
APPLICABILITY OF CANONICAL 

CORRELA liON IN HYDROLOGY 

by 

PADOONG TORRANIN 

November 1972 

58 



APPliCABILITY OF CANONICAL CORRELATION IN HYDROLOGY 

November 1972 

by 

Padoong Torranin* 

HYDROLOGY PAPERS 
COLORADO STATE UNIVERSITY 

FORT COLLINS, COLORADO 80521 

·Post-Doctoral Research Associate, Department of Civil Engineering, Colorado State University, Fort Collins, Colorado. 

No. 58 



CHAPTER 

II 

III 

IV 

v 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS . 

ABSTRACT. 

PREFACE . 

INTRODUCTION . 

1. 1 Appl ication of Mul~ivariate Analysis in Hydrology. 
1 . 2 Relevance of Canonical Correlation Analysis in Hydrologic Investigation. 
1.3 Objective of the Study . . . . . . . . . . ....... . 
1 .4 Selection of Sets of Dependent Variables for the Two Examples 

of Long-range Prediction . . . . . . . 

MATHEMATICAL TECHNIQUES USED IN THE ANALYSIS . 

2.1 Autocorrelation Analysis ..... . 
2.2 Model of Sequentially Dependent Time Series. 
2.3 Canonical Correlation Analysis 

ASS~IBLY AND PROPERTIES OF DATA . . 

3.1 Data for the Analysis of Precipitation Forecast. 
Precipitation . .. .. .. ... . . 
Sea surface temperature of the Pacific Ocean . 

3 . 2 Data for the Analysis of Snowmelt Runoff Forecast. 
Snowmelt runoff .... ...... . .. . . 
Method of computation of indices of snowmelt runoff. 
Fall and winter p recipitation index. 
Snow water equivalent index .. 

APPLICATION OF CANONICAL CORRELATION. 

4 .1 Results of Analyses of Historical Data 
Coastal precipitation forecast ... 
Snowmelt runoff forecast . . . . . . 

4.2 Examples of Forecast by Using Canonical Correlation Analysis 
Coastal precipitation forecast 
Snowmelt runoff forecast 

CONCLUSIONS . 

BIBLIOGRAPHY. 

APPENDIX A - Canonical Correlation Analysis 

APPENDIX B - Precipitation Stations Selected. 

APPENDIX C - List of Selected Symbols . . . . 

iii 

PAGE 

iv 

iv 

iv 

1 

1 
2 
3 

3 

5 

5 
5 
5 

9 

9 
9 

11 

12 
12. 
12 
15 
15 

17 

17 
17 
17 

18 
19 
ro 

23 

24 

25 

29 

30 



ACKNOWLEDGEMENTS 

The material in this paper is a portion of Ph.D. dissertation submitted by the writer to Colorado State 
University i n partial fulfillment of the requirements for the degree of Doctor of Philosophy. The research 
leading to the dissertation financially sponsored by the U.S. National Science Foundation under grant GK-11564 
(Large Continental Droughts) . This financial support and the graduate resear ch assistantship that made possible 
the writer's studies are gratefully acknowledged . 

The writer appreciates the suggestions, comments and the encouragement to conduct this research given by 
his major professor and advisor, Dr . Vujica Yevjevich, Professor of Civil Engineering. Special thanks are ex­
pressed to Dr. Mohammed M. Siddiqui , Professor in the Department of Mathematic and Statistics; his suggestions 
and guidance concerning the statistical part of the research are highly appreciated. 

ABSTRACT 

The pot ent ial for appl icat ion of canonical corre lation analysis to hydrologic problems is demonstrated by 
two problems i n long-range hydrologic prediction: (1) forecas t of monthly precipitation of three large areas 
of the West Coast of the United Stat es, and (2) forecas t of seasonal snowmelt r unoff for three gaging s tations 
in the Flathead River Basin in Montana. 

Canonical correl ation analysis is found to be eff ect ive in i nvestigat ing l inear corre lation between two or 
more three-dimensional hydrologic processes, in which the set of time series of each process are mutually cor­
related, i n addi t ion to a relatively high correlation between the pr ocesses themselves. The main advantages of 
U!ing this te~hnique concern the significance test i ng of the l inear correlat ion between the processes, the re­
duced effort 1n the correlation analysis, and particularly for the prediction problem as it concerns the con­
struct ion of a confidence region of the simultaneous predict ed values. Though not demonstrated in the exampl es, 
ca• .:mical correlation analysis can also be used for select ing significant data observation stations for use in 
t: ,e correlation analysis. 

A set of forecasts is made for each prediction problem by using the canonical correlation analysis of the 
historical data . Results of these forecasts indicate that t he precipitation predict ion i s not reliable, whi le 
the runoff due to seasonal snowmelt can be well predicted. 

PREFACE 

In hydrology, most realistic relationships in­
volve a large number of random variables, since a pro­
cess i n three or four dimensions must often be related 
to one or more processes in three or more dimensions. 
As a consequence , the mul t ivar iate distribut ions and 
analyses of set s of hydrologic random variables repre­
sent the best approach in deriving hydrologic rela­
tionshi ps of a probabilistic type. There are several 
types of mul tivariate analyses t hat may be suitab l e 
for deriving these relations. Currently, the techni­
que most used in hydrology is the multiple regression 
and correlation analysis, mainly for prediction pur­
poses. Many cases of application of principal compon­
ents analysis in treating multivariate hydrologic pro­
blems ore also available in the literature . Multivar­
iate fac t or analysis has been tried on several pro­
blems with a relatively limited success . k~en a set 
of mutually correlated variables must be related to 
another set of mutually dependent random variables, 
analysis by canonical correlation seems to r epresent 
the most suitable multivariate technique . 

The Ph.D. dissert ation by Padoong Torranin ex­
plores the feasibility of using canonical correlation 
analysis to establish relationships between two sets 
of random variables which are not only corr elated 
among t he sets, but also dependent within each set. 
This case occurs frequently in hydrology . Although 
the two examples selected for this study treat only 
prob l ems of t he prediction type, the potent i al appli­
cation of canonical correlation in hydrology trans­
cends the application for forecasting purposes. The 
results of the study show that a good potential exists 
for this technique to be applied in various areas of 
hydrology. 

The s tudy has been carried out under the r esearch 
project "Large Continental Droughts ," spon sored by the 
U. S. National Science Foundation, Grant No. GK-11564, 
at Colorado State University, Department of Civi l 

iv 

Engineering, Graduate and Resear ch Hydrology and Water 
Resources Program. One research aspect of this pro­
ject is an i nquiry into the predictability of large 
continental droughts . Because dr oughts are slowly 
evolving natural disasters, long range prediction in 
hydrology, say over several months or years, seems not 
to. be feasible except in t he case of snow and water 
already accumulat ed on the ground. Large continental 
droughts of long duration , given severi ty and large 
areal coverage fall int o the category of deterministi­
cally unpredictable hydrologic phenomena, except in 
exceptional cases of already accumulated snow, under­
ground and/or surface water in river basins . Appli­
cation of canonical correlation analysis in this study 
represent s an attempt not only to anal yze the pot en­
t ial of this technique, but also to obtain information 
on long-range hydrol ogic predict i on as i t is related 
to droughts. There is a need to throw more l ight on 
whether large droughts are a predictable or an unpre­
dictabl e phenomenon, in the classical sense of deter­
ministic hydrologic predictions . 

It is expected that this study will give an im­
petus to other trial s and a fair chance for the fur­
t her application of canonical correlation analysis in 
hydrology. This analytical method needs t o be tested 
in various hydrologic probl ems for which t he relation­
ships of mutually dependent sets of random variables 
ar e required. 

October 1972 

Vujica Yevjevich 
Professor-in-Char ge of 
Hydrology and Water 

Resources Program 
Department of Civi l 

Engineering 
Colorado Stat e University 
Fort Collins, Colorado 



CHAPTER I 

INTRODUCTION 

This chapter briefly explains different forms of 
multivariate analysis and their uses i n hydrology. 
Potential of applications of canonical correlation 
analysis in hydrology are reviewed. Objective of this 
study is described along with general approach to ac­
complish i t. 

1.1 Application of Multivariate Analysis i n Hydrology 

Multivariate analysis as a statis tical approach 
for the investigation of the relation wi thi n a set (or 
among several sets) of random variables is not a new 
development. In fact, one such method was originated 
in the early 1900s i n the form of principal components 
analysis by Karl Pearson. However, an attempt at more 
effective application of the multivariate anal ysis to 
hydrology was made by W. M. Snyder in 1962 (Synder 
(1962)). He singled out some properties of multi­
variate analysis which may be advantageously used in 
hydrology. Besides the favorable statistical prop­
erties associated with various forms of multivariate 
analysis, one very useful property is that they allow 
an investi gation of a hydrologic phenomenon simultan­
eous ly at many locations. Regional investigation of a 
hydrologic phenomenon, or finding relationship among 
hydrologic phenomena on a regional basis, can be made 
conveniently by the multivariate analysis approach. 

Most of multivariate analysis may be considered 
counterparts of univariate statistical methods common­
ly used in hydrology. The mean and variance of a sin­
gle random variable i n univariate analysis are re­
placed by a vector of means and a matrix of covari­
ances of the corresponding vector of random variables 
in multivari ate analysis. Besides the well used multi ­
ple correlation analysis , three other multivariate 
analyses are applied in hydrology with varying degrees 
of frequency and/or success. These include principal 
components analysis, fact or anal ysis , and canonical 
correlation analysis . Basi cally, each of these ana­
lyses involves a linear transformation of the original 
set or sets of random variables into new ones such 
that the transformed variables have certain required 
properties. 

In the principal components analysis the trans ­
formed variables, called the principal components, are 
mutually l i nearly uncorrelated. Each of these vari­
abl es has a maximized variance, arranged from highest 
to lowest. Compared to the number of original vari­
ables, fewer of the principal components explain a 
high percentage, say 90 to 95 percent, of the vari­
ances of original variables. 

Instead of maximizing the variance of each set of 
components, the canonical analysis linearly transforms 
the two sets of random variables, where the variables 
in each set may be mutually correlated, into the two 
sets of transformed variables, called canonical vari ­
ables, in such a way that pai"rwise linear correlations 
between certain pairs of the two sets of canonical 
variables are maximized. By those transformations, 
t he canonical variables of each set become mutually 
uncorrelated, while each of them becomes uncorrelated 
with all the canonical variables of other set except 

for the one variable with which it has a maximized 
correlation. 

The principal components and factor analysis are 
somewhat related because one may be considered as an 
approach to the problem i n the opposite direct.ion of 
the other. In order to avoid the problem of physical 
interpret ations of the derived principal component s , a 
factor analysis may be used. A small number of physi­
cal factors related to the set of random variables are 
proposed such that each random variable can be expres­
sed as a function of these factors . If the factors 
are selected arbitrarily from the physical properties 
of a problem, the factor analysis is usually consider­
ed as a subjective approach. However, the principal 
components analysis has been used in assisting with 
the identificat ion of factors in a method of factor 
analysis called Varimax, proposed by Kaiser (1958) . 
This method modifies the derived principal components 
into factors in such a way that each factor is uncor­
related with the others, and is highly related to only 
a few of the original random variables . Each of these 
factors expressed only some particular attribute of 
the set of original random variables . Therefore, they 
perform the function which the proposed subjective 
factors were set out to do, that is, to physically re­
present some joint properties of the origi nal set of 
random variables. 

Since the introduction of the multivariate ana­
lysis to hydrology most of the applications i nvolve 
the use of the principal components and factor ana­
lysis. The purpose of most of the applications was to 
use the analysis to arrive at a new set of random 
variables which has some required statistical pro­
perties suitable for further analysis . One such appli­
cation would be to find a new set of mutually uncor­
related random variables to be used as a set of i nde­
pendent variables i n a multiple correlation analysis 
(Snyder (1962), An.der son and Westl (1965) , Eiselstein 
(1967), Diaz, Sewell, and Shelton (1968), Marsden and 
Davis (1968), Veitch and Shepherd (1971)). Another 
application is in economizing the analysis concerned 
with a large number of random variables that are mu­
tually corr elated . The principal components or factor 
analysis are used to derive a smaller number of trans­
formed random variables which have a high percentage 
of t he variation of· the set of original random v·ari­
ables (Dawdy and Feth (1967), Nimmannit and. Morel­
Seytoux (1969)). Another interesting field of appli­
cation of principal components is to make use of some 
pertinent statistical properties of the principal com­
ponents analysis in generating series of a hydrologic 
process for such a purpose like investigat ing droughts 
on an areal basis. 

Although canonical correl ation analysis is pot­
ent ially as useful as the other multivari ate analysis , 
so far this type of analysis has been applied infre­
quently in hydrology. Its applications i n other fields 
such as psychology , economics, and education are no 
l ess than the appl ications of other multivariate ana­
lysis . Some of the applications are given as examples 
in Kendall (1957) in the form of canonical correlation 
analysis between reading tests and arithematic tests 



of school children, between the prices of beef steers 
anJ hogs and me:lt consumpt ion for the United States, 
bct1veen qtlalitics of Canadian liard Red Spring wheat 
and th~ flour made from it, etc. In hydrology, Rice 
(1967) proposed the use of canonical anal ysis in esti­
mating J'arameters of storm hydrographs, Nimmannit and 
~orel-Seytoux (1969) used this analysis in a study of 
the effects of 1veather modification on runoff on a re ­
gional basis. 

Canonical correlation analysis often results in 
high l inear correlation between pairs of canonical 
variables 1vhich are linear transformations of the ori­
gina l variables. Therefore, a qualitative description 
of the t1•o types of random variables can be reliably 
made. In hydrology, however, the numerical values of 
the original variables are required , and not the 
values of canonical variables . Since this information 
ls not readily given by the canonical analysis, this 
may be one reason for its infrequent use in hydrology. 

1.1 Re levance of Canonical Correlation Analysis in 
Hydrologic Investigation 

~~st of the processes involved in hydrologic in­
vestigations can be considered to be three-dimensional. 
They vary along x and y coordinates as we 11 as 
along a t ime axis . For example, the sea surface tem­
perature of the Pacific Ocean varies with latitude and 
longitude and it varies with time. The same is true 
for the monthly precipitation of the U.S. West Coast. 
When corre lation analysis is r.~ade between a pair of 
the three-dimensional hydrologic processes, each pro­
cess is usually divided into many time series at sub­
areas, chen the correlation analysis is applied be­
tween the two sets of time series of the processes. 

A set of hydrologic variables observed at points 
in an area, or at nearby areas which are hydrologi­
cally similar, are usually related . Examples of such 
correlated sets are snow water equivalent observed at 
points in a r~ver basin, runoffs from nearby basins, 
precipication of adjacent areas, etc . Therefore, when 
a set of hydrologic variables affects one variable in 
another se t, it is very likely that it also affects 
other variables in that set as well. Hence, the cor­
relation analysis between two hydrologic processes 
usually becomes the correlation analysis between two 
set s of variables which are mutually correlated in 
each sec as well as between the sets. 

One approach to this problem of correlation ana­
lysis is to use the multiple correlation analysis be­
tween each individual variable in the set of dependent 
variables and all variables in the set of independent 
variables . This approach has two drawbacks: the num­
ber of analyses used is as many as the number of the 
dependent variables; and the sampling distribution of 
the correlation coefficient generally used for the 
significance testing of the coefficient cannot be used 
due to the mut ual correlation of the set of independ­
ent variables. 

Another approach which can be used effectively 
for this problem is canonical correlat ion analysis, 
especia lly when independent variables for each of the 
dependent variables are more or less the same. For 
example, snowmelt runoffs of watersheds which are 
hydrologically similar and close together may depend 
on the same set of indices representing inflow of 
~atcr into the basins, wetness of the basins, etc. In 
this case, the corre lation analvsis between the two 
~cts of variabl es can be made with only one applica­
tion of the canonical correlation analysis . The test 
,,f s i ~n.i ficance of the correlation coefficient between 
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the two ~ets of variables is not affected by the mu­
tual correlation of each set of variables . 

As concerns the economic aspect of the canonical 
correlation analysis in data observation of the hydro­
logic variables used in the analysis, the technique 
can be used to select only small number of independent 
variables which make significant contribut ion to the 
correlation between the two sets of variables. As des­
cribed previously, the hydrologic variables of the set 
of i ndependent variables usually used in the analysis 
are mutually correlated. If all the variables are 
used , some of them may be considered as redundant vari­
ables 1~hich cause unnecessary reduct ion in the degree 
of freedom of the correlation analysis. The contri­
bution of each independent variable may be judged from 
the magnitude of the coefficient of the linear combi­
nation of that variabl e (an element of the matrix Yi 
of Eq. 2. 25) which is used for computing the canoni­
cal variables which are highly significantly corre­
lated ~Yith the canonical variable of the set of depen­
dent variables. If the magnitude of the coefficient 
is very small compared with those of the other inde­
pendent variables, that variable may be omitted from 
the analysis . This usually reduces the number of the 
independent variables significantly, so expense of 
maintaining observation stations which make only small 
contributions to the analysis can be reduced, or real­
locat ed to i mprove the quali ty of the data from the 
more significant s tations . 

Since a correlation matrix of the set of depend­
ent variables is used in the canonical correlation 
analysis, the values of the variables cooputed from 
the set of the independent variables by using the ca­
nonical correlation analysis relate among themselves 
in such a manner as to preserve the characteristic of 
their correlations as observed in the historical data . 

Because of the maximized correlation betwe'en the 
first pair of the comput ed canonical variables, the 
linear relationship between the pair is very reliable. 
It has been shown by Rice (1969) t hat the values of 
the set of dependent variables computed by using all 
possible pairs of the canonical variables (wich a 
transformation technique which is described later) are 
mathematically the same as the results of a multiple 
correlation analysis for each of the dependent vari­
ables. Therefore , with a much reduced effort of ana­
lysis the canonical correlation analysis gives results 
that have the same accuracy as those of multiple cor­
relation analysis. 

One outstanding advantage of using canonical 
correlation anal ysis is in the construction of a con­
fidence region for the computed dependent variables. 
lfuen variables within a set of hydrologic variables 
are computed simultaneously, their variations around 
the computed values to be expected are also very use­
ful information. In the case where these variables 
are mutually correlated, the joint confidence region 
of all the variables can be conveniently constructed 
by using canonical correlation analysis. 

Therefore, the correlat ion analysis between two 
or more hydrologic processes can be effectively made 
by using canonical corre l ation analysis. In this pro­
cedure the set of dependent variables consists of the 
variables which are to be computed, while the set of 
independent variables consists of the variables which 
affect the variations of the variables in the former 
set (which may be considered as the causes of the de­
pendent variables). Usually the set of dependent vari­
abl es is from the same hydrologic process, while the 
set of independent variables may be formed from many 



processes selected in such a way that they affect the 
dependent variables to a high degree. 

1.3 Objective of the Study 

The main objective of this study is to demon­
strate the potential of the application of the multi­
variate canonical correlation analysis to hydrologic 
problems. The field of long-range hydrologic predic­
tion is used as an example of the application by ap­
plying the analysis to two prediction problems: the 
forecast of monthly precipitation of three coastal 
areas of the United States as shown in Figure 1, and 
the forecast of seasonal runoff from snowmelt measured 
at three river gaging stations of river basins in Mon­
tana as shown in Figure 2. As far as the accuracy of 
the l ong-range forecast is concerned , the selected 
examples may be considered as extreme cases. For most 
of the river basins, the forecast of snowmelt runoff 
can be made with sufficient accuracy as required for 
the purpose of water resources planning in the basins. 
On the other hand, reliability of the long-range pre­
cipitation forecast at present is sti ll questionable, 
despite intensive study and research in this field. 
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Fig. 1. Precipitation and sea surface temperature 
areas. 

1.4 Selection of Sets of Dependent Variables for the 
Two Examples of Long-range Prediction 

Before applying canonical correlation analysis 
to the two examples, the variables to be used in each 
set of variables are selected in such a way that the 
two sets of variables are significantly correlated. 
The selections are based on the physical background of 
each problem. The procedure for each example is as 
follows. 

For the long-range precipitation forecast, a 
technique of lag cross correlation is used to investi­
gate a linear correlation between the coastal precipi­
tation and some ot its prior causative factors. These 
factor s are the sea surface temperature of the nearby 
Pacific Ocean and other processes as explained in 
Torranin (1972). His investigation leads to the con­
clusion that the significant lag cross correlation 
exists only between the summer coastal precipitation 
and the sea surface temperature of some of the 29 
areas of the nearby Pacific Ocean, shown in Figure 1. 
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This cross correlation is relatively small, so that 
the numerical forecast of the coastal precipitation by 
the lag cross correlation with the sea surface temper­
ature as the forecasting variables is of low reli­
ability . However, this example of forecast of monthly 
coastal precipitation is used in this investigation 
only for the purpose of demonstrating the feasibility 
of technique of canonical correlation analysis for 
hydrologic predictions . . 
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0 .,., 
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Fig. 2. The Flathead River Basin. 

Methods used in the seasonal snowmelt runoff 
forecast· arc summarized in the publication "Snow Hy­
drology" prepared by the U.S. Army Corps of Engineers . 
One method which is usually used is the index method, 
in which a fixed relationship is assumed between the 
volume of runoff and indices representing its causa­
tive factors; no attempt is made to evaluate the quan­
titative contribution of each causative factor. The 
fixed relationship is obtained by the use of a stati­
stical technique, mostly by the multiple correlation 
analysis, based on the historical records available . 

Factors which affect the seasonal snowmelt run­
off are broadl y classified as supply and loss. The 
supply for a given season is comprised mainly of pre­
cipitation. The major loss is due to evaporation and 
evapotranspiration from the basin . Other losses which 
may be significant in a particular river basin are 
those due to deep percolation and retention as soil 
moisture. 



The indices usually used in forecasts of sea­
sonal snowmelt runoff are: the winter precipitation 
index and/or the snow water equivalent index, which 
represent the major supply to the basin; the evapo­
transpiration index, which represents the maj or loss, 
and the antecedent moisture index which represents the 
soil moisture condition of the basin. In a basin where 
the significant amount of precipitation occurs during 
the snowmelt period, an additional index of the 
spring-summer precipitation may be included . The fore­
cast covers the period April through July. At the 
forecast date, the spring precipitation index and the 
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evapotranspiration index are not known . If these two 
indices are used in the forecast, their values must be 
first estimated, usual ly by using either the means or 
some percentile values. In this study, only those in­
dices that are available by the forecast date are 
used. It will be shown that the accuracy of results 
obtained by using this technique of forecast is still 
acceptable . The indices used i n this study include; 
the fall precipit ation index, the winter precipitation 
index, and the snow water equivalent index as of 
April 1. 



Chapter II 

MATHEMATICAL TECHNIQUES USED IN THE ANALYSIS 

This chapter summarizes the mathematical tech­
niques used in the study. The summary is intended to 
be concise and convenient as a rapid referepce for the 
presentations given in this study. For more detailed 
information about the techniques used, the reader is 
referred to the appropriate references given in the 
bibliography at the end of this paper. 

2.1 Autocorrelation Analysis 

Autocorrelation is used in this study as the meth­
od for investigating dependence among the time series. 
The population autocorrelation coefficient of a contin­
uous time series Xt is defined as 

2.1 

in which Cov (Xt . Xt+~) is the covariance between 
Xt and Xt+t , Var Xt is the variance of ~ , the 
subscripts t and t + t indicate the times at which 
X is taken and Pk is the lag time. For discrete se­
ries Xi the value of PT is estimated from a sample 
of size N and the discrete lags k = 1, 2, ... , by 
using the open series approach by 

or by 

to ·t ·r 

Cov (Xi ' Xi+k) 
rk " -----=--~~-....-..::­

(Var X
1
. · Var X. ) 1/ 2 

l+k 

2.2 

2.3 

For serially uncorrelated time series, the sam­
pling distribution of rk has an expected value Efk 
and a variance Var rk given as 

Erk • -1/(N-k+l) , 2.4 

and 
3 2 (N-k+l) - 3(N-k+l) + 4 Var rk • 2 2 (N-k+l) ( (N-k+l) - 1] 

2.5 

For a value of N larger than 30, the sampling 
distribution of rk may be approximated by a normal 
distribution. The 95 percent confidence limits of the 
serially uncorrelated time series can be computed by 

2 .6 

Therefore, the dependence in sequence of any time 
series can be investigated by comparing the sample cor­
relogram, given as the plot of rk versus k of the 
discrete series with the expected correlogram'of seri­
ally uncorrelated time series. A time series may be 
considered to be serially uncorrelated if its sample 
correlogram lies within the confidence limits, and/or 
if only a small percentage of rk values defined by 
the confidence limit probability lies outside these 
limits. 
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2.2 Model of Sequentially Dependent Time Series 

The dependent model of time series usually used 
i n hydrologic investigation, especially where the phe­
nomenon under investigation has a storage or carry­
over effect , are approximately of the autoregressive 
or Markov linear type model. The first order linear 
autoregressive model, often as the first or rough ap­
proximation, is 

2.7 

in which Oi is the sequentially independent Stochas­
tic component, and p1 is the autoregressive coeffi­
cient estimated by the sample first serial correlation 
coefficient r 1 . 

The expected correlogram of the first-order 
Markov model is 

2.8 

A method used in this study for testing the good­
ness of fit of the first order linear Markov model is 
by the ''whitening" procedure. The stochastic compo­
nent oi of the fitted model is computed from the 
available sample, and if the 6-series is not signifi­
cantly different from a sequentially independent se­
ries, the model of Eq . 2.7 and 2.8 is accepted. The 
investigation of sequential independence may be also 
made by using the correlogram technique as described 
in the previous section. 

2.3 Canonical Correlation Analysis 

This analysis is usually used in the correlation 
analysis between two sets of random variables . It 
searches for a linear combination of each set of vari­
ables, such that the correlation between a linear com­
bination, called the canonical variable, of the first 
set and the linear combination of the second set is 
maximized. Then a second pair of canonical variables, 
one from each set, is sought in such a way that the 
correlation between them is the maximum of all corre­
lation between the linear combinations, uncorrelated 
with the first pair of canonical variables. The number 
of pairs of canonical variables is equal to the mini­
mum of the number of original random variables of the 
two sets . Hopefully, but not necessarily, the first 
pair of canonical variables will have very high corre­
lation (say 0.90). If this is the case, only the 
first pair of canonical variables need be used for the 
description of the correlation between the two origi­
nal sets of random variables. 

The analysis is very effective in investigating 
whether there is any linear correlation between the 
two sets of variables, because it maximizes the corre­
lation between linear combinations of variables in 
each set. In using this analysis, generally, each set 
of variables as a whole, not each individual member of 
the set, is of interest to an investigator. However, 
the analysis becomes more meaningful if the canonical 
variables have some physical significance. As an ex­
ample, if the coefficients of the linear combination 
of each set are all positive, it can be concluded that 
a weighted averages of the two sets of random vari­
abl es are highly correlated . Details of this analysis 



can be found in statistical texts such as Anderson 
(1958) and Kendall (1957) , and a summary of the canon­
ical analysis as given in Appendix A. 

Canonical analysis has three particular proper­
ties which are of int erest wi th respect to application 
to forecasting problems. First , since the correlation 
between the first pair of canonical variables is the 
maximum, the maximum contribution of the set of inde­
pendent variables used in the forecas t can be· esti­
mated. Also, the linear regression equation derived 
for the canonical variables can be used to forecast 
the canonical variables of the dependent variables 
with greater reliability . Second, by using this analy­
sis the forecast values have the same correlation 
among themselves as those of their historical record. 
Third, since pairs of the canonical variables usually 
are uncorrelated, the confidence region of the fore­
cast canonical variables, as well as the forecast vari­
ables themselves, is easy to construct and is more re­
liable than using the othe~ statistical multivariate 
techniques. 

Let xCl) be a column vector of dependent vari­
ables with p1 components, such as the precipitation 
at the three CQastal areas in the first problem stud­
ied . Let x(2J be a column vector of independent 
va·riables with P2 components, such as the series of 
causat ive factors of sea temperature in this problem. 
For the sake of convenience in description, let P1~2· 

and 

(1) 

Steps used in the canonical analysis between 
x(2J are summarized as follows: 

First the covariance matrix of the matrix X, 

x(l) 

~(1)] x(2) 

X ,. X (2) x(pl) 
x(p

1
+1) 

x (pl+p2 

is computed as 

•u •,:: ... OJrl 0t(pl•l) • • · •tcr1·Pzl 

0 21 022 

I . 
... olpl 02Cr1•tl .. · 02CP1•p2l 

• pi I Gpl2 ... 0 
PIP I 

.; 
PI (pl•l) ... cipl(Pt'Pzl 

: . . 

xCl) 

2.9 

0(P1•p2)1 
0(r1•P2)2 ... 0(P1'PzlP1 

0 (p1•r2HP1•1) ' .. ° Cp1•P2Hr1•P2l 

2.10 

in which oii is the variance of the i-th variable, 
x(i) of the matrix X of Eq . 2.9, given by 

1 N - 2 • - L (x (i) - x (i)) 
N i=l i 

2.11 

with xi(i) the ith value of the series of N values 
of x(i) , 

1 N 
x(i) .. - t' x, Ci) 

N t~l " 

and aij, the covariance 
the matr1x of Eq. 2.9. 

between 

2.12 

x(i) and x(j) of 

6 

1 
N 

0 .. =- r (xi (i) - x(i)) (xi (j) - xo)) 2.13 lJ N i=l· 

with 

o .. 
1) • oji 2.14 

(2) The partition of the 
as follows: 

covariance matrix I is made 

I ~11 !12] 
r21 r22 

2.15 

011 012 0 
lpl 

Ln = 
. . 

021 022 0 
2pl 

2.16 

0 
pll 

0 pl2' .. 0 
plp2 

0 
l (pl+l) 01 (pl+l) ol(pl+p2) 

Il2 = 02(pl+l) 02(pl+2) 0 2 (pl +p2) 

opl (pl+l) 
c 
pl (pl +2) 

a 
pl (pl+p2) 

2.17 

t21 
·T 

.. !:12 2.18 

in which 
·r 
!:12 is the transpose of t l2 with 

2 .19 

(3) The canonical correlations are computed by solving 
the system of equations: 

0 . 

This system of equations is solved for the first 
largest roots as 

2.20 

where Ai is the ith canonical correlation coef­
ficient, or the linear correl ation coefficient between 
the ith pair of canonical variables . 



(4) Let ai and yi be the column vector of coef­
ficients for the ith pair of canonical variables which 
corresponds to the canonical correlation coefficient 
Ai · The column vectors ai and Yi are obtained by 
the solution of the fol l owing system of equations: 

. J ~ l t l2 ai 

-\t22 yi 

0 2.21 

subjected to the conditi ons, 

2.22 

2.23 

(5) The ith pair of canonical variables are computed 
by 

u. T X (1) 2.24 (l. 
l. l. 

and 

v. T X (2) 2.25 l. yi 

in which Ui and Vi represent the ith canonical 
variable of the set of dependent and independent vari­
ables , respectively. 

The derivations which lead to these steps are de­
scribed in Appendix A. 

If X is multivariate normally distributed, then 
Ui and Vt of Eqs. 2.24 and 2.25 are also normally 
dl.stributed. Since the linear correlation between Uj 
and V j , for i = j, is maximized, the values of V j 
computed from the observed values of the group of inde­
pendent variables, x(2), by using Eq.2.25 can be used 
for the forecast of Ui by the linear regression equa­
tion between Ui and Vj. The use of the linear re­
gression equation becomes now more reliable because of 
the maximized correlation thus obtained. 

Let Ui be a forecast value of Ui from the li~­
ear regression equation between Ui and Vi, and ei 
be the variance of a single forecast of Ui for the 
value of Vi used, i.e. the square of the error. 

Therefore, for each observed value of 
r 
vl 

v • v2 2.26 

v p, 
L 

A 

the forecast value u 

ul 

u • u2 2.27 

u 
pl 
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is made with the variance of a single forecast E, 

E • 2.28 

Equations 2 . 26 , 2.27 and 2. 28 are equivalent to 
the following statements: 

u 2.29 

is multivariate normally distributed with a mean ma­
trix U, 

2.30 
A 

u2tv2 u • 

u jv 
pl pl 

and with a covariance matrix E, 

2 
el 0 0 0 

0 2 0 0 E e2 2.31 

0 0 0 • •. e 2 
pl 

in which the symbol uilvi means the value of Ui 
given Vi. Equation 2.31 is realistic because Ui 
and Vj are uncorrelated for i ~ j. 

These properties of the canonical analysi s make 
possible the construction of a joint confidence region 
for the forecast value of U, as well as for t he de­
pendent variables themselves. 

From Eq. 2.24, 

2.32 

in which 

2.33 

Therefore, 

2.34 

in which is the inverse of the matrix T 
a . 



Equation 2.34 can be · ~sed to 
canonical variable, U, to 
variables. If 

transform the 
the original 

forecast 
dependent 

U ~ N[U, E] , 2 .35 

the symbol -means "distributed as," and N[U, E) means 
"multivariate normal distribution with a mean vector 
U and a covariance matrix E." Then, the quadractic 
form Q(U), 

2.36 

is distributed as the chi-square distribution with p
1 degree of freedom. The proof of Eq. 2.36 is shown in 

Appendix A. 

Equation 2.36 can be used to construct a confi­
dence region for the forecast value U, which is a 
spheriod in Pl dimensional space . 

Also, since U N[U, E], it is shown in Anderson 
(1958, p. 19) that 

or 

. X(l) - N[U*, E*] 

Therefore, the quadratic form Q*(X) , 

-1 T 
T Ef (a ) } ] , 

2.37 

T 
Q*(X) = (X(l) - U*) E*-l(X(l) - U*) , 2.38 

is distributed as the chi-square distribution with p1 degree of freedom . 

Equation 2.38 can be used to construct a confi­
dence region for the forecast value of the original 
dependent variables, x(l) , which are transformed back 
from the forecasted canoni cal variables U. 

For the case that X(l) has a multivariate norm· 
al distribution, Anderson (1958) presented a joint 

8 

probability distribution of the square of the Pl ca­
nonical correlation coefficients when the population 
values are ~ero (Eq. A-31 in Appendix A). The marginal 
cumulative distribution of the square of the ith sam­
ple canonical correlation coefficient is derived from 
the joint probability distribution, as shown in Appen­
dix A, for i = 1, 2 and 3. The marginal cumulative 
distributions for p1 = 3, N = 63, P2 = 13, 14, 15 
and for P2 = 3, and N ,. 30 are shown in Fig. 3., a 
to d, respectively. These curves can be used for 
testing the significance of the computed sample canon­
ical correlation coefficient s. 

The computer routine BMDX75M of the Biomedical 
Computer Program is used in this study for the canon­
ical correlation analysis; detailed explanations are 
given in the programs manual (Dixon, 1970). 
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Sampling distribution of the square of canon­
ical correlation coefficients , R~ , with 
(1) First canonical correlation coefficient; 
(2) Second canonical correlation coefficient; 
(3) Third canonical correlation coefficient 



CHAPTER III 

ASSE~ffiLY AND PROPERTIES OF DATA 

This chapter treats in detail the data used in 
this study, and particul arly concerning their source, 
length of record, comput ation, representativeness, and 
some of thei r physical and statistical properties. 

Monthly time series of variables used in this 
study are mostly of the periodic-stochastic type. The 
periodic component is the result of astronomic cycles. 
The stochastic component, the occurrence of which is 
governed by the laws of chance, results from many ran. 
dom processes in natur e, especially the atmospheric 
random processes. The monthly series of these pro­
cesses, therefore, are not stationary; their proper­
ties change from month t o month. According to Roesner 
and Yevjevich (1966), t he values of each of the 12 
calendar months can be considered as those coming from 
different populations, each with its population mean, 
Ur , and its population standard deviation, or, and 
with T varying from 1 to 12 representing January 
through December . Second-order stationary time series 
means that the mean and covariance of the series do 
not vary with time and approach their population 
values with a probability unity when time goes to i n­
finity . The second-order stationary components of 
these monthly series can be computed from values of 
the original non-stationary time series by 

c = (X 
p,t p,T 3.1 

in which T"' 1, 2 , ... , 12; p • 1, 2, ... , N, X 
is the value of the original series for the monthp,~ 
of the year p, N is t he number of years of data, and 
mr and sr are the sample estimates of Ut and or, 
respectively. The values of mT and sT are esti­
mated from a sample by 

N 
m = ..... 

T N L 
p:l 

and 

1 [ N N L (Xp T 
p=l • 

X p,T 

m ) 2 
T ]

1/2 

For a small sample size N, a better, unbiased 
mate of Or can be computed by replacing 1/N 
3.3 by 1/ (N-1) .. This Ep ,r series may also be 
ed as a standard~zed ser~es. 

3.2 

3.3 

esti­
in Eq. 
regard-

The second-order stationary monthly series as 
computed by Eq. 3.1 may be a sequential l y time depend­
ent or time i ndependent series, which results from 
characteristics of processes producing each series. 
By fitting a proper sequentially dependent model to 
' p T - series as described in Chapter II, a sequen­
tlally independent time series 6p T can be comput ed 
from the c - series. ' p,T 

In this study t he following notation for the 
different time series is used: Xp rC · ) is the ori­
ginal series , which in most cases is the non­
stationary time series because of periodicity in para-
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meters, with the dot in the parenthesis denoting the 
kind of data (for example, Xp T(P) is the value of 
the original series of precipitation for the month r 
of the year p) , c rC·) represents the second-order 
stationary series a¥ier periodicities are removed in 
u and o, and 6n T the series of residuals of the 
tp rC ·) after fitting a sequentially dependent model, 
w1ih 6p,T approximately an independent in sequence 
second-order stationary random variable. 

3.1 Data for the Analysis of Precipitation Forecast 

Precipitation. The West Coast region of the 
United States is divided into three areas as shown in 
Fig. 4. These areas, as proposed by Klein (1964) , are 
topographically and meteorologically nearly homogene­
ous. The criter ion used for data consistency of a pre­
cipitation station is that the changes of station lo­
cation during the period of obser vation are less than 
one mile in the horizontal direction and less than 100 
feet in elevation. Data of consistent monthly preci­
pitation of 83 stat ions, uniformly distributed over 
the three coastal areas (17, 39, and 27 stations for 
coastal area 1 , 2, and 3, respectively) are selected 
from "Climatological Data" published by the Weather 
Bureau, U. S. Department of Commerce. The locations 
of the selected stations are shown in Fig. 4 by dots. 
Their names and coordinates are given in Appendix B. 
The length of data is from January 1948 through Sept­
ember 1971. 
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Fig. 4. U.S. coastal precipitation stations , and data 
points of sea surface temperature, used in 
this study for precipitation forecast. 

A representative time series of monthly preci­
pitation for each area is ta.ken as a simple average of 
the monthly values of precipitation of all stations in 
the area. These periodic-stochastic time series, 
X (P), for the three areas are shown in Fig. Sa. p,T 

The parameter~ mT and sT for T: 1, 2, ... ,12, 
are computed by us1ng Eq. 3.2 and 3.3, respectively. 
These values are shown in Fig. Sb, together with the 
coefficient of variation srlmt for each of the three 
areas . The twelve values of sr/mr for each of the 
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Fig. 5. Coastal precipitation data. 

three areas are not statistically significantly dif­
ferent from a constant. The mean annual precipitations 
are 66.9, 39.8, and 15.0 inches for areas number 1, 2 , 
and 3, respectively. 

The second-order stationary time series , Ep T(P), 
for t he three areas are computed by using Eq. 3.1, and 
are shown in Fig. Sc. The correlograms of Ep T(P) 
series are shown in Fig . Sd, which indicate that all 
three t p,1 CP) s~ries are practically independent i n 
sequence t1me ser1es . 

The t p T(P) series for area 1 is serially un­
correlated, and is s tandard normally distributed. For 
areas 2 and 3, t p T(P) series are also serially un­
correlated , but are lognormally distributed wi th three 
parameters . In other words, loge[t p,t(P) + 1.710] of 
area 2 is normally distributed Wlth mean 0.343 and 
standard deviation 0.699. Similarly, loge[t p T(P) + 
1.288] of area 3 is normally distributed with' mean 
-.040 and standard deviation 0.811. 

The t p T(P) - components are fitted by a normal 
and a lognormal probability distribution with three 
parameters, and are tested for the goodness of fit by 
a chi -square tes t using t en equal probability classes. 
The results are shown i n Table 1. 
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The standard normal transform of Ep T(P) 
area 2, the e ' p , t (P) series, is computed by 

of 

t ' (P) = {l og [t (P) + 1.710) - 0.343}/0.699. p,T 0 p,T 

3.4 



TAot.E 1 

FITIING PROBABILITY FUNCTIONS TO PRECIPITATION DATA 

Area normal 

Nwnber 
l .9slcr Result Mean Std Dev 

I 6 .39 15.5 Accept o.o 1.0 

2 50.45 15.5 Reject 0.0 1.0 

3 110.1 5.5 Reject 0.0 1.0 

For area 3, the t: I (P) 
p,T 

is computed iby 

t: ' (P) p,T 
{log [ t: (P) + 1.288] + 0.040}/0.811 e p,'t 

3.5 

For area 1, the t: I (P) 
p,'t 

is the same as t: (P). p,T 

Sea surface temperature of the Pacific Ocean. 
Variations of sea surface temperature depend on many 
factors such as insolation or exposure to the sun, 
evaporation from the sea, convective transfer of heat, 
mixing of deep and sur face water, transport by cur­
rents, upwelling (the r i sing of water toward the sur­
face from subsurface layers), and convergence and di­
vergence of sea water. The exposure to the sun de­
pends on the cloudiness of the atmosphere. Evapora­
tion is controlled by t he vapor pressure gradient of 
the layer of air near t he sea surface and by wind ve­
locities. The convective transfer of heat depends on 
the difference in the sea and air temperatures and on 
wind velocity. Deviations of sea surface temperature 
from the means are the indicators of heat surplus or 
deficit of the surface layer of the sea. They are 
strongly related to the mix-layer depths , e.g., the 
depth of relatively constant temperature extending 
from surface to the top of the thermocline. This is 
the reason for the relative persistence of large-scale 
deviations through winter, during which the mixed­
layer depth is much greater than during the other sea­
son. According to Laevastu and Hubert (1970), the sea 
surface temperature deviations are relatively persis­
tent through any given wlnter or summer season, but 
can change rapidly in spring and fall. The deviations 
are of the order of 1.5° to 2.5° C with an extreme of 
4.5° C observed during late summer. 

Because l ong records of data are not available, 
the areal coverage of the sea surface temperature of 
the Pacific Ocean, used in this study, is limited to 
the area east of 175° W longitude, between 20° N to 
56° N latitude, as shown in Fig. 4. Two sources of 
data are used. The monthly data for the period Jan­
uary 1949 through December 1962 was obtained from the 
National Center for Atmospheric Research (NCAR) in 
Boulder, Colorado. This set of data was originally 
prepared by Dr. Sette's group at the Bureau of Com­
mercial Fisheries from records of sea surface tempera­
ture of ships operating in the area. More than t wo 
million observations were used , and an intensive edit­
i ng procedure was applied to data. The procedure is 
explained in Circular 258 of the Bureau of Commercial 
Fisheries. The data are finally reduced to values at 
grid points of the two degree square latitude and 
longitude over the area. However , the data obtained 
from NCAR are at the grid points of a rectangular ar­
ray. Formulas for computing the latitude and longi­
tude of the grid points of the array were given. 

lognormal 

l 2 
.9Sx cr Result Lower Bonnd Mean Std Dev 

52.0 14.1 Reject -2.579 .846 .532 

13.8 14.1 Accept -1.710 .343 .699 

10.5 14.1 Accept -1.288 -.040 .811 
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The sea sur face temperature data, in degrees 
·centigrade at gr id points of two degrees latitude by 
five degrees longitude, are computed from the data at 
the grid points of rectangular array by simple inter­
polation. The locations of the 2° x 5° grid points 
are shown as crosses in Fig. 4. The time series of 
sea surface temperature for the period from January 
1949 through December 1962 at these grid points are 
used as basic data in this study. 

A second period of data from January 1963 through 
October 1971 was obtained from the monthly publication 
"Fishing Information" of the Fishery-Oceanography 
Center, NOAA, United States Department of Commerce. 
The monthly values, in degrees Fahrenheit, at the same 
2° x 5° grid points as used in the first period of 
data are read from the publication. 

These two sources of data provide the basic sur­
face temperature data for the period January 1949 
through October 1971. 

The sur face of the Pacific Ocean under investi­
gation is divided into 28 grid areas that are 10 de­
grees longitude by 6 degrees latitude, and one t hat is 
10 degrees longitude by 4 degrees latitude, as shown 
in Fig. 6. A representative value for a particular 
grid area is computed for each month from all the data 
points in the area. Each datum point is considered to 
be representative of the area of a rectangle having 
sides at distances halfway between two data points. 
As shown in Fig. 6, the value at datum point 12 re­
presents the values within the dashed area. 

The representative values of temperature for each 
of the 28 grid areas are computed. Using area number 
17 as an example, the representative value is computed 
as 

X (T) = l [l(x1 (T)+X3 (T)+X6 (T)+X8 (T))+ 
p,t 6 4 p,T p, T p,'t p,'t 

+ lcx2 (T)+X4 (T)+XS (T)+X7 (T)+X9 (T) + 
2 p,T p,'t p ,T p ,T p , 't 

+ (XlO (T)) + (Xll (T)+Xl2 (T))) 3.6 
p,< p,T p , t 

Similarly, for area number 2 this value is 

X (T) = ~ [~Xa (T)+Xc (T)+Xe (T)+Xg (T)) + 
p, 't 4 4 p,T p,T p,T p,T 

+ !{xb (T) +Xd (T)+Xf (T)+Xh (T)) + 
2 p,T p,t p,'t p,t 

+Xi (T)] 3. 7 
p,T 
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Fig . 6. Sea surface temperature areas used i n this 
study, showing points for defining the for­
mula for the computation of a representative 
value of the temperature of an area. 

where xi T(T) is the temperature for the month t of 
the year 'p at the grid point j. 

The values of mt and sT are computed for all 
29 areas by using Eqs. 3. 2 and 3.3, whi~h are shown in 
Fig. 7, together with t he coefficients of variation, 
s , /m, as they change along T. Note that the areas 
shown in each row in the figure are at the same lati­
tude. The range of vari ation of the twelve monthly 
mean temperatures is as low as 4° C at the low lati­
tudes , and this range increases with latitude to be­
come as high as s• C for areas of high l atitudes . The 
standar d deviations are smal l compared to the means, 
resulting in the low and relatively constant values of 
S/IAT . 

Correl ograms of the € T(T) - series, computed 
by Eq. 3.1 for each of the 2~'areas, are shown i n Fig. 
Sa, again the areas i n each row are at the same lati­
tude. These correlograms show that the €p , - series 
of all 29 areas are highly dependent i n sequence. The 
areas at low lati tudes have higher autocorrelation co­
efficients and longer l ag t imes than the areas at high 
latitudes. Also, the areas closer to t he coast have 
somewhat longer "memory" than the areas farther from 
the coast . 

The first-order Mar kov model is f itted to the 
€p T(T) - series, and t he series of the residuals of 
th~ model as the 6P T(T) series are computed . Cor­
relograms of the o' , (T) - series are shown in Fig. 
Sb. They indicate tgese series to be practically se­
quentially independent time series for all areas. 
Therefore, the standardized series of deviations of 
sea surface temperature are sequentially dependent 
t ime ser ies with the dependence approximated by the 
first -order Markov linear model. 

Normal probability distribution functions are 
fitted to all 6p,t(T) - ser ies by using the same 
technique . as for the ~p,T (P) -series. The results 
are shown 1n Table 2. They i ndicate the 6n,t (T) -
ser ies to be all normally distributed, with their 
means and variances given in that table. 

3.2 Data for the Analysis of Snowmelt Runoff Forecast 

Snowmelt runoff. Monthly mean discharges for 30 
years at the three gaging st ations, shown in Fig. 2 by 
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dots and described in Table 3, from the water year 
1939-40 t hrough. the water year 1968-69, are obtained 
from the U. S. Geological Survey Water Supply Papers . 
The monthly values of South Fork Flathead River near 
Columbia Falls and Flathead River at Columbia Falls 
nr e adjusted for the changes in content of the Hungry 
Horse reservoir. Based on the periOd of data used, 
the characteristics of the runoffs of the three sta­
tions are shown in Table 4 . 

The seasonal flow in Table 4 is the summation 
of the monthly mean values of April through July, i n­
clusive. The mean seasonal flow for each stat ion ac­
counted for nearly 80 per cent of its mean annual flow. 
The first- and the second.-order autocorrelation coef­
ficients for all three stations are not significantly 
different from those of a sequentially i ndependent 
time series . 

Monthly base flows of each gaging station are es­
timated by 

Q .• Q e-kt 
l 0 

3.8 

in which Qi is an estimated base flow of the month 
i, Q0 is the base flow of the month o which is t 
months before the month o, k is a recession con­
stant and e i s the natural base of logarithm. 

Using Eq. 3.8, total volume of base f l ows duri ng 
the period of April through July are estimated for the 
three gaging stations and shown in Table 4. The esti­
mated volume of baseflow during the snowmelt season is 
very small compared to the volume of the seasonal 
flow. Therefore, no adjustment for the baseflow is 
made, and the observed flow during the snowmelt season 
is used as the dependent var iable in this study. 

The sample cumulative distribution function of 
the 30 values of seasonal runoff for each station is 
computed by using the pl otting position method m/(N + 
1). These distribution functions for the three sta­
tions are plotted on normal probability paper, Fig. 
9. Based on Smirnov-Kolmogorov test, the distribution 
functions at the three stations are not significantly 
different from the normal probability distribution ~t 
95 percent level of confidence. 

Therefore, the time ser ies of seasonal runoff of 
the three stations are sequentially independent norm­
ally distributed processes , with the estimated means 
and standard deviation as shown in Table 4. 

Method of computation of indices of snowmeit run­
off. Mos t of the indices used in the correlation ana­
lysis for the forecast of snowmelt runoff are computed 
f rom the observed values at different times of the 
season. Two steps are usually used in computing the 
indices . For each month the effective monthly values 
are computed as the weighted average of data at the 
locations selected. Then the i ndices are computed 
from the obtained effective monthly values as the 
weighted average of all months of the season. Many 
criteri a are used in assigning the weights. The sta­
tion weights may be assigned proportionally to the 
Thiessen area of each station or pr oportionally to the 
variance of the data observed at each station. so-,­
t imes , station weights are assigned according to the 
correlation between the data at each station and the 
seasonal runoff. Since the observed snow water equi­
valent highly depends on the elevation of the snow 
course, the elevation of each course is usually con­
sidered in assigning weights to snow courses. Work, 
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PitTING PRO&A!IILrrY FIINCTl~S TO SEA SURFACE TtMPERATURE DATA 

Area 
No. 

1 
2 
s. 
4 
s 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
21 
29 

6.53 
7.72 
7 .21 
4.41 

10.85 
8.50 
4.48 
9.18 
4.561 

1S.35 
.4.11 
5.47 
4.86 
7. 74 
8 . 88 
3 .42 
6.08 
6.83 
7.67 

10.02 
4.86 
8.35 
4 .18 
9.41 

14.56 
9.86 
6.08 

11.76 
4.11 

Noraal Distribudcn 

.95)?cr Accept Mean St<l ~v 

15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
lS .S 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 

Yes 
Yes 
Yes 
Yes 
Yu 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
II 
0 
0 
0 
0 
0 
0 

0.6584 
0. 7010 
0.6617 
0. 6656 
0.6377 
0 .6344 
0.5926 
0. 6399 
o. 7058 
0.693:C 
0.6481 
0.6148 
0.6202 
0. 7493 
0.6519 
o. 7094 
0.6728 
0.6895 
0.5679 
0. 6923 
0.6704 
0.7553 
0. 7802 
0.6995 
o. 7499 
0.6869 
0. 7427 
0.8279 
o. 7251 

Varian co 

0.433 
0.491 
0.438 
0.443 
0.406 
0.402 
0.351 
0.409 
0 . 498 
0.480 
0.420 
0.378 
0.385 
0.561 
0.425 
0.503 
0.453 
0.475 
0.322 
0.429 
0.449 
10.570 
0.609 
0.489 
0.562 
0.472 
0.552 
0.685 
0.526 

3rd 
~loment 

- .037 
0.070 

-0.009 
-0.046 
-0.049 
0.047 
0. 049 
0.032 

-0.003 
0.059 

-0.022 
0.026 
O.OS2 

-0.026 
- 0.004 
-0.034 
0.030 
0.030 
0 .003 
0.019 

-o. oo6 
-o. os5 
-0.152 
0.030 
0.105 
0.068 
0.020 
0.090 

-0 .006 

lle~~arks: Nu•bor of classes is 10. Data !rooo January 1949 
tb70uth December 1970, 22 years or 264 aontbly 
values. 

Sta.~ion 
N101b0r 

3585 

3625 

3630 

Nue of 
Station 

TABLE 3 

STREAM GAGI NG STATIONS 

Location 
Crtinagc 

Area,sq 1111 

The &Iiddle Fork Flat- 48° 29' 43" II - 114• 00 ' 33" W 1128 
head River ncar tlest 
Glacier, Mont. 

The South Fork Flat• 48° 21 ' 24" N - 114° 02' 12'' W 1663 
head Rivor noar 
Co1u.o01a Palls, Mont. 

The Flathead River 48° 21' 43" N - 114" 11' 02" It 4464 
at ColUIIbia Falls, 
Wont. 

TABLE 4 

QIARAcrERISflCS OF STREA:.IFLOW DATA 

Sc:'lsonal PIC>'W', 

105 AF Autocou~htion Estl~>tcd Bose 
Statlon . --------------------------------------- FlO\/ \ of •:ean 
N .. ber 

3515 

3625 

3630 

13 

IJ<>;m Std Dov ~lean Std Dcv 

21.122 4.414 16.645 3.614 

26 .261 5. 790 20.914 ~ .678 

71.609 15. 0:6 56.061 12. 057 

1 st l nd Annuol Fl"" 

0.105 ·0.03S 

o. 026 -o. o7a 

0.150 -0.038 

2.3 

3.2 
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Fig. 9. Fittings of normal probability dist r1oution 
functions to frequency distributions of snow­
melt runoff data. 

Beaumont, and Davis (1962) found that a more accurate 
forecast is obtained by using different forecast rela­
tions for different ratios of the snow water equiva­
lent observed at high and low elevation. The monthly 
weights for indices used are usually assigned accord­
i ng to the estimated r elative effect s of each month 
on the runoff . 

The method currently used i n assigning weights 
for computi ng an index, say the index of winter pre ­
cipit at ion, is to perform a multiple correlatio~ ~a­
lysis between the seasonal runoff and the ~reclplta­
tion in winter months at the selected stat1ons. The 
stations weights ar e t hen assigned by using t~e mul ­
tiple regression coefficients obtained,. and tak1ng ~n­
to account other considerations as prev1ously descr1b· 
ed. The effective monthly value for each month is 
then computed as the weight ed average of v~lues at. t~e 
s tations for that month. Using the effect1ve preclpl­
tation for all of the wi nter months as independent 
variables, a multipl e correlation analysis is again 
applied, with the seasonal runoff ~s a d~pendent va:i ­
able. The weight for each month 1s ass1gned by us1ng 
the multiple regression coefficient s . The w~nter pre­
cipitation index is then computed as the we1~hted ave­
rage of the effective precipitatio~ of the w1n~er mon­
ths. There is no set rule regard1ng t he magn1tude of 
weights, but it is cust omary to make the sum of sta­
tion weights as well as of monthl y weights eq~al to 
uni t y. Normally, the highest wei ghting factor lS not 
greater than three times the lowest. 

The indices of for ecast used in this study are 
similar to those used by the Water Management Sub­
committee, Columbi a Basin Inter-Agency Committee, ~.S . 
Bureau of Reclamation (1964). The report descr1bes 
the forecasting procedure for i nflow into the Hungry 
Horse Reservoir. Both the station weights and month­
ly weights of these indices used in this st~dy a:e 
mostly those given in the report. The except1on lS 
that they are scaled in such a way th~t the sums ~f 
station weights as wel l as of monthl y we1ghts are unl­
ties . Although the weights given in the report ~ere 
derived especially for the South Fork Flathead R1ver 
as t he indicators of t he potential of runoff from the 
basin, it is shown in Chapter IV that they may be used 
effectively as indices of the potential runoff of ad­
jacent basins as well. 

Fall and winter preciplt ation index. Locations 
of the five precipitat ion stations used in this study 
are shown in Fig. 2 as circles . The information about 
the stations is given in Table 5. These stations were 
selected because of thei r long records and a good cor­
relation with the runoff of the South Fork Flathead 
River Basin . 

Monthly total precipitation series of the five 
stations from J anuary 1939 through September 1971 are 
obtained from the Climatol ogical Data published by the 
U.S. Weather Bureau. 

TAIL£ S 

PR£CIPI1'ATIOII STATI~S 

Stati on Elevation Station 
h'wnber Stat ion Nllne l.oeat1on Ft we11ht 

4328 ltunary Horse Dam. 48" 21 ' N • 114 • 00 ' W 3160 0 . 28 

6302 Ovando 47* 01' H - 11S• 09 ' W 4100 0.14 

7448 Seeley Lake Ranin Sta. H" ll' ll • 11:1" 31' W 4100 0.32 

7978 SYMi t 48" 19' N • 113" 21' W 5213 0 . 12 

8809 We-s t Glac.ier .aa• 30' N - !1.1• S9' W 3154 0 . 14 

For fall precipitation indices, the monthly 
weights for August, September, and October are 0.21, 
0.32, and 0.47, respectively . Station weights are 
first assigned proportionally to the variance of the 
data of each individual station, then a trial -and­
error procedure in adjusting the weights is mad~ ~o 
obtain the best correlation between the fall preclpl­
tation index and the runoff. The station weights are 
shown in Table 5. 
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For wi nter precipitation indices, the monthly 
weight s for November, December, January,February, and 
March are the same and equal to 0.20. The station 
weights are the same as those of the fall precipita­
tion index. 

Using the values of the weights as described, 30 
years of fall precipitation indices, August-October 
for 1939 through 1968, and 30 years of winter precipi­
tati on indices, November-March for 1940 through 1969, 
are computed. The sample cumulative distribution f~n~­
tions of both i ndi ces are plotted on normal probablll­
ty paper, Fig. 10. Based on th~ Smirnov-Ko~mog~rov 
t est at 95 percent level of conf1dence, the d~str~bu­
tion of fall precipitation index is not significantly 
different from tne normal probability function, with 
the mean 1.972 and the variance 0.627, whi le the dis­
tribution of the winter precipitation index is not 
significantly different from the normal .probability 
function, with the mean 2.166 and the var1ance 0.258. 

Snow water e9uivalent index. Out of all the snow 
courses in and near the basin, five were selected for 
computi ng the snow water equivalent index for fore­
casting the seasonal inflow into Hungry Horse Reser­
voir. These snow cour ses are chosen based on five 
criteria of desirable features: length of record, good 
individual plots against runoff, good correlation in 
multiple correlation analysis with runoff, consistent 
double mass plots and good areal distribution. One 
more snow course near the Canadian border, Kishenehn, 
is added i n this s tudy to obtain a better areal cover­
age of the basin. The data of snow water equivalents 
as of April 1 for the six now courses used are ob­
tained from th·e Water Management Subcommittee Report 
and from the publication "Water Supply Outlook and 
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Fig. 10. Fittings of normal probability distribution 
function to frequency distributions of pre­
cipit at ion and snow index. 

Federal - State - Private Cooperati ve Snow Surveys for 
Montana" of the Soil Conservation Service. The loca­
tions of the six snow courses are shown in Fig. 2 by 
squares . Some salient features of the snow courses are 
given in Table 6. 

Weights of the five courses used by the Water 
~lanagement Subcommittee are assigned proportionally to 
the variance of the observed data at each course. They 
were modified in such a way that the best correlation 
between the computed April 1 snow water equivalent in­
dex and the seasonal runoff was obtained. The wei ght 
of the added Kishenehn is assigned to be equal to the 
minimum weight O·f the five courses due to its small 
variance and low elevation. Weights of the six snow 
courses are given in Table 6. 

TABLE 6 

SNOW COURSES 

Elevation 
10 lio. Name Location Ft lfeieht 

1287 Goat Jl..:lunui n 47' 39 ' N - 112' 55' 1'1 NOO 0.17 

13A2 Desert ~iountain 48' 26' N - 113' 58 ' II 5600 0.19 

13ASM Marias Pass 48' 19.5' N - 113' 21.5 ' If 5250 0 . 15 

1383 Big Creek 47' 40 .5 ' N - 113' 57.5' w 6750 0.15 

1387 North Fork Jocko 47' 15.5' N - 113' 46' w 6330 0.19 

14A6 ICisheneh ' 48' 58' N - 114 ' 25' W 3&86 0.15 
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A sample cumulative distribution function of 30 
values of the April 1 snow water equivalent index, 
from 1940 through 1969, are plotted on normal prob­
ability paper, Fig. 10. Again, based on the Smirnov­
Kolmogorov test , at 95 percent confidence level. the 
distribution of the snow water equivalent index is not 
significantly diff erent from a normal distribution, 
with the mean 23.77 and the variance 29 .65 . 



Chapter IV 

APPLICATION OF CANONICAL CORRELATION 

This chapter presents results of correlation 
analyses of historical data, assembled as described in 
Chapter III. Using these results, the canonical corre­
lation analysis is applied in the two examples of long­
range forecasts. 

4.1 Results of Analyses of Historical Data 

Since the main purpose of this study is t o demon­
s trate the potential of application of the canonical 
correlation analysis for hydrologic problems , only the 
results of correlation analyses for select ing the prep­
per set of independent variables for each example of 
t he long- range prediction are presented. The detailed 
discussion of the correlation analyses are presented 
elsewhere, Torranin (1972) . 

Coastal preciiitation forecast. The monthly 
c 'p , (P) -series o the three coastal areas are used 
as dependent variables, the independent variables be­
ing the monthly 6p ,(T) - series of the 29 sea surface 
temperature areas shown in Fig. 6. The data of the 
op,t(T) - series are for the period January 1949 
through December 1969, or 21 years. The sample size 
for each season of precipitation is therefore 21 x 3 

63. 

Results of correlation analysis, Torranin (1972) , 
show that the use of sea surface temperature for fore ­
casti ng the coastal precipitation by the lag cross cor­
relation method results in a border case of signifi­
cance. For the purpose of demonstrating the applica­
tion of canonical analysis , the forecast of the summer 
precipitation is used as an example, because practi­
cally all of the multiple correlation coefficients for 
summer precipi tation proved to be significantly dif­
ferent from zero. For summer precipitation, the group 
of independent variables consists of the s ea surface 
temperature at areas 16, 1, 27, 18, 28, 23, 4, 3, and 
9 with time lag of one month and at areas 21, 27, 8, 
14, and 12 with time lag of four months , a total of 14 
independent variables. 

From the canonical analysis between the group of 
three precipitation series and 14 sea surface tempera­
ture series, the vectors a and y of coefficients 
of Eq . 2.21 are: 

a " 

y 

[

-. 73963 
• - . 51061 

. 27174 

. 20796 
- .86164 

.18382 
- .16396 

.11914 
1.05531 

(y l y2 y3] .. -.52306 
.61735 

- .13884 
. 43695 

- .52511 
-. 72409 

.73442 
- . 35567 

- .14096 
- .13355 
-1. 05020 

1.89924 
- 1.54182 
- 1.17142 

.86917 

. 30801 
- .17980 

.59146 
- .55442 

.32808 

.14030 
- .09499 
- .12054 

.10392 

.12199 

. 77197] 
- 1.32588 , 

. 22882 

1.44752 
- . 70774 

. 20635 
- .05202 

.18512 

.22506 

.11974 

.07682 
- .19386 
- . 51693 

.01119 

.40572 

.87328 

.02133 

4.1 

. 4.2 
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The linear correlation analysis between each of 
the three pairs of the canonical variables , computed 
by Eqs . 2 . 24 and 2.25, gives the following results. 
The first pair of canonical variables gives Rc•0 .778, 
and 

u1 " -0.062 + 0.775 v1 . 4.3 

The unbiased standard error of estimate is 0 .628, the 
.mean of U1 is -0 .038, the variance of Ul is 1.000, 
the mean of Vi is 0 .031 and the variance of V1 is 
1 .000 . 

The second pair of canonical variables gives 
0.752, and 

u2 = -0.026 + o.7516 v2 . 

R c 

4.4 

The unbiased standard error of estimate is 0.660, the 
mean of U2 is -0 .014, the variance of u2 is 1.000, 
the mean of V2 is 0 .0156 and the variance of Vz is 
1.000. 

The third pair of canonical variables gives Rc 
0 .409, and 

u3 a -0.069 • 0.4095 v3 . 4.5 

The unbiased standard error of estimate is 0.912, the 
mean of U3 is - .069, the variance of U3 is 1. 000, 
the mean of V3 is 0.001 and the variance of V3 is 
1.000. 

From Fig. 3b, the canonical correlation coeffi­
cient of the third pair of canonical variables is 
not significantly different from zero. Figures 11 a , 
b , and c show the linear relations and the 80 percent 
confidence limits for a single forecast. Equations 4.3 
through 4.5 are used in the later part of this chapter 
to demonstrate the application of canonical correla­
tion analysis for monthly coastal precipitation. 

The next section presents results of correlation 
analyses for the purpose of the forecast of snowmelt 
runoff at the three gaging s tations as shown in Fig . 2 . 

Snowmelt runoff forecast. The correlation analy­
sis in this part of study consists mainly of computing 
the canonical variables and of using the correlation 
analysis of each pair of canonical variables. The 
group of "independent" variables consists only of in­
dices that can be computed from the observed original 
data as of Apr il 1. These variables include the fall 
precipitation index, the snow water equivalent index 
as of April 1, and the winter precipitation index . 
This group of i ndependent variables, with their defi­
nit ions and methods of computation given in Chapter 
III , is used in the canonical analysis with a group of 
seasonal snowmelt runoffs at the three gaging stations. 
A linear correlation analysis between the pairs of 
derived canonical variables gives the basic forecast­
ing equations of the runoff . 

For this canonical analysis, the group of depen­
dent variables , x(l) of Eq. 2 .9, consists of season­
al runoff at the gaging stations 3585, 3625, and 3630, 
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Fig. 11 Linear relation between canonical variables 
of precipitation, CNP, and of sea surface tem­
perature , CNT, for (a) the firs t pair, (b) 
the second pair, and (c) the third pair. 

while the group of independent variables , xC2) of Eq. 
2.9 , consists of the fall prec1p1tation index, the 
snow water equivalent index, and the winter precipita­
tion index, namely 

and r
x(l)J xCl) = x(2) 
x(3) 

4.6 

lx(4)] 
x(5) , 
x(6) 

4.7 

in which 

x(l) the seasonal runoff at gaging s tation 
3585, 

x(2) the seasonal runoff at gaging station 
3625, 

x(3) the seasonal runoff at gaging s tation 
3630, 

x(4) • the fall precipitation index, 
x(S) • the April snow water equival ent index, 

and 
x(6) "' the winter precipitation index. 

The correlation matrix of x(l) through X(6) 
is as follows, 

x(l) x(2) x(3) x(4) x(S) x(6) 

x(l) 1.000 0.961 0.985 0.097 0.874 0.700 
x(2) J..OOO 0.973 0.160 0.916 0.692 
x(3) 1.000 0.200 0 .897 0.699 
x(4) 1.000 0.239 0.073 
x(5) 1.000 0.798 
x(6) 1.000 

From this correlation matrix, it is evident that 
the seasonal flows at the three stations are highly 
correlated among themselves, as expected. For the in­
dependent variables, the snow wator equivalent and the 
winter precipitation index are also highly correlated. 
The correlations between the snow water equivalent i n­
dex and each of the seasonal flows are of the same 
order of magnitude. This is also true for the winter 

precipitation index, but the correlations of the flow 
with the winter precipitation index are somwhat lower. 
Therefore, it is justified to use the indices derived 
for the flow of the South Fork Flathead River as the 
indices for the flow at the other two gaging stations 
of the adjacent river basins. 
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By using 30 years of data as discussed in Chapter 
III in the canonical analysis, the matrix a and y 
of Eq. 2. 21 are obtained as: 

[ .09428 1.48235 -. 48860] 
a [al a2 a3) -.20967 .24715 .84349 

- .02657 -.53209 -.19342 
4.8 

[ .06128 -1.29588 - . 28551] y (yl y2 y3) "' -.20733 .03498 .24046 
.30034 .05539 -3.31876 

4.9 

The canonical correlation coefficients between 
the first , the second and the third pair of canonical 
variables, or Al, A2• and A3 of Eq. 2.20, are 
0.9229, 0.6108, and 0.2059, respectively. From Fig. 
3d and the 95 percent level of confidence, only t he ca­
nonical correlation coefficient of the third pair of 
canonical variables is not significantly greater than 
zero. 

Using the value of a and y in Eqs. 4.8 and 
4.9 the series of Ui and Vi, i = 1, 2, 3 are com­
puted by using Eqs. 2.24 and 2.25. The linear correla­
tion analys is between U1 and V1, and between U2 
and V2, are performed with the following results: 

u1 = -0.47040 + 0.92288 v1 • 4.10 

in which the canonical correlation coeffici ent Rc 
= 0.9229, the unbiased standard error of estimate is 
0.38532, the mean of U1 is - 4.30675, the variance of 
Ul is 1.000, the mean of V1 is -4.15693, the vari­
ance of Y1 is 1.000; and 

u2 0.90555 + 0.61078 v2 , 4.11 

with the canonical correlation coefficient Rc=0.6108, 
the unbiased s tandard error of estimate is 0.79228, 
the mean of u2 is ~.5960, the variance of U2 is 
1.000 , the mean of V2 is - 1.5802, and the variance 
of Y2 is 1.000. 

Linear relations of Eqs. 4.10 and 4.11 are 
shown in Fig. 12 with the data points used. The values 
of a and y of Eqs. 4.8 and 4.9 and Eqs. 4.10 and 
4.11 are used in the forecast with Eqs . 2.34 and 2.38, 
as described in the later part of this chapter. 

Next sections show how the results of the c anon­
ical analysis as obtained can be applied in hydrologic 
forecasts, specifically in the coastal precipitation 
forecasts and in the snowmelt runoff forecast. 

4 . 2 Examples of Forecast by Using Canonical Correla­
tion Analysis 

In general, the main steps to be used in a fore­
cast by the technique of canonical correlation analy­
sis are: 
(1) The canonical variables of the set of dependent 
variables (such as the monthly precipitation for the 
example of coastal precipitation forecast) are predict­
ed by the canonical variables of the set of observed 
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Fig. 12 Linear correlation between 
(a) the first pair of canonical variables, 
(b) the second pair of canonical variables, 
of the snowmelt runoff, U, and the indices, 
v. 

i ndependent variables (such as the monthly sea surface 
temperature for the exampl e of coastal precipitation 
forecast) . 
(2) The predicted canonical variables of dependent 
variables are transformed back to the predicted value 
of dependent variables. 
(3) A confidence region f or the predicted values of 
dependent variables is then constructed . 

It should be noted that the data of the set of in­
dependent variables used i n each of the following two 
examples of forecast are not used in the analysis pre­
viously described. 

Coastal precipitation forecast . The total preci­
pitation for June 1970 at t he three coastal areas, as 
shown in Fig. 4, are forecast simultaneous ly as an ex­
ample of previous developments. The group of indepen­
dent variables to be used for the forecast represent 
the residuals of the first-order Markov model of stan­
dardized deviations of the sea surface temperature for 
May 1970 , a time l ag of one month, at areas 16, 1, 27, 
18, 28, 23, 4, 3 , and 9, as well as the residuals of 
February 1970 , or a time lag of four months , at areas 
21 , 27 , 8, 14, and 12. These 14 variables are arranged 
in a col umn vector of independent variables as 

x(2) .. 

.6373 
- .4686 
- .3455 

.2410 

.2960 

.6253 
- .4071 
- .4061 
- .9917 
- .5487 
-1.1218 

.4894 
1.4784 

- .6738 

4 .12 

Introducing the value of y 
2.25, the canonical variables of 
perature are obtained as 

of Eq . 4.2 into Eq. 
the sea surface tem-

v 
[
v1

:] [ 1.48424] v2 = -0.13905 

v3 .:.1.04813 

4.13 

The values of u1 and u2 are estimated by Eq. 4.3 
and 4 .4 as: 

u1 = 1.09337, and u2 • 0.13053 . 

Since the canonical correlation coefficient of the 
third pair of canonical variables is not statistically 
~ignificant, the mean value of U3 is obtained as 
u3 = -0.06900. Therefore, the predicted canonical 
variables of precipitation for the month of June 1970 
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are 

4. 14 

In order to transform the canonical variables 
back for predicting precipitation the inverse of the 
matrix aT of the matrix a in Eq. 4.1 is computed, 
or 

t0 .9308 
-0 . 5092 
0.1897 

-0.1592 
-0.2479 
-0.8993 

0.3745] 
-0.5331 
0.0175 

4.15 

From the matrix of Eqs. 4.14 and 4.15, the predicted 
precipitation at the three areas are obtained from Eq. 
2.34 as 

x {l) 
[
-1.0288] 
-0.4876 
0.3236 

4.16 

It should be noted that X(l) are the predicted values 
of the normal transforms of standardized deviations of 
precipitation at the three areas. Equations 3.4 and 
3.5 are then used to transform these three values into 
the standardi zed deviations at each of the three areas 
as 

£ = r~m] = [=~:~~~~1 
l~ (3) -0. 038;j 

4 .17 

The predicted total precipitation at each of the three 
areas is computed by Eq. 3.1 , by using the means and 
standard deviations for the month of June . The pre­
dicted total precipitation for June 1970 is then 

~
l (P)] [1. 238] 

X(P) = ~2(P) • 0.324 

x3(P) 0.065 

4.18 

The observed s tandardized deviations 
cipitation for June 1970 are: 

[
-1.280] e • . 1s2 , 
- .135 

and the total pre-

4.19 



and 
["o .968] 

X(P) " 11.113 
L0.056 

4.20 

The forecast errors at areas 1, 2, and 3 are 28, 71, 
and 16 percent of the observed values, respectively . 

To construct a confi dence region of the predicted 
precipitation, the matrices U* and E* of Eq.2.37 
are computed from the matrices U, (aT)-1, E, and 
{ (aT)-1 }T by 

U* 
T -1 • 

(a ) U ' 
4.21 

and 

4.22 

The matrix E consists of the variance of a single 
forecast made by using the linear regression equation 
between Ui and Yj, i = j. The error of a single 
forecast by using a linear regression equation con­
sists of the sampling error of regression and the 
error resulting from the variation of an actual value 
of dependent variable around the regression value. For 
the forecast of u1 , the variance of a single f orecast 
e 12 , for Y1 = 1.48424, is computed by 

4.23 

in which o is the unbiased standard error of esti­
mate of ul by vl, vl is the mean of vl and n 
is the sample si4e used for the linear correlation 
analysis. 

Using Eq. 4.23, e1
2 is com~uted to be 0.41405 

for V1 = 1.48424. Similarly, e2 is computed to be 
0.44251 for V2 ~ -.13905. Since the mean of U3 is 
forecast, e22 is the variance of U3 itself. There­
fore, for the forecast of precipitation of June 1970 
the matrix E is 

[

.41405 0 0 ] 
E = 0 0.44251 0 . 

0 0 1.000 
4.24 

By using Eqs. 4.21 and 4 . 22 the matrices 
E* are computed as 

U* and 

and 

E* 

Note that U* 
verse of E* 

~
U* (l)J 

U* = U* (2) 
U*(3) [

-1.0228] 
-0.4876 
0.3236 

[ 

0 . 5080 0.0172 
0.0172 0 .4142 

-0.0033 0.0495 

-0 .0033~ 
0.0495 
0.3731 

4.25 

4.26 

is the forecast precipitation. 
is computed as 

The in-

0.028~ 
-0.3265 4.27 

2. 7240 
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From Eq. 2.38, 

or 

+ 2ei2(x(l)-U*(l))(x(2)-U*(2)) 

+ 2ei3(x(l) -U*(l))(x(3)-U*(3)) 

+2eb(x(2)-U*(2))(x(3)-U*(3)) • /(3), 
4.28 

i n which x2 (3) is a chi-square distribution with 
three degrees of freedom . The confidence region for 
x(l), x(2), and x(3) at 80 percent level of confi­
dence is obtained by Eq. 4.28 as 

+ 2ei2Cx(l)-U*(l))(x(2)-U*(2)) 

+ 2ei3 Cx(l)-U*(l))(x(3)-U*(3)) 

+ 2e23 Cx(2)-U*(2))(x(3)-U*(3) ~ 4.64, 

4.29 

in which 4. 64 is the 80th percentile value of the 
x2(3) distribution, and the e' are those of Eq. 
4.27, and U* those of Eq. 4.25. 

The interpretation of the confidence region de­
fined by Eq. 4.29 is that there is 80 percent probabil­
ity that each of x values to be observed for June 
1970 will vary around the predicted values U* in 
such a manner that Eq. 4.29 is satisfied. Equation 
4.29 represents an ellipsoid as shown in Fig. 13. Fig­
ure 13 shows the ellipses in e ' (2) - e '(3) plane, 
which are the results of passing a plane through the 
ellipsoid at E'(l) of -.2788, of - 1.0228, and of 
-1.767. Note that -1.0228 is the value of the fore­
cast e '(l), while - .2788 and - 1.767 are the fore­
casts of E'(l) which have an estimated 70th and 30th 
percentile error associated with them, respectively. 
This ellipsoid shows that the errors of precipitation 
forecasts of the three areas are interrelated. If the 
precipitation for one area is predicted with a large 
error, the other two will be predicted with small er­
ror, such that there is a 80 percent probability for 
the observed precipitation (normal transforms of the 
standardi 4ed deviations) of these three areas to be in 
this ellipsoid. 

Snowmelt runoff forecast. For this example, fore­
casts of snowmelt runoff (April through July runoff) 
at the three gaging stations, as shown in Fig . 2, for 
the year 1970 are made. Using the observed values of 
monthly totals of precipitation in the fall and winter 
at the five stations, and using the observed April 1 
snow water equivalent at the six snow courses, the 
fall and winter precipitation indices and the snow 
water equivalent index are computed by applying the 
weights given in Chapter III. The three indices so com­
puted represent the observed values of a set of inde­
dent variables x(2) of Eq. 4.7, or 
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Fig . 1:> Confidence region of precipitation forecasts 

at 80 percent confidence level . 

xC2) " l2! : ;~~J L 2. 530 
4. 30 

The value of y of Eq . 4.9 is used to compute 
the canonical variable of these indices by using Eq. 
2. 25 , namely 

Vl 0.06128 X 1.501 - 0. 20733 X 26.227 

+ 0.30034 X 2.530 -4.5858 

and 

V2 : 1.29588 X 1.501 + 0.03598 X 26 .227 

-0.86133 . + 0.05539 X 2.530 
Substituting V1 and V2 
t he f2recast values of U1 
and u2:0.37947. 

into 
and 

Eqs. 4.10 and 4.11, 
U2 are 01=-4 . 70254, 

Since the canonical correlation coefficient of 
the third pair of canonical variables is not statisti­
cally significant, the mean value of U3 is used, 
namely 03=-1.34037. Therefore, the predicted canoni­
cal variables of runoff for 1970 are 

u = ~~~l = [-~: :~~:~] 
lu~J -1.34037 

4 . 31 

To t ransform the canonical variables back for pre­
dicting runoff, the i nverse of the matrix aT of the 
matrix a of Eq . 4 .8 is computed as 

T -1 ~ 3.54096 
[a ] = - 4.82738 

-12 .10702 

0 .55600 
0.27566 

-0.20239 

- 1.04300u 
-0 .09518 
-2.95019 

4.32 

-1 
From the matri x U of Eq . 4 .31 and [aT] of Eq. 
4.32, the predicted flows are computed by using Eq. 
2.34 as 

x Cl) ~x(l)J ~(2) = 
x(3) 

. 
(U] 

The canonical variable 
t he small est error while U3 

~
18. 26062J 

= 22 . 93316 
60.81130 

4.33 

u1 can be predicted with 
has the largest error in 
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the above matrix multiplicatioh of Eq . 4.33. There­
fore, the error associated with x(l ), x(2) and x(3) 
are smal l if the contribut ion of U1 to each x is 
large as compared with the contribution of u3, or if 
the ratio of the magnitude of the element of the first 
column to the element of the third column of all rows 
of the matrix (aT)-1 in Eq . 4.32 is large . A study 
of Eq . 4 .32 r eveals that such is t he case for this par­
ticul ar problem, so that a small error in x should 
be expected . 

The observed values of the snowmelt runoff at the 
three stations for 1970 are 

_(1) ~17.54u X : 21.28 
54.64 

4 . 34 

Therefore, the errors of runoff forecast at stations 
3585 , 3625, and 3630 are only 4 . 10, 7 . 75 , and 11.4 per­
cent of observed values, respectively. 

The National Weather Service , NOAA also routinely 
issues forecasts of the snowmelt runoff at these three 
stations; the flows are forecast for the period April 
through September. The errors of forecast made by the 
agency for 1970 snowmelt runoff forecasts at stat ions 
3585, 3625 , and 3630 are 3.2, - 6 .4, and -5.3 percent 
of the observed values, r espect ively . 

Although the number of the indices used in the 
forecast i nvolving canonical correlation analysis is 
small, and despite t he fact t hat it utilized observa­
tions only up to April 1, the error in this forecast 
exceeded only slight ly that of the agency forecas t. 
Discounting the Weather Service ' s long experience and 
abundance of available indices , it would seem that a 
forecast based on canonical correlation analysis would 
be at l east equally accurate and probably l ess expen­
sive . 

2 Variances of a single forecast of U1 and U2, 
e1 and e22, respectively are computed by using equa­
tions simil ar t o Eq. 4.23, as e12 " 0.15968 and e22 
= 0.68256 . Since the mean of u3 is predicted, e~2 
is the variance of u3 itself . Therefore, the matr~x 
E of Eq. 2.31 for the for ecast s of the snowmelt run­
off for the year 1970 is 

U 
.15968 

E = 0 
0 

0 
0.68256 
0 

0 J 0 . 
1.000 

4 . 35 

Usi ng Eqs. 4.21 and 4.22, the matrices U* and 
E* of Eq. 2.37 are computed as 

and 

u· = r~: m1 = 1;~: ;;~~~l 
UJ*C3)J l;o.8113~J 

~
3 . 2649 

E* = 2.9301 
9.7436 

2.9301 
3.7818 
9.5659 

9. 743~ 
9.5659 . 

31.8476 

4.36 

4. 37 

The forecast flows U* 
4 . 33. The i nverse of E* 

are the same as x(l) 
is 

of Eq . 

-1.07349~ 
-0.32655 . 

0.45791 

4.38 



From Eq . 4.29, the confidence region for x(l) , x(2), 
and x(3) at 80 percent level of confidence is 

3.S21~2(x(1) ·18 .26062) 2 • 1.10079 (l(2) · 22 .93316) z • 0 . 4S791 (x (3) -60, 11130)2 

• 2( -0.01331) (x(l) -11.26062) (x(l) -22.93316) • 2( -1.07349) (x(1)-11.26062) 

(x(3)-60.11130) • 2(-0.326SS)(x(2)·22.93316)(x(3)-60.81130) ~ 4.64. 

4.39 

Equation 4.39 represents an ellipsoid in the 
space x(l) - x(2) - x(3), with a center located at the 
predicted values [x(l), x(2), x(3)). The ellipsoid of 
Eq . 4.39 is shown i n Fig. 14 by three ellipses which 
are the intersections of the plane x(l) = 17.49 , x(l) 
= 18 . 26 , and x(l) = 18 . 77 with the ellipsoid . The 
v~lues of x(l) of 17.49, 18.26 and 18.77 are the pre­
dlcted values of x(l) with 40th percentile error 
no error, and 60th percentile error associated with i~, 
respectively. 

x(3) tiQli 
Runoff is in 100.000 Acre- feet 

68 

~----x( I J = 17.49 

66 

x (l) = 18.26 
64 

62 X( l ) • 18.77 

60 

58 ~ ·+ 

16 18 20 22 24 26 28 X(2) 

Fig. 14. Confidence regi on of streamflow forecasts at 
80 percent conf idence level. 
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The interpretation of the confidence region of Eq. 
4 . 39 , as represented by the ellipsoid of Fig . 14, is 
that there is an 80 percent probability t hat the ob­
served values of the flows at stations 3585, 3625 and 
3630 for the year 1970, as represented by x(l), x(2), 
and x(3), respectively, wi ll vary around the forecast 
values, 18.26, 22.93, and 60.81 in such a way that Eq. 
4. 39 is satisfied . In other words , the observed flows 
at the three stations are represent ed by a point in 
the three-dimensional space within the ellipsoid of 
Fig . 14. The largest ellipse of Fig . 14 is the result 
of t he assumpt ion that there is no error in the fore­
cast of x(l). When an error is assumed for x(l), the 
ellipse becomes smaller . The area of these ellipses 
or the volume of the ellipsoid, give the forecaster 
some idea about the variations in the predicted values 
to be expected for each set of forecasts. Intuitively, 
one would like to have the forecasts with the confi ­
dence region having as small a volume of the ellipsoid 
as possible, because in that case the overall error of 
forecast can be expected to be relatively small. The 
ellipsoidal confidence region for the forecast of 1970 
snowmelt runoff is quite small in comparison with the 
magnitude of predicted values. 

In the case of forecast of regional variables, 
such as in the two problems investigated, it is unlike­
ly any predicted value will be equal to the observed 
value. The expected variations of predicted values 
about the observed values at the predicting times are 
useful information , as far as the overall regional 
forecast is concerned. The variations of individual 
predicted values in a region should not be considered 
separately, since they are correlated. The canonical 
anal ysis may be used effectively to obtain this infor­
mation about the joint variation of predicted values, 
as shown in this study. 



CHAPTER V 

CONCLUSIONS 

From the results of the investigation of two pro­
blems in long-range hydr ologic prediction , used to 
demonstrate the potential for applying canonical cor­
relation analysis to hydrologic problems, the follow­
ing conclusions concern mainly the application of the 
canonical correlation analysis, the characteristics of 
the time series of the variables investigated and the 
feasibilities of the two long-range prediction pro­
blems. 

(1) The problem of regional simul taneous forecast 
of mutually correlated dependent variabl es of area 
locations may be solved effective ly by using the ca­
nonical correlation analysis, especially in construct­
ing a confidence region for these forecasts. The con­
fidence region gives overall information about the 
joint variation of predicted values. Other advantages 
observed concern the significance testing of linear 
correlation between the sets of dependent and indepen­
dent variables and the saving in analysis by doing 
only one canonical correlation analysis instead of 
three separate analyses for each problem. 

(2) ll'hile the mutual correlation usually observed 
in a set of time series representi ng a three ­
dimensional hydrologic process causes other techniques 
for the correlation analysis, such as the multiple 
correlation analysis, to be unsui t abl e for use with 
hydrologic data, canonical correlation analysis can be 
used effectively to investigate linear correlation be­
tween two or more hydrologic processes. The technique 
is very suitable for the investigation of linear re­
lationships between two sets of variables, whose vari­
ables are mutually correlated in each set, in addi­
tion t o a relatively high correlation between the two 
sets. 

(3) The monthly periodic-stochastic time series 
of the coastal precipitation, after the periodicities 
in the mean and t he st andard deviation are removed, 
produce a standardized residual series that is close 
to a serially uncorrelated stationary time series. The 
probability distribution of the residuals is approxi­
mately normal for the uppermost coastal area, with 
mean annual precipitation of 66.9 inches. The distri­
bution of the residuals of the two lower coastal areas 
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are approximately lognormal, with mean annual preclpl­
tations of 39.8 and 15.0 inches, respectively. 

(4) The monthly sea surface temperature of areas 
of the Pacific Ocean are used as a set of independent 
variables in the example of coastal precipitation 
forecast . After removing the periodicity in the mean 
and standard deviation in time series of the sea sur­
face temperature, the resulting standardi zed sto­
chastic time series are shown to be highly serially 
correlated , approximately of the f i rst-order Markov 
linear model . The independent (residual) component 
comput ed from •he Markov model, 6p tCT)-series, is 
normally distributed. ' 

(5) The contribution of the river base flow to 
the total sno~~elt runoff during the sno~melt measured 
at each of the three gaging stations is small compared 
to the snowmelt runoff. The time series of snowmelt 
runoff, the fall and winter precipitation indices, and 
the snow water equivalent index are serially uncorre­
lated time series, with all of them having a normal 
distribution. 

(6) The snowmelt runoff from the river basins has 
the largest correlation with the snow water equivalent 
index of all the three indices investigated for the 
snowmelt runoff forecast . Though the winter precipi­
t ation index is highly correlated with the snow water 
equivalent index, the runoff has a smaller correlation 
with the winter precipitation index than with snow 
water equivalent index. The canonical correlation co­
efficients between the set of the runoff dependent 
variables and the set of indices as independent vari­
ables are 0.923 , 0 .611 , and 0.206; only the third ca­
nonical correlation coefficient may be consider ed as 
not being statistically significant . 

(7) General results of the two examples of fore­
cast by canonical correlation analysis are that the 
coastal precipitation forecast is not reliable, as in­
dicated by a large percentage error, while the fore­
cast of snowmelt runoff is reliable. The error of pre­
diction at each gaging station in snowmelt runoff 
forecast is approximately of the same order of magni­
tude as the error in measuring the runoff itsel f . 
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Appendix A 

CANONICAL CORRELATION ANALYSIS 

This appendix summarj zes the mathematical back­
ground information for canonical correlat ion analysis, 
snessing some particular pr oper ties pertinent to t he 
application of this study. Except for the derivation 
and computation of marginal cumulative distributions 
of the square of the canonical corr e lation coeffi ­
cient, most of the information is extracted from 
Anderson (1958) , and is given i n thi s appendix in a 
summarized form for the purpose of rapi d reference. 

Basic Derivation Rel ated to Canonical Correlat ion Anal ­
sis 

Let X be a matrix of r andom var iab l es wit h p 
components and with a covariance matr ix Epxp · For t he 
sake of simplicity , l et its vector of mean, Ex, be 
:ero. 

Let tne matrix X be 
subvectors of Pl and P2 

parti tioned into the 
components each , or as 

two 

into 

of 

and 

The 
P·l 

Let 
X ( 1), 

[

X (1) 

X X (2) J A-1 

covariance matrix is par titi oned similarl y 
and P2 rows and col umns , as 

['" '12] I: A-2 
1:21 E22 

U or 
or of 

V be an arbitrary l inear combinati on 
x(2), r espectively, 

u = Tx(l ) 
(l ' A-3 

v = /xC2 ) , /\- 4 

in which a and y are p1xl and pzxl col umn vec­
tors , respective l y . 

The linear combinat ions , U or V, having the 
maximum correlation, arc required in canonical cor­
rel at i on anal ysis . Since t hi s l inear correlat i on be­
t ween a mul tiple of U and a multiple of V is the 
same as t he correl ation between U and V variables 
themselves , therefor e an arbi trary normalizat ion of ~ 

and y can be made . Let a and y be selected such 
that bot h U and V have unit variances , or 

1 

A-S 

and 

y 1 

The covariance, or in thi s case the correl ation co­
efficient, between U and V i s 

A-7 

The required variables U and V 
correlation analysis are obtained 
A-7 sullj ect to Eqs. A- S :>nd A-6 . 

Put further 

in the canoni cal 
by maximizing Eq . 

in which y and ~ are t he Lagrangian mul t ipl iers, 
The maxi mizat ion is obt ained by equat i ng to zero the 
partial derivative of ~ . with respect to the vectors 
a and y , 

and 

Multiplication 
yT gives 

and 

of Eq. A-9 by aT 

T 
(), l: l 2y -

T 
f..o: i.

11
a 

T T T 
Y l: l 2a - ).ly y22 

0 . A- 9 

0 . A-10 

and of Eq . A-10 by 

0 ' A~ll 

= 0 A-12 

S · T T 1 d T EUV EVU 1nce a E11a y l:22Y = , an a El2Y = 

25 

= yTI.Iza, t hen from Eqs . A- ll and A- 12 it is seen 
that ;>.. = 11 = a TE12a Therefore, Eqs. A~9 and A-10 
may be wri t t en as 

A-1 3 

A-14 

or in matrix forrn 

0 . A-1 5 

In order for a nontrivial solution to exist, the 
matrix on the left s i de of Eq . A-15 must be singular, 
or 

0 . A- 16 

Equation A-16 is a polynomial equation of degree p 
with p r oo t s , say with 



T 
From Eq. A- l l it is s een that X = a E12Y = EUV, or 
that X is the corre l ati on coefficient between U 
= aTx(l) and v = yTx(2), 1vhen a and y satisfy Eq . 
A-15 for some value of X. Since the maximum correla­
tion coefficient is required, X = X1 is selected. 
Let a solution of Eq. A-15 for A= A1 be aCl l, y(l), 

with U1 "'aCl )T x(l) and v1 = y(l)T x(2). Then u
1 and VI are t he linear combinations of x(l) and x(2) , 

respectively, with a maximum correl ation coefficient . 

A second linear combi nati on of X(l) and second 
linear combination xC2) are sought next, such that, 
of all possible linear combinat:ions , uncorrel ated 1•i th 
U1 and V1, have the maximum correlation coeff icient . 
This procedure is continued until the r-th st ep of lin­
ear combinations, or 

u 
r 

a(l)T xCl) 

a(r)T xCl) 

Y(l )r xC2) 

(r) T x<Z) 
vr " Y 

until t he corresponding correlation coeff icients X(l) 
= X1, . . . , x(r) = lr of Eq . A-16 are obtained. The 
next step is to find the linear combinations U=aTx(l), 
and V=yTx(2) which have the maximum corr elation coef­
ficient between them as compared to al l t he l i near com­
binations uncorrelated with (Ul, V1l, (U2, V2l , 
(Ur,Vr). The conditions that U be uncorrelated with 
Ui and Vi, and V uncorrel ated with Vi and Ui , 
i = 1, 2, . . . r, are: 

T r (i) a _
11

a 0 • A-17 

T l: (i) 
a 12Y 0 • A-18 

= a (r)T x<1l and vr = yCrJT xC2l, each with the uni t 
variance and uncor rel ated with the firs t (r-1) pairs 
of canonical variables and having t he maximum correla­
tion of all the linear combinations uncorrelat ed with 
the first (r-1) - pairs . This correlation gives r -th 
canonical correl ation coefficient which is the r - t h 
largest root of Eq . A-16 . The values of a Cr) and 
yCrJ are the solution of Eq . A- 15 which corresponds to 
the value of the r-th largest root of Eq . A-16 . I t 
should be noted that, in the derivation of the canoni­
cal correlation so far , no assumption is made regard­
i ng the probabili ty distribution function of the ma­
trix X of random variables. 

Probabi l ity Distribution of a Quadratic Form 

This part of Appendix A i s related to the con­
struction of the confidence region of forecas t s as 
given in the previous text. 

A quadratic form is defined as 

in which 
matrix , 
form are 
y 1 0. 

A- 22 

YT = (Yl,Yz ... Y ), and A is a symmetric 
A~ (ai j) . The ma~rix A and the quadratic 
called posit ive definite if yTAY>O for all 

It is to be shown i n this appendix that if Xpxl 
- N(IJ , l:), or 

A-23 

T E (i) 
Y zzY 0 . A-19 with E positive definite, t hen 

TE (i) 0 Y 2la A-20 Q(X) 
T - 1 2 (X-11) E (X-u) - X (p) A-24 

Proof . 

The correlation between Ur+l and Vr+l or EUr+l Vr+l 
is to be maximized subject to Eqs . A-5, A-6 , A-17, and 
A-19, f or i = 1,2,3, and r . Let 

If l: is pos itive definite, there exist s a non­
si ngular matrix B such that sT E B = I. (Corollary 4, 
p. 339 of Anderson (1958)]. Therefore 

ojir+l 

+ A-21 and 

in which 1 , 11. v1, .. . , vr, 61, ... , 6r are Lagrange Let 
multipl iers . By taking partial derivatives of Wr+l' 
wit h respect t o a and y and equating them to zero, 
it can be shown that the maximized Wr+l is obtained 
when all the v and 9 mult ipliers are zero. The 
maximum corre lation coefficient is obtained for the 
solution of Eq. A-16, say Xr+l • when the values of a Then 
and y come from solution of Eq . A-15 for A = Ar+l• 
a= a(r+l) , y = y(r+l ) . Therefore, the (r+l) - th com-
bination of xCll and xC2) are u = a(r+l)T x< 1l 

(r+ l )T (2) . r+l 
and Vr+l ~ a X , r espect1vely. The total num-
ber of pairs of combinations is t hen p1 . 

The results of derivation of the canonical corre­
lation may be summarized as follows : The r -th pair of 
canonical variables are the l i near combinations Ur 
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I: (BT) 
- 1 

I B- l (BT) 
-1 B- 1 

1:-1 B BT . 

T z B (X-11) , 

EZ 0 , 

EZZT EBT (X-IJ) (X-u)TB 

BT(E(X-u)(X-Il)T)B 

BTEB 

I . 

A-25 

A-26 



Since a l inear transformation of a normal random 
variable is al so normal ly distributed, t her efor e 

z - N (O ,I) A- 27 

ZTZ r (Z . ) 2 A-28 
i=l l 

2 
- X (p) A-29 

Equation A- 29 can be written because the s umma­
tion of p squares of a s tandard normal random vari­
able is distributed as chi-square distribution with p 
degree of freedom . 

T Consider the product Z Z 

substituting T BB from Eq . A-25, 

A-30 

T - 1 2 Therefore Q(X) = (X-1-1) r (X-Il) - X (p), and Eq. A-24 
i s pr oved. 

Marginal Cumulative Distribution of Square of the Sam­
ple Canonical Correlat ion Coefficients 

Let Di for i = 1 , 2, . .. , Pl be the squares 
of the sampl e canonical correlation coefficients of 
the two sets, x(l ) of Pl components and xC2l of 
P2 components . For the case that x(l) is of a mul­
tivariate normal di stribution and X(l) and x (2) ar e 
independently distributed, Anderson (1958) presented 
the joint probability distribution of D1 to be: 

g(D
1

,D2 , ... , D ) = 
pl 

r t} CN- i) 1 

r [~ (N-p -i) J ·r [l (p +1-i ) J ·r[l (p +1-i)J 2 2 2 1 2 2 

pl { .!_ (p -p -1) ~ (N-p -p -2) } p l 
n D.2 2 1 (l-D.)2 2 1 n (Di-oJ.)' 

i=l l L i <j 

A- 31 

in which N is the sample size , and p1 ~ p2 

For t he case p
1 

= 3, Eq. A-31 becomes 

3 { k 2 k 3 } 3 
k

1 
n D. (1 -D.) n (01-oJ.) , 

i= l 1 l i<j 

A-32 
i n which 

r[} (N-i) ) 3 
k = 7r3/2 n 

1 i =l r [!. (N-p - i ) J· r[!. (4-i) J·r[!. (p • 1-i) J 2 2 2 2 2 

A-33 

A.-34 

and 

A-35 

From the joint probability distribut i on given by 
Eq. A-32, the mar ginal distribution of o1, Oz and 
D3 can be obtained by integrating out 02 and 03, 
01 and 03 , and D1 and Dz , respectively, as fol ­
lows: 

I(0 , 0
2
) (03) , A-36 

in which &1(01) is the marginal distribution of 01, 
and I (X) is the indicator funct ion of X, 

27 

(A., B) 

in which 

and 

I (X) 
(A, B) 

f or A < X < B 

0 otherwise . 

k2 k~ 
{ 03 (1-03) .) (01-03)(02 -03)d03. \o '02) (03} 

. d02 ] . I (03,01) (02) , 

I (0 D ) (D2)' 
3 ' 1 

A-37 

A- 38 

A-39 

By using similar integration techniques, the fol­
lowing are obtained. 

A- 40 



in which g2(D2) i s t he marginal distribut ion of 0~ , 
and -

in which 
and 

g3 (03) is the marginal distribution of o
3

, 

28 

A-44 

A-45 

Numerical integration is used to compute the cumu­
lative distributions of D1, Dz, 03 by using Eqs. 
A- 37, A-38, A-39; A-40, A-41, A-42; and A-43, A-44, 
A-45 , respectivel y . The cumulative distri butions for 
different values of p2 and N are given i n Figure 3 . 



Appendix B 

PRECIPITATION STATIONS SELECTED 

Coastal area 1 

Sequence Station 
Nurnb<>r Numbel" Name Latitude Longitude Coastal area 

45.0176 Anacortes 48.52 122.62 
Sequence Station 35.0318 Astor Exper i mental Sta. 46.17 123.82 

; 45.0872 Bremerton 47.57 122.67 1\Ucber Number Same Latitude Longitude 

4 45.0945 BucUey I :IE 47.17 122.00 
5 45.1233 Cedar Lake 47.25 121.44 4.0606 Beaumont 33.56 116.59 
6 35.1552 Cherry Grove 2 S 45.42 123.25 4.0790 Big Sur St ate Park 36.15 121.47 
7 45 .1496 Clearwat er 47.58 124.30 3 4.1864 Coalinga 36.15 120.35 
8 45.1679 Concrete 48.55 121.77 4 4.2236 Cuyama 34.93 119.62 
9 35.1817 Cottage Gr ove 1 s 43 .47 123.04 s 4. 2239 Cuyrunaca 32.59 116 .:ss 

10 35.2345 Disston 1 NE l ayng Cr 43.72 122 .75 6 4. 2346 Delano 35.78 119.25 
II 35.2673 Estacada 2 SE 45.16 122.19 7 4. 2516 Dry Canyon Reservoir 34. 48 118.53 
12 35.4721 LMQ Lois 42.93 124.45 8 4. 4022 llollislcr 36.51 121.24 
13 45.47b9 Longview 46.10 122.55 9 4 .4204 Idria 36.41 120.67 
14 45.5880 :-iew Hatem ~8.41 121.15 10 4.5107 Los Alamos 34.75 120. 28 
15 45.7507 Sedro Woolley 48.30 122.13 11 4.5215 Lyt 1e Creek Ranaer Sta. 34. 20 117. 45 
16 45.7548 Shelton 47 .12 123.06 12 4.5756 Mojave 35.05 118.17 
17 35.8481 Tide Water 44.42 123.91 13 4.6006 Mount lfi lson FC 338 B 34.23 118.07 

14 4.6175 Newport Beach Harber 33.60 117.88 
IS 4.6399 Oj4i 34.27 119.15 
16 4.6703 Parkfi eld 35 . 88 120 .43 

Coastal area 2 1 i 4. 7077 Potterville 36 . 04 119.01 
18 4. 7253 Randburg 35.37 117.65 
19 ~. 7306 Red lands 34.05 117.18 

Sequence Station 20 4 . 7470 Riverside Fire Sta. No 3 33.57 ll7 .24 
liunber N~nber '<aJ:>e L3t:itude Longitude 21 4.7672 Salinas Dam 35.33 120.50 

22 •• 7740 San Diego NB Airport 32.44 117.10 

1 4.0227 Antioach Fibreboard Ml . 38.01 121.46 23 4. 7851 San Luis Du 35.30 12D.67 

2 4.0383 Auburn 38.54 121.C4 24 4.8839 Tejon Rancho 35.03 118.75 

3 4. 0693 Berkeley 37.52 122.15 25 4. 8967 Topanj a Patrol Sta. Fe 6 34.08 118.60 

4 4,1018 Bowman Dam 39.27 120.40 26 4. 9087 Tustin lrVln Ranch 33.73 117.78 

5 4.111 2 Brooks FarnhM Ranch 38.77 122 .IS 27 4. 9552 Wasco 35.36 119.20 

6 35 .lOSS Brookings 42.05 124.28 
7 4.1214 8U1'11CY 40.88 121.67 
8 4.1277 Calaveras Big Trees 38.28 120.32 
9 4. 1700 Chester 40.18 121.13 

10 4.1715 Chico Experiment Sta. 39.42 121.47 

II 4.1784 Clarks burr. 38.42 121.53 
I~ 35.1946 Crater Lake NP HQ 42.90 122.13 
13 4.2147 Cresent City I ~ U.77 124.20 
14 4.~500 Dcwnievil1e Ranger Su.. 39.57 120.83 
15 4. 2910 Euraka lfB City 40.80 124.17 
16 4. 3134 Foresthill Ranger Sta. 39 .02 120.82 
17 ·1. 3136 Fort Bragg 39.57 123.48 
18 35.3455 Grunts Pass 42.26 123.19 
1~ 4.3191 f'ort Ross 38. 31 123.15 
20 4.3761 IJappy Camp 41.80 123.38 
21 4.5188 Los Banos 37 .OS 120.85 
Z2 4.5346 Mariposa 37.48 119.23 
2S 4.5449 lolc Cloud 41.16 122.08 
24 4.6252 North Fork Ranger Sta. 37. 23 119.50 
25 4.7109 Potter Valley PH 39.37 12l.n 
Z6 35.6907 Prospect 2 SW 42.44 122.31 
27 4. 7292 Red Bluff WB Airport 40.15 122.25 
28 4. 7296 Redding Fire St~ No 2 40 .58 122.40 
29 4. 8025 Sawyers Bar Ranger Stn. 41.30 17.3.13 
30 4. 8045 Scotti a ~0.29 124.06 
31 ~.8353 Sonora 57.59 120.23 
32 4.8587 Stony Goergc Reservoir 59.58 122.53 
Sl 4. 8928 Tiger Creek PH 58.45 120.48 
j4 4.9035 Tulelake •L97 1Zl.47 
35 4. 9105 Twin LakE'S 58. iO 120.05 
36 4. 9490 lfeavervi 11 e Ranger Su. 40.73 122.93 
37 4.9699 Willows S9.S2 12Z.12 
38 4.9814 Wrights 38.08 121.57 
39 4. 9855 Yosemi te Park Heodqtrs. 37 .75 119.58 
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Appendix C 

LIST OF SELECTED SYMBOLS 

Definition 

Column vector of coefficients for the i-th ca­
nonical variable of the set of dependent vari­
able 

Canonical variable of precipitation 

Canonical variable of sea surface temperature 

Square of the sample canonical correlation co­
efficient 

Second-order st ationary component of a time 
series 

The i-th canonical correlation coefficient 

Recession constant 

Sample mean of a hydrologic variable for the 
month T 

Population mean of a hydrologic variable for 
the month T 

Monthly precipit ation 

Population autocorrelation coefficient for t 

months time l ag 

River base flow of the i-th month 

Quadratic form 

30 

s 
T 

Definition 

Gamma function 

Column vector of coefficients for the i - th ca­
nonical variable of the set of independent 
variables 

Canonical correlation coefficient 

Sample estimate of pk 

Sample standard deviation of a hydrologic vari­
able for the month T 

r Covariance matrix 

0 
T 

T 

Population standard deviation of a hydrologic 
variable for the month T 

Sea surface temperature 

t Time 

T 

u. 
]. 

v. 
1 

6 

Time lag 

The i - th canonical variable of the set of de­
pendent variables 

The i-th canonical variable of the set of in­
dependent variables 

A sequentially independent stochastic compo­
nent of second-order stationary time series 



KEY WORDS: Multivariate analysis, canonical correlation 
analysis , long-range precipitation forecast, 
snowmelt runoff forecast, confidence region of 
forecasts, precipitation , snowmelt runoff. 

ABSTRACT: The potential for application of canonical 
cor relation ana lysis to hydrologic probl ems is demonstrat­
ed by two problems in long-range hydrologic prediction: 
1 ) forecast of monthly precipitation of three large areas 
of the West Coast of the United States, and 2) forecast 
of seasonal snowmelt runoff for three gaging stations in 
the Flathead River Basin i n Montana. 

Canonical correlation ana lysis is found to be effec­
tive in investigating linear cor relation between two or 
more three-dimensional hydrologi c processes, i n which the 
set of time ser ies of each process are mutua l ly correlat­
ed, in addition to a relatively high correlation between 
the processes themselves. The 1nai n advantages of using 
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this technique concern the significance testing of the 
linear correlation between the processes, the reduced 
effort · in the correlation analysis, and particularly for 
the prediction problem as it concerns the construction 
of a confidence region of the simulataneous predicted 
values. Though not demonstrated in the examples, ca­
nonical correlation analysis can also be used for se­
lecting significant data observation stations for use 
in the correl ation analysis. 

A set of forecasts is made for each prediction 
problem by using the canonical correlation analysis of 
the historical data . Results of these forecasts indi­
cate that the precipitation prediction is not reliable , 
whi le the runoff due to seasonal snowmelt can be wel l 
predicted .Applicability of Canonical Correlations in 
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