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ABSTRACT 

DEVELOPMENT OF METHODOLOGIES FOR DETER~MINING 
OPTIMAL WATER STORAGE STRATEGIES 

Demands for water are rapidly increasing within the State of Colorado. 

The potential for coal and oil shale energy development could add intense 

pressure to currently developed water resource systems. To satisfy the 

growing demands for water, the water resources of the State must be developed. 

It is clear that additional reservoir storage will be required. Due to a 

variety of constraints it appears that the number of future reservoir pro-

jects may be limited and therefore those reservoirs which are constructed 

should be designed in an integ~ed fashion to maximize their benefit to the 

State. It is also apparent that not all demands for water can be satisfied 

since many demands represent conflicting objectives. The tnadeo66~ between 

various objectives need to be identified and displayed in such a manner as to 

facilitate the selection of rational development plans by the appropriate 

decision makers. 

This report presents the initial development of a methodology for 

determining optimal reservoir storage strategies within a river basin. The 

methodology employs a computer model OPTRES developed by linking an existing 

simulation model and an optimization technique. The simulation model describes 

the operation of a river-reservoir system to satisfy various demand scenarios. 

The optimization technique determines appropriate sizes of reservoirs to be 

evaluated by the simulation model. Given a number of possible reservoir 

locations, the combined simulation-optimization model determines which locations 

should be developed and the appropriate sizes of the reservoirs at each of the 

locations, based upon minimizing or maximizing a user specified objective function. 

The Yampa River Basin in northwest Colorado was selected as a case study 

for initial testing of the OPTRES model. The Yampa River Basin is relatively 
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undeveloped at present; however, over 30 reservoirs have been proposed for the 

basin. The basin also contains the potential for coal energy development. 

Information on nineteen proposed reservoir projects for the Yampa Basin were 

obtained from the U.S. Geological Survey. 

Initial tests of the OPTRES model were made using a limited number of 

proposed reservoirs for the Yampa River Basin and the objective of minimizing 

total construction costs of the reservoirs and flow shortages at critical 

demand locations. The results of these tests demonstrate,the ability of the 

model to converge to optimal (not necessarily global) solutions. The results 

also indicate that the availability of a screening procedure to give good 

initial estimates for reservoirs sizes for use in the OPTRES model would be a 

valuable component of the methodology being developed. 

Based on the results of these initial tests,further development of the 

OPTRES model ·will be continued and is described in the report. Emphasis will 

be placed on developing interactive conversational coding to facilitate use 

of the model by persons without computer programming experience. Techniques 

will be developed to extract and display tradeoff information relative to 

multiple objectives for water use. To compliment the OPTRES model a screening 

model based upon a dynamic programming optimization technique will be developed. 

A description of the proposed screening model is presented. 
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A. PROBL8~ STATEMENT 

C~P~R I 

INTRODUCTION 

Planners and managers are facing an increasingly complex task of alloca­

ting and managing water resources. This is particularly true in the State of 

Colorado, where there are rapidly increasing in-state water demands, as well 

as a substantial dependency by several other States on water originating in 

Colorado. Demands for water within Colorado are diverse, including irrigation, 

municipal and industrial water supply, recreation, fish and wildlife mainte­

nance, salinity control, hydropower, and more recently, coal and oil shale 

energy development. These demands originate from a variety of groups such 

as federal, state, and local governments, irrigation and water conservancy 

districts, development organizations and power associations. Additionally, 

Colorado is regulated to a degree on use of its water by interstate compacts, 

U.S. Supreme Court Decisions, and an international treaty. 

With intensifying pressures on currently developed water resources, it 

is imperative that water legally available for Colorado be developed and used 

in the most efficient and beneficial manner possible; otherwise, new demands 

for water such as energy development can only be satisfied at the expense 

of existing demands. Since the demands for water vary over time and space, 

it is often difficult to meet all requirements, especially under constraints 

of variable hydrology. Reservoir storage is an effective means of reducing 

the impacts of hydrologic variability and providing a consistent supply of 

water to meet varying demands. However, the construction of reservoir 

storage has become increasingly difficult for a variety of institutional, 

political, financial, and environmental reasons. Since it appears that the 

number of future reservoir projects may be limited, those reservoirs that are 

constructed should be designed in an integ~ed fashion to maximize their 

1 



benefit to the State. 

Objectives for reservoir storage are generally site-specific from the 

perspective of the potential reservoir builder, with little emphasis on the 

overall impacts of the project. A water resources planner or manager at the 

State level may be interested in broader objectives than the potential 

reservoir builder. To accomplish long range planning and assessment of the 

water resources of the State, the planner or manager needs the ability to 

evaluate the impacts of a variety of development scenarios on the environment 

of the basin. In terms of reservoir development, the types of questions the 

planner may want to evaluate are: a) what is the optimal amount of reservoir 

storage in a basin for a given set of demands?; b) what is the optimal storage 

configuration; that is, which sites should be selected and how large a 

reservoir should be built at each site?; c) how is this optimal storage 

configuration influenced by type, magnitude, and location of demands?; and 

d) what are the tradeoffs between various storage and demand strategies? 

It should be pointed out that the development of the water resources 

in a basin involves multiple purposes and therefore multiple and often 

conflicting objectives that are difficult to place in commensurate terms 

(e.g., economic benefit of energy development (in $) vs. increases in total 

dissolved solids (in mg/l)). There are other objectives which are extremely 

difficult to quantify, such as instream uses and recreation. In this context, 

there is really no such thing as one overall optimal storage strategy. The 

term optimal ~to~e ~~egYJ as used throughout this report ,refers to the 

best storage strategy for a given limited set of objectives. The process 

of planning involves determining these storage strategies for a range of 

target objectives of interest. Tradeoffs between these objectives are then 

analyzed to find the overall storage strategy which will best serve the needs 

of the State. 
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As the demand for water for a wide diversity of uses grows, the 

potential for serious conflict grows also. An integrated approach to water 

planning and management will be required to most effectively use our water 

resources as has been documented by various authors [1,2,3]. 

One of the tools that water resources planners can use to evaluate 

effects of various alternatives upon a basin are computer models. Computer 

models are valuable devices for storing, analyzing, and displaying large 

quantities of informat10n. They can be designed 

in order to evaluate a wide range of alternatives. Although the use of 

computer models is increasing, there still exists a large number of planners 

and managers who are reluctant to use them. These computer models are 

often intimidating to a person with little experience in computer programming. 

Many planners, additionally, lack the time in the context of a given study 

period to learn the necessary amount of computer programming needed to 

effectively use a given program. Of course, the planner may have someone 

familiar with computer programming to actually run the model for him. 

However, unless there is a high degree of communication between the planner 

and the programmer, the program will probably not be used as effectively as it 

could be. 

Often, the planner cannot find a computer model completely suited to 

his needs. There are, for example, two basic approaches to river basin 

modeling: simulation and optimization. Simulation models can yield a detailed 

representation of the physical and operational characteristics of a river basin 

for a specific storage configuration. If the planner wishes to compare various 

storage configurations, he must simulate each configuration separately and 

then compare the results. There is unfortunately, no guarantee that the 

configuration selected is indeed optimal due to the limited number of 

alternatives considered. Optimization models can be used to select the 
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optimum storage configuration, but generally require simplification of the 

physical and operational characteristics of the system. The results, however, 

can be checked using a simulation model. If discrepancies occur, the 

optimization model may have to be modified and the process repeated until 

compatibility is achieved. 

Attempts in the past to overcome these difficulties in model usage, 

model type, etc., have often led to the development of new models,with 

the unfortunate consequence that the planner or manager is more confused 

than ever. There are techniques available that can be used with new or 

existing models to overcome most of the difficulties previously mentioned. 

B. STUDY OBJECTIVES 

The primary objective of this study was to develop a methodology to be 

used by water resources planners and managers to evaluate optimal water 

storage strategies for Colorado. The methodology is based on a computer 

model linking an existing river basin simulation model and an existing 

optimization model. By linking simulation and optimization, the best 

advantages of both models are preserved, while retaining the integrity of 

the existing models. Interfacing is accomplished by developing a main 

program to link the models; with various subroutines to provide the required 

input and output conversions. This modular concept is employed so that the 

general model structure can be retained even. if different simulation or 

optimization models are used. 

The overall model is written such that a maximum amount of interfacing 

can be accomplished in the interactive mode. The use of interactive con­

versational coding greatly expands the ability of the non-computer oriented 

planner or manager to use computer models. In concept, the computer program 

questions the user to determine the input needed for the model. It then 

produces a summary of the output as desired by the user. Detailed output 
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can be written on a file and routed to a high speed line printer if desired. 

This type of overall model allows a planner to look at a variety of alterna­

tives and compare results simply by responding to a series of questions 

about the project. An understanding of computer programming language, 

such as FORTRAN, is not required. It also facilitates his ability to go 

back and change certain aspects of the system he is analyzing and note 

the effects. 

This report documents the development of the combined optimization­

simulation model and recommends future efforts. The components of the 

model are described as well as the initial testing of the model in a 

demonstration study of a river basin in Colorado. Although the initial 

model testing was based on an economic objective of minimizing cost, it 

should be emphasized that the model was developed to analyze tradeoffs 

between a variety of objectives. It is hoped that future research will 

demonstrate more fully the capabilities of the developed model. 

5 



CHAPTER II 

RIVER BASIN SU·1ULATION MODEL 

A. HODEL SELECTION 

An existing river basin simulation computer model was desired for this 

study. It was required that the selected simulation model be able to 

realistically represent the physical and operational characteristics of river 

basins in Colorado. Therefore, only river basin simulation models that had 

previously been applied to Colorado river basins were considered. Three 

existing simulation models (i.e., Longenbaugh and Wymore, 1977; U.S. Army 

Corps of Engineers, HEC-3, 1974; Ribbens, 1973) were identified and reviewed. 

These models had been applied to the White and Yampa River Basins. Other 

models, such as CORSIM, [4] have been applied, but were inaccessible to 

these authors due to their proprietary status. 

The first of these models is actually a group of models which form 

the "Integrated Program for Analysis of Water for Energy Development" 

(IPAWED) Package. The development of the IPAWED Package and its demonstration 

application to the White River Basin is described in detail by Longenbaugh 

and Wymore [5]. In summary, a methodology was developed to combine various 

computer models (hydrologic, water rights, and economic) with the Colorado 

Water Data Bank. The developed "package" could be used to assist planners 

in making decisions about water project development, particularly with regard 

to energy development. The IPAWED Package consists of four main groups of 

programs: data retrieval, data analysis, hydrologic and economic analysis, 

and output display. Within the hydrologic and economic group, the reservoir­

river basin simulation was handled by a model named RESERV. The RESERV Model 

is an adaptation of the U.S. Army Corps of Engineers HEC-3 Model, to interface 

with the other components of the IPAWED Package. The HEC-3 Model wi'll be 

described later in this report. 
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The final two models were obtained from the U.S. Geological Survey in 

Denver, Colorado. Through meetings between the authors and personnel of the 

Water and Power Resources Service and the U.S. Geological Survey, Denver, Colorado, 

it was learned that both the HEC-3 Model and a River Network Program developed 

by the Water and Power Resources Service had been applied to the Yampa River 

Basin [6]. These models were used in various studies conducted by the U.S. 

Geological Survey to determine the effect of proposed energy development upon 

the water quality of the Yampa River. 

The HEC-3 Model [7] was developed by the Hydrologic Engineering Center, 

U.S. Army Corps of Engineers to simulate the operation of a reservoir-river 

basin system for such conservation purposes as water supply, irrigation, 

recreation and hydroelectric power. The model represents the river basin 

by a node-link network. The nodes or control points represent either reser­

voirs or non-storage points where flow constraints or targets can be defined. 

The links represent the flow conveyance between nodes. Operating criteria 

can be established for each reservoir and the model will simulate the operation 

of the reservoir system to meet specified targets or constraints. An 

illustration of the representations of a river basin system by the HEC~3 Model 

is shown in Figure 1. 

The final model considered was the River Network Program [8] written by 

Richard W. Ribbens of the U.S. Water and Power Resources Service. The Ribbens Model 

is capable of routing flows and salts (total dissolved solids) through the 

reservoir system. Salt is treated as a conservative substance and precipitation 

and dissolution of salts are not explicitly simulated. This model also 

employs a node-link basin representation; however, the links between 

geographically adjacent nodes define the physical elements of the system. 

The links or elements define the upstream and downstream boundaries, river 

reaches, junctions and reservoirs. The nodes delineate elements and provide 

points for desired model output. Like the HEC-3 Model, operating criteria can 

be established for each reservoir. 
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RESERVOIR A 

RESERVOIR C 
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RETURN FLOW 
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FLOW REQUIREMENTS 

OF DIVERSION 

Figure 1. Example of the HEC-3 node-link representation of a hypothetical 
hydrologic system. 
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Both the HEC-3 and Ribbens Models were placed on the Colorado State 

University computer system so that comparison runs could be made. The 

RESERV Model was not tested since the computations are identical to the 

HEC-3 Model. Although the U.S. Geological Survey had applied both models 

to the Yampa Basin, the data input was significantly different. The HEC-3 

Model was dimensioned to handle up to 30 reservoirs while the Ribbens 

Model was dimensioned for a maximum of five. The Geological Survey had used 

the HEC-3 Model with 50 years of monthly input data for their calibration 

runs and analysis of various storage scenarios. The model included approxi­

mately 20 reservoirs, although not all of these had specified active storage 

for any given run. The application of the Ribbens Model was primarily to 

evaluate the effect of reservoir storage on the salinity of the Yampa River. 

For these runs, they used 20 years of monthly input data and combined various 

reservoirs to meet the current dimension limitation of a maximum of five 

reservoirs. Since direct comparisons of computational requirements of the 

two models could not be ascertained from the studies by the U.S. Geological 

Survey, a set of test data was developed for comparison purposes. The test 

data set was based on a data set for the Yampa Basin used in the Ribbens 

Model and consisted of two years of monthly input data and a five reservoir 

system, with some of the reservoirs actually representing aggregations of 

several reservoirs. 

Comparison of required execution times for the test data set showed 

that the HEC-3 and Ribbens Model had essentially the same computer require­

ments. The HEC-3 Model was selected as the simulation model to use for this 

study, and was chosen for the following reaSons: 

I. As will be discussed later in this report, the Yampa River Basin 

was used as the case study for this work. Of the models reviewed, the HEC-3 

Model had the most complete data set for the Yampa. 
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2. The HEC-3 Model had been calibrated for the Yampa Basin by the 

U.S. Geological Survey. This would facilitate comparison of results from 

this study with results from the studies of the Geological Survey. 

3. If it were decided later in this research effort to apply the 

developed programs to the White River Basin or some other basin, the transfer 

from the RESERV Model to the HEC-3 Model should be straightforward. 

Although an updated reservoir river basin simulation model HEC-SC 19J 

has been developed by the Hydrologic Engineering Center to replace the 

HFC-3 Model J it was decided that the HEC-SC Model was too large and complex 

for the objectives of this study. 

B. HEC-3 PROGRAM DESCRIPTION -,-_ .. _, 
The HEC-3 Model is fully documented in the user manual [71 for the program. 

Some of the salient features of the code of importance to this study are 

described in this section. 

The basl~ components of the river basin system which are modeled are 

the system hydrology, reservoirs, control points, power plants and diversions. 

The system hydrology is accounted for by specifying inflows, local flows and 

evaporation by location (node or control points), magnitude and time period 

of occurrence. Physical reservoir characteristics are described by elevation, 

storage, surface area and outlet capacity data. 

The operating criteria for the reservoirs are provided by dividing the 

reservoirs into between four and eight imaginary levels as shown 1n Figure 2. 

The lowest level corresponds to the top of the inactive pool and the hlghest 

level to the top of the flood control pool. Reservoirs are operated to meet 

flow targets at specified control points in the systems. Water is withdrawn from 

the upper storage zone first (the zone between the two highest levels). The 

program attempts to keep all reservoirs in the system at the same level. If 

multiple reserVOIrs are providing flow to a common control point, proper choice of 
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Figure 2. Basic reservoir levels used by the HEC-3 Model for specifying reservoir 
operating rules. 
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reservoir levels can be used to establish release priorities among the various 

reservoirs. 

Non-storage control points are used to set constraints and targets for 

flows in the system. Maximum permissible flows, minimum desired flows, and 

minimum required flows can be specified at control points. The flows may be 

constant over the entire simulation period or vary by individual time period. 

Flows are constrained to the maximum permissible unless spill is occurring. 

Target flows are set to the minimum desired unless the reservoir goes into 

the buffer zone. If reservoirs are in the buffer zone, target flows become 

the minimum required flows. Hydropower calculations are based upon average 

flow, average effective head and generation efficiency for each period. 

Diversions or return flows are specified at control points and only one 

diversion or return flow can be specified at a given control point. The 

diversion may be specified by an actual magnitude or as a function of flow 

or reservoir storage. Return flows are specified only as a function of a 

diversion at one upstream point. The HEC-3 program can also provide an 

economic analysis (based upon user supplied economic functions) of meeting 

desired flow, storage or power generation targets at specified control points. 

The period of computation for the model is variable, although a monthly 

time period is commonly used. Since hydrologic computations are based upon 

the principle of continuity, time periods selected should equal or exceed 

travel time between nodes and within reservoirs. The HEC-3 Model initiates 

computation at the upstream control points and proceeds downstream; attempting 

to satisfy flow targets at all control points in a sequential fashion. If 

additional releases are required to meet system power requirements, the model 

goes back through the system and allocates additional water if it is available. 

This procedure is accomplished for each time period with the ending storage 

for one period becoming the initial storage for the next. Results from the 
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computations including flows, storages, and power generation are stored for 

all control points for each time period. Output of this information can be 

accomplished through various options available to the user. 

The version of the HEC-3 Model obtained from the U.S. Geological Survey 

had two modifications from the original code. The original code was 

dimensioned for a total of 40 control points, while the Geological Survey 

version is dimensioned for a total of SO. Additionally, the Geological Survey 

modified the model to compute maximum and minimum flows, median flows and 80 

percent exceedance flows. The HEC-3 code was also modified by the authors in 

the development of the linked optimization-simulation model. These modifica­

tions are discussed in Chapter III. 
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CHAPTER III 

COMBINED OPTIMIZATION - SIMULATION MODEL 

A. MODEL FORMULATION 

The combined optimization - simulation model presented herein, OPTRES, 

is based substantially on the work of Wurbs [10]. Wurbs linked a search 

algorithm with a hydrologic and economic simulation model to determine 

the optimum configuration of structural and non-structural measures for 

reducing flood damages. His objective was to minimize the total system 

costs, defined as the sum of the costs of the structural and non-structural 

measures and the expected annual flood damages for a given system configuration. 

The hydrologic portion of the Wurbs simulation model divides the 

stream system into a series of stations. The stations represent points of 

interest such as tributary confluences or specific damage areas. Inflow 

hydro graphs of varying frequencies are routed through the system and peak 

discharge-frequency functions are developed for each station. From these 

functions and stage-discharge functions, frequency-stage relations are also 

developed for each station. The inclusion of structural measures affects 

the frequency-stage relations for the stations in the system. 

The economic and non-structural optimization portion of the simulation 

model consider the effect of a non-structural measure by defining a stage­

damage function and an implementation cost associated with each non-structural 

measure. For each station, the frequency-stage function developed in the 

hydrologic portion of the model is combined with the stage-damage function 

for each non-structural measure, which yields a frequency-damage function. 

The integral of the frequency-damage function yields the expected flood 

damages. By combining the expected flood damages and implementation cost 

for each non-structural measure, the optimum non-structural measure for 
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that station is selected as the one with the minimum value of that sum. 

After the costs of the non-structural measures and associated expected flood 

damages are assessed for all stations, the costs of the structural measures 

are added; yielding the total system cost. 

The search technique is used to size the structural measures. For 

a selected set of structural measures, the hydrologic simulation is run 

to determine the frequency-stage functions and then the economic and 

non-structural optimization computations are performed to find the optimum 

non-structural measures and the total system costs. The search technique 

then selects a new set of sizes for the structural measures and the process 

is repeated. The search technique continues to select structural sizes 

until the set of structural sizes that minimizes the total system cost 

are found. Wurb l s procedure is illustrated in Figure 3. It should be noted 

that the minimum found by the search technique is not necessarily the global 

minimum since this problem is nonconvex. 

Wurbs evaluated two search techniques for use in his combined optimization­

simulation model; the cyclic search and Powell's method of conjugate directions. 

The cyclic coordinate search technique minimizes along coordinate directions 

only. For example, if the problem to be minimized has two decision variables, 

then the second variable is held at a constant value and the problem is 

minimized with respect to the first variable. The first variable is then 

held constant at that minimum value and the problem is minimized with respect 

to the second variable. The process is then repeated until the values of the 

variables converge to a solution. The Powell method is not limited to only 

s'earching along the coordinate directions, but can generate a search 

direction termed a conjugate direction. The use of conjugate directions 

results in an increased efficiency of convergence. Wurbs compared the two 

search techniques from the standpoint of run time and number of iterations 

required to reach convergence. Also, he found his objective function 
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Figure 3. Application of Wurb's procedure to a hypothetical flood damage 
reduction system. 
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(total systems cost) to be multi-modal and by starting the model at various 

initial values for the structural measure sizes, the ability of the two 

search techniques to converge to the same minimum value was evaluated. 
\ 

Based upon the evaluation of the two search techniques, Wurbs concluded 

that the Powell method was more efficient (i.e., required less computer 

run time) than the cyclic coordinate search in finding the optimal structural 

sizes. He also found the Powell method to be considerably more reliable 

in finding the same minimum value from various initial starting points. 

As a result of the experience of Wurbs, it was decided that the initial 

formulation of the OPTRES model would be made by linking the HEC-3 simulation 

model with the Powell conjugate direction algorithm. The feasibility of 

using the HEC-3 simulation model in a linked model concept had been demonstrated 

by Claure-Pereira at the University of Texas [11]. Claure-Pereira developed 

a linked model to maximize the average annual economic returns for the 

Arkansas-White-Red-Osage River System. He used the HEC-3 model as the 

simulation model and developed a generalized heuristic procedure to auto-

matically adjust operational policies of the HEC-3 model so that improved 

operation of the system would result. The technique basically involved 

adjusting target demands to maximize firm hydropower generation and firm 

water supply. While this heuristic procedure was not an optimizing search 

technique in the sense that it did not necessarily find a maximizing value, 

the procedure performed much like a search technique by continuing to adjust 

variables (in this case operational policies) so that the performance of 

the system was improved. His work demonstrated that the HEC-3 simUlation 

model could function as a part of an overall linked model. 

B. DESCRIPTION OF THE POWELL ALGORITHM 

The Powell algorithm was developed by M. J. D. Powell [12] to find 

the minimum of an unconstrained, multivariable nonlinear function, without 
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the need for calculating derivatives. The computer code of the Powell 

algorithm was obtained from Kuester and Mize [13]. The procedure begins 

by searching along the coordinate directions (i.e., it minimizes the function 

with respect to one variable at a time) from an initial starting point. The 

search along any direction (single variable searches) is made using quadratic 

approximation. Three function values are determined which fallon either 

side of the minimum. The minimum is then approximated by a quadratic inter­

polation routine. 

Once the sequence of searches along the coordinate directions is completed, 

the final point from that sequence is retained. An expanded point is then 

located along the direction between the initial point and the final point. 

It can be shown that this direction is a conjugate direction. Two tests are 

conducted to determine if the conjugate direction is an improvement over the 

coordinate directions. If it is not, then the final point from the previous 

sequence of searches is redefined as the new initial point and a new sequence 

of searches along the coordinate directions is performed. If the conjugate 

direction is found to be an improved direction, then a search is performed 

along that conjugate direction to find the minimum point. That minimum point 

then becomes the new initial point and a new sequence of searches is then 

conducted. For this sequence of searches, however, one coordinate direction 

is discarded in favor of the conjugate direction so that the search directions 

are along the conjugate direction and the remaining coordinate directions. 

This process of discarding coordinate directions in favor of conjugate directions 

is continued until the minimum point is found. That minimum point is achieved 

when the difference between points generated by successive iterations is less 

than some specified tolerance. The procedure of Powell's algorithm for a two 

variable function is illustrated in Figure 4. 

Conjugate direction methods were developed to minimize quadratic functions. 
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If the function to be minimized is a quadratic function, then it can be 

shown that the function can be minimized in n sequences of searches, where n is 

the number of variables. While this convergence (termed quadratic convergence) 

can not be asserted for problems with other than quadratic objective functions, 

such as used in this study, the method is still quite powerful. This fact 

was demonstrated by the work of Nurbs [10]. 

c. MODEL DESCRIPTION 

The general manner in which optimization and simulation models are 

linked is shown schematically in Figure 5. An interfacing program is used 

to control the interaction between the models. The simulation model is 

used to simulate the system for a given set of values of the decision 

variables and then the performance of the system is evaluated. The 

optimization model determines a new set of values for the decision variables 

and these values are then simulated. This general linkage scheme was used 

in the development of the OPTRES model. Emphasis was placed on retaining, 

to the maximum degree possible, the integrity of the HEC-3 model and the 

Powell algorithm. Integrity primarily refers to the input required for these 

models. For example, the input required for the simulation portion of the 

OPTRES model is identlQai to the input required for HEC-3. 

The combination of the HEC-3 model and the Powell algorithm have been 

developed to incorporate two features not available in the model developed 

by Wurbs. As mentioned previously, the OPTRES model is designed such 

that as much input and output as practical could be accomplished in the 

interactive mode. The use of interactive conversational coding can greatly 

expand the ability of the non-computer oriented planner or manager to use 

computer models. The second feature of the OPTRES model is that the 

performance evaluation or objective function is not limited to minimizing 

cost. Even though initial testing of the OPTRES model used cost minimization 
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as the objective function, the objective function can be user supplied. 

This feature was added for multiple objective analysis. 

The OPTRES model also differs with respect to its linkage, as compared 

to the work of Claure-Pereira which is linked by manipulation of input and 

output files. The HEC-3 model output is written on an output file which 

was analyzed by his heuristic procedure. A new input file is then created 

and used to drive the next iteration of the HEC-3 model. For the OPTRES 

model, the HEC-3 model and Powell Algorithm are directly linked by sharing 

COMMON core memory in the computer. While this type of linkage required 

some modification of the HEC-3 model, it minimizes file manipulation and 

increases the computational efficiency of the combined model. 

The linkage of the HEC-3 model and Powell algorithm is illustrated in 

Figure 6. The overall model was initially tested using data for the Yampa 

River Basin, which contains information on 19 proposed reservoir projects. 

The data on all of these projects is available to the HEC-3 model (now a 

subroutine of the overall model). Initially, all reservoirs have zero 

active storage. The user furnishes the main program with the number and 

location of reservoirs he wishes to consider (from the 19 available) and 

information on initial reservoir size and convergence criteria for the Powell 

algorithm. The main program then initializes the HEC-3 model and calls the 

Powell algorithm (subroutine SEARCH) to determine reservoir sizes for the 

reservoirs of interest. The Powell algorithm calls the HEC-3 model, which 

in turn calls subroutine STORSET. This subroutine makes the selected 

reservoirs active and sets reservoir levels of active storage to correspond 

to the reservoir size. The HEC-3 model then simulates the system for a 

selected period of time. The performance of the system was initially 

evaluated based upon minimizing reservoir costs subject to meeting a desired 

flow constraint at a specific point of interest in the basin. A penalty 
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function was used if the flow did not meet requirements. Based upon the value 

of the objective function, the Powell algorithm will select a new set of 

reservoir sizes and continue to cycle until a solution is achieved. 

Two modifications were made to the HEC-3 model (now called Subroutine 

HEC3) for incorporation into the overall QPTRES model. It should be noted 

that the HEC-3 model was developed for use as a one-time through simulation 

model. This means the model was designed to read control information about 

the reservoirs, then read annual hydrologic information, simulate the system, 

and print out summary results for all control points on an annual and total 

simulation period basis. The OPTRES model, however, requires that the HEC-3 

model be used in an iterative fashion. The two major problems that existed 

in using the HEC-3 model in an iterative manner were: how to avoid reading all 

of the control information on all reservoirs if information on only one 

reservoir was changed from one iteration to the next; and how to reduce the 

volume of the output? The approach of Claure-Pereira did not consider 

these problems since the number of iterations performed was generally on the 

order of three or less. For this work, it was realized that the number 

of iterations required could be large (perhaps on the order of 100) and the 

problems of unnecessarily redefining input information and generation of un­

necessary output information must be solved. 

The first modification to the HEC-3 model was the addition of logic 

that allowed HEC-3 to read control information about the reservoirs only 

on the first iteration. For all subsequent iterations, only the annual 

hydrologic data are read. Whenever a change in the size of a reservoir 

is made by the search algorithm, Subroutine STORSET is used to change the 

information about the reservoir(s) of interest and eliminates the need to 

read control information and reinitialize the model for each iteration. 
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The second modification to the HEC-3 model was the capability to output 

results only for control points of interest. Additionally, the option 

is available for only selected summary information for the control points 

of interest to be output. This modification significantly reduces the volume 

of the output. 
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CHAPTER IV 

DEMONSTRATION STUDY: YAMPA RIVER BASIN 

A. DESCRIPTION 

As mentioned in Chapter I, the Yampa River Basin was selected as the 

case study area for development of the methodologies to determine optimal 

reservoir storage strategies. The Yampa River Basin, encompassing approxi­

mately 8000 sq. mi., lies in the northwest corner of Colorado, with one of 

its subbasins (the Little Snake) extending into southern Wyoming (see Figure 

7). The. Yampa River runs south of Steamboat Springs, Colorado, to Dinosaur 

National Monument, where it becomes a tributary of the Green River. A 

number of characteristics of the Yampa River Basin make it well suited for 

use as a case study in this effort. 

At present, the Yampa River Basin is relatively undeveloped, both in 

terms of its population and its water resources. The mean annual flow of 

the Yampa River is approximately 1.5 maf. Currently only 54,000 ac-ft of 

storage have been developed in the basin. However, the Yampa Basin has 

potential for future development. In a report by the U. S. Geological 

Survey [6], 34 proposed reservoirs (some of these competing for the same sites) 

have been identified in the Yampa Basin. If all of the non-competing reservoirs 

were constructed, their total storage would equal approximately 2.2 maf or 

1.5 times the mean annual flow. While this set of proposed reservoirs does 

not necessarily represent all potential sites or the best potential sites 

in the basin, it does provide a good set of potential sites with which to 

test the developed methodologies. 

There is a potential for economic development in the Yampa Basin 

primarily due to the availability of coal resources. The nature of the coal 

resources in the basin, the types of potential energy development, and the 
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impacts of this development upon the water resources of the basin have been 

addressed in recent studies by the U.S. Geological Survey [6] and the Colorado 

Department of Natural Resources [14]. It appears that the majority of the 

potential energy development will be in the area between Craig and Hayden, 

Colorado. It is currently anticipated that the bulk of the coal development 

will be in the form of strip minillg and hence the largest part of the water 

requirement for energy development will be for rehabilitation of the mined 

lands. There is also potential for water requirements for coal slurry 

pipelines and for possible diversion to the White River Basin for oil-shale 

development in that basin. 

Associated with energy development, it can be anticipated that the 

population of the basin will increase. People will be required not only 

for the developing energy industry but also to provide the necessary support 

services. The increased population and the associated development in the 

Craig-Hayden area will also create additional demands for water in the basin. 

While the potential energy development will create additional demands 

for water, other factors could serve to place restrictions on the development 

and use of the water resources of the basin. As part of the upper COlorado 

river basin compact, it is stated [15] that: 

"Colorado will not cause the flow of the Yampa River at the 
Maybell gauging station to be depleted below an aggregate 
of 5 maf for any period of ten consecutive years reckoned 
in a continuing progressive series." 

Additionally there are two rare and endangered fish species (the Colorado 

River squawfish and the humpback chub) in the basin and two areas of the 

basin (the Elk River upstream from Clark and the main stem of the Yampa 

within Dinosaur National Monument) are currently under study for designation 

as wild and scenic rivers. 

In summary, the Yampa was selected as the case study for this research 

since it represents an area which is currently undeveloped but has the 
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potential for major development of its water resources. The development 

of the water resources will potentially have to satisfy current water 

demands, additional demands from a developing energy industry and demands 

for instream uses. Since multiple objectives for water use exist, tradeoffs 

between these objectives will have to be evaluated. Finally, the Yampa Basin 

has been the subject of two recent studies and therefore much of the data 

required for this study were readily available. 

B. PROPOSED RESERVOIR PROJECTS 

The data for proposed reservoir projects in the Yampa Basin were ob­

tained from the U.S. Geological Survey, Denver, Colorado. Although the 

report by the Geological Survey [6] lists 34 proposed reservoirs, the data 

set obtained from the U.S.G.S. contained only 19 proposed reservoirs. A list 

of these reservoirs is given in Table 1 and a schematic diagram of the projects 

is shown in Figure 8. The data for the proposed reservoir projects were 

furnished as a data set prepared for use in the HEC-3 model and therefore 

provided the required hydrologic and physical description of the projects. 

Information such as storage-elevation, area-elevation, minimum storages, 

outlet capacities, and desired flows were provided in the HEC-3 data set. 

Information on the costs of the proposed reservoirs were not 

available. Since cost information was required for this work, the cost of 

the various reservoirs was estimated by consideration of general site 

characteristics and similarity to other reservoirs. It should be emphasized 

that the estimated costs of the reservoirs do flot represent the actual costs 

at the sites although it is hoped that the estimates are at least reasonable. 

It is not the intent of this study to select the best projects among those 

proposed for the Yampa, but rather to use the Yampa as a demonstration of a 

general methodology for optimal selection of projects. As accurate cost data 

become available, they can be easily included. 
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TABLE 1 

YAMPA RIVER BASIN CASE STUDY PROPOSED RESERVOIR PROJECTS 

NUMBER PROJECT NAME TOTAL CAPACITY 
(1000 AC-FT) 

1 Yamcola 9 

2 Blacktail 229 

3 Morrison 12 

4 Lower Green 100 

5 Pleasant Valley 43 

6 Hinman Park 44 

7 Grouse Mountain 79 

8 Childress 24 

9 Upper Middle 127 

10 Dunckley 57 

11 California Park 37 

12 Rampart 12 

13 Craig 44 

14 ColoWyo 70 

15 Thornburg 36 

16 Juniper 1080 

17 Cross Mountain 142 

18 Sandstone 15 

19 Pothook 60 
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Projects selected as part of an optimal storage configuration are selected 

based upon their assumed cost functions. Two cost functions (i.e., for Pleasant 

Valley and Juniper Reservoirs) used in the initial testing of the OPTRES model 

are shown in Figures 9 and 10. Quadratic functions were used to describe the 

cost functions within the computer program. 

C. RESULTS OF INITIAL MODEL TESTING 

Initial testing of the OPTRES model was conducted to determine its 

ability to find acceptable solutions to the optimal storage configuration 

problem. The performance of any given system configuration was measured in 

terms of its cost and its ability to satisfy various target objectives, such 

as satisfying demands at various locations in the system. The latter were 

introduced into the total system objective via terms which penalize devia-

tions from the demand targets. Thus, the performance of the system was 

measured by: 

where 

M N 
min L f. (S.) + L P. (Q. , D. ) 

i=l 1 1 j=l J -] -] 

f.(S.) = cost of storage S. at reservoir i 
111 

M = number of reservoirs 

(1) 

P. (0. ,D.) 
J ~J -J 

= penalty cost for failing to satisfy demand O. at demand 
location j with flow 9j over the selectedJtime horizon. 

N = number of demand locations 

Although various combinations of reservoirs were tried, the majority of the 

initial tests were conducted with two proposed reservoirs; Pleasant Valley and 

Juniper. These two reservoirs were selected because: (a) they have a large 

difference in size (the maximum storage at Juniper is about 20 times the 

maximum storage at Pleasant Valley) which would allow the testing of different 

step sizes within the search technique for each reservoir; ~) they are well 

spaced in the basin (Juniper is located about 1/3 the length of the Yampa and 

Pleasant Valley about 2/3 the length of the Yampa upstream from the confluence 
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of the Yampa and the Green); and ec) the solution for one given set of 

conditions should force Pleasant Valley reservoir not to be built. Unlike 

the cost curve shown for Pleasant Valley in Figure 9, the actual cost curve 

would be discontinuous at some minimum storage (see Figurell). This occurs 

because it is not practical to build the reservoir below some minimum size. 

The use of a discontinuous cost functions can create convergence problems 

for a search technique such as the Powell algorithm. Therefore, by 

evaluating Juniper and Pleasant Valley reservoirs, means of handling problems 

associated with discontinuities in the reservoir cost functions could be 

identified. 

All initial testing was conducted with the objective of minimizing 

the total costs of both reservoirs. A minimum required flow of 750 cfs 

was established at a critical control point near the entrance to Dinosaur 

National Monument downstream of both reservoirs. A penalty term was added 

to the total costs for the reservoirs if the average flow at this control point 

was less than the 750 cfs required. Although the average flow was used in 

the initial testing, the OPTRES model has the flexibility to use other measures 

of the time distribution of flows at the critical points. The resulting 

objective minimized was: 

min[fl(SI) + f 2 (S2) + P(Q-750)3] (2) 

where fl(Sl) = cost of storage 51 at Pleasant Valley Reservoir 

f
2

(5
2

) = cost of storage 52 at Juniper Reservoir 

Q = computed average flow at the entrance to Dinosaur National Monument 

P = 0 

1 

if Q~ 750 cfs 

if Q < 750 cfs 

The Powell algorithm requires a user specified convergence tolerance. As 

discussed previously, convergence of the Powell algorithm is achieved when 

the change in the magnitude of the decision variables (the storages at Pleasant 

Valley and Juniper Reservoirs) between successive iterations is less than a 

user specified tolerance. This specified convergence tolerance is also 
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used by Powell's algorithm to determine a maximum allowable step size. As 

illustrated in Figure 4, the procedure of Powell's method consists of a 

sequence of minimizations along coordinate or conjugate directions. Along 

any given direction, the objective function is minimized by evaluating the 

objective function at three points (representing three combinations of 

storages at Pleasant Valley and Juniper Reservoirs). A quadratic is then 

fitted to these three points arj the minimum point of the quadratic is 

located. The distance between adjacent points in the three point set cannot 

exceed the maximum allowable step size. In general, the closer the three 

points are the better the quadratic approximation. Therefore, the specifi­

cation of a large convergence tolerance implies that extreme accuracy in 

the final solution is not required and consequently the-search technique 

can use larger step sizes or greater distances between points in the 

quadratic approximation of the objective function. To evaluate the con­

vergent properties of the OPTRES model runs were made with various step 

sizes (convergence tolerances) and with various initial conditions. 

Two means of dealing with discontinuities in reservoir cost at minimum 

storage were tested. Both techniques are based on making the reservoir 

cost functions artifically continuous. It is possible for Powell's algorithm 

to select a storage for a particular reservoir that is less than the minimum 

storage practical to build at that site. Since the HEC-3 simulation model 

contains information on the minimum storage at each site, specification of 

a storage less than minimum storage in the simulation model would be 

meaningless. The OPTRES model is designed to determine whether a selected 

storage value for a particular site is less than the minimum storage for 

that site. If this is the case, the simulation model will set the storage 

for that site to the appropriate minimum storage which has the effect of 

treating the system as though the reservoir were not there (i.e., zero 

active storage). The actual storage selected by Powell's algorithm will 
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also be retained for determining reservoir costs. The first means of 

handling cost discontinuities was to assume that the costs of the reservoir 

were continuous to zero; that is, the cost curves used by the OPTRES model 

were like the curves shown in Figures 9 and 10. Therefore, if a reservoir 

is not selected to be built in the final solution of the OPTRES model, the size 

of that reservoir in the final solu~ion should be close to zero. This will 

occur since the reservoir has the same hydrologic effect for any storage 

between zero and minimum storage (as set in the HEC-3 simulation model); however, 

the cost of the reservoir is minimum at zero storage. Should a storage be 

selected in the final solution for a particular reservoir that is below 

the minimum storage and above zero, the associated cost of that reservoir will 

be subtracted (since this condition implies that the reservoir should not be 

built) from the final results. 

Another approach is to add a penalty term to the cost of any storage 

level selected by the Powell algorithm that is less than the minimum storage. 

This type of penalty function will result in the cost for a reservoir being 

minimal at the minimum storage. If a reservoir is not selected to be built, 

its selected size in the final solution should be close to (within the 

specified convergence tolerance) the minimum storage. Again, the associated 

cost of that reservoir is subtracted from the final results. 

Both of these techniques were tested in the OPTRES model for the apriori 

selected conditions that Pleasant Valley Reservoir should not be built in the 

final solution. Both techniques yielded essentially the same final results. 

The final storage selected for Pleasant Valley Reservoir was clearly below 

the minimum storage for the first technique, while it was slightly above the 

minimum storage (but within the convergence tolerance) for the second technique. 

Since any storage above the minimum storage will effect the hydrologic cpndi-
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tions of the system, the final storage for Pleasant Valley Reservoir for the 

second technique should be set to minimum storage and the simulation rerun. 

Adjustlnent of the penalty term in the second technique would be required to 

have the final storage for Pleasant Valley Reservoir selected at or below 

the minimum storage to avoid having to rerun the simulation. Additionally, 

the appropriate magnitude of this penalty term depends upon the particular 

cost curve for a particular reservoir and therefore the possibility of 

multiple penalty terms for multiple reservoirs exists. The technique of 

letting the reservoir costs be continuous to zero storage is the simplier 

of the two techniques to program and to use and was selected for incorpora-

tion into the OPTRES model. 

Results from initial testing of the OPTRES model show satisfactory 

convergence to an optimal (not necessarily global) solution. Examples 

of the model convergence are displayed in plots of total system costs 

(reservoir costs plus penalty costs) versus iterations of the HEC-3 simulation 

model shown in Figures 12 and 13. Tests with different initial conditions 

showed that the OPTRES model could find different local optimal solutions. 

In a manner analogous to a grid search technique, the OPTRES model was first 

run with a large step size to find a eo~e solution. The optimal solution 

found from this run, was used as the initial values for reservoir storage in 

an OPTRES run with a small step size to find a more ~e6ined solution. The 

results of those runs are the results shown in Figures 12 and 13. As seen 
. . 

from those results, the small step size was able to improve the solution found 

with the larger step size. In all runs for the two reservoir case, the OPTRES 

model required approximately 25 evaluations of the simulation (HEC -3) model. 
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CHAPTER V 

CONCLUSIONS AND EXTENSIONS 

A. CONCLUSIONS FROM INITIAL TESTING 

The results of the initial testing of the OPTRES model indicate that 

the approach of linking simulation and optimization models to select optimal 

storage strategies is feasible and can provide satisfactory results. During 

the remainder of this effort, the input and output of the OPTRES model will 

be improved to facilitate interactive conversational use and to provide infor­

mation to display tradeoffs among multiple objectives. Additional testing 

of the OPTRES model will be conducted with large numbers of reservoirs and 

with objectives other than minimizing total reservoir costs. 

It has become apparent from the initial testing of the OPTRES model that 

the computer costs involved in the developed methodology could be substantial, 

although certainly not prohibitive. As noted by Wurbs, two items are 

important relative to the convergence characteristics of a combined simulation­

optimization model. These are the number of iterations required to converge 

to a solution (and the associated computer time requirements) and the ability 

of the model to converge to the same range of solutions for a multi-modal 

objective function. It is likely that any objective function based upon a 

simulation model which accounts for interaction among various reservoirs and 

incorporates penalty terms will be multi-modal. In general, the closer 

the initial estimates for the reservoir sizes are to the optimal values of 

those reservoir sizes, the smaller the number of iterations that will be 

required to converge to that optimal solution. Additionally, the problems 

of converging to various local optima are minimized. 
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B. PROPOSED SCREENING rIDDEL 

To develop good initial estimates of optimal reservoir storage config­

urations, an optimization screening model will be developed. It is envisioned 

that the screening model could be used not only to determine initial values 

for reservoir storage strategies but also could be used as a stand-alone 

technique for determining optimal storage configurations when the detailed 

data required by the simulation portion of the OPTRES model is not available 

or when the use of the study results do not warrant the detailed approach of 

the OPTRES model. 

In general a screening model is used to determine an initial estimate 

of the optimal solution for a problem. Since the optimization model does 

not contain the detailed description of the system that is possible in a 

simulation model, the latter must be used to test or verify the screening 

model results. When the results of the screening model are not verified by 

the simulation model, then the optimization screening model must be modified 

such that the simplistic description of the physical system in the screening 

model gives more realistic results. The modification of the screening model 

often requires knowledge of optimization techniques and FORTRAN computer 

programming, which are well beyond the abilities of many water resource 

planners and managers. This difficulty will not be present in this methodolog~ 

however. Since the optimization screening model will be used in conjunction 

with the OPTRES model, which itself contains an optimization technique, it 

will not be necessary to modify the screening model. The screening model 

need only be run once to get initial values for the OPTRES model. The OPTRES 

model will then use those initial values and converge to a final optimal 

solution. 
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Many screening models have tended to be difficult to use by planners and 

managers unfamiliar with optimization and computer programming techniques. 

The proposed screening model for this study will be developed to be completely 

compatible with the OPTRES model, particularly in terms of model inputs and 

outputs. Like the OPTRES model, the screening model will be coded so that as 

much input and output as possible can be accomplished in ,an interactive, 

conversational mode. It is also planned to have the screening model display 

intermediate results such that the user can monitor and even alter the 

solution of the optimization technique. 

c. MODEL DESCRIPTION 

The proposed screening model will employ a Dynamic Programming technique 

developed by Hall [16]. Hall developed this technique to determine optimal 

storage configurations for a system of reservoirs based upon single or 

multiple purposes. For purposes of explanation, this technique will be 

described in terms of determining that combination of reservoirs (location 

and size) that will satisfy demands for water at a minimal total cost. This 

is identical to the situation used in the initial testing and development 

of the OPTRES model. 

The screening model is based on the concept of decomposition, where 

we desire to decompose the original problem of multiple reservoirs into a 

series of smaller problems involving a very limited number of reservoirs. 

The essential characteristic of the screening model is the combination of 

any two reservoirs (which may be in either series or parallel) into a single 

"equivalent reservoir" which will provide water in some amount at a minimum 

cost. This "equivalent reservoir" is then combined with another reservoir 

(in either series or parallel) to find the optimal combination of the three, 

as illustrated in Figure 14. again giving the minimum cost as a function of 

the quantity of water they will provide. This processes is continued until 
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all reservoirs have been combined into a single "equivalent reservoir" whose 

total cost is a minimum for any quantity of water (up to the maximum firm 

yield available for the system) which may be desired as the target level. 

Once a target level of water required for the system has been identified, 

that combination of reservoirs and their respective sizes which will provide 

the demand at minimum cost can be determined. 

There are three implicit assumptions in the formulation of the screening 

model. The first assumption of this analysis is that the streamflows entering 

each of the potential reservoir sites are well correlated. Within a river 

basin such as the Yampa, the hydrology of the basin is relatively uniform 

and this assumption should not be restrictive. The second assumption is 

that the variation of demand for water over an annual period can be expressed 

in terms of a constant fraction (called a water use coefficient) of the total 

annual water demand. For example, if monthly periods are of interst, twelve 

water use coefficients ctt would be defined such that the demand for water 

in any month t could be computed as (l • Q where Q 
t 

is the total annual 

demand. Since the demands for water are based upon actual or projected water 

uses, the variation in demands are a function of those uses and this assumption 

can be satisfied. The third assumption of the screening model is that all 

requirements for water occur downstream of all reservoirs. While this 

assumption appears restrictive, it can be easily handled by further assuming 

that a zero cost channel exists to deliver water upstream to the desired 

demand location. This implies the demand can be satisfied as long as the 

demand does not exceed the optimized storage capacity upstream of the 

demand location. 

Prior to the application of the screening model all potential reservoir 

sites are independently analyzed to determine their firm yield (the amount 
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of water delivered according to a firm schedule) as a function of reservoir 

storage. This analysis can be done using a simple simulation procedure, 

such as the procedure described by Hall and Dracup [17]. The development 

of the firm yield allows for the use of water use coefficients which reflect 

the varying demands for water during a yearly period. Since the cost of 

storage was estimated for each of the potential reservoir sites for the OPTRES 

model, the firm yield as a function of storage relationship and the cost as 

a function of storage relationship can be combined to develop a cost as a 

function of firm yield relationship. Once these cost vs. firm yield rela-

tionships have been developed for each site, the procedure begins to analyze 

the system beginning with the upstream reservoirs. 

The screening procedure considers reservoirs in parallel and reservoirs 

in series as seporate situations. If the reservoir sites are in parallel, 

then none of the streamflows entering one site flow into any of the other 

sites. Therefore, the firm yields or outputs of each site are independent 

and directly additive. The combination of parallel sites into an "equivalent 

reservoir" involves minimizing the total cost or providing a quantity of 

water, subject to the constraints that the water provided will meet the 

demands and that the amount of water allocated from each site cannot exceed 

the firm yield capacity of that site. In Dynamic Programming notation the 

problem can be expressed as: 

FicXk) = min[ckCqk) + Fi+l(xk-qk)] k=l, ... ,n-l 

subject to: 

o < q < x - k - k 
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where 
P parallel reservoir combination 

n = number of reservoir sites considered 

annual firm yield of water to by provided by reservoir k 

cost of the necessary reservoir storage at site k to provide qk 

maximum annual firm yield that can be provided by reservoir k 

total firm yield of water to be supplied by reservoirs k 

through n 

Solution of this minimization problem by Dynamic Programming will yield a cost 

as a function of firm yield relationship from the parallel sites. The cost vs. 

firm yield relationship can be thoughtof as representing the cost vs. firm yield 

relationship of an "equivalent reservoir" to the parallel reservoirs. The 

solution to the minimization problem by Dynamic Programming also determines how 

much of the yield should be provided from each site. The amount of firm yield 

to be provided from each site translates into the amount of storage required at 

each site which in fact determines which sites should be developed since a zero 

firm yield requirement implies a zero storage requirement. 

If the reservoirs are in series with side flows between the sites. the 

analysis is different. The initial analysis of each site to determine the firm 

yield vs. storage relationship should be made considering all the natural 

unmodified streamflow upstream of each site. Again, the basic approach is to 

minimize the total costs of providing a given quantity of water, however, the 

problem is more constrainted than for the parallel reservoir case. For sites 

in series, the amount of water provided by the upstream reservoir can not 

exceed the amount available at the upstream reservoir nor can it exceed the 

storage capabilities of the downstream reservoir. Additionally, whatever 

quantity of water the upstream site provides, the remainder of the desired 

quantity of water must be provided by the downstream site. For the series 
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system combination the problem can be expressed as: 

s 
min[ck(qk) 

s 
- qk)]' k=l, ... ,n-l Fk(xk) = + Fk+l (xk 

subject to: 

0 < q < x - k - k 

xk .::. qkmax 

where 
s = series reservoir comtlination 

Note that the above expression differs from the expression for the parallel 

combination in the constraint on xk . The results of this analysis also yield 

a cost as a function of firm yield relationship for the combined reservoirs. 

Although Dynamic Programming optimization problems solved for reservoirs 

in parallel and series are subject to different sets of constraints, the 

results of the analyses are the same;i.e., functions of costs vs. firm yield. 

Therefore any combination of parallel and series sites can be easily handled 

by this procedure as illustrated by Figure 15. 

One of the major advantages of the Dynamic Programming approach is that 

the optimal solution obtained for the system as represented by the final 

"equivalent reservoir" can be a fiu.n.ction. of minimum costs vs. firm yield 

rather than a single value. Therefore without having to solve the problem 

again, the optimal configurations of reservoir storages (i.e., the optimal 

policies that led to the optimal solution) can be determined for a range of 

values of the total firm yield. As an example the output from the screening 

model might be displayed as illustrated in Table 2. 

A schematic diagram of the projects in the Yampa Basin illustrating the 

relationships of the projects (parallel or series) for analysis by the 

screening model is shown in Figure 16. It is felt that the development of this 

screening model will greatly enhance the capabilities of the combined 

optimization-simulation model (OPTRES) and improve the methodologies under 

development for determining optimal reservoir storage strategies. 
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15 

Figure 16. Series and parallel relationships of Yampa River Basin 
proposed projects 
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16. Water Management Model for Front Range River Basins 
17. Land Treatment of ~un;ciprll $e\'1aqe Effluent at Hayden. Colorado 
18. An Interactive River Basin ~'Jater Management Madel: Synthesis and Appl ication 
19. An Economic Evaluation of the General Management for Yosemite National Park 

SPECIAL REPORTS 

1. Design of Water and Wastewater Systems for Rapid Growth Areas (Boom Towns-
Mountain Resorts) 

2. Environment and Colorado - A Handbook 
3. Irrigation Development Potential in Colorado 
4. Piceance Basin Inventory 
5. A Guide to Colorado Water Law 

;~nBn 1 "7 

Date 

6/74 
8/74 
6/74 

12/74 

12/74 
10/72 
12/74 

5/77 

11/77 
1/78 
5/78 

5/78 

1/79 
12/78 

2/79 
4/79 

10/77 
8/79 
3/80 

7/76 
73 

5/77 
12/71 
9/78 

Price 

10.00 
Free 
Free 

3.00 

4.25 
5.00 

10.00 

4.00 

5.00 
5.00 
5.00 

4.00 

5.00 
3.00 

Free 
5.00 
3.00 
4.00 
4.00 

4.00 
4.00 
4.00 

10.00 
2.50 
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