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ABSTRACT 

Wind profiler data collected during FIRE-II, in November, 1991, provided an 

opportunity for detailed observation of the passage of a warm front over Parsons, KS. 

Surfaee data, rawindsonde data and satellite observations were used to collaborate and 

understand the phenomena detected by the wind profiler. A quality-controlled set of wind 

profiler data were produced from the time-averaged spectra and the spectral moments 

deriv(:d from the time-averaged spectra. Using the wind profiler data set, the warm 

frontal zone was clearly identifiable as a low level, descending layer of veering winds over 

Parsons, KS. The warm frontal zone exhibited a relatively smooth surface, without the 

apparent height discontinuities observed by other researchers. Above the layer of warm 

advection, there was an abrupt transition to a layer of cold advection. The temperature 

gradient across this transition zone resulted in a layer of decreased stability. A study of 

the origin of the warm and cold advective zones found that the warm advection originated 

west-southwest of Parsons, in a region of warmer, but dry air, while the cold advection was 

from geostrophic flow around a strong cyclone far to the northeast of Parsons. The 

interaction between the northwesterly geostrophic flow and the southwesterly advective 

flow resulted in horizontal deformation, leading to frontogenesis. 
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1 INTRODUCTION 

The overrunning of warm air over cold air prior to the passage of a surfaCe warm 

front ean result in large amounts of precipitation. Orographic enhancement of the 

precipitation can cause significant flooding, despite the innocuous appearance of the warm 

front on the synoptic scale (Hobbs, Locatelli 1987). Considering the potential economic 

impact of warm front-associated weather, there has been a surprising lack of observational 

studies of warm fronts. Compared to cold fronts, warm fronts are generally not as well 

defim::d and can be difficult to locate. In the past, this has led some meteorologists to 

doubt their existence. 

The First ISCCP Regional Experiment - II (FIRE-II) provided an opportunity for 

the detailed observation of the passage of a warm front. From November 13, 1991 until 

December 7, 1992, the CSU wind profiler was in continuous operation and surface 

meteorological parameters were collected at Parsons, Kansas. In addition, rawindsondes 

were occasionally launched from Parsons during special study periods. Supplementing the 

standard NWS soundings at 0000 UTC and 1200 UTC, NWS rawindsondes were launched 

daily at 1800 UTe. 

This thesis uses the data from FIRE-II to examine a warm front that passed 

through Parsons, Kansas on November 25, 1991. The CSU wind profiler was used as the 

primary instrument to study the front. Surface data and rawindsonde data were used to 

collaborate and understand the phenomena detected by the wind profiler. Section 2 

provides a synoptic meteorological overview, incorporating upper air, surface and satellite 

obserilations. The processing and analysis of the wind profiler data, and study of the 25 

November warm front are provided in Section 3. A comparison with other observational 

studies of warm fronts, and conclusions are presented in Section 4. 
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1.1 General Background 

This section is subdivided into two sections. Section 1.1.1 describes the 

fundamental aspects of wind profiler operation. Commonly used procedures used to filter 

wind profiler data are presented. The computation of kinematic quantities from wind 

profiler data are described. Section 1.1.2 is a brief literature survey of warm fronts. 

Classical theories, numerical models, and previous observational studies are presented. 

1.1.1 Wind Profilers 

This section presents a brief overview of the principles and operation of wind 

profilers. For greater detail, the reader should consult other references (Van de Kamp 

1988, Tycho 1988). 

A wind profiler is a Doppler radar used to measure atmospheric winds above a 

site. Wind profilers depend upon the scattering of very high frequency (VHF) or ultra 

high frequency (UHF) electromagnetic radiation by minor irregularities in the index of 

refraction of air. These irregularities in the index of refraction are typically caused by 

turbulent eddies in the atmosphere. Since these turbulent eddies are carried by the wind, 

they are good "tracers" of the mean wind. The wind profiler transmits short pulses of 

electromagnetic radiation in a selected direction at a selected frequency. Echos are 

produced by the scattering of electromagnetic radiation. These echos are recl:!ived from 

all heights within the range of operation of the profiler. The echos are sampled at 

selected times corresponding to distance and height from the profiler. The height 

associated with each sample is typically referred to as a "range gate" and corresponds to a 

volume of atmosphere illuminated by the electromagnetic radiation. By measuring the 

Doppler shift of the returned echo, the radial velocity of the turbulent eddies within the 

range gate can be deduced. Since there are turbulent eddies moving at variolJs speeds 
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within the range gate (due to shear and turbulence), the echo is "spread out" in frequency. 

Several hundred samples are obtained and averaged to form a frequency spectra. The 

mean radial velocity is determined from the spectra by searching for a "spike" that contains 

the largest amount of power. 

The radial velocity from a single wind profiler beam is clearly not sufficient to 

define the horizontal wind vector. In a typical wind pro filer, three beams are used: one 

tilted to the east, one tilted to the north, and one vertical. The CSU wind profiler has 

two additional beams: one tilted to the south and one tilted to the west. The angle of 

the tilt is 750 from the horizon. For a three beam profiler, the wind vector is then 

calculated from 

u = V sec 75" - w tan 75" eost 

v = V IIOrtIr sec 75" - w tan 75" 

where Veast and V north are the radial velocities determined from the east and north wind 

(1) 

(2) 

profiler beams. For the five-beam CSU wind pro filer, equations (1) and (2) are also used, 

with appropriate modifications for the west and south beams. 

A number of factors can affect the accuracy of wind profiler data and limit their 

appli(;ability. These factors include: 

Radial wind velocities in excess of the Nyquist velocity (related to the pulse 

repetition frequency and number of samples used to derived the frequency 

spectra). For the CSU wind profiler, the Nyquist velocity is 28.9 mls for 

when used in the low height mode, and 32.2 mls when used in the high 

height mode. 
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Nonuniform winds across the wind profiler beams, including nonuniformity 

caused by convection, lee waves and gravity waves. For example, the 

opposing beams of the CSU wind pro filer, "illuminate" a volume of air 

separated by approximately 5400 m at a height of 10 km. During certain 

meteorological conditions, there can be a significant difference in wind 

velocity across a distance of 5400 m. 

An insufficient number of small scale eddies. As altitude increases, the 

density of the air decreases. As the density decreases, the Reynolds 

number of the atmosphere decreases. This decrease in Reynolds number 

with altitude places a lower limit on the size of the smallest eddies. This 

effectively limits the maximum height range of wind profilers. 

Low signal-to-noise ratio of received echo. 

Internally and externally generated electrical noise. 

Side lobes in the wind profiler antenna pattern. 

Hydrometeors, particularly liquid water. 

A descriptive summary of wind profiler errors and limitations can be found in Van 

de Kamp (1988). Strauch, et a1. (1987) discussed the effect of lee waves and gravity waves 

on horizontal wind accuracy. Wuertz, et al. (1988) discussed the effect of precipitation and 

Weber, et al. (1992) discussed the effect of nonuniform winds. 

1.1.1.1 Quality Control of Wind Profiler Data 

As discussed in the previous section, many factors can cause contamination of wind 

profiler data. Numerous methods have been devised to attempt to remove 

unrepresentative data from wind profiler data sets. Two methods have been used to 

provide quality control (QC) of wind profiler data from the NOAA demonstration 
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network. A third method has frequently been used to filter data obtained from the CSU 

wind pro filer. In addition, the use of the CSU wind profiler to study this specific, synoptic 

scale e:vent al10ws the use of unique quaJity control techniques which may not be general1y 

applicable to other meteorological events or other wind profiler sites. These three 

methods, as well as others, were examined to determine their applicability to the 25 

November, 1991 warm front case. 

The first QC method was developed by Brewster and Schlatter (see Brewster 

(1989} and Brewster and Schlatter (1986, 1988)). The Brewster/Schlatter method uses the 

techniques of consensus averaging, median filter and shear checking. In the consensus 

averaging technique, an hourly average of the wind at a particular height level is derived 

from multiple 6-minute radial velocity samples. Each of the ten 6-minute radial velocity 

samples is examined to determine how many other radial velocity samples fall within a 

designated radial velocity "window" of the chosen 6-minute sample. The sample with the 

greatest number of other samples within the window is chosen. All of the samples within 

the window are then averaged to obtain the "consensus averaged" I-hour average. If a 

consensus cannot be obtained (i.e. there are too few samples within the largest group of 

sampk~s), the data for that hour, at that height, are flagged as bad. 

The median filter and shear check are applied to consensus-averaged hourly data. 

In the median filter technique, data are gathered from adjacent hours and adjacent height 

levels. The median of this col1ection of data is computed for the two horizontal wind 

components. If the difference between the data and the median is greater than a 

threshold, then the median is recalculated using only data from the current hour and the 

previous hour. The data is flagged as bad if the observed data and the recalculated data 

differ by more than a threshold. 
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In the shear check technique, the vertical consistency between adjacent and nearby 

height levels is checked against a threshold. Three or four consecutive height levels are 

compared to determine if any of the wind vectors have an unacceptably large amount of 

shear between them. 

The second QC method was developed by Wuertz and Weber (1989). The 

WuertzlWeber method uses the techniques of continuity and pattern editing. The 

continuity technique is based on the expectation that wind measurements change smoothly 

from one height to another, and from one time to another. The "smoothness" is defined 

in terms of a maximum rotation between neighboring wind vectors. Greater rotation 

between neighboring wind vectors is permitted at lower wind velocities. The continuity 

technique also restricts the speed shear between neighboring wind vectors that have the 

same wind direction. 

The pattern editing technique joins together those wind vectors in the 

neighborhood (i.e. nearby in time and space) that are continuous (as determined by the 

continuity technique) to form a pattern. A weight is assigned to each pattem, equal to 

the size of the pattern. By an iterative process, the pattern with the smallest weight is 

removed, removing that wind profiler data from the data set. Wind vector patterns and 

weights are recalculated. This process continues until all points are continuous. 

The third QC method was developed at CSU by Hein (see Hein, et al. (1991)). 

The Hein method checks several characteristics of the radial velocity. If the variance of 

the radial velocity is less than a threshold, the data is marked as bad. If the echo signal 

power between the vertical, north and east beams deviates by more than a threshold, the 

data is marked as bad. A shear check is performed between adjacent height levels and 

time intervals for each radial velocity. If the percentage of spatial and temporal neighbors 
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that vary significantly from the subject radial velocity is greater than a threshold, the 

subject radial velocity is marked as bad. 

The CSU wind profiler is a five beam profiler, rather than the more typical three 

beam profiler. By comparing the four wind velocities derived from the five beams, the 

uniformity of the derived wind field over the profiler can be tested. In nonconvective, 

nonprecipitating, synoptic scale events, far from a mountain barrier, the wind field should 

be unJiform over the volume scanned by the wind profiler. Nonhomogeneous winds 

observed under these conditions are suggestive of bad data, and should be exploited as 

another quality control procedure. Quality control based on nonhomogeneous winds has 

not b(~en used as a method of quality control in previous studies. 

1.1.1.2 Calculation of Kinematic Quantities 

Much of the earlier work using wind pro filers studied the echo reflectivity strength 

in relation to atmospheric phenomena (Shapiro, et a1. (1984), Rottger (1979), Larsen and 

Rottger (1983). More recent work has exploited the increased temporal resolution of the 

wind data provided by profilers to study the atmosphere. 

The use of earlier technology, such as rawindsondes, provides high.resolution wind 

data as a function of height. However, rawindsondes are typically launched only twice per 

day, and the geographic density of rawindsonde launch sites is fairly sparse. A single wind 

profikr provides the same high resolution data, but in a nearly continuous manner. From 

a single profiler, many kinematic quantities can be calculated. Neiman and Shapiro (1989) 

used a single wind profiler and the geostrophic form of the thermal wind equation to 

calculate the temperature gradient vector and temperature advection for an upper 

tropospheric front and jet stream passage. When the wind within the layer of interest is 
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not in geostrophic balance, the magnitude of the terms in the general form of the thermal 

wind equation must be considered (Forsythe, 1945). 

A network of wind profilers expands the possibilities for calculation of kinematic 

quantities. Zamora, et al. (1987) used a network of three wind profilers to calculate 

upper tropospheric divergence and ageostrophic wind. The work by Zamora, et a1. 

assumes that the wind field varies linearly throughout the region defined by the profiler 

network. They derived a method called the linear vector point function (L VlPF) that 

allows the kinematic quantities of wind, divergence, vorticity and deformation at any point 

within a triangular wind profiler network to be calculated based on the three wind profiler 

observations, and the distance from the three wind profilers. Kuo, et al. (1987) simulated 

a network of wind profilers, each separated by 360 km, to calculate the temperature and 

geopotential fields using the divergence equation. They found that for synoptic situations 

with weak dynamic forcing, the retrieved fields are about as accurate as from the current 

rawindsonde network. For situations with strong dynamic forcing, the RMS €!rrors can be 

approximately 50 % greater than the current rawindsonde network. 

1.1.2 Warm Fronts 

This section describes the classical theories of warm fronts, frontogenesis, 

numerical modelling of warm fronts based on the primitive equations, and prl~vious 

observational studies. 

1.1.2.1 Classical Theories 

The origin of the classical theories of frontal development can be traeed to work 

done by Bjerknes (1918) and Bjerknes and Solberg (1922). Bjerknes and Solberg were 

the first to present a detailed discussion of wave cyclones and their associated cold, warm 

and occluded fronts. Using a spatially dense network of surface data, Bjerknes (1918) 
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found zones of confluence associated with cold and warm fronts, and temperature 

gradients across these fronts. The well known patterns of clouds and precipitation 

associated with fronts was related to the adiabatic cooling of warm air lifted by the fronts. 

Bjerknes and Solberg (1922) were also the first to note the differences in vertical structure 

betwel;!n cold and warm fronts. In particular, cold fronts are steeper and warm fronts can 

be difficult to locate at the surface. 

Harrold (1973) introduced the concept of a "conveyor belt" of warm air, 100 to 

1000 km wide, and several km in depth. The conveyor belt, is parallel to, and ahead of 

the surface cold front. As the air moves poleward, it rises up over the warm front. Most 

of the warm frontal precipitation is caused by condensation within the ascending portion 

of the conveyor belt. 

There have been many papers discussing the banded nature of precipitation 

embedded within warm fronts (Herzegh and Hobbs (1980), Houze, et a1. (1981), Rutledge 

and Hobbs (1983), Heymsfield (1979». However, in general, there has been very little 

attention paid to the overall structure of warm fronts. 

1.1.2.2 Warm Front Models Based on Primitive Equations 

Hoskins and West (1979) and Hoskins and Heckley (1981) used semi-geostrophic 

theory to study frontogenesis. Semi-geostrophic theory combines the geostrophic 

momentum approximation form of the primitive equations, and a coordinate 

transformation. The result is a set of primitive equations in which the horizontal 

advection terms are the geostrophic wind. The ageostrophic flow is obtained by a 

coordinate transformation back to physical space. Semi-geostrophic theory is described 

more fully in Hoskins (1975). 
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Hoskins and West (1979) and Hoskins and Heckley (1981) modelled frontogenesis 

using a uniform Ertel potential vorticity model with a basic zonal jet flow ii, where ii = 0 

at Z = 0 (surface). At Z = H (top of troposphere), ii varies sinusoidally in space from 

1 - J1 to 1. Using typical synoptic values, they varied J.l and studied frontogenesis as a 

function of time. They found that for small values of J.l « = 0.1), a warm front did not 

develop at all. For J.l = 0.3, a weak warm front develops between day 5.5 and day 6 east 

and southeast of the low center. For larger values of J.l, the warm front develops later, 

and is weaker. 

By using an inverted zonal jet flow (i.e. ii = 0 at Z = H, and ii varying sinusoidally 

at Z = 0), a much stronger warm front develops south of the low, associated with the 

trailing edge of cold air ahead of the low. Further study showed that this warm front had 

many of the characteristics of a frontal occlusion. Both types of warm fronts (as well as 

the cold fronts obtained by the model), were very shallow in vertical extent. 

1.1.2.3 Previous Observational Studies 

In the past, there have been surprisingly few observational studies made of warm 

fronts. Heymsfield (1979) used the CHILL and NCAR CP-4 radars to study precipitation 

bands ahead of the surface warm front near Chicago, Illinois. From these observations, 

Heymsfield found a mesoscale vertical circulation superimposed on the larger scale 

frontogenetic vertical circulation. This mesoscale vertical circulation was hypothesized to 

be the cause of the horizontal periodicity in the precipitation bands. 

Hobbs and Locatelli (1987) and Hertzman, Hobbs and Locatelli (1988) used 

doppler radars, rawindsondes, aircraft and surface observations to study a warm front 

approaching the Washington coast. They found that the warm frontal zone did not lower 

steadily in height as it approached a coastal location. Instead, there were periods when 
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the frontal zone was almost level, interspersed with periods when the height decreased 

sharply. They found that these "steps" in the frontal zone height may increase 

convergence, and intensify the precipitation bands. The airflow through the warm front 

was aho studied. It was found that, contrary to the traditional view, the warm front was 

not a boundary through which air could not pass. In fact, airflow through the warm front 

provided the vorticity to maintain the frontal structure. 

2 SYNOPTIC METEOROLOGICAL ANALYSIS 

This section describes the synoptic scale meteorological situation prior to, and 

during the passage of the warm front through Parsons, KS on 25 November 1991. In 

general, the northeastern two-thirds of the United States was dominated by a strong 

cyclone located over eastern Canada. A weak intermountain anticyclone was located over 

the Great Basin (southern Idaho, Utah, Nevada). The cyclone strengthened with height, 

and the anticyclone weakened with height. These two pressure systems, the eastern 

Canada cyclone, and the intermountain anticyclone, are normal climatological features 

associated with the winter season in North America. A stationary front separated these 

two air masses and evolved into the warm front that was studied. 

2.1 Upper Air 

The axis of a longwave trough passed through eastern Kansas around 1200 UTC 

23 November as shown in the 500 mb analysis (Figure 2.1). The cold air advection 

assoc:iated with this trough dropped the 500 mb temperature at Monett, MO from _130 C 

at 0000 UTC 22 November to -310 C at 0000 UTC 24 November. By 1200 UTC 23 

November, a 500 mb low had formed and was centered near the northeast corner of 

Kansas. Over the next 36 hours, this 500 mb low moved northeastward to central Ontario, 

and the 500 mb temperature at Monett, MO rose to -200 C. By 0000 UTC 25 November, 
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nearly the entire United States was influenced by the geostrophic flow around the 

longwave trough and its associated low at 500 mb, as shown in Figure 2.2. From 0000 

UTC 25 November to 0000 UTC 26 November, significant 500 mb cold air advection 

occurred over eastern Kansas, with the 500 mb temperature at Monett, MO falling to 

-260 C. The 3100 K isentropic analyses for 25 November at 0000 UTC, 1200 UTC and 

1800 UTC are shown in Figure 2.3, Figure 2.4 and Figure 2.5, respectively. These 

isentropic analyses show increasing heights with time over eastern Kansas, contrary to 

what would be expected for a warm front. Based on these isobaric and isentropic 

analyses, we conclude that no warm front occurred on 25 November at 500 mb and above. 

On 26 November, the 500 mb low moved rapidly northeastward. By 1200 UTC 26 

November, the longwave trough no longer dominated the United States, as shown in 

Figure 2.6. During 26 November, warm air advection occurred over eastern Kansas at 500 

mb in advance of a shortwave trough that formed in the east of the Rocky Mountains. 

At 700 mb, very weak warm advection was evident at 0000 UTC 25 November, as 

shown in Figure 2.7. 24 hours later, at 0000 UTC 26 November, pronounced baroclinicity 

associated with the warm front is noted from eastern Oklahoma to the Canadian border, 

as shown in Figure 2.8 

2.2 Surface 

A strong surface cold front passed through eastern Kansas around 2100 UTC 22 

November. A surface low formed along the front near Parsons, KS, moved :rapidly 

northeastward along the front, and intensified. By 2100 UTC 23 November, the surface 

low was near Milwaukee, WI, and moved slowly northeastward thereafter. An arctic high 

moved southward, and was centered over Saskatchewan at 1200 UTC 24 November. By 

2100 UTC 24 November, a well defined stationary front along the lee of the Rockies 
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separated the arctic air mass from the milder air associated with the intermountain high 

pressure, as shown in Figure 2.9. There was little movement in the stationary front until 

around 0600 UTe 25 November, when a weak low pressure trough formed over west 

Texas. The eastward movement of the intermountain high and the west Texas trough 

along with the formation of a surface low over Alberta caused the stationary front to 

evolve into an active warm front by 2100 UTe 25 November, as shown in Figure 2.10. 

The NWS analysis shows the surface warm front passing through Parsons, KS around 0000 

UTe 26 November. The surface warm front moved slowly northeastward, as the surface 

low over west Texas moved rapidly eastward. By 1800 UTe 26 November, the surface 

warm front was north of Kansas, as shown in Figure 2.11. 

A surface observing station was in continuous operation in Parsons, KS. A time 

series of the surface temperature for 25 November is shown in Figure 2.12. Observing 

Figure 2.12, it is not readily apparent when the surface warm front passed through 

Parsons. The warm frontal passage seems to be obscured by the diurnal temperature 

cycle. Similarly, the 25 November surface relative humidity shows only the normal diurnal 

variation. The wind direction time series for 25 November is shown in Figure 2.13. The 

wind gradually veered from north at 0400 UTe, to east at 1000 UTe, and southeast 

thereafter. After 1600 UTe, there were wind direction fluctuations between northeast 

and south. The downward infrared radiation (lR) time series for 25 November is shown 

in Figure 2.14. Between 0800 UTe and 1500 UTe, the downward IR was nearly constant. 

As discussed in Section 2.3, this constant downward IR was due to clouds caused by the 

overrunning of warm air over the cold air. After 1600 UTe, there was a significant 

decrease in IR as the warm front lowered over Parsons, and overrunning clouds moved 

north of Parsons. 
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2.3 Satellite Observations 

Hourly infrared satellite images were available for the central United States. At 

0300 UTC 25 November, low, broken clouds were observed over northern Oklahoma and 

southern Kansas, as shown in Figure 2.15. At 0900 UTC 25 November, a broad band of 

low clouds ran in a northwest-southeast direction from southeast Kansas to southwest 

South Dakota, as shown in Figure 2.16. This band of clouds was caused by the 

overrunning of warm air over the cold, arctic air. The southern edge of the cloud band 

coincides with the location of the surface warm front. Convective activity caused by 

intensification of the trough is clearly visible over northern New Mexico and Colorado. 

At 2100 UTC 25 November, the trough has moved eastward into Oklahoma, forcing the 

warm frontal cloudiness toward the northeastward to northeastern Kansas and Nebraska, 

as shown in Figure 2.17. 
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3 WIND PROFILER OBSERVATIONS, PROCESSING AND ANALYSIS 

This section describes the processing and analysis of the 25 November 1991 CSU 

wind profiler data. The processing of the wind profiler data involved the synthesis of 

quality-controlled, hourly, wind field averages derived from 6-minute radial velocity and 

frequency spectrum samples. The analysis of the processed data was used to spatially and 

temporally locate the warm front. 

3.1 Wind Profiler Data Processing 

The CSU wind profiler (Tycho Technologies Model 4(0) was in operation in 

Parsons, KS from 13 November 1991 until 7 December 1991. The wind profiler output 

consists of 6-minute averaged spectra and spectral moments for each beam and range gate. 

The 6-minute averaged spectra contain the signal power in 256 frequency bands around 

the transmitted frequency, fo, from fo-l28Af to fo + 128Af. The 6-minute averaged spectra 

can be viewed as the raw data from which the spectral moments are derived. Each 

spectral moment is derived from the averaged doppler-shifted echo returns, and contains 

the signal power in the peak of the spectra, the average radial velocity derived from the 

doppler shift at the spectra peak, the variance of the radial velocity around the spectral 

peak, and the average noise power away from the spectral peak. 

The imperfect antenna pattern of any wind profiler, including the CSU wind 

profiler, results in many sidelobes that transmit pulses and receive echos. In particular, 

there are sidelobes present at very low horizon angles that receive strong echos from 

stationary, or near-stationary objects near the ground. The resulting frequency spectra has 

a very strong peak near the transmitted frequency, fo• Any attempt to extract the spectral 

moments from the spectra must first filter out the "ground clutter" that caused this "central 
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peak". Filtering out the signal power in frequency bands near the central peak can result 

in the loss of information on very low wind speeds. 

To derive the vertical wind speed in the high-resolution, low height mode, the 

unfiltered 6-minute frequency spectra was used. The spectral moments were derived, with 

only the ground clutter filtered out. The derived vertical radial velocity moments were 

found to either be less than 1 mis, or very large (typically greater than 10 m/s). The large 

velocities always had large variances, and low signal-to-noise ratios. These large values 

were probably indicative of very low vertical velocities that were perceived as ground 

clutter by the wind profiler filtering algorithm. Therefore, any derived vertical velocity of 

greater than 1.2 mls was set to 0 m/s. The derived vertical wind speeds were averaged over 

three adjacent height levels. 

For the low-resolution, high height mode, an inspection of the unfiltered 6-minute 

frequency spectra typically did not show a discemable power peak. Therefore, the high 

mode vertical velocities were assumed to be zero. The error introduced by this 

assumption should be negligible, since the non-vertical beam radial velocities in the high 

mode were large. 

The derived vertical beam spectral moments were merged with the non-vertical 

beam spectral moments to create a composite spectral moment data set. 

The quality control algorithms described in Section 1.1.1.1 were studied in relation 

to the composite spectral moment data set. The following quality control algorithms were 

applied to the 6-minute spectral moment data sets: 

All data during the 6-minute cycles that RASS sound waves were generated 

were marked as bad. 
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Shear checking was used to remove wind vectors that differed significantly 

from their spatial and temporal neighbors. 

Radial velocity variance was checked. Radial velocity variance moments 

that did not exceed a minimum variance were removed. 

Horizontal homogeneity of the wind field was tested by deriving four wind 

velocities from the 5 beams. If the four derived wind velocities varied 

significantly, all radial velocities for that time and height were marked as 

bad. 

Hourly averaged radial velocities were obtained from the post-quality control 6-

minute radial velocity moments using the following procedure: 

For hours in which there were two or more 6-minute spectral moment data 

sets, the radial velocity spectral moments at each height level were 

averaged, provided there were two or more valid radial velocity spectral 

moments at that height. When there was only a single valid spectral 

moment at a height level, that height level was not included in the hourly 

average. 

For hours in which there was only a single set of 6-minute spectral 

moments (1800 UTC and 1900 UTC), this single 6-minute spectral moment 

became the hourly average. 

The following quality control algorithms, used by other researchers, were not 

applied to the Parsons wind profiler data: 



35 

Consensus averaging was not used to obtain hourly averages. For the 25 

November time period, each hour contained from one to six 6-minute 

spectral moment data sets, rather than the to data sets per hour available 

from the NOAA profiler demonstration network. For hours when there 

are very few data sets available, the credibility of the consensus averaging 

technique is questionable. 

The continuity technique is a more mathematically rigorous method of 

shear checking. The additional complexity of the continuity technique did 

not seem warranted vs. the Hein (1991) shear checking technique that was 

applied. 

3.2 Warm Front Placement Using Wind Profiler Data 

The quality controlled, hourly averaged, radial velocity data from the Parsons wind 

profiler for 25 November were used to plot the time series of wind velocity shown in 

Figure 3.1, Figure 3.2, and Figure 3.3. 

Warm advection, as indicated by veering winds, is first notable at 0600 UTC near 3 

Ian (point "a" in Figure 3.1). The base of the layer of veering winds remains at the same 

height, but widens from 0700 UTC until tOOO UTC (point "b" in Figure 3.2). From 1100 

UTC until 1400 UTC, the veering wind layer continues to broaden and lower. After 1500 

UTC, the base of the veering wind layer is below the lowest profiler range gate. Based on 

the convention of Hobbs, et al. (1987), the warm frontal zone is defined as the layer of 

veering winds, with the warm front located at the top of the warm frontal zone. The 25 

November warm front appears to be confined to the lower troposphere. This is made 

particularly apparent by the study of the temperature advection profile in Section 3.3. 


	0526_Bluebook_Page_01
	0526_Bluebook_Page_02
	0526_Bluebook_Page_03
	0526_Bluebook_Page_04
	0526_Bluebook_Page_05
	0526_Bluebook_Page_06
	0526_Bluebook_Page_07
	0526_Bluebook_Page_08
	0526_Bluebook_Page_09
	0526_Bluebook_Page_10
	0526_Bluebook_Page_11
	0526_Bluebook_Page_12
	0526_Bluebook_Page_13
	0526_Bluebook_Page_14
	0526_Bluebook_Page_15
	0526_Bluebook_Page_16
	0526_Bluebook_Page_17
	0526_Bluebook_Page_18
	0526_Bluebook_Page_19
	0526_Bluebook_Page_20
	0526_Bluebook_Page_21
	0526_Bluebook_Page_22
	0526_Bluebook_Page_23
	0526_Bluebook_Page_24
	0526_Bluebook_Page_25
	0526_Bluebook_Page_26
	0526_Bluebook_Page_27
	0526_Bluebook_Page_28
	0526_Bluebook_Page_29
	0526_Bluebook_Page_30
	0526_Bluebook_Page_31
	0526_Bluebook_Page_32
	0526_Bluebook_Page_33
	0526_Bluebook_Page_34
	0526_Bluebook_Page_35
	0526_Bluebook_Page_36
	0526_Bluebook_Page_37
	0526_Bluebook_Page_38
	0526_Bluebook_Page_39
	0526_Bluebook_Page_40
	0526_Bluebook_Page_41

