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ABSTRACT 

 

 

 

PREDICTING FLOW DURATION AND ASSESSING ITS DRIVERS 

IN NORTH-CENTRAL COLORADO USING CROWDSOURCED DATA 

 

 

 

Headwater streams are globally important both ecologically and for human resource 

needs. These streams represent the majority of stream network length, but their flow regimes are 

often unknown. Streams can be classified by flow regime as perennial, intermittent, or 

ephemeral. These classifications are used in forest land management decisions and may affect 

Clean Water Act jurisdiction; however, the National Hydrography Dataset (NHD) often 

misclassifies headwater streams. The goal of this study is to model flow duration across the 

stream networks of eight subbasins in north-central Colorado. We used crowdsourced flow 

presence/absence data from 82 sites in the Stream Tracker program and eight flow sensors to 

train random forest regression models; these models predicted the fraction of time a stream flows 

from April-September for both the average from 2016-2020 (dubbed mean annual) and yearly 

averages (annual). Model predictor variables included climatic, physiographic, and land cover 

attributes of the study area. Models were developed using a sample of the sites for training and 

leaving the remaining sites for model testing. The resulting mean annual model’s Nash-Sutcliffe 

efficiency (NSE) was 0.88 for test data, and the annual model’s test data had an NSE value of 

0.81. We found climate variables such as snow persistence, precipitation, and potential 

evapotranspiration most influential in predicting flow fraction based on the random forest-ranked 

variable importance. Forested and herbaceous land cover as well as depth to bedrock, available 

water storage, hydraulic conductivity, hydrologic soil group, drainage area, and watershed 
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curvature were also identified as important drivers. We developed maps of predicted flow 

fractions and compared them to NHD flow classifications. In the Cache La Poudre subbasin, the 

mean annual model predicted perennial flow in 10% of streams and intermittent or ephemeral 

flow in 90% of streams. Our model predicted nonperennial flow for 76% of the streams that were 

mapped as perennial in the medium-resolution NHD. Based on these findings, the NHD over-

represented perennial streams, classifying them three times more than our model, and under-

represented intermittent and ephemeral streams by 32% in our study area. The annual model 

captured interannual variability in flow fraction and highlighted isolated areas of high variability 

in flow fraction between years in mid-to-low elevations. The models we developed using 

crowdsourced data can improve flow classifications of headwater streams and inform resource 

management decisions in northern Colorado. Crowdsourced streamflow data can be used in 

streamflow predictions anywhere that nonperennial flow is common.  
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1. INTRODUCTION 

 

 

 

Headwater streams constitute an estimated 70-80% of stream length in the United States 

(U.S.; Downing et al., 2012). These streams are often classified by flow regime as perennial, 

intermittent, or ephemeral. Perennial streams have year-round flow, and nonperennial streams 

can be either intermittent, with seasonal flow, or ephemeral, with flow only briefly after rain or 

snowmelt events. Nonperennial streams encompass an estimated 51-60% of global stream length 

(Messenger et al., 2021) and nearly 70% of stream length in arid regions of the U.S. (Goodrich et 

al., 2018). The duration that a stream flows affects biogeochemical cycling of nutrients and 

carbon (von Schiller et al., 2017; Benstead and Leigh, 2012; Shumilova et al., 2019), availability 

and composition of aquatic and riparian habitat (Schilling et al., 2021; Kingsford et al., 2006), 

overall biodiversity (Vander Vorste and Datry, 2020), and water supply for human use (Palmer et 

al., 2008; Larned et al., 2010; Koundouri et al., 2017). However, the extent of these streams is 

predicted to increase due to climate change and land use alterations; as these systems experience 

increased drying, their ecosystem services will be disrupted (Palmer et al., 2008; Larned et al., 

2010; Jaeger et al., 2014; Datry et al., 2014; Datry et al., 2018; Ward et al., 2020). This trend is 

already in effect in the southern half of the country, where the degree of intermittency in most 

streams has been increasing over the past 30 years (Zipper et al., 2021).  

In some cases, flow classifications carry policy and management implications, and the 

regulatory status of nonperennial streams has been an ongoing focus of debate in the U.S. 

(Liebowitz et al., 2008; Acuña et al., 2014). However, it is difficult to implement regulations 

based on flow regimes because of a lack of available gaging data on small headwater streams 

(Jaeger et al. 2019; Busch et al., 2020). Furthermore, the nation’s most comprehensive digital 
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source of drainage network data, the National Hydrography Dataset (NHD; Nadeau and Rains 

2007), has misclassified headwater stream types by as much as 50% in the eastern U.S. (Fritz et 

al. 2013). 

To improve maps of stream types, researchers have developed several strategies to 

classify flow regimes based on climatic, physiographic, and land cover drivers. Sando and 

Blasch (2015) used a random forest classification model to predict streamflow class (perennial or 

intermittent). Jaeger et al. (2019) expanded on this approach to predict the probability of 

streamflow permanence in each year. Other studies focused on no-flow duration (Hammond et 

al., 2021; Price et al., 2021; Zipper et al., 2021; Kaplin, Blume, and Weiler, 2020) and the 

probability of flow at the end of the summer (Moidu et al., 2021).  

Models from Hammond et al. (2021), Price et al. (2021), and Zipper et al. (2021) were 

developed from existing stream gauge networks, which are not evenly distributed across regions 

and stream types, and they have not been used to estimate flow durations throughout stream 

networks. Models that have been applied to entire stream networks have relied on extensive field 

surveys (Moidu et al., 2021; Kaplin, Blume, and Weiler, 2020), which limit the size of a study 

area and time period of data collection. Further, Kaplin, Blume, and Weiler (2020) did not 

include climatic predictors in their models, omitting an important factor for understanding 

nonperennial flow (Costigan et al., 2015). The PRobability Of Streamflow PERmanence 

(PROSPER) study is the one example in which models have been applied to estimate flow 

conditions throughout a large regional stream network. To do this, researchers compiled 

information on streamflow permanence from a wider range of stream types by combining both 

gage data and indirect sources such as field surveys (Jaeger et al., 2019). They used the flow 

status (flow/no flow) of streams at the end of the summer to classify streams as either perennial 
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or nonperennial, then developed a random forest model to predict the probability of streamflow 

permanence (perennial flow) for full stream networks in the Pacific Northwest. 

While the indirect data sources used to develop PROSPER can help separate perennial 

and nonperennial streams, many applications could also benefit from information on the flow 

duration and times of year most likely to have streamflow. Because of the limited gaging data on 

nonperennial headwater streams, few datasets exist on flow duration across a broad range of 

stream sizes and types. These streams are also often difficult to monitor with aerial imagery due 

to their small size, which makes them more likely to be obscured by vegetation cover (Fritz et 

al., 2013). Some studies have expanded measurements of flow duration using electrical 

resistance (ER) sensors, which allow detecting flow or no flow conditions at low sensor cost 

(Blasch et al. 2002; Chapin et al., 2014); however, there are logistical challenges to 

implementing and maintaining a wide array of sensors. Another useful strategy for monitoring 

nonperennial streams is crowdsourcing, where volunteer observers can document flow status 

using mobile phone apps (Kampf et al. 2018; Jaeger et al., 2021).  

One of these crowdsourcing projects, Stream Tracker, has led to a large dataset of flow 

observations in the Colorado Front Range from 2016-2020. In this study, we examine the utility 

of this crowdsourced dataset for predicting streamflow duration across the region. Our study 

objectives are to: 

1. Quantify the duration of streamflow for headwater tributaries across the elevation 

gradient of the Cache la Poudre watershed. 

2. Examine how climate, physiographic, and land cover drivers relate to flow duration. 

3.      Predict mean annual and annual streamflow duration across the region.  
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2. METHODS 

 

 

2.1 Study Area 

This study focuses on the upper Cache la Poudre (CLP) watershed in the Front Range of 

northern Colorado, and our final models were applied to neighboring watersheds with similar 

characteristics, including the North Platte Headwaters, Upper Laramie, Big Thompson, St. Vrain, 

Clear, and Upper South Platte (Figure 1). The CLP basin is well suited for this study because it 

covers a wide range of climatic, land cover, topographic, and substrate characteristics. The CLP 

basin is 4875 km2, although our focus at this stage is on the upper basin, which encompasses 

roughly 2730 km2. This part of the basin is less influenced by land use changes and water storage 

or diversions, allowing us to better isolate the climatic, geologic, and vegetative influences on 

flow. 

Headwaters of the CLP river originate in Rocky Mountain National Park, and the river 

runs for 203 km, eventually draining into the South Platte River. One hundred and three km of 

the upper CLP river system has been designated a National Wild and Scenic River. The cities of 

Fort Collins and Greeley, CO draw their primary drinking water from the CLP. The basin is 

characterized by a steep elevation gradient that impacts the climate and hydrology of the region. 

Elevation ranges from 1590 m to 4125 m, averaging 2560 m, and thus the CLP basin spans the 

Mountain and Plains hydrologic regions defined by the United States Geological Survey 

(Capesius & Stevens 2009). Our focus on undeveloped areas means the majority of our analysis 

applies to the Mountain region. 
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Figure 1. Map of the study area, which contains eight subbasins of northern Colorado and into southern 

Wyoming: the North Platte Headwaters (NPH), Upper Laramie (UL), Cache La Poudre (CLP), Big 

Thompson (BT), St. Vrain (SV), Clear (C), and Upper South Platte (USP). The CLP watershed is 

enlarged on the right. The Mountain and Plains hydrologic regions are differentiated by a 2280 m contour 

line. Stream Tracker and flow sensor locations used in this study are shown along with a coarse selection 

of NHDPlus V2 flowlines. 

  

Precipitation of the Mountain region is snowfall dominated and averages over 1300 mm 

annually, while the Plains region is rainfall dominated, averaging as little as 400 mm annually 

(Capesius and Stevens, 2009; Kampf and Lefsky, 2016). At higher elevations, peak discharge 

typically occurs in early June, following snowmelt, and baseflows are sustained through the 

summer, supplemented by rain events. Peak discharge at lower elevations typically occurs in 

early April, and with peaks primarily activated by rain events (Kampf and Lefsky, 2016). Stream 

reaches in the upper CLP basin have slopes ranging from less than 1% (0.6°) to over 150% (56°). 

The mean estimated depth to bedrock from a gridded global dataset is 18 m, but soil depths vary 

from 2 m to 46 m in this dataset (Hengl et al. 2017) in the upper CLP basin. The dominant 

hydrologic soil group is D, characterized as shallow, with very slow infiltration and transmission 

rates and high runoff potential when saturated (Soil Survey Staff, NRCS, 2016). The lithology of 
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the upper basin is dominated by Precambrian granitic and metamorphic rocks, and the lower 

basin consists of younger Permian and Cretaceous sedimentary shales and sandstones (State 

Geologic Map Compilation, Horton et al., 2017). There is considerable bedrock jointing in the 

Front Range that can impact subsurface flow and channel flow initiation (Wohl, 2008; Whiting 

and Godsey, 2016). Land cover changes with elevation, with tundra at the highest elevations, 

subalpine and montane coniferous forest in intermediate elevations, down to grassland in lower 

elevations. 

2.2 Streamflow Data 

The Stream Tracker project, developed at Colorado State University, combines a network 

of sensors and citizen science data collection to assess streamflow intermittence. Up to five years 

of streamflow data from water years 2016-2020 are available for over 200 streams in the CLP 

watershed. Observers report if streams have flow, no flow, or standing water by visual 

assessment, where flow is considered a connected surface flow path present from above to below 

the monitoring point. Observers can establish new sites or record observations at existing sites, 

which are located at road or trail stream crossings. Data are collected via a mobile phone app or 

uploaded onto a website (anecdata.org or citsci.org).  

Stream Tracker observations are most frequent from April to September, when streams 

are not snow- or ice-covered. This period encompasses typical peak flows in the spring and low 

flows in the fall. Because these are visual observations, they are not collected at regular time 

intervals. To create a database with consistent month-to-month average flow fraction for all sites, 

we filled gaps between Stream Tracker observations by relating each stream’s flow record to 

streamflow sensor data. Stream stage sensors were installed in headwater catchments of the CLP 

and neighboring basins to record water levels across a gradient of elevation and snow 
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persistence. At these sites, stream stage is measured with either a capacitance rod or pressure 

transducer. We also included United States Geological Survey (USGS) and Colorado Division of 

Water Resources (CDWR) sites in the study area.  

We applied a gap-filling procedure to fill in flow status (flow, standing water, no flow) 

for days without observations and then computed the April-September fraction of days with flow 

for each year from 2016-2020. Stream Tracker observations were split into training (2016-2018) 

and testing (2019-2020) datasets. We used a rule-based procedure to identify no flow and 

perennial streams for the training dataset. If flow was recorded for all observations, and at least 

one of these observations was collected during the driest month, September, the site was 

considered to have perennial flow (flow fraction = 1). If no flow was ever recorded at the site, 

and observations of no flow were collected in the wettest months, April or May, then we 

assumed all days over the analysis period had no flow (flow fraction = 0). For all other sites, we 

used flexible discriminant analysis (Hastie et al. 1994) to develop models for predicting flow, 

standing water, or no flow for each day with the mda package in R (Hastie and Tibshirani 2020). 

Predictor variables were normalized streamflow from stream stage sensors and day of year. 

Models predicted the flow, standing water, or no flow condition at each Stream Tracker site at a 

daily time step. This approach produced models with a Nash-Sutcliffe efficiency coefficient of 

0.88 for the training time period and 0.85 for the testing time period, when comparing the 

observed and simulated April-September flow fractions across all sites. This process resulted in 

82 gap-filled Stream Tracker sites (Figure 1); sites that did not have observations during multiple 

years and multiple times of year could not be gap-filled.  

The gap-filled data were summarized into 2016-2020 April-September average flow 

fraction (referred to as mean annual) and yearly average (annual) flow fraction (ff), defined as 
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the number of days with flow divided by the total number of days in a given time period. Flow 

fraction is, therefore, directly related to flow duration. Standing water predictions were grouped 

with no flow rather than flow. We designated flow fraction classifications as nonperennial 

(ff<0.92), and perennial (ff>=0.92) for later comparison of predicted flow fractions to NHD 

stream type classifications. The cutoff for perennial streams was chosen because known 

perennial streams, such as the Cache La Poudre river, had predicted flow fractions >=0.92.  

2.3 Basin Attribute Data 

To evaluate drivers of streamflow duration, we compiled climatic, topographic, 

subsurface, and land cover attributes for the CLP and neighboring watersheds in north-central 

Colorado. A total of 268 basin attributes were compiled as potential predictors of flow fraction, 

drawing from freely available data sources (Table 1). For the mean annual model, climate 

attributes included mean annual, mean seasonal, and mean monthly values of precipitation, 

temperature, and snow persistence. The annual model included annual and seasonal values for 

each year with Stream Tracker data (2016-2020). Physiographic and land cover attributes were 

the same for both models. We chose to evaluate attributes at a 30 m resolution, selected over 

higher resolutions because it results in fewer problems with disconnected flow lines (Hastings 

and Kampf, 2014) and is consistent with the medium-resolution NHDPlus V2 (from here on 

referred to as NHD MR). The watershed boundaries used to delineate the study area were 30 m 

resolution HUC8 subbasins from the Watershed Boundaries Dataset (WBD) included in the 

NHD MR. The 10 m flow accumulation and flow direction data from the higher-resolution 

NHDPlus HR (or NHD HR), in beta at the time of this study, were not readily available for our 

use. 

2.3.1 Climate 



9 

 

In the mountainous watersheds of the northern Colorado, snow is a dominant driver of 

streamflow (Kampf and Lefsky, 2016; Doesken and Judson, 1996; Stewart et al. 2004). 

Consequently, the snow cover-derived attribute snow persistence (SP), defined as the fraction of 

time that snow is present on the ground, can be a strong predictor of streamflow (Eurich et al. 

2021; Hammond et al. 2018). We used the USGS mean annual 500 m-resolution annual average 

SP product (Hammond, 2020), which is averaged over the 2001-2020 period of record, 

corresponding to MODIS snow cover data availability (Hall & Riggs, 2016). We also used mean 

monthly SP data for each month from January-June; these were averaged only over the five-year 

period of 2016-2020.  

Precipitation (P) and temperature (T) data from the PRISM Climate Group, and potential 

evapotranspiration (PET) data from gridMET, all at 4 km spatial resolution, were also computed 

for the 2001-2020 period of record. Annual values were assessed by water year (Oct 1 of the 

previous year to Sept 30) instead of calendar year because water years are better suited to 

represent the timing of snow accumulation and melt. Seasonal values were computed for spring 

(March-May), summer (June-September), fall (October-November) and winter (December-

February). September was included in the summer season to avoid bridging multiple water years 

for the fall calculations. We also derived surplus/deficit (SD = P-PET) and aridity index (AI = 

P/PET) from P and PET data. To reduce the total number of inputs in our annual model, we 

summarized each attribute seasonally rather than monthly (Table 1).  

2.3.2 Topography 

 Topographic basin characteristics such as drainage area, average catchment elevation, 

and dominant aspect, slope, and curvature can influence flow generation (Montgomery and 

Dietrich, 1988; Tarboton et al., 1991; Heine et al., 2004; Clubb et al., 2014). For this study these 
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elements were derived from a USGS National Elevation Dataset (NED) 1 arc-second (30 m 

ground distance) DEM. To represent channel topographic characteristics at the point of 

measurement, we included topographic wetness index (TWI; Williamson et al., 2015), slope, and 

geomorphon shape for the pixel representing each stream tracker point. TWI was calculated 

using the NHD MR flow accumulation layer and the slope layer derived from the 30 m DEM 

(Beven and Kirkby 1979; Sørensen et al., 2006). Geomorphons describe the morphology of bare-

earth terrain as one of 498 unique shapes, the 10 most common being: flat, peak, ridge, shoulder, 

spur, slope, pit, valley, footslope, and hollow (Jaziewicz and Stepinski 2013). We processed the 

30 m DEM using the ‘r.geomorphon’ extension in GRASS GIS open-source software (GRASS 

Development Team 2017), following the method described by Baker et al. (2018) in their 

analysis of the Chesapeake Bay watershed. Instead of compiling the dominant geomorphon 

shape of the catchment, we used a 180 m (6 pixel) and 300 m (10 pixel) buffer/search of 

geomorphon type to describe the potential for local flow. 

2.3.3 Subsurface Properties 

We characterized underlying geology by bedrock type (igneous, metamorphic, 

sedimentary, and unconsolidated). Other studies have attempted to include a factor of bedrock 

permeability (Jaeger et al., 2019; Kaplan et al., 2021), but we chose to use generalized bedrock 

type as a predictor because a recent study in the CLP watershed found that flow duration 

changed at the interface of metamorphic and sedimentary bedrock (Martin et al., 2021). 

Depth to bedrock (ISRIC SoilGrids250m, Poggio et al., 2021) and available water storage 

(Soil Survey Staff, gSSURGO) account for groundwater storage potential. Other soil 

characteristics that we included from the gSSURGO database were hydraulic conductivity, soil 



11 

 

texture indicators (percent sand, silt, and clay), and the NRCS-defined hydrologic soil group 

(HSG), which characterizes the infiltration capacity of soils.  

 

2.3.4 Land Cover 

To categorize land cover types, the Landscape Fire and Resource Management Planning 

Tools’ (LANDFIRE) existing vegetation type categories were condensed into eight lifeform 

groups: tree, shrub, herb, sparse, barren, developed, agriculture, and open water. 

Monitoring Trends in Burn Severity (MTBS) wildfire and prescribed burn boundaries 

were included in this study and split into five-year age groups. Of the nine fires included in our 

study area, The High Park fire of 2012 is the largest, encompassing 90,769 acres. The oldest fire 

boundary is a small 1547 acre burn from 1989. Six predictor variables were compiled: all 

boundaries and age groups 0-5, 6-10, 11-15, 16-20, and 25+ years old. 

Table 1. Basin attributes as possible predictor variables and data sources.  

Characteristic Attribute Source 

Climate Precipitation (mm), Temperature (℃) 

(mean annual, mean seasonal, mean monthly, annual, & seasonal) 

PRISM (Daly, 2013) 

 
Potential evapotranspiration (mm) 

(mean annual, mean seasonal, mean monthly, annual, & seasonal) 

gridMET (Abatzoglou, 2013) 

 
Aridity index (unitless), surplus/deficit (mm) 

(mean annual, mean seasonal, annual, & seasonal) 

Calculated from PRISM and gridMet 

data 
 

Snow persistence (%) 

(mean annual, mean monthly, annual, & monthly) 

Hammond, 2020  

Topography Mean curvature, dominant aspect (0-360°), mean elevation (m), 

mean slope (m/m), local slope (m/m), drainage area (km2) 

USGS National Elevation Dataset 

(NED) 30 m (Gesch et al., 2002) 
 

Local topographic wetness index Calculated from USGS NHD Plus V2 

and NED 
 

Local geomorphons NED, processed in GRASS 

Geology Igneous, metamorphic, sedimentary, unconsolidated (%) State Geologic Map Compilation  

(Horton et al., 2017) 
 

Depth to bedrock (cm) ISRIC SoilGrids250m (Poggio et al., 

2021) 
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Available Water Storage (mm), hydraulic conductivity (μm/s), 

percent sand, silt, and clay, hydrologic soil group (%) 

gSSURGO 

Land Cover Tree, shrub, herb, sparse, barren, developed,  

agriculture, open water (%) 

LANDFIRE 

 
Fire Boundaries (%) 

(all boundaries, 0-5, 6-10, 11-15, 16-20, 25+ age bins) 

MTBS 

 
2.4 Compiling Watershed Attributes 

Average values for each attribute were compiled for the drainage areas above each flow 

observation point. The Flow Accumulation tool in the ESRI ArcMap Spatial Analyst toolbox 

was used to conduct weighted flow accumulations on all watershed attribute rasters. Attributes 

such as temperature and surplus/deficit that contained negative values were processed through 

T.E. Dilts’ (2015) Flow Accumulation for Both Positive and Negative Values Toolbox, 

developed at the University of Nevada Reno. Output values were divided over the number of 

cells that flow into each cell (the NHD MR standard flow accumulation) to compute the average 

value of attributes for each pixel’s drainage area. These averaged flow accumulations have been 

coined Continuous Parameter Grids (CPGs) in similar studies (Sando et al., 2018; Jaeger and 

Sando, 2019). Local slope, TWI, and geomorphons were the only predictors not processed 

through weighted flow accumulations; these values were taken from the pixel containing the 

stream monitoring locations. 

All CPGs were snapped to the same extent, pixel size, and geographic coordinate system 

as the NHD MR flow accumulation to align the pixels for accurate attribute extraction and 

geospatial analysis. We extracted all attribute values underlying each observation point and used 

these values for model training and testing. 

2.5 Model Development 
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We used random forest regression models (Breimen, 2001) to predict mean annual and 

annual flow fractions, following the approach of similar studies (Jaeger et al., 2019; Price et al., 

2021; Moidu et al., 2021), and specifically the model structure used by Zipper et al. (2021b). 

This approach has been useful for hydrological modeling because random forests handle large 

numbers of predictors well without overfitting and allow easy interpretation of variable 

importance (Eng et al., 2017; Addor et al., 2018; Miller et al., 2018). 

Stream Tracker observation sites were randomly split into 80% training and 20% testing 

datasets. Separately, the streamflow sensor locations were also split in an 80/20 ratio and added 

to the training and testing datasets. These random assignments were edited slightly to ensure that 

both training and testing datasets had even representation across the elevation gradient because 

the Stream Tracker dataset is imbalanced in the number of sites for lower and higher elevations. 

Random forest models are biased toward categorical variables with large numbers of 

levels (Strobl et al., 2007). Therefore, to reduce bias and complexity of the model, we converted 

categorical data such as bedrock, land cover, and hydrologic soil type to continuous rasters with 

binary presence/absence values and calculated their percent coverage with weighted flow 

accumulations. For instance, instead of having one “Geology” variable with multiple categories, 

we isolated each bedrock type before processing it into an individual predictor variable 

representing the percent of the contributing area contacting that rock type. This also allowed for 

easier isolation of streamflow drivers when completing analysis.  

Predictor variables were checked for collinearity before being included in the models. We 

ranked variables by their correlation to the flow fraction of interest; for each group of highly 

correlated variables (Pearson correlation values >0.9), we retained the one with the highest 

correlation to flow fraction and dropped the others. Climate variables showed the highest 
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instances of collinearity, while nearly all topographic, subsurface, and land cover variables had 

cross-correlations <0.9 and were retained. Elevation had the greatest correlation to flow fraction 

in the annual model, but was excluded to better evaluate the influence of climate variables that 

influence interannual variability in flow.  

After adjusting for collinearity, 29 of the 105 predictor variables were initially included 

in the mean annual model. The number of variables was further reduced by ranking the variables 

in order of importance and determining how many were necessary to minimize model error, 

following Zipper et al. (2021; Figure 2). Of these, 11 predictors were selected to optimize model 

performance (Figure 2a). Similarly, 49 of the 69 predictor variables were included in the annual 

model after collinearity analysis. Error generally reduced with more predictors, but that reduction 

was minimal after 23 predictors (Figure 2b).  

 
Figure 2. Random Forest out of bag mean squared error (oobMSE) as a function of the number of 

predictors included. The red line indicates the number of predictors selected for (a) the mean annual 

model, 11 predictors, and (b) the annual model, 23 predictors.  

 

The random forest models were tuned and executed using the ‘tidymodels’ package in R 

(Kuhn & Wickham, 2020). We then applied the models using the ‘raster’ package (Hijmans, 
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2021) to output predictions of annual and mean annual flow fractions across the study area. The 

prediction ouptut files were geotiffs with an April-September flow fraction prediction for each 

30 m cell in the study area. We then trimmed the output down to a 60 m (2 pixel) buffer around 

NHD HR flowlines to display the results and compare with flow classifications in the NHD.  
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3. RESULTS 

 

 

 

3.1 Model Accuracy 

The random forest regression models we developed to predict mean annual and annual 

flow fraction showed strong performance. The mean annual model for the training sites had a 

Nash-Sutcliffe efficiency (NSE) = 0.96 and percent bias (PBIAS) = 0. For the testing sites, this 

model had an NSE = 0.88 and PBIAS = -3.9. The annual model for the training sites had an NSE 

= 0.99 and PBIAS = -0.2, and the test data had an NSE of 0.81 and PBIAS = -6.8 (Figure 3). 

Negative PBIAS values indicate slight overestimation biases in both models (Moriasi et al., 

2007). The models successfully predicted flow fraction along the full range of zero to one, 

performing well on mid-level flow fractions that represent intermittent flow regimes.  

Both models were applied for the same set of 90 flow observation sites, but the annual 

model’s inputs included flow fractions and annual climate variables for each of the five years in 

the study (five sites had only two years of data), resulting in 435 unique inputs (Figure 3b).  
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Figure 3. Observed vs predicted flow fraction comparison for mean annual and annual models. Hollow 

triangles represent training data, and blue circles represent test data. The black line is a 1:1 line to show 

model fit.  

 

3.2 Identifying Significant Drivers of Flow Duration 

Both mean annual and annual flow fraction models identified climate attributes as 

significant drivers of streamflow duration in north-central Colorado. Most notably, a factor of SP 

ranks as the most important predictor in both models. The mean annual results show that 6 of the 

11 predictor variables (55%), including the top five, are climatic variables (Figure 4a). SP and P 

were positively correlated with flow fraction, whereas PET was negatively correlated with flow 

fraction. Forested and herbaceous land cover also influenced the mean annual model, as the 6th 

and 7th most significant drivers, respectively. Forested land cover was positively correlated, 

while herbaceous was negatively correlated to flow fraction. Ten of the 23 predictors (44%) in 

the annual model are climatic, including the top two most significant predictors (Figure 4b). 

Again, herbaceous and forested land cover influence this model as well. 

Subsurface characteristics were also identified as important drivers of flow duration. 

These include hydraulic conductivity, available water storage, drainage area, hydrologic soil 



18 

 

group, and depth to bedrock. Higher flow fractions were found with greater hydraulic 

conductivity and HSG A, whereas depth to bedrock, available water storage, HSG D and C were 

negatively correlated to flow fraction. Topographic characteristics selected include curvature and 

local TWI in the annual model, but none ranked in the top 11 predictors for the mean annual 

model. Bedrock type was not selected for the models, with the exception of percent sedimentary 

bedrock in the mean annual model and percent metamorphic in the annual model, but these 

variables had minimal effect on model MSE. 

   

Figure 4. Mean annual and annual variable importance for predicting flow fraction, displayed as the 

increase in mean squared error when removed from the model. “+” indicates positive correlation to flow 

fraction, “-” indicates a negative correlation, and correlations marked with “*” are insignificant. For 

plotted predictor correlation to flow fraction, see Appendix A. 

 

The influence of climate variables on simulated flow fractions is evident in the semi-

gridded pattern of flow predictions in some areas; this pattern matches the 4 km pixel resolution 

of PRISM precipitation data (Figure 5). Finer, 800 m-resolution PRISM climate datasets are 

available, but because they are much larger files and require an acquisition fee, we elected to use 

the coarser-resolution product. The resolution effect along stream lines is minor, and we did not 
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see abrupt or extreme changes in predicted flow fraction along the majority of PRISM pixel 

boundaries (Figure 5c).  

 
Figure 5. The 4 km-resolution PRISM mean annual precipitation (A) compared to mean annual flow 

fraction predictions (B), shown here prior to being clipped to flowlines to emphasize the pattern and 

distribution of flow fraction predictions. Panel C shows predictions along flowlines at a PRISM pixel 

boundary. Flow fraction predictions along larger streams are not disrupted at pixel boundaries (blue line 

of perennial flow), but predictions along tributaries show some abrupt changes at these boundaries.  

 

3.3 NHD Assessment 

 To isolate predictions along flowlines, we clipped to NHD HR flowlines with a 60 m (2 

pixel) buffer. Because our model used the NHD MR flow accumulation and flow direction 

datasets, our predicted flowlines do not precisely line up with the NHD HR data. However, the 

NHD MR data lacks flowlines that correspond to our sensors and ST sites on headwater streams. 

After various trials, we deemed this NHD HR 60 m buffer method to be the most effective at 

displaying our overall results (Figure 6). Potential predicted flowlines that are not included in the 

NHD HR dataset are unfortunately not displayed using this method. Further, the misalignment of 

our model’s and the NHD HR’s flowlines, along with the complexity of the 60 m buffer, makes 

comparing the length of perennial, intermittent, and ephemeral channels between NHD HR and 
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our model extremely difficult. For this reason, we did not compare the NHD HR dataset’s flow 

classifications to our predictions in this study. However, we conducted a basic analysis of the 

NHD MR.  

Table 2. Matrix of NHD MR classifications vs the mean annual model predictions in the CLP basin. 

Perennial FCode = 46006, intermittent FCode = 46003, and ephemeral FCode = 46007 (Moore et al., 

2019). 
 

NHD Classifications 
 

per int + eph Model total Model percent 
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s per 10952 1326 12278 10 

int + eph 35138 71332 106470 90 

 

NHD total 
46090 72658 118748  

NHD percent 39 61 

 

NHD Accurate 89 67 

NHD False Positive (%) 286 1 

NHD False Negative (%) 7 34 

Overall accuracy = 69% 

We converted the NHD MR flowlines to 118,748 points spaced 30 m apart and extracted 

the mean annual model predictions to those points for comparison (Table 2). We defined 

ephemeral streams as having flow fractions < 0.05, intermittent flow fractions between 0.05 and 

0.92, and perennial flow fractions >= 0.92. The upper cutoff for perennial streams was chosen 

because known perennial streams, such as the Cache La Poudre river, had predicted flow 

fractions >=0.92. Because the NHD MR was designed to exclude ephemeral streams, we 

grouped intermittent and ephemeral classifications for our analysis. In the CLP basin, NHD MR 

flow classifications matched our mean annual model’s classifications 89% of the time for 

perennial streams and 67% for nonperennial streams. The NHD predicted nearly four times more 

perennial streams than our model, while only 11% of the perennial streams identified by our 
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model were classified as nonperennial in the NHD. The NHD and our model matched class for 

the majority of nonperennial streams, but 33% were misclassified as perennial in the NHD. 

 
Figure 6. Mean annual flow fraction predictions clipped to a 60 m buffer around NHDPlus HR flowlines. 

This buffer captures most of the important flowlines, but can miss them in spots (red arrow). Missing 

pixels within the buffer area represent “no data” values. 
 

3.4 Wet vs. Dry Water Years 

 The goal for our annual model was to capture interannual variability in flow fraction, 

which would allow it to be used as a predictive tool in the coming years. To assess the 

applicability of our model for representing this variability between years, we compared the 

output from wet and dry years. The average precipitation for the CLP basin in 2017 was 515 

mm, and in 2020 it was 396 mm, respectively the highest and lowest totals during our study 

period (Table 3; PRISM Climate Group 2021). Although 2017 had the highest P total, it also had 
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the lowest SP of the five years. 2016 had both high P and SP values, therefore, we chose to 

compare 2016 and 2017 (wet years) to 2020 (dry year). The wettest year based on AI (2017) had 

the highest flow at a low elevation stream gauge (Bighorn), while the wettest year in terms of SD 

(2019) had the highest discharge at a high elevation site (Michigan). The driest year for AI and 

SD (2020) was also the driest year for Michigan, but not for Bighorn (Table 4).   

Table 3. Interannual variability of climate characteristics in the Cache La Poudre basin during the 2016-

2020 study period. Aridity Index (AI) is a unitless metric where values closer to 0 indicate greater aridity. 

Surplus/deficit is a moisture balance calculation of precipitation minus potential evapotranspiration, and 

more negative values suggest greater water losses.  

* indicates wettest year based on the column variable 
† indicates driest year based on the column variable 

Year P (mm) PET (mm) T (°C) SP (%) AI SD (mm) 
2001-2020 550 1234 6.5 35 0.46 -684 

2016 487 1235 6.9 42* 0.39 -748 
2017 515 1241 7.3 29† 0.42* -726 
2018 450 1307 7.3 31 0.35 -857 
2019 468 1187 5.9 38 0.39 -719* 
2020 396 1286 6.4 37 0.31† -890† 

 
Table 4. Annual discharge at Bighorn and Michigan flow sensors during the 2016-2020 study period. The 

other six sensors did not have complete records for all five years. The Bighorn sensor is at 2,922 m 

elevation and drains a catchment area of 3.4 km2. The Michigan sensor is at 3421 m and drains 4.0 km2. 

Year Bighorn Q (mm) Michigan Q (mm) 

2016-2020 26 606 

2016 35 552 

2017 37* 616 

2018 20 559 

2019 16† 767* 

2020 22 537† 

Because the wet and dry years were not consistent across the study area, the comparisons 

between years show both positive and negative differences in flow fraction. Subtracting the 2020 

flow fraction from 2016 resulted in a difference range from -38% to 49%, where negative values 

indicate an increase in flow fraction for 2020. Comparing 2017 and 2020 results in a larger 

range: -44% to 64%. The majority of pixels show close to zero difference between wet and dry 

years, but our model was able to capture isolated areas at both extremes (Figure 7c and 7d). 
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Figure 7. Wet and dry year comparisons. Panels a and c show the difference between 2016 and 2020 flow 

fraction values, while b and d compare 2017 and 2020. Positive values indicate higher predicted flow 

fraction in the wet year, and negative values indicate higher flow fraction in 2020, the dry year. Panels c 

and d show a sample subset of pixels in each raster. 
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4. DISCUSSION 

 

 

4.1 Stream Tracker Data 

Our first objective for this study was to quantify the duration of flow in headwater 

tributaries across the elevation gradient of the Cache la Poudre watershed. We accomplished this 

by using both streamflow observations from the Stream Tracker program and eight flow sensors. 

Our findings indicate that crowdsourced flow presence/absence data, when bolstered by a small 

network of sensors, can be effectively used to improve our knowledge of headwater stream 

intermittency. Crowdsourcing is a cost-effective method for gathering large amounts of data, 

while engaging the public as citizen scientists and stream stewards. The Stream Tracker program 

captures flow data from small, ungauged streams that can be difficult to monitor regularly. By 

implementing a gap-filling approach using accompanying sensors, we created a larger dataset of 

streams for which we have reasonable estimates of mean annual and annual flow duration.  

We also evaluated whether this approach could be used to reconstruct mean monthly flow 

fractions from April to September, but this yielded poor results. We attribute this to a smaller 

sample size of monthly Stream Tracker observations to assess the model as well as to the 

seasonal patterns of flow in this region. Wet months tended to have only flow observations 

whereas dry months had only no flow observations; this gave less information to train models for 

flow fractions between 0 (no flow) and 1 (all flow). 

Another limitation of crowdsourced data is that observation sites tend to be located 

primarily in easy-to-access locations. There are relatively few roads in the Colorado Front 

Range, and Figure 1 shows most of our ST points are located along the CLP canyon, where 

observations can be made close to a road; this data gathering strategy misses remote areas. The 
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location of flow observations influences our model, as we had a much smaller model training 

dataset at higher elevations (Figure 5). Deploying a larger sensor array in these remote areas 

could help improve our output. ER sensors may be useful in this capacity because their small 

size and portability lends them to widespread deployment (Chapin et al., 2014; Costigan et al., 

2015).  

4.2 Drivers of Flow Duration 

Our next objective was to identify and evaluate drivers of streamflow duration / flow 

fraction in north-central Colorado. Random forest modeling results indicate that climate 

attributes were the most significant drivers of flow duration in our models, which is in agreement 

with most other studies of nonperennial streamflow (Sando and Blasch, 2015; Jaeger and Sando, 

2019; Hammond et al., 2021; Zipper et al., 2021; Moidu et al., 2021). This is in contrast to Price 

et al. (2021), who found land use and physiography as more significant drivers of flow on 

nonperennial gaged streams across the U.S. 

The highly significant influence of snow persistence (SP) in both models in this study 

corroborate the findings of Eurich et al. (2021) and Hammond et al. (2018), who found that SP 

can be effectively used as the sole snow-related variable in streamflow prediction. This has 

implications for addressing climate change; monitoring SP can tell us where streams may be 

vulnerable to increased drying due to declining snow cover (Hammond et al., 2018). SP also 

relates to streamflow timing, where streams with earlier snow loss tend to have earlier 

streamflow rise in spring (Harrison et al., 2021). 

In our mean annual model, we found a strong influence of precipitation and potential 

evapotranspiration in the summer months (June-September); we identified mean September PET, 

mean August P, and the P- and PET-derived aridity index for summer as significant drivers. 
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Streams in this region tend to dry during the summer months, and the extent of rainfall inputs 

and PET during this season can best help us predict mean flow fraction. In contrast, the annual 

model was influenced by primarily winter and spring climate attributes, suggesting that 

variability in winter precipitation is more important when predicting flow fraction from year to 

year. 

Subsurface characteristics displayed a variety of influences on flow duration. Both depth 

to bedrock and available water storage are negatively correlated to annual flow fraction (Figures 

A2p and A2f). Greater water storage can allow less water to be exported to streams, which 

decreases flow duration. The extent of this effect may be dependent on soil characteristics. Both 

models were influenced by hydraulic conductivity, which is positively correlated to flow 

fraction. In addition, the hydrologic soil group (HSG) C, which is characterized by fine-textured 

soils and very slow infiltration and transmission rates (Soil Survey Staff, NRCS, 2016) was also 

utilized by our models and has a negative correlation to flow fraction. Ultimately, this suggests 

that the ability to transmit water through the subsurface helps sustain streamflow. 

 Bedrock permeability and jointing can impact flow paths throughout a watershed 

(Whiting and Godsey, 2016), but we did not include proximity to joints or faults in this study 

because of the difficulty of compiling that information into CPGs required by our models. We 

did evaluate bedrock type, and sedimentary and metamorphic bedrock were low on the list of 

variable importance. Percent sedimentary bedrock was included in the mean annual model, 

showing negative correlation to flow fraction, and metamorphic bedrock was included in the 

annual model and positively correlated with flow fraction. This result is supported by Martin et 

al. (2021), who found a stark change in flow at the boundary of metamorphic and sedimentary 
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bedrock, where flow initiated at a fault line in the metamorphic bedrock, and upon reaching the 

more permeable sedimentary conglomerate, flow ceased. 

Local slope and geomorphons were not significant predictors of flow duration in our 

models, and although local TWI was included in the annual model, it had an insignificant 

correlation to flow fraction. Our evaluation of these variables may have been too localized, and 

they may need to be assessed at the stream reach scale to be captured in our models. 

Alternatively, because faults and other subsurface qualities are an important source of 

streamflow in our study area, terrain indices may not work as well for predicting flow duration as 

they do in wetter climates with more regionally continuous water tables. Also, our sampling may 

have been biased relative to the distribution of geomorphons because flow observations were 

often concentrated along roads, which are typically at valley bottoms. 

Forest and herbaceous land cover categories were strong predictors in both of our models, 

where forested land cover had a positive influence on flow fraction, and herbaceous had a 

negative influence. The division between forest and herbaceous vegetation in this region follows 

an elevation gradient, so the increased flow fractions in forested areas also correspond to higher 

elevations and greater snowfall influences. The other land cover factor included in this study, fire 

boundaries, had a negligible influence on our annual model. This study’s data collection started 

in 2016, four years after the High Park Fire; since fire effects on streamflow in this region tend to 

persist for about three years post-fire (Wilson et al. 2018), the data collection period may have 

been too late to detect a fire effect. Burn severity was not included in this study, but based on our 

results, we do not expect it would be a significant predictor of streamflow duration. Even so, the 

flow prediction output of this model will likely be impacted by the 2020 Cameron Peak Fire that 

burned over 200,000 acres in the CLP and BT watersheds. Including this fire boundary in future 
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studies could be useful for determining whether fire does affect flow duration in the years 

immediately following the burn.  

4.3 Applicability of Models 

4.3.1 Flow Duration Predictions and Spatial Output 

The final objective of this study was to predict mean annual and annual streamflow 

duration across the study region. Both models accurately predicted flow fraction for both training 

and testing sites with strong performance (Figure 3; Moriasi et al., 2007). Based on visual 

assessment of Figure 3, the models tended to overpredict low flow fractions, and underpredict 

higher flow fractions, suggesting that intermediate flow fractions corresponding to intermittent 

flow regimes are best captured by these models. 

Interannual variability is captured in our annual model, although when comparing wet 

and dry years, many parts of the study area had very little variability in flow fraction between 

years. We could, however, focus on the small number of pixels with greater variability as areas 

most vulnerable to climate change. These areas are primarily in mid-to-low elevations (Figures 

B1 and B2), where it is expected that stream flow is more sensitive to timing of input and to 

individual storms. Our study period overall had below-average precipitation in all years (Table 

3), so this likely means our observation data were biased toward low flow fractions. As data are 

collected over more years in the future, this analysis could be updated to determine how the 

model is affected by a broader set of climate conditions in the training dataset. 

Our comparisons of wet vs dry years highlighted the spatial variability of winter 

precipitation and its influence on flow fraction. Areas with greater SP and winter surplus-

deficit in 2020, the dry year, had greater flow fraction when compared to 2016 and 2017, the 
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wet years. Understanding this variability in snowfall and snow persistence is key in 

addressing the effects of climate change on streamflow (Hammond et al., 2018).  

 Intermittent streams are often characterized by disconnected flow paths, and dry patches 

can vary widely over space (Godsey and Kirchner, 2014). Our spatial output is at the NHD MR 

30 m pixel scale and lacks the resolution needed to show variability in flow duration along most 

stream lengths. Our model does not represent short drying patches (e.g. a 4 pixel, or 120 m 

segment), as our predictions are fairly uniform for entire headwater stream reaches. Future work 

could merge this coarse modeling with finer-resolution topographic information to predict 

intermittency within stream reaches. 

4.3.2 NHD Accuracy Assessment 

The models in this study were developed to improve flow classification along existing 

NHD flowlines. The NHD MR’s flowlines were primarily derived from hand-delineated stream 

lines on 1:24,000- and 1:100,000-scale topographic maps (Dewald 2017; Fritz et al. 2013). This 

method excluded most ephemeral channels and some short stream segments deemed too small or 

too close to watershed boundaries for mapping (Chorley and Dale 1972; Drummond 1974; Mark 

1983, USGS 1999, 2009). The NHD MR has been shown to greatly underestimate the extent of 

headwater streams (Fritz et al., 2013), while the NHD HR has been shown to overpredict these 

streams in our study area (Martin et al., 2021). Even where channels are mapped correctly, they 

can have inaccurate flow classifications in the NHD (Fritz et al., 2013). The NHD HR dataset 

improves upon the NHD MR by using only the NDH MR’s high-resolution data (1:24,000-scale 

or better) and incorporating the national Watershed Boundary Dataset (WBD), and a ⅓ arc-

second (10 m) 3D Elevation Program (3DEP) DEM (Moore et al 2019). However, DEM-defined 

channel initiation points do not always align well with channel heads identified in the field 
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(Hastings and Kampf, 2014), and legacy NHD inaccuracies of headwater stream extents and 

classifications persist in this new dataset. The models we developed do not have the capacity to 

define flow paths that could improve the mapping of headwater channels, but, as stated above, 

finer-resolution topographic information could be utilized to solve this issue. 

We predicted nonperennial flow for 76% of NHD MR-designated perennial streams 

(Table 2). This result supports previous studies that point out the inaccuracy of NHD flow 

classifications in headwater streams (Fritz et al., 2013; Hafen et al., 2020). Based on our 

predictions, the NHD MR under-represents intermittent and ephemeral streams by 32% and 

over-represents perennial streams by three times in the CLP basin. This type of comparison 

could also be conducted with NHD HR if the issues with inconsistencies in flow paths between 

NHD HR and our predicted flow paths can be resolved. Ultimately, our findings can be used to 

update the NHD with improved stream classifications. 
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5. CONCLUSIONS 

 

 

 

 In this study, we predicted mean annual and annual flow duration across the stream 

networks of eight subbasins in north-central Colorado by utilizing a crowdsourced dataset of 

flow observations. We used a random forest regression modeling approach to create a map of 

flow fractions from April-September, and we ranked the importance of predictor variables to 

evaluate how climatic, physiographic, and land cover drivers affect flow duration. 

Climate variables were the most significant predictors of flow fraction in each model. 

Flow fraction increased with snow persistence, precipitation, moisture surplus/deficit, and forest 

cover, and decreased with potential evapotranspiration, temperature, and herbaceous land cover. 

The subsurface characteristics of hydraulic conductivity, hydrologic soil group, depth to bedrock, 

and available water storage demonstrated that higher transmissivity and lower water storage 

resulted in higher flow fractions. Underlying bedrock had minimal influence on our models, but 

sedimentary bedrock, which is typically permeable, was negatively correlated with flow fraction. 

Our mean annual model predictions suggest that the medium-resolution NHDPlus V2 

underrepresents nonperennial streams in the Cache la Poudre watershed, and that 76% of streams 

classified as perennial in the NHD are likely intermittent or ephemeral (Table 2). The annual 

model we developed showed little variability in flow fraction between years, with the exception 

of isolated areas at mid-to-low elevations, where annual variability in flow fraction was driven 

by spatial variability of winter precipitation. We found that even in a single region, the years 

with high and low flow fractions are not consistent between streams. 

Future studies would benefit from bedrock permeability predictors and an assessment of 

jointing in the study area. To further improve upon the NHD, future studies could incorporate 
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higher-resolution topographical information to predict channel locations as well as flow duration. 

Our mean annual model could be applied to the high-resolution NHDPlus dataset for further 

analysis of headwater stream classifications in the region. Crowdsourced flow data gathering 

could be implemented anywhere that lacks sufficient gaging data to assess nonperennial 

streamflow. The data need to be supplemented by a strategic deployment of flow sensors to fill 

data gaps and capture harder-to-access areas. The annual model we developed would benefit 

from more years of data that could capture a variety of climate conditions. Increased 

observations could also allow a mean monthly model to be developed for April-September to 

better capture the timing of stream drying.  

As climate regimes become less predictable, it is crucial for resource managers to 

understand streamflow dynamics when identifying streams most vulnerable to drying. 

Intermittent flow regimes vary widely both spatially and temporally, but for scientific, policy, 

and management purposes, it is important to consistently and correctly classify streams that 

exhibit these flow regimes. Predicting flow duration across networks helps accomplish this and 

allows us to evaluate the degree of intermittency in headwater streams and monitor trends over 

time. Improving upon the approach in this study, we can better understand the mechanisms 

behind nonperennial headwater flow duration and effectively revise the NHD to create a more 

reliable dataset for headwater streams.  
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APPENDIX A  

PREDICTOR CORRELATION TO FLOW FRACTION 

 

 

 

 
Figure A1. Observed mean annual flow fraction (FF) vs predictor variables. 
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Figure A2. Observed annual flow fraction (FF) vs predictor variables. 
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APPENDIX B 
 

 

 

Figure B1. Elevation plotted against the absolute value of the difference between 2016 flow fraction and 

2020 flow fraction. Blue circles indicate points that are wetter in the dry year (2020). Points that are 

wetter in the wet year (2016) are indicated by hollow triangles. Areas of most extreme interannual 

variability are in mid and low elevations.  
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Figure B2. Elevation plotted against the absolute value of the difference between 2017 flow fraction and 

2020 flow fraction. Blue circles indicate points that are wetter in the dry year (2020). Points that are 

wetter in the wet year (2017) are indicated by hollow triangles. Areas of most extreme interannual 

variability are in mid elevations.  

 


