- 1.2 CB 1200 243.0 47.7 158.7 25.6 1.77

G9B2 0.0- 3.0 CB 1300 221.0 51.2 142.7 27.7 2.14

G9B3 0.0- 3.5 DB 1200 251.0 43.8 164.6 23.2 1.55

G9B4 0.0- 1.5 CB 1500 259.0 51. 7 170.5 28.0 1.81

G9B5 0.0- 1.5 CB 1400 302.0 75.8 202.5 43.0 2.34

G9B6 0.0- 1.5 CB 1300 386.0 75.7 266.7 42.9 1.77

G9Cl 1.0- 16.0 VA 200 57.6 29.7 31.6 15.0 5.22

G9C2 16.0- 26.0 A 100 73.6 29.5 41.6 14.9 3.94

G9C3 26.0- 35.0 A 100 77.5 35.2 44.1 18.2 4.54

G9C4 35.0- 43.0 A 200 82.1 33.1 47.0 17.0 3.98

G9Dl 0.0- 2.5 CW 521 119.0 34.1 7L3 17.6 2.72

G9D2 2.5- 13.5 W 218 60.3 28.7 33.3 14.5 4.79

G9D3 13.5- 21.5 W 140 53.1 29.2 28.8 14.8 5.65

G9D4 21. 5- 27.0 W 149 65.2 29.7 36.3 15.0 4.55



Table A2. Continued.

EC TDS
TDS 1: 99Depth (\Jmhos cm

-1
at 25°C) (mg 1-1) 11

Sample Number8 (cm) Typeb 1:1 1:9 1:99 1:9 1:99 TOS1 : 9

G9El 0.0- 13.5 UT 185 72.2 26.3 40.7 13.1 3.54

G9E2-3 13.5- 36.0 T 152 55.3 26.6 30.2 13.3 4.84

G9E4-5 36.0- 57.5 T 139 57.5 27.9 31.5 14.0 4.89

G9F1 0.0- 1.0 CW 900 212.0 43.3 136.2 22.9 1.85

G9F2-3 1.0- 16.5 w 2200 430.0 69.7 301.0 39.1 1.43

G9F4-5 16.5- 41.5 W 2250 442.0 69.6 310.4 39.1 1.39

G9F6-7 41.5- 74.0 W 2100 424.0 66.2 296.3 36.9 1.37

G9Gl 0.0- 12.5 OW 4500 744.0 83.3 556.5 47.8 0.94

G9G2-3 12.5- 35.0 W 4900 735.0 82.1 549.0 47.0 0.94

G9G4-5 35.0- 74.5 W 3500 5Cl2.0 63.0 358.0 34.9 1.07

G9H1 0.0- 1.0 C1 199 71.6 38.6 40.3 20.2 5.51

G9H2 1.0-. 13.0 T 300 93.6 43.0 54.5 22.8 4.60

G9H3-4 13.0- 34.0 T 1200 420.0 79.1 293.1 45.1 1.69
I-'

G9H5-6 34.0- 51. 5 T 1800 616.0 106.0 450.3 62.6 1.53 0
I-'

G9H7-8 51. 5- 69.5 T 1600 514.0 82.0 367.6 47.0 1.41

G9H9-10 69.5- 90.0 T 1900 524.0 93.0 375.7 54.1 1. 58

G9Hll-12 90.0-112.5 T 6200 1000.0 146.0 775.3 89.6 1.27

G9H13-14 112.5-128.5 T 4500 771.0 128.0 579.2 77 .4 1.47

G9H15-16 128.5-151. 5 T 3300 592.0 87.1 430.7 50.2 1.28

GIOAI (1 of 2) 0.0- 1.0 CB 1700 404.0 60.0 280.6 33.1 1.30

GIOAl (2 of 2) 0.0- 1.0 CB 1300 250.0 53.1 163.8 28.8 1.93

GI0AIY 0.0- 2.0 CB 3100 405.0 67.0 281.4 37.4 1.46

GIGA2 1.0- 12.5 B 700 138.0 32.2 84.2 16.5 2.16

GIGA3 12.5- 24.5 B 400 87.5 36.7 50.5 19.1 4.16

GlOA4-5 24.5- 34.5 B 300 93.2 41.9 54.2 22.1 4.49

GlOBl 0.0- 1.0 CA 300 143.0 41.9 87.6 22.1 2.78

GI0B2 1.0- 12.5 A 300 97.2 45.4 56.8 24.2 4.69

GI0B3-4 12.5- 33.0 A 1400 414.0 63.0 288.4 34.9 1.33

G10115-6 33.0- 55.5 A :nOD 726.0 114.0 541.4 67.9 1.38

G10Cl 0.0- 2.0 CW 500 143.0 38.4 87.6 20.1 2.52
GLOC2 2.0- 10.5 111 1200 231.0 43.5 150.D 23.1 1.69
G10C3 10.5- 16.5 111 1700 304.0 57.6 204.0 31.6 1.70



Table A2. Continued.

EC TDS
TDS1 : 99Depth (iJn,hos em-1 at 25°C) (IDg 1-1) 11

Sample Number8 (em) Typeb 1:1 1:9 1:99 1:9 1:99 TD51 : 9

G10C4 16.5- 37.0 W 1400 282.0 57.0 187.5 31.2 1.83

G10G5 37.0- 47.0 W 1300 253.0 42.5 166.1 22.5 1.49

GIOD1 0.0- 10.0 ur 200 101.0 30.3 59.3 15.4 2.86

GIOD2 10.0- 19.0 T 200 74.4 37.7 42.1 19.6 5.12

GIOD3-4 19.0- 38.0 T 300 104.0 39.2 61.3 20.5 3.68

G10D5-6 38.0- 63.0 T 1000 249.0 52.2 163.1 28.3 1.91

G10XA1 0.0- LO CB 1300 258.0 62.7 169.7 34.8 2.26

G10XA2 0.0- 1.0 CB 1500 255.0 54.6 167.5 29.8 L96

GlOXA3 l.0- 10.0 B 400 130.0 32.1 78.7 16.4 2.29

G10XA4 10.0- 20.5 B 300 96.4 47.9 56.3 25.7 5.02

GlOXA5 20.5- 26.5 B 200 106.5 38.2 62.9 19.9 3.48

G10XB1 ·0.0- l.0 CLW 1500 509.0 86.3 363.6 49.7 l.50

G10Xll2-3 l.0- 22.5 LW 5200 1680.0 299.0 1387.0 200.3 1.59

G10XB4-5 22.5- 44.0 4000 1319.0 241.0 1057.5 157.2 L64
I--'

LW 0

C10XCI S 0.0- 12.0 UT 200 105.0 27.7 6l.9 13.9 2.47
N

CIOXC2-3 12.0- 29.5 T 200 73.1 34.5 41.3 17 .8 4.74

G10XG4-5 29.5- 47.0 T 200 67. 3 36.1 37.6 18.7 5.47

GllAl 0.0- 7.0 UB 3500 730.0 117.0 544.8 69.9 l.41

CHAIX 0.0- 8.0 UB 3900 691.0 111.0 512.3 65.9 1.41

GllA2-3 0.8- 25.0 8 3100 735.0 108.0 549.0 63,9 1.28

GllA4-5 25.0- 39.0 B 2800 645.0 81.8 474.2 46.8 1.09

GllA6-7 39.0- 54.5 B 1750 440.0 68.7 308.8 38.5 1.37

GIlBl 0.0- l.0 CB 7400 2210.0 361.0 1886.3 247.4 1.44

GUB2 1.0- 9.5 B 4000 649.0 79.3 477 .5 45.2 1.04

GIlB3-4 9.5- 32.0 B 3100 654.0 86.8 481.6 50.0 1.14

Gl1B5-6 32.0- 49.5 B 2600 510.0 80.5 364.4 46.0 1.39

G1l87-8 49.5- 67.5 B 2300 769.0 125.0 577 .5 75.3 1.43

GllB9-10 67.5- 79.0 B 4000 551.0 78.0 397.4 44.4 1.23

GUel 0.0- 2.0 CA 20000 2830.0 345.0 2488.9 235.1 1.04

GHC2 2.0- 16.5 A 10400 1960.0 264.0 1648.7 174.2 1.16

GllC3-4 16.5- 35.5 A 8700 1419.0 209.0 1147.11 134.0 1.28

GllCS-& 35.5- 47.0 A 5200 1379.0 156.0 1111.6 96.6 0.96



Table A2. Continued.

EC TDS
T051 : 99Depth -1

at 2S·C) (mg 1-1)(lJlllhos em 11
Sample Numbera (em) Typeb 1:1 1:9 1:99 1:9 1:99 TOS1 : 9

GlIC7-8 47.0- 67.0 A 6500 169.0 186.0 105.6 117.6 12.25

GlIDl 0.0- 2.0 CW 5600 1065.0 135.0 832.0 82.1 1.09

GllD2-3 2.0- 19.0 W 7500 1455.0 208.0 1180.5 133.3 1.24

G11D4-S 19.0- 42.0 W 5800 1139.0 124.0 897.1 74.6 0.91

G11El 0.0- 2.0 CT 300 189.0 45.6 119.7 24.3 2.23

GllE2-3 2.0- 26.4 T 300 91.4 37.6 53.0 19.6 4.07

G11E4-S 26.5- 40.0 T 400 112.0 41.2 66.6 21. 7 3.58

GllE6-7 40.0- 67.5 T 600 149.0 34.0 91. 7 17.5 2.10

MIAI 0.0- 1.0 CB 2200 496.0 148.0 353.2 91.0 2.83

~!lA2 0.0- 9.0 B 2100 692.0 249.0 513.1 163.1 3.50

MIA3-4 9.0- 30.0 B 3200 859.0 294.0 653.8 196.5 3.31

MlA5-6 30.0- 49.5 B 4200 899.0 298.0 688.1 199.5 3.19

:UA7-B 49.5- 71.5 B 2700 1145.0 372.0 902.4 255.8 3.12

MlBl 0.0- 2.0 FB 10200 1670.0 322.0 1377.8 217.6 1. 74 f-'
0

mll2 2.0- 19.0 B 3400 592.0 191.0 430.7 121.2 3.10 W

MlB3 19.0- 28.5 B 2800 849.0 269.0 645.3 177 .9 3.03

MlCl 0.0- 2.0 CA 5200 1350.0 382.0 1085.4 263.6 2.67

M1C2 2.0- 15.0 A 11300 1900.0 560.0 1592.2 404.7 2.80

M1C3-4 15.0- 31.0 A 12700 1860.0 519.0 1554.7 371.6 2.63

MICS-6 31.0- 44.5 A 12700 1755.0 424.0 1456.6 296.3 2.24

MlC7-8 44.5- 60.5 A 13700 1570.0 473.0 1285.6 334.9 2.87

mC9-10 60.5- 78.0 A 13300 1680.0 420.0 1387.0 297.8 2.36

MlCll-12 78.0- 93.0 A 13700 1755.0 311.0 1456.6 209.3 1.58

MIDI 0.0- 5.0 0 7900 1245. a 419.0 991.2 292.3 3.24

MID2 0.0- 10.0 D 6300 1450.0 250.0 1176.0 163.8 1.53

NIEl 0.0- 1.0 CW 14500 2590.0 585.0 2253.5 425.0 2.07

MlE2-3 1.0- 19.0 W 28200 3700.0 689.0 3361.5 510.6 1.61

MIE4-5 19.0- 30.5 w 9800 1749.0 408.0 1451.1 283.8 2.15

HZAI 0.0- 14.0 UB 3900 1025.0 272.0 797.1 180.1 2.49

M2A2UP 14.0- 16.0 B 3600 942.0 195.0 725.1 124.0 1.88

M2A2WW 16.0- 21.5 MB 2790 489.0 285.0 347.6 189.8 6.01

M2Bl 0.0- 1.0 CLAM 1600 292.0 40.5 195.0 21.3 1.20



Table A2. Continued.

EC TDS
TDS1: 99-1 at 25·0) -1

11Depth (jJmhos em (mg 1 )
TDS1 : 9Sample Numbera (em) Typeb 1:1 1:9 1:99 1:9 1:99

/12B2 1.0- 8.0 LAM 2000 646.0 77.7 475.0 44.2 1.02

M2C1 S 0.0- 3.0 CAM 1300 373.0 54.6 256.6 29.8 1.28

M2C2 S 3.0- 6.0 AM 1500 256.0 83.8 168.3 48.1 3.14

M2C3 S 6.0- 14.0 MW 400 86.7 26.0 50.0 13.0 2.86

112Dl S 0.0- 1.0 CAM 452 120.0 47.5 72.0 25.5 3.90

M2D2-3 1.0- 24.0 MW 2000 424.5 90.0 296.7 52.1 1.93

M2D4-5 S 24.0- 41. 5 MW 2400 758.0 254.0 568.3 166.8 3.23

WD6-7 41.5- 62.0 MW 3000 959.0 334.0 739.8 226.7 3.37

/12D8-9 S 62.0- 72.0 MW 4800 1044.0 311.0 813.6 209.3 2.83

M3Al S 0.0- 9.0 UB 2350 704.0 115.0 523.1 68.6 1.44

MJA2-3 9.0- 29.5 B 1700 615.0 76.5 449.5 43.4 1.06

H3A4-5-6 29.5- 53.0 B 2000 780.0 209.0 586.8 134.0 2.51

M3A7-8-9 53.0- 74.5 B 2100 893.0 167.0 682.9 104.2 1.68
I-'M3AI0-11 74.5- 88.0 B 2400 719.0 412.0 535.6 286.9 5.89 a

2.89
~M3A12-13 S 88.0-100.5 B 2445 580.0 176.0 420.9 110.5

M3A14-15 100.5-120.5 B 2700 780.0 301.0 586.8 201.8 3.78

H3A16-17-18 120.5-143.5 B 2500 998.0 357.0 773.6 244.3 3.47

MJAl9-20-21 143.5-169.0 B 2450 1300.0 372.0 1040.5 255.8 2. 70

MJA22UP 169.0-175.0 B 3200 1560.0 431.0 1276.4 301.7 2.60

M3A22LOW 169.0-175.0 B ~900 1700.0 774.0 1405.6 581.7 4.55

MJA23-24 S 175.0-196.5 B 3052 1367.0 286.5 1100.8 190.9 1.91

MJA25-26 196.5-210.0 B 3900 1475.0 674.0 1198.7 498.2 4.57

M3A27-28-29 210.0-240.0 B 3600 1374.0 882.0 1107.1 673.5 6.69
M3A30-31-32 240.0-275.0 B 3400 1630.0 631.0 1340.8 462.7 3.80
M3A33-34 S 275.0-296.0 B 2900 1705.0 767.0 1410.2 575.8 4.49
MJB1 S 0.0- 0.8 ex 578 147.0 55.3 90.3 30.2 3.68
M382 0.8- 12.0 T 1900 365.0 81.5 250.4 46.6 2.05
M3B3-4-5 12.0- 41.0 T 2400 841.0 171.0 638.5 107.0 1.84
M3B6-7-8 41.0- 68.5 T 3700 1445.0 391.0 1171.4 270.5 2.54
/13B9 S 68.5- 78.5 T 4100 1050.0 274.0 818.9 181.6 2.44
M3B1D-n 78.5- 99.5 T 4200 1075.0 219.0 840.8 141.2 1.85
M3B12-13-14 99.5-137.5 T 3400 1540.0 357.0 1258.1 244.3 2.14



Table A2. Continued.

EC TDS
TDS1 :99Depth (!Jmho9 em-1 at 25°C) -1 11(mg 1 )
TDS1 : 9Sample Numbera (em) Typeb 1:1 1,9 1:99 1:9 1:99

mB15-16 137.5-164.5 T 3200 1195.0 302.0 946.7 202.5 2.35

M3B17-18 S 164.5-189.5 T 3200 849.0 245.0 645.3 160.2 2.73

M3Cl 0.0- 10.0 UB 1800 698.0 216.0 51B.1 139.1 2.95

mC2 10.0- 18.5 1\ 1900 855.0 143.0 650.4 87.6 1.48

M3C3-4 18.5- 36.0 B 2200 884.0 91.2 675.2 52.9 0.86

M3C5-6 36.0- 51.0 B 2300 779.0 149.0 586.0 91. 7 1.72

M3C7-8 51.0- 66.5 B 2600 923.0 109.0 708.7 64.6 1.00

me9-10 66.5- 76.5 B 2800 594.0 193~0 432.4 122.6 3.12

M301 0.0- 10.5 UB 1900 969.0 114.0 748.4 67.9 1.00

MJD2-3 10.5- 28.0 B :nOO 659.0 93.5 485.7 54.4 1.23

113D4-5 28.0- 46.5 B 2f,00 832.0 239.0 630.8 155.8 2.72

113D6-7 46.5- 62.5 B 2400 830.0 302.0 629.1 202.5 3.54

MJDB-9 62.5- 77.0 B 2300 554.0 123.0 399.8 74.0 2.04
I-'

113010-11 77 .0- 91.0 B 2800 708.0 199.0 526.4 126.9 2.65 0
V1

M3El 0.0- 10.0 UB 2100 749.0 177.0 560.7 111.2 2.18

113£2 10.0- 19.5 B 1800 779.0 198.0 586.0 126.2 2.37

113E3-4 19.5- 40.0 B 2000 823.0 235.0 623.2 152.9 2.70

M3E5-6 40.0- 60.5 B 1900 924.0 748.0 709.5 559.9 8.68

KlE7-8 60.5- 78.0 B 1450 238.0 49.4 155.1 26.6 1.89

113E9-10 78.0- 92.0 B 27M 811.0 199.0 613.0 126.9 2.28

}13Fl 0.0- 11.0 UB 1700 753.0 296.0 564.1 198.0 3.86

M3F2-3 11.0- 30.0 B 1700 716.0 130.0 533.1 78.7 1.62

M3F4-5 30.0- 49.0 B 1900 1085.0 27B.0 849.6 184.6 2.39

M3F6-7 49.0- 66.5 B 2300 690.0 143.0 511.4 87.6 1.88

M3F8-9 66.5- 81.0 B 2700 823.0 . 153.0 623.2 94.5 1.67

M3Gl 0.0- 12.0 UB 1800 1038.0 268.0 808.4 177 .1 2.41

M3G2-3 12.0- 30.0 B 1900 775.0 121.0 582.6 72.6 1. 37

M3G4-5 30.0- 47.5 II 1390 950.0 260.5 732.0 171.6 2.58

M3G6-7 47.5- 61.0 II 1950 781.0 252.0 587.6 165.3 3.09

},')G8-9 61.0- 80.0 B 1100 1157.0 211.5 913.0 135.8 1.64

M3Hl-2 S 66.0- 78.5 T 3300 1599.0 388.0 1312.3· 268.2 2.25

M.3H3-4 78.5-102.0 T 3900 1542.0 360.0 1259.9 246.6 2.15



Table A2. Continued.

EC TDS
TDS1 :99

Depth (lJmhos em-1 at 25 ·C) -1

Typeb
(mg 1 ) 11

TDS1 :9Sample Numbera (em) 1:1 1:9 1:99 1:9 1:99

M3115-6 102.0-127.0 T 3100 1175.0 271.0 929.0 179.4 2.12

MJ1I7-8 127.0-147.5 T 3100 1205.0 269.0 955.6 171.9 2.05

113119-10 147.5-173.5 T 2900 1145.0 252.0 902.4 165.3 2.01

M31111-12 173.5-194.0 T 2700 850.0 188.0 646.2 119.0 2.03

11311 0.0- 13.0 UB 2300 849.0 189.0 645.3 119.7 2.04

M312 13.0- 19.5 B 2300 601.0 190.0 438.1 120.5 3.03

MJI3-4 19.5- 42.5 B 3300 1100.0 308.0 862.7 208.0 2.64

M315-6 42.5- 65.0 B 2600 1060.0 311.0 827.6 209.3 2. 78

11317-8 65.0- 78.0 B 2100 569.0 240.0 412.0 156.5 4.18

113Jl 0.0- 12.5 UB 2100 589.0 146.0 428.3 89.6 2.30

113.12-3 12.5- 32.5 B 1600 555.0 161.0 400.7 100.0 2.75

M3.1/,-5-6 32.5- 68.0 B 1800 969.0 259.0 748.4 170.5 2.51

MJJ7-8-9 68.0- 98.0 B 2900 1029.0 319.0 800.6 215.3 2.96

113JIO-11-12 98.0-130.0 B 3300 1280.0 300.0 1022.5 201.0 2.16 f-'
0

113J13-J4-15 130.0-157.0 B 2600 1265.0 525.0 1009.1 376.5 4.10 0\

M3K1 0.0- 9.5 UB 2300 755.0 189.0 565.7 119.7 2.33

M3K2-3 9.5- 34.0 B 2100 691.0 213.0 512.3 136.9 2.94

M3K4-S-6 34.0- 66.5 B 2600 1080.0 304.0 845.2 204.0 2.65

M3K7-8-9 66.5-101. 5 B 3200 1210.0 214.0 960.0 137.6 1.58

113KI0-11-12 101. 5-139.5 B 3500 1181.0 298.0 934.3 199.5 2.35

113Kl3-14-15 139.5-171.0 B 2900 1580.0 468.0 1294.8 330.9 2.81

M3K16-17-18 S 171.0-203.5 B 3300 1560.0 592.0 1276.4 430.7 3.71

M3K19-20-21 203.5-230.0 B 2900 1490.0 611.0 1212.4 446.3 4.05

~m:22-23-24 S 230.0-261.0 II 3300 1810.0 893.0 1507.9 682.9 4.98

M3KZ5-26-Z7 261. 0-299.0 B 3300 1950.0 755.0 1639.3 565.7 3.80

M3L1 S 0.0- 1.5 CA 2900 920.0 288.0 706.1 192.0 2.99

113L2-3 1.5- 27.5 A 2800 891.0 293.0 681.2 195.B 3.16

MJL4-5 S 27.5- 51. 5 W 3400 1361.0 341.0 1095.3 232.1 2.33

M3L6-7 51.5- 75.0 W 3300 1046.0 342.0 815.4 232.8 3.14

MJL8-9 S 75.0-101.5 W 3200 973.0 188.0 751.9 119.0 1. 74

113M1 0.0- 21.0 W 3900 1400.0 344.0 1130.6 23/,,) 2.28



Table A2. Continued.

EC TDS
TDS1 :99(ymhos cm-1 at 25°C) -1

11Depth (mg 1 )
Sample Numbera (em) Typeb 1:1 1:9 1:99 1:9 1:99 TDS1 : 9

M3t1Z-3 21.0- 54.0 W 4000 1610.0 304.0 1322.4 204.0 1. 70

M3M4-5 54.0- 93.0 w 3500 1290.0 291.0 1031. 5 194.3 2.07

M3M6-7 93.0-124.0 W 3700 1025.0 219.0 797.1 141.2 1.95

M3M8-9 124.0-155.0 W 3200 871.0 179.0 664.1 112.7 1.87

M4Al 0.0- 10.0 UB 1900 709.0 132.0 527.2 80.1 1.67

M4A2 0.0- 1.0 CB 3100 821.0 171.0 621.5 107.0 1.89

M4A3 10.0- 19.0 B 2600 808.0 173.0 610.5 108.4 1.95

M4A4 19.0- 29.0 B 2300 561.0 106.0 405.5 62.6 1. 70

M4ll1 S 0.0- 9.0 OW 8400 2125.0 485.0 1805.1 344.4 2.10

M4B2 9.0- 15.5 W 8700 2195.0 594.0 1871.9 432.4 2.54

M4B3 15.5- 24.5 W 9000 2290.0 584.0 1963.0 424.2 2.38

M4B4 24.5- 37.0 w 5800 1825.0 593.0 1521.9 431.5 3.12

M4B5 37.0- 47.0 W 5900 1895.0 489.0 1587.S 347.6 2.41
I-'
0
'oJ

aThe addition of the letter S to a sample number denotes that the sample solution was chemically analyzed (see Table
AI). For s8lllples MIDI and MlD2. the letter D denotes that they are mudballs and their depths stand for their respective
diameters.

bSymbols used in Table A2: C· crust; M • Mancos Shale: B· bed material; A - mass wasted material; U • upper: S •
hil1s10pe: W• gully wall; L - lower; E - efflorescent; R - (reservoIr) or stockpond sediment. Unless M (Mancos Shale) is
used, the sample is alluvium. Examples: CMS·· crust of Mancos Shale from hillslope; CU}~ - crust of upper part of Mancos
Shale gUlly wall: ELW· saline crust (efflorescence) of lower part of alluvial gully wall.
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Table A3a. Summary of EC variations within the aqueous mixtures
(1:999. 1:99 and 1:9) of sample UsD1A.

Concentration - EC ].lmhos -1 @25°C- - - - cm - - - - - -
Contact Time (min)

13 110 200

1:999 23.8 42.2 43.1
34.4 47.5 49.2
35.8 46.1 48.0
34.7 47.0 47.8
33.2 48.8 50.1
34.1 46.2 48.5

X 32.7 46.3 47.8
A

4.42 2.24 2.45a
A _

100(a/X) 13.5 4.8 5.1

Contact Time (min)
13 51 127 345

1:99 100.0 129.0 144.5 157.0
111.0 132.1 172.0 215.5
106.4 132.1 144.0 157.5
116.2 135.2 150.0 164.5
116.6 137.6 151.0 170.5
118.4 136.0 150.2 169.5

X 111.4 133.7 152.0 172.4
'"a 7.1 3.1 10.3 21.9

100 (a/x) 6.4 2\ 3 6.8 12.7

Contact Time (min)
18 40 80 230 315 585

1:9 515 670 810 1010 1015 1140
460 580 730 880 925 1043
521 560 665 775 877 940
535 605 697 852 900 1068
440 643 797 980 1000 1130
518 595 680 770 800 900

X 498 609 730 878 920 1037
A

38.5 40.8 61.2 100.8 80.3 98.4a

100 (a-/x) 7.7 6.7 8.4 11.5 8.7 9.5
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Table A3b. Summary of EC variations within the aqueous mixtures
(1:999, 1:99, and 1:9) of sample G8Gl.

- EC l1mhos cm
-1

@ 25°CConcentration - - - - - - - - - -

Contact Time (min)
22 85 345 1265

1:999 62.0 95.5 115.9 121.0
48.7 78.2 113.7 122.5
43.3 86.6 185.0 204.0
45.8 66.4 81.2 91.9
42.3 68.0 96.0 107.4
39.7 61. 8 81.2 87.4

X 47.0 76.1 112.1 122.4
A

0 8.0 13.1 38.7 42.5
A -

100(a/X) 17 .0 17.2 34.5 34.7

Contact Time (min)
26 192 240 1034

1:99 304 650 710 801
382 652 704 821
242 555 608 782
289 605 667 805
243 555 643 720

X 292 603 666 786
A

0 57.4 48.1 42.5 39.3
'" -100(o/X) 19.6 8.0 6.4 5.0

Contact Time (min)
16 34 68 292 497 696

1:9 2450 2680 2850 3000 3055 3060
2365 2630 2880 3080 3130 3130
2250 2590 2800 3020 3075 3005
2310 2610 2805 3000 3040 3040
2280 2545 2740 2895 2925 2965

X 2331 2611 2815 2999 3045 3040
A

0 90.2 49.8 53.4 66.8 75.3 62.0
A -

100Ca/X) 3.9 1.9 1.9 2.2 2.5 2.0



Tahl~ ",. SUl'lmVlry of cRlcul;)t1nna of ion pate AS8oeht(Oofl and reflult1nR equilIbria \I.tth calc1te and gYf'9\1111.
lJ

Dldliolvcd Sped".

Sa~~l II pK Ca. 2+ Ng2+ Na J+ 1(1+ 50/- nco
3
l - CI'- "°3 ' - C0504

u tigsot N.504
1- 1(504

1- Canco31+ :<~ncor· Il.01l1" • u

----
~5r.)C I :Ib 8 14.05 1.8 19.1 0.8 27 .35 0.50 1.6 0.1

VSllC 1'1 8 8.27 2.02 18.35 0.11 19.07 0.47 1.6 0.1 5.7S 1. 78 o.H 0.3 0.3 e • 0.2l>415

) 0.8406 0.4433 0.4819 0.7948 0.7823 0.3991 0.7948 LOO 1.00 0.7948 0.7948 0.7948 0.7948 0.7948

l:S;:lC 11gb 8e 7.10 0.35 0.4 0 7. SS 0.2 d d

U5nC 1:9 8< S.l9 0.25 0.4 d 5.54 0.2 d d 1.91 0.10 • • • e • 0.14886

0.8861 0.5834 0·6il60 0.8644 0.8590 0.5582 0.8644 1.00 1.00 0.8590 0.8590 0.8590 0.8590 0.8590

US.3C 1:99b 8e 2.15 0.05 0.1 • 1.95 0.2 d

USE)C 1: 99 8e 1.84 0.04 0.1 • 1.63 0.2 d • 0.31 0.1 • • • • • 0.08479

'r 0.92J7 O. n08 0.7228 0.9146 0.9125 0.6996 0.9146 1.00 1.00 0.9125 0.9125 0.9125 0.9125 0.9125

SUlI'Glary of CtilcLlations af Free Ion Product
l

Sample (Cn2+) (sot) (Ca2+)(HC0
3

1-){(II1+)

Numher (:<2 1-2) (1-1 1-1) I-'
I-'

USE3C 1:1 2.1.10-5 164.0 0

USE3C 1:9 9.3'10-6 52.3

USE3C 1:99 1.3'10-6 25.9

Saturation 2.5'10- 5 97.11
------,

·Cor.('cntt'at1on. are in t"X 1-1 . The iterative procedure used herein 18 based on equatfona 2.4 and 2.S, and Oh the follow1n, conetent. (_ouree.:
Butler, 1964; Carrels and Chr16t, 1965; S1116n snd Martell. 1964; Stumm and 'Morgan, 1910, t.s.t\~, 1975) t

Ion: • Ca2+ Hl+ IIaH KH CoHCO/'" tigllCOJl+ HgOKl+ 50/- K<Xl31- NaSO/- '/.504
1
- Ill'"

• h. porlo""tor CA): 6 8 4 3 3 J 3 4 4 3 3 9

Ion:
".Y'l.i:

CoS04°
2.1l

MgS°4°
2.36

110504­
0.12

'/.50-

0.91
CaliCO 1+
1.26 3

!lallCO 1+
1.16 3

1-18001+
2.S8

bStud.lf}'C)t~l'h. c.u1\c.cC\tr.tlon••

C1att\ld Oft ~UU'UClflJttOIt of constant pH: upon dUution.

d:;ot duerlQlned .

•< 10 WI 1-1.

f liot• tnat 1.1 10n •••ocJAcioft 1. not ~on.1ckr.d for U5ElC 119, thie 801ut{olt would h.tve l7een expected to be aatu.l"&ted vtth re.pe~t to IYp."'.



Table AS. Ionic concentrations, pH and EC of water samples 8 collected from a runoff event at West Salt Creek on July
9-10, 1975.

EC -1meq 1

-1 Ca2+ M 2+ Na1+ K1+ b CO 2- HCO 1- Cl l - SO 2-
Section pH (jlmhos em )

. g Li1+ 3 3 4

GI0 7.7 1400 8.2 5.7 3.4 0.2 c 13.9 1.0 0.1

GlO 7.7 1300 7.4 4.2 3.1 0.2 c 12.1 0.8 0.9

GlOX 7.9 1300 3.0 4.9 6.7 0.2 c 11.4 ·1.1 0.9

G9 7.6 2100 15.2 5.1 7.0 0.3 c 3.6 0.5 20.3

G9 7.7 2000 8.7 5.2 9.1 0.2 c 8.4 1.8 13.0

G7 7.7 2800 14.1 8.4 11.4 0.3 c 13.1 0.9 18.8

G7 7.7 3400 29.2 6.9 10.0 0.3 c 6.6 1.2 37.5

G7 7.9 2700 26.1 7.4 3.6 0.3 c 2.4 0.6 34.4

G7 7.9 3500 25.9 10.2 9.8 0.3 c 3.4 1.0 43.2
f-J

G7 8.0 3200 27.0 9.6 5.6 0.3 3.9 0.6 34.9 f-Jc f-J

G8 8.1 8700 22.9 31. 6 65.0 0.5 0.01 c 4.7 3.1 106.2

G8 7.9 1900 B.4 5.3 4.8 0.3 c- 3.0 0.6 17.7

Gll 8.7 12000 18.8 48.8 93.0 0.4 0.02 0.5 7.0 3.4 158.8

GIl 8.1 8700 13.0 36.2 64.5 0.5 0.01 c 5.7 2.6 10LO

Gll 8.0 12000 17.9 56.2 98.1 0.8 0.02 c 6.1 3.3 158.8

GIl 8.7 12000 18.4 57.7 90.9 0.4 0.02 0.5 7.4 3.1 156.2

G8 seepd 7.9 15803 19.5 93.0 128.0 0.64 c 1l.28 6.88 225.0c

a 1- -1N0
3

< 0.01 meq 1 for all samples.

b 1+ . -1L1 concentrat10ns < 0.01 meq 1 are shown as blanks.

cNo determination.

d analyzed at the University of California at Davis, Water Quality Laboratory.The seep sample was


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


