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PAT H WAY S O F K V 2 . 1 U S I N G S I N G L E PA RT I C L E T R A C K I N G I N L I V E

C E L L S

Studying the diffusion pattern of membrane components yields valuable information regarding

membrane structure, organization, and dynamics. Single particle tracking serves as an excellent

tool to probe these events. We are investigating of the dynamics of the voltage gated potassium

channel, Kv2.1. Kv2.1 uniquely localizes to stable, micro-domains on the cell surface where it

plays a non-conducting role. The work reported here examines the diffusion pattern of Kv2.1

and determines alternate functional roles of surface clusters by investigating recycling pathways

using single particle tracking in live cells.

The movement of Kv2.1 on the cell surface is found to be best modeled by the combination

of a stationary and non-stationary process, namely a continuous time random walk in a fractal

geometry. Kv2.1 surface structures are shown to be specialized platforms involved in trafficking

of Kv channels to and from the cell surface in hippocampal neurons and transfected HEK cells.

Both Kv2.1 and Kv1.4, a non-clustering membrane protein, are inserted and retrieved from the

plasma membrane at the perimeter of Kv2.1 clusters. From the distribution of cluster sizes, using

a Fokker-Planck formalism, we find there is no evidence of a feedback mechanism controlling

Kv2.1 domain size on the cell surface. Interestingly, the sizes of Kv2.1 clusters are rather governed

by fluctuations in the endocytic and exocytic machinery. Lastly, we pinpoint the mechanism

responsible for inducing Kv2.1 non-ergodic dynamics: the capture of Kv2.1 into growing clathrin-

coated pits via transient binding to pit proteins.
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CHAPTER 1 : INTRODUCT ION

This chapter begins by introducing the complexity of the cell membrane. Then experimental

and analytical techniques that were used in this dissertation to these particular cellular processes

and components is provided. These include total internal fluorescence microscopy and single par-

ticle tracking. The topic of diffusion is discussed next and three popular models for anomalous

subdiffusion, namely fractional Brownian motion, continuous time random walk and diffusion

on a percolation cluster, are given. We next introduce the particular protein studied in this disser-

tation, the Kv2.1 channel, and the motivation for this research. Lastly, an overview of this thesis

is given.

1.1 the cell membrane

The cell membrane aĴ he simplest level is a barrier that separates the interior of the cell from

its external environment [1]. It encloses the cell, maintains fundamental differences between the

cytosol and extracellular space, and defines the boundaries of the cell. It is composed of a double

layer ofl ipids and is less than 10 nm in thickness. The most abundant membrane lipids are

phospholipids. The plasma membrane is also embedded with a wide variety of proteins some

of which can perform as channels and pumps to move different molecules in and out of the cell

across the cell membrane.

In 1972, Singer and Nicholson proposed a model for the plasma membrane; the fluid mosaic

model [2]. Within this model proteins and lipids are allowed to move laterally throughouĴ he

membrane, making the membrane more like a fluid than a solid. The assortment of proteins

and lipids, i.e. integral proteins, peripheral proteins, glycoproteins, cholesterol and lipoproteins,

portray a mosaic made up of many different parts. Since then, our view of the cell membrane

has drastically shifted [3, 4, 5]. We know now thaĴ here are high degrees of complexity and com-

partmentalization [6, 7, 8]. Experimental work has provided detailed information on protein and

lipid dynamics in the cell membrane that has made it apparenĴ hat it is far from a homogenous

mixture ofl ipids and proteins [9, 10, 11].
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Over the years the picture of the cell membrane has evolved from a uniform mixture of com-

posites to an entity with a high degree of order and organization. We know that the proteins

embedded within the membrane do not simply serve as holes in the plasma membrane but have

a multitude of functions. The plasma membrane is a system with a high degree of heterogeneity

and active organization across several length and time scales. And it is precisely this dynamic

organization that is essential to maintain many cellular functions including, but not limited to:

cell-cell communication [12], signal reception and transduction [13, 14, 15], trafficking [16, 17],

and receptor recognition [10].

1.2 microscopy tools

The development and improvement of microscopy techniques has given rise to major advances

in cell biology. Live cell imaging is important in unraveling dynamic processes such as membrane

trafficking, cell signaling and remodeling of the cytoskeleton. Often times there are states within

a process that are missed when analyzing the ensemble population. These transient intermediate

states are revealed only when probing at the single molecule level. This requires highly sensitive

microscopy equipment with a high degree of spatiotemporal resolution. There are various exper-

imental techniques that have been implemented to study the dynamics of particles diffusing in

the cell membrane [18]. These optical techniques include but are not limited to fluorescence corre-

lation spectroscopy (FCS) [19], fluorescence resonance energy transfer (FRET) [20, 21], fluorescence

recovery after photobleaching (FRAP) [22], and single particle tracking (SPT) [23].

Ensemble measurements: FRAP and FCS

Two widely used ensemble fluorescence microscopy techniques to study the diffusion of mem-

brane proteins are FRAP and FCS. FRAP takes use of particles’ diffusion and yields information

about the behavior of an ensemble of molecules. A small area of fluorescently labeled molecules

on the membrane is photobleached using a brief and intense excitation source [22]. Then, the

time required for unbleached molecules to diffuse into the bleached area is measured. The dif-

fusion coefficient can be directly calculated from this time. While this technique is excellent at
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measuring the bulk diffusion coefficient of an ensemble of membrane molecules, it falls short in

differentiating between multiple subpopulations within the ensemble.

FCS is a time-averaging fluctuation analysis developed by Elson and Webb in 1972 [24]. It

can measure the diffusion coefficients and binding kinetics of small molecular ensembles, and

combines high sensitivity with statistical confidence [25]. Typically an FCS setup consists of a

confocal microscope and a photon detector, such as an avalanche photodiode. Fluorescence is

collected from labeled molecules in a small well defined volume near the focus of a laser beam.

The fluorescent fluctuations arise from particles diffusing in and out of the detection volume

and is proportional to the number of fluorescent molecules in the volume. A requirement of FCS

however, is that the magnitude and frequency of the fluctuations reside above the total intensity

of the fluorescence signal. An advantage of FCS is the high temporal resolution, it is able to

achieve a resolution in the microsecond timescale. However, the spatial resolution is more limited.

In a conventional FCS microscope a resolution on the order of 100 nm is expected. Upon the

development of microscopy techniques such as STED! (STED!), the focal volume of FCS can be

reduced to nanoscopic scales, enabling single particles to diffuse in and out of the detection

volume and increasing the spatial resolution by an order of magnitude or more.

1.2.1 Single particle tracking

The point spread function (PSF) of a point source of light can be closely approximated by a two-

dimensional Gaussian. In Fig. 1.1 a single quantum dot (QD) point source (A) is shown along with

its two-dimensional Gaussian fit (B). The accuracy of the system is determined by the standard

error of the mean (sem) of the PSF. Thompson et al [26] derived a theoretical calculation for the

sem taking into account several noise factors such as photon noise or shot noise, camera readout,

pixelation effects and fluorescent background, Eq. 1.1.

s

2 =
s2

N
+

a2/12

N
+

8ps4b2

a2N2 (1.1)

where s is standard deviation of the PSF, a is the pixel size, b is background and N the number of

photons collected. The shot noise of the system is represented by the first term s2/N, the second
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Figure 1.1: Point source PSF and 2D Gaussian approximation (A) PSF of a QD point source of light imaged in a fluorescence microscope.
(B) Two-dimensional Gaussian fit to the QD PSF.

term is a result of the pixel size of the detector, and the last term the background fluorescence.

All of these factors can be minimized by increasing the collection of photons.

In a single molecule imaging experiment the pixel size, a, is determined by the detection

method and magnification (charged couple device). The width of the PSF is a characteristic of

the imaging system. Thus, overall, the PSF width can not be decreased to enhance the accuracy,

and the pixel size can only finitely be improved upon. This leaves us with minimizing the the

background fluorescence b, or rather increasing the signal to noise ratio (SNR). While this ap-

pears simple enough in practice, reducing the background can be challenging, especially with

live cell imaging. For instance biological structures such as lysosomes and mitochondria have

auto-fluorescent properties [27], which increase background fluorescence rather than reducing it.

To achieve nm resolution it is necessary to have a high SNR. This can prove to be a difficult

task in live cell imaging because of their auto-fluorescent qualities mentioned above. As a work

around, confocal microscopes optically section the cell, by use of a pinhole, to reduce background

noise and improve SNR. Another approach, total internal reflection fluorescence (TIRF) microscopy,

selectively excites only the fluorophores within a very thin section [28]. The basis of TIRF mi-

croscopy stems from the behavior of the light at the interface between to mediums with different

refractive indexes. Snell’s law, Eq. 1.2, tells us that a ray of light will bend away from normal, or

refract, as it passes through the interface of a medium of higher refractive index, nglass = n1 ⇠ 1.5,

to medium of lower refractive index, nwater = n2 = 1.33.

n1 sin q1 = n2 sin q2 (1.2)
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Figure 1.2: TIRF An incident ray of light strikes the glass-water interface at the critical critical angle and it total internally reflected.
An evanescent wave is generated and propagates into the cell, illuminating a thin section of fluorophores. As a result
background fluorescence is reduced.

As the angle of incidence increases to a critical angle, qc, the light is no longer refracted into

the lower refractive index medium but instead travels parallel to it. Here sin q2 = 1 simplifying

Snell’s law to Eq. 1.3:

qc = sin�1
✓

n1

n2

◆
(1.3)

Once the critical angle is surpassed the light is totally internally reflected back into the higher re-

fractive index medium, i.e. the glass. This reflection within the higher refractive index medium is

highly efficient. In fact fiber-optic lines use total internal reflection to bounce light along hundreds

of thousands of kilometers. The key principle though, for the use of single molecule imaging, is

that even though the ray of light is totally internally reflected a thin (typically ~ 100 nm), expo-

nentially decaying electromagnetic field is generated and propagates into the medium of lower

refractive index, i.e the water/sample. The intensity of the evanescent wave, Ie, can be expressed

by Eqs. 1.4 and 1.5.

Ie (z) = I (0) e�z/d (1.4)

d =
l0

4p

q
n2

1 sin2
q1 � n2

2

(1.5)

where,
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I : intensity of evanescent wave

z : distance from glass coverslip

d : penetration depth, decay of Ie (z)

l0 : wavelength of light

A shallow evanescent wave is therefore generated by having a large difference in refractive

index between the two mediums, high angle of incident light, and short wavelength. Most of

these parameters, however, are experimentally constrained. The wavelength of light is set by the

fluorophore that needs to be excited and the refractive indexes of the sample and glass coverslips

are fixed. The angle of incidence is determine by the numerical aperature (NA) of the objective in

objective-type TIRF microscopy, Eq. 1.6.

NA = n3 sin q1 (1.6)

Here n3 is the refractive index of the immersion media. For high NA (1.45) oil-objective this is

usually ~ 1.51. This is one of the reasons why high numerical aperture objectives are important

for high-sensitivity, high-accuracy TIRF microscopes.

Probes

Sir George G. Stokes was one of the first scientists to describe fluorescence in 1852 [29]. He

observed that the mineral fluorspar emitted red light when illuminated with ultraviolet light.

Further observations led to the discovery that fluorescence emission always occurred at a longer

wavelength than the excitation wavelength. This difference between excitation and emission wave-

lengths is the Stokes shift. Fluorescent molecules absorb photons, gain energy and enter an ex-

cited state. The most probable process following absorption starts with relaxation to the lowest

vibrational energy level, this process is known as vibrational relaxation or internal conversion.

Fluorescence occurs when relaxation from this state back down to the ground state is accom-

panied by the emission of a photon. Most fluorophores can repeat this process thousands of
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times before the molecule photobleaches. Photobleaching is the loss of the molecule’s ability to

fluoresce due to photon-induced chemical damage.

It was not until the 1930s that the use of fluorescent molecules was initiated in biological studies.

The true jumpstart however was in the 1990s when the first fluorescent protein, green fluorescent

protein (GFP) was purified and expressed in live cells1 [30]. Over the last couple decades the col-

lection of genetically encoded fluorescent proteins from jellyfish has ignited a revolution for live

cell imaging. Since the development of GFP, many color variants have been designed, including

yellow fluorescent protein (YFP), red fluorescent protein (RFP), and cyan fluorescent protein (CFP).

There a now hundreds of different fluorescent probes, each with their own spectral properties

and size variations [31]. There are even fluorophores that have color-switching ability. An advan-

tage to fluorescent proteins is that they can be genetically encoded and linked to a cDNA for

expressing a specific protein as a chimera with a fluorescent protein.

Organic fluorophores do have some disadvantages. They are only excited by a precise wave-

length of light and they photobleach fairly rapidly when continuously illuminated. However, re-

cently more stable inorganic fluorophores have been developed to overcome these disadvantages.

One example of these fluorochromes are nanocrystals made of semiconductor material called QDs

[32]. QDs are excited with a broad spectrum of wavelengths but emit at a very specific peak. The

emission wavelength of the QD depends on the size of the nanocrystal itself. The smaller the QD

the lower the wavelength. Usually QD’s are 2-10 nm in diameter. For use in biological systems the

QDs are conjugated with useful substrates such as antibodies or streptavidin, to enable specific

labeling of molecules of interest. The combination of long-lived fluorophores such as QDs and

fluorescent probes such as GFP has enabled elaborate and elegant investigations of live cells at

the single molecule level that were before impossible.

Colloidal gold nano-particles and latex beads.

1 The first description of green fluorescent substance in the jellyfish Aequorea victoria was in 1955. However it wasn’t
until 40 years later that the protein responsible for the jellyfish’s fluorescence was purified, constructed into an expres-
sion vector and expressed in E. coli and C. elegans. Martin Chalfie, Osamu Shimomura, and Roger Y. Tsien together
were awarded the 2008 Nobel Prize in Chemistry for their discovery and development of the green fluorescent protein.
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1.3 diffusion : theoretical models

The first recorded observations of diffusion extend as far back as 60 BC. The Roman poet and

philosopher Lucretius described the motion of dust particles in his scientific poem, De rerum

natura (On the Nature of Things). “...their dancing is an actual indication of underlying move-

ments of matter that are hidden from our sight...”[33]

In 1828 Robert Brown, a botanist, observed pollen grains suspended in water, visible with his

microscope, perform a sort of dance [34]. At first Brown suspected that this movement was some

sort of life process. However, with more careful observations he found that the motion of the

pollen never stopped. If in fact this motion were a life process, eventually the small pollen grains

would run out of food and movement would cease. Taking these observations one step further

he looked at soot in the same manner. He even went as far as to look at ground-up bits of the

Sphinx [35]! For all of these similar-sized particles in water at the same temperature the motion

was always the same . In the end, the motion of these particles had nothing to do with life. The

dance-like movement that Brown observed was the result of constant collision between the grains

of pollen and water molecules being agitated by their thermal motion. This random motion of

particles suspended in a liquid or gas due to thermal energy has thusly been coined Brownian

motion, or rather normal diffusion. Diffusion is very important in cells. It is how many molecules

find each other to complete certain tasks and even how bacteria finds its food [36].

1.3.1 The random walk

We will start with a simple example of a one-dimensional random walk. Consider a particle

(the random walker) starting at a site, x = 0, Fig. 1.3. We can describe the movement of our

particle as jumps of distance, l either to the right or left with equal probability. The jumps are

i.i.d. After one jump the walker will be located at ±l. Where will the walker end up after several

jumps, potentially it could end up very far from its origin at x = 0? We can calculate this easily

8



Figure 1.3: One dimensional random walk The random walker starts at x = 0 and moves either to the left or to the right with equal
probability such that after one step its new location is ±l.

Figure 1.4: The random walker (A) For a walker allowed to take n = 3 steps these are the 2n = 8 possible outcomes. Each row depicts
a possible trajectory of the walker. (B) Histogram plot of the distance traveled by the walker in each scenario in (A). (C)
Repeat of the histogram plot in (B) only now the walker is allowed n = 40 steps and 10,000 possible outcomes. The
average distance moved by the walker is zero, hxni = 0. (D) MSD, (

⌦
x2

n
↵
) of the same walker described in (C).

enough by summing the contributions to the particle’s overall trajectory made with each jump,

ji = ±l,

xn =
n

Â
i=1

ji. (1.7)

Fig. 1.4A shows all the possible walks for n = 3. Each example in Fig. 1.4A can be regarded as

a trajectory. Lets consider all 2n possible trajectories, and find hxni,

hxni =
*

n

Â
i=1

ji

+
=

n

Â
i=1

hjii =
n

Â
i=1

0 = 0. (1.8)

So the hxni = 0, which is made apparent in Fig. 1.4B and C. Fig. 1.4B shows the count of our

walker for n = 3 and 2n = 8 trials, while Fig. 1.4C shows the displacement of the walker for n =40

and 10,000 trajectories. But we know, as seen in Fig. 1.4A that the walker does indeed move! What

this example shows us is that the probability of the walker ending up where it started is small

for large n. However we can still gather information from the displacement of the walker.

Lets now consider a more useful average. Instead of the mean displacement we’ll calculate the

mean squared displacement (MSD),
⌦

x2
n
↵
.
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⌦
x2

n
↵

=

* 
n

Â
i=1

ji

!2+
(1.9)

=

*
n

Â
i=1

n

Â
k=1

ji jk

+

=
n

Â
i=1

⌦
j2i
↵

= nl2 (1.10)

Because, given that the jumps are i.i.d., hji jki =
⌦

j2i
↵

di,k. If each jump were to occur at a regularly

spaced time interval Dt, then the particle will make n = t/Dt random jumps. We define the

diffusion constant to be D = l2/(2Dt). The generalized MSD then becomes:

⌦
r2↵ = 2dDt (1.11)

where r is the displacement of the particle and d is the lattice dimension. We can see from Eq.

1.11 that the MSD grows linearly with time, Fig. 1.4D.

The MSD can also be calculated from the probability density of displacements, P (r, t), that is

the probability that the walker is displaced to r after time t (i.e. the propagator)

⌦
r2 (n)

↵
=
Z

r2P (r, t) ddr. (1.12)

For our one-dimensional random walker P (x, t) is straightforward to calculate. Jumps to the

right occur with probability p and jumps to the left 1 � p. The walker’s displacement if it moved

m steps to the right and t � m steps to the left is then x = m � (t � m) = 2m � t. This probability

is given by a binomial distribution:

p (m, t) =

0

B@
t

m

1

CA pm (1 � p)t�m . (1.13)
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The probability of jumping to the left or right is equal, p = 1/2. Substituting this into Eq. 1.13,

using the Sterling approximation2 t! ⇠= (2pt)1/2 (t/e)t, and x ⌧ t,

P (x, t) dx ⇠=
1

(2pt)1/2
e�x2/(2t)dx, (1.14)

a Gaussian distribution, shown in Fig. 1.4B and C.

The case may be however, that we are interested in a more general derivation of the probability

of r after n steps, Pn (r). To do this we will use the method of characteristic functions. Consider a

walk that starts at the origin in a continuous space (so that the particle’s positions are not confined

to the lattice space), Rd, whose steps come from the probability density p (r0). The characteristic

function of the probability density is

P (k) =
Z

Pn (r) eik·rddr, (1.15)

the Fourier transform of Pn (r). In the same manner the characteristic function of the probability

density of steps is

l (k) =
Z

p (r0) eik·r0ddr0. (1.16)

Note that

l (0) =
Z •

�•
p (r) dr = 1, (1.17)

following from the definition and normalization of p (r). Recall that the steps are independent.

Thus thee process obeys the Markov property

Pn+1 (r) =
Z

Pn
�
r0
�

p
�
r � r0

�
ddr0, (1.18)

making it a Markov process. The Fourier transform of Eq. 1.18 is

Pn+1 (k) = Pn (k) l (k) . (1.19)

2 Sterling’s Approximation: n! =
p

2pnnn exp (�n)
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It can be seen that Eq. 1.19 is a recursive relation yielding,

Pn (k) = l (k)n . (1.20)

We can obtain the probability density, Pn (r) from the inverse transform of Pn (k)

Pn (r) =
1

(2p)d

Z
Pn (k) e�ik·rddk. (1.21)

Because the characteristic function of a distribution stands as a generating function of its mo-

ments we can easily find the MSD (the second moment) from here.

Lets take the example of a Gaussian step probability density in one-dimension with zero mean

and finite variance,

p (x) =
1p

2ps

2
e�x2/2s

2 , (1.22)

with

R
xp (x) dx = 0 and

R
x2 p (x) dx = s

2 < • . (1.23)

The step characteristic function, l (k) , using Eq. 1.16 is then

l (k) = e�s

2k2/2, (1.24)

so that, from Eq. 1.20, Pn (k) = e�ns

2k2/2. Taking the inverse Fourier transform of Pn (k) we obtain

the propagator (Eq. 1.21),

Pn (x) =
1p

2pns

2
e�x2/2ns

2 . (1.25)

We can write Eq. 1.25 in terms of time,

t = nt,

where t is the step time unit,
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Figure 1.5: Deviation from normal diffusion The MSD as a function of time for super diffusion, a > 1 (green), normal diffusion a = 1
(blue) and subdiffusion a < 1 (red).

P (x, t) =
1p

4pDt
e�x2/4Dt, (1.26)

where D = s

2/2t is the diffusion constant. This result is essentially the same probability density

we found in Eq. 1.14, apart from the normalization factor of (4pDt)�1/2.

1.3.2 Deviations from normal diffusion

There are often many instances where a particle’s motion is hindered. Diffusion processes that

deviate from Brownian motion are considered anomalous. Anomalous diffusion has been exper-

imentally observed in the cell membrane of a variety of different cell lines by an assortment of

techniques, including single-particle tracking described in Section 1.2.1. With anomalous subdif-

fusion the MSD is non-linear with time, Eq. 1.27.

⌦
r2↵ ⇠ Gta (1.27)

where a is the anomaly exponent. These deviations from Brownian motion can be due to a num-

ber of combinations of events such as active transport, transient binding, confinement, tethering,

and/or the partitioning of membrane domains; the first event resulting in super-diffusion (a > 1)
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and the latter four events leading to anomalous subdiffusion (a < 1). Note that a = 1 is normal

diffusion, Fig. 1.5.

Anomalous subdiffusion is not limited to cells and plasma membranes. Occurrences of anoma-

lous subdiffusion have been observed in a variety of different systems, both organic and inorganic.

Charge carrier transport in amorphous semiconductors [37, 38, 39, 40, 41, 42, 43] and controlled

dynamics of bulk-surface exchange in porous glasses [44, 45, 46] are a couple of examples of

inorganic subdiffusion. Anomalous subdiffusion is also observed in one, two and even three di-

mensional spaces. For instance, in 1D the dynamics of a polymer through a pore in a membrane

[47, 48], the 2D motion of a transmembrane protein in the plasma membrane [49, 50, 51, 52], and

the 3D diffusion of a molecule in the cell cytoplasm [53] and in Cajal bodies [54].

Three popular models for anomalous subdiffusion are provided in this section. First the continuous

time random walk (CTRW) is presented. This model describes the effect of transient immobiliza-

tion due to temporary binding. Next diffusion on a percolation cluster is discussed. This model

effectively describes diffusion through a crowded, obstructed area. Lastly fractional Brownian

motion is described.

Continuous time random walk

The CTRW model describes a non-stationary process. It was originally formulated by Mon-

troll and Weiss [55] in 1964 and more recently described and summarized nicely by Klafter and

Sokolov [35] and ben-Avraham and Shlomo Havlin [56]. Examples drawn from these two sources

are reproduced here to describe the CTRW model.

In brief: The random walker moves from one site to another the same as our Brownian walker.

However the walker has a modified time scale. Before each new jump the walker waits a certain

time, t that follows a probability density function (PDF) of waiting times, y (t) . Fig. 1.6 gives a

schematic representation of this sort of walk on a square lattice. Here the walker moves from

lattice point to lattice point randomly. However, at each step it waits a certain amount of time,

represented by the circle (i.e. the larger the circle the longer the walker waits before taking the

next step). If we were to plot the sizes of all of these circles the distribution of sizes is analogous
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Figure 1.6: CTRW schematic Schematic representation of a CTRW on a square lattice. At each site the walker has equal probability of
moving to the left, right, up or down, just as in a two-dimensional random walk. However, at each site the walker has to
way a certain amount of time (represented by the size of the circles) before it can move on to the next site. The smaller
the circle, the less time the walker waits before moving, the larger the circle, the longer it waits. The distribution of circle
sizes would be the waiting-time distribution for that particular walk.

to the waiting time distribution. It can be seen then that the main parameter defining the walk is

the distribution of waiting times.

We begin with a random walk on a lattice that starts at the origin, but the steps are taken at

random times given by the probability density of waiting times, y (t). We define the waiting times

for different jumps as statistically independent and to be characterized by y (t). The probability

that the waiting time between steps is greater than t is

Y (t) =
Z •

t
y

�
t0
�

dt0 (1.28)

We define yn (t) as the probability density that the nth jump occurs at time t. Similarly to Eq.

1.18, because the waiting times between steps are independent

yn+1 (t) =
Z t

0
yn
�
t0
�

y

�
t � t0

�
dt0. (1.29)

Also, y1 (t) = y (t). Note that the waiting times are all non-negative values allowing us to make

use of the Laplace transform

ŷ (s) =
Z •

0
y (t) e�stdt. (1.30)

Taking the Laplace transform of Eq. 1.29
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ŷn (s) = ŷ (s)n , (1.31)

and similarly for Eq. 1.28,

Ŷ (s) =
1 � ŷ (s)

s
. (1.32)

From the probability density of the position of a walker at time t we can translate from steps

into time,

P (x, t) =
•

Â
n=0

Pn (x) cn (t) . (1.33)

Here, cn (t) is the probability of the walker taking n steps up to time t. Taking the Laplace

transform, followed by the Fourier transform we obtain

P (k, s) =
•

Â
n=0

Pn (k) c (s) =
1 � y (s)

s

•

Â
n=0

l

n (k)y

n (s) . (1.34)

The geometric series can be summed resulting in:

P (k, s) =
1 � y (s)

s
1

1 � l (k)y (s)
, (1.35)

the Fourier-Laplace transform of the probability density of finding the walker at position r at

time t.

If we were to first suppose that all the waiting times are equal y (t) = d (t � t) (t is a constant)

each step will wait the same amount of time before the next step. With this distribution of waiting

times we obtain a random walk as described in Section 1.3.1. In the case of diffusion in the plasma

membrane (a key interest in this dissertation) this is a rare situation. Upon the introduction of any

disorder, seen with the waiting time PDF, the walk becomes a much more complicated process.

Let’s next consider an exponential distribution of waiting times, y (t) = 1
t

exp�t/t. As time

passes for the walker in this case the probability of becoming stuck for a long time does not grow.

Using this transform lets us more easily compute the MSD in the Laplace domain for this case.

The Laplace transform of this waiting-time PDF is
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y (s) =
1

1 + st

(1.36)

The second moment of the characteristic function is the MSD. In general the nth moment in the

Fourier domain is given as:

Mn (t) = (�i)n dnP (k, t)
dkn

����
k=0

,

and in the Laplace domain

Mn (s) =
Z •

0
Mn (t) e�stdt = (�i)n dnP (k, s)

dkn

����
k=0

M2 (s) = � d2P (k, s)
dk2

����
k=0

= �1 � y (s)
s

d2

dk2
1

1 � l (k)y (s)

����
k=0

=
y (s)

s [1 � y (s)]
⌦
l2↵+ 2y

2 (s)
s [1 � y (s)]2

hli2 . (1.37)

We use the Fourier-Laplace transform PDF in Eq. 1.35 and the fact that l (0) = 1. We also define

hli =
R •
�• xp (x) dx and

⌦
l2↵ =

R •
�• x2 p (x) dx. These are the first and second moments of the

displacement of one step. In the case of a symmetric CTRW the second term in Eq. 1.37 vanishes,

M2 (s) =
⌦

x2 (s)
↵

=
y (s)

s [1 � y (s)]
⌦
l2↵

=
⌦
l2↵

1
1+st

s
⇥
1 � 1

1+st

⇤

=
⌦
l2↵ 1

s2
t

(1.38)

Applying an inverse Laplace transform we get,

⌦
x2 (t)

↵
=

⌦
l2↵ t
t

(1.39)

It is important to notice the linear dependence the MSD has on time. So long as the first and

second moment of the waiting time PDF exist this will always be the case.
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What is the case then when the first moment does not exist for the waiting-time distributions?

One such example is a power law distribution of waiting times, y (t) ⇠ t�1�a. Consider a heavy-

tailed waiting-time distribution,

y (t) =
a

G (1 � a)
t

a

t1+a

, 0 < a < 1 (1.40)

With this distribution of waiting times the probability of getting trapped for a long time increases

as time passes. This is an important difference from the exponential waiting-time distribution and

is what makes distributions with no first moment (such as the power-law distribution) so special.

The MSD for the power law distribution of waiting times does not grow linearly with time as with

the exponential distributed waiting times. Instead the MSD grows as

⌦
x2 (t)

↵
µ ta (1.41)

Immobilization due to temporary binding can give rise to the sort of heavy-tailed waiting time

distributions described above leading to anomalous subdiffusion [42]. This has been observed

experimentally by several groups in live cells [49, 57, 58].

Diffusion on percolation clusters

Fractals are everywhere in nature. In fact, natural objects are more likely than not to be fractals3.

One of the most well understood and important phenomena that gives rise to natural fractals is

percolation. Percolation is important due to is ability to model phase transitions and yet be

understood and formulated with simple geometrical concepts [56]. The examples provided here

in order to explain diffusion on percolation clusters are derived from the work of ben-Avraham

and Havlin [56].

Let’s begin by considering a square lattice (i.e. Fig. 1.7A). Each bond of the lattice has a prob-

ability of being present p or absent 1 � p. When the probability of the bonds being present p is

small one can imagine that there is a small number of clusters with connected bonds, Fig. 1.7B.

However, as we increase p the size of these clusters grows. This will continue until we reach a

3 “Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning
travel in a straight line.”[59]

18



Figure 1.7: Percolation (A) Lattice with probability of bonds being present p = 1. (B) Lattice with probability of bonds being present
p = 0.4 and (C) p = 0.6. Notice how the clusters of connected bonds grows as p increases. The lattice in (C) has a
concentration that is equal to the critical concentration for percolation. Here a cluster spanning from one edge to the other
is shown in bold and the non-spanning clusters with dotted lines.

point that a cluster of connected bonds exists that spans from one edge of the lattice to the other

edge, Fig. 1.7C. When the size of our lattice is infinite the concentration of connected bonds that

creates this condition is called the critical threshold. Namely,

p = pc (1.42)

Below the critical threshold the clusters are finite and have a fractal dimension of

d f = d � b/n (1.43)

When the concentration reaches criticality, Eq. 1.42, a developing infinite percolation cluster forms

along with other finite clusters. The infinite cluster can be described as a random fractal. The

dimension of the fractal is given by Eq. 1.43. Once the concentration is pushed above criticality,

p > pc the system still contains the infinite cluster and finite clusters with the same fractal

dimension d f described above. However, the infinite cluster changes when the concentration

is pushed beyond the critical threshold. At distances shorter than the correlation length x (p) ,

where x ⇠ |p � pc|�n, the cluster resembles a fractal. When the distances are larger than x (p) the

cluster acts as a regular space.

With these characteristics we can explain diffusion in percolation clusters as diffusion in fractals

[56]. This type of diffusion can be envisioned as a ’blind ant’ wandering through a maze, with

each connected bond being a wall the ant cannot pass through. When p > pc the infinite cluster

is homogenous at long length scales therefore diffusion is normal4. When the system reaches

the critical threshold, Eq. 1.42, diffusion is anomalous due to the self-similarity of the infinite

4 This applies in the long-time asymptotic limit with the fractal dimension of the walk, dw = 2.
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cluster at all length scales (again with the fractal dimension of the walk, dw = 2). Below criticality

the walker is limited by the finite size of the clusters. Therefore the MSD is dependent on the

correlation length,
⌦

x2 (t)
↵
⇠ x (p)2 in the limit t ! •. Generally speaking, so long as the mean

displacement of the walk is smaller than the span of the cluster the MSD is

⌦
r2 (t)

↵
⇠ t2/dw (1.44)

The relation of this model to diffusion in the cell membrane is quite direct. When there are no

obstacles5 to hinder the walker diffusion is normal. As the concentration of obstacles increases

diffusion transitions from anomalous at short time scales to normal at long time scales. As the

concentration is pushed to the percolation threshold this crossover from anomalous to normal

diffusion is also pushed to longer and longer times, making the walk more anomalous. When the

concentration is equal to the percolation threshold the crossover time becomes infinite [60]. This

means that diffusion on a percolation cluster (p = pc) is anomalous at all time scales. Going back

the our “blind ant” wandering through a maze, one can perceive that the ant will run into many

dead-ends causing it to turn back on its path and re-walk a certain area several times before being

able to escape. In the case of proteins on the cell surface this is a very important aspect. In order

for many cellular events to take place two different molecules must find each other, sometimes

even more than once. The retracing of steps enforced by diffusion on a percolation cluster induces

the molecules to search an area more thoroughly allowing molecules within a close vicinity to

find each other much more quickly [61].

Fractional Brownian motion

Crowding is often a reality in cellular environments. Some work has proposed that crowding

leads to viscoelastic properties that result in long-time correlations in the trajectory of a particle.

This scenario can be modeled by fractional Brownian motion (FBM) [62, 60]. However, the physical

mechanism regarding crowding is not fully understood in terms of the FBM model. FBM is a

generalization of Brownian motion. With FBM the noise is correlated. This correlation is described

by the Hurst exponent H, 0 < H < 1, where H = 1/2 is normal diffusion.

5 Obstacles include immobile objects, both in the sense of things not moving at all and things moving much more slowly
than the walker. Both cases appear immobile and present themselves as obstacles to the walker.
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Let B (t) be ordinary Brownian motion. Following the definition of Mandelbrot and Van Ness

[62] the definition of FBM is

BH (t) =
1

G (H + 1/2)

Z 0

�•

⇣
|t � s|H�1/2 � |s|H�1/2

⌘
dB (s) (1.45)

+
Z t

0
|t � s|H�1/2 dB (s)

�

An importantly unique property of FBM is that it is H-self similar. While FBM is not stationary

itself, its increments are stationary [63]. The sequence of increments of FBM are very strongly

correlated:

bH (j) = BH (j + 1)� BH (j) (1.46)

The autocovariance of the increments, bH (·), satisfies

r (j) = E (bH (j) bH (0))

⇠ s

2H (2H � 1) j2H�2

as j ! • [64]. The MSD for FBM is also sublinear in time [65],

⌦
x2 (t)

↵
µ t2H (1.47)

thus for H < 1/2 subdiffusive dynamics are observed.

1.4 review of experimental observations in live cells

While advances in microscopy have provided tools for studying individual molecules in vivo,

the difficulties of these measurements still remain. There are many uncontrollable variables in

live cell experiments that can not be avoided, such as: variability from cell to cell due to different

states within the cell cycle, the size of cells places a threshold on the accessible length scale, mu-

tant or artificial probes may cause an altered artifactual cellular response. Additionally to these

inherent traits of living cells, it is very difficult, if not almost impossible to probe a single event
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or protein. The movement of proteins and transport of cargo within a cell is a concerted effort

with many different players. For example, current research suggests that kinesin an anterograde

specific motor, and dynein a retrograde specific motor team together to move cargo bidirection-

ally within the cell, either through concerted efforts or in a ’tug-of-war’ fashion [66, 67, 68]. It has

also been shown, experimentally and theoretically, that a mixture of passive and active diffusion

often occurs with cargo [69, 70] where motor proteins facilitate active transport [71] and cytoplas-

mic flows induced by cytoskeletal networks generate passive transport [72, 73]. Also, DNA/RNA

binding proteins such as transcription factors [74, 75], experience a mixture of sliding and hop-

ping in order to more quickly find target sequences along the nucleic acids [76, 77, 78, 79]. It can

quickly be seen that simple classification of anomalous or normal diffusion is often times not

enough, as there is most oft a mixture of several different systems resulting in a complexity that

must be carefully sorted through. While this may seem a logical conclusion, often times only one

model for anomalous diffusion is chosen to explain experimental results. Not until recently has

the combination of theoretical models been used to describe the motion of cellular components

accurately [49], this is described in more detail in Chapter 4.

An important feature to consider when attempting to classifying diffusion is the spatio-temporal

scale. For instance, a particle may be undergoing normal diffusion on one scale and anomalous

diffusion on another scale. One example is the instance of caged diffusion where a particle is

retained within compartments such as the cytoskeletal network. On the short time scale (or small

length scale) the particle displays normal diffusion. Within this length of time the particle does

not reach the boundaries of the compartment and thereby does not appear to be confined. How-

ever as the time scale is lengthened the particle interacts with the boundaries of the compartment

and consequently anomalous subdiffusion is observed. The particle is not indefinitely confined

within a compartment, and can escape from one compartment to be caught into another compart-

ment. If the time scale (or length scale) is long enough, this hopping from one compartment to

the next will appear as normal diffusion, at a much slower rate than before. The crossover from

one diffusion regime to another may be observed through the MSD,
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Figure 1.8: Crossover diffusion (A) Schematic MSD displaying the crossover from normal to anomalous and then back to normal
diffusion. As in Eq. 1.48 the normal diffusion regimes go as t and the anomalous regimes as ta. (B) Schematic of the time
dependent diffusion coefficient, D (t) = hr2(t)i/t.

⌦
r2↵ µ

8
>>>>>>><

>>>>>>>:

t for t ⌧ tCR1

ta for tCR1 < t < tCR2

t for t � tCR2

. (1.48)

This crossover from normal to anomalous and back to normal diffusion has been described thor-

oughly by Saxton [80, 81] and others [82, 83] and is schematically shown via the MSD in Fig. 1.8A

and the time-dependent diffusion coefficient, hr2(t)i/t = D (t), in Fig. 1.8B. It has also been ob-

served experimentally by Kusumi [84] as well as in our lab. The diffusion of cargo transport also

sees a crossover from passive to active transport in a similar manner. In short distances the move-

ment of the cargo is slow and diffuses normally. However on a larger length scale the motion of

the cargo is directed and superdiffusive (a > 1), as it is driven by molecular motors [85, 86].

Next a compilation of experimental results will be covered along with the characterization of

the diffusion within that system. First research in the cytoplasm and nucleoplasm will be pre-

sented, followed by investigations in cellular membranes. An extensive amount of work studying

lipid granules in fission yeast, Schizosaccharomyces pombe (S. pombe), has been carried out by Tolić-

Nørrelykke, Oddershede and Metzler et al [87, 88, 89, 90]. Lipid granules are fat storages inside

cells and provide a very nice, inert probe to investigate the diffusion properties in the cytoplasm

of living cells. Extensive work was performed over a decade using both optical tweezers and

video microscopy by this group to measure the motion of lipid granules in S. pombe across sev-
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eral orders of magnitude in time (from the ms regime to minutes). The authors are able to show

that at short times (in the ms range) the data is best described by a CTRW with a truncated power-

law waiting time distribution, displaying weak ergodicity breaking. However, contrastingly at the

longer times the motion of these lipid granules is found to be best modeled by FBM. The authors

have not been able to resolve a model that is consistent with the data at all time scales.

Other groups have investigated the motion of fluorescently labelled mRNA macromolecules

[61], GFP-labelled chromosomal loci in E. coli and Caulobacter crescentus [91] and telomeres in

the nucleus of mammalian cells [57, 92] in order to probe the motion of molecules within the

cytoplasm of living cells. All of these groups found the motion of these macromolecules to be

subdiffusive. The work of Golding and Cox revealed that the motion of mRNA is subdiffusive

with an exponent of a = 0.77 ± 0.03 over three orders of magnitude in time [61]. In nice agreement

with Golding and Cox, Weber et al. showed that RNA proteins also exhibit subdiffusive behavior

with a similar exponent, also over three orders of magnitude in time. The authors were also able

to dismiss a CTRW scheme due to the coinciding time and ensemble averaged data. Instead they

found their observations are most consistent with fractional Langevin motion [91]. Garini et al.

have put together a nice body of work concerning the motion of fluorescently labeled individual

telomeres in the nucleus of mammalian cells. They were able to acquire data over six decades in

time by combining different acquisition methods, namely the combination of a charged coupled

device (CCD) camera (fast 2D measurements) and a confocal setup (quicker 3D measurements) on

the same microscope. The motion of the telomeres is seen to be anomalous up to 100 s and then

crosses over to normal diffusion with the MSD exponent moving from a = 0.03 to 1. Two different

models are compared to interpret the data, a CTRW and various models of polymer dynamics.

The authors find that the dynamics of the telomeres is consistent with a reptation model for a

Rouse chain, a model describing the thermal motion of long, entangled ideal chain [57]. Later,

using p-variation, displacement correlation, and ergodicity convergence the authors were able to

eliminate CTRW as a possible model for the telomere mode of motion, suggesting that the data

instead obeyed a fractional process [92].

As described in Section 1.1 the plasma membrane of cells is a highly complex and heterogenous

landscape. There has been extensive, comprehensive work done with a multitude of membrane

components including membrane proteins and lipid varieties in the plasma membrane. A thor-
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ough review by Hölfling and Franosch [93] does a commendable job of summarizing the history

of these experiments and their results. Many groups have used SPT to probe the dynamics of

membrane components [84, 94, 95, 96] including work from our lab presented in succeeding

chapters [49, 50]. Another popular technique to study the motion of membrane components is

FCS and numerous groups have used this setup [97, 98, 99, 100]. In the work of Franosch et al.

[101] FCS was used to measure the displacements of diffusing proteins over long times. A model

membrane system was used with a lipid bilayer of SPOC and immobilized DPPE. The protein

avidin irreversibly

binds to the DPPE lipid anchors and was fluorescently labeled. The immobilization fraction is

controlled by the concentration of lipid anchors, thusly also controlling the surface coverage of

avidin. The authors observe subdiffusive behavior with a crossover from normal to anomalous

transport depending on the surface coverage (i.e. amount of crowding). Both a CTRW scenario and

FBM are excluded based on the experimental results, and instead the anomalous diffusion is owed

to motion in a percolating system. The main drawback to this system is also its biggest advantage,

and that is the simplicity and control that a model lipid bilayer provides in comparison to the

plasma membrane of live cells.

Espinoza et al. investigated the movement of the high affinity IgE receptor, FceRI, labeled with

QDs in mast cells using SPT [102]. They analyze the probability distribution of jump lengths

and demonstrate the presence of corals ranging in size from a tens of nanometers to hundreds

of nanometers. They show that the movement of IgE-FceRI is restricted, as in diffusion on a

fractal with a dimension d < 2. Investigations of the integral membrane protein aquaporin-1

revealed that this membrane protein displays normal diffusion across several microns, and on

the scale of minutes [103]. QD-labeled aquaporin channels were imaged at frame rates up to

91 Hz for up to 6 minutes. In COS-7 fibroblast cells and Madin-Darby canine kidney epithelial

(MDCK) cells Crane and Verkman found that > 75% and ~ 60% of the integral membrane protein

aquaporins respectively diffused freely over 7 mm in 5 minutes. Upon cytoskeletal disruption with

latrunculin B no effect was seen, however in protein de-enriched blebs the diffusion was increased

by fourfold. In cholesterol depleted MDCK cells aquaporin-1 diffusion was significantly restricted

arguing against the accumulation of aquaporin-1 in lipid raft domains. The authors conclude that
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aquaporin-1 is a non-interacting protein displaying mostly Brownian motion, dependent on the

concentration of obstructions.

Overall, there is an extremely large body of work that aims to elucidate the motion of molecules

within the cell. These investigations encompass both three-dimensional studies within the cyto-

plasm and nucleoplasm of cells as well as two-dimensional research in the plasma membrane. A

re-occurring theme among these results is deviations from normal diffusion within some spatio-

temporal scale. While the topic of anomalous subdiffusion is extensively studied, understanding

the underlying mechanism responsible for observed diffusional behavior has proved a difficult

task due to the complexity and intricacy of intertwined cellular processes.

1.5 the voltage-gated potassium channel , kv2 .1

We now shift to the main protein of interest in this dissertation, Kv2.1. Experimental techniques

described in Section 1.2 combined with analysis described in Section 1.3 were used to study this

protein channel.

The voltage-gated potassium channel is widely expressed in a number of tissues in mam-

mals including: hippocampal neurons, pulmonary smooth muscle cells, cerebral artery smooth

muscle, myocardium and pancreatic b-cells. In these cells Kv2.1 plays a prominent role in the

regulation of excitability. These channels are also uniquely known to target to stable, micron

sized cell surface puncta. The physiological importance of Kv2.1 is almost an exhaustive list and

only a handful of examples are presented here. It encodes a slowly inactivating delayed recti-

fier current in the mouse heart and reduction of the current is responsible for long QT syndrome

[104, 105, 106]. Kv2.1 regulates the membrane potential of pancreatic beta cells which thereby reg-

ulates insulin release [107, 108]. In cortical neurons Kv2.1 plays a role in apoptosis [109, 110] and

in hippocampal pyramidal neurons it helps regulate somato-dendritic excitability [111]. Kv2.1

is also important in pulmonary artery vascular smooth muscle where it is responsible for the

hypoxia-sensitive delayed rectifier current [112, 113, 114] and in cerebral circulation as well.

The Kv2.1 channel is tightly regulated, primarily by phosphorylation on the C-terminus. There

are at least 15 different sites of phosphorylation on the C-terminus [115, 116]. We know that the

C-terminus is necessary for cluster formation. Upon the removal of the last 318 amino acids of
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the C-terminus the channel no longer forms cell surface puncta [117]. These clusters are regu-

lated by several different stimuli resulting in declustering. This includes: glutamate treatment,

K+-induced depolarization [115], ionomycin treatment, muscarinic stimulation via treatment of

carbachol, and chemically induced ischemia. All of these physiological stimuli increase cytoplas-

mic concentrations of Ca2+and induce dephosphorylation. A shift in the membrane activation

curve is also seen upon declustering. Together these collective observations suggest Kv2.1 clus-

ters might serve as a neuro-protective order in hippocampal neurons [118, 119, 115].

Remarkably, although 97% of Kv2.1 channels on the cell surface reside within these micro-

domains, only the 3% of non-clustered channels are responsible for generating the high-threshold

delayed rectifier currents indicative of Kv2.1 [120]. This suggests that perhaps Kv2.1 clusters have

a non-traditional function, beyond the scope of membrane excitability.

1.6 overview of this dissertation

The work presented in this thesis is focused on characterizing the movement of plasma mem-

brane components, specifically the Kv2.1 channel. By trying to understand the underlying mech-

anisms of organization at the single molecule level, important information can be gained about

the intricate network of cellular processes. Following this logic, studying the diffusion pattern of

membrane components yields valuable information regarding membrane structure, organization,

and dynamics. Single particle tracking is an excellent tool to probe these dynamics and is used to

study membrane proteins and lipids and interactions with their surroundings. While it is often

observed that the diffusion pattern of components in the membrane of live cells is anomalous,

the underlying mechanisms that give rise to this diffusion pattern remain highly controversial.

We are investigating the dynamics of the voltage gated potassium channel, Kv2.1. Despite the

clear physiological importance of Kv2.1 channels and exposed location dependence of channel

function, the mechanisms underlying cluster formation and maintenance are still largely un-

known. The work presented in this dissertation characterizes the diffusion pattern of Kv2.1 and

determines alternate functional roles of surface clusters by investigating recycling pathways us-

ing single particle tracking in live cells. By understanding the physical mechanisms responsible
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CHAPTER 2 : ERGODIC AND NONERGODIC PROCESSES COEX I ST IN

THE PLASMA MEMBRANE

Diffusion in the plasma membrane ofl iving cells is often found to display anomalous dynam-

ics. However, the mechanism underlying this diffusion paĴern remains highly controversial. In

this chapter, we study the physical mechanism underlying Kv2.1 potassium channel anomalous

dynamics using single molecule tracking. Our analysis includes both time series averages ofi n-

dividual trajectories and ensemble averages. We show that an ergodic and a nonergodic process

coexist in the plasma membrane. The ergodic process resembles a fractal structure with its ori-

gin in macromolecular crowding in the cell membrane. The nonergodic process is found to be

regulated by transient binding to the actin cytoskeleton and can be accurately modeled by a

continuous-time random walk. When the cell is treated with drugs that inhibit actin polymeriza-

tion, the diffusion paĴern of Kv2.1 channels recovers ergodicity. However, the fractal structure

that induces anomalous diffusion remains unaltered. These results have direct implications on

the regulation of membrane receptor trafficking and signaling.

2.1 introduction

The plasma membrane is a highly complex system with a dynamic organization required to

maintain many fundamental processes that include signal transduction, receptor recognition, en-

docytic transport and cell-cell adhesion. The study of the diffusion paĴern of transmembrane

proteins and lipids grants biophysical information on membrane organization, structure and dy-

namics. In particular, single molecule tracking provides insight into the interaction of membrane

proteins with their surroundings. Stochastic molecular transport is described by the probability

distribution of displacements and how it evolves over time. This distribution is called a propa-

gator, and in the case of Brownian motion it is Gaussian. Diffusion processes that deviate from

Brownian motion are considered anomalous and they involve propagators that may or may not

be Gaussian. For example, diffusion in a fractal has a stretched Gaussian propagator [121].

Experimental and theoretical work suggests there is a correlation between macromolecular

crowding and anomalous diffusion [122, 123, 101]. However, the mechanism behind hindered dif-

fusion in living cells remains controversial. Several models have been proposed, including mem-
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brane compartmentalization, receptor and cytoskeleton binding, and membrane heterogeneity

(lipid rafts). Particle trajectories are frequently characterized by their MSD [124]. A Brownian par-

ticle in a two-dimensional space yields an MSD of
⌦
Dr2 (t)

↵
= 4Dt. However, in many systems the

MSD scales as a sublinear power law, indicating anomalous diffusion. In general
⌦
Dr2 (t)

↵
µ tg,

where g is the anomaly exponent. Anomalous subdiffusion is manifested by a characteristic ex-

ponent g < 1, and anomalous superdiffusion by g > 1.

Two biologically relevant processes are recognized to induce anomalous subdiffusion in the

plasma membrane: i) transient immobilization and ii) geometrical inhomogeneities. The former

can be modeled by a CTRW with a heavy tailed waiting-time probability distribution function

[125]. Besides giving rise to anomalous diffusion, a CTRW is nonergodic, in other words the tem-

poral average of a long trajectory differs from the ensemble average [126, 127, 128]. Molecular

crowding and fence-like structures are responsible for space inhomogeneities that can give rise

to a hierarchy of cul-de-sacs in the molecule path. One well-known model of such a scenario is

given by the percolation cluster, which may be regarded as a random fractal [56]. Diffusion on

a fractal is a stationary process and thus ergodic. Both a CTRW and diffusion on a fractal have

non-Gaussian propagators. A third anomalous diffusion model is FBM [62, 129, 89], characterized

by long-time correlations. Contrary to the previously discussed models, FBM has a Gaussian prop-

agator with a time-dependent diffusion coefficient. Different methods such as p variation tests

for categorizing diffusion are emerging [130? ]. Currently these tests are still too simple to handle

cases like the one presented here, where more than a single mechanism may be involved. Analy-

sis of the propagator P (r) can provide information on the anomalous behavior, but elucidating

the underlying mechanism from the MSD or the propagator alone is an insurmountable task.

It is common to use the cumulative distribution function (CDF), (CDF
�
r2, tlag

�
=

R r
0 P (r0) 2pr0dr0

in two dimensions) to distinguish between normal and anomalous diffusion [131, 132]. Within

this formalism, Brownian motion yields a single-exponential curve

CDF
�
r2, tlag

�
= 1 � exp (�r2/r2

0) (2.1)

where r2
0 is the MSD in a time tlag. On the other hand, assuming a two-component mobility leads

to a double-exponential curve
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CDF
�
r2, tlag

�
= 1 � [w exp (�r2/r2

1) + (1 � w) exp (�r2/r2
2)] (2.2)

where r1 and r2 are defined by the diffusion constants of the fast and slow mobility component

respectively, r2
i = 4Ditlag, with fractions w and (1 � w) [131]. This method gives minimal infor-

mation about the diffusion process but it provides enough information to identify whether the

diffusion pattern is normal or anomalous. Normal diffusion yields w values close to 1 (or zero)

in the biexponential fit, but when diffusion becomes anomalous, w approaches 0.5.

Here we report studies on the membrane diffusion of the voltage-gated potassium channel

Kv2.1 analyzed by single particle tracking. Our previous work suggests that clusters are formed

by an actin-based mechanism that corrals mobile channels behind a diffusion barrier [133, 117].

We dually label the channels with GFP and QDs and track their position with nanometer accuracy

using TIRF microscopy. We acquired 1,015 trajectories, many of them longer than 10 minutes, to al-

low the analysis and comparison of both time and ensemble averages. We studied the underlying

mechanisms for the observed anomalous diffusion focusing our attention on the CTRW, diffusion

on a fractal and a combination of both. Our findings show that Kv2.1 trajectories are best mod-

eled by a CTRW in a fractal geometry. The implications of these processes are discussed. The CTRW

is regulated by the actin cytoskeleton while the geometric inhomogeneities are consistent with

macromolecular crowding.

2.2 methods

2.2.1 Cell culture and transfection

human embryonic kidney (HEK) 293 cells (American Type Culture Collection, passage 38-

45) were cultured in Dulbecco’s modified eagle medium (DMEM), supplemented with 10% fetal

bovine serum (FBS), at 37˚C in a 5% CO
2

atmosphere. HEK cells were transfected with 0.5 mg/mL

GFP-Kv2.1-BAD and 1.5 mg/mL BirA vectors 8.3 as described previously [117, 134] to express

Kv2.1 channels labeled with GFP on the N-terminal domain. A biotin acceptor domain (BAD)

for biotin ligase BirA was added to the extracellular region between S1 and S2 in order to tag

channels with QDs. After electroporation, cells were plated on cover-glass-bottom culture dishes
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(Bioptechs, Butler, PA) precoated with Matrigel (BD Biosciences, San Jose, CA). All cells were

used for measurements within 24 hours of transfection.

2.2.2 Total internal reflection microscope

All images were acquired using an objective-type TIRF microscope. The microscope was home-

built around an Olympus IX71 body. A 473 nm laser line with 2.5 mW of power after the objec-

tive (Olympus PlanApo 100x/1.45) was used as excitation source. A back-illuminated electron-

multiplied charge coupled device (EMCCD) camera (Andor iXon DU-888) operated at -85˚C, with

an electronic gain of 300 was used. Simultaneous two color imaging was achieved by optically

splitting the image onto two halves of the camera, each corresponding to a separate color. Both

the stage (Bioptechs, Butler, PA) and the objective were maintained at 37˚C. Movies (>5000 frames)

were acquired using Andor IQ software at an average frame rate of 8 frames per second.

2.2.3 Imaging conditions

GFP-tagged Kv2.1 channels were labeled with QDs through a biotin-streptavidin biochemistry.

Prior to imaging, the cells were rinsed six times with a dye-free imaging saline 8.6 to remove the

media. The cells were incubated for 5 minutes in a 0.1 nM solution of streptavidin conjugated

QDs (Qdot 655, Invitrogen, Carlsbad, CA) and 150 mM bovine serum albumin (BSA) (IgG- fatty-

acid-free, Sigma-Aldrich) in imaging saline 8.4. Following incubation the cells were rinsed again

6 times with imaging saline to ensure the removal of any unbound QDs. During imaging, cells

were maintained at 37˚C.

2.2.4 Actin cytoskeleton disruption

Actin depolymerizing drugs were used to disrupt the cytoskeletal network. Swinholide A

(Sigma-Aldrich, St Louis, MO) was dissolved in DMSO and added during imaging experiments

to the cells at a final concentration of 70 nM [133]. Cytochalasin D (Sigma-Aldrich, St Louis, MO)

was dissolved in DMSO and added to the cells while imaging, at a final concentration of 20 nM.

Cells were imaged up to 20 min after drug application. DMSO-only controls showed no evident

effect on Kv2.1 clusters.
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2.2.5 Models for anomalous diffusion

Continuous time random walk

A CTRW represents energetic disorder that may stem from transient binding [124? , 135]. In this

model, a particle jumps between lattice sites, having a random waiting time at each site with a

probability density that scales as t�(a+1). The energy landscape of this process is distinguished by

wells with a broad depth distribution that transiently trap the particle. This landscape yields an

infinite characteristic waiting-time mean and a finite jump-length mean. Many different physical

systems are described by CTRWs [136, 137, 138, 139, 140]. This behavior is nonergodic and it

can only exist away from thermodynamic equilibrium. Despite the complexity of CTRWs, the

cause for ergodicity breaking is fairly simple. Generally, a system exhibits ergodicity when the

measurement time is long in relation to the characteristic time scale [126]. In the CTRW, the

experimental time can never reach the characteristic time of the process because the mean waiting

time is infinite. Therefore, time averages never approach the ensemble averages, independent

of the experimental time. The ensemble-averaged MSD follows a power law ta, but the time-

averaged MSD is linear, resembling Fickian diffusion [126, 127, 128]. However, the time-ensemble

averaged MSD (TEA-MSD) (i.e. averaging over both time and ensemble) exhibits aging behavior

[127, 128, 141].

Diffusion on a fractal.

Diffusion on a fractal resembles a random walk in an entangled labyrinth with the walker

encountering dead ends on all length scales. Fractal geometries are found in a broad range of

structures in nature, and thus the implications of diffusion in fractals are extensive [56, 142]. In

the cell membrane a fractal structure may appear, for example, when macromolecular crowding

reaches the percolation threshold [132, 143]. Fractals are characterized by a non-integer dimension

d f and diffusion in a fractal is found to be subdiffusive with a critical exponent b < 1. This

parameter is related to the fractal dimension of the walk dw by b = 2/dw [56, 132, 144]. Intuitively,

the dimension of a random walk in a plane is two dimensional. However, if dw > d f then each

site in the fractal is visited by the walker several times before moving on to explore a different
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Figure 2.1: MSD of bound QD on glassMSD (blue) of a single QD bound to glass. The inset (red) shows the trajectory of the same dot.

region. As in the labyrinth analogy, the walker returns through the same path every time it hits

a dead end.

2.3 results

2.3.1 Kv2.1 diffusion pattern is non-Gaussian and nonergodic

Single Particle Tracking

QDs enabled us to track individual channels, while GFP fluorescence provided characteristics

of the clusters as an ensemble. QD labeling was carefully controlled so that QDs remained at

low density to allow for individual particle tracking. QDs present advantages over fluorescent

proteins both in signal to noise ratio and in the total time an individual tracer can be followed.

We track single particles and analyze their trajectories using custom-written LabView codes, 5.

For tracking, we manually select the position of the particles in the first frame and a 10x10 pixel

region of interest (ROI) is created around each selected particle. The software fits a 2-dimensional

Gaussian function to the particle [145, 23] using a Levenberg-Marquardt least squares algorithm.

The image of individual QDs is set by the point spread function of our imaging system, in our case

it has a standard deviation s =150 nm. Subsequently, the code analyzes the following frame and

the ROI surrounding each particle is automatically adjusted to follow the particle. We analyzed

the absolute error in our system using QDs bound to glass. The position of the bound QD has a
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Figure 2.2: Clustered and non-clustered Kv2.1 trajectory Overlay image of GFP-tagged Kv2.1 clusters and individual QDs. Kv2.1 clusters
are shown in green and QD-tagged channels in red. The trajectories of (A) a clustered and (B) a nonclustered (free) Kv2.1
channel are shown. Interestingly, the nonclustered channel ignores the compartment perimeters and the channel travels
freely into and out of a cluster. Scale bars: 1 mm.

distribution with a standard deviation of sv = 8 nm (Fig. 2.1) which corresponded to an average

350 photons collected within 80 ms exposure time [23]. To account for blinking behavior, only

QDs with intensity above a predetermined threshold were used in the analysis, all other frames

were discarded.

In order to optimize the algorithm, we have checked its reliability dependence on ROI size. As

we reduce ROI size, the algorithm becomes faster but the accuracy starts to decrease when the

ROI becomes smaller than 10 pixels. We have also compared the accuracy of Gaussian non-linear

fittings vs. center of mass algorithms using a similar moving ROI strategy. Our center of mass

algorithms were found to have worse accuracy than Gaussian fits with an additional 1 nm sem.

The MSD of each trajectory was calculated in LabView, 9.4.1, by averaging over all point pairs

because it was previously found to yield more accurate results than averaging independent pairs

[146].

Fig 2.2 shows two-color TIRF images of HEK cells expressing GFP-Kv2.1 channels, labeled with

QDs. Representative QD trajectories are superimposed on the images. All Kv2.1 channels ex-

pressed in the cell are conjugated to GFP to provide information on cluster size and location.

From GFP photobleaching step analysis [147] we find that Kv2.1 density is 15-70 molecules/mm2

inside clusters. On the other hand, only one QD is present every 10 clusters. Two distinct channel
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Figure 2.3: Statistical analysis of both QD- and GFP-labeled channels (A) Square displacement CDF of QD-tagged clustered channel. CDF
data are fit to both a single- (dashed red line) and a double- (solid blue line) exponential curve, Eq. 2.1 and 2.2 respectively.
(B) MSD of QD-tagged non-clustered channel. The inset shows the corresponding trajectory. (C) Square displacement CDF
of GFP-tagged non-clustered channel (D) MSD of GFP-tagged non-clustered channel.

populations are observed, clustering and freely diffusing channels [133]. About 97% of the QDs

remain confined to one cluster for the entire experimental time.

As control experiments we checked that non-clustered channels tracked through their QD or

their GFP tags yield the same results as those obtained by tracking clustered QD-labeled channels.

Fig. 2.3 shows temporal MSD and CDF data of representative trajectories of both GFP- and QD-

tagged channels. Clearly the same behavior is observed for QD and GFP channels. Namely, the

temporal MSD of non-clustered channels follows anomalous diffusion, which scales as tg, and the

CDF fits to a double exponential curve.

Distribution of square displacements.

In order to determine whether channel diffusion is normal or anomalous, we constructed the

CDFs of all trajectories at numerous time lags and fit the data to monoexponential or biexponential

functions using an automated least squares algorithm in MATLAB [131, 94]. The starting point
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of the MSD, CDF, and waiting time analysis is finding the square displacements. We have written

automated software in LabView 9.4.1 to perform this task on each individual trajectory. First, we

identify all intensity values below a threshold and discard those frames by replacing the X and

Y coordinates with not-a-number (NaN) values. This addresses the problem of QD blinking and

frames with low SNR. Then the square displacements R2 for all tlag = mt1 are found:

R2
m,i,j =

�
Xi+m,j � Xi,j

�2
+

�
Yi+m,j � Yi,j

�2 (2.3)

where i is the frame number of trajectory j.

The temporal MSD is found for each trajectory j,

⌦
Dr2 �tlag = mt1

�↵
T =

1
M

T/t1

Â
i

R2
m,i,j (2.4)

where M is the total number of square displacements different from NaN and T is the total

averaging time.

The ensemble MSD is found at each frame i,

⌦
Dr2 �tlag = mt1

�↵
T =

1
N

N

Â
i

R2
m,i,j (2.5)

where N is the number of available trajectories (not NaN) at frame i.

The time-ensemble square displacement average in a total time T at tlag = mt1 is

⌦⌦
Dr2↵

T

↵
ens =

⌦⌦
Dr2↵

ens

↵
T =

t1

NT

T/t1

Â
i

N

Â
j

R2
m,i,j (2.6)

The CDF is computed in LabView, 9.4.1. Given that r2
k is the displacement square value greater

than the corresponding pk percent of the data values in the Rm,1<i<m,j array, then CDFm,j
�
r2

k
�
.

We have performed measurements on a non-clustering potassium channel, Kv1.4, as an addi-

tional control on our analysis. Even though larger square displacements are seen in Kv1.4, this

channel yields anomalous diffusion characteristics similar to Kv2.1 (Fig. 2.8, Fig. 2.9 and Table

2.1). In the case of Kv1.4, the temporal MSD distribution is also observed to be broader that the

ensemble MSD (Fig. 2.1), but not as broad as in Kv2.1 (Fig. 2.4). This indicates that this channel is

also subjected to a CTRW, but the effect of the CTRW is less dominant than in Kv2.1.
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Table 2.1: MSD and CDF Parameters Statistical results (mean and standard deviation) as obtained from the MSD and CDF

MSD CDF
Drug mean g s.d. g mean w s.d. w

Kv2.1 none (normal cells) 0.65 0.22 0.52 0.14

Kv2.1 Cytochalasin D 0.70 0.16 0.51 0.17

Kv2.1 Swinholide A 0.78 0.18 0.54 0.13

Kv1.4 none (normal cells) 0.77 0.22 0.56 0.19

Simulation 0.92 0.03 0.85 0.21

Figure 2.4: Statistical analysis of Kv2.1 channel trajectories (A) Square displacement CDF of a representative clustered channel at tlag
= 0.1 s. Fits to both single-exponential using Eq. 2.1, dash red, and biexponential using Eq. 2.2, solid blue, are shown
together with their respective residuals. The inset is the MSD of this trajectory. (B) Log-log plot of the temporal MSD of 26

representative trajectories of clustered channels. The dashed lines scale as t 0.8 in order to show that the trajectories are
sublinear with an exponent equal to or smaller than 0.8. The MSD data for a longer time range is presented in Fig. 2.5. (C)
Weighting value of the slow mobility component (w) in Eq. 2.2 vs. lag time. (D) Distribution of MSD values calculated from
individual trajectories and ensembles in clustered channels for tlag = 0.1 s. (E) Control measurements of MSD distribution
in GFP-tagged channels without QDs. In order to track individual GFP we analyzed non-clustered channels, which exhibit
a 5-time higher median effective diffusion constant. (F) Distribution of MSD values calculated from simulated confined
random walkers.

Probability density functions

Given that walker is at the origin r0 = 0 at t0 = 0, the propagator P (r) is the probability

density of finding the walker at a distance r at time t > 0. We experimentally found P for a

trajectory j from the square displacements. First we compute the histogram of displacements
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Ri =
q

R2
m=1,i,j. Then we normalize each histogram element hq to the total counts and to the

corresponding volume 2pRqd, where d is the bin size and Rq is the bin center, to obtain the

probability density function

P
�

Rq
�
= hq/(2pRqd Âu hu) (2.7)

The analysis of residuals reveals strong systematic deviations from the monoexponential func-

tions. All analyzed CDFs, belonging to both free and clustered channels, fit well to a biexponential

form indicating the diffusion pattern is not Gaussian (Fig. 2.4A and Fig. 2.3). The temporal MSD

agrees with these results (Fig. 2.4B). The diffusion parameter is very broadly distributed but in

almost all free and clustered (at short times) channels the MSD scales as a sublinear power law.

The details of the CDF and MSD statistical results are shown in Fig. 2.8 and Table 2.1. Besides the

fact that a biexponential fit yields better results than a monoexponential one, we use the parame-

ter w in Eq. 2.2 as an indicator of diffusion anomaly. This parameter is found to be independent

of time lag (Fig. 2.4C) and it is 0.5, suggesting all trajectories are anomalous. Normal diffusion

would yield w close to zero or one. The clustered channels are analyzed at short times so that the

cluster perimeter does not influence our results.

MSD and CDF Analysis of Anomalous Diffusion

Individual trajectory analysis (Figs. 2.4A and 2.4B) is an excellent starting point to characterize

anomalous diffusion even though it gives limited information. The MSD curves are fit to MSD =

Gtg

lag. The MSD of clustered channels is not expected to scale linearly with time indefinitely, even

in the case of normal diffusion, due to the lack of space availability for the displacement to keep

growing. At short times the cluster perimeter should not interfere with the particle trajectory

but at long times the MSD asymptotically approaches a limiting value. If confined diffusion were

following Fick’s law, the MSD could be modeled by approximation to a series solution [148], in

which its first terms are equivalent to extrapolating a linear growth for short times with a constant

(saturation) at long times.

⌦
Dr2 (t)

↵ ⇠= r2
c [1 � exp (�rDt/r2

c)] (2.8)
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Figure 2.5: Time-averaged MSDs for different trajectories of cluster-confined channels As can be seen from this plot, the MSDs do not reach
a plateau but instead they continue to increase across all times. The solid black lines serve as a guide, exemplifying the
continuous growth of the MSDs over time.

For a circular cluster, r2
c is the cluster area. Hence, the crossover time at which the behavior

changes from exponential to constant is tc = r2
c/4D. Following the same path, we can approximate

the trajectory of a confined particle diffusing on a fractal to the equation

⌦
Dr2 (t)

↵ ⇠= r2
c
⇥
1 � exp

�
�Gtb/r2

c

�⇤
(2.9)

which yields a crossover time tc = (r2
c/G)

1/b.

The MSD of a CTRW with the walker confined to a finite volume was recently examined by

Neusius et al [149]. In contrast to stationary diffusion processes and against intuitive thinking,

the temporal MSD is sublinear in lag time for long times. It was found that at long times the

temporal MSD scales as
⌦
Dr2↵

T ⇠ t1�a and the crossover time tc = (r2
c/2G)

1/a. For short times, as

expected, the walker is not affected by the confinement and the time-ensemble average scales as

T1�atlag.

Fig. 2.4D displays distributions of time- and ensemble-averaged MSDs. Temporal MSD distribu-

tions are constructed from the individual trajectories. The ensemble MSD distribution is measured

by averaging the square displacements of all trajectories occurring at a specific time, e.g. the dis-

placements occurring between 100.0 s and 100.1 s. If the diffusion process were ergodic, both

distributions would be similar. However, the temporal MSD is significantly broader than the en-

semble MSD for both free and clustered channels. We confirmed that these results are not due to
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interactions between the QD and the extracellular matrix or the cover slip surface by analyzing

the trajectories of GFP-Kv2.1 channels. Because 3% of the Kv2.1 channels do not cluster, we can

find individual non-QD-tagged, GFP-Kv2.1 channels freely diffusing outside the clusters. The sig-

nal to noise ratio and thus the tracking accuracy are poorer than those of QDs but we are able

to track and analyze these channels, following only the GFP signal, as control measurements.

Single GFP-Kv2.1 yielded the same CDF, MSD and distributions of square displacements as the

ones found using QDs (Fig. 2.4E and Fig. 2.3). The median of the effective diffusion constant, i.e.

hDr2i/4tlag, is five-fold higher in free channels than in clustered channels; but the temporal MSD

distribution remains significantly broader than the ensemble MSD. This effect is seen in both GFP

and QD tracking of non-clustered channels. As a control of our averaging algorithms, Fig. 2.4F

shows the time and ensemble averages for the simulated confined random walkers. The two dis-

tributions are very similar and, as expected from the central limit theorem applied to a Gaussian

process, the width of the distribution for the simulated data is s µ 1/p
N , where N is the number

of independent variables.

The effects of the cluster perimeter are apparent in the temporal MSD of individual trajectories.

Fig. 2.5 shows a set of temporal MSDs. Due to the CTRW effect the magnitude of the MSD scatters

over a broad range. However, most trajectories show similar critical exponent. For times shorter

than the crossover time the MSD scales as tb. For longer times the combined effect of the CTRW

and the confinement are clear. Instead of observing a MSD saturation at r2
c , the trajectories display

a sublinear growth in tlag. Fig. 2.5 also shows lines indicating different power laws at short and

long times. At short times, the lines scale as tb, with b coming from the fractal structure. At

long times, they scale as t1�a, with a set by the CTRW. Good agreement between the data and

these lines is seen. The a and b parameters used for drawing them are taken directly from the

aforementioned analysis without any fitting to the data.

In order to compare the diffusion pattern to the CTRW model predictions, we examined the

TEA-MSD for all data at different lag times. The TEA-MSD was obtained by applying an additional

ensemble average to the temporal MSD. Fig. 2.6A shows the MSD vs. the length of the trajectory,

which was measured by truncating the experimental data at a time T and performing a temporal

average (i.e. a moving average). The TEA-MSD fluctuated for short times (due to small number

statistics) but it scaled as a power law
⌦⌦

Dr2↵
T

↵
ens ⇠ Ta�1 beyond 3 s (30 points) with a = 0.90
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Figure 2.6: Time-ensemble averaged MSD of clustered Kv2.1 channels (A) The MSD is plotted against total time, i.e. the time used in the
moving average. The straight lines show a power law fit MSD ⇠ Ta�1, with a slope a � 1 = �0.10. (B) The MSDs for
total times 20 s and 80 s are plotted against lag time. At both total times the MSDs exhibit the same subdiffusion critical
exponent.

± 0.01 for all lag times. The TEA-MSD was found to scale as
⌦⌦

Dr2↵
T

↵
ens ⇠ tg

lag with g = 0.79 ±

0.02 (Fig. 2.6B). Only lag times up to 0.5 s were included in these data to avoid boundary effects

(these are appreciated in the inset of Fig. 2.4A). All the previously discussed anomalous diffusion

models predict the ensemble average scales as
⌦
Dr2↵

ens ⇠ th

lag. The analysis presented in Fig. 2.6

confirms this behavior, with the exponent determined to be 0.8 ± 0.1.

Propagator results

We have fit the propagators of normal diffusion, two-component mobility, geometrical fractal

[121], and percolation cluster (i.e. random fractal) [142] to the CDF of Kv2.1 trajectories. FBM has

a Gaussian propagator so at a fixed time it cannot be distinguished from normal diffusion. Fig.

2.7 shows representative fits with the corresponding residuals and the plots of the different fits

with the probability distribution function. The propagator of the CTRW as given by [124] was fit

directly to the probability distribution. In contrast to FCS [132, 97], our single particle tracking

data do not fit equally well the different models. The propagator fits better to an approximate

double Gaussian than to fractal equations. We propose that the reason for this is that single

particle tracking captures the spatial inhomogeneities of the cell membrane to a larger extent

than FCS. The propagators for two realistic anomalous components, such as the combination of a
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Figure 2.7: Fits to the propagators arising from the different anomalous diffusion models We have included the Gaussian (normal and frac-
tional Brownian motion), double Gaussian (2-component mobility), random fractal (e.g. percolation cluster), geometrical
fractal and CTRW propagators. (A) fits to CDF and corresponding residual. (B) Plot of the single and double Gaussian fits
on the probability distribution function (PDF). (C) Plot of the random fractal, geometrical fractal and CTRW fits on the PDF.
The CTRW was fit directly to the PDF.

CTRW and a fractal or the combination of two fractal structures, have too many free parameters

to provide any useful information.

Monte Carlo simulation of a confined random walker

In order to provide an unequivocal test of our analysis and averaging programs we simulated

normal diffusion in a confined environment. Then we analyzed the simulated trajectories using

our home-written algorithms. The resulting histograms are shown in Fig. 2.8B, F and Fig. 2.9A.

The random walk implementation was written in LabView. A walker is placed at the origin

of a square lattice and it randomly jumps to one of its four nearest neighbors’ lattice locations.

The walker remains confined to a 40 pixel radius by applying reflecting boundary conditions at
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Figure 2.8: Statistical result from the analysis MSD and CDF (A-E) Histograms of the parameter w in Eq. 2.2 as follows: (A) Kv2.1 in
normal cells, (B) Monte Carlo simulation control, (C) Kv1.4 non-clustering channels control, (D) Kv2.1 in cells treated
with Cytochalasin D, (E) Kv2.1 in cells treated with Swinholide A. (F-H) Histograms of the sublinear exponent g in the
MSD, i.e. MSD ~ tg

lag. Each plot is: (F) Kv2.1 and simulation control, (G) Kv2.1 in cells treated with Cytochalasin D, (H)
Kv2.1 in cells treated with Swinholide A.

Figure 2.9: Fitting to monoexponential and biexponential CDFs The plots on the right show the corresponding probability distribution
function. (A) Simulated confined random walker. This control yields a good fit to a monoexponential CDF. (B) Cells
treated with Swinholide A. (C) Cells treated with Cytochalasin D. (D) Non-clustering Kv1.4 channel.
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x2 + y2 � 40. A single step consists of 100 jumps. 1500 steps are recorded and analyzed as an

individual walker trajectory.

Experimental waiting time distribution of a 2D random walker

The probability of finding a random walker confined within a radius R during a time tis the

probability Pw (t, R) that it remains within a given region of radius R for all time < t. This was

derived in 2D by Saxton [81]. In brief, the probability density of finding a walker at a distance r

from the origin, at time t, in a cylindrical region of radius R with absorbing boundaries is

P (r, t) =
1

pR2

•

Â
n=1

J0 (ran)

J2
1 (Ran)

exp
�
�a

2
nDt

�
(2.10)

where J0and J1 are Bessel functions of zeroth and first order, respectively, and Ran are zeros of

J0: i.e., J0 (Ran) = 0. Then, the probability that the random walk remains within the region until

time t is

Pw (t, R) =
Z R

0
P (r, t) 2pdr = 2

•

Â
n=1

1
Ran J1 (Ran)

exp
�
�a

2
nDt

�
(2.11)

In order to simplify this notation, we have named the threshold radius R in this derivation.

However, this variable appears as RTH everywhere else in the text.

Analysis of waiting time distributions

Heavy-tailed CTRWs display waiting times in all scales, enabling the observation of transient

channel immobilization. We identified the events in which the channel remained confined within

a radius R2
TH ⌧MSD and constructed the distribution of waiting times from these events. The wait-

ing time distribution is computed for the channel trajectories using an algorithm implemented

in MATLAB. For a specific radial threshold RTH, the displacement squares R2
m=1,i,j < R2

TH are

identified. Then for each identified i,j matrix element we count the number of frames where the

channel does not cross the threshold. This is accomplished by evaluating displacement squares

at higher m values - i.e. µ = max m with . The waiting time distribution is found from the oc-

currences of t = µt1. Fig. 2.10 shows the distributions for three different thresholds, R2
TH = 500,

1000, and 2000 nm2, which correspond to radii 3, 4, and 6 times the standard error of the mean
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Figure 2.10: Distribution of waiting times as measured using different radial thresholds The solid symbols are from clustered channels (left
axis) and the open circles from free channels (right axis). The threshold value indicates that the particle was measured to
remain within that circle for the specific time. The dashed line indicates a power law Pw (t) ⇠ t

�(1+a) with a = 0.9. This
value corresponds to the measured MSD. At long times (t > 3 s) the distribution appears to drop faster than t � 1.9,
suggesting a breakdown in the heavy tail of the CTRW. However, this is an artifact in our measurement, which derives
from QD blinking because QDs are not in the “bright” state for that long. To verify this, we determined the probability
distribution of QD “bright” times and found it to have a median of 10 s. For comparison, the figure shows a line that
scales as t

�1.9, as expected from a CTRW with a = 0.9. The distribution for clustered channels is identical to that of the
free channels (o).

localization accuracy (22, 32, 45 nm respectively). Remarkably, the distribution of immobile times

does not change with the threshold radius, which is consistent with a binding model. The same

distribution is found for non-clustering channels.

2.3.2 Kv2.1 anomalous diffusion is modeled by a CTRW on a fractal

The distributions of temporal and ensemble MSDs are consistent with the nonergodic CTRW

model where the temporal averages become random quantities different from the ensemble aver-

ages [128]. Noticeably, the time-ensemble averaged MSDs exhibit aging, which can be modeled by

a CTRW with a waiting time distribution that scales as 1/t

1+a [124, 135]. The agreement between

our results and the CTRW is very convincing, but both the temporal MSDs and the time-ensemble

MSDs are sublinear in lag time. This is expected from diffusion on a fractal but not from a CTRW

[127]. In theory, the two processes can coexist, and thus we investigated the combination of a

CTRW and a fractal [150, 151]. Meroz et al. recently simulated a CTRW on a fractal structure [151].

The ensemble-averaged MSD was found to follow a power law

⌦
Dr2 �tlag

�↵
ens = Gta·b

lag (2.12)
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where a and b are the critical exponents of the CTRW and the fractal, respectively. Due to the

fractal structure, the temporal MSD exhibited anomalous subdiffusion . An additional ensemble

average yielded aging and sublinearity in lag time

⌦⌦
Dr2 (t)

↵
T

↵
ens ⇠ Ta�1t1�a+ab

lag (2.13)

These theoretical predictions agree with all our data (time MSD, ensemble MSD and time-ensemble

averages) yielding a = 0.90 ± 0.01 and b = 0.77 ± 0.04. For comparison, the theoretical value of b

of a walker on a percolation cluster is 0.70 and on a Sierpinski gasket is 0.86 [56].

What physical mechanisms induce a CTRW? This process can be caused by either transient

binding or membrane compartmentalization. In the former model the waiting times correspond

to the dissociation constant while in the latter they are related to the probability of hopping to

the next compartment. The data in Fig. 2.10 indicate that if the CTRW corresponded to hop diffu-

sion, the compartments would have radii smaller than 22 nm. While this is theoretically possible,

such dense compartmentalization is highly improbable. Several studies have reported membrane

compartmentalization in the range 140-350 nm [131, 6, 152]. Lipid raft microdomains with radii

as small as 20 nm have been reported [153, 154, 155], but in these cases the compartments are

produced by self-association of lipids with saturated chains. Kv2.1 channels have been shown

to target lipid rafts [156] and thus it is possible that the transient localization occurs within raft

domains tethered to the cytoskeleton. The evidence presented here shows that the channels are

either transiently immobile or localized within very small compartments because the waiting

time distribution does not change upon measuring the probability that the molecule stays within

radii of 22, 32 or 45 nm. Furthermore, we found the time distribution scaled close to 1/t

1.9, cor-

responding to a= 0.9 as found from the MSDs. The same distribution is found in the single GFP

trajectories showing once more that this effect is not induced by the QDs.

2.3.3 Effect of actin cytoskeleton on Kv2.1 diffusion pattern

We hypothesized actin plays a dominant role in Kv2.1 dynamics and investigated its effect by

treating the cells with Swinholide A, a toxin that disrupts actin fibers [157]. After Swinholide

A application, clusters are rapidly dissolved and Kv2.1 channels become free. Strikingly, the
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Figure 2.11: Kv2.1 analysis after treatment with actin inhibitors Channels were originally cluster-confined. After Cytochalasin D the chan-
nels remain inside clusters, but after Swinholide A, the channels become free. (A-B) Distribution of time averaged (top)
and ensemble averaged (bottom) MSDs in cells treated with (A) Swinholide A and (B) Cytochalasin D. The distribution
of temporal MSDs is no longer broader than the ensemble distribution. (C) CDF of representative trajectory after treat-
ment with Swinholide A. (D) Distribution of waiting times as measured using different radial thresholds of 500 nm2,
1000 nm2, and 2000 nm2 in Swinholide A treated cells. For comparison the distribution in untreated cells is also shown.

Kv2.1 diffusion process becomes ergodic (Fig. 2.11A) but anomalous diffusion is still found (Fig.

2.11C, Fig. 2.8E, H, Fig. 2.9B). Individual trajectories analysis shows the CDF is anomalous and

MSD is sublinear in tlag. Therefore, the mechanism underlying stationary anomalous diffusion is

independent of actin filaments suggesting it is governed by interactions with macromolecular

obstacles not dependent on the cytoskeleton. Similar results to those with Swinholide A were

obtained with a different actin inhibitor, namely Cytochalasin D (Fig. 2.11B, Fig. 2.8D, G, Fig.

2.9C).

Motivated by the recovery of ergodicity, we measured the new distribution of waiting times.

This distribution strongly depended on the radial threshold indicating that stationary anomalous

diffusion was not related to transient binding (Fig. 2.11D). Why are there immobile episodes

without transient binding? Even a Brownian walker has a finite probability of remaining within a

very small radius. The qualitative difference between a Brownian walker and a walker in a CTRW

is the dependence on RTH.
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The implications of our findings are clear. The actin cytoskeleton sets in action a non-stationary

CTRW mechanism through a network of anchoring points. As experiments progress, Kv2.1 chan-

nels find more stable binding sites and remain on those locations for longer times. Each channel

moves toward an equilibrium state and, eventually, it will find a location where it would pause

for an extremely long time, such as the lifetime of the cell. In practice, this never happens. As

in many physical processes in living cells, the diffusion pattern of potassium channels is actively

maintained out of equilibrium. The cell constantly recycles transmembane proteins by absorbing

them and sending new ones into the membrane [158]. If the system were left alone, i.e. no energy

was being spent on the plasma membrane, it would eventually reach a quasi-equilibrium state

where all Kv2.1 potassium channels would be immobile

2.4 discussion

We found that the diffusion pattern of Kv2.1 channels is governed by a CTRW on a fractal. Nat-

urally, these mechanisms have biological implications. Previously, it was suggested that telom-

ere’s anomalous diffusion leads to spatial chromosome organization in eukaryotes [57] and that

anomalous diffusion in the bacterial cytoplasm helps transcription factors find their DNA target

[61]. Many transmembrane proteins are involved in cell signaling and cell-to-cell communication.

For these pathways to be accurate, it is important that receptors are found rapidly. The fractal

structure of the plasma membrane may be a crucial part in receptor recognition. A fractal struc-

ture increases the dimension of the random walk and hence the same site is visited several times

before the protein leaves to explore a new region. Therefore, the search for receptors is performed

more carefully by a walker, minimizing the chances of missing a target in the close vicinity. On

the other hand, the actin role in the CTRW suggests two different benefits for the cell. As in the

case of telomeres, it favors membrane compartmentalization and organization into segregated

domains. A second process that may benefit from a CTRW is endocytosis, actually the same pro-

cess that keeps the CTRW running. Channels run from one anchoring point to another, but some

of these may be endocytic sites from where the channel will be engulfed. Many transmembrane

proteins have an intracellular domain that recognizes specific adaptor molecules and bind to

them with high specificity but low affinity [159]. Some of these adaptors are transiently immobile
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[160]. Thus, the CTRW may be involved in maintaining the channel at an endocytic site so that the

interaction between protein and adaptor is enhanced. Furthermore, it is observed that endocytic

sites enrich specific protein concentrations [161] as expected from a CTRW-based membrane or-

ganization. In conclusion, we have shown that the potassium channel Kv2.1 displays anomalous

diffusion with a nonergodic underlying physical mechanism. A comprehensive analysis of the

diffusion pattern that goes beyond MSD analysis and also includes time series analysis of individ-

ual trajectories and ensemble averages was performed. In general, single-molecule experiments

provide information on particle fluctuations that average out in ensemble measurements. How-

ever, when the population is homogeneous, this information can in theory be obtained from the

ensemble measurements using the fluctuation-dissipation relation. Our findings show that due to

the ergodicity breaking, single-particle trajectories contain information not attainable by ensem-

ble experiments, emphasizing the relevance of single-molecule studies. Two processes are found

to coexist in the complex environment of the living cell membrane, one of them non-stationary,

namely a CTRW. The actin cytoskeleton network is found to regulate the CTRW. We propose biolog-

ical implications for both mechanisms underlying anomalous diffusion. Importantly, we showed

that the availability of both temporal and ensemble statistics provide enough evidence to eluci-

date the mechanisms associated with anomalous diffusion. A very recent report by Jeong et. al.

[90], showing ergodicity breaking of lipid granules in the cytoplasm of fission yeast cells, suggests

that our findings may also be relevant to three dimensional diffusion processes.
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CHAPTER 3 : OBSTRUCTED DIFFUS ION PROPAGATOR ANALYS I S FOR

S INGLE PART ICLE TRACK ING

We describe a method for the analysis of the distribution of displacements, i.e., the propagators,

of single-particle tracking measurements for the case of obstructed subdiffusion in two dimen-

sional membranes within this chapter. The propagator for the percolation cluster is compared

with a two-component mobility model against Monte Carlo simulations. To account for diffusion

in the presence of obstacle concentrations below the percolation threshold, a propagator that in-

cludes the transient motion in finite percolation clusters and hopping between obstacle-induced

compartments is derived. Finally, these models are shown to be effective in the analysis of Kv2.1

channel diffusive measurements in the membrane ofl iving mammalian cells.

3.1 introduction

Membrane proteins exhibit complex dynamics, often accompanied by anomalous diffusion.

The complexity in protein motion lies in the facĴ haĴ he plasma membrane is a heterogeneous

environmenĴ hat exhibits microdomain organization, is densely packed with proteins, and is

tethered to the cytoskeleton through different proteins and lipids [3]. The diffusion of membrane

molecules is studied by a variety of methods that include FRAP [22], FCS [162, 163, 164], and SPT

[96, 165, 148]. In particular, SPT enables the localization of an individual molecule with nanometer

precision in real time, yielding detailed information on its molecular motion and the interactions

between a protein or lipid with its environment. The diffusive transport of membrane proteins

has vital biological implications related to many cellular processes. However, the analysis of

anomalous diffusion in live cells is challenging because it can originate via different mechanisms:

(a) Membrane proteins and lipids tethered to the cytoskeleton behave as immobile obstacles, hin-

dering the free diffusive transport [166, 167, 168? , 169, 132, 122, 170, 101]. The resulting motion

is termed obstructed diffusion. (b) Macromolecular crowding has been experimentally shown to

induce anomalous subdiffusion in some systems [171, 129, 172], buĴ he link between anomalous

diffusion and crowding is still controversial [53]. It was proposed that crowding gives rise to vis-

coelastic effects leading to long-time correlations in a particle trajectory [172, 173], which may be

modeled by FBM [62, 60]. Nevertheless, the physical mechanism by which crowding can be mod-
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eled by FBM is not fully understood. (c) Transient immobilization achieved by temporary binding

with a heavy tailed distribution of waiting times lead to subdiffusion and ergodicity breaking

[95, 174, 175]. This process is modeled by a CTRW [42]. In general, more than one single physical

mechanism may be simultaneously responsible for anomalous diffusion in living cells. In the

previous chapter, chapter 4, we demonstrated that the subdiffusion of Kv2.1 potassium channels

in the plasma membrane of mammalian cells is best characterized as a CTRW coexisting with a

fractional ergodic mechanism such as obstructed diffusion or FBM [49]. Interestingly, the dynam-

ics of lipid granules in the cytoplasm of yeast have also recently been shown to be influenced by

similar mechanisms [90].

Even though obstructed diffusion is not the sole cause for anomalous diffusion in the plasma

membrane, it has long been recognized to be an important factor in the diffusion pattern of pro-

teins and lipids. Comparison of diffusion in the axon initial segment (AIS) and blebs shows the

relevance of obstruction. AIS: An unusually high local density of ankyrin-G and actin forms a

region with a large number of immobile obstacles. This obstruction pattern hinders diffusion to

such a point that long range motion is not observed and it effectively functions as a diffusion

barrier, a phenomenon that is vital to neuronal polarization [176]. Blebs: These spherical protru-

sions that occur at the periphery of eukaryotic cells [177] lack cytoskeletal anchoring points and

are, thus, practically free from immobile obstacles. The diffusion coefficient of proteins in blebs is

observed to be dramatically higher than in the rest of the membrane linking the diffusion pattern

to cytoskeleton-bound molecules [178].

Several reports show via the use of actin depolymerization drugs that the cytoskeleton is impli-

cated in restricting the diffusion of membrane proteins [167, 178]. Truncation of the cytoplasmic

domain of membrane proteins was also shown to increase the diffusion coefficient [166, 179].

Recently, Andrews et al. provided evidence that actin forms a dynamic meshwork involved

in forming barriers to free diffusion [180]. In contrast, the ectodomain of some proteins is the

key determinant of their lateral diffusion suggesting that anomalous subdiffusion in the plasma

membrane can be also induced by interactions with the extracellular matrix or the ectodomains

of neighboring membrane proteins [179]. Kusumi’s lab has shown that lipids and proteins in

the plasma membrane appear to be temporarily confined to microdomains 30 to 800 nm in size.

Temporal confinement seems to be widespread and it was observed in many different cell types
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including chinese hamster ovary (CHO), mouse hepatoma (HEPA-OVA), rat kangaroo (PtK2), fetal

rat skin keratinocyte (FRSK), HEK, HeLa, T24, and normal rat kidney (NRK) cells [168]. Edidin and

co-workers showed that vesicle trafficking to and from the plasma membrane in combination

with barriers to lateral diffusion can maintain microdomains in the cell surface with characteris-

tic lifetimes in the tens of seconds [17, 181]. These observations can be explained by the existence

of clusters of immobile proteins that behave as discontinued fences in the plasma membrane. In

order for a walker to hop between compartments it needs to find a gap in the fence. Alternatively,

this is achieved by fluctuations in the position of quasi-immobile obstacles. This mechanism has

been referred to as the anchored-protein picket model [167]. Obstructions to diffusion in the cell

membrane were also observed with optical tweezers. It was shown that as a molecule is dragged

along the plasma membrane it encounters frequent obstacles in its path [182, 183]. Both elastic

and inelastic barriers were found to be present in the cell membrane with the elastic ones being

actin-cytoskeleton dependent [184].

As highlighted in previous chapters 44, in SPT analysis, the MSD measures the apparent diffu-

sion coefficient and provides the simplest type of classification of the diffusion pattern. Brownian

motion yields a linear MSD,
⌦
r2 (t)

↵
= 2dDt where D is the diffusion coefficient and d is the sub-

strate dimension (d = 2 for a membrane). In contrast, anomalous subdiffusion is characterized by

a sublinear MSD,
⌦
r2 (t)

↵
⇠ ta with a < 1 being the subdiffusive exponent [148]. When a > 1, the

motion is termed superdiffusion. Experimental observations of anomalous diffusion with values

of a between 0.1 and 0.9 have been reported by different groups [96, 185, 131]. Unfortunately,

the information obtained from MSD analysis is very limited and, in practice, many anomalous

subdiffusion models yield the same MSD power law. The problem is that the MSD analysis does

not take advantage of the full probability of displacements P (r, t), viz., the propagator, which is

naturally available in SPT measurements [131]. P (r, t) dV gives the probability that a particle at

the origin at time zero is found in an element of volume dV at r, at time t. The distribution of

displacements for Brownian motion is Gaussian,

P (r, t) =
1

4pDt
e�r2/4Dt (3.1)
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In order to take advantage of the probability of displacements analysis, without the need to

impose bin sizes, the CDF is used [132, 175, 131, 94]. The CDF F
�
r2, t

�
can be interpreted as

the probability that a particle at the origin at time zero is found within a circle of radius r at

time t. In a two-dimensional (2D) space, dV = 2prdr, and thus, F
�
r2, t

�
= 2p

R r
0 P

⇣
r0 , t

⌘
r0dr0 .

This yields a monoexponential function, F
�
r2, t

�
= 1 � e�r2/4Dt , for Brownian motion. A two-

component mobility model is often used to distinguish between normal and anomalous diffusion

by comparing the residuals from a monoexponential CDF fit and a biexponential fit [168, 132, 49,

103, 186, 187]. The two-component cumulative distribution becomes

F
�
r2, t

�
= 1 � we�r2/s

2
1 � (1 � w) e�r2/s

2
2 (3.2)

where s

2
1 and s

2
2 are the slow- and fast-mobility mean square displacements, respectively, i.e.,

s

2
i = 4Dit, with weighting factor w.

The propagators for a CTRW and FBM are well documented. The particle displacement of a CTRW

is given by a Fox function [188, 189, 190, 124] and that of FBM is a Gaussian distribution with a

time-dependent diffusion coefficient [191]. However there is a great deal of confusion in the liter-

ature about the propagators for obstructed diffusion. Obstructed diffusion can be modeled as a

percolation problem. Under the influence of constant thermal agitation, the motion of randomly

wandering molecules is closely related to a random walk. Monte Carlo calculations are particu-

larly suitable to simulate the effect of obstruction in the cell membrane because a random set of

lattice sites can be directly blocked. Diffusion in a percolation cluster has been extensively stud-

ied near criticality [56, 192] and, in a series of seminal papers, Saxton has simulated diffusion in

the presence of both mobile and immobile obstacles with a wide range of obstacle concentrations,

elucidating many of the obstructed diffusion and crowding theoretical predictions [122, 193]. The

work presented here builds on these reports.

In this chapter, we report Monte Carlo simulations to characterize the motion of particles in

the presence of immobile objects. We describe a method to analyze the particle trajectory based

on the distribution of displacements taking into consideration the fractal dimension of the matrix

and the fractal dimension of the walk. The dimension of the walk is found from the simulated

trajectory. The dimension of the matrix describes the fractal on which the tracer performs a
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random walk. This matrix is naturally embedded in a 2D space. Because of the self-similarity

properties of percolation clusters, obstructed diffusion bears a vast resemblance to FBM. We apply

a recently developed method based on p-variation [64] to evaluate the underlying mechanism

of anomalous diffusion and show that both FBM and obstructed diffusion give the same results.

Finally, we compare simulation results to recently reported single-particle tracking measurements

of Kv2.1 potassium channels in the membrane of living cells [49].

3.2 materials and methods

3.2.1 Obstructed diffusion simulations

We implemented random walk simulations on a 2D square lattice to model obstructed diffu-

sion. Obstacles were randomly distributed on the lattice at a concentration c. Obstructed diffusion

simulations were implemented in MATLAB using a “blind ant” algorithm. First, we generated a

lattice where each site was assigned a random number between 0 and 1. All sites with a number

smaller than c are considered obstacles. A walker is placed in the center of the lattice and it is

only allowed to move into vacancies, which are sites with assigned numbers bigger than c. The

walker attempts to move to one of the four nearest-neighbor sites with equal probability. If the

chosen site is blocked, the walker remains at the original position. The clock ticks independent

of the outcome of the attempted jump and the protocol is looped N times. The MATLAB built-in

algorithm used for random number generation is based on the Mersenne twister algorithm [194].

The results returned are pseudorandom values drawn from a standard uniform distribution.

All lattice generated were 2000 × 2000 sites and periodic boundary conditions were imple-

mented on the random walks. We created three different lattices for each obstacle concentration

and obtained three random walks of 2 × 10

6 steps, per lattice. Each of these nine random walks

was then fit independently according to the text. All results presented here show the mean ±

standard deviation of the distribution of fitting results.

3.2.2 Single particle tracking in living cells

Chapter 4 describes these single particle tracking measurements in live cells in more detail[49].

In brief, HEK293 cells were transfected with Kv2.1 channels containing an extracellular biotin
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acceptor domain that is the substrate for BirA biotin ligase 8.3. The transfected cells were incu-

bated with streptavidin-conjugated QDs (Qdot 655, Invitrogen, Carlsbad, CA), which bound to

the biotinylated Kv2.1 channels 8.4. QDs enabled us to track individual channels with nanometer

accuracy. The basal membrane of the labeled cells was imaged using a home-built objective-type

TIRF microscopy. QDs were excited with a 473 nm laser line and the fluorescence was collected in

a back-illuminated EMCCD camera (Andor iXon DU-888). Both the stage (Bioptechs, Butler, PA)

and the objective were maintained at 37°C. Individual particles were localized and tracked by

fitting the intensity image of an appropriate region of interest to a two dimensional Gaussian

function [49, 145].

3.3 results

3.3.1 Diffusion in an infinite percolation cluster

When the concentration of obstacles is low, small clusters of connected occupied sites, i.e.,

fences, are formed. Below a critical concentration threshold, the cluster size remains finite but

as the concentration increases, so does the mean cluster size. At criticality, an infinite cluster

of obstacles develops and the system undergoes a percolation transition. Havlin et al. [192, 195]

have shown that the propagator for an infinite percolation cluster can be described by P (r, t) ⇠

rd f �d f (r/t1/dw), where dw is the fractal dimension of the walk, d f the fractal dimension of the

cluster, d the underlying dimension, and f (u) = exp
�
�K0u1.65�. A percolation cluster in a mem-

brane is characterized by a fractal dimension d f =1.896, d = 2, and the subdiffusive exponent is

given by dw: MSD ⇠ t2/dw . In a percolation cluster, the propagator gives the probability density

that a particle is found in an element of volume dV within a random fractal with dimension d f ,

given by [195]

dV =
2p

d f/2

G (d f/2)
rd f �1dr (3.3)

where G is the Gamma function, G (x) =
R •

0 e�ttx�1dt. Eq 3.3 yields

P (r, t) = Brd f �d exp
h
�K (t) r1.65

i
(3.4)
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B =
1.65G (d f/2)

2p

d f/2G [(2d_{ f }�d)/1.65]
K (t)(2d f �d)/1.65 (3.5)

where K (t) = a/t1.65/dw , d f � d = �0.104, and B is the normalization factor. Integrating over the

fractal volume, the cumulative distribution is

F
�
r2, t

�
=

g

⇥
(2d f �d)/1.65, K (t) r1.65⇤

G
⇥
(2d f �d)/1.65

⇤ (3.6)

where g (a, x) is the incomplete gamma function defined by g (a, x) =
R x

0 e�tta�1dt. Because d f

and d are known, the CDF is defined by a single parameter K (t).

The critical obstacle concentration threshold in a square lattice is 40.7255 ± 0.0002% [196]. Fig.

3.1a shows a CDF of a simulated trajectory for a walker in a square lattice at criticality. The fit

to the percolation model (Eq. 3.6) is shown together with the fits to simple diffusion (Gaussian

propagator) and to a two-component mobility model (Eq. 3.2). While both simple diffusion and

an infinite percolation cluster model are characterized by a single parameter, the two-component

mobility model is fit to three parameters. Both the two-component and the percolation cluster

fits are of good quality, with the two-component model being slightly better. As discussed below,

the percolation cluster fitting parameter reproduces well the predicted power law K (t) = a/t1.65/dw ,

with dw = 2.8. The same value is found from the MSD subdiffusive exponent.

The cumulative distribution eliminates the dependence on bin size and it integrates out noise

but the displacement probability is more informative from a qualitative perspective. In order to

compute the displacement distribution P (r, t), the number of displacements, i.e., root of square

displacements, between r � Dr/2 and r + Dr/2 is counted and the occurrences are normalized by

the bin volume, DV = 2prDr. However, this procedure introduces a large degree of error at small

r values. This method also assumes a 2D underlying space, which is incorrect for diffusion on

a fractal structure. A more suitable procedure involves computing the number of displacements

and renormalizing the propagator in order to show P (r, t)DV. Fig. 3.1B shows the propagators

using the results from the CDF fits. For diffusion in a percolation cluster, the normalization vol-

ume, as given by Eq. 3.3, is DVd f = 2p

d f /2rd f �1Dr/G(d f/2). Fig. 3.1C shows the distribution of displace-

ments normalized to a 2D space. The comparison shows that the raw-displacement occurrences

(as shown in Fig. 3.1B) provide better visual results.
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Figure 3.1: Propagator analysis of diffusion of a representative trajectory in a percolation cluster close to criticality The data were generated
from the random walk simulations on a square lattice with an obstacle concentration of 41%, i.e. (a) CDF at t = 10,000

with fits to percolation cluster as a dashed red line (Eq. 3.6), normal-diffusion as a solid blue line (Gaussian), and two-
component mobility as a green line (light grey, Eq. 3.2). (b) Histogram of displacements. The continuous lines show the
renormalized propagators , obtained from the fit to the CDF. Each Gaussian of the two-component mobility model is
shown as a green line (light grey) independently for clarity and the sum of the two components is shown as a black
dashed line. (c) Probability density function obtained by normalizing the distribution of displacements for t = 10,000. The
distribution is normalized by the volume , where Dr is the bin size. The propagators of percolation-like- and normal-
diffusion, as obtained from the fits to the CDF, are shown. Because the propagator of diffusion in a percolation cluster
operates in d f dimensions, the curve shown is P (r, t) DVd f /DV2D , where DVd f is the volume corresponding to a fractal
dimension d f , as in the text.

3.3.2 Diffusion in a deterministic fractal

The percolation cluster at criticality can be described by a random fractal with dimension d f .

Thus, it is interesting to compare this motion with the propagator for diffusion in a deterministic

fractal, which was derived by O’Shaugnessy and Procaccia [144],

P (r, t) =
dwG (d f/2)

2p

d f/2G (d f/dw)

✓
1

4DFt

◆d f/d2

exp
✓
� rdw

rDf t

◆
(3.7)

Integrating over the fractal volume [132] given by Eq. 3.2 yields

F
�
r2, t

�
= g(d f/dw,rdw/rDFt)/G(d f/dw) (3.8)

which includes three independent parameters, d f , dw, and DF, that are constrained by the fractal

structure: 1 < d f  2 and dw � 2. This model has been successfully applied to obstructed

diffusion experimental measurements in supported lipid bilayers [132]. We have modeled our

simulations using this equation and found a best non-linear fit when dw = 2.05 ± 0.05. This value

disagrees with the value found from the MSD subdiffusive exponent (dw = 2.8). For comparison,

the residuals for the deterministic fractal model with dw = 2 and dw = 2.8 are shown together with
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Figure 3.2: CDF of simulated obstructed diffusion with obstacle concentration at lag time t = 10,000. (a) The CDF of a representative trajectory
is modeled by a deterministic fractal as given by Eq. 3.6. The best non-linear fit is found for dw = 2 and d f = 1.6 (dashed
red line). Note that the fit is constrained by dw � 2. For comparison the biexponential fit (Eq. 3.2) and the fit using dw =
2.8 are also shown. (b) The diffusion coefficient DF is shown as found from fitting to the CDF at different lag times to a
deterministic fractal model (Eq. 3.8). All the CDFs are described by dw = 2.

the two-component model in Fig. 3.2a. Fitting Eq. 3.8 to the CDF of our simulation also yields a

time-dependent coefficient DF (Fig. 3.2B), which is not consistent with a deterministic fractal,

indicating the failure of this model to describe obstructed diffusion.

3.3.3 Obstructed diffusion below the percolation threshold

For the analysis of obstructed diffusion in cellular environments, it is necessary to consider a

wider obstacle concentration range than that close to the percolation threshold. At criticality, an

infinite percolation cluster is formed and diffusion is anomalous on all time scales [56]. At con-

centrations below the percolation threshold, Saxton [122] has shown that diffusion is anomalous

at short times and becomes normal at long times. The crossover time increases as the concentra-

tion of obstacles approaches the threshold. The transition from anomalous to normal diffusion

can be observed in plots of log
⇥hr2i/t

⇤
as a function of log t. Normal diffusion yields a constant

while subdiffusion yields a power law with an exponent (2/dw)� 1 [122]. This can be observed

for concentrations below and at the percolation threshold in Fig. 3.3. It has been shown [122] that

when the data are presented as a function of c/cP, where c is the obstacle concentration and cP the

percolation threshold, the results do not depend on the lattice geometry or obstacle size.

Recently, a method to distinguish between FBM and a CTRW [64] has been reported. This test

is based on the p-variation method and has been applied to experimental data describing the
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Figure 3.3: hr2i/t as a function of t in a log-log scale for a tracer in the presence of immobile obstacles at different concentrations.
⌦
r2↵ is the mean

square displacement and t the lag time. All nine simulated trajectories are shown together for each obstacle concentration.

motion of mRNA in bacteria [130] and the dynamics of telomeres in the nucleus of mammalian

cells [92]. The p-variation is defined as the limit of the partial sums of a random process X (t), in

a time interval [0, T], raised to the power of p.

V(p)
n (t) =

2n�1

Â
j=0

����X


min (j + 1)
T
2n , t

�
� X


min j

T
2n , t

�����
p

(3.9)

with

V(p) (t) = lim
n!•

V(p)
n (t) (3.10)

The total time is T, and the minimum value yields partial sums up to times shorter than t. In the

case of FBM, the p-variation satisfies [64]

V(p) =

8
>>>>>>><

>>>>>>>:

+• if p < 1
H

ta if p = 1
H

0 if p > 1
H

(3.11)

a =
21/2H

p
p

G
✓

1
2H

+
1
2

◆
(3.12)

where H is the Hurst exponent and is related to the MSD subdiffusive exponent
D

X (t)2
E
⇠ t2H.

For a CTRW results are different and the p-variation yields
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Figure 3.4: p-variation analysis V(2)
n (t) and V(1/H)

n obtained from the obstructed diffusion simulations at three different obstacle con-
centrations. c = 0.41 is at the percolation threshold. Four values of n are presented, namely 7, 8, 9, and 10.

V(p) =

8
>>>>>>><

>>>>>>>:

+• if p < 1
H

S
a

(t) if p = 1
H

0 if p > 1
H

(3.13)

where S
a

(t) is the inverse a-stable subordinator [64, 197].

We applied the p-variation test to our obstructed diffusion simulations. Following previous

works [64, 130, 92] we implemented the p-variation test by computing the partial sums with p

= 2 and p = 1/H. H was extracted from the previous analysis, H = 1/dw. Results for n = 7, 8, 9,

and 10, at relative concentrations c/cP = 0.63, 0.80, and 1 are presented in Fig. 3.9. The p-variation

applied to either the x displacements or the y displacements yields similar results, so only one of

the two dimensions is shown.

Fig. 3.4 shows that for p = 2 the slope of V(p)
n increases as n increases from 7 to 10, suggesting

that the p-variation grows to infinity. However, for p = 1/H, it appears that the slope of V(p)
n
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Figure 3.5: Percolation fit parameter K (t) in Eq. 3.6 as a function of lag time at two moderate obstacle concentrations and close to
criticality. The parameter exhibits a power law K (t) = a/t1.65/dw .

Figure 3.6: Mean squared errors Mean squared errors of the fits to the obstructed diffusion simulations with different obstacle concen-
trations using the 2-component mobility and the percolation cluster models.

fluctuates within a finite range without any clear dependence on n. These results are the same as

that expected from a FBM process.

When the p-variation test was applied to the obstructed diffusion simulations the same results

were obtained as those of FBM. The two diffusion processes are clearly different, which is most

evident when examining the propagators. Obstructed diffusion has a non-Gaussian propagator

for all obstacle concentrations and it approaches Eq. 3.4 as the obstacle concentration grows

towards the percolation threshold. On the other hand FBM is characterized by a Gaussian prop-

agator [198] with a time-dependent diffusion coefficient D ⇠ t2H�1. Nevertheless, obstructed
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Figure 3.7: Fractal dimension of the walk dw as a function of relative obstacle concentration. dw is obtained from the fit to the per-
colation model as shown in Fig. 3.5. The red line is a least square fit to dw as performed in Ref.[122]: dw =
(2�3.630x+1.758x2)/(1�1.806x+0.850x2), x = c/cP, c is the obstacle concentration and cP the concentration at criticality.

Figure 3.8: Two-component mobility model. A. MSD of each of the two mobilities. Full symbols: fast component. Hollow symbols: slow
component. B. Subdiffusion exponent as a function of relative obstacle concentration. The red line is the function found
from the least square fit in Fig. 3.7.

diffusion and FBM share similarities regarding long-time correlations and scaling laws. Therefore

the p-variation test of percolation clusters shows similar results to those of FBM.

The main result obtained from the percolation propagator is the parameter K (t) from Eqs. 3.4

and 3.6. Results are presented as a function of lag time in Fig. 3.5. K (t) clearly follows a power

law K (t) = a/t1.65/dw . Note that while dw depends on the cluster size, d f is universal [56] thus

dw is the only parameter that varies with obstacle concentration. To obtain a single scalar statis-

tic for the goodness of fit, it is reasonable to use an aggregate or mean squared residual. This

statistic is common in several standard goodness-of-fit tests, including the chi-square [199] and

Cramér–von Mises [200] tests. Comparing the mean squared errors of the percolation model to

that of the two-component mobility fit (Fig. 3.6), it is observed that at concentrations close to the
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percolation threshold, both models give similar results. However, for lower obstacle concentra-

tions, the results from the two-component mobility are significantly better.

The slope of log [K (t)] vs. log (t) in Fig. 3.5 is �1.65/dw, thus, by means of the percolation

cluster model, the fractal dimension of the walk dw is obtained for each obstacle concentration.

Fig. 3.7 shows dw obtained in this manner for a wide range of obstacle concentrations. It is seen

that dw increases smoothly from 2 to 2.8, reaching this value when the obstacle concentration

equals the percolation threshold, i.e., c = cP. This result is not surprising and it is the same that is

obtained by fitting the MSD [122]. However, when the form of the propagator is known, fitting the

propagator bears the advantage that the whole distribution of displacements is used instead of

only the second moment. Because the whole distribution is used and the fit has a single unknown

parameter, the accuracy of the obtained dw values is fairly high as seen by the small error in dw

at each concentration. This reduces the need for averaging over many trajectories and also allows

the study of shorter paths.

As expected, the MSD of the fast mobility in the two-component mobility model follows a

similar trend as the percolation model with s

2
2 ⇠ t2/dw . Results of s

2
i versus lag time are presented

in Fig. 3.8A showing that s

2
2 follows a power law. The time dependence of s

2
2 yields 2/dw (shown

in Fig. 3.8B). At concentrations close to criticality this empirical model gives robust results but it

becomes very unreliable for lower concentrations. Thus for lower concentrations the error bars in

2/dw cover a large range from subdiffusion to superdiffusion rendering this model useless unless

a very large amount of data is available.

3.3.4 Derivation of a propagator for obstructed diffusion below the percolation threshold

The exact propagator of this problem combines percolation-like diffusion at short distances

and normal diffusion at long distances. The difficulty in this model is that the two parts operate

on different dimensions. Percolation-like short-distance diffusion acts on d f dimensions but long-

range normal diffusion is performed in two dimensions. Thus, we cannot integrate this function

in a straightforward way because both parts have different Jacobians, i.e., different differential

volumes. If we allow a percolation part P1dV1 according to Eq. 3.3 and Eq. 3.4, and a normal

diffusion part P2dV2 according to Eq. 3.1, we obtain P (r, t) dV = wP1dV1 + (1 � w) P2dV2. Then,
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P (r, t) dV =

2

4 1.65w

G
⇣

2d f �d
1.65

⌘K (t)(2d f �d)/1.65 r2d f �d�1 (3.14)

⇥ exp
⇣
�K (t) r1.65

⌘

+ (1 � w)
2r
s

2
1

exp
✓
� r2

s

2
1

◆�
dr

where w, K (t), and s1 are defined previously. All three parameters are time dependent. The

cumulative distribution function is

F
�
r2, t

�
= w

g

⇥
(2d f �d)/1.65, K (t) r1.65⇤

G
⇥
(2d f �d)/1.65

⇤ (3.15)

+ (1 � w)
⇣

1 � e�r2/s

2
1

⌘

These equations give the accurate distribution of displacements for obstructed diffusion with

any obstacle concentration below the percolation threshold. However, as in the two-mobility

model they involve three different fitting parameters, which means that more data is needed to

fit this function than the simple percolation approximation.

3.3.5 Comparison to experimental data

It is possible to use the percolation model to obtain information on the obstacle concentration

for diffusion in an obstructed environment. Kv2.1 potassium channels are best modeled by a

non-ergodic CTRW on a percolation cluster [49]. However, when cells are treated with actin poly-

merization inhibitors, such as swinholide A, the CTRW is eliminated and ergodicity is recovered.

After treatment with swinholide A, the diffusion is still anomalous over lag times of more than

two decades (Fig. 3.9A). We have previously proposed [30] that the reason for this anomaly is the

presence of immobile obstacles in the plasma membrane which obstruct the path of the Kv2.1

channels. While in three dimensions a particle easily finds a path to escape from obstacle-induced
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Figure 3.9: Analysis of experimental Kv2.1 single-particle tracking in the plasma membrane of living HEK cells. All error bars indicate
standard error of the mean. (a) hr2i/t as a function of t in a log-log scale. A negative slope between 0.1 and 20 s is evident
indicating anomalous subdiffusion across this time scale. (b) Mean squared errors from fitting the CDF at different lag
times to three different models as described in the text: 2-component mobility, percolation cluster, and obstructed diffusion.
(c) K (t)-values as a function of t, obtained from fitting the experimental data to the percolation cluster and obstructed
diffusion. A power law dependence is obtained from which dw is found. (d) Mean square displacements obtained by
modeling the experimental data with 2-component mobility [s2

1 and s

2
2 in Eq. 3.2], and with obstructed diffusion [s2

1 in
Eq. 3.15. The slow-mobility component MSDs from the two different models coincide.

compartments, in 2D the confinement within finite percolation-like compartments is enhanced

because there are fewer escape paths [143].

Fig. 3.9B shows the mean squared errors obtained from fitting the CDF of Kv2.1 channels in

cells treated with swinholide A to a percolation cluster (Eq. 3.6), to a two-component mobility

model (Eq. 3.2), and to the subcritical obstructed diffusion propagator derived in Eq. 3.15. The

obstructed diffusion propagator gives the smallest mean squared errors over all lag times. These

results correspond to the mean from 158 trajectories. A mixed propagator result is shown in Fig.

3.10 together with the plots for w = 0 andw = 1. The percolation cluster and the obstructed

diffusion models yield values of K (t) that scale as a power law in the same fashion as the

obstructed diffusion simulations (Fig. 3.9C). From these fits, the fractal dimension of the walk is

obtained, dw = 2.12 ± 0.08. It is also observed in Fig. 3.9C that both models yield very similar

values for dw. Using the empirical fit in Fig. 3.7, dw = (2�3.630x+1.758X2)/(1�1.806x+0.850x2) , where

x = c/cP, we can calculate the relative obstacle concentration. A range between 0.62 and 0.79 is
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Figure 3.10: Mixed propagator Mixed propagator with w = 0.45 as defined in Eq. 3.14 for t = 1 s. For comparison the components
obtained with w = 0 and w = 1 are also shown.

obtained for c/cP. Fig. 3.9D shows the results of the fast- and slow-mobility MSDs from the two-

component model and the slow mobility (long-range) MSD from the obstructed diffusion model.

The long-range MSDs for the two models match satisfactorily but the values obtained with the

obstructed diffusion propagator are less prone to errors, particularly at large lag times.

3.4 discussion

Analysis of the CDF at different lag times provides important information. The simulations pre-

sented here show that, independent of the obstacle concentration, the CDF can be approximated

to either a two-component mobility model or a percolation cluster. One could always argue that

the two-component mobility model introduces two additional fitting parameters and thus the

model fits better to the simulation in the trivial way, regardless of the actual process. However,

the two-component model actually approaches the propagator of obstructed diffusion because

the obstacles form fences which in turn compartmentalize the cell membrane. Thus, for short

distances, the particle moves according to a fast mobility within a single compartment. For long

distances, the particle traverses several compartments and it resembles to be diffusing with a slow

mobility. The reason this model is not exact is that at short distances the motion is performed

within a finite percolation cluster, thus the substrate is a random fractal of dimension df, but at

long distances the motion is normal according to a substrate with dimension d = 2.

The percolation propagator gives excellent results close to the percolation threshold. At small

obstacle concentrations, this model fits worse than the two-component mobility. The cause for the
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deterioration of the fit quality is that the percolation model does not account for the transition

to normal diffusion. In spite of this shortcoming, the percolation model can be used to obtain

information on the membrane structure without the need for extensive data. We observe that this

model is more robust than the two component model.

The analysis presented here suggests Kv2.1 channels in cells treated with swinholide A un-

dergo anomalous diffusion due to an intermediate concentration of immobile obstacles leading

to transient percolation-like motion. The presence of anchored proteins has been proposed by

Kusumi and co-workers to be partially responsible for the diffusion anomaly seen in the plasma

membrane [9]. Complexity in cell membranes is also enhanced by the presence of slow and fast

moving obstacles. Experimental evidence shows that the diffusion of streptavidin in solutions

crowded with bovine serum albumin (BSA) is anomalous [171]. Diffusion of proteins in solutions

of random-coil polymers at high concentrations is significantly more anomalous than in BSA so-

lutions [171, 129]. It was proposed that subdiffusion induced by rapidly moving obstacles may

be grounded in a FBM process [129]. Whether anomalous diffusion in the nucleus and cytoplasm

is percolation-like or FBM is still under debate [92]. Scaling similarities between the two models

further complicates the discrimination. In the plasma membrane of a living cell, it is likely that

both mobile (fast- and slow-moving) and immobile obstacles are present and maybe both FBM

and percolation are responsible for the diffusion anomaly. This problem may be addressed in the

future by studying supported lipid bilayers under controlled conditions in order to discriminate

between these two processes. Equations 3.14 and 3.15 derived here provide a good platform for

the analysis of the obstructed diffusion component.

3.5 conclusions

In conclusion, we have provided a method for the analysis of propagators of obstructed subd-

iffusion in single-particle tracking data. The propagator for the percolation cluster at criticality is

explicitly given and is shown against Monte Carlo simulations, in order to eliminate confusion

and disagreement commonly found in the literature. We have also derived the propagator for

obstructed diffusion at obstacle concentrations below the percolation threshold by combining a

percolation model with hop diffusion between obstacle-induced compartments. By analyzing the
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time dependence of the propagator, it is possible to obtain information on the concentration of

immobile obstacles. Experimental data from Kv2.1 channels in live mammalian cells treated with

an actin polymerization inhibitor were analyzed using the derived obstructed diffusion propaga-

tor. The obstructed diffusion propagator provided good agreement with the experimental data.

The discrimination between percolation and fractional Brownian motion is shown to be highly

complex, even with the use of advanced tests such as the p-variation method. The propagators

of the two models are qualitatively different, but a non-Gaussian propagator as seen here is not

enough to exclude the combination of both obstructed diffusion and FBM.
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CHAPTER 4 : KV2 . 1 CELL SURFACE CLUSTERS ARE INSERT ION

PLATFORMS FOR ION CHANNEL DEL IVERY TO THE PLASMA

MEMBRANE

Voltage-gated K+ (Kv) channels regulate membrane potential in many cell types. While the

channel surface density and location must be well-controlled, liĴle is known about Kv channel

delivery and retrieval on the cell surface. The Kv2.1 channel localizes to micron-sized clusters in

neurons and transfected HEK cells where it is non-conducting. Since Kv2.1 is postulated to be

involved in SNARE-mediated membrane fusion, we examined the hypothesis thaĴ hese surface

clusters are specialized platforms involved in membrane protein trafficking. total internal reflec-­‐‑

tion (TIR)-based FRAP studies and quantum dot imaging of single Kv2.1 channels revealed that

Kv2.1-containing vesicles deliver cargo aĴ he Kv2.1 surface clusters in both transfected HEK cells

and hippocampal neurons. Greater than 85% of cytoplasmic and recycling Kv2.1 channels were

delivered to the cell surface aĴ he cluster perimeter in both cell types. At least 85% of recycling

Kv1.4, which unlike Kv2.1 has a homogenous surface distribution, is also delivered here. Actin

depolymerization resulted in Kv2.1 exocytosis at cluster-free surface membrane. These results

indicate that one non-conducting function of Kv2.1 is to form microdomains involved in mem-

brane protein trafficking. This study is the firsĴ o identify stable cell surface platforms involved

in ion channel trafficking.

4.1 introduction

As described in the Introduction, chapter 4, the Kv2.1 channel holds clear physiological impor-

tance and its stable cell surface clusters are highly unique. Our previous work using cell-­‐‑aĴached

patch clamp indicates thaĴ he Kv2.1 channel within the clusters is non-conducting, with whole

cell Kv2.1 current likely derived from a sub-population of non-clustered channels [120]. However,

the clustered channels produce gating currents and are therefore capable of sensing membrane

potential, potentially linking plasma membrane electrical activity to intracellular events similar

to the function of L-type Ca2+ channels aĴ he skeletal muscle T-tubule/SR junction [ 201]. One

intriguing possibility given the SNARE protein interactions [202, 203, 204] is thaĴ he Kv2.1 clus-
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ters couple membrane potential to secretion and/or the delivery of membrane cargo to the cell

surface.

In this chapter we use QD labeling and TIRF imaging approaches to test the hypothesis that

the Kv2.1 plasma membrane clusters are specialized platforms involved in the trafficking of

membrane proteins to and from the cell surface. Hundreds of observations detail the location of

Kv2.1 plasma membrane insertion for both nascent and recycling Kv2.1 channels as well as the

location of endocytosis from the surface. The data indicate that Kv2.1 clusters represent platforms

for the insertion and endocytosis of not only Kv2.1 but also the unrelated K+ channel, Kv1.4. This

study is the first to define stable cell surface sites for Kv channel delivery in mammalian cells.

4.2 materials and methods

4.2.1 Plasmid constructs, cell culture and transfections

Fluorescent protein tagged caveolins 1 and 3 have been previously used by other investigators

[205]. Human clathrin light chain (CLC) A sub-cloned into the mRFP-C1 and eGFP-C1 expression

vectors was kindly provided by Dr. Santiago Di Pietro (Department of Biochemistry and Molecu-

lar Biology, Colorado State University). HEK 293 cells (American Type Culture Collection, passage

38-45) cells were transfected with 1-3 mg of Kv2.1 expressing DNA and 1mg of pSec BirA using

a BioRad Genepulser Xcell (BioRad Laboratories, Hercules, CA) with a 0.2 cm gap cuvette and

a single 110 V 25 ms pulse. Transfected cells were plated on glass-bottom 35 mm dishes (Matek,

Ashland, MA and Bioptech that had been previously Matrigel-coated and covered in DMEM +

10% fetal bovine serum. HEK cells were imaged within 24 h of electroporation in HEK physio-

logical imaging saline 8.6. Neurons from cryo-preserved E18 rat hippocampal dissociations were

plated at a density of ~ 15,000 - 30,000 cells/cm2 on poly-D-lysine coated glass-bottom dishes

(Matek) and cultured in glial-cell conditioned neurobasal medium containing B27 supplement

(Invitrogen) as previously described [117]. Animals were deeply anesthetized with isoflurane and

euthanized by decapitation according to a protocol approved by the Institutional Animal Care

and Use Committee (IACUC) of Colorado State University. Transfections were performed after 6

- 8 days in culture with 2.0 ml of Lipofectamine 2000 (Invitrogen) and 0.75 mg of Kv2.1-expressing

plasmid DNA in 100 ml OptiMem (Invitrogen) according to the manufacturer’s directions. When
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necessary 0.5 mg of pSec BirA expressing DNA was co-transfected. Two-hours after transfection,

the culture medium was replaced with fresh Neurobasal/B27 media. Neurons were imaged 24 -

48 hours post-transfection in neuronal imaging saline consisting of (in mM) 126 NaCl, 4.7 KCl,

2.5 CaCl
2

, 0.6 MgSO
4

, 0.15 NaH
2

PO
4

, 0.1 ascorbic acid, 8 glucose, and 20 HEPES, pH 7.4.

4.2.2 Antibody and quantum dot labeling

Neurons expressing GFP-Kv2.1 were fixed in 4% formaldehyde, 4% sucrose in phosphate

buffered saline (PBS) for 15 min, incubated in 0.5% 3-[(3-Cholamidopropyl) dimethylammonio]-1-

propanesulfonate (CHAPS) in PBS for 5 min, blocked in 5% non-fat milk and 1% goat serum in

PBS for 1 h, and labeled with the indicated antibody diluted in PBS containing 1% BSA. A mouse

monoclonal anti-MAP-2 antibody (Sigma, 1:2000 dilution) was used in conjunction with a goat

anti-mouse secondary antibody conjugated to Alexa 594 (Molecular Probes) diluted 1:1000 in

1% BSA PBS. Live HEK cells expressing GFP-Kv2.1-HA were labeled with Alexa 594-conjugated

anti-HA antibody (1:1000 dilution in 1% BSA containing HEK imaging saline) in order to detect

and monitor internalization of surface GFP-Kv2.1-HA. HEK cells were labeled for 5 to 10 minutes

at 37˚C before being rinsed and imaged at 37˚C. For QD labeling cells expressing either BAD-

containing Kv1.4 or Kv2.1 constructs were first incubated in 1% BSA (Sigma, IgG/fatty acid-free)

in imaging saline for 5 min and then incubated for 5 min with 0.1 nM streptavidin-conjugated

QDs (QD605 or QD655 from Invitrogen) in imaging saline containing 1% BSA 8.4. The BSA was

essential to minimize nonspecific QD absorption to the cell surface and coverslip. The QD con-

centration and incubation time were empirically determined to minimize both nonspecific and

specific QD binding, for it is increasingly difficult to track individual QDs as the cell surface QD

number increases. The cells were then rinsed extensively with imaging saline and either returned

to the tissue culture incubator or placed on a heated microscope stage. All incubations were

performed at 37˚C. Controls for nonspecific QD binding included imaging cells expressing GFP-

Kv2.1-HA that had been carried through the entire QD labeling protocol or using cells expressing

GFP-Kv2.1-loopBAD that were not co-transfected with the BirA biotin ligase.
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4.2.3 Confocal and TIRF microscopy

HEK cells and neurons expressing fluorescent protein tagged constructs were imaged with one

of five microscope systems depending on the experiment performed. Standard 3D imaging, 0.3

mm z steps, was performed with an Olympus FV1000 confocal microscope equipped with spectral

detectors and the SIM scanner. GFP was excited using the 488 nm line of an argon laser and emis-

sion was collected using the variable bandpass filter set at 500-530 nm. Alexa 594 fluorophores

were detected using a 543 nm HeNe laser with the variable bandpass filter set at 600-630 nm. A

60X, 1.4NA oil immersion objective was used for imaging and the pinhole diameter set for the

appropriate Airy unit when using one laser. An intermediate pinhole diameter was used when

two fluorophores were being detected simultaneously. For each image, the detector voltage was

adjusted as necessary to utilize the full 12-bit range.

Experiments examining the insertion sites of intracellular, as opposed to recycling, channels

were performed on one of two Olympus microscope systems, each equipped with a Yokogawa

CSU-22 spinning disk head. The confocal nature of these systems combined with the CCD camera

sensitivity was required to image cells bathed in the 1 nM QD solution required by the insertion

site assay described below. The first system is built around an Olympus IX81 stand using a 100X,

1.4 NA Plan Apo objective and a 1024x1024 Cascade EMCCD camera operated at -80˚C, 2x2 binning

and maximum electronic gain. Temperature control was via a forced air incubation chamber

surrounding the stage and objectives. The second spinning disk confocal scope is built around an

Olympus IX71 stand equipped with an Olympus 100x, 1.45 NA, TIRFM Plan Apo objective and

an Andor 512x512 iXon DU-897 EMCCD camera operated at -85˚C and an electronic gain of 300.

Temperature control here was via a Zeiss/Pecon stage heating insert and objective heater. Both

systems use acousto-optic tunable filter (ATOF) controlled lasers and standard dichroic mirror and

filter sets for detecting fluorescent proteins and QDs. Exposure times varied between 20-100 ms

using frame rates of 0.5-20 Hz.

Two different TIRF imaging systems were used to detect QDs bound to Kv2.1 and Kv1.4 channels.

The first is described in Chapters 4 and 4. Simultaneous two color imaging was achieved by

optically splitting the image into two halves, each corresponding to a separate color, using an

Optosplit (Cairn, Ireland). Both the tissue culture dish and the objective were maintained at 37°C
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using heating elements from Bioptechs (Butler, PA). Videos (>5000 frames) were acquired using

Andor IQ software at an average frame rate of 8 frames per second. The second TIRF system is

a Nikon Eclipse Ti Perfect-Focus equipped TIRF/widefield fluorescence microscope equipped

with AOTF controlled 405, 488, 543 nm diode lasers, 100 mW each, and an Intensilight wide-field

light source. A 100X PlanApo TIRF, 1.49 NA, objective was used for image acquisition. Emission

was collected through a Sutter Lambda 10-3 filter wheel containing the appropriate band pass

filters. The stage and objective are temperature controlled via a Zeiss/Pecon stage heating insert

and objective heater at 37°C. This microscope is equipped with the Andor iXon EMCCD DU-897

camera, 512x512. For all imaging experiments, the cells were imaged for less than one hour.

However, no changes in the Kv2.1 surface expression were observed after up to 3 h in imaging

saline at 37°C.

In order to view the activity of sub-membranous Kv2.1-containing trafficking vesicles, a TIR-

based photobleach approach was employed with the Nikon TIRF system. GFP-Kv2.1 or YFP-Kv2.1

expressing HEK cells or hippocampal neurons in close contact with the bottom of the dish were

bleached in TIRF to decrease the intensity of the cell surface Kv2.1-containing clusters. A one min

bleach at 100% 488 nm laser power was performed in triplicate with a one min delay between

each bleach. These three steps reduced the intensity of both the immobile Kv2.1 clusters and the

free, non-clustered Kv2.1 diffusing into the basal surface from the top of the cell. The bleached

cells were imaged at 1-3% 488 laser power for up to 45 minutes to capture vesicular activity.

Since intracellular vesicles are mobile and thus not consistently within the TIRF field they are less

susceptible to bleach than the cell surface clusters. Image sequences were analyzed in Volocity

6.0 and ROI specific fluorescence intensity changes over time were quantitated and background

subtracted. Cytoplasmic vesicles were defined by their size, fluorescence intensity, and trafficking

motility (see Figure 4.3).

4.2.4 Detection of intracellular channel insertion into the plasma membrane

The QD-based assay to detect the location of Kv2.1 cell surface insertion with single molecule

sensitivity involved first incubating cells expressing biotinylated GFP-Kv2.1-loop BAD with 1 mM

neutravidin for 5 min in imaging saline containing 1% BSA. Neutravidin was used to saturate the

biotinylated Kv2.1 channels on the surface because it has less nonspecific binding activity than
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streptavidin and thus the excess neutravidin is easier to remove in the following washes. After

4 to 5 washes in imaging saline containing 1% BSA, the cells were imaged in the presence of

1 nM 605 QDs using a spinning disk confocal. This QD concentration was required to minimize

nonspecific binding during the relatively long imaging periods.

4.2.5 Detection of channel recycling

The dissociation rate of biotin-streptavidin binding is relatively slow, with 4 and 25% dissocia-

tion over 1 h at 37˚C for biotin-conjugates or biotin, respectively [206, 207]. HEK cells and neurons

expressing biotinylated channels were labeled with QDs at low efficiency as described above and

then returned to the tissue culture incubator for 1-2 h to allow endocytosis and recycling to the

cell surface to approach steady-state. The cells were then removed from the incubator and im-

aged using one of the TIRF systems described above. Spontaneous QD appearance represents a

cytoplasmic channel previously on the cell surface now entering the 100 nm TIRF field, i.e. ap-

proaching or inserting into the membrane. Spontaneous loss of a cell surface QD represents a

channel undergoing endocytosis.

4.2.6 Quantitation of QD blinking behavior

Since many of the experiments presented here rely on QD appearance or disappearance as an

indication of exocytosis or endocytosis, the possibly of QDs entering or exiting such a dark state

was a serious concern. To address this issue we examined the distribution of dark state life-times

under our imaging conditions and with the QD reagents used in this study. Since QD blinking

behavior is sensitive to the environment [208] we chose to immobilize QDs on the HEK cell surface

as opposed to glass. HEK cells where incubated with a 1 nM HEK imaging saline solution for 5 min

at 37˚C. This solution lacked the 1% BSA used to inhibit nonspecific binding as described above.

Therefore, the cells had immobile QDs adhered non-specifically to the cell surface and imaging

these over time provided a quantitative measurement of BSA blinking behavior and dark state

lifetimes under the imaging conditions used. The nonspecifically bound QDs were imaged for 30

min at 2-10 Hz using laser intensities typical for the experiments presented here. The distribution

of dark state durations is presented in Fig. 4.9 in addition to three examples of blinking and/or
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dark state behavior. Dark states lasting longer than 60 s were rare, representing only 3% (14 of

460) of total blinking events > 3 sec ( 22,458 s of total QD imaging).

4.2.7 Actin disruption

Actin depolymerizing agents, cytochalasin D and swinholide A, were used to disturb the cy-

toskeletal network. Both actin inhibitors were dissolved in DMSO (Sigma-Aldrich) and added

while imaging to a final concentration of 125 nM, 5 mM for swinholide A and cytochalasin D,

respectively. Cells were imaged up to 20 min after drug application.

4.2.8 Image presentation and data analysis

Images were imported into Volocity 6.0 software for contrast enhancement, 3D reconstruction,

object detection/tracking and quantitative analysis. Numerical data were exported into Origin

Pro 8.5 for further analysis and curve fitting. Image sequences were analyzed for the location

of QD appearance, i.e. membrane insertion, or disappearance, i.e. endocytosis, by both manual

inspection and an automated analysis. In the case of the manual analysis, QDs that appeared or

disappeared within 2 mm of the cell perimeter were not counted due to concerns that they may

be just entering or leaving the basal cell surface. QDs were classified as entering or leaving the

surface at a Kv2.1 cluster if the appearance or disappearance occurred within 0.5 mm of the clus-

ter perimeter. Potential dark states less than 60 s were deemed most problematic and were dealt

with as follows. Only QD appearances that occurred more than 60 s following the disappearance

of a QD within a 1 mm radius where counted as indicating surface insertion, as opposed to repre-

senting detection of the same QD emerging from a dark state. The same logic applied to QDs that

disappeared only to be followed by reappearance in less than 60 s less than 1 mm away, i.e. these

QDs were not counted as being internalized by the cell. For the automated detection and tracking

of QD labeled Kv2.1 and Kv1.4 channels we used a multiple-target tracing (MTT) approach based

on the algorithm developed by Serge et al [209, 210], see Appendix 5 for more details, 9.3.2. This

analysis provides the positions and intensities for each frame of targets throughout the entire

video duration, allowing for determination of the time and location of newly arriving channels

to the cell surface. Using the results of the MTT algorithm, QD tagged Kv1.4 and Kv2.1 channels

that arrived to the cell surface after a delay relative to the start of the image sequence (to allow
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Figure 4.1: Kv2.1 localizes to clusters on the neuronal cell surface. 3D reconstruction of confocal sections of an 8 DIV rat hippocampal
neuron expressing GFP-Kv2.1 (green). The cell was fixed and labeled with Alexa 594-conjugated anti-MAP2 antibodies
(red) to identify the soma and dendrites. The arrows indicate Kv2.1 clusters within the MAP2-negative axon initial
segment.

for potential QD dark states) were categorized as arriving to a cluster or not. This classification

was determined by overlaying the individual QD tagged channel signal with the ensemble GFP

channel signal along with the MTT algorithm trajectories. If the channel arrived within one pixel

of cluster perimeter (1 pixel = 130 nm) it was categorized as arriving to a cluster, and similarly for

channels not arriving to a cluster. Channels that appeared to diffuse from the side of the cell to

the basal surface were discarded. The percentages of recycling Kv2.1 channels inserting at a Kv2.1

cluster perimeter were 75 and 76 for the 25 and 60 s delays, respectively. Since these numbers

are similar, QD dark states are unlikely to contribute significantly to this automated insertion site

detection.

4.3 results

4.3.1 Kv2.1 localizes to clusters on the neuronal cell surface

The 3D reconstruction presented in Fig. 4.1 illustrates the surface distribution of GFP-Kv2.1

following expression in cultured hippocampal neurons. The clusters are distributed evenly over

the soma, concentrated at the MAP2 negative axon initial segment and present to a limited ex-

tend within the MAP2 positive proximal dendrites as previously described [211]. This expression
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Figure 4.2: Kv2.1 traffics efficiently to the cell surface in transfected HEK cells and is rapidly internalized. (A) GFP-Kv2.1-HA expression
pattern 16 h post-transfection. The GFP fluorescence in this 3D reconstruction of confocal sections is illustrated in green.
(B) Detection of cell surface GFP-Kv2.1-HA in the same cell. The red indicates the binding of Alexa 594-conjugated anti-
HA antibody to the external HA epitope. Image shown was taken immediately after antibody binding to live cells. (C)
XYZ view of the GFP and anti-HA antibody localization patterns in the same cell as in A and B. (D) Same cell as in C
after 10 additional min at 37oC. Note the internalization of the anti-HA antibody that appears as yellow puncta due to
the overlay of the GFP and AlexaFluor594 fluorescence (arrows).

pattern also exists in the intact brain [119] and in acutely isolated brain slices [212, 213]. Our pre-

vious work indicates that the localization mechanism involves the trapping of mobile channels

behind a cytoskeletal-based diffusion barrier as opposed to individual channels being statically

tethered to sub-membrane anchors [133, 49].

4.3.2 Kv2.1 exists primarily on the cell surface but rapidly recycles between membrane and intracellular

compartments

Kv2.1 localizes to micron-sized clusters in transfected HEK cells that are similar to those present

in cultured and native hippocampal neurons [119, 214, 117]. We chose to initially examine Kv2.1

trafficking in transfected HEK cells since these cells lack endogenous Kv2.1 [117, 120]. Therefore,

all the Kv2.1 in transfected cells is readily detectable using the attached fluorescent proteins and

epitope tags. HEK cells were transfected with a modified Kv2.1 carrying GFP on its N-terminus

and an anti-hemagglutinin antibody epitope on the extracellular surface (GFP-Kv2.1-HA) be-

tween the first two transmembrane domains [117]. Fig. 4.2A shows a 3D reconstruction of the
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GFP fluorescence. Note that Kv2.1 also exists outside the clusters on the cell surface. This con-

struct, and all others used in our work, demonstrate wild-type channel trafficking and function

[120]. Panel B illustrates the binding of an AlexaFluor 594-conjugated anti-HA antibody to the

same live, non-permeabilized cell confirming that the Kv2.1 channel is on the cell surface. Fig.

4.2C shows the same cell in a XYZ format immediately after AlexaFluor 594 anti-HA antibody

labeling. The lack of readily detectable GFP fluorescence within the cytoplasm demonstrates that

in transfected HEK cells the trafficking of Kv2.1 to the surface is highly efficient as compared to

other Kv channels [215, 216, 217]. Fig. 4.2D shows the same antibody-labeled cell 10 min later.

Intracellular AlexaFluor 594 is now detected (arrows), demonstrating that Kv2.1 is internalized

over this time frame. The goal the following experiments was to test the hypothesis that the Kv2.1

clusters act as cell surface platforms involved in the transport of Kv2.1, and other membrane pro-

teins, to and from the cell surface.

4.3.3 Intracellular Kv2.1-containing trafficking vesicles dock at the Kv2.1 cell surface clusters

If Kv2.1 recycles between cell surface and intracellular compartments we should be able to de-

tect an intracellular Kv2.1 channel vesicular population using appropriate techniques. We applied

a TIR photobleaching approach to remove the cell surface cluster fluorescence and allow detection

of a weak vesicular intracellular signal normally masked by the high intensity surface clusters.

Putative trafficking vesicles were detected following photobleach of the surface YFP-Kv2.1 in

transfected HEK cells. Vesicular movement was often directed and occurred with rates of 1.4 ±

0.5 mm/s, n = 13, consistent with motor based transport as opposed to random diffusion. We next

determined the number of Kv2.1 channels present in each cytoplasmic vesicle. HEK cells were

transfected with GFP-Kv2.1 and following TIR-photobleach single GFP molecule fluorescence in-

tensity was determined by quantitating the bleach step magnitude of single GFP-Kv2.1 channels

observed on the cell surface. This single step intensity was then compared to that of individual

trafficking vesicles fusing with the cell surface to estimate the number of Kv2.1 channels con-

tained within each vesicle, assuming four GFP molecules per channel tetramer. As summarized
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Figure 4.3: Quantitation of Kv2.1 channel number in intracellular vesicles (A) Imaging of trafficking vesicles and single GFP-Kv2.1 chan-
nels. The red arrows indicate puncta defined as single Kv2.1 channels based on the number of photobleach states while
the white arrow indicates a trafficking vesicle based on its rapid movement. (B) Representative four-step bleach within a
single GFP-Kv2.1 channel during imaging at 8 Hz. The bleach step magnitude, illustrated by the red line, corresponds to
the intensity of a single GFP. (C) Vesicle fluorescence reaches a maximum as it approaches the membrane. Fluorescence
intensity is critically dependent on Z position in the TIR field. To relate vesicle fluorescence to that of single Kv2.1 chan-
nels in the plasma membrane peak vesicle intensity was obtained immediately prior to fusion and subsequent GFP-Kv2.1
delivery to the membrane as illustrated. (D) Number of GFP-Kv2.1 channels per trafficking vesicle. These values were
determined from vesicle GFP intensity and single channel bleach step magnitude, assuming four GFP molecules per
channel was assumed. The indicated error was derived from variability in the single GFP bleach steps. Single GFP was
determined from 190 bleach steps in 10 cells.

in Fig. 4.3, the mean channel number per vesicle was 34 ± 4, with a range of 5-90 molecules, n =

21.

If the Kv2.1 surface clusters are platforms for Kv2.1 delivery and retrieval at the plasma mem-

brane, it should be possible to detect both the tethering of mobile vesicles and cargo delivery

to the plasma membrane. We performed a partial TIR-based photobleach experiment such that

cluster bleach was incomplete. This approach allowed the cluster itself and adjacent trafficking

vesicles to be visualized simultaneously in TIRF since the vesicles are partially or totally outside

of the TIR illumination and thus not significantly bleached. Fig. 4.4 shows representative results

of one such experiment. Panels A and B show the clusters on the basal membrane of a GFP-Kv2.1

transfected HEK cell imaged in TIRF prior to, and immediately after, partial photobleaching. Panel

C is an enlargement of the region indicated by the larger white square in panel B and shows
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Figure 4.4: TIR-based FRAP analysis illustrates vesicle tethering and fusion to Kv2.1 surface clusters in transfected HEK cells. (A) Surface
clusters containing GFP-Kv2.1 imaged using TIRF microscopy prior to photobleach. (B) TIRF image immediately after
TIR-based photobleach. (C) Higher magnification of the area enclosed by the larger white box in panel B. The original
cluster positions are outlined in white and the white arrows point to two adhered vesicles. The * denotes a Kv2.1 cluster-
free membrane region also devoid of adhered trafficking vesicles. (D) Higher magnification of the area enclosed by the
smaller white box in panel B. Time here is immediately post bleach. (E) Time course of fluorescence recovery within the
four regions indicated in D.

bright puncta that we interpret as trafficking vesicles tethered to the partially bleached clusters

which are outlined in white. The asterisk indicates an area with neither bleached clusters nor

tethered vesicles. In this particular cell 49 of 50 tethered vesicles were located at the edge of the

surface clusters immediately after bleaching, suggesting the clusters and vesicles have a specific

interaction, especially since only 24% of the surface area was occupied by the Kv2.1 clusters in

this cell but approximately half of the clusters had associated vesicles. Of the 50 vesicles observed

at the beginning of the FRAP period, 17 remained statically tethered after 4 min. Additional vesi-

cles appear and deliver Kv2.1 to the cell surface clusters as illustrated in Panels D and E of Fig.

4.4. Panel D is an enlargement of partially bleached surface clusters within the smaller white

square indicated in Panel B. Quantitation of postbleach fluorescence recovery within the four

ROIs indicated in Panel D is shown in Panel E. The two ROIs that originally contained clusters

(red and purple) show greater rates of fluorescence recovery as compared to the two ROIs drawn

over cluster-free membrane (blue and yellow). The acquisition of new GFP-Kv2.1 in a step-wise

fashion, as seen between 10-30 s for the ROIs drawn around bleached Kv2.1 clusters, is predicted
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Figure 4.5: Specificity of QD binding. (A) QD binding to HEK cells expressing biotinylated GFP-Kv2.1-loopBAD without neutravidin
block. (B) QD binding following neutravidin block. Following neutravidin removal the cell were QD labeled as in A. (C
and D) Surface delivery of Kv2.1 at 37 and 16˚C, respectively. Following the 37˚C incubation 7 of 9 bound QDs were
cluster associated. Overall, 89 ± 9% of QDs (n = 211 from 14 cells) in this type of assay were cluster associated. The lack
of any bound QDs in panel D is expected since no insertion of Kv2.1 channel should occur at the 16˚C temperature.

if individual vesicles arrive over time and dock or deliver cargo within the ROI. The ROIs that are

over cluster-free membrane show a slow, but steady, increase in fluorescence as non-clustered,

freely diffusing channels from the unbleached top of the cell diffuse to the basal surface. Overall,

87 ± 12% of vesicles were cluster associated after the TIR-based photobleach even though clusters

occupied only 21 ± 4% of the basal surface in the 5 cells examined. In addition, 75 ± 9% of the

clusters gaining GFP-Kv2.1 after photobleach showed step-wise increases in fluorescence during

recovery as illustrated in Fig. 4.4E. In summary, these whole cell photobleach experiments con-

firm our previous [117], but limited observations, that the Kv2.1 clusters are involved in channel

delivery to the cell surface.

4.3.4 Detection of single Kv2.1 channels being delivered directly to the surface clusters

Since we relied on fluorescent protein imaging to observe multiple Kv2.1 channels being de-

livered to the cell surface clusters as illustrated in Fig. 4.4 it remained possible that single Kv2.1
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channels arrived at the cell surface via delivery to Kv2.1 cluster-free plasma membrane. In ad-

dition, the TIRF imaging of Fig. 4.4 does not confirm true cell surface insertion, showing instead

that the GFP-Kv2.1 is within the TIR field. To address these issues we expanded our previous

QD-based detection of single Kv2.1 channels [117, 133, 49]. QD labeling is extremely specific

since streptavidin-conjugated QDs are attached to the extracellular surface of Kv2.1 via channel-

specific biotinylation. In addition, QD do not photobleach so channels can be tracked for hours.

Our QD-based insertion site assay to detect the location of Kv2.1 cell surface insertion with sin-

gle molecule sensitivity involved first incubating live cells expressing biotinylated GFP-Kv2.1-

loopBAD with 1 mM neutravidin for 5 min to saturate biotinylated surface channels and hence

prevent streptavidin-conjugated QD labeling. Following extensive washes to remove unbound

neutravidin, the cells immediately were imaged in the presence of 1 nM 605QDs using a spin-

ning disk confocal. Freely diffusing QDs move too rapidly to be effectively detected under our

imaging conditions. As Kv2.1 channels that were synthesized de novo or were intracellular dur-

ing neutravidin binding insert into the cell surface they become QD labeled. Thus, spontaneous

QD appearance during the continuous imaging represents QD binding to a recently inserted chan-

nel. Fig. 4.5 shows that the neutravidin block is highly effective and that QD binding after this

block requires temperatures allowing intracellular trafficking. Fig. 4.6 indicates QDs bind cell sur-

face Kv2.1 soon after being added to the culture dish, with 75 s required to reach 50% binding.

QD binding during the insertion site assay is likely to occur much faster since the cells are contin-

uously bathed in a QD solution (as opposed to the dots being added to dish as in Fig. 4.6 where

diffusion is delayed). Since the median distance covered by a non-clustered Kv2.1 channel in 40 s

is 375 nm [49], the inserted Kv2.1 channels are unlikely to diffuse far from their site of membrane

insertion before being bound by a QD. If single channels were inserted at locations outside of the

GFP-Kv2.1 clusters, more QDs should first appear off cluster. In contrast, if the clusters are the

predominant insertion sites, even for single molecules, then QD appearance should favor the clus-

ters themselves. QDs appearing within 0.5 mm of the cluster perimeter were defined as appearing

at that cluster.

Fig. 4.7 shows the results of a representative experiment where QD binding to newly in-

serted Kv2.1 channels was used to determine the location of channel insertion. As outlined in

Fig. 4.7A, HEK cells expressing GFP-Kv2.1-loopBAD that was biotinylated intracellularly via co-
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Figure 4.6: Time course of QD binding to GFP-Kv2.1-loopBAD channels. (A-C) QD binding observed at the indicated times following the
addition of a 1 nM QD solution. (D) Quantitation of QD fluorescence over time. The data from three binding time courses
were normalized, averaged and fitted to. Here = 108 sec. Since , the fitted curve indicates binding reached 50% at 75 s.

Table 4.1: QD based detection of cytoplasmic Kv2.1 insertion into the plasma membrane of transfected HEK cells. Location of QD appearance
based on manual detection.

Cell # QDs appearing QDs appearing % appearances % basal

within 0.5 mm at cluster-free associated surface area

of a cluster membrane with a cluster in clusters

border

1 36 11 76.7 7.2

2 3 1 75 36.8

3 29 8 78.4 9.7

4 30 0 100 24

5 31 4 88.6 10.1

6 25 4 87.1 18.5

7 13 4 81 16.5

8 22 2 91 15.1

Total 189 34 84.7 ± 8.4 17.2 ± 9.5

transfection with biotin ligase (BirA) were neutravidin blocked and then imaged in the presence

of QDs as described above. Fig. 4.7B shows the lack of detectable QDs at the beginning of the time
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Figure 4.7: Detection of single channel insertion sites in transfected HEK cells. Basal membrane GFP-Kv2.1-loopBAD clusters are shown
in green and 605 QDs in red. (A) Outline of the QD-based insertion site protocol. (B) QD labeling immediately following
neutravidin block of surface GFP-Kv2.1-loopBAD. (C and D) QD labeling observed at the indicated times. (E) Summary of
sites at which QDs were first detected. The 20 red asterisks indicate the appearance at a cluster perimeter and subsequent
trapping within the cluster. The two yellow asterisks indicate channels arriving at a cluster border that were not retained
within the cluster but diffused away to be confined to different clusters 3 and 4 min later. The cyan asterisks represent
QDs first observed off cluster that then become confined within a Kv2.1 cluster.

series. Fig. 4.7C shows that by 5 min 8 QDs are observed, 6 within, and confined to, the Kv2.1

clusters as visualized via their GFP fluorescence, and 2 freely diffusing outside of the clusters.

By 15 min, 19 cluster associated QDs are seen along with 6 off cluster dots, Fig. 4.7D. Fig. 4.7E

summarizes the locations at which QDs appear over the entire 18 min time series. Twenty QDs

appeared at a cluster perimeter with subsequent trapping within the cluster. Two QDs appeared

at a cluster border but were not retained within the cluster, instead diffusing away to be trapped

in a cluster 3 and 4 min later. These events explain how channel insertion at the clusters can

still contribute to freely diffusing QDs. In addition, we have observed single Kv2.1 channels leav-

ing one cluster only to be trapped in an adjacent one within a few minutes (data not shown).

Thus, single Kv2.1 molecules are continuously exchanging between the cluster and non-cluster

membrane compartments even though the clusters are preferred insertion sites and individual

Kv2.1 channels can reside within the cluster for over an hour. In summary, this QD binding-based

insertion assay supports the hypothesis that the Kv2.1 surface clusters are the preferred sites for
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Figure 4.8: Recycling GFP-Kv2.1-loopBAD channels are targeted to surface clusters. HEK cells expressing biotinylated GFP-Kv2.1-loopBAD
were labeled with streptavidin-conjugated 605QDs, unbound QDs were removed, and the tissue culture dish then returned
to the tissue culture incubator for 1 h to allow QD-bound channel recycling to reach steady-state. The basal membrane
was then continuously imaged in TIRF at 2 Hz and 37˚C for 30 min. (A) QDs (red) bound to GFP-Kv2.1-loopBAD channels
(green) at the beginning of the imaging period. (B and C) QD localization at the indicated times. (D) QD fluorescence
intensity over time within the white ROI of panel C. The increase in intensity represents the delivery of two QD-labeled
channels to the cluster which is followed by endocytosis. (E) Algorithm-based detection of QD bound Kv2.1 appearance
and subsequent single molecule diffusion. Sites of QD appearance, i.e. Kv2.1 exocytosis, are indicated by the yellow
crosses. Note that the subsequent single particle tracks shown in red are confined to the Kv2.1 clusters.

Kv2.1 insertion into the cell surface in HEK cells. Additional experiments are summarized on a

per cell basis in Table 4.1. Analyzing eight cells indicated that 84.7 ± 8.4%, n = 223, of the QDs

spontaneously appearing on the cell surface, were cluster associated, appearing within 0.5 mm of

the GFP-defined cluster border. In these cells the cluster surface area represented 17.2 ± 9.5% of

the basal surface, indicating Kv2.1 insertion does not occur at random sites.

4.3.5 Recycling Kv2.1 channels arrive to, and depart from, the plasma membrane at the cell surface

clusters

During our previous work examining Kv2.1 diffusion where a low number of QDs were tracked

over 15-45 min we often observed fluctuations in the number of QDs on the cell surface suggesting

Kv2.1 is constantly being internalized and recycled to the cell surface [49, 133]. Therefore, we

examined whether Kv2.1 endocytosis and reinsertion into the plasma membrane occurs at the

surface clusters. HEK cells expressing biotinylated GFP-Kv2.1-loopBAD were labeled with QDs at

low efficiency, unbound QDs removed and the cells returned to the incubator for 1-2 h to allow
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QD recycling to begin. TIRF imaging was then used to detect QD removal and appearance, i.e.

endocytosis and reinsertion into the plasma membrane, respectively. Cytoplasmic Kv2.1 vesicles

with a single QD were transported at the same rate as QD-free vesicles (1.3 ± 0.6 vs. 1.4 ± 0.5

mm/s, respectively, data not shown), suggesting that QD bound Kv2.1 channels traffic normally. In

addition, Petrini et al [218] found that QD labeled AMPA receptors undergo normal clathrin-based

endocytosis and Zhang et al have followed the exocytosis of QDs confined within synaptic vesicles

to demonstrate complete vesicle fusion with the plasma membrane without the QD mass altering

vesicle delivery or fusion [219]. Thus, limited QD labeling is unlikely to alter membrane protein

internalization and subsequent trafficking. Representative results for recycling Kv2.1 channels

are shown in Fig. 4.8. Panels A-C show the surface distribution of QD labeled Kv2.1 channels at

the indicated times after a one hour incubation to allow recycling to begin. Note the changing

QD-GFP relationship in the three selected time points. Dots both appear and disappear during

this 30 min period, reflective of exocytosis and endocytosis, respectively, while total QD number

remains relatively constant at 16 in this particular cell. Over 30 min of TIRF imaging there were

4 QDs appearing at cluster perimeters and 6 instances of QDs disappearing at cluster perimeters.

In two cases, when the QDs disappeared GFP fluorescence intensity was also lost suggesting that

multiple channels were endocytosed (data not shown). During most of this sequence there were

on average 14 cluster-confined QDs and two freely diffusing QDs not associated with a cell surface

cluster. Panel D shows the QD fluorescence over time within the ROI indicated in Panel C. Note

the sudden increase in the QD signal, representing two QDs approaching the membrane and

being inserted into the GFP-Kv2.1 cluster. The intensity decrease is consistent with the sequential

endocytosis of the two recently inserted QD labeled channels.

Overall, 96%, n = 146, of QD bound Kv2.1 channels appeared on the surface at the cluster

perimeter while 97%, n = 42, of the QDs were internalized at this location. While QDs can enter

a stable, long-lived dark state lasting up to 500 s [208], the frequency of such a long-lived state

is very low as indicated in Fig. 4.9. Only 14 of 460 long-lived dark events exceeded 60 s in a

total observation time of 22,000 s. Therefore, long-lived dark states greater than 60 s should not

interfere with our data analysis and QD blinking behavior is not responsible for the observed endo

and exocytosis activity. Manual inspection of our image files to determine where QDs appear at

the cell surface is both labor-intensive and prone to investigator bias. Therefore, we also used
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Figure 4.9: QD blinking behavior under the imaging conditions used. Nontransfected HEK cells where incubated with 0.1 nM 605 QDs
in imaging saline without BSA for 10 min at 37˚C, washed and the non-specifically bound, immobile QDs imaged at
2-10 Hz in TIRF to quantitate the duration of any long-lived dark states. The three traces shown illustrate the typical
blinking behavior observed and the histogram summarizes data collected from 26 QDs. Only 14 of 460 long-lived dark
states exceeded 60 s during > 22,000 sec of imaging. The histogram was fit with a power law, N = 27021t-2.

a MTT [209, 210] to detect the appearance of QDs and track them until they were endocytosed.

Fig. 4.8E presents an example of this analysis where the sites of membrane delivery of three

QDs bound to Kv2.1 are indicated by the yellow crosses. The single particle tracks starting at the

insertion points show the QDs remain confined within the cluster over the next 876 frames (126 s).

Note that each Kv2.1 channel was confined to the cluster at which perimeter it is first observed.

Using this algorithm we found that 78%, n = 130, of recycling QD-labeled Kv2.1 channels appear

at a cluster perimeter and 87% of these remained trapped in the cluster for the duration of

imaging or until endocytosis. Estimation bias can be present in both an automated algorithm and

a human-based approach, but the bias in the two methods is very different (for a discussion of this

topic see [220]). Therefore, the use of both tools further substantiates the validity of the results.

Manual and algorithm-based detection and tracking of recycling Kv2.1 channels independently

support our hypothesis that the Kv2.1 surface clusters are sites for membrane insertion of Kv2.1

channels.

4.3.6 Kv2.1 insertion requires an intact actin cytoskeleton.

We previously demonstrated a role for the actin cytoskeleton in Kv2.1 surface cluster mainte-

nance [133]. To examine the role of cortical actin in Kv2.1 delivery to the cell surface, the recycling

experiments illustrated in Fig. 4.8 were repeated in the presence of either 5 mM cytochalasin D or

125 nM Swinholide A, 20 min each (data not shown). Only 5% of QD labeled Kv2.1 channels were
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Figure 4.10: Trafficking of Kv1.4 channels. (A) QD number over time. Note that QD number slowly cycles as expected if there is
continuous insertion and retrieval at the cell surface. The high frequency fluctuations are derived from the QD blinking
while the low frequency fluctuations are from the insertion-retrieval events since the surface residence is greater than 100

s. (B) Locations of QD arrival and removal at the surface. The red asterisks indicate points of Kv1.4 insertion near a Kv2.1
cluster perimeter and the white asterisks indicate where Kv1.4 internalization occurred. (C) Algorithm-based detection
of membrane insertion site for Kv1.4 (yellow cross) and subsequent single molecule diffusion track (red). Unlike the
Kv2.1 channels that usually are retained within the cluster, Kv1.4 rapidly diffuses away.

delivered to clusters following Swinholide A and 0%, following cytochalasin D treatments, n =

57 and 18, respectively. In both cases the QDs showed non-confined diffusion immediately after

appearance at the cell surface and were not trapped into a cluster. These experiments with actin

inhibitors indicate that the trafficking machinery associated with Kv2.1 clusters is dependent

on an intact actin cytoskeleton. The role of actin in exocytosis, while studied extensively, is not

completely clear. In neuroendocrine cells the cortical actin appears to interfere with or restrict

chromaffin granule fusion [221, 222]. In contrast, in PC12 cells actin polymerization enhances

stimulated secretion [223]. Future experiments are required to determine whether f-actin has a

direct role in Kv channel exocytosis or whether the actin serves simply as a scaffold assembling

the exocyst machinery. More importantly, these actin disruption experiments indicate that ran-

domly occurring, long-lived QD dark states do not simply create the impression of delivery at a

Kv2.1 surface cluster.

4.3.7 Kv1.4 also traffics to and from the Kv2.1 surface clusters.

We next examined whether other membrane proteins also traffic to and from the cell surface

at the Kv2.1 surface clusters. We studied membrane insertion and retrieval of Kv1.4 since this
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K+ channel can also be specifically biotinylated on the extracellular surface and labeled with

a streptavidin-conjugated QD [49]. In contrast to Kv2.1, Kv1.4 has a homogenous cell surface

expression pattern with no apparent localization [133]. When Kv1.4 is co-expressed with Kv2.1

it ignores the Kv2.1 surface clusters, being found at equal densities inside and outside these

domains and freely diffusing across the Kv2.1 cluster perimeter [133]. Thus, a priori, there is no

reason to expect Kv1.4 to have any trafficking association with the Kv2.1 clusters.

HEK cells were transfected with GFP-Kv2.1, GFP-Kv1.4-loopBAD and BirA biotin ligase, labeled

with QDs, returned to the incubator for one h after unbound QD removal, and then continually

imaged with TIRF microscopy. As illustrated in Fig. 4.10A the GFP-Kv2.1 clusters are seen against

a background of the homogeneous GFP-Kv1.4 fluorescence. The appearance and disappearance

of Kv1.4 bound-QDs in one cell is summarized in Fig. 4.10A. The red asterisks in Fig. 4.10A indi-

cate points of Kv1.4 insertion at a Kv2.1 cluster perimeter and the white asterisks indicates where

Kv1.4 internalization occurred. Panel B summarizes QD number over time. Note that QD number

slowly cycles as expected if there is continuous insertion and retrieval at the cell surface. In this

particular cell eight QDs appeared and two QDs disappeared at the cluster perimeter. Unlike the

Kv2.1 channels, which usually become trapped within the cluster, Kv1.4 rapidly diffuses away

as is expected given its homogenous cell surface pattern. Manual analysis of Kv1.4 bound QD

recycling in 11 cells indicated 91 ± 12% of Kv1.4 bound QDs appeared at a cluster perimeter (n

= 44) while 90 ± 14% of Kv1.4 QDs were lost from the cell surface at the cluster perimeter (n =

11). Among this group of cells, only 20 ± 9.3% of the basal cell surface was occupied by the Kv2.1

clusters, again indicating Kv1.4 delivery to the surface at the Kv2.1 clusters cannot be attributed

to chance.

We again applied the MTT algorithm-based approach to insertion site detection and subsequent

single particle tracking as illustrated in Fig. 4.10C. As expected, Kv1.4 bound QDs appeared on the

cell surface at the Kv2.1 cluster boundary. In contrast to the Kv2.1 mobility illustrated in Fig. 4.8E,

the post delivery Kv1.4 diffusion track indicates free diffusion as opposed to trapping within the

adjacent Kv2.1 cluster. 78%, n = 170, of the Kv1.4 channels appeared on the cell surface at the

Kv2.1 cluster perimeter even though these two channels have no common localization pattern on

the cell surface. Taken together, these data show that Kv1.4 is delivered to the same cell surface

sites as Kv2.1 but lacks cluster retention. When QD labeled Kv1.4 disappeared from the surface
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Figure 4.11: TIR-based FRAP analysis detects vesicular tethering and Kv2.1 delivery to Kv2.1 surface clusters in cultured hippocampal neurons.
(A) Surface clusters prior to photobleach. The arrows highlight Kv2.1 clusters potentially in the axon initial segment. (B)
Tethered vesicles (arrows) detected at the end of incomplete cluster photobleach within the white box shown in A. Note
the three vesicles within the white outline of the large cluster present before bleach. (C) Fluorescence pattern after 19

min, 15 s of recovery. (D) Time course of fluorescence recovery within the regions indicated in C.

endocytosis also occurred at the cluster perimeter just as described for Kv2.1. Thus, two distinct

Kv channels are trafficked to and from the cell surface at the same locations, suggesting the Kv2.1

surface clusters represent general sites for membrane insertion and retrieval in HEK cells.

4.3.8 Trafficking vesicles associate with, and deliver Kv2.1 cargo, to Kv2.1 surface clusters in hippocampal

neurons.

While Kv2.1 expression and regulation is similar between HEK cells, cultured hippocampal

neurons and brain slice preparations (compare Figs. 4.1 and 4.2 and see refs. [115, 119, 212, 214]),

we confirmed that our findings in HEK cells were applicable to neurons. We detected numerous

intracellular vesicles within neuronal soma and neurites. To determine whether these vesicles

associated with the cell surface Kv2.1 clusters, we performed a TIR-based FRAP experiment with

GFP-Kv2.1 transfected hippocampal neurons as illustrated in Fig. 4.11. Panel A shows soma- and

neurite (arrow) localized Kv2.1 clusters before the TIR-based partial photobleach. The boxed area
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within Panel A is enlarged in Panel B and shows tethered vesicles at the surface clusters following

the partial photobleach (arrows). Note the large cluster on the soma outlined in white that has

three bound trafficking vesicles. Time-lapse imaging was then performed and the recovery after

19 min is illustrated in Panel C. Quantitation of the fluorescence within the ROIs indicated in Panel

C showed that delivery to cluster-containing regions occurred more rapidly, and in a step-wise

pattern, as compared to fluorescence recovery within cluster-free soma or neurite membrane (see

Panel D). As with HEK cells, this off-cluster recovery likely represents the unrestricted diffusion of

non-clustered Kv2.1 from the top, and thus unbleached, region of the cell. The recovery occurring

within what is likely the axon initial segment [211] illustrates both transient vesicle tethering at

450 s and delivery of GFP-Kv2.1 to the bleached cluster at 800 s. Taken together, these data suggest

that the Kv2.1 surface clusters on the neuronal soma and axon initial segment are preferred

vesicle docking and membrane fusion sites for cytoplasmic vesicles containing Kv2.1 and that

Kv2.1 remains within these domains following delivery to the surface.

4.3.9 Detection of single channel insertion sites in hippocampal neurons

The neutravidin block approach with the GFP-Kv2.1-loopBAD construct to detect single chan-

nel insertion sites was repeated in neurons as illustrated Fig. 4.12. Fig. 4.12A shows the lack

of detectable QDs at the beginning of the time series, indicative of little to no channel insertion

at this time. One and a half minutes later one bound QD was detected as shown in Fig. 4.12B.

Fig. 4.12C shows that by 11 min 44 s seven QDs were observed, six within, and confined to, the

Kv2.1 clusters visualized via the GFP fluorescence, and one freely diffusing off clusters. Fig. 4.12D

summarizes the location of QD appearance over this time series. The red asterisks indicate QD ap-

pearances at cluster perimeters where the QD was immediately trapped within the Kv2.1 cluster.

The yellow asterisks indicate appearances at a cluster perimeter where the QD was not retained

within the cluster. Examination of 59 QD appearances in 7 neurons indicated that 90 ± 11% of

insertion events per cell occurred at the Kv2.1 cluster perimeter.

4.3.10 Recycled Kv2.1 channels also insert at the surface clusters in hippocampal neurons

Neurons expressing biotinylated GFP-Kv2.1-loopBAD were labeled with a sub-saturating con-

centration of QDs, washed and returned to the tissue culture incubator for 1-2 h to allow recycling

93



Figure 4.12: Detection of single channel insertion sites in hippocampal neurons. (A) QD labeling immediately following neutravidin block
of surface GFP-Kv2.1-loopBAD. (B and C) QD labeling observed at the indicated times during continuous spinning disk
imaging at 37˚C and 1 Hz in the presence of a 1 nM QD solution. (D) Summary of sites at which QDs first bound. The red
asterisks indicate QD appearance at a cluster border and immediate confinement within the cluster. The yellow asterisks
indicate channels arriving at cluster borders where they were not retained but diffused away to be trapped later.

to progress. The neurons were then continuously imaged in TIRF for up to 1 hr. Representative

results are shown in Fig. 4.13. Panels A-D show the surface distribution of QD labeled Kv2.1

channels at the indicated imaging times after QD labeling and the following one hour incubation

during which internalization occurs. Many of these internalized QDs reappeared on the cell sur-

face during the illustrated time series. Note that some Kv2.1 clusters accumulated multiple QDs

while others are QD-free, suggesting that Kv2.1 recycling back to the surface may prefer specific

clusters. Analysis of Kv2.1 recycling in seven neurons indicated that 45 of 53 QD labeled Kv2.1

channels (85%) arrived back at the cell surface at a cluster perimeter. Three of these 45 QDs were

not retained within the cluster at which they arrived. In addition, there were 8 QDs observed

undergoing endocytosis at the Kv2.1 surface cluster perimeter.

94



Figure 4.13: Recycling GFP-Kv2.1-loopBAD channels are targeted to surface clusters in the soma of cultured hippocampal neurons. Neurons
expressing biotinylated GFP-Kv2.1-loopBAD (green) were labeled at low density with 605 QDs (red), 1 nM for 5 min
at 37oC, rinsed and returned to the tissue culture incubator for 1 h to allow QD-bound channel recycling to reach a
steady state. The basal membrane was then continuously imaged in TIRF at 2 Hz and 37˚C for 30 min. QDs that were
internalized during the first h are now likely recycling back to the cell surface. (A) GFP-Kv2.1-loopBAD channel clusters
partially labeled with QDs at the beginning of the imaging series. The inset shows a DIC image of this neuron with the
yellow box indicating the area imaged in TIRF. Bar, 5 mm. (B-D) QD localization at the indicated times. Note that by
almost 8 min some Kv2.1 clusters have accumulated multiple QDs while others remain QD-free, indicating that Kv2.1
recycling back to the surface does not occur equally at all clusters.

4.4 discussion

Even though it is critical that ion channel surface densities and location be well-controlled, lit-

tle is known concerning the location of Kv channel delivery and retrieval on the cell surface. The

Kv2.1 delayed rectifier channel regulates electrical activity in nerve and muscle [224] and is un-

usual among voltage-gated K+ channels in that it localizes to micron-sized clusters on the cell sur-

face of neurons and transfected HEK cells [225]. Surprisingly, within these surface microdomains

Kv2.1 is non-conducting at depolarized potentials. Since in neuroendocrine cells Kv2.1 is pos-

tulated to play a non-conducting role in SNARE-mediated membrane fusion, we tested the hy-

pothesis that the surface clusters are specialized platforms involved in membrane trafficking to

and from the cell surface. The TIR-based FRAP studies indicated that GFP-Kv2.1 containing cyto-
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Figure 4.14: Summary of Kv channel membrane insertion. The percent of total insertions that occurred at a Kv2.1 cluster are indicated.
The grey bars represent neuronal insertions while the black bars summarize the data from HEK cells. The insertion
percentages determined by manual and automated detection were averaged. The numbers above each bar refer to the
total number of surface insertions observed for the indicted condition.

plasmic vesicles tether to, and deliver cargo in a discrete fashion at the Kv2.1 surface clusters in

both transfected HEK cells and cultured hippocampal neurons. QD-based single molecule imaging

indicated that the delivery and surface retrieval of Kv2.1 occurs at the perimeter of the surface

clusters. Overall, the majority of nascent and continuously recycling Kv2.1 channels in HEK cells

and hippocampal neurons arrive at the cell surface within 0.5 mm of the cluster perimeter and are

immediately confined within the cluster. The majority of Kv2.1 channel endocytosis in HEK cells

occurred within this same region even though the clusters represented less than 20% of the cell

surface. The non-clustering Kv1.4 channel also traffics to and from the plasma membrane at the

Kv2.1 cluster perimeter, demonstrating that the Kv2.1 clusters represent cell surface platforms for

the insertion and retrieval of other Kv channels. Together, these results, which are summarized in

Fig. 4.14, indicate that Kv2.1 clusters function as specialized cell surface microdomains involved

in membrane protein trafficking.
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Why use Kv2.1 clusters as cell surface trafficking platforms for Kv channels? We previously

showed that while the Kv2.1 channels within the clusters are non-conducting, they are capable

of sensing membrane voltage in that the clustered channels produce gating currents in response

to depolarization [120]. Thus the Kv2.1 clusters could serve as voltage-sensing domains that link

membrane fusion and/or endocytosis to neuronal electrical activity. Alternatively, the cluster-

based trafficking could be influenced by extracellular events. For example, in a-motoneurons

Kv2.1 clusters on the soma colocalize with large cholinergic synaptic inputs suggesting that mus-

carinic receptor activation could modulate trafficking at these sites [226]. Most recently, a Kv2.1

beta subunit has been proposed that has the characteristics of a cell surface adhesion molecule

[227]. Since this adhesion protein is concentrated within the Kv2.1 clusters on the neuronal sur-

face, extracellular matrix interactions could also potentially modulate membrane protein deliv-

ery and retrieval. And as noted earlier, the Kv2.1 clusters are regulated by ischemia in the intact

brain, where ischemia blocks glutamate uptake by adjacent astrocytes thereby activating extra-

synaptic NMDA receptors with the resulting Ca2+ influx inducing Kv2.1 declustering [212, 213].

Altered neuronal membrane trafficking after an ischemic insult could be either damaging or

neuro-protective.

The use of stable, reusable sites for exocytosis is not a commonly accepted idea. Notable excep-

tions are neuronal and immunological synapses, budding yeast and polarized epithelium [16].

However, exocyst localization has obvious advantages:

1. Static localization avoids the energy and time required to constantly reassemble the exocyst

protein complex.

2. Trafficking vesicles can be delivered to stable sites along relatively static microtubules and

then handed off to the cortical actin network.

3. Such localization should also provide for enhanced regulation since GTPases, kinases, etc

can be stably incorporated into the exocyst complex.

In adrenal chromaffin cells exocytic release does occur at specific reusable sites [228, 229, 230].

Interestingly, Kv2.1 has been implicated in SNARE-mediated exocytosis in these neuroendocrine
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Figure 4.15: Clathrin and caveolins prefer the Kv2.1 cluster perimeter. (A) Relationship between RFP-clathrin light chain and GFP-Kv2.1
surface clusters in transfected 7DIV hippocampal neurons. In the 11 neurons examined, 76 ± 15% of the clathrin puncta
were within 0.5 mm of the cluster perimeter while the perimeter occupied only 8 ± 2% of the basal cell surface. (B)
Relationship between GFP-clathrin light chain and Kv2.1-HA surface clusters in transfected HEK cells. Kv2.1-HA was
visualized using AlexaFluor594-conjugated anti-HA antibody. 60 ± 9% (9 cells) of the puncta were cluster-associated
while the cluster perimeter occupied only 14 ± 6% of the basal cell surface. (C and D) Relationship between YFP-caveolin
1 or CFP-caveolin 3, respectively, and Kv2.1-HA surface clusters in transfected HEK cells. 66 ± 10% (9 cells) of the YFP-
caveolin 1 puncta were within 0.5 mm of the Kv2.1 cluster perimeter while the perimeter occupied 16 ± 5% of the basal
cell surface. 64±14% (6 cells) of the CFP-caveolin 3 puncta were adjacent to the cluster while the perimeter occupied only
17 ± 5% of the basal cell surface.

cells [202]. Recent studies of Glut 4 trafficking suggest specialized plasma membrane domains in

adipose cells are used for Glut 4 delivery to the cell surface [231]. Under control conditions the

majority of vesicular Glut 4 is delivered to Glut 4 clusters on the cell surface where it remains

confined. The surface delivery that does occur at cluster-free membrane has the delivered Glut 4

being rapidly dispersed. Similar to what we describe here for Kv2.1, endocytosis of Glut 4 occurs

primarily at the surface Glut4 clusters. While in the past it was often assumed that endocyto-

sis outside presynaptic membranes was randomly distributed over most cell surfaces [232], the

existence of stable "hot spots" for clathrin mediated endocytosis is now accepted for many cell

types [16, 4, 233, 234]. In agreement with this idea clathrin puncta localize adjacent to the Kv2.1

clusters in transfected hippocampal neurons and HEK cells as shown in Fig 4.15A and 4.15B. This

association is especially strong in the neurons where 76 ± 15% of the clathrin puncta were within
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0.5 mm of the cluster perimeter while the perimeter occupied only 8 ± 2% of the basal cell surface.

Caveolae are involved in certain types of endocytic trafficking [235], and caveolin 1 and 3 puncta

also prefer the cluster perimeter as illustrated in Fig. 4.15C and 4.15D. In summary, localized

sites for membrane protein insertion and retrieval may be much more common than previously

thought, especially in neuronal cells.

4.5 conclusion

Kv2.1 clusters represent approximately 20% of the soma cell surface in hippocampal neurons

where their existence is regulated by neuronal activity and insult even though the clustered

channels are non-conducting [115, 119, 212, 120]. In alpha motor neurons these microdomains

exist at synaptic inputs where they colocalize with muscarinic acetylcholine receptors and other

proteins involved in cholinergic transmission [226]. Our present work indicates that in transfected

HEK cells and hippocampal neurons these structures are trafficking platforms involved in Kv

channel movement to and from the cell surface. Whether a non-conducting function of Kv2.1

is to actually form these specialized cell surface microdomains involved in membrane protein

trafficking is an area requiring further study. Nonetheless, the present work is the first to define

stable cell surface sites for ion channel delivery and retrieval at the cell surface.
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CHAPTER 5 : S IZE OF CELL - SURFACE KV2 . 1 DOMAINS I S GOVERNED

The Kv2.1 voltage gated potassium channel forms stable clusters on the surface of different

mammalian cells. Even though these cell-surface structures have been observed for almost a

decade, liĴle is known abouĴ he mechanism by which cells maintain them. We measure the

distribution of domain sizes to study the kinetics of their growth. Using a Fokker-Planck formal-

ism, we find no evidence for a feedback mechanism presenĴ o maintain specific domain radii.

Instead, the size of Kv2.1 clusters is consistent with a model where domain size is established by

fluctuations in the trafficking machinery. These results are further validated using likelihood and

Akaike weights to selecĴ he best model for the kinetics of domain growth consistent with our

experimental data.

5.1 introduction

Membrane compartments or domains appear in many different cell types. These domains are

varied in their composition and in the residence time that an individual molecule remains con-

fined within the specific domain. The mechanisms by which a cell forms and maintains these

specific structures in the plasma membrane can be very diverse, depending on the length and

timescales involved. To name a few examples, MHC-I forms dynamic clusters with typical life-

times of tens of seconds that are governed by the concerted action of exocytosis and the existence

of cytoskeleton-based diffusion barriers [236, 181]. Both cadherin [237] and transferrin receptors

[183] undergo transient confinement as they diffuse over the cell surface presumably due to tran-

sienĴ rapping within various cytoskeletal domains. IgE receptors diffuse within micron-sized

membrane domains defined by actin bundles, over time-scales of seconds [180].

Hemagglutinin molecules form dynamic irregular clusters on length scales from 40 nm up to

micrometers [238]. In sharp contrasĴ o these examples of membrane domains, the voltage gated

K+ channel Kv2.1 forms micron-sized clusters that are stable over the course oĢ ours. These

surface domains appear in hippocampal neurons in vitro and in vivo [211, 239, 240], in spinal

cord motor neurons [226], and in transfected HEK cells [119, 214, 134, 133, 49]. Kv2.1 clusters are

proposed to have a neuroprotective role in the mammalian brain [119]. However, as mentioned

100

BY GROWTH FLUCTUAT IONS



in previous chapters, the physical mechanism behind cluster formation and maintenance is still

unknown.

As shown in Chapter 4, the insertion of channels into the plasma membrane occurs solely at the

perimeter of clusters via a vesicle docking and delivery mechanism. Similarly, internalization of

Kv2.1 channels occurs from the cluster perimeter. However, the question of how the cell regulates

Kv2.1 domain size remains unanswered. Given that delivery and internalization of potassium

channels takes place at the cluster perimeter [241], the cellular trafficking machinery has some

“knowledge” of the cluster location. Therefore, it is tempting to hypothesize that cluster sizes are

actively regulated by balancing internalization and exocytosis events via a feedback mechanism.

Alternatively, cluster sizes may be left to the fate of fluctuations in the exocytic/endocytic ma-

chinery. Even though this latter pathway lacks some degree of control it has the advantage of

being favorable from an energy budget perspective.

In this chapter, we study the Kv2.1 domain size distribution on the surface of HEK cells to shed

light into the mechanism by which Kv2.1 clusters are regulated. We use a simple growth model

to investigate the distribution of domain sizes in a similar fashion to Gov’s model for the size

distribution of focal adhesions [242]. The size distribution is directly linked to the maintenance

and regulation of domains. For example, if a feedback mechanism maintained a specific domain

size by locally balancing endocytosis and exocytosis, this preferred size would have the highest

probability. Thus the probability density of domain radii would peak at this specific value. In

general, the evolution of cluster size distribution can be modeled, in the continuum approxima-

tion, by a Fokker-Planck equation, which makes a direct connection between the kinetic model

of growth and the size distribution [243]. The Fokker-Planck equation in one variable is derived

from the stochastic differential equation

dx
dt

= vc (x) + v f (t)

where vc is a deterministic velocity and v f is a stochastic quantity. We have ignored any inertial

terms that are not relevant to growth models. The fluctuations in the velocity are often assumed

to be d-correlated
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v f (t) v f

⇣
t
0
⌘E

= 2Dd

⇣
t � t

0
⌘

, (5.1)

and the corresponding Fokker-Planck equation for the distribution function P (x, t) is[244]

dP
dt

= � ∂

∂x
[vc (x) P] + D

∂

2P
∂x2 . (5.2)

Using this formalism, we find that the size distribution of Kv2.1 domains is governed by fluc-

tuations in the trafficking pathways and that no local feedback exists between endocytosis and

exocytosis

5.2 material and methods

5.2.1 Cell culture and transfection

Kv2.1 channels labeled with an intracellular GFP at the N-terminus have been used previously

and are also described in more detail in Chapter 4 [GFP-Kv2.1, [134, 133, 49]]. HEK 293 cells

(American Type Culture Collection, passage 38-45) were kept in DMEM (Gibco, Life Technologies,

Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS, Gibco) at 37˚C and 5% CO2.

Cells were transfected by electroporation using a BioRad Genepulser Xcell (BioRad Laboratories,

Hercules, CA) with a 0.2 cm gap cuvette and a single 110-V 25-ms pulse with 3 mg of GFP-Kv2.1

expressing DNA, Appendix 5 (8.3). Following electroporation cells were plated on cover-glass-

bottom culture dishes that had been previously Matrigel-coated (BD Biosciences, San Jose, CA)

and covered in DMEM without phenol red (Life Technologies) and 10% FBS. Cells were used for

live cell imaging within 24 hours of transfection.

5.2.2 Live cell imaging

Prior to imaging, cells were always rinsed twice with a HEK physiological imaging saline, 8.6.

Cells expressing fluorescent protein-tagged constructs were imaged in imaging saline at 37˚C in

a home-built, objective-type TIRF microscope built around an Olympus IX71 [49]. GFP was excited

using a 473 nm diode pumped solid-state laser (Shanghai Dream Lasers, Shanghai, China). The

beam was expanded, re-collimated, attenuated with a neutral density filter to yield 2.5 mW after
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the objective, and focused at the back focal plane of a 100x objective (Olympus PlanApo N.A.

1.45) using an antireflection-coated achromatic doublet with a focal length of 400 mm (Thorlabs,

Newton, NJ). The GFP fluorescence was collected in an electron-multiplied charge coupled device

(iXon DU-888, Andor, Belfast, Ireland). Both the dish and the objective were maintained at 37˚C

using a temperature control system (Bioptechs, Butler, PA).

5.2.3 Image and data analysis

Images were acquired using Andor IQ 2.3 software and saved as 16-bit tiff files. The images

were analyzed with a custom-written algorithm in LabView, see Appendix 5 (5). We manually

selected the center of each cluster and, then, the intensity of the pixels in the horizontal and verti-

cal cross sections of the clusters was generated. These line profiles were fit to Gaussian functions

using the Levenberg-Marquardt least-square method. The LabView codes used to perform this

analysis are available upon request. The obtained data were imported into Origin 8.1 for further

processing.

5.2.4 Cytoskeleton disruption reagents

Latrunculin A (LatA, Sigma) was used in order to disrupt the cortical actin. In these experi-

ments, LatA was dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich) and directly added to

the imaging dish to a final concentration of 100 nM [117].

5.2.5 Models

In general, the three different types of domain growth without any feedback mechanism are:

1. channels exchange with a reservoir, i.e., the membrane outside the domains, by permeating

through the domain perimeter;

2. channels are directly inserted from the cytosol into the interior of the domain and are

retrieved from the interior of the domain to the cytosol; and

3. a constant inward/outward flux is directly maintained independent of domain size.
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The first two models of growth were given by Gov [242] and are also reproduced here for conve-

nience. A fourth model is also given below for a feedback mechanism between growth rate and

cluster size.

Model 1

The mass balance equation for a domain with area A, allowed to grow only by permeation

through its perimeter is

∂A
∂t

= �ko f f r + konnr, (5.3)

where kon and ko f f are the on- and off-rates, n is the surrounding mean protein density, and r is

the radius of the domain, such that A = pr2. Replacing variables in Eq. 5.3, we get the equation

of motion for the radius r,

∂r
∂t

= �
ko f f

2p

+
konn
2p

. (5.4)

From Eqs. 5.2 and 5.4 we can write the corresponding Fokker-Planck equation for the radius PDF,

∂P
∂t

= � 1
2p

�
konn � ko f f

�
∂P
∂r

+ D
∂

2P
∂r2 . (5.5)

The noise term D accounts for temporal fluctuations in the insertion and retrieval of molecules

into and out of a cluster (given by Eq. 5.1) and results in an effective broadening of the distri-

bution. Sources of fluctuations include ATP and GTP availability (for the action of motors and

GTPases), obstruction by intracellular compartments, anomalous Brownian motion of channels

to arrive to endocytic pits, dynamic distribution of microtubules, etc. Fluctuations in the traffick-

ing machinery are assumed to be intrinsic to the endocytic and exocytic machinery and to have

d-function correlations [245, 246]. The resulting steady-state solution to Eq. 5.5 is an exponential

in r,

P1 (r) = Rne�r(ko f f �konn)/2pD, (5.6)
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where Rn is a normalization constant. The normalization constant in Eq. 5.6 is found from

Z •

a
P1 (r) dr = 1,

where a is the minimum radius that can be assigned to a domain. Then,

Rn = l exp (la) , (5.7)

where

l =

�
ko f f � konn

�

2pD
.

Then, the log-likelihood function is

ln [L1 (l | r)] = n ln n + nla � l

n

Â
i

ri, (5.8)

where r = r1, r2, . . . , rn is our data set and L1 is the likelihood of the parameter l, given the data

set.

Model 2

When we consider a domain that can grow at any point in its interior,

∂A
∂t

= �ko f f A + konnA (5.9)

the corresponding Fokker-Planck equation is

∂P
∂t

= �
�
konn � ko f f

�
∂ (AP)

∂A
+ D

∂

2P
∂A2 (5.10)

The resulting PDF is a Gaussian in A,

P2 (A) = Rne�A2(ko f f �konn)/2D (5.11)

Or, by changing variables
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P2 (r) = Rnre��p

2r4(ko f f �konn)/2D (5.12)

The normalization constant in Eq. 5.12 is

Rn = r
r

l

p

h
erfc

⇣
a2
p

l

⌘i�1
, (5.13)

where

l = p

2

�
ko f f � konn

�

2D
,

and erfc is the complimentary error function defined as

erfc (x) =
✓

2p
p

◆ Z •

x
exp

�
�r2� dt.

The log-likelihood function is

ln [L2 (l | r)] =
n
2

ln
✓

16l

p

◆
� n ln

h
erfc

⇣
a2
p

l

⌘i

+
n

Â
j

ln rj � l

n

Â
i

r4
i . (5.14)

Model 3

In the last case, when there is a constant source and sink, we have the mass balance equation

∂A
∂t

= �ko f f + konn, (5.15)

with the corresponding Fokker-Planck equation

∂P
∂t

= �
�
konn � ko f f

�
∂P
∂A

+ D
∂

2P
∂A2 . (5.16)

The resulting PDF is an exponential in A,
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P3 (A) = Rne�A(ko f f �konn)/D (5.17)

and

P3 (r) = Rnre�pr2(ko f f �konn)/D. (5.18)

The normalization constant in Eq. 5.18 is

Rn = 2l exp
�
a2

l

�
, (5.19)

where

l = p

�
ko f f � konn

�

D
.

The log-likelihood function is

ln [L3 (l | r)] = n ln (2l) + na2
l +

n

Â
j

ln rj � l

n

Â
i

r4
i . (5.20)

Model 4

A different model of growth takes place when there exists feedback between on- and off-rates,

in order to maintain a given domain size. The coupling of growth rates to the size of the domain

can be modeled in different ways. A simple approach to this problem is to have an insertion term

that is dependent on cluster size so that konn = ko f f when r = R0, konn decreases when and konn

increases when r < R0. In a proportional negative feedback control (linear approximation),

konn = ko f f + a (R0 � r) (5.21)

where a is a coupling constant with units of s-1, i.e., the proportional gain. Then, assuming the

domain grows by permeation through its perimeter,
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∂A
∂t

= �ko f f r + konnr = a (R0 � r) ,

∂r
∂t

=
a

2p

(R0 � r) , (5.22)

∂P
∂t

= � a

2p

∂

∂r
[(R0 � r) P] + D

∂

2P
∂r2 . (5.23)

This Fokker-Planck equation has the steady-state solution

P4 (r) = Rnea(2R0r�r2)/4pD, (5.24)

which grows exponentially for values r ⌧ R0, is a Gaussian tail for large radii, and peaks at

r = R0. In Models 1-3, the off rate must be larger than the on rate for the distributions to be

normalizable [242]. This constraint is naturally taken care of within the feedback model. Other

types of feedback mechanisms can be formulated but little is gained by studying them in the

context of Kv2.1 domain radii. As an example, a different formalism is presented in Model 5. The

normalization constant in Eq. 5.24 is

Rn =
2
q

l/p exp
�
�lR2

0
�

erfc
h
(a � R0)

p
l

i , (5.25)

where l = a/4pD.

The log-likelihood function is

ln [L4 (l, R0 | r)] =
n
2

ln
✓

4l

p

◆
+ nR2

0l (5.26)

� n ln
h
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Model 5 (alternate to Model 4)

We also considered a different feedback mechanism as an alternative to Model 4. In Model

4 we maintain a radius-dependent on-rate with molecules being incorporated at the domain

perimeter. However, in a similar fashion to Model 3, we consider a model where the growth is

radius-dependent but the incorporation of new molecules is independent of domain size. Thus,

∂A
∂t

= a (R0 � r) . (5.27)

The corresponding Fokker-Planck equation is

∂P
∂t

= � ap
p

∂

∂A

h⇣p
pR0 �

p
A
⌘

P
i
+ D

∂

2P
∂A2 . (5.28)

In steady state we obtain,

P5 (A) = RneZ1 A�Z2 A3/2
, (5.29)

where

Z1 =
aR0

D
and Z2 =

2a�
3
p

pD
� .

Then,

P (r) = Rnreap(eR0r2�2r3)/3D. (5.30)

5.3 results and discussion

5.3.1 Characterization of the distribution of domain radii

Fig. 5.1A shows a TIRF image of the basal surface of a cell expressing Kv2.1 channels tagged

with GFP. Kv2.1 domains are visible as spots with high intensity levels. The size of the apparent

domains is measured by fitting the intensity cross-section profile of each spot to a Gaussian
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Figure 5.1: GFP-Kv2.1 clusters in the basal membrane of transfected HEK293 cells. (A) TIRF image showing clusters in a cell. Scale bar is 10

mm. (B) Zoom of the cluster marked with the yellow arrow. The two cross-section intensity profiles are fit to a Gaussian
curve. Scale bar is 1 mm. Pixel size is 0.13 mm.

Figure 5.2: Distribution of cluster radii Distribution of cluster radii obtained from fitting Gaussian functions to the intensity profile of
the cross-sections of each cluster. The line shows a fit to Rn exp (�lr) .

curve as shown, for a typical domain, in Fig. 5.1B. The full width at half maximum (FWHM) of the

Gaussian curve provides a good estimate of the diameter of the domain. We have included in our

analysis clusters that are either circular or elliptical. Irregularly-shaped domains, accounting for

only 5% of the total clusters, are discarded to avoid including two domains into a single fit. The

probability distribution of cluster radii built from the measurement of 674 radii in 16 different

cells is shown in Fig. 5.2. For each cluster, two radii are obtained: the first one from the vertical

cross section and the second one from the horizontal cross section, as indicated in Fig. 5.1B. Both

radii are included in the distribution. As is apparent in Fig. 5.2, the obtained distribution is an

exponential decay.

Two correlated effects limit the sensitivity of our size measurements. On one hand, when a

domain is too small, the intensity profile width is dictated by the PSF independent of domain size.
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In general, the image is given by the convolution of the PSF and the observed structure. In our

setup, the PSF can be roughly approximated by a 2D-Gaussian with a FWHM of 350 nm. Thus, the

smallest spots will appear to have an effective diameter of 350 nm. On the other hand, when the

number of channels is small, the definition of a cluster as a circular domain with a well-defined

perimeter is not applicable. Namely, the perimeter of the area occupied by structures containing

two or three channels is poorly defined. In order to deal with this problem, we obtained the

number of channels in each spot and consider only domains that contain at least five channels.

Channel number quantification was performed by measuring discrete photobleaching steps of

individual GFP tags.

In order to obtain the density of Kv2.1 channels inside clusters, we measured both the clus-

ter area and the number of channels. The intensity of an individual GFP was measured from

the bleaching steps of single fluorophores [147]. Individual channels located away from clusters

were manually identified and they were then tracked with a custom-written center-of-mass algo-

rithm. A 10x10 ROI was centered around the selected channels and the image was thresholded to

reduce bias due to background fluorescence [145]. The XY centroid of the thresholded image was

obtained and the ROI was moved to the new location to account for channel motion. The center

of mass in the next frame was then found and the algorithm was looped until the particle was

lost. Particles are lost by the tracking algorithm either because they are photobleached or because

they collide with a Kv2.1 cluster or with another individual channel. The tracking algorithm was

implemented in LabView.

The photobleaching of an individual fluorophore occurs in a discrete manner and a step can be

observed for each bleaching molecule. Because Kv2.1 is tetrameric, each channel is labeled with

four GFP fluorophores and several steps are seen before the channel trajectory is lost. In order

to characterize the intensity of a bleaching step the intensity of all the pixels in the threshold

image is summed. Figure 5.3A shows characteristic bleaching steps. After a number of steps

were collected from different trajectories in a cell the average step intensity is obtained. Fig. 5.3B

shows a histogram of the measured intensity change during 39 steps in a single cell. The mean

of the step intensity is 10418, measured in arbitrary units and the standard deviation 2374. Due

to the tetrameric character of Kv2.1 channels, we obtain the channel number inside each cluster
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Figure 5.3: Bleaching steps of individual GFP. (A) Time-course of the fluorescence emission of three characteristic channels obtained by
thresholding and summing the intensities in a 10x10 pixel region of interest. The scale bars show an intensity of 10000 in
arbitrary units and a time course equivalent to 5 s. (B) Distribution of the step intensities from the collection of 39 steps
in a single cell.

by dividing the sum of the intensities of the pixels in a cluster by 4 times the intensity of a

fluorophore.

We found that the density of channels in the clusters was 27.8 ± 8.7 channels per mm2 (mean

± standard deviation, n = 53, Fig. 5.4). Then, a domain with five channels has a diameter of 0.5

mm. Therefore, these structures do not suffer from limitations in the resolution imposed by the

system’s PSF described above.

The probability density function of domain radii fits well to an exponential distribution. This

is consistent with a mode of growth where channels are inserted into and extracted from the

clusters by exchange with a channel reservoir crossing the domain boundaries, i.e., Model 1

as described in the materials and methods. At first sight, this hypothesis appears to contradict

measurements showing that the main pathway of channel trafficking to and from the Kv2.1

clusters is via endocytic and exocytic mechanisms [241]. In Deutsch et al[241] and Chapter 4,

we used QD labeling and TIRF imaging approaches to show that Kv2.1 clusters are specialized

platforms involved in the trafficking of membrane proteins to and from the cell surface. This

approach enabled us to track individual channels and to directly detect the location of plasma

membrane insertion of Kv2.1 channels as well as the location of endocytosis from the surface. We

observed that Kv2.1 clusters represent platforms for the insertion and retrieval of not only Kv2.1

but also the unrelated K+ channel, Kv1.4.

A different explanation to the apparent growth mode, which is consistent with our previ-

ous observations, is that the number of endocytic/exocytic spots is proportional to the domain
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Figure 5.4: Density of Kv2.1 channels inside clusters. The number of channels is recorded as described in the text and the area is
computed as pd1d2/4, where d1 and d2 are the diameters found from the cross sections of the cluster intensity profiles.

perimeter. The measured domain size distribution implies that the rate of channel trafficking to

and from the cluster is proportional to the domain circumference length. Thus, these results are

in agreement with the hypothesis that the larger the cluster, the higher the probability of intro-

ducing a trafficking spot and, therefore, the number of these spots grows linearly with domain

radius.

The type of growth described by Eq. 5.3 assumes no explicit correlation between cluster size

and on-off rates. If the growth rates were controlled by a feedback mechanism that actively main-

tained a constant domain size, the probability density function of radii would peak at some

given value. This can be achieved via an on-rate that increases above the off-rate when the do-

main shrinks, as modeled by Eq. 5.21. However, the distribution of radii monotonically decreases

(see Fig. 5.2), which suggests that no feedback exists between the growth rates and the domain

size. The selection of the exponential distribution over the other potential models is rigorously

confirmed in the next section through the Akaike information criterion.

Model 1 implies that removal is more predominant than delivery, ko f f > kon. Otherwise, the

domains would grow indefinitely. In the limiting case that fluctuations in the endocytic/exocytic

machinery were negligible, the steady state solution to this model would be non-zero only for r =

0. In other words, because endocytosis dominates over exocytosis, all domains would disappear.

However, temporal fluctuations in the on/off rates lead to a finite broadening of the distribution

of domain sizes. The strength of these fluctuations is characterized by the parameter D. From the

distribution of radii we find the relative magnitude of the fluctuations in the on/off rate is .
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5.3.2 Model selection

The semi-log histogram depicted in Fig. 5.2 is indicative of a population of Kv2.1 surface do-

mains that are merely controlled by fluctuations in the endocytosis and exocytosis machinery.

However, it is desirable to quantify the likeliness of the proposed model by considering alterna-

tive distributions and performing goodness-of-fit tests. The simple and widely used approach of

fitting histograms to a model distribution can be problematic due to binning artifacts and the lack

of consideration of bins with zero counts. In order to avoid these drawbacks, alternative compet-

ing hypotheses can be considered. Then, biological inferences can be drawn by model selection

grounded in likelihood theory [247]. Model selection is generally used to select the model that is

best supported by the experimental data.

We performed a test based on the statistical theory of likelihood that circumvents the problems

described above. Techniques of model selection use negative log-likelihood as a metric for lack-

of-fit. Several criteria for model selection exist. The Akaike information criterion (AIC) is the

approach of choice in most cases [247, 248]. AIC estimates the Kullback-Leibler information lost

by approximating the experimental data to the fitting model [249]. A drawback of AIC is that it

is biased towards more complex models. On the other hand, the Bayesian information criterion

favors the simpler model. Nevertheless, we see that in the analysis of domain size distribution the

model selection using AIC yields the simplest model and, thus, complexity bias is not a concern.

Our approach is based on the Akaike information criterion to determine whether our measured

set of domain radii provides evidence for one of the proposed hypotheses. AIC quantifies the

relative support for each competing model. Given the measured radii r, we can obtain the log-

likelihood function for model i (i = 1, 2, 3, 4),

ln [Li (l | data r)] ,

where l is the set of unknown parameters. Details of the methods used to obtain the log-

likelihood functions and sets of parameters l of each model are given in the Methods. The AIC

for each model is given by
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Table 5.1: Analysis of the Kv2.1 sizes from control cells. AIC applied to the four distributions described in the Materials and Methods section
over the interval r � 0.25 mm. Di are the AIC differences and wi the Akaike weights. The maximum likelihood estimates are
l1 = p(ko f f �konn)/2pD, l2 = p

2(ko f f �konn)/2D, l3 = p(ko f f �konn)/D, and l4 = a/4pD. Note that the definitions and the units
of kon and ko f f are model-dependent according to Eqs. 2.1, 3.5, 3.14, and 5.17. For Model 4, two different values of R0 are
reported to indicate the fast decay of the likelihood with R0.

Maximum likelihood
Model estimates Di wi

1: Perimeter-dependent growth l1 = 10.7 mm-1
0 0.94

2: Bulk-dependent growth l2 = 45.3 mm-4
98.9 10

-20

3: Size-independent growth l3 = 16.6 mm-2
5.4 0.06

4: Feedback regulation l4 = 35.6 mm-2
22.5 10

-5

R0 = 0.25 mm

l1 = 44.6 mm-2
56.2 10

-15

R0 = 0.30 mm

AICi = �2 ln
⇥
Li

�
l̂i | data r

�⇤
+ 2pi, (5.31)

where pi is the number of free parameters and l̂i is the maximum likelihood estimate of param-

eters and li, for model i. Then, the AIC differences are Di = AICi � AICmin. The relative weight

of evidence for each model is known as the Akaike weight and is given by

wi =
exp (�Di/2)

Âj exp (�Dj/2)
. (5.32)

The Akaike weights are values between 0 and 1 that can be interpreted as the probability that a

given model is the best approximating model for the measured data. Table 5.1 shows the weights

of each of the models described in the Methods section. In good agreement with the semi-log plot

of the histogram (Fig. 5.2), the model by which the on and off rates are linearly proportional to

the perimeter of the domain, i.e., Model 1, is strongly supported by the data. This model has a

relative likelihood of 94% as compared to the other hypotheses.

The model that describes growth rates involving the insertion of molecules directly into the

domains, not involving the perimeter, has the lowest likelihood. The ratio of its likelihood to

the likelihood of the perimeter-dependent hypothesis is 10

-20. This is in agreement with our

experimental observations that insertion and retrieval of Kv2.1 channels occurs primarily at the

cluster perimeter, emphasizing the accuracy of the used statistical criteria.
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The feedback mechanism described by Model 4 was tested for values of R0 � 0.25 mm. This is

the minimum value of well-defined clusters and, thus, the proposed feedback mechanism aimed

at stabilizing clusters to R0 is not relevant for smaller values of R0. The highest likelihood of this

model was obtained for R0 = 0.25 mm, but it was several orders of magnitude smaller than the

models not involving any feedback control. The likelihood decreased very fast for larger values of

R0 indicating the lack of evidence for this model. The likelihood of Model 5 is found to be smaller

than that of Model 4. Even though, the models discussed here are not necessarily exhaustive, the

goodness-of-fit of the exponential distribution is remarkable.

5.3.3 Changes in the kinetics of growth affect domain size distribution

As a control experiment of our distribution analysis, we sought to introduce changes in the

growth kinetics of Kv2.1 microdomains. One way to drastically alter Kv2.1 clusters is to disrupt

the cortical actin cytoskeleton [241, 49]. The effect of cortical actin disruption on Kv2.1 is complex

as treatment with different pharmacological inhibitors of actin can cause clusters to dissolve or

fuse depending on the concentration applied. We used the G-actin sequestering agent LatA [250]

to inhibit the polymerization of actin and induce coalescence of Kv2.1 clusters. Upon treatment

with 100 nM LatA, Kv2.1 clusters become more dynamic and merge. We then examined whether

there is a measurable change in the cluster size distribution induced by the disruption of cortical

actin. If the distribution of radii were sensitive to the physical mechanism of cluster maintenance,

pharmacological treatment with an actin polymerization inhibitor should induce an observable

change in this distribution.

The radii of Kv2.1 domains in seven different cells were measured both immediately before

and 10 minutes after LatA application. We observed that, after treatment, not only did the total

number of clusters decrease from 767 to 248 but also their average size increased as expected

from the aggregation of clusters. This is can seen in the images of a cell before (Fig. 5.5A) and

10 minutes after (Fig. 5.5B) LatA application. Additionally Fig. 5.5C shows the mean area of the

clusters. After a lag phase of 300 s, a dramatic 5 fold increase in size is seen as LatA takes effect.

A complementary analysis of the effect of actin on domain dynamics is presented in the next

section. As shown in Fig. 5.5D, the distribution of radii 10 min after Lat A addition is no longer
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Figure 5.5: Cells treated with LatA. (A) TIRF image showing Kv2.1 clusters immediately before LatA application. The scale bar is 10

mm. (B) Same cell, 10 minutes after addition of LatA. The number of Kv2.1 clusters has decreased and their area clearly
increased. (C) Time-course of the average cluster size in a single cell after application of LatA. The cluster area was
normalized to the average area of the clusters immediately before LatA application. The addition of LatA occurs at time
zero. LatA appears to take effect 300 s after application. Until this time the cluster size distribution remains in steady
state. (D) Distribution of cluster radii in cells treated with the actin inhibitor LatA. The straight line shows a distribution
Rn exp (�lr).

an exponential for the probed range. Instead, a slower decay is observed with larger domains

being prominent.

Our simple measurement of the distribution of domain sizes shows that the growth model

is affected by inhibition of cortical actin and, in turn, the distribution of cluster sizes changes.

Unfortunately the information theory analysis used in control cells cannot be applied to the

LatA-treated cells because, as seen in Fig. 5.5C, in this case the domain size distribution is not

in steady state. Nevertheless, a change is directly seen in the dynamic cluster size distribution,

which provides further evidence for the link between the distribution of domain sizes and the

membrane compartmentalization mechanism.

5.3.4 Effect of latrunculin A on Kv2.1 cluster dynamics

We assessed the dynamics of individual clusters by tracking their center of mass. The trajec-

tories from 31 clusters were obtained in control cells and 39 clusters in cells treated with LatA.

The obtained trajectories were then characterized through their MSD. The MSD provides a simple

characterization of the mode of random motion. Unrestricted Brownian motion yields a MSD lin-

ear with time: in two dimensions, MSD ~ 4Dt, where D is the diffusion coefficient that depends

on domain size. However, restricted diffusion results in a subdiffusive type of motion where the

MSD becomes sublinear in time, MSD = K
a

ta, with 0 < a < 1 [124]. Figures 5.6A and 5.6B show
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Figure 5.6: Mean square displacement analysis of the motion of Kv2.1 domains on the cell surface. Log-log plot of the MSDs of domain
trajectories from (A) control and (B) latrunculin A treated cells. In order to show sublinearity with control cells and
normal diffusion in latrunculin A cells, dashed lines that scale as t0.7 and t are shown (C) Ensemble averaged MSD of
31 control cell clusters (solid circles) and 39 clusters from cells treated with 5 mM latrunculin A (open diamonds). MSDs
are fit to a power law, MSD⇠ ta to determine diffusion anomaly. Domains in control cells diffuse with an anomalous
subdiffusive exponent of 0.69 ± 0.01. Domains in cells treated with latrunculin A are more mobile and display normal
diffusion, (a = 0.99 ± 0.01).

log-log plots of the temporal MSD of trajectories in controls and LatA-treated cells, respectively.

Dashed lines corresponding to MSD ~ t and MSD ~ t0.7 are shown as a visual guide to the eye.

Domains in control cells are seen to display anomalous subdiffusion while the domains in treated

cells obey normal Brownian motion. Furthermore, the characteristic square displacement, or the

diffusion coefficient, in treated cells is more than an order of magnitude higher than the values in

control cells. Figure 5.6C shows the MSD in both cases after ensemble averaging the MSD of all the

trajectories. Fitting to a power law yields an exponent a = 0.69 for control cells. In LatA-treated

cells, the diffusion becomes normal with an exponent of 0.99.

LatA experiments show that the actin cytoskeleton plays a crucial role in the anomalous subd-

iffusive motion of Kv2.1 domains. These experiments, as well as previous observations [133], also

suggest that cortical actin hinders aggregation by forming physical barriers between domains.

5.4 conclusions

The distribution of domain sizes provides a straightforward method for obtaining kinetic infor-

mation on the formation and maintenance of membrane domains. The strength of this method

lies in its simple application. The distribution of Kv2.1 domain sizes implies that cluster growth is

proportional to the cluster perimeter length. Additionally we do not find evidence for local feed-

back between endocytic and exocytic events at the individual cluster level. The model scenarios

analyzed in this work are not exhaustive, and other kinetic models can be proposed, in particular
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at longer length scales. The likelihood of the proposed model was rigorously established through

the Akaike information criterion. The distribution analysis is consistent with a model where the

cluster size is simply governed by the fluctuations of the endocytic and exocytic processes.
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CHAPTER 6 : CCP TRAPP ING ENERG IES

Clathrin mediated endocytosis is the major route of cargo internalization in mammalian cells.

The assembly of CCPs is a multistep process that includes nucleation of a clathrin coat and growth

by recruitment of clathrin molecules, adaptors and cargo. This process is terminated either non-

productively (the pit breaks up) or productively (a vesicle forms and is internalized). Even though

the association of cargo to CCPs is crucial in the regulation of endocytosis, the study of this inter-

action in vivo remains challenging. In this chapter we study the recruitment of cargo by charac-

terizing the interactions of clathrin coated pits with Kv2.1. As shown in Chapter 4 Kv2.1 displays

a confined subdiffusion type of motion on the cell surface and it undergoes frequent stalls. Mul-

ticolor imaging indicates thaĴ hese stalls are caused by stable CCPs that capture Kv2.1 channels.

By monitoring the residence time of Kv2.1 within a CCP, we are able to study the binding strength

as a function of the age of a pit, e.g., the time since coat initiation. Due to the dynamic growth of

CCPs, the interaction between the pit and cargo is not Poissonian. A kinetic model thaĴ akes into

accounĴ he coat assembly via the recruitment of adaptor proteins leads to nonstationary and

nonergodic Kv2.1 dynamics. This model accurately predicts the statistics of transient binding

between pit and cargo.

6.1 introduction

clathrin-mediated endocytosis (CME) is the dominant route of cargo internalization in mam-

malian cells [251, 252, 253, 254]. This process occurs through the nucleation, maturation, invagi-

nation, and pinching offof clathrin-coated pits. Clathrin is linked to the membrane via adaptor

proteins such as AP-2. Adaptor proteins serve to both link clathrin to the membrane and also

select and recruit cargo to the CCP [255, 256, 257, 258]. As the pit grows the membrane is me-

chanically deformed and a vesicular bud is formed [256, 258, 257]. The pit continues to grow and

mature until a narrow neck is the only bit joining iĴ o the membrane. It is then pinched offfrom

the membrane by the GTPase dynamin and becomes a clathrin-coated vesicle.

Fluorescent microscopy has enabled the direct visualization of CCPs and their dynamics. Cells

expressing fluorescently labeled clathrin contain CCPs that appear as diffraction limited fluores-

120



cent spots on the cell surface. One of the leading assays to detect these fluorescent spots is TIRF mi-

croscopy [259, 260, 261, 262]. This imaging technique allows the lifetime of the CCPs to be directly

observed, an important parameter for analyzing CCP dynamics[253]. The lifetime of a CCP starts

with the assembly of clathrin, seen as the appearance of fluorescence within the TIRF illumination.

The extinguishing of fluorescence indicates the end of the CCP lifetime either through abortive

or productive pathways, where a productive pit results in a clathrin-coated vesicle. Abortive pits

begin the initial stages of coat assembly but break apart prematurely, possibly due to the lack

of cargo[252, 232]. The relationship between cargo capture and successful clathrin-coated vesicle

formation is indeed important. In this chapter we investigate this relationship with fluorescently

labeled clathrin-light chain and the voltage-gated potassium channel Kv2.1.

In Chapter 4 we reported on the dynamics of the Kv2.1 channel on the cell surface. We found

that the channel’s motion displays anomalous subdiffusion, and that the combination of a sta-

tionary and non-stationary processes, a CTRW in a percolation cluster, best models the underly-

ing mechanisms for the observed anomalous subdiffusion[49]. Geometric inhomoegenities giving

rise to a percolation cluster are consistent with macromolecular crowding, often observed on the

cell membrane[263, 122, 170, 143, 95]. We predict that transient binding events, best modeled by a

CTRW [124, 42, 135], may be involved in maintaining the Kv2.1 channel at endocytic sites to allow

interactions between the channel and adaptor proteins.

Here we use multi-color TIRF microscopy to simultaneously image individual Kv2.1 channels

and fluorescently labeled CCPs. We establish that Kv2.1 is endocytosed via CME pathways. Local-

ization of Kv2.1 stalls lasting longer than 0.5 s, indicative of binding events, also occurs within

CCPs. We derive a kinetic model for cargo capture within a CCP, taking into account the coat

assembly through the recruitment of adaptor proteins. This model leads to nonstationary and

nonergodic cargo dynamics. Direct comparison of model predictions reveals that the broad distri-

bution of stalling times observed by Kv2.1 channels (modeled by a CTRW) is due to Kv2.1 capture

within a CCP. Furthermore, we show that upon deletion of the C-terminal tail the Kv2.1 channel

no longer stalls and ergodicity is recovered.
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6.2 materials and methods

6.2.1 Cell culture and transfection

Three different combinations of plasmids were used for experiments with clathrin and Kv2.1:

1. GFP-Kv2.1-loop BAD with RFP-CLC

2. Kv2.1-loop BAD with GFP-CLC

3. DC-Kv2.1-loop BAD with GFP-CLC

The same human CLC A sub-cloned into the mRFP-C1 and eGFP-C1 expression vectors used

in Chapter 4, were kindly provided by Dr. Santiago Di Pietro (Department of Biochemistry and

Molecular Biology, Colorado State University). Kv2.1 channels have been described previously[134,

133, 49]. We found three binding motifs for AP2 in the cytoplasmic domains of Kv2.1, D675 [DPT-

PLL], E704 [ECASLL], and D757 [DEGQLL]. Standard PCR mutagenesis techniques were used to

construct DAP2-Kv2.1-GFP. We used a single point mutation LL761\2AA to alter the dileucine

binding site in the furthest motif from the transmembrane domain of the rat Kv2.1 primary se-

quence. As in previous chapters, HEK 293 cells (American Type Culture Collection, passage 38-45)

were cultured in DMEM (Gibco, Life Technologies, Carlsbad, CA) supplemented with 10% fetal

bovine serum (FBS, Gibco) at 37˚C and 5% CO
2

. Following Protocol 8.3, cells were transfected

by electroporation using a BioRad Genepulser Xcell (BioRad Laboratories, Hercules, CA) in a 0.2

cm gap cuvette with a single 110-V 25-ms pulse with a combination of 3 mg of GFP-Kv2.1-loop

BAD, 3 mg Kv2.1-loop BAD, 3mg DC-Kv2.1-loopBAD, 1 mg pSec BirA, and 200 ng fluorescently

labeled CLC (either GFP or RFP) expressing DNA depending on the experiment (see list above

for experimental combinations used). Following electroporation cells were plated on cover-glass-

bottom culture dishes that were previously Matrigel-coated (BD Biosciences, San Jose, CA) and

supplemented with DMEM without phenol red (Life Technologies) and 10% FBS. Cells were used

for live cell imaging within 24 hours of transfection.
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6.2.2 Live cell imaging

Prior to imaging, cells were rinsed three times with a HEK physiological imaging saline (8.6).

Biotinylated Kv2.1 channels were then incubated with 0.1 nM solution of streptavidin conjugated

QDs (Qdot 655 or Qdot 705, Invitrogen) and 150 mM BSA (IgG- fatty-acid-free, Sigma-Aldrich) in

imagine saline for 5 minutes then rinsed two more times with HEK imaging saline to remove any

unbound QDs (8.4). For three-color imaging of RFP-CLC and GFP-Kv2.1-QD, 705 nm QDs were

used. For two-color imaging of GFP-CLC and Kv2.1-QD 655 QD were used. Transfected cells

were imaged in imaging saline at 37˚C.

Imaging took place on the same microscope described in previous chapters [49]. For two-color

TIRF imaging (2 and 3) the 473 nm laser was used to excite both GFP-CLC and 655QD-Kv2.1.

The fluorescent emissions were then optically split (Optosplit, Cairn) onto the two halves of an

electron-multiplied charge coupled device (iXon DU-888, Andor) . For three-color TIRF imaging

experiments (1) the RFP-CLC was excited with the 532 nm laser, GFP-Kv2.1with the 473 nm laser,

and the 705QDs excited by both lasers. The emissions were separated both spectrally and tem-

porally. Alternate shuttering (Uniblitz vmm-d3) of the 473 and 532 nm laser allowed separation

between GFP and RFP fluorescence. The 705QD fluorescence was then separated optically from

the GFP/RFP signal similar to the two-color TIRF imaging experiments. Both the dish and the

objective were maintained at 37˚C using a temperature control system (Bioptechs).

6.2.3 Endocytosis disruption reagents

Dynasore and Pitstop2 were used to disrupt CME. Dynasore works by inhibiting the GTPase

dynamin[264, 265]. Dynamin is principally responsible in the scission of vesicular buds from

the plasma membrane. It has been suggested that dynamin is also involved in the early stages

of CCP formation, serving as both a regulator and integrity monitor [253, 266, 267]. Pitstop2

(Pitstop2, abcam) is a small molecule inhibitor of CME and works by blocking endocytic ligand

association, such as amphiphysin, with the clathrin terminal domain[268]. In these experiments,

Dynasore and Pitstop2 were all dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich) and

directly added to the imaging dish to a final concentration of 80 mM[264, 265] and 30 mM[268]

respectively.

123



6.2.4 Image and data analysis

Image processing and single-particle tracking

Images were acquired using Andor IQ 2.3 software and saved as 16-bit tiff files. The images

were overlaid using the Cairn-Optosplit plugin available in ImageJ. The images were frame aver-

aged using a custom-written algorithm in LabView that averages the intensities of every pair of

images, reducing the number of frames to half. Then the 2x-frame averaged images were filtered

using a Gaussian kernel with a standard deviation of 1.0 pixel in ImageJ. Both GFP-CLC and

QD-Kv2.1 were tracked. Single-particle tracking of GFP-CLC was done using the Danuser lab

u-track (9.3.3) [269]. Single-particle tracking of QD-Kv2.1 was performed with a modified version

of this algorithm. The modifications include alterations to the cost functions within the code to

account for the inherent blinking behavior of QDs. To determine if Kv2.1 are endocytosed via

CME the disappearance of individual QD-Kv2.1 channels were manually counted. The endocytic

event was marked as clathrin-mediated when the disappearance of the channel coincided with

the disappearance of a GFP-labeled CCP.

Displacement square analysis

The square displacements of QD-Kv2.1 trajectories were found using automated software writ-

ten in LabView (5) [49]. As shown in Chapter 4 (4) , we identified events in which the channel

remained confined within a radius of R2
TH = 500 nm2. All displacement squares less than R2

TH

were identified and the number of frames where the channel does not cross the radial thresh-

old, R2
TH = 500 nm2. The time and location of each stall lasting longer than 0.5 s were recorded.

This information was used to determine where stalls occurred with respect to clathrin. Stalls that

occurred within 1 pixel (130 nm) from the edge of a CCP were considered colocalized to clathrin.

Lifetime analysis

Clathrin coated pits were analyzed in terms of their lifetimes following the work of Loerke et

al[253]. To account for trajectories that are not seen in their entirety due to the movie start and/or

end point the histogram counts were corrected[253]:

124



C (ti) =
F (ti) T
T � ti

(6.1)

where C (ti) are the corrected counts, F (ti) are the original counts, T is the movie length, and ti

the length of the trajectory (i.e. the lifetime of the pit). The CDF is then

CDF (ti) = Â
i

C (ti)

Âi C (ti)
(6.2)

The models were fit to the CDF to avoid any bias due to bin size. Exponential distributions with

one, two, three, and four populations were fit along with the combination of Rayleigh distribu-

tions with Exponential distributions. Equations for a single exponential PDF, the combination of

an exponential and Rayleigh distribution PDF, and the combination of two exponential distribu-

tions and one Rayleigh distribution PDF are provided below.

PDFexp1 (t) =
1
t

exp (�t/t) (6.3)

PDFexp1ray1 (t) =
At
t

2
1

exp (�t2/2t

2
1 ) +

(1 � A)
t2

exp (�t/t2) (6.4)

PDFexp2ray1 (t) =
A1t
t

2
1

exp (�t2/2t

2
1 ) +

A2

t2
exp (�t/t2)

+
(1 � A1 � A2)

t3
exp (�t/t3) (6.5)

Here An is the weight of each distribution and tn is the characteristic time of each distribution.

Model selection

The BIC is a model selection criterion for a finite set of models. The BIC presents a measure of

fit between the data and models and penalizes for over-parameterization. The penalty for over-

parameterization is higher in BIC than in AIC, especially for larger n. In accordance to Loerke et

al’s work, BIC model comparison of fits to the CDF with corrected counts was used to determine

the best model for the given data,

BIC = (n · log (RSS/n)) + p · log (n) (6.6)

125



Figure 6.1: CCP trapping of Kv2.1 Model (A) Cargo (blue) diffuses laterally across the membrane and binds to adaptor molecules in a
forming pit (red) with a dissociation rate of k1. Adaptor proteins arrive to the growing pit at a rate of 1/tc. (B) The lifetime
of a CCP begins at time t = 0 with nucleation. At some time, t = t0 cargo is captured within the pit due to binding
to adaptor molecules. The cargo remains captured for a time t. The lifetime of the pit is terminated either abortively or
productively at t = l.

where n is the sample size, RSS the residual sum of squares of the fit, and p the number of free

parameters[270]. The model that minimizes the BIC implies that the residuals and the number of

parameters is also minimized.

6.2.5 Clathrin coated pit trapping of Kv2.1 model

Here we derive a kinetic model for the interactions between CCPs and cargo. with In this

model the channel, Fig. 6.1A (blue) diffuses laterally across the membrane and binds to adaptor

molecules (red) in a forming pit with a dissociation rate of, k1. Experimentally, binding to adaptor

molecules is seen as Kv2.1 stalls, t. The pit lifetime begins at time t = 0, grows with the addition

of pit proteins at a rate of 1/tc, and terminates either abortively or productively at time t = l. The

mean time of arrival of an extra adaptor to the pit is tc. At time t = t0 the channel is captured in

the pit (Fig. 6.1B) and remains there for a time t (colored box in Fig. 6.1B) until it unbinds and

is able to escape at time t = t0 + t. The number of adaptors in the pit can be expressed in terms

of time as n = t/tc. The rate at which the channel escapes from the pit depends on the number of

adaptors in the pit and the rate of unbinding, ko f f = k1/n = k1tc/t. In this model we assume the

pit grows linearly with time.

We first derive the survival probability of the channel still being captured within the pit at a

time larger than t. Then the conditional PDF of binding times is then found. From here we find

the three PDFs used to compare our model to experimental data:

1. The conditional PDF of binding times given the channel binds at time t0: y (t | t0)

2. The PDF of channel capture times: P (t0 | bind)
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Figure 6.2: Schematic Representation of Y(t|t
0

,l) and y(t|t
0

,l) (A) Y (t | t0, l) from Eq. 6.7. (B) y (t | t0, l) from Eq. 6.8

3. The PDF of stalling times: P (t)

The probability of the channel still being bound at a time larger than t given it binds at t0 in a

pit with lifetime l is non-Poissonian due to the time dependence of ko f f .

dY
dt

= �ko f f Y

Y (t | t0, l) =

8
>>><

>>>:

⇣
t0

t0+t

⌘
a

,

0 ,

0 < t  l � t0

t > l � t0

(6.7)

where a = k1tc. The conditional PDF of stalling times is then

y (t | t0, l) = d
dt

(1 � Ps (t | t0, l)) = � dPs(t|t0,l)
dt

y (t | t0, l) =

8
>><

>>:

ata

0
(t0+t)1+a

+ ta

0
(l)a

d (t � l + t0) , 0 < t  l � t0

0 , otherwise
(6.8)

We next formulate the PDF of stalling times given the channel is captured in the pit at time t0.

This conditional PDF is given that the channel becomes bound within the CCP:
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y (t | t0) = y (t | t0, bind)

=
Z •

0
y (t | t0, l, bind) P (l | bind) dl

=
Z •

0
y (t | t0, l) P (l | bind) dl (6.9)

We have y (t | t0, l) from Eq. 6.8 and thus only need to obtain P (l | bind). We can use Bayes’

theorem to retrieve P (l | bind):

P (l | bind) =
P (bind | l) P (l)

P (bind)
(6.10)

To obtain P (bind | l) we integrate the probability of capture time t0, given the lifetime of the pit

l over all possible capture times. This probability is proportional to the perimeter of the pit and

we assume the pit grows linearly with time, such that n µ t0:

P (t0, bind | l) = c1r

= c2
p

n

= c3
p

t0

for 0 < t0 < l. In complete form:

P (t0, bind | l) =

8
><

>:

c3
p

t0 , 0 < t0 < l

0 , otherwise
(6.11)

where c3 is a constant. Integrating over all possible capture times we find the probability of

binding given the lifetime of the pit,

P (bind | l) =
Z l

0
P (t0, bind | l) dt0 = c3

Z l

0

p
t0dt0 = c4l3/2 (6.12)

where c4 is a constant of integration. And now Eq. 6.10 becomes
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P (l | bind) =
P (bind | l) P (l)

P (bind)
=

c2l3/2P (l)
cB

= Cl3/2P (l)

where

P (bind) = cB (6.13)

P (not bind) = 1 � cB (6.14)

and cB is a constant that depends on channel density. C = c2/cB, which can directly be found from

the normalization of P (l | bind) ,

C =
1R •

0 l3/2P (l) dl
(6.15)

We can now find y (t | t0), the probability density function of stalling times given the channel is

captured within the pit at time t0, from Eq. 6.9.

y (t | t0) =
Z •

0
y (t | t0, l) P (l | bind) dl

= C
Z •

t0+t

"
ata

0

(t0 + t)1+a

+

✓
t0

l

◆alpha
d (t � l � t0)

#
l3/2P (l) dl

y (t | t0) =
ta

0

(t0 + t)1+a

1R •
t0

P (l) dl


a

Z •

t0+t

P (l) dl + (t0 + t) P (l = t0 + t)

�

(6.16)

We will now find the final two PDFs for capture times and stalling times. The probability of

binding times given the lifetime of the pit and given the channel binds is,

P (t0 | l, bind) =

8
><

>:

c5
p

t0 , 0 < t0 < l

0 , otherwise
(6.17)

where c5 is a normalization constant, so that
R l

0 P (t0 | l, bind) dt0 = 1,

c5 =
3
2

l�3/2 (6.18)
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From this we can directly extract the probability of stalling times given that the channel binds:

P (t0 | bind) =
Z l

t0

P (t0 | l, bind) P (l | bind) dl

=
3
p

t0

2
R •

0 P (l) l3/2dl

Z •

t0

P (l) dl (6.19)

Lastly, the probability density of channel stalls is,

P (t) =
Z •

0
y (t | t0) P (t0) dt0 (6.20)

=
3
2

C
Z •

0

"
p

t0

 
ta

0

(t0 + t)1+a

!

✓
a

Z •

t0+t

P (l) dl + (t0 + t) P (l = t0 + t)

◆�
dt0

The models were computed using Matlab and directly compared to experimental data.

The interactions between Kv2.1 channels and CCPs was analyzed by first matching QD-Kv2.1

stalls with GFP-CLC trajectories. An automated program written in Labview was used to match

the stalls and trajectories according to their temporal and spatial location (Chapter 5, 9.4.3). For

each Kv2.1 stall, the frame and the location (i.e. XY coordinates) where the stall occurred was

noted. Then each CCP trajectory was searched at that specific frame for a matching location,

within 3 pixels or rather 390 nm (to account for error in the overlay of images), of the Kv2.1 stall

location. Once matched, each stall (t) of the matched Kv2.1 channels were associated with the

lifetime of the corresponding pit (l) and the time (from the beginning of the pit lifetime) at which

the stall occurred (t0).
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Figure 6.3: Kv2.1 colocalizes to clathrin (A) GFP-Kv2.1 (green) labeled with 705-QDs (blue) and RFP-CLC (red) were simultaneously
imaged in HEK 293 cells. The yellow arrow indicates the colocalization of a QD-labeled, cluster confined Kv2.1 channel
with a clathrin coated pit. White arrows indicate that clathrin coated pits (red diffraction limited spots) are localized to
the perimeter of GFP-Kv2.1 clusters (in green) as predicted in Chapter 04, [MBoC]. (B).

6.3 results

6.3.1 Kv2.1 is endocytosed via clathrin mediated endocytosis

Fig. 6.3A shows a three-color TIRF image of HEK cells co-expressing GFP-Kv2.1 channels labeled

with 705QDs and RFP-CLC. All Kv2.1 channels in the cell are fused to a GFP molecule to provide

information on the cluster. Individual Kv2.1 channels are extracellularly labeled with QDs to allow

for single-particle tracking. White arrows indicate CCPs, denoted by the red fluorescence of RFP-

CLC, that localize to the perimeter of Kv2.1 clusters as predicted in Chapter 4 and 4

1 [241, 271].

The yellow arrow in Fig. 6.3B shows colocalization of a cluster confined, QD labeled Kv2.1 channel

with a CCP consisting of GFP-CLC.

To provide further evidence that Kv2.1 channels are recycled via CME, endocytic events of Kv2.1

channels were tallied as ’on’ and ’off’ clathrin. When the extinction of QD-Kv2.1 fluorescence

coincided with the loss of GFP-CLC from the TIRF illumination the event was marked as being

endocytosed on clathrin and visa versa. Fig. 6.4 summarizes these results. 87 ± 3% (n = 97, mean

± s.d.) of Kv2.1 channels were endocytosed via CME in control cells, Fig. 6.4A. Furthermore 13 ±

4% (n = 729, mean ± s.d.) of Kv2.1 channels were endocytosed within a 10 minute time frame, Fig.

6.4B. We next inhibited endocytosis with 30 mM Pitstop2[268]. The rate of endocytosis decreased

slightly 20 minutes after application of Pitstop2 shown in Fig. 6.4B. The percentage of channels

1 In Chapters 04 and 05 we show that recycling occurs at the cluster perimeter both through experimental
observations[241] and modeling of cluster the cluster size distribution using a Fokker-Planck formalism[271].
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Figure 6.4: Kv2.1 is endocytosed via CME (A) Out of 97 endocytic events 87 ± 3% (n = 97, mean ± s.d.) were via clathrin mediated
pathways in control cells and 73 ± 5% (n = 65, mean ± s.d.) in cells treated with Pitstop2. (B) In a 10 minute time frame
13 ± 4% (n = 729, mean ± s.d.) of Kv2.1 channels were endocytosed in control cells and 7 ± 3% (n = 888, mean ± s.d.) in
cells treated with Pitstop2 and only one endocytic event out of 421 trajectories observed with Dynasore, 0.2 ± 0.2% (n =
421, mean ± s.d.).

Figure 6.5: Kv2.1 stalls on CCPs (A) GFP-CLC was coexpressed with non-fluorescent Kv2.1 channels that were labeled with 655QDs.
The red trajectory is the path of an individual QD-Kv2.1 channel. Yellow x’s indicate where the channel stalled for more
than 3 s within a circle of area, R2

TH = 500 nm2. (B) Percentage of QD-Kv2.1 stalls colocalizing to GFP labeled CCPs
in control cells and cells treated with a clathrin-mediated endocytosis inhibitor Pitstop2 and Dynasore. (C), (D) and (E)
Colocalization of QD-Kv2.1 stalls on CCPs according to stall time for control cells (C) and cells treated with Pitstop2 (D)
and Dynasore (E). Error bars are 1/p

n where n is the number of stalls.

endocytosed via CME also decreased by 6% in Pitstop2 treated cells with 73 ± 5% (n = 65, mean

± s.d.) shown in Fig. 6.4A. Next 80 mM Dynasore was used to inhibit CME[264, 265]. Out of 421
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Model p BIC
1-exp 1 -7967

2-exp 3 -9800

3-exp 5 -10406

4-exp 7 -10392

1-exp + 1-ray 3 -7192

2-exp + 1-ray * 5 -11468

1-exp + 2-ray 5 -10411

Table 6.1: Minimization of the BIC The corrected lifetime CDF, Eqs. 6.1 and 6.2 was fit to four different exponential distributions and the
combinations of exponential and Rayleigh distributions. The model that minimized the BIC was the Rayleigh distribution
plus two exponentials.

trajectories in 6 different cells only one endocytic event was observed within a ~ 10 minute time

frame, 0.2 ± 0.2% (n = 421, mean ± s.d.) and it coincided with the disappearance of clathrin.

6.3.2 Kv2.1 stalls on clathrin-coated pits

In Chapter 4 and 4 we show that Kv2.1 diffusion can be modeled by the combination of a

stationary and non-stationary processes, namely a CTRW on a percolation cluster [49, 50]. We hy-

pothesized that the transient binding events, modeled by a CTRW, may be involved in maintaining

the channel at endocytic sites to allow interactions between the channel and adaptor proteins. QD

labeled Kv2.1 channels were tracked using a modified version of the Danuser lab u-track algo-

rithm, to account for QD blinking. The distribution of stall times of channels was constructed

as in Chapter 4 [49] with R2
TH = 500 nm2 and the time and location of stalls longer than 0.5 s

recorded. As summarized in Fig. 6.5 Kv2.1 stalls highly colocalize to CCPs. Fig. 6.5A shows a rep-

resentative QD-Kv2.1 trajectory superimposed onto a GFP-CLC image. The yellow x’s indicate

stalls that were greater than 3 s. Note that the stalls localize with clathrin. Overall 79 ± 2% (n =

1613, mean ± s.d.) of all Kv2.1 stalls longer than 0.5 s colocalized to CCPs. When endocytosis was

inhibited with Pitstop2 the percentage of stalls on clathrin decreased. Fig. 6.5. We next analyzed

the colocalization of Kv2.1 stalls according to the length of stalls. Fig. 6.5C shows that as the stall

time increases the localization on clathrin also increases. However in cells treated with Pitstop2

the colocalization of stalls remains constant for all lengths of stall times with 67 ± 4 % (n = 844,

mean ± s.d.), Fig. 6.5D.
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Figure 6.6: CCP lifetimes Lifetime distribution of CCPs for control cells (A) and cells treated with Pitstop2 (B). Line shown in (A) and
(B) is the 1-Rayleigh plus 2-exponential distribution using the parameters from the fit to the CDF, (C) and (D).

In summary these results show that Kv2.1 is indeed endocytosed through CME. Additionally,

immobilization of Kv2.1 occurs on CCPs suggesting CCPs might be responsible for the broad

distribution of waiting times observed in Kv2.1 dynamics.

6.3.3 Clathrin-coated pit lifetimes

The distribution of CCP lifetimes is needed as an input for our model simulations. The length

of the CCP trajectory, time between appearance and disappearance, corresponds to the lifetime

of that CCP2. Minimization of the bayesian information criterion (BIC) for the fit of the lifetime

CDF was used to distinguish the appropriate model for the lifetime of CCPs. We find that a

combination of two exponentials and a Rayleigh distribution, Eq. 6.5 minimizes the BIC, Table

6.6. Fig. 6.6 shows the CCP lifetime distribution for control cells (A), n = 31,492 CCPs, and cells
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Figure 6.7: y(t|t0) in Control Cells Histogram plots of stalling times,t given a region of capture time, t0. Model predications, Eq. 6.16,
are shown in red with the shaded area using the minimum and maximum t0 and darkened line the mean t0 for the
corresponding stalls.

treated with Pitstop2 (B), n = 14,018 CCPs, and the corresponding fits to the CDFs used for BIC

model selection.

6.3.4 Non-Markovian endocytosis causes weak ergodicity breaking

We predict that not only does immobilization occur on CCPs, but binding of Kv2.1 to adaptor

proteins in CCPs is responsible for the power law distribution of stalling events. To test this

hypothesis we investigated the binding strength of Kv2.1 within a pit as a function of the age of

a pit. Using the model derived in Section 6.2.5 and only the lifetime distribution of CCPs as an

input parameter the trapping of Kv2.1 channels into CCPs was simulated.

Fig. 6.7 shows the comparison of our data with the simulations for the conditional probability

density function of Kv2.1 binding times given the channel binds at time t0, Eq. 6.16, in control

cells. A histogram plot of binding times, t was constructed for a range of t0. The shaded region

of the model is the minimum and maximum t0 and the red line the average. The same analysis

was also done for cells treated with Pitstop2, Fig. 6.8.

The distribution of times at which the channel was captured in the pit was modeled and

compared to our data, shown in Fig. 6.9A, for both control cells and cells treated with 30 mM

Pitstop2. Both treatments (control and Pitstop2) show very strong agreement with the model.

2 For the case of trajectories that are cut either by the end or the end of the movie the histogram count of lifetimes needs
to be corrected. This is explained in Loerke et al [253] and in the Methods section.
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Figure 6.8: y(t|t0) in Pitstop2 Cells Histogram plots of stalling times,t given a region of capture time, t0. Model predictions, Eq. 6.16,
are shown in red with the shaded area using the minimum and maximum t0 and darkened line the mean t0 for the
corresponding stalls. Cells were treated with 30 mM Pitstop2.

Note that the only input into this model is the measured lifetime distribution of CCPs, there was

no fitting to the data.

Lastly the distribution of Kv2.1 stall times was modeled for control cells and Pitstop2 treated

cells, Fig. 6.9. The agreement between the distribution of Kv2.1 stalls, t measured experimentally

and the simulated model is very strong.

We are able to model the capture of Kv2.1 channels within CCPs. The success of this model

agrees with our hypothesis that the binding of Kv2.1 channels to adaptor proteins within a

maturing pit is responsible for the weak ergodicity breaking behavior of Kv2.1 channels.

6.3.5 Kv2.1 C-terminus is responsible for weak ergodicity breaking

We speculated that sites within the C-terminus were binding to adaptor proteins within the

CCP. In order to test this idea the last 318 amino acids of the C-terminus was removed, DC-

Kv2.1[117]. Simultaneous imaging of GFP-CLC and QD-DC-Kv2.1 was done. With the deletion

of the C-terminus stalls longer than 1.2 s ceased, Fig. 6.10A.The rate of endocytosis was also dra-

matically reduced with the mutant Kv2.1 channel lacking the C-terminus. Of the 537 trajectories

analyzed in three different cells, only 7 channels were internalized within a ~ 10 minute time

period. This is in sharp contrast to controls cells where the percentage of internalized channels

within the same time frame drops from 13 ± 4% to 1 ± 4%.
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Figure 6.9: P(t
0

|bind) and P(t) (A) Histogram plots of t0 for control cells and cells treated with 30 mM Pitstop2. The model prediction
(Eq. 6.19) is shown in blue. (B) Histogram plots of t for control cells and cells treated with 30 mM Pitstop2. The model
prediction (Eq. 6.20) is shown in red.

In an attempt to target the adaptor protein binding to the C-terminus of Kv2.1 we investigated

possible binding motifs of AP2. The most commonly found internalization signals are tyrosine

hydrophobic motifs YxxF (where F is a bulky hydrophobic residue F, I, L, M, or V) and acidic

dileucine motifs (D/E)xxxL(L/I). Both of these signals are recognized by the major endocytic

clathrin adaptor AP2 [272]. We found that there are three binding motifs for AP2 in the cyto-

plasmic domains of Kv2.1, D675 [DPTPLL], E704 [ECASLL], and D757 [DEGQLL]. We used a

single point mutation LL761\2AA to alter the dileucine binding site in the furthest motif from

the transmembrane domain. DAP2-Kv2.1-GFP.

The expressed mutant channel localizes to surface clusters, Fig. 6.10B. Interestingly a sharp

decrease in the internalization rate was observed for this construct as compared to wild type

Kv2.1, Fig. 6.10C, from 13 ± 4% to 4 ± 3%.
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Figure 6.10: DC-Kv2.1 Stalling Times and DAP2-Kv2.1 (A) The stalling times of Kv2.1 (black) and DC-Kv2.1 (red) were measured as
described in the text and previously [49]. It is strikingly clear that upon the deletion of the C-terminus the channel no
longer stalls for times greater than 1.2 s. (B) DAP2-Kv2.1-GFP expressed in HEK 293 cells. The AP2-mutant channel
localizes to cell surface clusters. (C) In a 10 minute time frame 4 ± 3 % of DAP2-Kv2.1 channels were endocytosed (n =
860, mean ± s.d.) and 1 ± 4 % of DC-Kv2.1 (n = 537, mean ± s.d.). There is a drastic reduction of endocytic events with
the AP2-mutant channel, DAP2-Kv2.1 and even more so with DC-Kv2.1.

6.4 discussion and conclusions

We found that Kv2.1 channels are endocytosed through clathrin mediated pathways and that

stalling events predominately occur within a CCP. With the application of endocytic inhibitors,

Pitstop2 and Dynasore, the rate of channel recycling is reduced and the colocalization of stalls

with CCPs altered. The effect these two inhibitors have on endocytic dynamics is different. Pit-

stop2 is a small molecule inhibitor that blocks endocytic ligand, amphiphysin, association with

clathrin terminal domain. Work presented by von Kleist et al [268] show that this drug effects en-

docytosis at all stages of pit formation. Dynasore is also a small molecule inhibitor. It selectively

interferes with the GTPase dynamin[265]. Studies show that application of dynasore results in

two populations of pits: U-shaped, half-formed pits and O-shaped, fully formed pits [265]. Be-

cause these two inhibitors block the interactions of different molecules within a growing CCP,

the resulting dynamics of the pits are also different. We see that dynasore appears to block Kv2.1

endocytosis with more severity than Pitstop2, Fig. 6.4B.

We derived a kinetic model that accurately predicts the nonstationary and nonergodic traits

of Kv2.1 dynamics. Here we are able to successfully and accurately model the capture of Kv2.1

channels within CCPs.

Deletion of the C-terminus of the channel causes the channel to be retained on the cell surface

longer. Also, the DC-Kv2.1 channel no longer exhibits the same distribution of waiting times,

with no stalls longer than 1.2 s being observed. These results indicate that the binding of the
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C-terminus of Kv2.1 channels to adaptor proteins within a CCP leads to the broad distribution of

observed stalling times and thereby the nonergodic, nonstationary processes indicative of Kv2.1

channel dynamics.

AP2 is one of the major endocytic clathrin adaptor. We found three binding motifs for AP2

on the C-terminal of Kv2.1 and mutated the motif furthest from the transmembrane domain.

Results indicate that this mutation does have an effect of Kv2.1 internalization. The dynamics of

the DAP2-Kv2.1 do not appear to change however (data not shown). This could be due to the two

remaining AP2 binding sites. Further investigations with all three binding motifs altered should

provide evidence for the role AP2 has in the non-ergodic behavior of Kv2.1.
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CONCLUS ION

This dissertation describes experimental studies of the dynamics of the voltage-gated potas-

sium channel, Kv2.1. Kv2.1 uniquely localizes to stable, micro-domains on the cell surface [211,

239, 240] where it plays a non-conducting role [120]. There is clear physiological importance of

Kv2.1 channels and exposed location dependence of channel function [115, 120]. However the

underlining mechanisms of cluster formation and maintenance are still largely unknown. This

work is centered around characterizing the diffusion paĴern of Kv2.1 and determining alternate

functional roles of surface clusters by exploring recycling pathways using single particle tracking

in live cells.
Kv2.1 channels were intracellularly labeled with GFP on the N-terminus to provide an ensem-

ble image of all expressed channels [134]. For single particle tracking the channels were then

extracellularly tagged with a QD through a biotin streptavidin biochemistry. An extracellular

biotin accepting domain (BAD) loop between S1 and S2 allows the channel to be biotinylated

when the cell is cotransfected with biotin ligase [133]. This results in Kv2.1 channels with both

an intracellular GFP and an extracellular biotin tag. By incubating the cells in a low concentra-

tion solution of streptavidin conjugated QDs the channels labeled with an ideal probe for single

particle tracking.

Nearly all of the chapters presented in this thesis use single particle tracking of Kv2.1 channels

using QDs. Controls were performed between QD labeled Kv2.1 and GFP tagged Kv2.1 to ensure

thaĴ he extracellular QD label was not inducing artifactual dynamics. To increase the signal to

noise ratio and thereby improve the localization accuracy it is importanĴ o reduce background

fluorescence while imaging. Therefore TIRF microscopy was used in these studies.

The movement of Kv2.1 on the cell surface was first characterized. Analysis oĠ oth the time

and ensemble averages of trajectories revealed that Kv2.1 channel dynamics display both ergodic

and nonergodic processes on the plasma membrane, or rather the time and ensemble averages

do not coincide. We show thaĴ hese dynamics are accurately modeled by a CTRW on a perco-

lation cluster [49]. We described a method for the analysis of the distribution of displacements,

the propagators, of single-particle tracking measurements for the case of obstructed subdiffusion

in two-dimensional membranes. We compared various propagators for differenĴ ypes of motion

against Monte Carlo simulations and showed thaĴ hese models are effective in the analysis of
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Kv2.1 channel diffusive measurements in the membrane of living mammalian cells. We see that

the discrimination between percolation and FBM is complex, even with the use of advanced sta-

tistical tests such as the p-variation method. While the propagators of the two models are defini-

tively different, a non-Gaussian propagator is not enough evidence to disclude the combination

of both FBM and obstructed diffusion [50].

We have also studied the trafficking locations of Kv2.1 channels to and from the cell surface

by imaging both the Kv2.1 cell surface clusters and individual channels using multi-color TIRF

microscopy. We found that these clusters are in fact platforms involved in ion channel trafficking.

By imaging individual QD labeled Kv2.1 channels we revealed that Kv2.1 containing vesicles

deliver and retrieve cargo at the perimeter of Kv2.1 surface clusters. Very interestingly, further

investigation with Kv1.4 channels showed that this non-clustering potassium channel is also

delivered to Kv2.1 clusters. These results suggest that one of the non-conducting functions of the

Kv2.1 channel is to form micro-domains involved in membrane protein trafficking [241].

To paint a more complete picture of trafficking to and from Kv2.1 clusters we measured the

distribution of Kv2.1 domain sizes and studied the kinetics of their growth using a Fokker-Planck

formalism. We found that there is no evidence for a feedback mechanism present and that the size

of Kv2.1 clusters is in fact established by fluctuations in the endocytic and exocytic machinery.

These results were confirmed by using likelihood and Akaike weights to identify the best model

for the kinetics of domain growth [271].

Investigations using TIRF-based single-particle tracking demonstrate that Kv2.1 displays a con-

fined subdiffusion type of motion on the cell surface and it undergoes frequent stalls. Multicolor

imaging indicates that stable clathrin-coated pits actually capture Kv2.1 channels, and are respon-

sible for causing these stalls. By monitoring the residence time of Kv2.1 within a clathrin-coated

pit, we have been able to study the binding strength as a function of the age of a pit, e.g., the time

since coat initiation. We derived a kinetic model that takes into account the coat assembly via the

recruitment of adaptor proteins. This leads to non-stationary and nonergodic Kv2.1 dynamics.

We find that this model very accurately predicts the statistics of transient binding between the

pit and cargo revealing clathrin-coated pit capture of the Kv2.1 channel is responsible for the

channel’s nonergodic behavior.
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Finally a closer examination of the relationship between Kv2.1 clusters and clathrin-coated pit

maturation is currently being studied. We find that Kv2.1, specifically the C-terminal tail, has a

direct effect on clathrin-coated pit lifetimes and stability. Cells expressing clustering Kv2.1 exhibit

more rapidly maturing pits as seen by the rate of Kv2.1 internalization. In cells with a mutant,

non-clustering Kv2.1 the pit lifetime is increased. Complete loss of Kv2.1 results in even longer

clathrin-coated pit lifetimes, i.e. slower maturation. The movement of these pits also changes

upon the addition of Kv2.1, where pits in cells without Kv2.1 move much more than pits in cells

co-expressing Kv2.1. These results indicate that Kv2.1 cluster formation has a direct effect on

clathrin mediated endocytosis and clathrin-coated pit dynamics.
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APPENDIX - PROTOCOLS

This appendix provides generalized protocols used for the experiments presented in this the-

sis, along with other useful protocols used in the Krapf Research Lab. Among these protocols

are instructions for aligning the TIRF microscope, transfecting and preparing HEK293 cells for

imaging. Also included are protocols for preparing imaging saline, cell medium and matrigel

solutions and instructions for general cell culture and aseptic technique. Lastly information on

labeling dishes with polystyrene beads used for co-aligning channels when multi-color TIRF is

being done and cleaning imaging dishes is provided.
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8.1 aligning the microscope (tirf)

This protocol begins with the assumption that the telescope (see Fig. 8.1) is already aligned.

This should be checked before each imaging session and before starting this protocol. If more

than one beam is being used for illumination further care will need to be taken to ensure that the

beams are not only aligned for TIRF imaging, but also co-aligned to each other.

8.1.1 Materials

• SM1 tubes (total length of connected tubes needs to exceed at minimum 30 cm)

• Apertures (4x)

• Adaptor with external RMS threads and internal SM1 threads

• Crosshair (usually drawn on a sheet of paper)

8.1.2 Protocol

1. Remove focusing lens from path1.

2. Place an aperture on the second lens of the telescope and close it so that the beam is small

as it enters the microscope. Use the steering mirrors S1 and S2 and align with the SM1 tube.

The beam should have an aperture before the two steering mirrors and be aligned such that

it goes through the bottom and top iris of the tube and onto the ceiling. Use S1 to center the

beam with the bottom aperture closed and S2 to center the beam through the top aperture.

3. Center the crosshair on the ceiling to the aligned beam as a marker for later steps. Do not

touch the steering mirrors until after the focusing lens is in place.

1 The logic in this method is to first align the beam with the SM1 tubes so that it is entering the microscope parallel to
the table and exiting the microscope perpendicularly. The crosshair on the ceiling marks this. Between steps 3 and 6

the biggest change made to the system is adding the focusing lens. Thus, to ensure alignment the beam needs to be
adjusted so that it is aligned back to the crosshair using only focusing lens. After this only small adjustments are made
with the mirrors to perfect the alignment.
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4. Replace the tube with the objective. If using the objective heater you can put this on the

objective now as well (and turn on the objective heater power supply).

5. Put the focusing lens back into the micrometer holder.

6. Adjust the lens so that the beam passes through the center. Use an aperture on the focusing

lens and telescope (to reduce the size of the beam) to help find center more easily.

7. Make sure that the reflection of the beam off the focusing lens aligns to the original beam

on mirror S2.

8. Once aligned tighten the focusing lens in place.

9. Using only the micrometer (do not use the steering mirrors at this point!) adjust the focusing

lens so that beam on the ceiling is going through the crosshair. This will move the beam off

center from the lens. This will be adjusted next.

10. Using S1 re-center the beam onto the focusing lens (close both the aperture on the telescope

lens and the focusing lens to do this)

11. Open the apertures and re-center the spot on the ceiling using S2.

12. Repeat steps 10 and 11 until the beam is going through the center of the focusing lens and

aligned to the crosshair on the ceiling.

13. Once aligned, remove all apertures (so as not to clip the beam) and if using the heated stage

place this on the microscope as well2 but do not turn on until a dish is in place. The system

is reading for imaging.

2 The objective heater may be turned on immediumtely. It take time to warm up the objective so it is better to give the
heater 30 minutes or more. The stage heater however provides instantaneous heat. The stage heater should never be
turned on without a dish in place.
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8.2 cleaning imaging dishes

This protocol explains the method used to clean already-used imaging dishes. This ensures

that the dishes are both sterile for the cells and the glass is clean so as not to add any background

fluorescence while imaging.

8.2.1 Materials

• ddH
2

O

• Soft bristle tooth brush

• 10% Bleach + 10% Alconox solution (made with ddH
2

0)

• Isopropyl Alcohol

• Compressed N
2

Figure 8.1: TIRF Microscope General schematic of TIRF microscope. Mirrors M1 and M2 are used for steering the beam into the
telescope. The telescope expands the beam so that it overfills the back aperture of the objective. Mirrors S1 and S2 steer
the beam into the focusing lens and then into the microscope. The focusing lens is on a micrometer for fine tune adjusting.
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8.2.2 Protocol

1. Use a 10% Bleach + 10% Alconox with ddH
2

O solution to clean dishes with a soft bristle

tooth brush.

a) Be sure that there is no residue left in bottom ‘rim’ of dishes.

2. Rinse thoroughly with ddH
2

O.

3. Wash last amount of ddH
2

O away with Isopropyl Alcohol and dry with compressed N
2

.

a) Be sure not to leave any water spots on glass surface.

b) If there are oil smudges still present on glass bottom after drying with N
2

use a cotton

swab and Isopropyl Alcohol to scrub the bottom of the dish. Then repeat step 3.

4. If dishes are being used immediumtely for transfecting/imaging place in biosafety cabinet

and UV for ~ 5 min.
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8.3 hek 293 cell transfection

This protocol describes the method used to transfect HEK293 cells with plasmid DNA of

choice3. All solutions, except for Matrigel and plasmids, should be pre-warmed in 37˚C water

bath before beginning protocol. Matrigel can be used directly from the fridge. Plasmid DNA

should only be thawed, no need to warm in water bath. All work is done in the biosafety cabinet

to prevent contamination of cells or any solutions being used.

8.3.1 Materials

• Confluent dish of HEK293 cells, p ~ 44 - 48

4

• Clean imaging dishes (See Protocol 8.2 for instructions on how to clean the dishes)

• DMEM + 10% FBS, without phenol red, with 10x antibiotic (usually streptomycin)

• Matrigel

• Optimem

• Trypsin

• Plasmid DNA

• Serological pipettes

• 0.5 mL microcentifuge tubes

• Electroporation cuvettes

• 15 mL conicals

3 Always be self minded of work being done with cells and solutions. It is extremely important to keep everything sterile!
4 If doing more than one type of transfection more than one dish of confluent cells is advised. Also, it is important to

used p ~ 44 - 48 cells if imaging Kv2.1 channels. Cells younger/older than this tend to have abnormal Kv2.1 clusters.
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8.3.2 Protocol

1. Add approximately 1mL (just enough to coat the bottom of the dish) of Matrigel to dishes

that have been cleaned and UV’ed.

2. Prepare plasmid DNA:

a) In sterile micro-centrifuge tube add

i. Optimem: 200 mL

ii. Plasmid DNA (example transfection given for reference below)

A. GFP Loop BAD Plasmid: for 3 mg (1 mg/mL concentration) use 3 mL

B. BirA Plasmid: for 1mg (1.5 mg/mL) use 0.66 mL

C. CLC-GFP Plasmid: for 200 ng (100 ng/mL) use 2 mL

b) Pipette optimem-plasmid solution up and down a couple times to mix.

c) Place in water bath.

3. Place the dishes in the incubator.

a) Total time of matrigel coating should surpass 5 minutes but not exceed 30 minutes.

4. Add 4mL of Trypsin to 100 mL dish of stock cells and place the cells back in incubator.

a) Check on the cells intermittently.
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b) Once the cells just start to lift from the bottom of the dish when gently ’swirled’ take

the dish out of the incubator.

c) Do not allow the Trypsin to completely lift the cells off the bottom of the dish.

5. Dilute the dish of 4 mL Trypsin and unbound cells with 10 mL medium (DMEM + 10%

FBS)

a) Pipette up and down once or twice to wash off any remaining cells stuck to the dish.

b) Place 14 mL mixture of cells, Trypsin and medium into a 15 mL conical.

6. Centrifuge at 1.5 rpm for 3min

7. While cells are being centrifuged remove matrigel coated dishes from the incubator.

a) Aspirate Matrigel from dishes.

b) Replace with 1 mL of DMEM + 10% FBS (no phenol red, with antibiotic).

8. Bring optimem-plasmid solution prepared in step 2 into the biosafety cabinet.

9. Aspirate medium/Trypsin from 15mL conical tube with cell pellet, take care not to disturb

the pellet of cells.

a) Re-suspend the cells with the Optimem-plasmid solution and pipette up and down

once or twice using shear force to break up any clumps of cells.

b) Place suspended cells into electroporator cuvette.

10. Electroporate
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a) For HEK293 cells from HOME screen on BioRad electroporator:

i. (4) Pre-set protocols

ii. (3) Mammalian cells

iii. (4) HEK293 cells

iv. Pulse

11. Transfer cells from cuvettes to micro-centrifuge tube

12. Place ~ 10 - 20 mL of transfected cells into the center of the imaging dishes. Use pipette tip

to gently swirl the cells in the dish so that they are evenly dispersed throughout the dish5.

a) This varies depending on how long the cells have to grow until imaging and how

confluent the dish of cells was to start with.

b) i.e. the more cells to start with the less needed in each dish - or - the longer they have

to grow the less cells in each dish.

13. Place cells back in the incubator.

5 If imaging with clathrin place transfected cells into a culture dish instead of directly into imaging dishes. One hour
before imaging (allow ~ 2 - 3 hours for transfection) cells can be trypsinized and transferred to imaging dishes. This
will help to alleviate clathrin plaque artifacts due to being plated for too long.

171



8.4 labeling imaging dish with polystyrene beads

This protocol is to be used when imaging with multi-color TIRF. The beads serve as a reference

so that the two color channels can be cropped and overlaid post imaging.

8.4.1 Materials

• Clean imaging dish

• Imaging Saline

• BSA

• Polystyrene beads

8.4.2 Protocol

1. Coat imaging dish with Matrigel for ~10 min (usually this is done with the dishes being

used for transfection in Protocol 8.3 the night before imaging)

2. Aspirate off Matrigel and replace with ~200-300 mL of bead solution:

a) 1 mL Imaging Saline

b) 10 mg BSA

c) 200 mL polystyrene beads

d) Let the dishes rest in the incubator with bead solution for a few hours (usually overnight)

3. Prior to imaging, aspirate bead solution from dishes and replace with 1mL imaging saline.

Dish is now ready for imaging.
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8.5 live cell imaging preparation

This protocol explains how to prepare transfected cells plated in imaging dishes for imaging.

All work should be done in the biosafety cabinet.

8.5.1 Materials

• Imaging Saline

• If labeling with QDs:

– QDs

– BSA

– 1.5 mL micro-centrifuge tubes

8.5.2 Protocol

1. Heat Imaging Saline in water bath, 37˚C.

2. If labeling with QDs prepare QD solution: 1:10000 QD in 1% BSA in Imaging Saline

a) 1% (by volume) BSA and Imaging Saline

i. Measure out ~ 10 mg BSA

ii. Place BSA and Imaging Saline into micro-centrifuge tube.

iii. Vortex until BSA is completely dissolved.

b) 1:10000 QD in 1% BSA
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i. 5 mL of 1:100 QD in 1% BSA in Imaging Saline

A. 1 mL QD

B. 100 mL Imaging Saline

C. Vortex

ii. 500 mL of Imaging Saline

iii. Vortex

c) Place QD solution in water bath.

3. Aspirate medium from dish of cells and rinse 6x with Imaging Saline to remove medium.

a) Be careful not to suck all the medium off the dish, leaving the cells dry.

b) Do not suck off medium from middle, suck from the sides where there are no cells.

c) When rinsing do not add Imaging Saline too quickly or with too much force or directly

the middle of the dish. These actions can wash away the cells.

d) On last rinse remove ALL Imaging Saline.

4. QUICKLY place 500 mL of the QD solution into the dish of cells and place in the incubator

for 5 minutes.

5. Remove the QD solution then rinse 3x with Imaging Saline to remove any unbound QDs.

6. On the final rinse leave 1 mL of Imaging Saline in the dish for imaging.

a) If not labeling with QDs simply rinse 3-6x with Imaging Saline and leave 1 mL of

Imaging Saline on final rinse in dish for imaging.
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8.6 hek293 imaging saline

HEK293 Imaging Saline is a buffer that keeps the pH stable for the cells. This way while

imaging (without CO
2

) the cells remain healthy.

8.6.1 Materials

• ddH
2

O

• NaOH

• KOH

• 1 L bottle top filter

• 1 L sterile glass bottle

• Stir plate

• pH meter

• Osmolarity meter

Table 8.1: HEK293 Imaging Saline List of substances and amounts used to make Imaging Saline.

Molar Concentration (mM) Substance Amount (g)
146 NaCl 8.53

4.7 KCl 0.35

2.5 CaCl
2

2H
2

0 0.36

0.6 MgSO
4

0.072

0.15 NaH
2

PO
4

0.02

0.1 Ascorbic Acid 0.0176

8 Glucose 1.44

20 HEPES 4.76
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8.6.2 Protocol

1. Begin by measuring out ~ 800 - 900 mL of ddH
2

O.

a) The final volume will be approximately 1 L. It is easier to adjust osmolarity later by

adding water, so it is best to start with less than 1 L of water.

2. Add substances in Table 8.1 to water.

a) It is easiest to use a stir plate to keep the solution constantly mixing.

3. Once everything is check osmolarity of solution.

a) Add ddH
2

O until solution reaches 346 mOs.

4. Next check the pH of the solution.

a) Adjust pH to 7.4

i. If pH is high KOH for the adjustment.

ii. If pH is low add NaOH.

iii. Be sure to wait 20-30 seconds between adding drops of KOH or NaOH so that the

pH meter can get an accurate reading.

5. Once the pH and osmolarity are correct pass the Imaging Saline through a bottle top filter

into a 1 L glass bottle. This will sterilize the saline.

176



6. Store in fridge.
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8.7 cell culture - splitting cells

Here the general cell care is described, specifically splitting cells. All work should be done in

the biosafety cabinet. Always take extreme care to be as clean and sterile as possible6. It is perti-

nent to be overcautious when working with cells or sterile solutions so as not to introduce any

contaminations. Always make sure to warm all solutions in water bath at 37˚C before beginning

the procedure.

8.7.1 Material

• DMEM + 10% FBS (with phenol red)

• Trypsin

• Serological pipettes

• 100 mL cell culture dishes

8.7.2 Protocol

1. Label dishes with:

a) Your name/initials

b) Date

c) Cell type

d) Passage number

e) Amount of cells

6 See Protocol 8.10 for general aseptic technique.
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i. 0.25 - 4 mL

2. UV new sterile culture dishes that cells will be split into.

3. Add10 mL DMSO + 10% FBS (with phenol red) medium into each dish.

4. Place dishes in incubator until ready to start step 4.

5. Aspirate medium from dish of confluent cells.

6. Pipette 4mL of Trypsin EDTA into dish.

7. Once cells have lifted from bottom of dish split into new sterile cell culture dishes dishes.

a) 0.25 - 4 mL
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8.8 preparing cell medium

This protocol describes the methods for preparing medium for cell culture and transfection. As

with all cell culture related protocols all work should be performed inside the biosafety cabinet

and proper aseptic technique practiced.

8.8.1 Materials

• 50 mL aliquot of FBS

• For transfection medium:

– 500 mL DMEM (no phenol red)

– 5 mL 100x Antibiotic (usually streptomycin)

• For cell culture medium:

– 500 mL DMEM (with phenol red)

• Sterile 500 mL glass bottle

• Bottle top filter

8.8.2 Protocol

1. Heat shock aliquot of FBS

a) Let FBS sit in water bath at 37˚C for ~ 1 hour after being thawed (also in water bath).
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2. Thaw antibiotic if making transfection medium.

a) Do not let thawed antibiotic remain unfrozen for an extended amount of time.

3. Once FBS is thawed and heat shocked add to DMEM.

a) If preparing medium for cell culture use DMEM + phenol red.

b) For transfection medium use DMEM no phenol red.

4. If preparing transfection medium:

a) Add 5 mL 100x antibiotic to DMEM (no phenol) + 10% FBS solution.

5. Pass DMEM + 10% FBS solution through a bottle top filter into a sterile glass bottle.

6. Label bottle with description, initials and date.

7. Store medium in fridge.
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8.9 preparing matrigel

The protocol for preparing Matrigel solution to coat the bottom of imaging dishes is described

here.

8.9.1 Materials

• Matrigel

• Optimem

• 15 - 50 mL conical

8.9.2 Protocol

1. Thaw Matrigel in 37˚C water bath just long enough for the solution to become gelatinous.

a) Do not leave the Matrigel in the water bath for too long, it can denature the proteins

and ruin the solution.

2. Add 1 part Matrigel to 300 parts optimem.

a) Matrigel will be very thick so it is best to use a 1 mL pipette.

3. Vortex mixture.

4. Label conical with description, initials and date.

5. Store Matrigel in fridge.
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8.10 general aseptic technique

General aseptic technique and practice is described here. It is important to take great care while

dealing with live cells and sterile solutions so as not to introduce any contamination.

8.10.1 General cell handling principles

• Sterility is essential.

– All reagents and supplies must be sterile.

– Always wash hands before handling cells or reagents.

• Inspect cell cultures daily for any signs of contamination.

– In the case where contamination is spotted, remove all affected cell cultures from incu-

bator, rinse dish with bleach and discard.

8.10.2 General sterile reagent handling and principles

• Aliquot stock sterile solutions whenever possible. This will not only make handling easier

but also prevent accidental contamination.

• If possible avoid sharing reagents with other lab mates. This will prevent potential cross

contaminations and accountability issues.

• Never re-use any pipettes. Do not insert a pipette back into a bottle of reagent.

• Take care not to insert the disposable/non-sterile portion of pipetters into the reagent bottle.

• Do not allow any liquid to touch the top of the bottle and/or bottle cap.
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– This includes tipping the closed bottle on its side when the bottle is closed.

– Allowing liquids to reach this part of the bottle allows a bridge between the outside of

the bottle and inside of the bottle thereby inducing contaminations.

• Close bottle whenever not in use.

• Keep bottle and cap off to the side of the work area (within the biosafety cabinet).

– This is to avoid potential spills and sloughing off any dirt/skin, that would occur when

passing arms over the bottle, into bottle while working.

8.10.3 General biosafety cabinet principles

• Before entering hood the sash should be opened and the fan allowed to run. By opening

the sash the environment inside the hood is changed and thus the hood needs some time

to re-establish laminar flow.7

• Wipe down reagent bottles and other supplies being brought into the cabinet with 70%

isopropyl alcohol before bringing them into the biosafety cabinet.

• Make sure you are wearing gloves and a lab coat (used only for biosafety cabinet use) or

long sleeves.

– Flakes of skin that can slough off into the hood are full of bacteria.

– If you have long hair, you should pull it back before starting any process in the hood

as well.

7 There is nothing magical about isopropyl alcohol. It is not the mere application of this solution that cleans a surface.
Rather, it is the drying of isopropyl alcohol that dehydrates cells and thereby kills them - ensuring a cleanly surface.
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• Wipe down hands with 70% isopropyl alcohol and allow to dry inside the biosafety cabinet.

• Try to limit the number of people around the cabinet when working inside. Disturbances

of people walking by disrupt the laminar flow within the hood. Also, distractions can lead

to accidents causing potential contaminations.

• Keep your work area within the cabinet clean and organized.

– It is best to work from one side of the hood to the other. For instance if transferring

liquid keep sterile solutions on the right, vessels to be transferred into in the middle,

and things to be disposed of on the left.

• It is also important to not clutter the inside of the cabinet. Disrupting the laminar flow

defaults the insured cleanliness of the hood.
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APPENDIX - SOFTWARE

A list and description of the algorithms used for the work presented in this thesis is provided

in thesis appendix. The order of presentation is the general order of analysis events.

9.1 acquiring data

The typical format of raw data is in the form ofi mages acquired while imaging. It is important

to keep careful book-keeping of all of the parameters used while imaging. i.e.:

• Cell type, passage number, and transfection time

• Plasmid type and amounĴ ransfected into cells

• Emission filters used

• Alignment image name and location

• White light image name and location

• Dish number and cell number being imaged and recorded

• Dimensions and coordinates of ROI being imaged

• Exposure time

• EM Gain

• Number off rames

• Total movie time (needed to calculate accurate average frame rate)

• ND filters being used

• If a drug is being applied:

– The concentration and time it was applied
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This list is not exhaustive and it has degrees of variability dependent on the experiment being

performed. The items listed here serve as general guidances and suggestions.

9.2 image processing

Image processing of acquired movies is usually performed in Labview or ImageJ. If the movies

are going to be ran through a tracking algorithm (i.e. u-track) the following set of processes are

done to enhance tracking of single particles.

9.2.1 Image overlay

If more than one fluorophore is simultaneously being imaged the tiffs will need to be split.

This is done using the Cairn Image Splitter Analyzer plugin available in ImageJ. First, a white

light image is used (typically an image of polystyrene beads on glass) to determine where the

two channels need to be cropped and the coordinates of the overlay. Following the instructions of

the plugin the first and second channel are selected, the alignment saved and the image split into

the two corresponding channels (where each channel is one emission color). Once the parameters

have been set the stack of tiffs collected can be processed using the previous alignment setting in

the plugin. Each channel is saved separately as single image tiff files for further processing.

9.2.2 Frame averaging

When a quick frame rate is used (20 Hz or more) it is advantageous to frame average. Not only

does this improve the signal to noise ratio of the movie but it also cuts the number of frames in

half thereby allowing for quicker tracking. Frame averaging is done in Labview.

location : \Labview\Image Processing\average frames.vi

The program averages the intensity of each pixel between the number of frames specified and

outputs a single averaged image. Typically only two frames are averaged. The program requires

inputs of the location of the folder of tiffs to be averaged, the saving location of averaged tiffs,
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the file pattern of the tiffs to be processed, and the number of frames to be averaged. The images

are automatically named using the original tiff name.

9.2.3 Gaussian filter

Once the tiffs have been split and frame averaged a Gaussian blur filter is applied in ImageJ.

Applying a Gaussian blur smooths the image, which reduces the noise. Essentially it behaves

as a low pass filter. The filter is preset in ImageJ and a radius of 1 pixel is used. If the radius

of the Gaussian is too large the individual fluorophores in the image will be spread too much

and tracking will become problematic. Because the PSF width is slightly larger than 1 pixel a

Gaussian kernel with a radius of 1 pixel will not result in too much blurring of the particles of

interest1.

9.3 tracking

There are a few different methods that can be used to track single particles, including fitting

the PSF of the particle to a 2D Gaussian function[23], center-of-mass tracking[96], and cross

correlation[273]. In general each of these methods can be separated into two distinct parts, particle

detection and particle tracking, or rather ’connecting the dots’. As published by Cheezum et al the

best method for tracking individual fluorophores is using the 2D Gaussian fitting method[145].

However, for conglomerates of fluorophores that might be elliptical instead of circular center-of-

mass tracking is encouraged.

9.3.1 Labview

In Chapters 4 [49] and 4 [50] a custom written algorithm in Labview was used to track QD-

labeled Kv2.1 channels.

location \Labview\Tracking\Moving multiple ROI Gauss efficient w R_intensity.vi

1 The width of the PSF is unique to each imaging system and so this setting can be variable depending on the microscope
and imaging conditions.
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This program is advantageous for low density labeling of particles either with fluorescent pro-

teins or QDs. Artifacts due to collisions will be occur if the labeling density is too high. The

algorithm requires the location of the folder of tiffs to be tracked, the file pattern of these tiffs,

the frame to start tracking, the frame to end tracking, the exposure time of the movie, and the

size of the ROI to be used for following the particle being tracked. The code analyzes each frame

and the ROI surrounding each particle is adjusted to follow the particle. The optimal ROI size is

10 pixels[49].

As mentioned above for aggregates of fluorophores it can be advantageous to use center-of-

mass tracking, especially when the object of interest is elliptical rather than circular in shape.

This method was used for tracking GFP-Kv2.1 clusters in Chapter 05[271].

location \Labview\Tracking\Moving multiple ROI XY centers - Threshold.vi

The COM algorithm uses the same input arguments as the Gaussian tracker with the addition

of thresholding. Thresholding is key for COM tracking[145]. In order to determine the optimal

threshold an image viewer is used to view when the background is reduced the greatest while

not extinguishing the signal of the objects of interest.

location \Labview\Image Viewers\Image viewer - THRLSD.vi

9.3.2 MTT Algorithm

The Labview tracking algorithm works efficiently for tracking a low density of particles. This

requires many movies to accumulate enough data for statistical analysis, which is very time and

energy consuming. It is easier to acquire fewer movies with more particles than more movies

with few particles. To be able to track these higher particle density movies a multiple-target

tracing algorithm[209, 210] was employed. Furthermore, because particles are not manually de-

tected as an initial step (as is the case for the Labview algorithm) newly arriving particles can be

determined more easily. This algorithm was used for the work presented in Chapter 04[241].

189



The input parameters are set in:

location \Matlab\MTT\detect_part_v2\MTT_param.m

An example of input parameters for tracking QD-labeled Kv2.1 channels is given below. The

algorithm requires the images be saved as a *.stk file as well. This may be done using ImageJ.

Detection Parameter

Pre-detection threshold seuil_preiere_detec = 90;

Final detection threshold seuil_detec_1vue = 95;

ROI size in pixels wn = 9;

Gaussian radius in pixels r0 = 1.8;

Reconnection Parameters

Temporal sliding window T = 50;

Number of deflation loop nb_defl = 50;

Disappearance / probability of blinking T_off = -500;

Maximum diffusion coefficient in pixel sig_free = 2;

Reference diameter Boule_free = 3.5;

Limitation of combinations Nb_combi = 4;

Validation of pre-detected particles seuil_alpha = 1500;

Likelihood between uniform and Gaussian law Poids_melange_alpha = 0.99;

Likelihood between maximum and local diffusion Poids_melange_diff = 0.99;

Once the parameters have been set the detection and tracking program may be ran using:

location \Matlab\MTT\detect_part_v2\detect_reconnex_22.m

Use trace_particle.m to convert output of MTT_algorithm to XYI.txt file.
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location \Matlab\trace_particle.m

9.3.3 U-track

The particle tracking used in Chapter 05 to the present was tracked using an algorithm from

the Danuser lab: u-track[269]. This code is also ran in Matlab, however it is slightly more com-

putationally friendly than the MTT algorithm. It also provides better tracks with our imaging

system. U-track is designed for tracking dense particle fields, closing gaps in trajectories as a re-

sult of detection failure thereby enabling the capture of splitting and merging events. The basis of

the algorithm formulates correspondence problems as linear assignment problems and searching

for a globally optimal solution. The algorithm is written for tracking tracer particles labeled with

fluorophores that bleach. Because of this, when tracking QDs (which do not bleach) alterations

must be made.

For tracking photobleaching fluorophores the algorithm may be used directly from the Danuser

lab website:

location http://lccb.hms.harvard.edu/software.html

1. Before beginning be sure to add the u-track folder to the Matlab directory

2. Detect Particles:

a) \Matlab\Jaqaman Code\U-track\scriptDetectGeneral.m
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3.

Detection Parameters

Camera bit-depth detection Param.bitDepth = 16;

St. dev. of the PSF detectionParam.psfSigma = 1.5;

Time averaging Param.integWindow = 0;

Alpha-value for detection of local maxima Param.alphaLocMax = 0.0001;

Maximum iterations for PSF estimation detectionParam.numSigmaIter = 10;

Mixture model fitting detectionParam.doMMF = 0;

Alpha-values for mixture-model fitting step. detectionParam.testAlpha =

struct(’alphaR’, 0.001,’alphaA’, 0.001,’alphaD’, 0.001,’alphaF’, 0);

4. Once particles have been detected they need to be connected to create trajectories.

a) \Matlab\Jaqaman Code\U-track\scriptTrackGeneral.m

192



5.

Tracking Parameters

Gap closing time window gapCloseParam.timeWindow = 3;

Flag for merging and spliĴing gapCloseParam.mergeSplit = 1;

Minimum track segment length gapCloseParam.minTrackLen = 15;

Flag for linear motion parameters.linearMotion = 2;

Search radius lower limit parameters.minSearchRadius = 2;

Search radius upper limit parameters.maxSearchRadius = 5;

Standard deviation multiplication factor parameters.brownStdMult = 3;

Scaling the Brownian search radius parameters.brownScaling = [0.5 0.01];

Power for scaling the Brownian search radius parameters.timeReachConfB = 4;

Amplitude ratio lower and upper limits parameters.ampRatioLimit = [0.7 4];

Formula for scaling the linear search radius parameters.linScaling = [0.5 0.01];

Max angle between the directions of motion parameters.maxAngleVV = 30;

Gap length penalty parameters.gapPenalty = 1;

6. Next converĴ he tracking output into the typical XYI.txt file used for further analysis.

a) [trackedFeatureInfo, trackedFeatureIndx, trackStartRow, numSegments] =

b) Save trackedFeatureInfo as a *_pixel*.mat file

c) Use that *_pixel*.mat file in write_trajectories_utrack.m to save a XYI *_pixel*.txt file

location \Matlab\write_trajectories_utrack.m

When tracking QD-labeled particles modified cost functions must be used. Tracking then goes as

follows:

1. Add the u-track folder and the CollectedTrackingFunctionsfolder to the Matlab directory.
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a) Remove the detection folder within CollectedTrackingFunctions from the path.

2. Detect Particles as before.

a) \Matlab\Jaqaman Code\U-track\scriptDetectGeneral.m

3. Connect detected particles:

a) Remove the u-track folder from the Matlab directory

b) Open tracksettings.mat

location Matlab\Jaqaman Code\exactFunctions\tracksettings.mat

c) Run Track.m

location Matlab\Track.m

4. Convert the tracking output into the typical XYI.txt file using the same method described

above.

Before using XYI.txt file in further analysis a few clean-up steps need to be done.

1. First insert the exposure time into the first row of the XYI file. This is used in all later

analysis codes.
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location \Labview\Arrange Data Files and Arrays\InserĴ lag into XYI file.vi

2. Next converĴ he XYI file from pixel to nm

location \Labview\Arrange Data Files and Arrays\Convert from pixel-nm or nm-pixel

file.vi

3. If the XYI file is to be used for ergodicity analysis (i.e.. time / ensemble averaged MSD,

ergodicity breaking parameter) the following steps should be followed:

a) First remove the buffered zeros from the XYI file, so that all trajectories start in the first

frame.

location \Labview\Arrange Data Files and Arrays\Remove buffered zeros in ar-

ray.vi

b) Next replace all zeros with NaNs. The resulting file will have be in pixels, have all

trajectories start in the first frame, and have no zeros.

location \Labview\Arrange Data Files and Arrays\Replace zeros with NaNs.vi

4. Sometimes it is also useful to analyze trajectories that are of at least a minimum length.

do this a Labview program to find long trajectories is used.

location \Labview\Arrange Data Files and Array\FindLongTrajectories.vi
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9.4 useful labview analysis algorithms

This section lists Labview algorithms used for statistical analysis presented in this dissertation.

The location of each code is given and explanation/description where needed.

9.4.1 Square displacement analysis

• Displacement squares

location \Labview\Displacement Squared\displacement squared automatic with

• MSD

– Time-averaged MSD

location \Labview\MSD\MSD - automated dot number - no fiĴing_utrack.vi

– Time-averaged MSD and Ensemble-averaged MSD distributions

location \Labview\MSD\Means of rows and columns - disc short.vi

– Alpha

location \Labview\MSD\analyze linear MSDs no first row.vi

• CDF
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location \Labview\CDF\Cumulative probability - automated dot number_new.vi

• Waiting times

location \Labview\Waiting times\waiting times automated with location - no drift.vi

• Ergodicity breaking parameter

– To calculate ergodicity breaking parameter for one tlag according to the total movie

time[58, 149, 274]:

location \Labview\MSD\Ergodicity Breaking Parameter.vi

– To calculate ergodicity breaking parameter for each tlag for a given total movie time

location \Labview\MSD\Ergodicity Breaking Parameter_vary tlag.vi

9.4.2 Lifetime analysis

• First extract intensities from multiple XYI trajectory file:

location \Labview\Lifetimes\Extract array of Intensities from multiple XYI trajectory

file_3.vi

• Next find lifetimes
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location \Labview\Lifetimes\channel lifetimes and dark stats - automated v4_utrack.vi

9.4.3 CCP trapping and colocalization

The following list of Labview programs was used in Chapter 06 to match the location of QD

stalls to CCPs.

• First outpuĴ he time and location of QD stalls

location \Labview\Waiting times\view trajectory and stops_automatic - output stops

– This can be used to manually determine whether a QD stall occurs on a CCP andused

to match up the stall with the lifetimes of CCPs

• Next match CCPs to QD stalls (connections file)

location \Labview\Clathrin\Match clathrin track to QD stops_2.vi

• Last compile array of QD stalls with corresponding CCP lifetime and time at which QD

stalls in CCP

location \Labview\Clathrin\QD stops with corresponding clathrin lifetime.vi
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