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ABSTRACT 

 

REPRODUCTIVE ECOLOGY AND POPULATION VIABILITY OF ALPINE-ENDEMIC 

PTARMIGAN POPULATIONS IN COLORADO  

 

Understanding factors regulating populations is a fundamental goal of population 

ecology. Life-history traits such as survival and fecundity are key vital rates responsible for 

population change and may vary across elevational gradients. At the upper end of this gradient, 

the alpine zone, populations are faced with extremely short growing seasons, unpredictable 

winter conditions dictated by snowpack, and the continued threat of habitat loss due to 

temperatures increasing beyond the range that defines these cold systems. To date, few studies 

have addressed population regulation of alpine-endemic species in the context of the 

aforementioned factors. I used long-term demographic data collected over a 51-year period at 

two study sites (Mt. Evans and Trail Ridge) together with a contemporary field study (2013-

2015) at three sites (Mt. Evans, Trail Ridge, and Mesa Seco) to examine factors regulating 

alpine-endemic white-tailed ptarmigan (Lagopus leucura) in Colorado.  

My first research question addressed fitness consequences of reproductive timing. Past 

research examining data at the long-term study sites indicated populations responded to warming 

springs by breeding earlier, and the population that advanced its breeding phenology the most 

also had a concomitant decreasing trend in observed fecundity. The phenology mismatch 

hypothesis states that individuals in a population failing to time reproductive events during 

highest availability of resources will have lowered fitness. I used data from a three-year 

telemetry study on radio-marked hens to examine fitness consequences of timing of reproduction 



iii 
 

relative to abundance of food resources. I measured temporal changes in plant productivity using 

NDVI measurements recorded at weekly intervals in brood-rearing habitats. At a subset of sites 

and years I measured temporal changes in arthropod abundance to assess the usefulness of NDVI 

as a proxy for insect availability. NDVI and arthropod abundance were strongly correlated for a 

subset of arthropod taxa known to be consumed by chicks. A covariate for the degree of 

synchrony between breeding events and NDVI (termed “mismatch”) was then used as a 

covariate in nest and chick survival models. There was a weak negative relationship between 

daily nest survival and mismatch, indicating birds nesting out of synchrony suffered reduced 

daily nest survival. The relationship was much stronger for chicks, and the predicted percent 

decline in daily survival ranged from 4% to 47% for chicks hatched with the largest calculated 

mismatch values compared to chicks hatching at the peak (dependent on site and year).  

My second research question tested for the presence of density dependence using the 

long-term population datasets. Density dependence is widely recognized as being prevalent in 

wildlife populations, but in the absence of strong demographic signals, it can be difficult to 

detect. More contemporary studies have focused on age- and sex-specific responses to density 

dependence, which may vary dramatically, and interactions with abiotic factors. Such studies 

generally require individual-based data on multiple age classes monitored over multiple decades, 

and datasets meeting these criteria have been extremely limited - particularly for avian species - 

until only recently. I constructed an integrated population model (IPM) fit in a Bayesian 

statistical framework to combine spring survey, fecundity, and capture-recapture data in a single 

model using a joint likelihood. The IPM provided a way to estimate juvenile survival from the 

combined data and incorporated uncertainty from multiple demographic processes. The Mt. 

Evans population increased over the 51-year period (average annual increase of 2%) while the 
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TR population sharply declined (average annual decrease of 3%). An interaction between 

minimum winter temperature and fall population density indicated both populations suffered 

lower survival rates when densities were high. However, density interacted with temperature 

positively at Mt. Evans (at highest densities, survival was higher when minimum winter 

temperatures were high) and negatively at Trail Ridge (at highest densities, survival was higher 

when temperatures were low). This finding may have been due to differences in temperature 

regimes at wintering sites due to elevational differences between populations. Juvenile survival 

was negatively related to fall population density at both sites for males and females. 

My final research question provided a viability assessment for the Mt. Evans and Trail 

Ridge populations.  In this analysis, I used reproductive data collected from radio-marked hens 

during the 2013-2016 field seasons at Mt. Evans and Trail Ridge to estimate components of age-

specific fecundity. Fecundity estimates were based on a previous breeding study using Bayesian 

models and informative priors, and age-specific estimates of survival rates were obtained from 

the IPM and included estimates of environmental variance. I used a life-stage simulation analysis 

(LSA) to assess the influence of vital rates on population growth ( ). LSA is based on simulating 

many population projection matrices, each of which is populated with vital rate values drawn 

from probability distributions with associated means and variances based on empirical data, 

regressing the resulting dominant eigenvalues ( ) on these rates, and using the coefficient of 

determination ( ) as a measure of explanatory power. Next, I used cumulative distribution 

functions (CDFs) to calculate quasi-extinction probabilities given the underlying vital rates, age 

structure, and within-year and between-year correlations in vital rates. Population growth for 

both Mt. Evans and Trail Ridge was most sensitive to survival of hens 2 years or older ( =% at Mt. Evans and % at Trail Ridge), followed by juvenile survival ( = % at Mt. 
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Evans and % at Trail Ridge). Fecundity rates explained only minor amounts of variation (all ≤ %). Overall, stochastic growth rates for both populations indicated the internal 

demographics were insufficient to maintain populations (Mt. Evans: = . , Trail Ridge: = . ), and both populations were at risk of surpassing a 50% probability of quasi extinction 

within 5 (Trail Ridge) and 7 (Mt. Evans) years. However, updating the population model to 

include only fecundity and survival estimates post-1994 (a time after hunting restrictions went 

into effect at Mt. Evans) produced a much more optimistic estimate for the Mt. Evans population 

(<3% probability of becoming quasi-extinct within 50 years, = . ), and a slightly more 

optimistic estimate for Trail Ridge (50% probability of becoming quasi-extinct within 11 years, = . ). Discrepancies between stochastic growth rates and those obtained from the IPM 

were likely due to effects of immigration into the breeding populations which I did not directly 

model, but this highlights the importance of maintaining population connectivity. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

BACKGROUND 

 

 Management of wildlife populations is largely dependent on availability of data that 

allow for estimation of population size and changes in abundance. The ability of biologists to 

measure and predict the factors responsible for changes in abundance provides additional 

understanding of actions that are likely to stabilize populations. For example, population growth 

depends on the number of individuals entering (through birth and immigration) and leaving 

(through death and emigration) the population, but growth rates for different species - and even 

populations within species - may differ in the degree to which certain vital rates affect growth 

(Brault and Caswell 1993). Therefore, knowing something about the sensitivity of growth to the 

underlying demographic rates provides key information to wildlife managers on which life-

stages are likely to be most important for determining future population trajectories. Data 

collected at the individual-level is generally required for such inference, because distinguishing 

between the effects of each vital rate on population change is difficult at best in the absence of 

individual-based data.  

The estimation of vital rates and factors that cause them to vary is a primary purpose of 

most wildlife management studies (Williams et al. 2002). However, most wildlife studies are 

limited to only a small number of years and may be of insufficient length to capture 

environmental variation that occurs over longer time periods, a requirement for gaining insight 

into environmental variation experienced by populations (Burnham and White 2002). These time 

periods may be only a decade or two, over which period annual cycles are commonly observed 
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in vertebrate populations which are often related to density-dependence (Hassell 1975, Hudson et 

al. 1998, Stenseth et al. 2003), or longer time frames over which unusual and rare events occur, 

such as extreme climate or weather occurrences that can lead to large fluctuations in resources 

(e.g., droughts) or mass mortalities through direct weather effects (Newton 1998). These realities 

exist in nature and can have big impacts on population trajectories but are generally poorly 

accounted for in short-term studies. In addition, evolutionary processes leading to adaptations in 

natural populations generally occur over periods of years or decades, and short-term studies tend 

to be poorly suited for capturing such occurrences (Clutton-Brock and Sheldon 2010). Studying 

populations using experimental designs can overcome the weakness of short-term studies and 

should be used when possible (Johnson 2002), but this is often difficult in practice, especially for 

rare species that cannot be exposed to potentially detrimental treatments.  

Long-term studies are those that occur over several decades (Clutton-Brock and Sheldon 

2010). These types of studies are invaluable to ecological research because they provide 

information about populations occurring over time scales that expose populations to larger 

amounts of environmental variation, and they provide superior information about population 

trajectories compared to field projects that are limited to only a few years. Long-term studies are 

particularly valuable when assessing the viability of populations, because the ability to 

accurately estimate environmental variation in vital rates is critical to assess the probability of 

population extinctions (Morris and Doak 2002). Long-term studies become particularly valuable 

when they exist for species that are not easily monitored. This is true for the focal species of my 

dissertation research, the white-tailed ptarmigan (Lagopus leucura), which was petitioned for 

listing as threatened under the Endangered Species Act (ESA) in 2010 due to concerns of 

vulnerabilities to the alpine habitats where it resides (Center for Biological Diversity 2010). 
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Information on vulnerabilities the species is likely to face are presented in more detail below and 

in subsequent chapters, but to briefly summarize, alpine systems are threatened by climate 

warming. Mountain habitats have warmed at twice the rate of the global average and are 

expected to warm dramatically by the end of the 21st century (Nogues-Bravo et al. 2007). This 

poses a threat because alpine systems are defined by cold temperatures which are rapidly 

disappearing in cold ecosystems (Diaz and Eischeid 2007). The consequences of warming in 

alpine habitats have already been documented; upward elevational shifts in plant communities 

(Klanderud and Birks 2003, Walther et al. 2005) and treelines (Harsch et al. 2009); changes in 

phenological events for both plants (CaraDonna et al. 2014) and animals (Ozgul et al. 2010, 

Wann et al. 2016); and physiological stress induced by warming climate (Beever et al. 2010). 

Limited information exists documenting long-term variations in population dynamics of white-

tailed ptarmigan (Wang et al. 2002a, b, Wann et al. 2014, 2016). No attempts have been made to 

assess population viability using either targeted field studies or long-term data. Using long-term 

data on ptarmigan population variability to assess likely population trajectories and direct 

targeted field studies forms the overarching goal of this dissertation. 

 

STUDY SYSTEM 

 

Focal species 

 

 The white-tailed ptarmigan is the smallest grouse species in the family Phasianidae and a 

member of the Lagopus genus (Fig. 1.1), where it shares common ancestry with the larger rock 

(L. muta) and willow (L. lagopus) ptarmigan. Members of this genus exist in some of the most 
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extreme and inhospitable terrestrial systems. Cold adapted by nature, the arctic tundra and alpine 

ecosystems characterize the areas where populations of ptarmigan can be found. Unlike the other 

two species which have Holarctic distributions, white-tailed ptarmigan occur only in North 

America where they inhabit alpine areas from northern New Mexico to southeastern Alaska 

(Martin et al. 2015). White-tailed ptarmigan are mostly monogamous and individuals typically 

form pair bonds beginning in early May, followed by nest initiation in early June, and brood 

rearing from July through August (Martin et al. 2015). If a nest is lost during the egg-laying or 

early incubation stages, hens may renest, but only a single brood can be raised in a breeding 

season. Relative to the other species in the Lagopus genus, populations of white-tailed ptarmigan 

tend to have high survivorship and low fecundity (Sandercock et al. 2005), although this 

generalization may not hold when populations occur in sympatry (i.e., Wilson & Martin 2012).  

The basic biology of white-tailed ptarmigan is well described in terms of diet 

composition (May and Braun 1972), molt (Pyle 2007), breeding behavior (Schmidt 1988), 

habitat characteristics (Braun 1969), survival of breeding age classes (Wann et al. 2014), and 

nest success (e.g., Wiebe & Martin 1998). This is primarily due to data collected in Colorado and 

does not reflect work throughout the range, apart from Vancouver Island (Martin and Forbes 

2004), Montana (Choate 1963), California (introduced population; Clarke & Johnson 1992), 

Alberta (Salt 1984), and the Yukon (Wilson 2008). Most studies occurring outside of Colorado 

have generally been of shorter duration, with some longer-term work in Montana (Choate 1963, 

Benson and Cummins 2011) and Vancouver Island (Martin and Forbes 2004, Jackson et al. 

2015). 

 White-tailed ptarmigan can be considered a non-migratory species, although individuals 

will make seasonal movements between breeding and wintering habitats (Hoffman and Braun 
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1975a). Individuals generally occupy areas at or below tree line throughout winter, often near 

drainages containing willow (Salix spp.; Braun et al. 1976). Winter flocks are usually segregated 

by sex, with males occurring in smaller groups near breeding territories at higher elevations, and 

hens and first year birds occurring at lower elevations (Hoffman and Braun 1975b). Males begin 

defending territories in early spring (late April to early May in Colorado), followed by arrival of 

hens (mid to late May). Males and unsuccessful females tend to move to higher elevations near 

snowfields in mid to late summer where they often form flocks. Successful hens and their broods 

will join these flocks in late summer and early fall, and flocks will remain in these areas until the 

first snowstorms in late September and October cover alpine vegetation and force birds to seek 

shelter and food at lower elevations.  

 The range of abiotic conditions experienced by white-tailed ptarmigan is extreme with 

average winter and summer temperatures throughout their distribution ranging between roughly -

14 to 40°C. Several adaptations allow ptarmigan to survive these temperature extremes. During 

the winter, ptarmigan are sedentary and move little to conserve energy (Martin et al. 1993). 

Ptarmigan dig snow burrows to roost at night which provides protection from wind and cold, and 

in summer individuals tend to favor areas with rock cover, often near snowfields, which provides 

refugia from warmer temperatures (Braun et al. 1976).  

 Little information exists on population trends of white-tailed ptarmigan throughout their 

range. The habitats where ptarmigan can be found are not covered by Breeding Bird Survey 

routes, and harvest surveys are generally insufficient to estimate population trends. The species 

has often been cited as being at low risk of extinction in the past because the majority of alpine 

habitats throughout North America are owned and managed by state and federal governments. 

For example, in the U.S. Forest Service Region 2, Hoffman (2006) calculated 95% of the 
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ptarmigan distribution occurred within public lands. However, long-term data is extremely 

limited for white-tailed ptarmigan, and datasets containing more than a decade of continuous 

monitoring only exist in one part of the species’ range.  

 

Study area 

 

 I worked at three study sites in the Southern Rocky Mountains in Colorado, USA (Fig. 

1.2). The study sites were previously used in banding studies of ptarmigan in the 1960s for 

graduate work by Braun (1969). Two study areas were located along the Front Range in 

northcentral Colorado. These sites were Trail Ridge (hereafter TR) at Rocky Mountain National 

Park in Larimer County (40° 25’ 17” N, 105° 44’ 59” W), and Mt. Evans (hereafter ME) in Clear 

Creek County (39° 36’ 38” N, 105° 37’ 29” W). The ME study site was 7.03 km2 in area and had 

an average elevation of 3809 m (range = 3430 to 4076). The study area extent of ME was within 

the Mt. Evans Wilderness Area located in Arapahoe and Roosevelt National Forests, 

administered by the U. S. Forest Service. The TR study site was 9.11 km2 in area and had an 

average elevation of 3570 m (range = 3294 to 3775). The TR study area extent was managed by 

the U. S. National Park Service. The third study area was in the San Juan Range in southwestern 

Colorado. This site was located at Mesa Seco (hereafter MS) in Hinsdale County (38° 1’ 59” N, 

107° 14’ 40” W), directly east of Lake City. The MS study site was 3.25 km2 in area and had an 

average elevation of 3810 (range = 3681 to 3899). The MS study area extent was located within 

Gunnison National Forest administered by the U. S. Forest Service. 

 The number of years of data collection varied at each of our study sites. Capture-

recapture and survey data were collected beginning in 1966 at ME and continued through 2016; 
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no data were collected during the spring of 1977 and 1999. A continuous time series was 

maintained at TR from 1966 through 2000, and again from 2010 through 2016; no data were 

collected from 2001 to 2009. Data collection at these sites took place during the spring (generally 

mid-May to early June) and summer (mid-August to early September), except for 2013 to 2016 

when a radio-telemetry study was initiated for my dissertation work. During this time field crews 

spent the entire breeding season (mid-May to mid-September) in the field to track birds from the 

time of pair formation through the brood-rearing period. There was also a subset of years at ME 

when radio-telemetry occurred in the 1980s and 1990s (1987, and 1989 to 1997), but these full 

datasets were not available at the time of this writing (results of demographic modeling can be 

found in Sandercock et al. 2005). 

 Detailed habitat characteristics of the three study sites are provided in Braun (1969) and 

Braun and Rogers (1971). To briefly summarize, the boundaries of our study areas were 

primarily located in alpine habitats (Fig. 1.3), with some sub-alpine represented in the lower 

elevation areas which were characterized by the presence of Engelmann spruce (Picea 

engelmannii) and willow (primarily Salix planifolia and S. brachycarpa). The alpine areas were 

composed primarily of grasses and sedges (primarily Deschampsia spp., Poa spp., Carex spp., 

Kobresia spp.) and forbs (primarily Geum rossii, Trifolium spp.). Commonly observed predators 

on the study areas were raptors, including red-tailed hawk (Buteo jamaicensis) and prairie falcon 

(Falco mexicanus), several species of mammal, including coyote (Canis latrans), red fox (Vulpes 

Vulpes), long-tailed weasel (Mustela frenata), and common raven (Corvus corax).  
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RESEARCH OVERVIEW 
 

 Long-term data for white-tailed ptarmigan indicate large amounts of variation in both 

annual survival and reproductive rates (Martin et al. 2015). The drivers of this variation have not 

been well explained, with the exception of hunting, which has large impacts on ptarmigan 

survival (Braun 1969). In contrast, factors such as abiotic conditions (i.e., weather and climate) 

have not been shown to strongly influence survival (Wann et al. 2014) or reproduction (Wann et 

al. 2016) for the ME population, although breeding phenology is sensitive to fluctuations in 

spring weather conditions (Wann et al. 2016). Other factors, such as habitat degradation and 

competition (Braun et al. 1991), are probable drivers of population decline, but it is not known if 

these factors actually cause declines in vital rates or simply reduce availability of habitats for 

birds to occupy.  

The absence of strong correlations between abiotic conditions and survival is somewhat 

surprising given the variability of weather and climate conditions in alpine habitats. Winter 

conditions can differ greatly from year to year, and the amount of snowpack is likely to affect the 

availability of willow for ptarmigan in winter (Braun et al. 1976). Why then have strong 

relationships not been documented for white-tailed ptarmigan? There may be a few reasons. 

First, the availability of climate data spanning the 1966-2016 period is limited, specifically for 

the first decades of research. Past work relied on data from the Niwot Ridge Long Term 

Ecological Research (LTER) site, the only alpine weather station available over the study period. 

This station is located 50 km from ME and 40 km from TR. Geographic variation in climate, 

particularly in mountainous terrain, is likely to reduce correlations between these areas, and our 

ability to detect climate effects may have been reduced as well. Next, climate effects on survival 

have only been examined for the ME population. Since the analysis of ME data presented in 
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Wann et al. (2014), a second dataset of comparable length has become available at TR. These 

two sites differ in their topographic characteristics, with ME having a greater elevational range 

and higher average elevation, steeper terrain, and winter habitats that are higher in elevation than 

those used by TR birds (C. E. Braun, personal communication). It may be that local site effects 

interact with climate to produce different responses in different populations (Schwalm et al. 

2016). Finally, while many biologists may be surprised by the modest documented climate 

effects on ptarmigan, there are good reasons to think they should be largely invariant to climate 

conditions. Ptarmigan have evolved to live in one of the most seasonal environments on earth 

and have undoubtedly been exposed to strong selective pressure to handle variability in climate. 

This is particularly true for the adult age classes. For example, Sandercock et al. (2005) found 

that population growth was most sensitive to variation in survival of the oldest age classes, and 

process variance of rates with high sensitivity are predicted to be small based on life-history 

theory (Morris and Doak 2004).  

Finally, weather and climate likely regulate ptarmigan populations indirectly. For 

example, above average precipitation years may be a boon for populations when it influences 

production of food (e.g., Newton 1998; Morrison & Bolger 2002), and years with low 

precipitation or drought conditions are often negatively correlated with reproductive measures in 

grouse studies (e.g., Flanders-Wanner, White & McDaniel 2004; Blomberg et al. 2014). If these 

abiotic effects are indirect, as outlined above, time lags and carryover effects may occur which 

could mask relationships. Thus, indirect weather and climate effects could play a similar or 

greater role in population regulation of ptarmigan, but a solid understanding of the ecology of the 

species is needed to test the impacts of such factors. My dissertation was aimed primarily at 
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improving our understanding of the ecology of white-tailed ptarmigan to better understand the 

viability of the species to expected environmental change. 

Chapter 2 takes a close look at the reproductive biology of white-tailed ptarmigan in the 

context of phenology and resource availability. The observed relationship between warming 

springs and timing of breeding has had a measurable impact on advancing trends in hatching date 

for both the ME and TR populations (Wann et al. 2016). However, what this changing phenology 

means for ptarmigan in terms of fecundity is unknown, and links between breeding phenology in 

ptarmigan and the food resources they depend on have never before been made. In this chapter, 

my co-authors and I examine the consequences of phenological mismatch between timing of 

breeding and abundance of food resources (plants and arthropods). Our study utilized individual-

based data on ptarmigan hens radio-marked at ME, TR, and MS, where we tracked hens 

throughout the breeding season to measure their reproductive rates. We also measured temporal 

changes in availability and abundance of plants (all sites) and arthropods (ME and MS) over the 

same period and developed predictive phenology curves that were then used to calculate 

covariates; these covariates were ultimately fit to nest and chick survival models to formally test 

our phenological mismatch hypothesis.  

In Chapter 3, I utilize long-term datasets available for ME and TR to test relationships 

between abiotic (i.e., weather and climate) effects and several vital rates (fecundity and survival 

of subadults and adults). Unlike previous analyses, I used high-resolution climate data (PRISM) 

developed by Oregon State University. Additionally, having over 5 decades of data allowed us to 

examine density-dependence in both fecundity and survival rates. We utilized an integrated 

population model (IPM) for our analyses, which combines multiple datasets into a single analysis 

by linking count data and vital rates through a population transition matrix and joint likelihood. 
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This provided a way to test complex relationships between our different data sources. 

Additionally, combining three data sources allowed us to estimate juvenile survival without 

banding data, which we know severely underestimates true survival. Here, we provide the first 

sex-specific estimates of juvenile survival for two study areas. 

In Chapter 4, I build on work of Sandercock et al. (2005) to conduct a life stage 

simulation analysis (LSA) and assess extinction probabilities for the ME and TR populations. 

LSA provides a way to evaluate the influence of uncertainty and variation in vital rates on 

population growth, which can in turn be used to examine different management or environmental 

scenarios and their effects on growth. LSA also provides a way to partition the variation in 

growth among different vital rates used in our IPM to identify the vital rates that most strongly 

affect growth. I then used the best survival and fecundity models developed in Chapter 3 to 

calculate cumulative distribution functions for the time it would take for populations to reach a 

quasi-extinction threshold.  

Finally, in Chapter 5 I briefly outline potential directions for future ptarmigan research. 

In this dissertation I formatted chapters for publication in peer-reviewed journals. Each chapter is 

expected to have several contributing co-authors; therefore, I use the pronoun ‘we’ exclusively 

throughout the data chapters. 
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FIGURES 

 

 

Figure 1.1. Study photos of white-tailed ptarmigan (Lagopus leucura). Clockwise from top left, 

breeding-age male molting from basic to nuptial plumage in May (a), female in complete nuptial 

plumage (VHF antenna can be seen) in June (b), nest at base of boulder with typical clutch of 6 

(c), and chick less than 3 weeks old (d). (Photo credits a, b, d, Matthew Broadway.) 
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Figure 1.2. Study areas where white-tailed ptarmigan (Lagopus luecura) populations were 

monitored in Colorado, USA. Study areas included Trail Ridge (TR) in Larimer County, Mt. 

Evans (ME) in Clear Creek County, and Mesa Seco (MS) in Hinsdale County. Smaller maps on 

left side of figure show delineated study-area boundaries for each site. During years when radio-

telemetry was used, areas outside of the study boundaries were typically searched, but territories 

outside study area boundaries were not considered for comparisons of long-term trends. The 

range of white-tailed ptarmigan summer and winter habitat was based on a predictive model 

produced by Colorado Parks and Wildlife (CPW). The elevation range is provided in feet. 
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Figure 1.3. Typical white-tailed ptarmigan (Lagopus leucura) brood habitat at Mt. Evans (ME) in 

Clear Creek County, Colorado, USA. (Photo credit William Dooling.) 
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CHAPTER 2: EFFECTS OF RESOURCE AVAILABILITY AND BREEDING PHENOLOGY 

ON ALPINE PTARMIGAN REPRODUCTIVE RATES 

 

INTRODUCTION 

 

 Reproductive phenology is a critical component of fitness for a multitude of species 

across a wide range of plant and animal taxa (Visser and Both 2005). Climate change has been 

shown to be a major driver of alterations in reproductive phenology events in recent decades 

(Walther et al. 2002, Parmesan and Yohe 2003), particularly for birds, where the majority of 

documented cases have shown earlier breeding associated with warming spring temperatures 

(Crick and Sparks 1999, Crick 2004, Dunn and Møller 2014). The ability to time reproductive 

events to coincide with abundance of food resources is crucial for meeting energetic demands of 

both young and adults in animal populations occurring in seasonal environments (e.g., Perrins 

1970; Thomas et al. 2001). When the rate of the phenological response to warming differs 

between individuals and their food resources, phenological mismatches can occur (Edwards and 

Richardson 2004). Over the past two decades a substantial attention has focused on decoupling 

interactions between species (usually consumers and prey) in different trophic levels with respect 

to phenological events because of the direct effects these interactions can have on fitness (Both 

et al. 2006). Findings from studies investigating phenological mismatches between predators and 

prey have shown decoupled interactions can be severe for consumers (Jones and Cresswell 

2010), but loss of common interactions can be complex and may actually lead to new resource 

opportunities (Miller-Rushing et al. 2010).  
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 Phenological mismatches have been observed in long-term studies of wild bird 

populations. Some documented examples include mistiming of migratory events between 

wintering and breeding areas in pied flycatchers (Ficedula hypoleuca) leading to arrivals after 

the seasonal pulse in invertebrate food (Both and Visser 2001, Both et al. 2006), and common 

cuckoos (Cuculus canorus) arriving later than the hosts whose nests they parasitize (Saino et al. 

2009). Indirect evidence based on mistiming between arrival dates and temperature variables 

associated with plant phenology suggests phenological mismatches in migratory species may be 

common (Saino et al. 2010). This might be due to greater potential for asynchrony in weather 

and climate patterns as distance between wintering and breeding grounds increases, which can 

ultimately lead to weather cues at wintering areas being misrepresentative of conditions at 

breeding areas. Some evidence suggests that species with longer migratory paths are being 

negatively impacted, although this relationship may vary geographically (Jones and Cresswell 

2010). The potential for phenological mismatches to occur in resident or short-distance 

migratory species is thought to be lower as environmental cues used to time reproductive events 

are more likely representative of local conditions. However, phenological mismatches are not 

only confined to migratory species. Resident great tit (Parus major) populations in the United 

Kingdom have been under increasing selection pressure for earlier breeding due to warming 

springs, but their phenological response has not kept pace with warming springs (Visser et al. 

1998, Both et al. 2006). Thus, regardless if the species is migratory or resident, understanding if 

phenological mismatches are occurring in animal populations with changing timing of 

reproductive events is critical to assess population-level consequences. Other important factors 

that are less frequently considered in phenological studies are the types of ecological systems 

inhabited. This is an important consideration because length of growing seasons can vary widely 
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between ecosystems, and breeding season length can affect both the life-history characteristics of 

populations (Bears et al. 2009) as well as the number of breeding attempts that can be made 

within a season (Martin and Wiebe 2004). 

 High-elevation ecosystems are one of the most extreme examples of seasonal 

environments, with long winters and short growing seasons (Seastedt 2001). Characteristics of 

these environments such as topography and accumulated precipitation over the winter period can 

have large impacts on the extent of snow-free areas where plants can grow in the summer, and 

depending on the amount of snowpack and spring temperature, the start of the growing season 

may vary considerably from year to year. This extreme seasonality and shortened period of 

resource productivity suggests animals in these habitats may incur higher fitness costs if they 

breed too early or too late relative to the pulse in food availability (Martin and Wiebe 2004). This 

prediction stems directly from limitations in the number of breeding attempts that can occur over 

a short growing season (Martin and Wiebe 2004). Fecundity (i.e., the number of young produced 

per female) in high elevation ecosystems tends to be lower compared to lower-elevation 

ecosystems (Badyaev and Ghalambor 2001), and fewer breeding opportunities may greatly 

influence annual variability in this vital rate. Thus, it is necessary to consider the distribution of 

resources throughout the growing season to better understand seasonal limitations faced by 

breeding species. 

 A major limitation of assessing phenological mismatches in wildlife populations is the 

lack of appropriate data available at different trophic levels over which life-history 

characteristics interact. For example, many long-term studies of animal populations exist that 

document phenological responses to warming temperatures, but the fitness consequences of these 

observed changes may not be possible to assess when similar data on the phenology of food 
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resources have not been recorded (Visser and Both 2005). Therefore, most studies are forced to 

use proxies for the resources of interest to estimate the extent of mismatch between breeding 

phenology and availability of food. Temperature is often correlated with timing of plant growth 

or insect emergence. Temperature-based covariates are commonly used in the absence of direct 

resource data to make inferences on the amount of overlap that occurs between timing of 

reproduction and availability of food. However, temperature-based variables are not always an 

appropriate proxy for phenological studies and will be misleading if they are poorly correlated 

with food resources. Therefore, it is important to consider phenological measures of both the 

focal species and the resources they depend upon to understand how much a species should be 

changing its reproductive phenology to track its environment (Visser and Both 2005). This 

approach also provides a framework to estimate effects of phenological mismatch on individual 

reproduction which, along with survival, is a key determinant in population growth.  

 We examined individual fitness in an alpine specialist and how it relates to environmental 

conditions and availability of food resources. The white-tailed ptarmigan (Lagopus luecura) is 

the smallest species in the grouse sub-family Tetraoninae and a resident endemic to alpine 

(breeding) and subalpine (non-breeding) habitats throughout western North America (Martin et 

al. 2015). Hens initiate nesting in the first half of June with clutch sizes varying from two to 

eight eggs (Martin et al. 2015). Hens may renest if they lose a nest during the laying or early 

incubation period, but will only raise one brood in a season. White-tailed ptarmigan (hereafter 

ptarmigan) have high annual survival and low fecundity relative to other species of Lagopus  

(Sandercock et al. 2005). Two populations studied in Colorado since the late 1960s have 

advanced their nesting phenology significantly in response to warming springs, but the rate of 

change varied between populations. Reproduction over this same time period declined in the 
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population that advanced its average breeding phenology the most, but remained unchanged in 

the other (Wann et al. 2016). We initiated a three-year telemetry study to investigate potential 

mechanisms underlying these differences using data from three populations, two of which were 

our long-term study sites. We tracked individual hens throughout the breeding season during this 

period to collect information on nesting and chick survival, in addition to temporal changes in 

alpine plant and insect abundance. Other environmental factors were also considered, including 

weather events during the nest and brood-rearing periods, which are known drivers of 

reproduction in birds (Newton 1998). Our objectives were twofold. First, we investigated 

relationships between primary plant productivity and food availability at our study sites. We 

posed the question, “How does plant productivity relate to phenology of forage forbs and insect 

prey?” We measured temporal changes in plant abundance at all our study sites, and insect 

abundance at a subset of years and sites, and predicted the seasonal relationships using 

generalized additive models. We assessed consistencies of patterns across years and sites and 

used cross-correlation functions to assess correlations between known forage forbs and primary 

productivity, and insects and primary productivity. Second, we tested whether reproductive rates 

in ptarmigan varied as a function of phenological differences between timing of reproductive 

events relative to plant resources. We asked the question, “Do phenological mismatches lead to 

decreased reproductive rates?” We used the predictions of changing temporal abundance for 

plant productivity and forage forbs to calculate indices of mismatch for each group (Fig. 2.1) to 

address this question. These indices were then fit as covariates to capture-recapture models to 

predict daily nest and chick survival as a function of synchrony with local resources. 
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METHODS 

 

Study area 

 

 Data were collected over three breeding seasons (2013-2015) at three alpine sites in the 

southern Rocky Mountains. The Mt. Evans (ME, 39° 35’ N, 105° 37’ W) and Trail Ridge (TR, 

40° 25’ N, 105° 45’ W) sites were along the Front Range in northcentral Colorado. The ME site 

had an area of 7.03 km2 ranging in elevation between 3535 and 4270 m, and the TR site had an 

area of 9.11 km2 ranging in elevation between 3505 and 3688 m. The ME study boundary was 

within the Mt. Evans Wilderness Area in the Arapaho and Roosevelt National Forests managed 

by the U.S. Forest Service, and TR was on the northcentral side of Rocky Mountain National 

Park managed by the U.S. National Park Service. The Mesa Seco (MS, 38°1’ N, 107°14’ W) site 

was in the San Juan Range of southwestern Colorado and had an area of 3.25 km2 ranging in 

elevation between 3718 and 3900 m. The MS site was located within the Grand Mesa National 

Forest managed by the U.S. Forest Service. Weather was highly seasonal at all sites with 

precipitation generally falling in the form of snow throughout the non-breeding season (Sep-Apr) 

and rain or hail during the breeding season (May-Aug). Snowpack varied considerably among 

years and sites and average melt out dates generally occurred earliest at MS (1 Jun) and latest at 

TR (13 Jun). Average monthly temperatures for all sites were warmest in Jul (7.9°C) and coldest 

in Dec (-9.4°C). Vegetation was typical of alpine habitats in Colorado and detailed site-specific 

descriptions for ME and TR can be found in Braun (1969).  
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Field data collection 

 

Field protocols were approved by the Colorado State University Institutional Animal 

Care and Use Committee (IACUC, protocol # 12-3352A). Female ptarmigan were located in 

May and early June by first locating males paired with hens using broadcasts of male territorial 

calls (Braun and Rogers 1972) or by scanning the edges of snowfields with binoculars. Using a 

modified noose (Zwickel and Bendell 1967), we captured, weighed, and measured (carpal and 

tarsus length) hens and fit with a 9-g radio transmitter with an elastic collar (Model RI-2D, 

Holohil, Ltd., Carp, Ontario). All hens received an aluminum State of Colorado band and 2-4 

plastic colored bandettes for individual identification in the event of transmitter failure. Hens 

were located 2-3 times weekly from spring until the second week of Sep to monitor breeding 

activities. Nest locations were checked from a distance of 20-30 m using binoculars or 

triangulation of radio signals to reduce disturbance. If a hen was off the nest and in a new 

location during a visit, the nest site was visually inspected to check if eggs were destroyed or 

hatched. Nest contents were inspected on the 10th day a nest was known to exist by approaching 

the nest, causing the hen to temporarily vacate (usually walk off), allowing eggs to be counted. 

Two temperature data loggers (Thermochron iButton DS1921G, Maxim Integrated, San Jose, 

CA) were pinned to the bottom of nests using a single 5-cm roofing nail during the 10 day nest 

check beginning in 2014. The presence of temperature data loggers allowed us to record the 

precise date a nest hatched or failed. Hens with successfully hatched nests were visually located 

the first day they were no longer on a nest using binoculars from a distance of 5-20 m to count 

the number of chicks. Brooding hens were observed until chicks began to forage and could be 

counted. The incubation period for ptarmigan lasts approximately 22-25 days. Ptarmigan chicks 
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are precocial and leave the nest within a few hours after hatching and generally remain with hens 

until at least October (Braun et al. 1993). Chicks can glide for short distances at approximately 

10-12 days but cannot independently thermoregulate without a brood hen until they reach 

approximately 28 days of age, at which point they are physiologically capable of surviving 

independently of adults (Martin et al. 2015).   

 

Invertebrate and vegetation sampling 

 

 We identified brood-use areas at two of three study sites (ME and TR) prior to the start of 

our study based on 43 years of long-term reproductive data (Fig. S2.1 and S2.2) (Wann et al. 

2016). Brood locations obtained over multiple decades were used to delineate areas that were the 

focus of vegetation sampling. We had limited prior knowledge of brood-rearing locations at MS 

based on brood locations obtained during surveys in 2012. Locations from these surveys were 

used to delineate brood-use areas in the same manner as ME and TR, but we updated the 

delineated areas following the 2013 season due to the addition of newly observed use locations 

(Fig. S2.3). Methodologies for delineation of brood-use areas, study area figures, and generation 

of sample points are in Supplementary Materials Part 1 (S2.1).  

 Plant phenology and productivity within brood-use areas were monitored throughout the 

breeding season to estimate site-specific variation. This was done by generating random sample 

points at the beginning of the study, which were visited at weekly intervals. Each sampling point 

consisted of a 1-m2 area marked with two wood stakes placed at opposite corners of the sampling 

quadrat. A 1-m2 sampling frame was placed over the stakes during each sampling period to 

ensure consistency in the area surveyed. Information recorded at each sampling period included 
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the species of plant in bloom (i.e., presence of flower or seed head), time of day, and a 

normalized difference vegetation index (NDVI) photograph. NDVI photographs were taken with 

a standard digital camera modified to record both visible and near infrared light (Canon ELPH 

110, MaxMax, Ltd., Carlstadt, NJ). Each photo was taken from roughly 1.5 m directly above the 

sampling frame in a plane horizontal with the ground. We took photographs from the same 

orientation during each visit between 10:00 and 14:00 hours to reduce variability in lighting 

conditions (Fig. S2.4). Photographs were processed using scripts written in the ImageJ language 

(Schneider et al. 2012) by extracting pixel-specific RGB (red-green-blue) values and calculating 

an average NDVI value for each image (Fig. S2.5). Methods for analysis of NDVI photographs 

and timing of bloom are described in S2.2. 

Temporal changes in invertebrate abundance were measured by sampling 20-m insect 

transects within the delineated brood-use areas at ME (2013-2015) and MS (2013-2014). 

Invertebrate abundance could not be measured at TR due to sampling restrictions within the 

park. Between four to six sticky aphid papers (dimensions 10.2 x 17.8 cm; Seabright 

Laboratories, Emeryville, CA) were pinned to the ground with 5.1 cm roofing nails along 

transects (specific transect locations in Table S3.1). Aphid papers were removed and replaced 

every seven days. Collected traps were wrapped in clear plastic wrap to keep invertebrates intact. 

Collected aphid papers were stored in brown paper bags on a dry shelf until processed. The 

number of captured invertebrates was recorded for each paper trap using a stereoscopic 

microscope. We identified individual invertebrates to the lowest taxonomic level which was 

either family or genus for the majority of samples. Counts of invertebrates were used to estimate 

a weekly transect density (D) for each specific taxonomic category. Density was calculated for 
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each taxa and year for each sample paper p, transect t, and week w, by dividing the sum of the 

total count (C) by the sum of paper area (A):  

, = ∑ , ,�=∑ , ,�=  

 The lengths of time papers were left in the field at times varied by 1-3 days due to 

weather and other sampling logistics. As a result, D was corrected for variation in exposure 

period by calculating a daily transect density. Finally, a standardized index (SI) was calculated 

by dividing D by the maximum sample value of the daily transect density for a given year to 

correct for any biases that may have existed between observers counting insects (observers 

processing papers varied by year). Cross-correlation coefficients were used to test temporal 

correlations between plant productivity and insect abundance. This provided a way to calculate 

correlation coefficients at different time lags (i.e., correlations between plant productivity and 

insect abundance produced by shifting the phenology curve of insects either forward or 

backwards by a set number of days relative to a stationary plant productivity curve). Additional 

details on invertebrate sampling and calculation of taxa-specific abundance are in S2.3.  

 

Estimating temporal changes in resources 

 

Generalized additive models (GAMs) were used to predict daily changes in plant 

phenology, plant productivity, and invertebrate abundance. GAMs provide a practical way to 

model non-linear relationships between response and predictor variables through use of 

smoothing functions (Wood 2006). We fit GAMs to our data using the mgcv package (Wood 

2006) in R (R Core Team 2013). Models were fit using either the density (insects) per transect or 

average NDVI (plants) per point as the response variable and Julian day of the sample as a 
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covariate. A third type of GAM was also fit to plant data which used the presence (coded as 1) or 

absence (coded as 0) of bloom as a response variable for known food species, Julian day as the 

covariate, and a binomial link function. This model type produced the probability of a forage 

species being in bloom for a given day of the year. In all cases models were fit separately for 

each year and site. Modeling the relationship between response variables and day of season 

provided temporal predictions of peaks in food abundance specific to year and study sites. It was 

from these predicted relationships that we tested the effects of individual breeding phenology on 

ptarmigan fitness. We calculated cross-correlation coefficients in R using the ccf function 

available through the basic statistics package to assess the phenological relationships between 

forage forbs, insects, and plant productivity (measured by NDVI). Cross-correlations provided a 

way to calculate correlations between two time series at different daily time lags, which provided 

us with information on the number of days before or after the peak in plant productivity 

resources for which the correlations were highest (described in S2.4).  

 

Nest survival 

 

 Daily nest survival (S) was estimated from monitored nests using the nest survival model 

developed by Dinsmore, White & Knopf (2002). The model is dependent on four primary pieces 

of information collected from each nest including: (1) the day the nest was found, (2) the last day 

a nest was checked and active, (3) the last day the nest was checked, and (4) nest fate (either 

successful or unsuccessful, coded as a 0 or 1). This information was compiled into an encounter 

history for analysis using a likelihood-based approach to estimate S. All nest survival models 

were fit using MARK (White and Burnham 1999), software that offered a flexible parameter 
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estimation approach and allowed for complex model structures, including inclusion of 

covariates, over which S could vary. The logit link function was used for all models in the 

analysis.  

 

Chick survival 

 

 We estimated daily chick survival using open-population survival models, which allowed 

for counts of young within family groups (Lukacs et al. 2004). The young-survival model is an 

extension of the Cormack-Jolly-Seber model (Cormack 1964, Jolly 1965, Seber 1965) and 

consists of parameters for apparent survival (ϕ) and recapture probability (p). Data on the 

number of young with attending and individually-marked adults is used to construct individual 

encounter histories consisting of counts of chicks observed during each encounter period. A 

likelihood-based approach was used to obtain estimates for parameters ϕ and p. Chick survival in 

the Lukacs et al. (2004) model refers to survival of individual chicks within broods and not entire 

broods. The parameter ϕ in the young-survival model is considered apparent survival because 

chicks separated from the attending parent cannot be distinguished from true mortality. However, 

if chicks die as a result of separation from hens, which is highly likely for chicks younger than 4-

5 weeks given limitations in their ability to thermoregulate (Braun et al. 1993), ϕ will be close to 

true survival. Encounter histories for individual broods were standardized so that the first 

encounter occasion represented the date of hatch for all broods (i.e., there were no 0’s preceding 

the first count in the encounter history). We constructed encounter histories for each hen over a 

42-day period post-hatch, as this was the minimum time span over which we were able to 
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monitor hens for all years in our study. Chick survival models were fit using the young survival 

module in MARK. 

 One assumption of the young-survival model is that young cannot be added to broods 

(i.e., no chick adoption). This assumption may have been violated at our study sites because 

ptarmigan are known to adopt young from other broods at rates ranging from 4-14% (Wong et al. 

2009). Brood-mixing was observed occasionally at our sites for chicks older than 5 weeks prior 

to our telemetry study, but identifying the correct hen to assign chicks to was generally 

straightforward due to size differences between chicks of different ages, and because most 

broods were captured and marked with State of Colorado bands once they reached the age of 4 to 

5 weeks. We have no reason to believe bias in survival estimates should exist for our dataset but 

acknowledge chick adoption violates model assumptions if it occurs and is not corrected. 

 

Model comparisons 

 

 An information-theoretic approach was implemented for model inference and the 

Akaike’s Information Criterion adjusted for small sample sizes (AICc) was used to choose the 

best model in a candidate model set (Burnham & Anderson 2002). The number of possible 

model comparisons was large for both nest and chick survival models, and a two-stage approach 

was used to reduce the number of candidate models in each model set. We considered five basic 

structures for parameters S (daily nest survival) and ϕ (daily chick survival) for the first stage. 

These models included a simple structure with only year or site effects, an additive relationship 

between year and site (year + site), and an interaction between year and site (year x site). Also, 

prior to construction of candidate models for daily chick survival, we examined if chick age was 
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an important predictor of survival. An intercept-only model that lacked structure (i.e., survival 

constant among sites and years) was included and served as a baseline comparison to evaluate 

more complex models. Previous studies have found mortality is highest for grouse chicks during 

the first few weeks of life, and survival increases substantially as chicks age (reviewed by 

Hannon and Martin 2006). We tested several models that included only chick age prior to 

construction of baseline models, and found that a structure with increasing age through the first 

18 days post-hatch followed by constant survival was a strong predictor of daily chick survival. 

We included this effect both by itself and as an additive and interactive component with the best 

base structure. This was done after the best starting structure for daily chick survival was 

identified. Because chick survival models also included recapture probability p, there were two 

parameters with five possible structures each for this model type, and we selected the structures 

separately for each parameter. To choose the best structure for parameter p, the parameter ϕ was 

kept in the most general form (site x year) and the five different structures of p were then 

compared using AICc. The structure of p from the model with the lowest AICc was then used to 

compare the five structures for ϕ, and the model receiving the lowest AICc was included in the 

candidate model set. Detection of chicks was contingent on finding radio-marked hens, and 

considering year and site effects for p may not seem intuitive. However, seasonal technicians 

varied by site and year; considering these effects accounted for potential differences in observer 

abilities.  

The second stage of building the candidate model set considered several covariates to 

explain variation in nest and chick survival. We added covariates to our base model structure 

chosen during the first stage of model selection. For chick survival models, additional modeling 

of parameter p was not considered because environmental covariates were not thought to affect 
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our ability to detect chicks as brood detection was through the hen. A covariate for hen age was 

fit as an indicator variable (0 for yearling and 1 for adult) and several weather variables were fit 

as individual covariates. Weather covariates were calculated over an 18-day period post-hatch 

because our best covariate for chick age indicated this was the period over which daily chick 

survival increased. Weather effects considered included cumulative precipitation and the sum of 

minimum and maximum temperatures. Fitting weather effects as individual covariates was 

necessary because our encounter histories were standardized with the first encounter occasion as 

hatch day.  

We calculated the time difference between peak plant productivity and date of hatch (date 

of hatch – date of peak NDVI) to estimate the effects of timing of breeding relative to 

availability of food resources. We estimated resource abundance more directly by calculating the 

area under the curve predicted from the GAM model between hatch date and 28 August, a date 

after which vegetation on all of our plots had typically begun to senesce, as a measure of 

seasonal mismatch. These mismatch indices were calculated for the area under the plant 

productivity curve (plant area mismatch), area under the predicted timing of bloom curve (i.e., 

area mismatch calculated for four forage species: Geum, Trifolium, Artemisia, and Polygonum), 

and summed area under all the curves of bloom species (forage area mismatch). We chose forage 

forbs for species we knew were consumed by ptarmigan (May and Braun 1972) as covariates 

whose strength would be measured through AICc model support. Increasing values of the 

seasonal covariates were predicted to correlate with declines in daily chick survival, because 

higher values indicate broods are reared at a time that does not coincide with peak resource 

abundance (Fig. 2.1). Insects were only measured at 2 sites for a total of 5 years, and they could 

not be directly used as covariates in survival models. We instead made inferences from the 
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correlation analysis previously described. Covariates were considered individually as additive 

effects with the base structure chosen for ϕ and, in some cases, as additive and interactive effects 

with other covariates (e.g., min + precip). This was only done if interactions were thought to be 

biologically meaningful. For example, interactions between site and precipitation effects were 

not tested because presumably wet conditions should affect chicks similarly at all sites.   

Information criteria provide a way to select the most parsimonious model in a model set, 

but AICc does not tell anything about model fit. To assess model fit we used a pseudo R2 value 

which was calculated as: 

 = − − ln �− ln   

 

where � is the likelihood of the data given the fitted model  (i.e., covariate model), and  is the 

likelihood of the data given the null model (Nakagawa and Schielzeth 2013). We report the 

pseudo R2 measure of fit for nest and chick survival models. 

 

RESULTS 

 

Plant phenology 

 

 A total of 3,704 NDVI photographs were collected during the breeding season from 2013 

to 2015. NDVI photos originated from 126 sampling points where we identified 78 plant species 

(Table S2.1). Generalized additive models predicted the peak of maximum NDVI for each site 

and year (Fig. 2a). Timing of maximum NDVI (averaged across sampling points) varied by site 

and year, with ME having the earliest average peak NDVI (26 Jul) followed by TR (5 Aug) and 
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MS (16 Aug) (Fig. S2.6). By year, 2013 had the earliest average peak NDVI (1 Aug) followed 

by 2014 (7 Aug) and 2015 (8 Aug). Timing of peak bloom for several forage species was 

predicted and the relationship with NDVI was examined with Trifolium (T. parryi, dasyphylum, 

and nanum) blooming earliest, followed by Geum rossii, Artemisia (A. frigida and scopulorum), 

and Polygonum (P. bistortoides and viviparum) (Fig. 2B). Comparisons between NDVI and 

forage species’ bloom suggested peak plant productivity generally lagged forage bloom, and 

these patterns were consistent across sites and years (Table S2.1). Species of Trifolium were the 

earliest bloomers at our study sites, followed by species of Artemisia, G. rossii, and Polygonum. 

Species of Polygonum, which are highly important forage forbs for ptarmigan, closely coincided 

with peaks in plant productivity with average time lags of -2.6 days producing the highest 

correlations. Overall, the correlation relationships were strongly consistent within sites, and 

generally consistent among years (Figs. S2.13 to S2.15). 

 

Arthropod phenology 

 

 Many different arthropod taxa were captured by aphid sticky traps (Table S3.2). The 

most abundant were members of the Muscidae (mostly “house flies”, elevation anthophilous 

species, mostly of the genus Thricops) and Acrididae (mostly alpine Club-horned grasshoppers, 

Aeropedellus clavatus (Thomas)), both common prey items for ptarmigan chicks (G. T. Wann, 

personal observation; May & Braun 1972). Several butterfly families of Lepidoptera were also 

captured, but the food value of these families were unknown. Abundance of flies generally 

preceded plant productivity (Figs. S2.7 and S2.8), and correlation coefficients suggested plant 

productivity lagged fly abundance an average of 13 days (range = 0 to -29 days) at ME and 9.5 
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days (range = 0 to -19) at MS (Table S2.2). Grasshopper abundance increased continuously 

across the breeding season for all years, even after plants began to senesce, and correlation 

coefficients suggested plant productivity preceded grasshoppers an average of 12.3 days at ME 

(range = -40 to -38 days), but the highest correlation occurred at day 0 for MS (only peak 

correlations on day 0 observed), indicating no lag (Figs. S2.9 and S2.11). The relationships 

between plant productivity and abundance of Muscidae and Acrididae were generally similar 

among years, although there was clear annual variation. In contrast, correlations for Paplionidae, 

Nymphalidae, and Pieridae, relative to plant productivity, were remarkably stable and varied 

little each year (Figs. S2.7 and S8). Papilionidae (Rocky Mountain Parnassian, Parnassius 

smintheus Doubleday) lagged plant productivity an average of 28.7 days (range = 27 to 31 days) 

at ME, and 0 days at MS (only 0 correlations calculated), Nymphalidae (mostly lesser fritillaries, 

Boloria spp.peaked at the same time as plant productivity at ME with an average of a 0.7 day lag 

(range = 0 to 2 days), and Pieridae (the alpine Mead Sulphur, Colias meadii W. H. Edwards) 

lagged plant productivity an average of 27.3 days (range = 26 to 29 days) at ME, but peaked at 

the same time as plant productivity at MS (only 0 observed). Overall, correlations were similar 

among years for Papilionidae, Nymphalidae, and Pieridae (Figs. S2.10 and S2.11). 

 

Nest survival 

 

 A total of 82 hens were captured prior to onset of nesting and monitored throughout the 

breeding seasons from 2013 to 2015. Monitored hens initiated 120 known nests at our study sites 

(Table 1), but nests lost during the egg laying or early incubation stages may have been missed. 

Of the total nest sample, 12 were the result of hens laying a second clutch due to loss of first 
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nests. We were unable to calculate clutch sizes for nests lost prior to inspection of nest contents. 

Of all nests surviving to the 10-day count period, adults laid the largest average clutches (mean = 

5.7 eggs, range = 3-7 eggs, n = 61 nests) followed by subadults (mean = 5.2 eggs, range = 3-7 

eggs, n = 31 nests). No evidence of nest abandonment was found at any of our sites during the 

study. A total of 67 nests (~56%) successfully hatched one or more eggs. Nest inspections were 

conducted at 61 of 67 successful nests for a total count of 330 eggs, 301 of which hatched (~91% 

egg viability).  

 We evaluated 19 nest models (Table 2.2; full model set Table S2.1). The first stage of 

model selection indicated models with site and year effects were no better than a null model. 

However, a model with site effects received nearly equal support to the null model, and it was 

used as a base structure per which covariates were evaluated. The null model was also retained in 

the candidate model set given the closeness between the two models. The top ranked model 

included a covariate for hatch date relative to the median hatch date for a given site and year with 

an estimated positive slope (Fig. 2.3b), suggesting hens nesting later had higher daily nest 

survival compared to earlier nesters (odds of daily survival 1.04 times higher for every day after 

the median hatch date). The second ranked model lacked any covariates (null model) and made 

no distinction of daily nest survival among sites or years. The third ranked model included only a 

site effect suggesting variation in daily survival among sites (odds of daily survival at ME 0.64 

times lower than TR, and odds of daily survival at MS 1.19 times higher than TR). The fourth 

ranked model included a seasonal trend which suggested daily survival declines seasonally (odds 

of daily survival 0.98 times lower per every day of breeding season; Fig. 2.3d), and the fifth 

ranked model included plant productivity at time of hatch (‘ndvihatch’, measured as mean 

NDVI) which was positively related to daily survival (odds of daily survival 23.57 times higher 
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for every unit increase in NDVI; Fig. 2.3a). These top five models accounted for roughly 50% of 

support among candidate models. The model including a productivity mismatch produced 

predictions consistent with our expectations in terms of slope (Fig. 2.3c), but was poorly 

supported. Overall, support was widely distributed among models with no clear best structure 

among the candidate set, and  for the top model was ~2%.  

 

Chick survival 

 

 A total of 390 chicks from 78 broods were monitored from 2013 to 2015 at our study 

sites. Of the 78 broods monitored, 11 were found post-hatch and could not be used in analysis 

because brood sizes on hatch day were unknown. This reduced the number of chicks used in our 

analysis to 327 from 67 broods (Table 2.1). Chicks used in the analysis originated from 57 hens 

and young were attended by adults in 61% of broods (43/67) and subadults in 39% of broods 

(24/67). The average brood size at hatch for both age classes combined was 5 chicks, with adults 

averaging the largest broods (average = 5.1, range = 1-7 chicks) followed by subadults (average 

= 4.4, range = 1-6 chicks).  

 A total of 26 models were included in our candidate model set for chick survival (top 5 

models in Table 2.1, full model set results in Table S2.2). The first stage of model selection 

indicated recapture probability (p) varied by site, but not year, indicating site characteristics were 

responsible for variation in our ability to relocate chicks. Estimates for p were high (ME = 0.947, 

95% CI = 0.929 to 0.960; MS = 0.966, 95% CI = 0.931 to 0.984; TR = 0.899, 95% CI = 0.870 to 

0.922) indicating that chicks were likely to be observed during brood visits if they were alive and 

with the brood hen. Age was an important component of the base model structure, and a model 
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with only chick age reduced the AICc value by 98. The best base structure for daily survival (ϕ) 

included an interaction between site and year, and an interaction between site and chick age, 

indicating daily survival of chicks varied both geographically and seasonally. The relationship 

between age and survival varied by site, and this was the structure to which covariates were 

evaluated. Generally, covariates for weather and plant productivity metrics improved model 

likelihood over the best base structure. A model with an interaction between chick age and plant 

area mismatch received 89% of model support and predicted chicks less than 18 days of age to 

have lowest chick survival when seasonal area mismatch of plant productivity was high (Fig. 

2.4). Estimates from this model indicated that the odds of a chick surviving the day was 0.81 

times less likely at ME compared to TR, and 0.18 times less likely at MS compared to TR (odds 

ratios based on coefficients for site), and the odds of daily survival were 0.61 times less likely for 

every unit increase in the mismatch covariate. The next four most highly ranked models were 

nearly equivalent in their model support. A model with precipitation predicted that daily chick 

survival increased when cumulative precipitation over the 18 days post-hatch period also 

increased. The next best model predicted a pattern for the forage area mismatch that was similar 

to the plant area mismatch, although the magnitude of the effect was much less. Models which 

included average daily minimum or maximum temperatures had estimated regression 

coefficients that were negative and predicted a decrease in daily chick survival when 

temperatures were high. Models with species-specific forage area mismatch all predicted a 

decrease in daily chick survival as the area mismatch increased. The average percent change 

under mismatch values of 1 to values of 6 was 15.1% (Table 2.3). Our best model had a  value 

just over 10%. 
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DISCUSSION 

 

 Timing of reproductive events can be a critical component of fitness for animals living in 

seasonal environments (Perrins 1970, Thomas et al. 2001). High mountain habitats are extreme 

examples of seasonal environments. Growing seasons are short relative to those occurring at 

lower elevations. Little research has focused on how timing of breeding relative to availability of 

resources impacts species in alpine habitats. Ptarmigan breeding in Colorado’s alpine zone 

provided an opportunity to examine how closely their reproductive phenology matched the 

phenology of plants and insects, and how the extent of mismatch impacted their fitness. We used 

data collected from three ptarmigan populations in Colorado from 2013 to 2015 and reported the 

daily variability of plant and insect resources and how they are related. We demonstrated that 

one component of fitness in ptarmigan, daily chick survival, can decrease dramatically when 

timing of nest hatch does not coincide with abundance of these resources.  

   

Phenological relationships among resources 

 

 Insects are an important component of the diet of ptarmigan chicks less than 3 weeks of 

age and comprise up to 63% of total dry weight based on crop contents examined by May 

(1975). We identified a subset of known invertebrate taxa consumed by ptarmigan chicks that 

were captured in sufficient quantities at Mt. Evans to estimate daily changes in abundance and 

calculate cross-correlations with plant productivity. In addition to flies, May and Braun (1972) 

found crane flies, beetles, spiders, and ants in smaller quantities in the crop contents of ptarmigan 

chicks. Unfortunately, our traps did not capture these other invertebrate taxa in sufficient 
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quantities to model temporal changes in their abundance. May and Braun (1972) also found that 

insect immatures formed a significant quantity of invertebrates consumed by chicks, but these 

larvae could not be identified to species. Insect larvae have been shown to be an important 

component of food in the diet of most species of Tetraoninae whose crop contents have been 

examined (Potapov and Sale 2014). Insects dominate the diet of chicks of black grouse (Tetrao 

tetrix) and capercaillie (Tetrao urogallus) through the first 14 days post-hatch, but the relative 

proportion of insects differs between species, and the rate of insect consumption declines earlier 

in black grouse than capercaillie (Wegge and Kastdalen 2008). For example, nearly 70% of 

capercaillie chick diet in the first two weeks consisted of insect immatures (unidentified species), 

compared to 40% in black grouse. In addition, the proportion of insects in the diet of black 

grouse was reduced to 50% after 14 days, but remained at 80% through the first 21 days for 

capercaillie (Wegge and Kastdalen 2008). The crops of greater sage-grouse (Centrocercus 

urophasianus) chicks collected in Montana contained primarily insects during the first week of 

life (60%), but rapidly declined to 30% by the end of the 4th week (Peterson 1970). Similarly, 

Spidsø (1980) found the crop contents of willow ptarmigan (L. Lagopus) chicks 0-3 of age 

consisted of 60% invertebrates (primarily adult Diptera and the nymphs of Hemiptera and 

Lepidoptera), but rapidly declined to less than 5% in chicks older than 3 weeks. In contrast, 

Savory (1977) found that a subspecies of willow ptarmigan, the red grouse (L. l. scoticus), had 

less than 5% of crop contents composed of invertebrates for chicks less than 3 weeks of age. Of 

the invertebrates that were consumed, species in the Order Diptera appeared to be most 

important.  

Few studies have examined phenological synchrony between invertebrates and timing of 

breeding in grouse species. Hatch dates of black grouse coincide with peak availability of moth 
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caterpillars in Scotland (Baines et al. 1996). Similarly, capercaillie and black grouse in Norway 

tend to time their breeding activities with peaks in biomass of lepidopteran and hymenopteran 

larvae (Wegge et al. 2010). Peaks in the abundance of the butterflies Paplionidae, Nymphalidae, 

and Pieridae indicate non-overlapping temporal distributions, suggesting the larvae of these 

species likely become available at different times, which may ultimately extend the period of 

peak insect availability for ptarmigan in the alpine. The same is also true for the distributions of 

flies, grasshoppers, and leafhoppers. Like similar studies, we acknowledge that larvae observed 

in the crop contents of white-tailed ptarmigan chicks have not been identified, and it may be that 

ptarmigan chicks are selective of which larval species they consume. However, Drut et al. (1994) 

identified over 41 families of invertebrates in the diet of greater sage-grouse chicks, suggesting a 

highly general invertebrate diet, and the other literature we reviewed indicated a highly diverse 

invertebrate diet both within and across species. Nonetheless, relative diversity of arthropod taxa 

may differ greatly between sagebrush and forested habitats compared to alpine, and alpine 

ptarmigan may be more limited in the scope of arthropods consumed. Plant productivity and 

insect abundance did not peak at the same time during our study, but the relationships were 

similar across years at ME, and remarkably so for species in the Order Lepidoptera. It appears 

that within-year temporal changes in plant productivity can be used as a reliable relative index of 

food availability for a subset of the insects and forbs we measured given the consistency of the 

relationship across years.  

 Although less prevalent in the diet of chicks less than three weeks of age, May (1975) 

found that 37% of the chick diet consisted of plants, and other studies have reported that 

ptarmigan chicks will frequently consume flowers and forbs at this age (Allen and Clarke 2005, 

Clarke 2010). Savory (1977) found the diet of red grouse during the first three weeks was 
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actually dominated by plants, particularly of heather (Caluna vulgaris). This finding appears to 

contrast with other grouse dietary studies which conclude that forbs dominate the diet of chicks 

one to three weeks post-hatch. May (1975) found that diet of chicks at one of our study sites 

(TR) was similar to the diet of adults after chicks reached an age of five weeks. We found strong 

consistencies in temporal relationships between plant productivity and bloom in four species 

which are known to be consumed by ptarmigan chicks. Species of clover (Trifolium), alpine 

avens (G. rossii), and sagewort (Artemisia) tended to precede peaks in plant productivity. 

Species of bistort (Polygonum) were highly synchronized with plant productivity and the highest 

cross-correlations generally occurred when there was no time lag with plant productivity for this 

species. Bistorts appear to be an important food resource for ptarmigan in the summer, based 

both on our own personal observations of chicks and adults feeding on these plants, as well as 

evidenced by their presence in crop contents (May and Braun 1972). Overall, we found that 

timing of bloom in several forage species does not coincide with peak biomass of all plants, but 

the relative relationships between peak biomass and individual species were strongly consistent 

across sites and years. This indicates that plant productivity is the best overall index to predict 

timing of plant and insect abundance, even if it cannot be used as a strong index for every 

species individually.  

 

Covariate effects 

 

 We found limited evidence for geographic and annual variation in nest survival in the 

populations we studied. In addition, weather was a poor predictor of nest survival for the years 

we collected data. These results support conclusions from a long-term ptarmigan study 
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examining correlations between weather events at different breeding periods, which found 

weather during the nesting period was unrelated to the number of chicks counted during August 

surveys (Wann et al. 2016). We found only weak evidence that synchrony in timing of nesting 

and resource abundance affected nest survival. Seasonal area mismatch was not well supported, 

although the negative estimate for the slope coefficient was consistent with our prediction. The 

strongest support was for a model that included an effect measuring the difference between the 

date of nest initiation and the median nest initiation date for all observed nests for a given site 

and year. The estimated slope for this model was negative indicating that hens nesting earliest 

have lower daily nest survival. This result was somewhat surprising given that the earliest nesters 

tended to be older hens, and overall older hens fledge the largest number of chicks (Sandercock 

et al. 2005). However, Wiebe and Martin (1998) did not observe differences in nesting success 

between age classes of hens, and a model including the age of nesting hens was not supported in 

our own data, consistent with their findings.  

 Unlike nest survival, there was strong evidence for geographic and annual variation in 

chick survival. Models that included separate estimates for each site and year were much more 

strongly supported than those that did not. This indicates effects that varied annually and 

spatially impacted chick survival in ptarmigan. Differences in year and site effects may have 

been due to variable predation rates and habitat quality. Habitat quality was more likely to 

contribute to site effects since annual changes in habitat in the short time frame of our study were 

unlikely to be significant. We did not design our study to specifically test these factors, but 

including differences in daily survival estimates for each site and year allowed us to estimate and 

account for these combined factors as group-level effects. Overall, age of chick was the best 

predictor of daily chick survival. Adding an age effect enhanced the fit of models indicating that 
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daily survival was lowest immediately after hatch and increased steadily until 18 days, after 

which survival was constant. The steepness in the observed increase in chick survival varied by 

site, and the differences in the slopes for each site was accommodated in our model through an 

interaction of site and age. Daily survival of chicks less than seven days of age was highest at 

TR, followed by ME and MS. Our findings that chick survival increased steadily after hatch was 

consistent with many grouse studies that report that chicks are most vulnerable during the first 

few weeks of life (reviewed by Hannon and Martin 2006). This is biologically understandable 

given the increasing abilities of chicks to live independently from the brood hen as they age. 

 The addition of weather covariates for precipitation and average minimum daily 

temperature improved model fit over our base model. Cumulative precipitation during the first 

18 days post-hatch was particularly important and had a positive relationship with daily chick 

survival. We expected the relationship between chick survival and precipitation over this period 

to be negative based on several other grouse studies demonstrating the detrimental effect of rain 

(Moss et al. 2001, Novoa et al. 2008). We cannot fully explain these results but suspect there was 

reduced predation during times of rain. Common ravens (Corvus corax) were present at our 

Front Range study sites and were likely less active during rain events. Similarly, warmer 

temperatures were negatively related to daily chick survival when only average minimum 

temperature was added to our base model structure. This result was also surprising given the 

need for chicks to be brooded by hens during the first few weeks of life. Interestingly, including 

an interaction between temperature and chick age did not improve model fit, although this model 

predicted that chicks less than 19 days of age were negatively affected by cold temperatures 

while those 19 days or older were positively affected, consistent with biological expectations.  
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 The best predictive model for daily chick survival included our index of seasonal area 

mismatch. This model included an interaction between chick age and seasonal area mismatch 

and was the best predictive model in our candidate set, receiving 89% of model support. 

Predictions from this model indicated that survival of chicks less than 18 days of age was 

reduced when they hatched from nests at times far from peak plant productivity. However, 

chicks older than 18 days were invariant to the resource conditions under which they hatched, 

and resource abundance was not a factor influencing their daily survival rates at this age due to 

the structural age constraint imposed by the model. These results were consistent with our 

prediction, because as chicks age their daily survival rates quickly approach those of breeding-

age ptarmigan (Hannon and Martin 2006). Models that only considered individual forage species 

were not highly supported in our model set, although the estimated slopes were consistent with 

our predictions and the same as the area mismatch estimated using the plant productivity curve, 

although the magnitude of the effect was much less. These findings provide evidence that 

ptarmigan hens nesting out of synchrony relative to timing of high abundance in plant 

productivity experience a reproductive cost. Our results suggest this reproductive cost is not 

trivial and can be high. For example, at MS, survival of three-day-old chicks hatched at the 

highest level of observed mismatch in the dataset was predicted to decline by 47% compared to 

those hatched at the lowest values in 2013 versus 7.4% at ME and 3.7% at TR for the same year 

(Table 2.3). These percent declines may not seem large, but they are calculated for daily survival 

rates, and the consequences of such changes over a daily period are large when considered over a 

period of weeks.   
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Conclusions 

 

 Timing of phenological events of plant and insects at our Colorado study sites were 

generally consistent with respect to relative relationships between resources. However, key 

characteristics of phenology curves, such as peak of plant productivity or probability of bloom, 

varied by year and site. Invertebrates were less consistent in their annual patterns of abundance 

relative to plant productivity, although there tended to be clear partitioning between different 

taxa in terms of timing of peak abundance. Nest survival was insensitive to weather, and nest 

survival estimates were constant across years and sites. In contrast, daily chick survival varied 

considerably by year and site, and there was strong evidence that nests which hatch during times 

of poor resource availability produce chicks which have lower survival. We provide evidence for 

phenological mismatches to occur in an alpine-endemic species, which should be considered 

when assessing future viability for these populations. This is one of the first studies to examine 

fitness consequences of phenological asynchrony for an avian species in an alpine system. 

 

 

  



50 
 

TABLES 

 
 
Table 2.1. White-tailed ptarmigan (Lagopus leucura) nests and broods monitored in Colorado 
from 2013-2015. Data were collected at Mt. Evans in Clear Creek County, Mesa Seco in 
Hinsdale County, and Trail Ridge at Rocky Mountain National Park in Larimer County.  
 

 
Year 

 
Description 2013 2014 2015 Total 

Mt. Evans (ME) 
    

     Nests total 13 21 22 56 

     Successful nests 7 11 8 26 

     Broods total 7 11 8 26 

     Successful broods 4 5 4 13 

Mesa Seco (MS) 
    

     Nests total 9 8 10 27 

     Successful nests 7 7 5 19 

     Broods total 7 7 5 19 

     Successful broods 2 5 2 9 

Trail Ridge (TR) 
    

     Nests total 10 15 12 37 

     Successful nests 6 8 8 22 

     Broods total 6 8 8 22 

     Successful broods 6 5 4 15 

Nests grand total 32 44 44 120 

Successful nests grand total 20 26 21 67 

Broods grand total 20 26 21 67 

Successful broods grand total 12 16 10 37 
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Table 2.2. Model selection results for top nest and brood survival models fit to data collected 

from white-tailed ptarmigan (Lagopus leucura) populations from 2013-2015 in Colorado, USA. 

Only a subset of the total candidate model set are presented. Parameters in the nest survival 

model were daily survival (S), and parameters in the chick survival models were apparent daily 

survival (ϕ) and recapture probability (p). The difference between AICc from the top model (Δ 
AICc), model support (AICc Weight), model likelihood, number of parameters (K), model 

deviance, and pseudo R2 are shown. Group effects and covariates include null effects (.), study 

site (site), year of study (year), time of hatch relative to population (relative), time difference 

between hatch and peak productivity (td), trend (T), average site-level NDVI at hatch 

(ndvihatch), chick age (age), cumulative area under curve for all forage species (sumforage), area 

mismatch (mismatch), and precipitation (precip).  

 

Model Δ AICc AICc Weight Likelihood K Deviance R2 

Nest       

S(site + relative) 0.0 0.15 1.00 4 359.9 0.017 

S(.)  0.3 0.13 0.87 1 366.2 - 

S(site)  0.8 0.10 0.69 3 362.7 0.009 

S(site + T) 1.1 0.08 0.57 4 361.0 0.014 

S(site + ndvihatch) 1.4 0.07 0.50 4 361.3 0.013 

S(site + relative2) 1.7 0.06 0.42 5 359.6 0.018 

S(site + td) 2.0 0.05 0.37 4 361.9 0.012 

S(site х T) 2.0 0.05 0.37 5 359.9 0.017 

Brood       

ϕ(site х year + site х 
age19 + age19 х 
ndviarea)p(site) 0.0 0.89 1.00 17 1455.1 0.102 

ϕ(site х year + site х 
age19 + precip)p(site) 6.9 0.03 0.03 16 1464.1 0.096 

ϕ(site х year + site х 
age19 + age19 х 
sumforage)p(site) 8.2 0.01 0.02 17 1463.2 0.097 

ϕ(site х year + site х 
age19 + min)p(site) 8.4 0.01 0.01 16 1465.6 0.095 

ϕ(site х year + site х 
age19 + age19 х 
precip)p(site) 8.9 0.01 0.01 17 1464.0 0.096 
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Table 2.3. Predicted survival rates for 3-day-old white-tailed ptarmigan (Lagopus luecura) 

chicks studied at three sites in Colorado, USA from 2013-2015. Study sites were at Mt. Evans 

(ME) in Clear Creek County, Mesa Seco (MS) in Hinsdale County, and Trail Ridge (TR) in 

Larimer County. Predictions are for survival rates when the area under the phenology curve 

between hatch and end of season was 1 (low mismatch) or 6 (high mismatch). Lower (LCL) and 

upper (UCL) 95% confidence intervals are provided for each point estimate, and the percent 

decline in survival from low to high mismatch predictions are provided on the bottom three rows.   

  
2013 

  
2014 

  
2015 

 
Sites ϕ LCL UCL ϕ LCL UCL ϕ LCL UCL 

Mismatch = 1 
         

ME 0.986 0.954 0.996 0.984 0.951 0.995 0.982 0.952 0.993 

MS 0.850 0.769 0.906 0.953 0.916 0.974 0.947 0.843 0.984 

TR 0.993 0.981 0.997 0.991 0.975 0.997 0.984 0.960 0.994 

Mismatch = 6 
         

ME 0.913 0.869 0.943 0.898 0.859 0.928 0.887 0.809 0.936 

MS 0.450 0.179 0.753 0.743 0.513 0.889 0.722 0.601 0.818 

TR 0.956 0.905 0.980 0.940 0.878 0.972 0.899 0.825 0.944 

Percent change 
        

ME -7.4 - - -8.7 - - -9.7 - - 

MS -47.1 - - -22.0 - - -23.8 - - 

TR -3.7 - - -5.1 - - -8.7 - - 
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FIGURES 

 

 

Figure 2.1. Predictions of phenological relationships between timing of breeding and resource 

abundance for white-tailed ptarmigan (Lagopus leucura) studied in Colorado. The timing of 

hatch (large dashed lines) is predicted to influence daily survival based on the availability of 

resources (solid curve) over the entire season (small dashed lines represent the date of last field 

measurements). Larger areas under the curve represent nesting far from the peak (a) and small 

areas represent nesting close to the peak (b), daily chick survival is predicted to be negatively 

related to area (c). Nearly all birds in our sample nested prior to or within 5 days of the peak in 

plant productivity (measured by NDVI).  
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Figure. 2.2. Phenological factors believed to be important for white-tailed ptarmigan (Lagopus 

leucura) in Colorado, USA. (a) Resource phenology was measured by collecting NDVI 

photographs of vegetation at fixed plots (open circles) across breeding season habitat to estimate 

the duration and peak of resource availability using generalized additive models (solid line and 

associated 95% confidence intervals as dashed lines). The example plot was for data collected at 

Mt. Evans (ME) in 2013. (b) The relationship between timing of peak bloom of forage forbs and 

NDVI is plotted with values falling below the diagonal line indicating peak bloom precedes peak 

NDVI. Reproductive success for nests (a) and chicks (b) is represented relative to the time of 

peak NDVI. 
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Figure. 2.3. Modeled relationships of daily nest survival as a function of covariates for white-

tailed ptarmigan (Lagopus leucura) at three sites in Colorado, USA (2013-2015). The 

relationship between average NDVI at hatch was positive (a). Generally nests that were initiated 

later in the season relative to the median initiation date of all hens in the population for the same 

year and site had highest daily nest survival (b). In terms of timing of nesting relative to peak 

NDVI, hens that initiated nests closest to the peak had higher average daily nest survival rates. 

Overall, average daily nest survival was predicted to decline as the breeding season advanced 

(d). 
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Figure. 2.4. Daily survival of white-tailed ptarmigan (Lagopus leucura) chicks in Colorado, 

USA. Daily survival decreased as a function of seasonal area mismatch, a measure of how 

closely chicks hatched relative to peak resource abundance (lower values indicate hatch dates 

coinciding with peak plant productivity). The model included an interaction with age (0 to 18 

days of age) and mismatch (area under phenological curve from hatch until end of season). 

Predictions are for Mesa Seco in 2015 produced from the top ranked candidate model. 
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CHAPTER 3: EFFECTS OF CLIMATE AND DENSITY AS FACTORS REGULATING 

POPULATIONS OF ALPINE-ENDEMIC WHITE-TAILED PTARMIGAN 

 

INTRODUCTION 

 

 Long-term datasets provide critical insight into population processes in ecological 

studies. In the absence of experiments, observational studies using long-term data are often 

necessary to address population processes that are likely to occur over long temporal periods 

(Clutton-Brock and Sheldon 2010).  In particular, long-term datasets provide a means to examine 

intrinsic and extrinsic factors regulating populations (Clutton-Brock 1988, Newton 1989, 

Wooller et al. 1992). Intrinsic factors include interactions between individuals that are commonly 

referred to as density-dependent (i.e., predation and competition), while extrinsic factors are 

those that are not influenced by the internal state of the population (i.e., density-independent) but 

still affect it, such as stochastic events like climate variation (Newton 1998). Here I use density-

dependence to mean the change in per-capita population growth rate that occurs as population 

size changes. Density-dependence is now recognized as being widely prevalent in wildlife 

populations (Brook and Bradshaw 2006, Bonenfant et al. 2009), but the ability of biologists to 

detect it may be limited by sample size or the amount of sampling variance present in the data 

(Freckleton et al. 2006). In addition, intrinsic and extrinsic factors are likely to affect the survival 

and fecundity rates of populations in concert (Clutton-Brock et al. 1985, Saether 1997), which 

may lead to complex forms in the way density-dependence is expressed (Freckleton et al. 2006). 

Thus, considering both factors in population studies is important. Some of the more promising 

research in recent years has focused on interactions between density-dependent and density-
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independent drivers of age- and sex-specific vital rates, which may be subtle yet have strong 

influence on the dynamics of populations (e.g., Coulson et al. 2001).  

 Interactions between density and climate have been studied in several terrestrial 

vertebrate populations where long-term datasets exist. Large herbivores tend to make up the bulk 

of the published literature, perhaps due largely to their value as game species, but important 

insights have come from this work. First, the effects of density and climate are often strongest 

when population densities are high and climate conditions are least favorable, in which case 

population growth rates can be greatly reduced. This finding has been observed for reindeer 

(Rangifer tarandus) on Svalbard (Aanes et al. 2000, Solberg et al. 2001), alpine ibex (Capra 

ibex) in Italy (Jacobson et al. 2004), Soay sheep (Ovis aries) on St. Kilda in the United Kingdom 

(Coulson et al. 2001), roe deer (Capreolus capreolus) in Norway (Mysterud and Ostbye 2006), 

and bison (Bison bison) in the Great Plains of North America (Koons et al. 2012). Less common 

in the literature are examples of climate-density interactions in studies of other taxa, although 

examples do exist for passerines and small mammals, including white-throated dippers (Cinclus 

cinclus) in Norway (Nilsson et al. 2011, Gamelon et al. 2017) and leaf-eared mice (Phyllotis 

darwini) in Chile (Lima et al. 2002). Second, the influence of density and climate can impact 

age-specific demographic rates. Some generalizations have emerged from long-term studies in 

ungulate ecology which indicate that the youngest and oldest age classes are generally most 

sensitive to climate and density, and for this reason changes in population structure can have 

important implications for population regulation, even when these changes occur independently 

of population size (i.e., Coulson et al. 2001). Thus, age and sex-specific differences in vital rates 

are likely important in assessing density and climate effects on population dynamics. 
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 We used long-term demographic data from two white-tailed ptarmigan (Lagopus luecura) 

populations in the Front Range of northern Colorado. White-tailed ptarmigan (hereafter 

ptarmigan) are endemic to alpine habitats of western North America and spend most of their 

annual life cycle above treeline (Martin et al. 2015). Our datasets consisted of time series 

spanning 51 years (1966-2016) containing annual information on population surveys, survival, 

and reproduction. Unlike other arctic and alpine-endemic species (Loison et al. 1994, Toigo et al. 

1997, McLoughlin et al. 2003, Oli and Armitage 2004), ptarmigan show high annual variability 

in survival but appear to be relatively buffered from variation in both local and large-scale winter 

climate (Wang et al. 2002a, Wann et al. 2014). However, past work has shown that growth may 

be hampered by high winter temperatures, and this has been implicated as a driver in the decline 

of one population (Wang et al. 2002b). In contrast to climate effects, density effects have not 

been formally examined for ptarmigan populations in Colorado. We tested potentially important 

effects of density and interactions with climate given our incomplete understanding of the major 

factors regulating ptarmigan populations, and assess the relative contribution of these factors to 

annual changes in population size. Additionally, we wanted to compare annual vital rates 

between populations to gain a better understanding of the drivers underlying observed 

differences in trends between populations. 

 We exploited three sources of information available for our ptarmigan populations using 

integrated population models (Besbeas et al. 2002) applied separately to each population dataset. 

Integrated population models (IPMs) link data on abundance and vital rates through a matrix-

population model. Each data source has a separate likelihood and parameters are estimated using 

a joint likelihood. IPMs provide a modeling framework to examine complex dynamics in 

populations, all the while incorporating uncertainty from multiple demographic processes and 
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allowing for estimation of unobservable states (Abadi et al. 2010b). We used a Bayesian 

approach to fit our population data to IPMs (Schaub and Abadi 2011).   

 Our objectives were straightforward. First, we used the IPM to produce demographic 

estimates that we could compare between our two populations. We were particularly interested in 

estimating average annual rates of change and their associated uncertainty. Second, climate and 

density effects were fit to survival and fecundity data. Interactions between climate and density 

were our primary focus, in addition to their support relative to more general model structures 

(i.e., generic year effects). Finally, we used our IPM to estimate juvenile survival, and the 

influence of density on juvenile survival, which in the past has been a challenging rate to 

estimate for ptarmigan populations. We focus our discussion on comparing our results to 

literature available for density and climate studies in avian populations which, at the time of this 

writing, is still modest. 

 

METHODS 

 

Study area 

 

 The Front Range of the Southern Rocky Mountains in northcentral Colorado was the 

location of two sites where we collected long-term population data on white-tailed ptarmigan. 

Data were collected over a 51-year period (1966-2016; no spring surveys in 1977 and 1999) at 

Mt. Evans in Clear Creek County (ME: 39° 35’ N, 105° 37’ W) and over a 51-year period with a 

10 year gap (1966-2000; 2011-2016) at Trail Ridge in Rocky Mountain National Park in Larimer 

County (TR: 40° 25’ N, 105° 45’ W). Both sites are in the alpine ecological zone with elevations 
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ranging from 3430 to 4076 m. Climate was strongly seasonal at our study sites; coldest 

temperatures were generally recorded in Jan ( ̅  = -14.1°C) and warmest temperatures were 

recorded in July ( ̅ = 4.3°C). Low-growing willow (Salix spp.) and Englemann spruce (Picea 

engelmannii) predominated the vegetation at lower elevations, while herbaceous forbs (e.g., 

Geum rossii, Polygonum spp., Ranunculus spp.), sedges (e.g., Carex spp., Kobresia spp.), and 

grasses (e.g., Deschampsia spp., Poa spp., Trisetum spp.) predominated at higher elevations. 

Comprehensive site descriptions can be found in Braun (1969). All lands were managed by the 

U.S. Forest Service and National Park Service. The Mt. Evans population experienced varying 

levels of hunting pressure until 1994 when a hunting restriction went into effect. In contrast, the 

Trail Ridge population was within a national park and never experienced hunting pressure.   

 

Field data collection 

 

  Data were collected annually during spring (mid-May to mid-Jun) and summer (Aug to 

mid-Sep), with some year to year variation in start and end dates due to snowpack and access to 

the study areas. Surveys normally occurred over a 1-2 week period each season. We collected 

three types of data. First, population counts were conducted during spring surveys and consisted 

of the number of individually identified male and female ptarmigan at each study site. We 

considered spring population counts to be the most accurate index of population size because the 

population can, for practical purposes, be considered closed during this time period (Giesen et al. 

1980). In contrast, birds encountered during the summer period may come from areas outside the 

study area boundaries, particularly unsuccessful hens which are known to disperse long distances 

(Hoffman and Braun 1975). Second, during spring surveys we captured unbanded birds and 
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resighted birds previously captured. Captured birds were marked with a State of Colorado 

aluminum band and 2-4 colored plastic bandettes placed in unique combinations which provided 

a way to individually identify birds without the need for recapture. Captured birds were 

identified as subadults (<1 year old) or adults (> 1 year old) based on the presence of 

pigmentation in the outermost primary feathers (Braun and Rogers 1967). Finally, counts of 

chicks were conducted during summer surveys and provided information on reproductive 

success. Fecundity was estimated as the number of chicks per female in the spring population. 

Field methodologies are extensively outlined in Wann et al. (2014) and Wann et al. (2016).  

 

Integrated population model 

 

 We used an integrated population model constructed for each population to analyze all 

datasets in a comprehensive framework accounting for multiple sources of uncertainty in the 

population growth process. We follow the notation of Hobbs & Hooten (2015) and denote 

vectors in lowercase bold letters and matrices in capitol bold letters. Integrated population 

models provide a way to link count data to the vital rates responsible for population growth 

through a projection matrix � , which can be either age or stage structured, to predict the 

population size and composition at time  based on the population during the previous time step 

− . The demographic rates within the transition matrix can then be estimated using separate 

models fit to data specific to those parameters. Projection matrices used in integrated population 

models are typically female-based because females produce new individuals entering the 

population. However, although less common, males can also be included in the projection matrix 

(e.g., Davis et al. 2014). This was the approach we chose. Our justification for including males in 
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the population model was primarily due to our interest in modeling climate effects. Previous 

work indicated that winter climate was weakly related to annual survival for the ME population, 

and the effects differed between males and females (Wann et al. 2014). Thus, the power to detect 

the contributions of climate to annual variability in survival is likely low, and increasing sample 

sizes in the capture-recapture data should increase our ability to estimate the relationship 

between climate and survival. Additionally, climate may affect sexes of ptarmigan differently 

(Wann et al. 2014), so including both in our analysis allowed us to evaluate this possibility. We 

used a pre-breeding (i.e., before the birth pulse, Caswell 2001) population model with two age 

classes (subadults and adults) to link spring counts to breeding-age apparent survival (�), 

juvenile survival (S), and fecundity ( ) rates within the transition matrix:  

 [ ] =
[  
   � �� � ]  

   
−

× [ ]
−

 (1) 

 

We divided fecundities by 2 because we assume equal sex ratios in the number of young 

produced. Multiplying the transition matrix by the population vector at time −  in equation 1 

produces the difference equations that are used to predict the population at time . This 

projection matrix assumes the population census occurs immediately preceding the birth pulse, 

which was reasonable for our survey design. 
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Capture-recapture model 

 
 
 
 We estimated survival for breeding-age ptarmigan using the Cormack-Jolly-Seber (CJS) 

open population model (Lebreton et al. 1992). The CJS model estimates apparent survival � , 

which is the product of true survival  and permanent emigration  from the study area. 

Survival is considered apparent because death cannot be distinguished from permanent 

emigration for birds not encountered again after initial marking. Recapture probability  

adjusts estimates of apparent survival based on the probability of observing marked individuals 

given they were alive and available for recapture. Data for the CJS model are based on encounter 

histories of individually marked birds which are recaptured or resighted annually at subsequent 

capture occasions. We summarized encounter histories using the m array format , which is 

constructed from the encounter history matrix and summarizes the number of marked birds first 

re-encountered after each release occasion (Burnham et al. 1986). Each element in the m array 

has an associated cell probability, and cells within the m array follow a multinomial distribution. 

The likelihood for the CJS model is calculated as: 

 ∏ ∏ ∏χ −∑�= +1−
== +

−
=  (2) 

 

where  is the number of animals released in year i, the probability of never being recaptured is χ = − ∑ = + , and  is the cell probability associated with . Cell probabilities were 

the product of the model parameters (composed of � and p) specific to each cell in the m array. 

We assumed vague priors on  using a beta distribution, but constrained � to be a function of 

covariates by modeling it on the logit scale (described under the covariates section below).  
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 There were many possible model structures to consider for apparent survival of breeding-

age ptarmigan. We identified the best base model structure (i.e., combination of sex and age 

effects) for survival based on results presented in Wann et al. (2014) for Mt. Evans. Results from 

this analysis supported an additive age structure for apparent survival with different intercepts 

for each age and sex group and, in the case of time varying models, common slopes among all 

groups. The best model structure suggested that recapture probability was the same for males and 

females, but varied annually. We fit covariates to the CJS model by replacing time structure with 

a covariate structure (described in covariate section).  

 

Juvenile survival 

 

We estimated juvenile survival rates (S) for male and female in the transition matrix 

(equation 1) using two approaches. First, we provided a vague prior using a uniform distribution. 

This approach allowed the three data sources within the IPM to inform the estimates of S. Our 

second approach constrained juvenile survival to be a function of fall density, which we believed 

would impact the number of juveniles surviving to their first spring if density effects are 

important (discussed in covariate section), while still being informed by the other data sources. 

We also made comparisons of estimates from the IPM with estimates from an analysis of band 

return data using an age-structured CJS model. We did this by constructing encounter histories 

for chicks banded at our study areas followed by fitting the same CJS model used on breeding-

age birds (described above), only with the modification that the groups were juvenile males, 

juvenile females, breeding-age males, and breeding-age females (i.e., subadults and adults were 

pooled). It may seem odd that we avoided using the banding data in our IPM, but there was a 
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good reason, which was due to dispersal events of juveniles. The CJS model cannot distinguish 

emigration events from true mortality and can severely underestimate true survival when 

dispersal is prevalent in marked individuals. Juvenile female ptarmigan, and to a lesser degree 

males, have extremely low return rates to areas where they were born, and this is very likely due 

to natal dispersal (Giesen and Braun 1993). Therefore, the CJS model in the IPM would have 

produced biased estimates of female survival, and the band-return data would have influenced 

the other demographic rates through the joint likelihood. However, comparing juvenile survival 

estimates from the IPM to banding data provided an opportunity to investigate the extent of bias 

that was likely to exist in estimates of ptarmigan juvenile survival previously reported in the 

literature. 

 

Fecundity model 

 

 Annual fecundity �  was estimated by modeling counts of chicks �  as arising from a 

Poisson process with the mean annual rate being equal to the product of fecundity and the 

number of hens �  in the spring population. We included the number of hens in our model as a 

constraint for counts of chicks since spring population size of females sets an upper limit on the 

number of young that can be produced, and the product of fecundity and hens in the spring 

population was the rate parameter in the Poisson model: 

 ~Poisson  (3) 

 

 = ℎ  (4) 
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It is important to note that our model assumes the number of hens was perfectly recorded. A 

previous analysis indicated that roughly 90% of hens present on the breeding areas are detected 

and captured (Sandercock et al. 2005a), so most hens on the study area are found each year. We 

also considered covariates fit to fecundity (described in covariate section below).  

 

State-space model 

 

 A common approach in IPM analyses is to fit a state-space model to population count 

data because it provides a way to estimate population size while accounting for error in the 

observations (Kéry and Schaub 2012). Our transition matrix in equation 1 provided the 

deterministic relationships between population size at +  as a function of population size at  

and the underlying vital rates for each age class. We used these relationships as the expected 

number of birds in each age class, and probability distributions were then used to include 

demographic stochasticity in the model. We modeled the number of subadults ( ) and female 

( ) ptarmigan in the population as arising from a Poisson process: 

 , ~Poisson , − + , − .  (5) 

 

 , ~Poisson , − + , − .  (6) 

 

The number of adult males and females at time  depended on the number of adult (old birds that 

were previously in the adult age class . ) and subadult (new birds transitioning into the 

adult age class . ) ptarmigan at time − , and the associated age-specific survival 

probabilities for the interval between −  and . We therefore modeled each group as arising 
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from a binomial process, which provided an upper limit on the number of birds in this age class 

that could be produced based on the previous population size, and summed the number of 

subadults and adults from each distribution to estimate the number of adults at time : 

 , ~binomial( , − , � , − ) + binomial( , − , � , − )  (7) 

 

 , ~binomial( , − , � , − ) + binomial( , − , � , − )  (8) 

 

 We assumed a normal error structure on the counts of females and males and estimated 

the observation error separately for each sex, but we did not differentiate error for each age class. 

We did this because spring counts were based on the number of individually-identified 

ptarmigan in the study area, and the age-class of each bird could not be observed until it was 

captured and in hand. Once in hand, our ability to assign birds to the appropriate age class was 

extremely accurate (Braun and Rogers 1967). Furthermore, we had no reason to believe 

subadults and adults differed in our ability to find and capture or resight them. The true number 

of ptarmigan in each sex class was modeled as a function of the expected number (i.e., the mean) 

for each sex and associated sampling variance � , and an inverse gamma distribution and 

vague prior were assumed for sampling variance: 

 � , ~normal ,  + ,  , � , �  (9) 

 

 � , ~normal ,  + ,  , � , �  (10) 

 

 � , � ~inve�segamma . , .  (11) 
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 � , � ~inve�segamma . , .  (12) 

 

One critical element of state-space models is that they do not account for imperfect 

detection in population surveys. As a result, the population size estimated will always be lower 

than the true population size when detection is less than 1 (Kéry and Schaub 2012). This is not 

problematic when modeling population dynamics over time if there are no systematic trends in 

detection because fluctuations in the estimated population size will reflect those of the true 

population. We examined this assumption in our dataset by comparing the total number of 

observations for each bird during the spring period per observed individual in the spring 

population during year , which we call spring survey effort : 

 = Total number of observations per individual
Number of identifiedindividuals  (13) 

 

This value was calculated for 1966-2012, but years 2013-2016 were omitted because of an 

overlapping telemetry study which inflated the number of observations due to repeated 

reisghtings of radio-marked hens. Large values of  indicate years with high search effort, 

while low values (e.g., 1) indicate low search effort. We regressed  on year and checked if 

95% credible intervals for the slope of year coefficient overlapped 0, which would suggest a lack 

of trend in search effort over the study period. We acknowledge this metric does not specifically 

test detection probability, but we believe it is an accurate measure of search effort which is likely 

to relate to detection probability and number of birds encountered.  
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Covariates 

 

Several environmental factors were tested by fitting covariates to vital rates in our IPM. 

We first made comparisons of different survival and fecundity covariate models outside of the 

IPM and evaluated them based on model selection criteria. The selection criteria and our 

rationale for testing different covariates separately from the IPM are described under the ‘Model 

selection’ subsection below. Survival of adults and subadults was considered to vary based on 

climate and density effects. Previous work indicated that cumulative winter precipitation had 

weak effects on survival of female ptarmigan at ME, but not males, and survival models 

predicted that survival peaked during winters with average precipitation and was lowest when 

precipitation was either low or high (Wann et al. 2014). Winter minimum temperature was found 

to negatively correlate with annual growth rates in the TR population (Wang et al. 2002b). Based 

on these findings we considered cumulative winter precipitation and average minimum winter 

temperature in survival models. We also considered quadratic relationships and interactions of 

climate with sex because male and female ptarmigan winter in segregated flocks (Hoffman and 

Braun 1977). Reproduction based on the number of chicks per hen in the breeding population 

was found to positively correlate with warm and dry conditions during the post-hatch period, 

albeit weakly (Wann et al. 2016), so we considered this covariate in fecundity models. In 

addition, we tested cumulative precipitation from June through August, which we considered to 

be a proxy for plant growing conditions. Climate data were obtained from the PRISM Climate 

Group (Oregon State University) which provided down-scaled predictions (4 km2 resolution) of 

monthly climate at our sites (http://prism.oregonstate.edu).  
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 We used the size of the fall population as a covariate in survival models, which was 

estimated based on the total number of breeding-age birds observed in August through mid-

September, in addition to all observed chicks at least 3 weeks old at time of observation (the 

minimum age a chick can be banded and the age after which daily survival stabilizes, see 

Chapter 2). Assigning the age of chicks in broods was possible because at least one chick was 

captured from nearly every brood encountered during August surveys (C. E. Braun, personal 

observation), and ptarmigan chicks can be aged accurately when captured (Giesen and Braun 

1979). We chose the fall population as an explanatory variable for survival because it represents 

the number of birds entering the winter population. We did not test density effects on fecundity 

because density effects are expected to occur through the local breeding population. However, 

the number of females in the breeding population was already included in our fecundity model 

(equations 3 and 4), and including them as a covariate would have introduced them into the 

model twice. All covariates were standardized prior to model fitting by subtracting the mean and 

dividing by the standard deviation. All survival models for breeding-age birds included an 

additive relationship between sex and age (i.e., different intercepts but common slopes), and 

model sets included a constant model with only group effects and a time varying model with 

group effects. Similarly, a constant model and one with time variation were considered for 

fecundity at both sites. 

 

Model constraints 

 

We fit climate and density effects to survival and fecundity models by constraining these 

parameters to be a function of covariates using logit and log link functions and vague normal 

priors for the coefficients: 
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 logit � = + ∑ � ,= +  (14) 

 

 log = + ∑ � ,= +  (15) 

 

 ~no�mal ,  (16) 

 

 ~no�mal ,  (17) 

 

where  and  represent the intercepts,  and  represent the coefficients, and �  represents 

the associated covariates. Models in the IPM also included random effects to account for 

variation that was not explained by covariates. This was done by defining a residual of 

unexplained variance for each year (  and ) which we assumed arose from a normal distribution 

with a mean equal to 0 and process variance (�  and � ), which was specified as a vague inverse 

gamma prior: 

 ~normal , �  (18) 

 

 ~normal , �  (19) 

 

 � ~inve�segamma . , .  (20) 

 

 � ~inve�segamma . , .  (21) 



79 
 

 

The ability of covariate models to explain temporal variation was assessed in two ways. First, we 

used analysis of deviance for the fixed-effects models in our candidate model set (Skalski et al. 

1993). Analysis of deviance (ANODEV) evaluates the deviance explained by a covariate relative 

to the amount of deviance not explained by a covariate. This is done through the comparison of 

deviance in three nested models, including a constant model ( �), covariate model ( ), 

and time varying model ( ): 

 � = − � −  (22) 

 

Random effects provide a way to estimate process variance and the amount of process variance 

explained by covariates. This is done in a way analogous to ANODEV but is based on the 

difference between a fully time varying model and a covariate model (Grosbois et al. 2008): 

 = � , − � ,�� ,  (23) 

 

Grosbois et al. (2008) recommend ANODEV as the more widely accepted way to evaluate 

explanatory power of covariates, particularly when effects are small, but also noted the utility of 

the random effects approach given sampling variance is not included in the estimate as it is with 

ANODEV. As a result, we report � as a measure of fit during the model selection stage 

(because models used fixed effects, described below), and  as a measure of fit for covariates in 

the IPM (because random effects were used). 
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Model selection 

 

 Models were first fit outside of the IPM first using fixed effects for practical reasons. We 

wanted to isolate covariate relationships with survival and fecundity that would otherwise be 

influenced by other data sources when estimated using the joint likelihood in the IPM, which 

ultimately provided information on the influence the other data sources had on parameter 

estimates. We used the deviance information criterion (DIC) to compare the relative support of 

covariates fit to survival and fecundity models (Spiegelhalter et al. 2002). The DIC is similar to 

the maximum likelihood-based AIC in that both are based on a loss function and a function that 

penalizes models with more parameters relative to those with fewer. However, it should be noted 

that regulator function in DIC measures model deviance (̂), which is based on the posterior 

expectation of the parameters: 

 ̂ = − log[y|E �|y ] (24) 

 

This differs from AIC which is based on the maximum likelihood estimate of the parameters. 

The penalty term  also differs from AIC, and is defined as the difference between the deviance 

of the posterior mean of the parameter set (̂) and the posterior mean deviance (̅) (i.e., =̅ − ̂). Thus, DIC is calculated as: 

 D�C =  ̂ + pD (25) 

 

Generally, the same types of non-hierarchical models compared using AIC can be compared 

using DIC (Hooten and Hobbs 2015). 
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 A total of 12 survival models were in our candidate sets for each site, which included 12 

different combinations of climate and density covariates, in addition to a time invariant model 

(i.e., constant) and a fully time varying model. Only 4 models were in our fecundity candidate 

sets for each site, which included 2 additive covariate models, a time invariant model, and a fully 

time varying model. After models were compared using DIC, we took the best supported 

structure(s) and fit them in the survival and fecundity models in the IPM. We constructed a total 

of 4 IPM models for each site which were used for inference (Table 1). We use marginal 

posteriors from model 3 when presenting mean parameter estimates, model 1 for presenting 

covariate effects of breeding-age survival, and model 2 for density effects of juvenile survival.  

Model 4 was constructed for comparison purposes. For example, if an interaction between 

minimum temperature and density was a top model for one site, but not the other, Model 4 was 

constructed for the latter site so that direct comparison of predictions could be made.  

 

Assessing fit 

 

 A previous analysis of a CJS model with full time variation indicated minor 

overdispersion in our data ( ̂ = 1.12) and excellent fit when a maximum likelihood method was 

used (Wann et al. 2014). A similar result has been found for the TR dataset ( ̂ = 1.44, G. T. 

Wann, unpublished data). Similar tests have not been developed for Bayesian capture-recapture 

data, so we used Bayesian p-values, a form of posterior predictive checking which compares 

predictions from the model to the dataset analyzed (Kéry and Schaub 2012). Models with 

excellent fit should have Bayesian p-values near 0.5, while values close to 0 or 1 suggest lack of 

fit. We computed Bayesian p-values for each age and sex class in our most general survival 
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model in the dataset, which had four groups (male, female, and two age classes) and time 

variation in an additive relationship. We note that when a CJS model is fit with vague priors in a 

Bayesian analysis, the point estimates are nearly identical to those obtained using maximum 

likelihood approaches, so our inclusion of Bayesian p-values to assess model fit was 

conservative. 

 

Derived parameters 

 

 We were interested in annual changes in population size, so we estimated annual growth 

rates  as the total population size ( � ) at +  divided by total population size at . This 

was calculated as a derived parameter from the posterior distributions for annual population size 

of the different age and sex classes as: 

 = � ,� , −  (26) 

 

Averaging the derived annual estimates obtained from equation 27 provides an arithmetic mean, 

but the arithmetic mean underestimates population growth. Morris & Doak (2002) advocate 

using the geometric mean to estimate average growth over a given period, which we calculated 

as a derived parameter: 

 � = ∏ /=  (27) 

 

where n represents the number of annual intervals and i represents the time-specific growth 

interval. We calculated two geometric means for the TR population; the first was for the 1967 to 
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2000 period, and the second was for the 2011 to 2016 period. The geometric mean was 

calculated over the 1967 to 2016 period for ME. We did not include growth rates for the first 

year in the geometric mean estimates because the study site boundaries were still being expanded 

at that time which may have inflated the first annual growth rate.  

 

Model assumptions 

 

 Models with joint likelihoods have an explicit assumption of independence among 

datasets (Abadi et al. 2010a). In practice, this assumption is commonly violated for IPMs 

because individuals are often represented in one or more datasets. Abadi et al. (2010) assessed 

the bias and precision of estimates using census data, survival models (CJS), and fecundity data 

in a simulation study and found that the bias induced from fully dependent datasets was 

negligible compared to fully independent datasets. Our capture-recapture and spring survey 

datasets were nearly completely dependent (roughly 95% of birds in capture-recapture data were 

represented in census data) because we attempted to capture and mark all birds in our study area, 

and ptarmigan are easily captured. We compared residuals between population size and survival 

to better understand if violating the independence assumption influenced our parameter 

estimates. We calculated the residuals of survival as the difference between CJS estimates of a 

fully time varying model obtained from the IPM and separate estimates from a model with 

identical structure fit outside the IPM. The residuals of population size were calculated as the 

difference between abundance estimates obtained from the IPM and actual observed counts. 

Next, we plotted the survival residuals against the population size residuals. Our expectation was 
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that violating the assumption would lead to clear patterns in the plotted residuals. In contrast, a 

randomly distributed pattern would suggest little to no induced bias in our estimates.  

 

Model implementation 

 

 The full posterior distribution is presented in Table S3.4. We sampled from the marginal 

distributions using an MCMC sampler implemented in JAGS version 4.2.0 (Plummer 2013) 

called from R (R Core Team 2013) through the R2jags package (Su and Yajima 2015). We ran 

three parallel MCMC chains for each model and assessed model convergence using the Brooks-

Gelmin-Rubin statistic ( ̂), where values < 1.01 suggest convergence (Brooks and Gelman 

1998). Roughly 70,000 iterations was required to reach a stationary distribution of the MCMC 

chains based on the ( ̂) statistic. Thus, each model was run for a total of 80,000 iterations and 

the first 70,000 iterations were discarded as burn-in. No chain thinning was implemented. The 

first year count in the time series for each age and sex group was modeled using a Poisson 

distribution with a mean of 3 for the ME population and 10 for the TR population, and sex-

specific observation error. These initial values were chosen because they were close to the 

observed counts and several trials indicated they substantially improved the first year estimates. 

Initial values for apparent survival and recapture probability were taken from a uniform 

distribution with support between 0 and 1, and coefficients were drawn from a normal 

distribution with a mean of 0 and variance equal to 1. We report mean parameter estimates along 

with 95% credible intervals calculated from associated posterior distributions. 
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RESULTS 

 

Samples and model fit 

 

 We captured and individually marked 787 ptarmigan at ME (years 1966-2016) and 926 at 

RM (years 1966-2000 and 2010-2016) during spring surveys from 1966 to 2016. These birds 

were captured and resighted and used in the capture-recapture analyses. The sex ratio was close 

to even (825 females and 888 males) and the subadult age class was the most abundant in our 

datasets (1096 subadult vs 617 adult). We found no evidence for a systematic trend in spring 

survey effort ( ) over the study period, with coefficient estimates of year overlapping 0 at 

both ME (95% BCI = -0.009, 0.002) and RM (95% BCI = -0.036, 0.008). Bayesian p-values 

calculated for the ME dataset and CJS model indicated good fit for each of the four sex and age 

groups (p-value range = 0.11, 0.52). The CJS model fit all but adult male data well at TR (p-

value = 0.98), with the remaining groups having excellent fit (p-value range = 0.43, 0.72). We 

are unsure why adult males may have differed in the extent to which the model fit their data, but 

constraining groups to be in an additive relationship might produce such a result if one group has 

a different pattern of annual survival. Nonetheless, support for an additive model was strong in 

previous analyses relative to ones including interactions between groups. We were unable to see 

any discernable patterns after inspecting a plot of survival residuals versus count residuals, 

although Pearson’s correlation coefficient indicated a moderate negative correlation at ME (r = -

0.334) and TR (r = -0.176), suggesting that when IPM size estimates were large relative to 

counts, the IPM tended to estimate survival as lower than estimates from a separate CJS model. 

Conversely, when IPM size estimates were small relative to counts, the IPM tended to estimate 
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survival as higher than estimates from a separate CJS model. This relationship did not appear to 

be particularly strong (Fig. S3.1) and was unlikely to seriously bias our inference, particularly 

given the similarities between separate survival estimates obtained from the IPM and stand-alone 

CJS model (Table 3.2).  

 

Model selection 

 

Comparisons of CJS models indicated similarities between ME and TR populations in the 

model structures best supported by DIC. Models which included average minimum winter 

temperature received the highest support at both ME and TR (Supplementary Materials, Table 

S3.1). Models including density effects generally received higher support at ME than TR. 

However, a model which included an interaction between minimum temperature and density 

appeared to be plausible at both sites, although it received the most support (lowest DIC score) at 

ME, and the fourth most at TR (∆ DIC < 5). Overall, inclusion of covariates improved model fit 

considerably, and the top model at ME explained nearly half of the deviance based on an 

interaction between density and minimum temperature ( � = 46%), while the best model at 

TR explained only slightly less based on a quadratic relationship with minimum temperature 

( � = 40%). A comparison of coefficient estimates for covariates that did not include 

interactions indicated contrasting effects between sites (Table S3.2). Coefficient estimates for 

minimum temperature were negative at TR, but positive at ME. When an interaction was 

included, density estimates indicated a negative relationship at both sites when minimum 

temperature was low (TR), and high (ME). The amount of winter precipitation was not well 

supported relative to other candidate models, with coefficient estimates overlapping 0 at both 
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sites. The models with the lowest DIC score also explained the largest amount of deviance and 

were included as the “best” survival structure in our IPMs (Table 3.1). Covariates did little to 

improve the fit of fecundity models relative to simple time variation at either site (Table S3.3). 

Time varying fecundity models received overwhelming support based on DIC (∆ DIC > 300 for 

best covariate model at both sites) and were used for all IPMs (Table 3.1).  

 

Model parameters 

 

 Breeding population – The state-space model had the general effect of smoothing 

estimates of population abundance based on counts during spring surveys of the breeding 

population (Fig. 3.1). Overall, the population at TR achieved higher densities during the first two 

decades of study than ME, but declined precipitously beginning in the mid-1970s. In contrast, 

the ME population increased nearly continuously from the late 1960s, with notable peaks in the 

late 1980s and again in the final decade of the time series.  

Juvenile survival – Vague priors provided mean estimates of juvenile survival for males 

and females at our study sites. The estimates of mean juvenile survival were substantially higher 

at ME compared to TR for both males and females (Table 3.2). The estimated mean juvenile 

survival rates were for a 9 month period (mid-August to mid-May), and these estimates will 

appear as inflated when compared to annual estimates of adults. For example, extrapolating 

female juvenile survival at ME to an annual rate reduces it from 0.697 to 0.618, but doing so is 

not strictly correct because juveniles transition to subadults during the final 3 months of their 

first year of life. Thus, breeding-age bird survival would need to be estimated over the same 

period as juveniles for direct comparisons to be valid. A density covariate fit to juvenile survival 
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indicated a negative relationship, the strength of which varied by sex. However, the relationship 

differed by site, with males more strongly affected by density than females at ME, but less 

strongly at TR (Fig. 3.2). We were unable to investigate interactions between density and climate 

for juvenile survival. When these effects were fit as covariates together, the IPM failed to 

produce identifiable coefficient estimates. A comparison of juvenile survival produced from our 

IPM to apparent survival estimated using banding data from birds marked as chicks was striking, 

particularly for females. For example, estimates of apparent survival from the IPM for females 

was 0.697 at ME, but only 0.108 based on the CJS model. Apparent survival estimates from the 

CJS model consistently underestimated chick survival by large margins (Table S3.4). 

Breeding-age survival – There was substantial variation in annual breeding-age survival 

based on a model with simple time variation (Model 3, Fig. 3.2). ME had higher amounts of 

annual variability and less certainty in estimates compared to TR. Overall, the amount of process 

variance explained by covariates in our top CJS survival models was low, with 6% of process 

variance explained at ME (interaction between winter minimum temperature and density), and 

10% explained at TR (quadratic relationship of winter minimum temperature). The precision of 

the coefficient estimates was generally moderated for IPM estimates compared to individual 

model output (Table S3.2), with the mean standardized slope coefficient for minimum 

temperature changing from -0.159 (95% BCI = -0.326, 0.029) to -0.209 (95% BCI = -0.461, 

0.037) at TR, and from 0.271 (95% BCI = 0.114, 0.426) to 0.146 (95% BCI = -0.099, 0.384). 

Comparisons between mean parameter estimates from the CJS model fit in the IPM and 

separately were similar (Table 3.2). A model that included an interaction between minimum 

winter temperature and density was plausible for the TR dataset although not top ranked, and a 

comparison between this model structure fit in the IPM (Model 4, Table 3.1) was made with ME. 
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This comparison suggested some similarities between predictions for the two sites, with survival 

decreasing as a function of density (Fig. 3.3).  

 Fecundity – On average, population fecundity was about 30% higher at TR than at ME 

(Table 2). There was no trend in fecundity at ME, but fecundity declined sharply at TR 

beginning in the mid-1970s (Fig. 3.2). Fecundity estimates gained more precision when the IPM 

was used relative to a separate fecundity model (Table 2). 

Population growth - Estimated geometric mean growth rates indicated that the ME 

population, on average, grew by 2% annually ( � = 1.019; 95% BCI = 1.011, 1.028; Fig. 3.2a). 

In contrast, the TR population declined during the 1968-2000 monitoring period by roughly 3% 

annually ( � = 0.970; 95% BCI = 0.952, 0.985; Fig. 3.2b), and roughly 9% annually from 2011 

to 2016 ( � = 0.907; 95% BCI = 0.772, 1.06; Fig. 3.2c). However, there was considerable 

annual variation in population size (Fig. 3.2). There was little evidence of strong correlation in 

annual growth rates between the two populations from 1968 to 2000, excluding the gap years at 

TR (  = 0.214). 

 

DISCUSSION 

 

 The IPM provided a useful framework for investigating intrinsic and extrinsic factors 

influencing vital rates of white-tailed ptarmigan. The two populations we analyzed demonstrated 

similarities with respect to the relationship between juvenile survival and density, but differences 

in some estimated relationships between breeding-age survival, climate, and density. We next 

discuss the different demographic rates, followed by a more general discussion of where our 
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findings fit into the larger context of avian studies focusing on the role of density and climate in 

population regulation.  

 

Demographic rates 

 

Populations that are demographically open are challenging to study due to emigration and 

immigration events confounding the ability of scientists to easily measure key vital rates such as 

survival and recruitment (Abadi et al. 2010b). Juvenile survival is generally one of the most 

difficult demographic parameters to estimate in avian studies (Hannon and Martin 2006). This is 

particularly true for members of Tetraoninae, which tend to use natal dispersal as a primary 

mechanism for maintaining genetic diversity (Hannon and Martin 2006). The joint likelihood 

used in the IPM allowed us to estimate juvenile survival and provided key information on sex-

specific differences from the summer survey period to the following spring using all available 

data sources. The differences between juvenile survival estimates obtained from the IPM and 

those obtained separately using a CJS age-structured model were large, with estimates being 

substantially higher from the IPM model. This indicates a severe underestimation of juvenile 

survival when estimates are based on band returns alone, particularly for females which are 

known to return at much lower rates to our study areas than males (Giesen and Braun 1993). 

Apparent survival is the product of true survival and permanent emigration; therefore, emigration 

likely explains a large proportion of the discrepancies we observed between apparent survival 

estimates using banding data and our survival estimates obtained from the IPM.    

Immigration likely contributed to variation in population dynamics. Because juvenile 

females from our study areas are likely emigrating out at higher rates than males, they must be 
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replaced by females moving in at similar rates if populations are to persist. Therefore, if our 

juvenile survival estimates are to be considered representative of ptarmigan in other areas, we 

assume that permanent emigration rates at ME and TR are similar to other populations, and that 

immigration maintains breeding populations. Previous work at ME demonstrated the importance 

of immigration in maintaining the population (Martin et al. 2000). Similarly, Sandercock et al. 

(2005b) estimated the internal population dynamics at ME were not sufficient to maintain birds 

in the absence of immigration, even though breeding populations continue to persist. This 

highlights an important finding for white-tailed ptarmigan based on our estimates of juvenile 

survival; if juvenile survival is being used in a sensitivity analysis that does not separate apparent 

survival from true survival of juveniles, growth rates will be biased low due to permanent 

emigration that is likely prevalent in this system.  

Juvenile survival was negatively related to the size of the fall breeding population for 

both of our sites. When age-specific demographic data are available for testing, density-

dependence often shows the strongest effects on the youngest demographic groups. In avian 

studies, this has been demonstrated in Eurasian spoonbills (Platalea leucorodia, Lok et al. 2013) 

and song sparrows (Melospiza melodia, Arcese, Smith & Hochachka 1992). Juvenile survival of 

spoonbills initially increased in response to high densities during the early winter, but the 

relationship reversed in late winter. Unfortunately, the mechanism for this finding was unknown, 

but it highlights the potential importance of density-dependence effects outside of the breeding 

season. The reproductive rates of song sparrows declined strongly when breeding densities were 

high, including recruitment rates, which was attributed primarily to increased predation rates and 

parasitism rates at high densities.   
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Breeding-age males and females differed strongly in their mean annual survival rates at 

both ME and TR. Overall, males had higher survivorship at both sites, but the relationship 

between age classes was the opposite; subadults had higher survival than adults at ME, but lower 

survival at TR. However, within sex groups, estimates were similar for both age classes. We 

found the general lack of support for interactions between sex and covariates to be rather 

surprising given ptarmigan behavior which involves segregating into different flocks based on 

sex during winter. Females tend to winter farther away from areas where they breed, and 

generally at lower elevations than males (Braun et al. 1976). Wann et al. (2014), using a subset 

of the ME dataset, found weak effects of cumulative winter precipitation on females, but not 

males. In contrast, no effects were found for either group or site using our Bayesian CJS model. 

The negative relationship between average minimum winter temperature and survival was 

expected for the TR population given the findings of Wang et al. (2002b). We have no 

explanation for the positive predicted relationship between survival and winter minimum 

temperature at ME, but we do note the credible intervals overlapped 0 for estimates obtained 

from the IPM, which indicated that information from other data sources modified this 

relationship. Most ME birds likely winter at higher elevations (mean site elevation = 3810 m) 

than birds at TR (mean site elevation = 3571 m) because the average elevation of the site and 

surrounding area is higher. Elevation differences between sites may dampen the influence of 

temperature, but this has not been explicitly tested.  

 Annual variation in fecundity was present in both our populations. Unfortunately, we 

were unable to examine how density related to fecundity due to the structure of our fecundity 

model in the IPM. Our conclusions are similar to findings from Wann et al. (2016); populations 

at ME and TR are largely insensitive to climate effects, suggesting other factors (e.g., predation, 
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phenological mismatch) may be the biggest drivers in this system for variation in annual 

fecundity.  

 The monitored ptarmigan populations at TR and ME differed substantially in their 

abundance trends based on our derived estimates of the geometric mean growth rate. The ME 

population increased an average of 2% annually from 1967 to 2016 (Fig. 3.4), although there was 

considerable variation in the number of birds observed each spring. Wann et al. (2014) estimated 

average realized population growth from a Pradel model (Pradel 1996) and estimated the 

population had, on average, increased 4% per year from 1970 to 2010 ( � = 1.04, 95% CI = 0.97 

to 1.10), which overlaps the growth estimate obtained from the IPM. It is important to note that 

for open populations the Pradel growth estimate is not representative of the population per say, 

unlike the estimates of growth obtained from the dominant eigenvalue of a Leslie matrix, 

because it is based on data from marked birds that may not have been produced internally. 

Overall, we consider our estimates of growth from the IPM more accurate because it was 

produced using available information from two additional data sources. Additionally, the 

precision associated with our estimate of growth is substantially improved over the estimate 

obtained from the Pradel model.  

The TR population, in contrast to the ME population, declined an average of 3% per year 

from 1967 to 2000, and 9% annually from 2011 to 2016 (Fig. 3.4). The declining TR population 

has already been documented by both (Braun et al. 1991) and (Wang et al. 2002b). Braun et al. 

(1991) attributed population declines to loss of willow (Salix spp.) due to elk browsing. This 

seems like a plausible explanation given the rise in abundance of elk during the 1966 to 2000 

period over which most of our data were collected. Wang et al. (2002b) attributed the decline to 

warming winter temperatures which were highly correlated with declining growth rates. 
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However, the same trend was not observed at ME, even though temperatures warmed at 

comparable rates, which muddles the support for warming winters as a causative factor of 

population decline. A potential mechanism proposed by the authors was the influence of high 

temperatures on the quality of winter snow used by ptarmigan as roosting habitat during the 

winter (Braun et al. 1976). This seems like a plausible explanation since warm winter 

temperatures may melt the surface of the snow, but even during the warmest winter days, it is 

still well below freezing at night and hence the ability of birds to snow burrow may be 

compromised.  

Similarities to other avian studies 

  

 Studies examining relationships between densities and demographic rates in different age 

and sex classes are uncommon in the avian literature. Similarly, avian studies examining density 

dependence during the non-breeding season are rare. Nonetheless, the few examples that exist 

are insightful. Marra et al. (2015) found strong evidence for density dependence in American 

redstarts (Setophaga ruticilla) in wintering areas where adult males tended to segregate into 

high-quality habitats located in mangroves, while females and juveniles of both sexes were 

relegated to more marginal habitats in scrub. Overall, males comprised the majority of 

individuals in mangrove habitats, while females and juveniles were dominant in scrub habitats. 

Survival in the mangrove habitats was strongly density dependent, and both body condition and 

survival declined as densities increased, but there was no evidence of negative density effects in 

the lower-quality scrub habitats. The authors also investigated the role of winter precipitation in 

this study and found it was positively related to body condition in the scrub habitat, but not in the 

higher quality mangrove habitat. The authors suggested food was a limiting factor in the scrub 
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habitat, and competition and crowding was a limiting factor in the mangrove habitat (body 

condition was higher in the mangrove and invariant to precipitation). The relationship between 

habitats occupied by male and female ptarmigan in winter is opposite that of the redstart system. 

Female ptarmigan, along with some juvenile males, generally occupy basins with abundant 

willow (May and Braun 1972a) during the winter months and congregate in large flocks 

(Hoffman and Braun 1975). In contrast, males congregate in much smaller numbers in marginal 

habitats at higher elevations, presumably to remain closer to their breeding territories. Resources 

are likely more limited for males in winter, although survival models that included interactions 

between density and sex were not supported in our candidate model sets.  

Two important distinctions can be made comparing ptarmigan to the redstarts studied by 

Marra and coauthors, beyond the obvious taxonomic and ecosystem differences. First, ptarmigan 

are gregarious and lack territoriality during the winter, so crowding or spacing effects are not 

likely to be factors limiting populations in winter habitats since little energy is needed for 

defense or antagonistic interactions. Second, resources are heterogeneous in winter alpine 

habitats, in contrast to the homogenous mangrove and scrub habitats, and density dependence is 

likely to be strongest when habitats are homogeneous and densities are high (Rodenhouse et al. 

2003, Sillett and Holmes 2005). Generally, winter is a period of time when ptarmigan build fat 

reserves and gain mass (Braun 1971, May and Braun 1972b), although interannual variation in 

mass has not been reported, and food limitation during this period is poorly understood. We 

would have anticipated the role of winter precipitation to be important if density dependence 

operated primarily through competition for food, because the amount of snowpack likely 

influences the amount of willow available during the winter (Braun et al. 1976). However, there 

was no justification for including survival models with precipitation covariates in our IPM based 
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on model selection results, even though previous work found support for winter precipitation 

affecting survival (Wann et al. 2014). Predation may have been a density dependent factor but 

we lacked proxies to test the likelihood of such a mechanism.  

We found plausible evidence for an interaction of density with climate at both our sites, 

consistent with ecological theory for population regulation (Coulson et al. 2001). Most support 

for interactions between intrinsic and extrinsic factors in our study came from the ungulate 

literature where long-term studies containing detailed demographic information are most 

common. If climate impacts resources that are limited, then climate and density should be 

studied together (Lima et al. 2002). The one example we found that demonstrated the strength of 

density-dependence was dependent on an interaction with climate was for white-throated dippers 

in Norway (Gamelon et al. 2017). The dipper example was particularly relevant to our study 

because it involved a cold-adapted species occurring in a mountainous ecosystem. Gamelon and 

coauthors (2017) found that dippers responded positively to warm winters across all age-specific 

survival rates, likely due to its effect of increasing resource availability in streams (dippers 

forage in rivers) and nesting locations from ice. However, temperature effects were negligible at 

low densities, but at high densities vital rates were strongly related to climate, and populations 

were less buffered against harsh environmental conditions (i.e., cold winters). Thus, the authors 

concluded that competition and resources were limiting at high densities, and abiotic conditions 

experienced at high densities could strongly affect the population dynamics of dippers. The 

interaction between winter temperature and density in our population suggests a similar 

mechanism may be operating, but overall, it is important to note the strength of abiotic 

conditions was not particularly strong at either of our sites. However, an interaction between 

density and climate does suggest the potential for resource limitation in winter populations. 
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Winter habitats have limited availability of resources for males, and to lesser extent females. 

Understanding resource limitations in the winter populations is somewhat limited though, 

because ptarmigan from the populations we monitored may share winter habitat with birds from 

surrounding areas (Hoffman 1977). If the annual population sizes at our sites do not track 

surrounding populations, our measure of density may have led to some bias in our estimates of 

the strength of density dependence, and this may have ultimately reduced our ability to detect 

strong effects of interaction with temperature. Thus, we are left with a somewhat unsatisfying 

conclusion that density dependence is indeed detectable in our studied populations, but whether 

it operates through competition or predation is still unknown.  

 

CONCLUSIONS 

 

 Contemporary research has emphasized the need to examine factors that regulate 

populations in a new context emphasizing two factors: 1) age-specific relationships with density, 

because the strength of density is likely to vary among age classes, and 2) interactions between 

intrinsic and extrinsic factors. We examined such relationships by testing density effects on 

juvenile survival and survival of breeding-age ptarmigan, and through testing interactions 

between climate and density for breeding-age ptarmigan. We could not have examined density 

effects on juvenile survival in the absence of a comprehensive dataset of demographic data and 

the use of a Bayesian hierarchical model due to extreme biases that exist in band-return data for 

birds banded as juveniles. Overall, we provide evidence for density dependence during the 

winter season, one of only a handful of avian studies that has done so, and we show evidence for 

an interaction with temperature for one population, and limited evidence for another.  
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TABLES 

 
 
Table 3.1. Integrated population model (IPM) structures used for inference on population 
regulation of white-tailed ptarmigan (Lagopus leucura) studied at Mt. Evans (ME) in Clear 
Creek County, Colorado, and Trail Ridge (TR) in Larimer County, Colorado. Parameters 
represented in the table include apparent survival of breeding-age birds (ϕ) and recapture 
probability (p) from the Cormack-Jolly-Seber (CJS) model, fecundity (f) from a GLM model, 
and juvenile survival (S). Juvenile survival was a latent state in our model estimated from the 
other data sources. Apparent survival and fecundity parameters were fit using random effects 
(RE). The best structure was used to model apparent survival and fecundity, but we also fit a 
model with simple time variation (year) so the percentage of process variance explained by 
covariates could be calculated. If a survival model was not top ranked but had plausible support, 
we considered it for comparative purposes if it was a top model structure for the other site 
(Model 4).   
 

Model Survival (ϕ) Recapture (p) Survival (S) Fecundity (f) 

1 age + sex + best (RE) year constant year (RE) 

2 age + sex + best (RE) year density year (RE) 

3 age + sex + year (RE) year constant year (RE) 

4 age + sex + comp (RE) year density year (RE) 
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Table 3.2. Mean parameter estimates from combined data sources fit using an integrated 
population model (IPM) and individual datasets (Single) for long-term data for white-tailed 
ptarmigan (Lagopus leucura) at Mt. Evans (ME) in Clear Creek County, Colorado, and Trail 
Ridge (TR) in Larimer County, Colorado. Parameters presented include fecundity (f), apparent 
survival (ϕ), recapture probability (p), and juvenile survival (S). Estimates are from models with 
time varying random effects for apparent survival and fecundity, and time varying fixed effects 
for recapture probability. Juvenile survival was fit as time invariant in the IPM but could not be 
fit as a single model because estimation was dependent on the other data sources. 
 

 IPM Separate 

Parameter Mean SE 
L 95% 

BCI 
U 95% 

BCI Mean SE 
L 95% 

BCI 
U 95% 

BCI 

ME         
f 1.560 0.057 1.145 1.673 1.539 0.055 1.432 1.651 

ϕ(sub fem) 0.539 0.032 0.478 0.602 0.526 0.033 0.462 0.591 

ϕ(ad fem) 0.521 0.024 0.473 0.568 0.504 0.024 0.457 0.551 

ϕ(sub male) 0.626 0.032 0.563 0.690 0.621 0.034 0.555 0.686 

ϕ(ad male) 0.610 0.02 0.571 0.648 0.601 0.02 0.457 0.551 

p 0.593 0.021 0.552 0.633 0.594 0.021 0.553 0.634 

S (fem) 0.697 0.061 0.582 0.822 - - - - 

S (male) 0.648 0.065 0.527 0.780 - - - - 

TR         
f 2.240 0.075 2.104 2.400 2.200 0.065 2.075 2.330 

ϕ(sub fem) 0.515 0.030 0.456 0.575 0.506 0.031 0.445 0.568 

ϕ(ad fem) 0.555 0.022 0.511 0.598 0.543 0.023 0.498 0.588 

ϕ(sub male) 0.673 0.028 0.617 0.728 0.672 0.029 0.614 0.727 

ϕ(ad male) 0.708 0.014 0.680 0.736 0.705 0.014 0.676 0.733 

p 0.594 0.017 0.562 0.627 0.596 0.017 0.563 0.628 

S (fem) 0.413 0.038 0.342 0.492 - - - - 

S (male) 0.473 0.052 0.378 0.582 - - - - 

 

 

 

  



100 
 

FIGURES 

 

 

Figure 3.1. Observed spring counts (dashed black lines) and estimated population size (solid 

black lines) of white-tailed ptarmigan (Lagopus leucura). Gray shading represents 95% credible 

intervals for estimated population size produced from the integrated population model. The top 

panel (a) represents a time series for Mt. Evans in Clear Creek County, Colorado, and the bottom 

panel (b) represents a time series for Trail Ridge in Larimer County, Colorado. Data were 

recorded from 1966 to 2016 at both sites, with missing years or incomplete surveys from 2001 to 

2010 at Trail Ridge and 1977 and 1999 at Mt. Evans.  
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Figure 3.2. Demographic estimates from integrated population model (IPM) for two white-tailed 

ptarmigan (Lagopus leucura) populations in Colorado at Mt. Evans (ME) in Clear Creek County, 

and Trail Ridge (TR) in Larimer County. Juvenile survival of males (gray) and females (black) 

was negatively related to fall population density at both ME (a) and TR (b). Annual estimates of 

apparent survival for subadult females are presented and varied considerably among years at ME 

(c) and TR (d), as it did in parallel for other age and sex classes. Similarly, annual fecundity 

varied by year at both ME € and TR (f), but generally declined across the time series at TR. 

Parameter estimates were taken from Model 2 (a and b) and Model 4 (c-f).  
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Figure 3.3. Integrated population model (IPM) estimates of apparent survival for subadult female 

white-tailed ptarmigan (Lagopus leucura) at Mt. Evans (ME) in Clear Creek County, Colorado 

(a) and Trail Ridge (TR) in Larimer County, Colorado (b). Predictions were produced from 

survival models with a covariate structure that included an interaction between density and 

winter minimum temperature, and additive effects for age and sex effects (i.e., different 

intercepts but common slopes for each group). Covariates were standardized prior to model 

fitting.  
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Figure 3.4. Posterior distributions of geometric mean growth rates for white-tailed ptarmigan 

(Lagopus leucura) populations at Mt. Evans in Clear Creek County and Trail Ridge in Larimer 

County. Geometric mean growth was calculated over the 1968-2016 period at Mt. Evans (a) and 

1968 to 2000 (b) and 2011 to 2016 (c) at Trail Ridge. Vertical dashed lines represent 95% 

credible intervals for mean growth, and values less than or greater than 1 (red vertical line) 

indicate population decline or growth. 
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CHAPTER 4: ASSESSING DEMOGRAPHIC VIABILITY AND SENSITIVITY OF TWO 

WHITE-TAILED PTARMIGAN POPULATIONS IN COLORADO 

 

INTRODUCTION 

  

 Alpine species are adapted to survive in extreme seasonal environments where abiotic 

conditions fluctuate widely both between and within seasons (Martin and Wiebe 2004). Relative 

to lower elevation habitats, alpine systems have highly contracted growing seasons, long periods 

of snow coverage, cold temperatures, late emergence of food resources, and low primary 

productivity (Martin et al. 1993, Körner 1999, Bears et al. 2009). Short growing seasons affect 

life-history characteristics of reproduction by reducing the number of breeding opportunities 

within a season (Martin and Wiebe 2004). The reduction in breeding season duration in alpine 

systems has the general effect of lowering fecundity (the number of offspring produced per 

female) relative to those occurring at lower elevations (Krementz and Handford 1984). Life-

history traits may therefore vary across an elevational gradient, and differences in trade-offs 

between fecundity and survival are predicted to occur as a function of elevation (Bears et al. 

2009). For example, if fecundity decreases as elevation increases, populations occurring at the 

highest elevations should have high survival rates in the breeding-age classes to offset low 

fecundity rates, otherwise population growth rates will be insufficient to maintain populations. 

This prediction has been supported by Sandercock et al. (2005), who found that vital rates of 

ptarmigan (Lagopus spp.) populations varied across an elevational gradient, with high-elevation 

populations demonstrating the highest survival rates of adults and lowest reproductive rates 

relative to lower-elevation populations. Therefore, factors contributing to annual variation in 
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survival may be of high importance to population growth in mountain vertebrate populations, 

and understanding life-history traits provides insight into population vulnerabilities.  

 Life-history traits characterized by vital rates (e.g., annual survival and fecundity) are 

important for management and conservation of wildlife populations because they determine 

whether populations will grow or go extinct. Understanding how variation in vital rates affects 

population growth is therefore one of the fundamental goals of conservation biology (Morris and 

Doak 2002). Assessing which vital rates have the largest impact on population growth when 

varied is known as sensitivity analysis (Caswell 2001a), and knowing something about vital rate 

sensitivity provides useful information to determine which rates should be targeted to meet 

management objectives (Wisdom and Mills 1997). However, depending on sensitivity analysis 

alone for inference on factors contributing to changes in population growth may be limiting in 

the information it can provide for wildlife managers. This occurs primarily for two reasons. First, 

vital rates with the highest sensitivities should also have the lowest environmental variability and 

thus lowest potential for change through management action based on life-history theory (Pfister 

1998). Second, sensitivity analysis can provide an incomplete picture of the importance of 

different vital rates when the relationship between growth and a given rate is nonlinear, and 

summarizing sensitivity with a single number in such cases can be misleading (Morris and Doak 

2002). Life stage simulation analysis (LSA) provides a framework to assess changes in growth to 

variation in vital rates using their mean estimates, associated process variances, and covariances 

(Wisdom et al. 2000). LSA evaluates changes in different vital rates on elasticity rankings by 

simulating many matrices; each matrix simulation contains vital rate values based on random 

draws from their associated probability distributions specified based on the moments of their 

distributions. In this way LSA can evaluate many possible combinations of differing values for 
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vital rates that are biologically expected to occur, and the proportion of variation in population 

growth can be assessed by regressing population growth (as measured by the dominant 

eigenvalue of the projection matrix) against each vital rate, or combinations of vital rates. 

 Our primary goal in this study was to assess the viability of two white-tailed ptarmigan 

(Lagopus leucura) populations located in the Front Range of the Rocky Mountains in Colorado. 

The white-tailed ptarmigan (hereafter ptarmigan) is the smallest species of grouse in the world 

and the only species in North America to spend its entire life cycle at or above treeline. The 

species is of special conservation concern given it is an alpine endemic, and alpine habitats are 

threatened due to anthropogenic warming of the earth’s temperatures (Diaz and Eischeid 2007, 

Seddon et al. 2016). In 2010 the Center for Biological Diversity petitioned the U.S. Fish and 

Wildlife Service to list the southern subspecies (L. l. altipetens) as threatened under the 

Endangered Species Act (Center for Biological Diversity 2010). Previous work examined 

sensitivities of ptarmigan vital rates for one of our studied populations using a deterministic 

matrix model (Sandercock et al. 2005). This work indicated that adult survival had the largest 

influence on population growth, followed by juvenile survival. Overall, the authors concluded 

the population was not self-sustaining based on estimated vital rates. We build off the work of 

Sandercock and colleagues by updating survival rates with long-term demographic data to 

incorporate environmental variance, and updating fecundity using data obtained from a recent 4-

year breeding study. This led us to address a specific subset of objectives relating to population 

viability. 

Our first objective was to revisit vital rate sensitivity of our two monitored populations. 

Specifically, we used a LSA framework to evaluate vital rates for our populations, which 

provided a way to assess explanatory power of each rate to changes in growth. LSA allowed us 
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to incorporate uncertainty into our evaluation of vital rate sensitivities. Our second objective was 

to assess a simple set of management scenarios aimed at improving population performance 

through direct enhancements of vital rates. We used simulations to assess how improvements to 

survival or fecundity could be expected to increase the mean population growth rate. Finally, our 

third objective was to calculate the probability our populations would pass a quasi-extinction 

threshold in the next 50 years based on simulations used to estimate the stochastic population 

growth rate. We used two sets of simulations for this last objective; one from a subset of years 

where detailed reproductive data was collected from a telemetry study to estimate fecundity from 

nest and chick survival, and a second using counts of chicks in the summer for all years of the 

study to estimate fecundity when nest data were unavailable. This second approach was extended 

further to examine the periods prior to and after 1994 separately because this year marked the 

implementation of a permanent hunting ban at one of our populations. We contrast the strengths 

and weaknesses of each approach.   

 

METHODS 

 

Study area 

 

 We studied ptarmigan at two long-term monitoring alpine sites in Colorado. Site 

descriptions are provided in detail elsewhere (Braun 1969, Braun and Rogers 1971). The Mt. 

Evans (ME) population is in Clear Creek County and was the focus of demographic data 

collection from 1966 to 2016, with the exception 1977 and 1999 when spring population surveys 

and banding did not occur. The ME population was exposed to varying levels of hunting pressure 
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until 1994 when a hunting restriction essentially eliminated hunter-related mortalities. The Trail 

Ridge (TR) population is in Larimer County and was the focus of demographic data collection 

from 1966 to 2000, and again from 2010 to 2016. TR was located within the boundaries of 

Rocky Mountain National Park. Unlike ME, the TR population was protected from hunting due 

to its location within National Park boundaries. The study area extents of both areas occur in the 

alpine at elevations between 3430-4076 m and are largely characteristic of alpine habitats along 

Colorado’s Front Range. 

 

Field data 

 

 Two types of data were collected to parameterize the transition matrix of our population 

model used in the analysis. We collected capture-recapture data in the spring by locating males 

using playbacks of territorial calls (Braun et al. 1973) followed by capture and banding. Once 

located, we were generally able to find hens easily due to their tendency to stay within a few 

meters of males. Unbanded birds were captured using a noose (Zwickel and Bendell 1967). We 

banded all captured unmarked birds with a State of Colorado numbered band and between 2 to 4 

colored bandettes. Colored bandettes were placed in unique combinations to allow for 

identification without the need for recapture during later encounters (Wann et al. 2014). 

Resightings of marked birds occurred for all years of the study at each site and birds formed the 

data to estimate survival. Fecundity data were collected for a subset of years from 2013 to 2016. 

During these years we placed 9.5 g VHF transmitters (Holohil Ltd, Carp, Ontario) on hens using 

an elastic collar mount. Hens were monitored 1 to 3 times weekly from May through early 

September. This time span covered the reproductive period from onset of egg laying until chicks 
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reached ≥ 7 weeks of age. Nests were checked 10 days after first discovered to count and 

measure eggs. We avoided disturbing nests when initially found to reduce the likelihood of nest 

abandonment, and checking nests at the 10-day mark ensured the onset of incubation had begun. 

From 2014 to 2016 we pinned 2 iButton temperature loggers (Thermochron, model DS1921G, 

Maxim Integrated, San Jose, CA) to the bottom of the nest bowl using a 7.62 cm roofing nail and 

monofilament fishing line glued to the temperature loggers and nail. Temperature loggers were 

small and provided information on nest fate and the date a nest hatched or failed.  

 

Population model 

 

 Previous work by (Sandercock et al. 2005) identified three age classes as 

demographically distinct in terms of fecundity rates for ptarmigan in Colorado. We built on this 

work and used a modified stage-structured matrix model to examine vital rate sensitivities in our 

populations. Our model was female based. The transition matrix of this model was constructed to 

represent a pre-breeding census which assumed the birth pulse occurred immediately after the 

population of breeding-age birds was counted (Noon and Sauer 1992).  

 [ × × + × ] (1) 

 

The second and third rows of the transition matrix contain terms for breeding-age survival of 

subadults ( ) and adults 2 years or older ( ). Elements in the top row of this model represent 

age-specific fecundity rates, and  is a combined reproductive term for the jth age class 

representing the product of multiple rates (more details below, but a full description of the 
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fecundity term is described in Sandercock et al. 2005). This fecundity term is multiplied by 

survival of juvenile females ( ) from August to May of the following year.  

 Our population model assumed equal survival rates for hens ≥ 2 years old. This differed 

from the model presented in Sandercock et al. (2005) which used estimates of survival for three 

distinct age classes of breeding-age birds. The primary reason for this modification was because 

we did not find significant differences between 2-year-old hens and those ≥ 3 years when the full 

time series was used in a survival analysis (G. T. Wann, unpublished data). 

 

Fecundity rates  

 

 Nests and broods monitored from 2013 to 2016 formed the basis of our age-specific 

reproductive estimates used to calculate fecundity. We used a Bayesian beta-binomial model for 

all reproductive estimates, which were bounded between 0 and 1 (i.e., proportions and 

probabilities). Like our other models presented in Chapter 3, this model allowed us to estimate 

the posterior distribution for the probability of success (p) in closed form (i.e., without using an 

MCMC sampler) because the binomial likelihood is conjugate to the beta prior. An additional 

benefit of the beta-binomial model was that it allowed us to use prior information to better 

inform our mean estimates. We used information available on age-specific reproductive rates 

presented in Sandercock et al. (2005) as informative priors in a Bayesian population model. This 

was done by moment matching the mean and variance for each vital rate to the shape parameters 

for the beta distribution (Hobbs and Hooten 2015). The parameter  was modeled as arising from 

a beta distribution with shape parameters   and , where the shape parameter represents rates 
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for prior information which were calculated by moment matching the mean and variance 

estimated in the prior study. The rate parameters were then updated with new data as: 

 = ∑ +  (2) 

 

 = − ∑ +  (3) 

 

were n is the total number of trials (for example, nets, eggs, or chicks recorded) and y is the 

number of successes (for example, successful nests, hatched eggs, or fledged chicks) for 

observation i. We used a similar approach to model clutch size. However, we assumed clutch 

size arose from a Poisson process with rate . We took advantage of the conjugate relationship 

between the Poisson likelihood and gamma prior and again used prior estimates of the mean and 

variance to moment match with shape parameters  and � for the gamma prior used to model . 

We then updated the shape parameters with new data as: 

 = + ∑=  (4) 

 

 � = � +  (5) 

 

The use of conjugate relationships provided the ability to update the vital rates underlying 

the fecundity terms (top matrix elements in expression 1) with prior information and obtain a 

new mean and variance for each rate. However, the fecundity terms used in the projection matrix 

were a composite of multiple vital rates. To obtain variances for each age-specific fecundity rate 
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we used a parametric bootstrap. This was done by combining all the vital rates in a slightly 

modified formula for fecundity presented in Sandercock et al. (2005) as: 

 

 

= [( × ) + ( × ) + ( × )]× × × × .  

(5) 

 

where j represents the jth age class, EGGS represents the average number of eggs laid (specific 

to nesting attempts 1-3 and calculated as the product of probability of nest failure, total clutch 

size, and renesting probability), NEST represents the probability of nest success (specific to 

nesting attempts 1-3), CE represents the proportion of chicks produced per egg laid, FLED is the 

probability of a chick reaching age 15-25 days, and FC is the proportion of fledgling per chick 

hatched. This combined product of the component rates is multiplied by 0.5 because we assumed 

an equal sex ratio of eggs produced. We simulated vital rates for the variables using the 

associated shape parameters and random draws from beta (proportions and probabilities) and 

gamma (average clutch size) distributions. This was done 100,000 times and the resulting 

distribution of simulated fecundity rates was used to calculate means and variances. Our 

variances calculated from the resulting distribution was total variance because we were unable to 

separate sampling from process variance. This was due to an inadequate number of replicate 

years. 
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Survival rates 

 

 We used survival estimates of juveniles and breeding-age females from our fully time 

dependent (i.e., all vital rates varied by year) integrated population model (IPM) presented in 

Chapter 3. A random effects structure was used in our Cormack-Jolly-Seber model fit inside the 

IPM which provided mean estimates for breeding-age survival of subadult and adult ptarmigan, 

in addition to associated process variance. The survival structure in our IPM was fully additive 

with a common shared variance for each rate. A back transformation of process variance to the 

probability scale was necessary because process variance was estimated on the logit scale in the 

IPM. We used the Delta method approximation for our transformation to the probability scale 

(presented in Powell 2007 and Kéry and Schaub 2012): 

 �� ≅ � � − �  (6) 

where �  is process variance, ��  is process variance on the back-transformed (i.e., probability) 

scale, � = exp �+exp � , and  is a group-specific mean (in the case of our models  was the sum of 

regression coefficients in the survival models used to specify age and sex classes). This 

transformation was performed during the fitting process of our integrated population models in 

Chapter 3. 

 

Life stage simulation analysis 

 

 We generated 10,000 3 x 3 replicated projection matrices to assess small changes in the 

vital rates that determined population growth. For every replicated matrix we generated a value 

for each vital rate from either a beta distribution (for survival probabilities) or lognormal 
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distribution (for fecundity) using the associated means and variances in the distribution 

functions. Thus, our simulation was comprised of 10,000 replicated projection matrices, each 

containing biologically plausible values generated based on their means and variances. We 

calculated the dominant eigenvalue of the projection matrix and calculated analytical sensitivities 

and elasticities for every iteration of the simulation (Caswell 2001b). We used linear regressions 

across all replicates to calculate the proportion of variation in  explained by each vital rate, 

which we measured using the coefficient of determination (R2). We followed the example of 

Taylor et al. (2012) and conducted regressions on untransformed data for comparisons with vital 

rate sensitivities, and log-log transformed data for comparisons with vital rate elasticities. We 

next ranked the vital rates by their sensitivities and elasticities across all simulated matrices and 

calculated the proportion of times replicates for a given vital rate appeared in each rank. All 

analyses were conducted in R (R Development Team 2015). The package popbio (Stubben et al. 

2007) was used to calculate sensitivities, elasticities, and the dominate eigenvalues ( ). 

 

Extinction probabilities  

 

 A cumulative distribution function (CDF) was used to assess extinction probabilities 

through simulations of the means and variances of vital rates (Morris and Doak 2002). The CDF 

provides the probability a population will reach a quasi-extinction threshold by a given future 

time. We calculated the CDF over a 50-year period and set the quasi-extinction threshold at 10 

females for each site. Choosing a meaningful threshold for our populations was difficult, and we 

chose 10 females because this was a size at which demographic stochasticity may become a 

dominant factor in population persistence (Morris and Doak 2002), and because this was near the 
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lowest population abundance observed for both populations. As before, vital rates were 

simulated from random draws from a beta distribution for survival probabilities; however, we 

drew from a lognormal distribution for fecundity values because this distribution was most 

appropriate given the multiplicative nature of our fecundity estimate. We assessed extinction 

probabilities under several different management scenarios to improve population growth. 

Management scenarios were developed based on practical expectations for what could be done to 

improve population performance. For example, increasing subadult survival by more than 40% 

was unrealistic because this would result in a rate greater than the upper limit of survival based 

on our estimates of process variance. Scenarios included increasing fecundity rates by 50, 75, 

and 100%, and survival by 10, 20, and 30%. Rates were improved for the composite of all 

fecundity or survival rates together (e.g., each age-specific fecundity term was improved by 

10%), because targeting specific age classes was not realistic (e.g., any manipulations of hunting 

regulations would likely affect all age classes similarly since birds flock together during the fall 

hunting season). Our scenarios included improvements to fecundity or survival, each 

independently of the other.  

 Two datasets that differed in their temporal periods were used to assess extinction 

probabilities. The first dataset consisted of average survival rates calculated over the full time-

series for both study sites, and age-specific fecundity rates over a subset of years (estimates from 

2013-2016 informed from prior data). We refer to the analysis of this dataset as the “age-specific 

fecundity CDF.” The second dataset used fecundity estimates obtained from summer brood 

surveys over the 1994-2016 period, and survival estimates over the same time. We refer to this 

analysis as the “post-1993 CDF.” We assessed extinction probabilities over this time period 

because hunting restrictions went into effect permanently in 1994 at ME. Hunting can have 
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severe impacts on the population dynamics of ptarmigan (Braun and Rogers 1971) which are 

unlikely to be representative of population dynamics throughout the distribution of ptarmigan in 

Colorado. This is because many areas where ptarmigan occur are difficult to access and unlikely 

to be visited regularly by hunters. Unlike fecundity estimates obtained from telemetry data which 

included component probabilities (e.g., nest success, fledgling success), fecundity estimates 

obtained from summer brood surveys were based entirely on the number of chicks observed in 

August and hens in the spring population. The advantage of using this estimate of fecundity was 

that it was available for more years. The disadvantage was that age-specific fecundity rates could 

not be obtained. 

Within-year and between-year correlations were used in the calculations of the age-

specific CDF and post-1993 CDF simulations. We calculated correlations for a subset of data 

that were available from the TR population during the 1973-1983 period. Data were sufficient 

during this period to estimate time varying rates for juvenile and breeding-age survival and 

fecundity for each year, which was necessary for the correlation matrices to be valid (Morris and 

Doak 2002). Our measures of fecundity during this period were based on the number of chicks 

per hen which were obtained from the population model presented in Chapter 3; these fecundity 

rates were not age-specific. Age-specific survival estimates for this period were obtained using 

program MARK (White and Burnham 1999). We did not use survival rates from the population 

model in Chapter 3 because they were estimated in an additive structure (i.e., the correlation 

between subadult and adult survival was forced to be 1). Sampling variance was accounted for in 

our estimates of survival rates using the shrinkage estimates in program MARK. Similarly, 

sampling variance in our fecundity estimates was accounted for through random effects. Within-

year correlations represented correlations between different vital rates over the 1973-1983 
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period; between-year correlations represented correlations with a 1-year offset (i.e., vital rates 

from 1973-1982 were cross-correlated with the same vital rates from 1974-1983). Both within 

and between year correlations were summarized as covariance matrices. These covariance 

matrices were used in our CDF simulations for both ptarmigan populations, but the age-specific 

CDF correlation matrices had the pairwise correlations for the fecundity terms set to 0 because 

these could not be estimated. We simulated a total of 1,000 runs for each scenario in our 

simulations using the ‘vitalsens’ function in the popbio package with a starting population size of 

50 for each population, which we multiplied and rounded using values from the associated stable 

age distribution to obtain stage-specific numbers. We present stochastic values of population 

growth ( ) for each scenario along with extinction probabilities taken from the CDF.  

 

RESULTS 

 

Vital rate sensitivities 

 

 Deterministic sensitivities and lower level elasticities of the mean matrix for both ME 

and TR indicated that variation in survival rates for adults ( ) and juveniles ( ) had the largest 

influence on λ, followed by subadult survival ( ) and adult fecundity ( ) (Fig. 4.1). Mean 

sensitivities and elasticities obtained from the LSA produced results that closely matched the 

mean deterministic matrix (Fig. 4.2). Additionally, the relative rankings of vital rate sensitivities 

and elasticities were highly stable across all simulations. For example, the proportion of 

simulations with adult survival having highest sensitivities was 1.00 at ME and 0.93 at TR, and 

the proportion for elasticities was 0.82 at ME and 0.91 at TR (elasticity rankings presented in 
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Table 4.1). The proportion of fecundity elasticities for adults ≥ 3 years ranked 4th was 0.91 at 

ME and 0.89 at TR. Regression analysis indicated that survival accounted for the majority of 

variation in population growth. Overall, adult survival explained the largest amount of variation 

in λ based on R2 and a model containing additive  and  terms; 69% of variation was 

explained at ME (65% log-log scale), and 61% at TR (59% log-log scale). Juvenile and subadult 

survival were similar in their predictive abilities for λ at both sites; juvenile survival explained 

14% of variation at ME (14% log-log scale) and 23% at TR (21% log-log scale), and subadult 

survival explained 12% of variation at ME (12% log-log scale) and 7% at TR (6% log-log scale) 

(Fig. 4.3-4.4). There were only minor differences between the proportions of variation explained 

by fecundity rates at ME compared to TR. At ME fecundity of subadults explained less 1% of 

variation in growth, 1% in adults 2 years old, and 3% in adults 3 years or older. At TR fecundity 

of subadults explained 1% of variation in growth, 1% in adults 2 years old, and 6% in adults 3 

years or older. Variances explained by fecundity rates were similar for both raw and log-log 

scales at ME and TR. 

 

Extinction probabilities 

 

 The probability of quasi-extinction using the mean vital rates and variances without vital 

rate improvements indicated both populations would quickly reach the quasi-extinction 

threshold. The CDF reached a 0.5 probability of quasi-extinction for the TR population by year 

5, and by year 7 for the ME population (Fig. 4.5). Overall, consistent with vital rate sensitivities, 

small incremental percentage improvements to survival had a bigger effect on stochastic growth 

than larger percentage improvements to fecundity (Table 2). ME reached or surpassed a stable 
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population ( = ) before TR under the same improvement scenarios. A 30% increase in 

survival was required to stabilize or grow the population at ME, but a 30% increase in survival at 

TR would not be enough to stabilize TR. Similarly, the ME population was stabilized with a 

100% increase in fecundity, while a 100% increase in fecundity was not enough to stabilize the 

TR population (Table 2). 

 Extinction probabilities for the 1994-2016 period using fecundity estimates obtained from 

summer brood surveys indicated a more optimistic outlook for both populations compared to 

probabilities obtained using fecundity estimates from nest and brood monitoring data. The ME 

population did not reach a cumulative probability of quasi-extinction above 50% by year 50 

(probability of quasi-extinction by this time was 2.1%), while the TR population surpassed a 

cumulative probability of quasi-extinction of 50% by year 11 (Fig. 4.6). Overall, the stochastic 

growth rate during the post-1993 period indicated the ME population was growing ( =1.061; 

95% CI = 0.998, 1.130), while the TR population was in decline ( = . ; 95% CI = 0.810, 

0.905).  

   

DISCUSSION 

 

Vital rates 

 

 White-tailed ptarmigan in Colorado exhibit life-history traits which are similar to other 

species in the grouse subfamily, including sage-grouse (Centrocercus spp.; Taylor et al. 2012) 

and rock ptarmigan (Lagopus muta; Wilson and Martin 2012), both of which are most sensitive 

to changes in survival of breeding-age birds in terms of population growth. Not surprisingly, our 
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results were consistent with those of Sandercock et al. (2005), from which we used prior 

information to inform the estimation of reproductive rates. Population growth was most sensitive 

to survival of adults 2 years or older, and the majority of variation in λ could be attributed to this 

rate. However, we set adult survival equal for birds of age 2 years or older and this rate appeared 

in our transition matrix twice. As a result, the sensitivity of λ to this single rate was expected to 

be high. Using both subadult and adult rates in a regression from our LSA indicated that ~81% of 

variation in λ was explained by breeding-age survival (1 and 2+ old birds) at ME and ~67% at 

TR. Thus, survival of breeding-age birds has a larger impact on population growth than fecundity 

in the populations we studied.  

The internal demographics of the ME population were insufficient for population 

persistence in the absence of external sources - similar to estimates from Sandercock et al. (2005) 

for a subset of years analyzed for ME - although our estimates of stochastic growth were higher 

than estimates from that study (  = 0.792 vs 0.730). The average vital rates used to parameterize 

the projection matrix for the TR population indicated the population was in steep decline based 

on the stochastic growth rate (  = 0.728). Our estimates of stochastic growth for the population 

are somewhat surprising when a comparison is made to observed population trajectories. The 

results are consistent compared to the ranking of population growth between the two 

populations; the geometric growth rate at ME was higher than TR when averaged over a 51-year 

period (Chapter 3). However, the ME population actually grew over this period while the TR 

population declined, and the realized growth rates for both populations were far greater than the 

rates derived from the projection matrices. We have two explanations for this discrepancy. First, 

our fecundity rates were based on a subset of years (2013-2016) from ME which were informed 

by prior data collected from 1987 and 1989-1997 period. These prior data were collected during 
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a below-average reproductive period (see Chapter 3 Fig. 3.3), and as a result, did not capture 

high reproductive years. Second, our projection matrix did not explicitly model immigration 

rates. Immigration is thought to be highly important for population persistence of ptarmigan in 

Colorado (Martin et al. 2000). Ptarmigan adhere to a meta-population system (Fedy et al. 2008), 

and juvenile dispersal rates of females is thought to be extremely high in this species (Giesen and 

Braun 1993). Thus, extinction probabilities represent the internal dynamics of ptarmigan at our 

populations. 

 Developed scenarios aimed at improving vital rates so that populations would become 

self-sustaining focused on increasing combined fecundity rates or survival rates separately, 

although additional scenarios examining a combination of improvements to both simultaneously 

could be done. Varying multiple vital rates in combination, however, can make mechanistic 

understanding more difficult. Simulation results indicated that doubling mean fecundity would 

result in a growing population at ME, while the same increase would not be adequate to stabilize 

the population at TR. Overall, our estimates of fecundity were lower than the mean observed 

fecundity rates obtained from counts of chicks per hen through at least 3 weeks of age in the 

breeding population at both ME (f = 1.560 male and female chicks per hen for 51 years of data 

and all age classes combined vs 1.281 for adults 3 years or older) and TR (f = 2.24 male and 

female chicks per hen for 41 years of data and all age classes combined vs maximum of 1.603 

for subadults). We chose to use age-specific fecundity rates obtained from nesting studies to 

assess vital rate sensitivities primarily for one reason. Previous work found that reproductive 

rates vary by age in white-tailed ptarmigan (Wiebe and Martin 1998). We did not always have 

the ages of hens associated with chicks in our database. When hens are first marked as adults 

they can only be identified as birds 2 years or older (Martin et al. 2015); assigning marked birds 
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to additional age classes is not possible unless they are marked as subadults. Additionally, two or 

more hens with broods will often join into a single brood-flock, in which case chicks cannot be 

confidently assigned to hens unless they are monitored from date of hatch. Thus, the number of 

chicks per hen represents an average for all age classes. 

 

Population viability 

 

 Our population viability analysis highlights two important factors for ptarmigan 

monitored at two populations in Colorado. First, the internal demographics of each population 

are insufficient to maintain stability based on mean survival rates from long-term data and mean 

fecundity rates from 2013-2016 (with prior information strongly informing fecundity estimates). 

Models parameterized with the means and associated variances for these years indicated the ME 

population would decline ~21% annually at ME and ~27% at TR. This is likely a pessimistic 

projection given estimates of fecundity did not include years of above average reproduction 

(fecundity data were limited to data used as informative priors from 1987 and 1989-1997, and 

data collected during the 2013-2016 period that were directly modeled). When we updated the 

model with a subset of data using fecundity estimates from brood surveys during the years 1994-

2016, a period of time when hunting at ME was restricted, the predicted growth rate at ME 

increased dramatically and actually indicated a 3% annual increase in growth. This increase in 

growth was likely due to hunting restrictions that went into effect for the ME population; in 1994 

a closure within ½ mile on either side of Colorado Highway 5 effectively protected the majority 

of habitats utilized by ptarmigan in the fall at the site, in addition to higher fecundity rates 

obtained by using the number of chicks per hen. In contrast, the TR population was predicted to 
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decline ~12% annually. Thus, the hunting ban at ME suggests the population turned from a sink 

to a source population, while the TR population remained a sink.  

 The second highlight of our study is the likely importance of immigration. Given the low 

estimated growth rates at ME and TR, and the discrepancies between realized growth rates and 

those calculated from our transition matrices, it is clear immigration could explain the observed 

differences, which has been shown to be important in the population dynamics of ptarmigan at 

ME (Martin et al. 2000). For example, quasi-extinction probabilities for both ME and TR based 

on mean fecundity rates from our nesting study indicate thresholds (populations declining below 

10 hens) would be crossed by year 7 at ME and year 5 at TR. If these populations would become 

closed to immigration from surrounding source populations, populations are predicted to go 

extinct in these time frames. However, we highlight again our results using more contemporary 

data (1994-2016), which suggests the ME population is now likely to be more persistent to quasi-

extinction given the population became self-sustaining after the hunting restrictions went into 

place. 

 Our model did not include density-dependent effects. Density-dependence is likely 

operating in our population, and survival of breeding-age birds and juveniles is predicted to 

decline as a function of density (Chapter 3). Negative density-dependence is expected to 

negatively affect population viability. Since this factor was not built into our analysis, we may be 

overly optimistic in our predictions of future viability, even though our results for the TR 

population appear to be bleak without management intervention. Our analysis also did not 

include consideration of future climate data. This was due to high uncertainty in relationships 

between abiotic environmental variables and ptarmigan vital rates. Previous work indicated 

precipitation is weakly related to female survival (Wann et al. 2014), but more recent analyses 
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using a longer time series and data from TR suggest survival of breeding-age birds is largely 

invariant to climate (Chapter 3). Similarly, weather does not appear to be a primary driver of 

reproductive rates in ptarmigan (Wann et al. 2016). Nonetheless, weak correlations to weather, 

particularly warming, may have important impacts on population trajectories over long time 

horizons. Future work will attempt to enhance and extend our assessment of population viability 

of ptarmigan by incorporating these aforementioned factors.  

 

Conclusions 

 

 White-tailed ptarmigan at two populations studied in Colorado show high sensitivity in 

growth rates to changes in adult and juvenile survival. Overall, managing these vital rates are 

likely to have the largest impact on population growth. Our models indicated both populations 

had insufficient demographic rates to maintain stable populations and were likely demographic 

sinks. However, hunting restrictions went into effect at the ME populations in 1994, and 

updating the population model suggested the ME population has since stabilized and may even 

be a source population. Cumulative probabilities of quasi-extinction suggest the TR population is 

in danger of extinction without management intervention if it becomes closed to external 

recruitment (i.e., immigration). We emphasize the need to protect alpine habitats from becoming 

fragmented due to the connectivity necessary to keep local populations from going extinct. 



134 
 

TABLES 

 

 
Table 4.1. Elasticity ranks of vital rates expressed as a proportion of the total number of 
simulations in the life-stage simulation analysis (LSA). Fecundity rates for age classes 1-3 and 
survival rates for juveniles (s0), subadults (s1), and adults (s2) were the vital rates used in the 
projection matrix. Proportions were calculated by dividing the number of times a vital rate 
received the corresponding ranking in elasticity by 10,000, the number of simulation used in the 
LSA.  

 Elasticity rank 

Vital rate 1 2 3 4 5 6 

ME       
f1 0.00 0.01 0.02 0.06 0.87 0.04 

f2 0.00 0.00 0.00 0.01 0.04 0.95 

f3 0.00 0.00 0.00 0.91 0.08 0.01 

s0 0.18 0.82 0.00 0.00 0.00 0.00 

s1 0.00 0.04 0.95 0.01 0.01 0.00 

s2 0.82 0.13 0.03 0.01 0.00 0.00 

TR       
f1 0.00 0.00 0.01 0.08 0.77 0.14 

f2 0.00 0.00 0.00 0.02 0.15 0.83 

f3 0.00 0.00 0.00 0.89 0.07 0.03 

s0 0.10 0.90 0.00 0.00 0.00 0.00 

s1 0.00 0.02 0.97 0.01 0.00 0.00 

s2 0.91 0.07 0.01 0.01 0.00 0.00 
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Table 4.2. Stochastic growth rates ( ) for two white-tailed ptarmigan (Lagopus leucura) 
populations under different scenarios of vital rate improvement. Vital rates for juvenile and 
breeding-age survival (subadult and adult) were averaged over the 1966-2016 period. Fecundity 
rates were averaged over the 2013-2016 period and were estimated using informative priors from 
a previous study. Within-year and between-year correlations between vital rates were accounted 
for in simulations, but correlations with fecundity rates were specified as 0 in the correlation 
matrix.  
 

 Percentage improvement 

  No action 10% 20% 30% 

Survival     

ME λS 0.780 0.865 0.947 1.03 

 (0.729, 0.835) (0.812, 0.920) (0.894, 1.004) (0.977, 1.086) 

TR λS 0.720 0.794 0.869 0.945 

 (0.685, 0.756) (0.758, 0.833) (0.830, 0.910) (0.908, 0.983) 

Fecundity     

ME λS 0.780 0.893 0.949 1.00 

 (0.729, 0.835) (0.835, 0.954) (0.891, 1.011) (0.937, 1.067) 

TR λS 0.720 0.811 0.86 0.905 

  (0.685, 0.756) (0.768, 0.857) (0.814, 0.909) (0.857, 0.956) 
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FIGURES 

 

 

Figure 4.1. Relationship between population growth and survival and fecundity rates used to 
assess population viability of white-tailed ptarmigan (Lagopus leucura) populations in Colorado 
at Mt. Evans (ME) in Clear Creek County (a) and Trail Ridge (TR) in Larimer County (b). 
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Figure 4.2. Mean and simulated elasticity values for white-tailed ptarmigan (Lagopus leucura) 
studied in Colorado at Mt. Evans (ME) in Clear Creek County, and Trail Ridge (TR) in Larimer 
County. 
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Figure 4.3. Plotted relationships between simulated growth rates (λ) and vital rates for white-
tailed ptarmigan (Lagopus leucura) at Mt. Evans (ME) in Clear Creek County, Colorado. 
Individual points represent values simulated from the mean and variance for the given parameter.  
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Figure 4.4. Plotted relationships between simulated growth rates (λ) and vital rates for white-
tailed ptarmigan (Lagopus leucura) at Trail Ridge (TR) in Larimer County, Colorado. Individual 
points represent values simulated from the mean and variance for the given parameter.  
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Figure 4.5. Cumulative distribution functions (CDFs) of extinction probabilities for white-tailed 
ptarmigan (Lagopus leucura) studied in Colorado at Mt. Evans (ME) in Clear Creek County (a), 
and Trail Ridge (TR) in Larimer County (b). Simulations indicate different percentage (%) 
improvements in vital rates and their effect on the CDF. 
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Figure 4.6. Cumulative distribution functions (CDFs) of extinction probabilities for white-tailed 

ptarmigan (Lagopus leucura) studied in Colorado at Mt. Evans (ME) in Clear Creek County (a), 

and Trail Ridge (TR) in Larimer County (b). The projection models for each site were 

parameterized with mean vital rate values for the 1994-2016 period, including observed 

fecundity measured as the number of chicks per hen during summer brood surveys. CDFs were 

run without correlations (black), and with within-year and between-year correlations (red). 
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CHAPTER 5: CONCLUSIONS 

 

Understanding factors regulating populations has been a fundamental goal of ecology 

since the field was first established. From a practical standpoint, such knowledge is critical for 

management and conservation of wildlife populations. For my dissertation work I used a 

combination of long-term demographic data and contemporary field study to examine abiotic and 

biotic factors contributing to population regulation of white-tailed ptarmigan in Colorado. The 

contribution of this research comes primarily from the first two data chapters (Chapter 2 and 3) 

in terms of newfound information for the species. First, timing of reproduction for the species 

does matter. The concept of measuring fitness related to synchrony between a consumer and its 

prey is far from novel (literature cited extensively in Chapter 2), but doing so with a non-

migratory avian species in an environment as seasonal as the alpine has, to my knowledge, not 

been done. A study of alpine-breeding American robins (Turdus migratorius) found a migratory 

mismatch between arrival date to breeding areas and emergence of bare ground in Colorado 

(Inouye et al. 2000). However, food resources were not directly measured in this study, and the 

species was not a resident. The work that I and my colleagues completed indicates female 

ptarmigan produce young which suffer lower survival when hatch dates occur far from the peak 

in plant productivity. This may have important implications for alpine ptarmigan given their 

breeding activities closely track spring temperatures (Wann et al. 2016). A logical next step 

might be to simulate fitness consequences of mistiming based on climate forecasts. The key to 

such a simulation will require a strong understanding of the relationship between temperature 

and NDVI in alpine ecosystems. 
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Density-dependence was detected in our long-term datasets, and the effect was negative 

and particularly strong for survival of juveniles (summer of hatch to first spring period). In 

addition, density interacted with winter temperature in the breeding-age classes, although the 

effects differed between the two sites; survival was lowest when densities were high and winter 

temperatures were high at the Trail Ridge (TR) study site, but survival was lowest when densities 

were high and winter temperatures were low at the Mt. Evans (ME) study site. These are 

contradictory findings and I have no data-driven explanation as to why they may exist. One 

possible explanation may be differences in elevation between wintering areas at ME (high 

elevation) and TR (low elevation), which may be as much as 305 meters (Braun et al. 1976). 

Warm winters may have a stronger impact on the quality of snow at TR than ME, but topography 

and temperature interactions have not been explicitly examined for wintering areas at these sites. 

This highlights a special need for winter research of ptarmigan populations in Colorado. 

Foundational work has been conducted by Braun et al. (1976) and Hoffman et al. (1977) 

focusing on the biology of the species during this time, but additional focus on resource 

limitations and the role of snow quality during the winter is warranted. 

Overall, the future viability for the TR population is bleak. Using both long-term (1966-

2016) and more contemporary data (2013-2016) with informative priors for fecundity data 

collected in the past (1987, 1989-1997) indicated that the TR population is in decline. This 

conclusion is based on vital rate estimates, including estimates of juvenile survival taken from 

the integrated population model (IPM) presented in Chapter 3. The decline of the TR population 

has been attributed primarily to elk (Braun et al. 1991) and warming winters (Wang et al. 2002). 

Elk are thought to be detrimental to ptarmigan at TR due to herbivory of willow (Salix spp.), a 

primary food resource consumed by ptarmigan during the winter and spring, which has been in 
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decline in the alpine (Zeigenfuss 2006). The mechanism for warming winters is unknown, but as 

previously mentioned, may be due to snow quality.  

Future studies may make the biggest impacts and contributions to our understanding of 

the population status of white-tailed ptarmigan by focusing on populations outside of Colorado. 

The distribution of white-tailed ptarmigan ranges from northern New Mexico to southeastern 

Alaska, but studies from Colorado currently dominate the literature. Additionally, little work has 

been done on the physiology of ptarmigan. Given that they are known to be heat sensitive 

(Johnson 1968), understanding the importance of microhabitats such as boulders and snowfields 

will be critical to identify resource conditions and habitats that support long-term persistence of 

populations. Finally, a better understanding of the level of plasticity in timing of molt may be of 

paramount importance for the species given expected future warming. White-tailed ptarmigan 

molt from basic plumage (all white) to brown in the spring, and hens will not initiate egg laying 

until in complete nuptial molt (Martin et al. 2015). However, warming springs may expose bare 

ground earlier. Previous work has demonstrated limited plasticity of molt in snowshoe hare 

(Lepus americanus; Zimova et al. 2014). If the same is true for ptarmigan, breeding phenology 

may be truly constraining for the species given the onset of breeding is ultimately dependent on 

the completion of molt. 
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SUPPLEMENTARY MATERIALS: CHAPTER 2 (S2) 

 

SM 2.1: DELNEATNG BROOD-USE AREAS AND GENERATING SAMPLE POINTS 

 

Identification of brood-use areas 

 

 Brood-use locations at ME and TR were identified prior to the start of our study based on 

45 years of long-term reproductive data (ME: 1968-2012; TR: 1968-2000 and 2010-2012) in the 

form of brood locations. Brood locations were used to delineate areas for the focus of vegetation 

and invertebrate sampling. Location data for broods were collected in two different ways during 

the study. The first form of location data consisted of brood locations recorded on topographic 

maps during the first 33 years of the study (1968-2000). This accounted for a subset of location 

data during this time period. The accuracy of these locations could not be evaluated directly, but 

the distinct topography of the study sites made identifying key features easy, and an accuracy of 

± 100 m is likely a reasonable estimate of the error in these location data. Location data were 

subsequently converted to UTM coordinates in the NAD 1927 datum, followed by conversion to 

the WGS 1984 datum using the projections and transformation tool in ArcToolbox (Esri). The 

second form of location data consisted of brood locations recorded using a handheld GPS device 

(1998-2000 and 2007-2012; ME only). There was a gap in data from 2001-2006 at ME where 

location data were not recorded by topographic map or handheld GPS. Similarly, no data were 

collected at TR from 2001-2009. The two forms of location data were pooled to determine the 

areas and extent of brood use.  
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 Brood-use areas were delineated based on UTM coordinates for brood observations 

collected from 1 Aug through 15 Sep creating polygons with a 100-m buffer around brood 

clusters using ArcMap 10.1 (Esri). Polygons were manually sketched around brood clusters to 

better approximate the spatial distribution of used areas and to ensure random sample points 

were generated in suitable habitat. Several of the delineated polygons in TR had areas where 

samples could not be collected due to restrictions outlined in our scientific research permits. 

These restrictions included avoiding sampling in high visibility areas near trails, parking areas, 

and overlooks (TR and ME), or bordering roads (TR only). As a result, portions of some 

delineated polygons were unavailable for sampling. We had limited prior knowledge of brood-

rearing locations at MS based on brood locations obtained during surveys and prior to and in 

2012. Locations from these surveys were used to delineate brood-use areas as was done for ME 

and TR, but we revised the delineated sampling areas following the 2013 season due to the 

addition of newly observed use locations outside of the previously delineated polygon. 

 

Sampling points 

 

 We generated sample points within the boundaries of delineated brood-use polygons 

using the “create random points” tool in ArcToolbox. Stratified sampling was not used for two 

reasons. First, information from a simple Landsat-based cover classification was available only 

from ME at the time and produced three cover classes within brood-use areas, one of which 

largely dominated polygons. Second, site visits indicated the two cover classes identified did a 

poor job of distinguishing alpine vegetation communities. More random points were generated 

than actually used per brood-use area. This was because several random points within each 
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brood-use area were invariably in areas where sampling could not occur (e.g., streams, 

snowfields, boulder fields, trails). These points could not be identified prior to site visits based 

on available GIS data. Initially, a total of 10-30 random points were generated per brood-use 

area, depending on the area extent of the polygon. Points were visited in order of their 

identifying number and marked using two wood stakes set at opposite corners of a 1-m sampling 

frame oriented so that sides were perpendicular to cardinal directions. In cases where sample 

points were located in areas void of vegetation (e.g., over a boulder or goat scrape), the frame 

was moved to the nearest vegetated area within 3 m of the point location. If the nearest point was 

≥ 3 m distance it was discarded and the next sampling point was visited. We justified moving 

sample points in these instances because our objective was to track changes in plant phenology 

and not to estimate different categories of ground cover or direct loss of vegetation.   

 A total of 36 sample points at ME and 39 at TR were established within brood-use areas 

(Figs. S2.1 and S2.2). Additional sample points were added at ME or TR from 2013-2015 (Fig. 

S2.3). Sample points varied by year at MS from 27 in 2013, to 12 in 2014, and 17 in 2015. 

Variation in sample points at MS was due to two factors. First, in 2013 the initial defined brood-

use area did not contain the total extent of locations used by broods. As a result, the defined 

brood-use area was revised for 2014 and 2015 sampling. Second, the number of points used at 

MS was too many for crews to reliably survey during site visits (primarily due to the occurrence 

of lightning during monsoon storms). Thus, the number of monitored points was reduced in 2014 

and 2015 to a manageable number.  

 

SM 2.2: ESTIMATING PLANT PRODUCTIVITY AND PHENOLOGY 
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Photo collection and processing 

 

 Plots were visited at weekly intervals to collect information on changes in plant 

productivity and phenology. Plant productivity was recorded using a point-and-shoot digital 

camera (Canon ELPH 110) modified to capture light in both visible and near infrared (NIR) 

spectrums (camera modifications by MaxMax, Ltd. Carlstadt, NJ). Photographs were taken 

between 10:00 and 14:00 to standardize lighting conditions as much as possible; most plot 

photographs were taken within a one-hour window across all weeks. Prior to taking photographs, 

a 1-m2 sampling frame of 1.27 cm diameter PVC pipe was placed over the staked corners of the 

plot. Photographs were taken from the north side of the sample quadrant to reduce or eliminate 

shadows from the observer. White balance was set to “cloudy” for all photographs based on 

recommendations for outdoor shooting provided by the manufacturer (Maxmax, Ltd.). 

Photographs were taken by holding the camera perpendicular to the ground and centered over the 

plot, and “bracketing” the quadrant sampling frame in the viewfinder to fill as much of the 

photograph with the sample plot as possible (as opposed to the area outside the sample plot 

which was of no interest).  

 The modified cameras captured NIR and visible electromagnetic bands in separate 

channels, with NIR captured in the red channel, and visible light captured in blue and green 

channels. Parsing data into separate channels was done to estimate plant productivity through the 

use standard indices. The traditional normalized difference vegetation index (NDVI) is used to 

estimate the amount of live vegetation in an image and is calculated using the formula (Carlson 

and Ripley 1997): 

� = −+  
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This formula was modified when using data collected in digital cameras because the traditional 

formula uses the blue spectrum for NIR. In contrast, since the digital cameras we used captured 

NIR in the red channel, the formula was modified as (MaxMax Ltd., personal communication): 

� = −+  

However, the company responsible for the modifications of our digital cameras recommended 

using both reflective channels (i.e., red and green) to enhance (thus ENDVI) discernibility of live 

and dead plant tissue, which leads to the formula we used for processing of our digital 

photographs: 

� = ( + − ∗ )( + + ∗ ) 

This equation differs from the previous by adding green to the reflective channel. The absorption 

channel (blue) was multiplied by two to balance the additional data from the green channel. 

Beogh et al. (2002) reported that ENDVI is more correlated with green leaf area index, and 

ENDVI is one of two products available from MODIS satellite imagery. Thus, ENDVI is a 

widely recognized index for plant biomass and phenology measurements.   

 Raw photographs collected required processing in a series of steps before they could be 

used to estimate temporal changes in plant productivity. Photographs were first cropped to the 

extent of the sampling frame. The slope of the ground varied by plot, and as a result, standard 

cropping could not be used because the resulting quadrant was not always square in dimensions 

when viewed from above. We used the perspective crop tool in Adobe Photoshop (Version CC 

2015) to correct for this dstortion; resulting images were reprocessed so that all sides of the 

photograph were the same length (Fig. S2.4). For the second step of processing, distortion-

corrected photographs were processed using the program ImageJ (Schneider et al. 2012). Code 
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used to process photographs was provided as a macro by the manufacturer (MaxMax, Ltd.). The 

macro processed raw red-green-blue (RBG) photographs collected at vegetation plots by 

extracting color values from each pixel, assigning them to an appropriate bin, using the ENDVI 

formula to calculate an ENDVI value for each pixel, and averaging all pixels within a photo to 

produce an average ENDVI value for a given photo (Fig. S2.5). The macros included several 

settings for photographic processing, including a setting specifying highest values for areas in the 

photo that were plants, highest values for areas in the photographs that were not plants, and a 

correction factor (baseband correction), which shifted the calculated ENDVI up or down. We 

specified values of 1 and -1 for the maximum plant and non-plant pixels, and left the baseband 

correction factor equal to 0. These settings remained constant for all processed photographs 

because adjustments between photographs would lead to non-comparable average ENDVI 

values. Throughout the manuscript and figures we refer to ENDVI generically as “NDVI.”  

 

Estimating timing of bloom 

 

 We recorded the number of species in bloom during each weekly vegetation plot visit. A 

species was considered to be in bloom if a flower head was present and visible. The presence or 

absence of a flower in bloom was entered as a 1 (present) or 0 (absent) for every species 

recorded at each study site. The total number of species recorded across all sites and plots was 

large and included 78 plant speces (Table S2.1). We pooled some species belonging to the same 

genus together to boost samples, including three species of Trifolium (T. dasyphyllum, T. nanum, 

and T. parryi), and two species of Polygonum (P. bistortoides and P. viviparum). We 
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investigated raw data to determine if these species were similar in their phenology (i.e., in bloom 

at roughly the same time) prior to pooling. Model predictions are presented in Fig. S6. 

SM 2.3: ARTHROPOD SAMPLING AND ESTIMATION OF TEMPORAL CHANGES IN 

ABUNDANCE 

 

Arthropod sampling 

 

 Sampling of invertebrates was limited to ME (2013-2015) and MS (2013-2014). No 

samples were collected at TR due to restrictions under the Wilderness Act and lack of 

authorization from the U.S. National Park Service under the approved research permit for our 

project. Temporal changes in invertebrate abundance were measured by randomly selecting 

photo plots in brood-use areas and establishing a 20-m insect transect at each selected plot. 

Invertebrate sampling began as soon as the transect areas were free of snow which generally 

occurred between the 1st and 3rd week of June. Either 3 or 4 sticky aphid papers (10.2 x 17.8 cm; 

Seabright Laboratories, Emeryville, CA) were pinned to the ground with 5.1 cm roofing nails 

along transects. The number of aphid papers per transect varied because some transect locations 

were heavily impacted by alpine rodents, and aphid papers were often heavily chewed or 

completely removed. We attempted to adjust for these anticipated losses by adding an additional 

paper along problem transects while still accounting for total areas of trap paper sample per unit 

of time. A total of 18 insect transects were monitored at weekly intervals at ME during each year 

of the study (six per brood site). Sampling was limited to four transects at MS due to time 

constraints by field crews; only one brood-use area was identified and sampled at MS. Location 

information for monitored transects is provided in Table S2.1. Aphid papers were removed and 
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replaced every seven days along transects. Collected traps were wrapped in clear kitchen plastic 

wrap to keep invertebrates intact and to contain the adhesive glue from the traps. Collected aphid 

papers were stored in brown paper bags on a dry shelf until they could be processed. Aphid 

papers were processed by counting the number of individual invertebrates identified using a 

dissecting microscope and tally counter. We identified individuals to the lowest taxonomic 

Order; this was either family or genus in the majority of samples. A complete list of all taxa 

identified in transect aphid traps, including known taxa consumed by ptarmigan chicks, is in 

Table S2.2.  

 Aphid sticky papers were most effective in capturing flying insects, and inference on 

some taxonomic groups, such as ants, could not be made. Only seven taxonomic groups had 

samples sufficiently large to model temporal abundance (Table S2.2). Estimates of temporal 

invertebrate abundance were only available for a subset of sites and years in our study. Thus, 

they could not be incorporated as covariates for the nest and brood survival analysis in the full 

dataset due to missing data for TR (all years) and MS (2015). 

 

Estimating temporal abundance 

 

Captured-insect densities for each taxonomic group were calculated for each transect and 

weekly interval by counting the number of individuals in each taxonomic group per paper p and 

summing over all papers within each transect t for a given week w. The total paper area (A) was 

calculated for each transect because the number of papers and proportion of paper intact could 

vary each week (primarily due to loss to rodents). The total count (C) was divided by the total 

paper area to get the captured-insect density (D) for each transect:  
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, = ∑ , ,�=∑ , ,�=  

where M represents the number of papers collected at a given transect. Papers were generally 

collected every 7 days from the day they were first set out. However, weather or field logistics at 

times required that transects be visited either a day or two early or late, so the interval lengths 

could vary. Papers left in the field for longer or shorter periods have differing exposure periods 

over which insects can be captured. The average captured-insect density for each transect was 

divided by the number of days in the interval between the date set out and the date retrieved to 

account for variation in exposure. This was done to calculate average daily captured-insect 

density. The exposure interval (I), which was the number of days from the date set out to the date 

retrieved, was calculated for each transect to obtain the average daily transect density (DTD) for 

each weekly sample by dividing D by I: 

, = ,,  

Thus, for every week of the season a DTD was calculated for each transect. Taxa-specific values 

of DTD may have been influenced by the person counting the aphid papers. In 2013 and 2014 

this was done by experts in the College of Agricultural Sciences at Colorado State University. In 

2015, G. T. Wann processed papers independently. The taxa identified in 2015 were the same as 

those found in 2013 and 2014, but counts for flies (species of Muscidae) and leafhoppers 

(species of Cicadellidae) were roughly two times higher than counts from 2013 and 2014. This 

may have reflected a true difference in abundance in 2015, but it may also have been due to 

differences in counting technique (e.g., counting heads of flies versus wings). This indicates total 

abundance may not be comparable among years, but counts were done consistently by observers 

within years. Thus, temporal changes between years were still comparable. DTD was 
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standardized for each year y and site s by dividing by the maximum DTD value for a given 

taxon. Thus, the standardized (S) value of DTD used in analysis was: 

, = ,� ,�  

The values of SI were used to estimate temporal changes in abundance by modeling them as a 

response variable in generalized additive models (GAMs). The mid-point of the sampling 

interval (recorded as Julian day) was used as the explanatory variable in GAM models over 

which changes in S was predicted. Using the mid-point assumed that aphid papers captured 

insects at a fixed rate for each day in the sample. This was likely not true since aphid papers may 

capture insects at higher rates soon after they are set out. However, this was unlikely to be 

problematic since capture rates probably declined at similar rates among all transects (i.e., 

transects were still comparable). It is important to note that SI is a measure of captured 

invertebrate densities along individual transects. However, because transects were sampled 

randomly within brood-use areas, the average of each S within a given brood-use area and 

sampling period can be considered representative of the densities of captured taxa over the entire 

brood-use area.  
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SM 2.4: CROSS-CORRELATIONS TO EXAMINE RELATIONSHIPS BETWEEN TWO 

TIME SERIES 

 

Cross-correlation functions 

 

We examined the relationships between temporal abundance of different invertebrate taxa 

and how they related to average NDVI at ME (Fig. S2.7) and MS (Fig. S2.8). Cross-correlation 

functions (CCF) were used to examine the relationships between timing of plant and insect 

abundance. Cross-correlation functions are useful for identifying the correlation between two 

time series at different time lags. Considering time lags in comparisons between two time series 

is important because one series may be dependent on the other, in which case the dependent time 

series may have a delayed response. It is also possible that both time series being compared are 

responding to the same environmental stimulus, but the rate or timing of response could differ. 

CCFs provide a way to identify at what point in time two series are most correlated.  

 Cross-correlations were calculated using stats package and ccf function in R. Predictions 

from the generalized additive models were the vectors for each time series. Every cross-

correlation calculation included NDVI as one vector, which was our proxy for plant productivity, 

and a second vector, which was either plant-specific probabilities of bloom or taxa-specific 

predictions of insect abundance. Predictions from generalized additive models were smoothed, 

which resulted in cross-correlation relationships that were also smooth in appearance. Generally, 

the relationship between NDVI was consistent across both years and sites for insect taxa of 

known food quality for ptarmigan (ME, Fig. S2.9 and MS, Fig. S2.11). Relationships were 

highly consistent for insect taxa of unknown forage quality (ME, Fig. S2.10 and MS, Fig. S2.12). 
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The consistencies in the relationships between NDVI and bloom of forage species were 

extremely similar across all sites and years (ME, Fig. S2.13; TR, Fig. S2.14; and MS, Fig. 

S2.15). Two species that bloomed early, late, or at the same time as plants reached peak biomass 

did so at similar time lags across sites and years; these were Polygonum spp. and Geum rossii, 

two of the dominant forbs at our study sites (Table S2.1). Species of Trifolium were the earliest 

to bloom, but both Trifolium and Artemisia species were inconsistent in terms of their bloom 

relative to NDVI. ME had the most consistent relationships between plant bloom and NDVI 

among years, followed by TR and MS. 

 Invertebrate abundance was variable among years for species of known food quality, 

although the relationships were remarkably consistent for all years at ME for Muscidae (flies) 

and Acrididae (grasshoppers). The variability in MS data was higher than at ME (Table S4.2). 

This was likely related to differences in annual sample sizes at both sites, which were about four 

times greater at ME. However, there were general observable patterns at both sites, and flies 

tended to peak close to the same time as NDVI. The remarkable correlations were for 

invertebrates of unknown forage quality, which consisted of species in the families Paplionidae 

(composed entirely of Parnassius smintheus samples), Nymphalidae (composed entirely of 

Bolaria genus samples), and Pieridae (composed entirely of Colias meadii samples). The peaks 

in Nymphalidae at ME closely coincided with peak NDVI, and the peaks for Paplionidae and 

Pieridae occurred after peak NDIV. The time lags at peak correlation varied little among years at 

ME, suggesting NDVI was a strong predictor of peak abundance for these species.  Overall, for 

our site with the largest invertebrate sample sizes (ME), we were able to model relationships of 

invertebrate abundance (Figs S2.7 and S2.8) that showed clear patterns in daily changes across 

the breeding season. Correlations between abundance of invertebrates and NDVI indicate that 
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changes in above ground plant productivity (i.e., above ground biomass) is likely a useful metric 

to predict changes in abundance for the invertebrate we sampled. 
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TABLES 

 

Table S2.1. Plants recorded within monitored plots at Colorado study sites at Mt. Evans (ME) in 
Clear Creek County, Mesa Seco (MS) in Hinsdale County, and Trail Ridge (TR) in Rocky 
Mountain National Park in Larimer County. The U.S. Department of Agriculture plant code, 
scientific name (genus and species), common name, plant type, and whether or not the plant is 
known ptarmigan forage (“Yes” or “Unk” for unknown) are provided. Asterisks (*) denote 
forage forbs which were modeled with generalized additive models (GAMs). 
 

Plant Code Scientific Name Plant Type Forage 

ANCH Androsace chamaejasme Forbs Yes 

ANRO2 Antennaria rosea Forbs Yes 

ARFE3 Arenaria fendleri Forbs Yes 

AROB3 Arenaria obtusiloba Forbs Yes 

ARAR9* Artemisia arctica Forbs Yes 

ARSC* Artemisia scopulorum Forbs Yes 

CAAL6 Carex albonigra Grass Yes 

CANI2 Carex nigricans Grass Yes 

CAN02 Carex norvegica Grass Yes 

CEALC Cerastium alpinum Forbs Yes 

CEAR4 Cerastium arvense Forbs Yes 

DROC Dryas octopetala Forbs Yes 

GERO2* Geum rossii Forbs Yes 

HEPA11 Heuchera parvifolia Forbs Yes 

LLSE Lloydia serotina Forbs Yes 

OXDI3 Oxyria digyna Forbs Yes 

PEGR2 Pedicularis groenlandica Forbs Yes 

PEPA3 Pedicularis parryi Forbs Yes 

PESU Pedicularis sudetica Forbs Yes 

PIEN Picea engelmannii Shrub/Tree Yes 
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Plant Code Scientific Name Plant Type Forage 

POBI6* Polygonum bistortoides Forbs Yes 

POVI3* Polygonum viviparum Forbs Yes 

PODI2 Potentilla diversifolia Forbs Yes 

RAAD Ranunculus adoneus Forbs Yes 

SALIX Salix spp. Shrub Yes 

SAOR2 Saxifraga oregano Forbs Yes 

SARH2 Saxifraga rhomboidea Forbs Yes 

SIPR Sibbaldia procumbens Forbs Yes 

TRDA2* Trifolium dasyphyllum Forbs Yes 

TRNA2* Trifolium nanum Forbs Yes 

TRPAS* Trifolium parryi Forbs Yes 

VACE Vaccinium caespitosum Shrub Yes 

ACAL11 Achillea alpicola Forbs Unk 

LEPY2 Alpine lewisia Forbs Unk 

AQUIL Aquilegia alpina Forbs Unk 

ARCA7 Arenaria capillaris Forbs Yes 

BEAL Besseya alpina Forbs Unk 

BEWY Besseya wyomingensis Forbs Unk 

CALE4 Caltha leptosepala Forbs Unk 

CAOC4 Castillega occidentalis Forbs Unk 

CHPR15 Chondrophylla prostrata Forbs Unk 

CISC3 Cirsium scopulorum Forbs Unk 

CLME Claytonia megarhiza Forbs Unk 

CARO2 Companula rotundifolia Forbs Unk 

DECA18 Deschampsia caespitosa Grass Unk 

DRCR2 Draba crassifolia Forbs Unk 

ERSI3 Erigeron simplex Forbs Unk 
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Plant Code Scientific Name Plant Type Forage 

ERNA Eritrichum nanum Forbs Unk 

ERCA Erysimum capitatum Forbs Unk 

GEAL6 Gentianodes algida Forbs Unk 

KOMY Kobresia myosuroides Grass Unk 

LEMOA4 

Lepidium montanum var. 

alpinum Grass Unk 

LUPA4 Luzula parviflora Grass Unk 

MEAL7 Mertensia alpina Forbs Unk 

MIAU3 Minuartia austromontana Forbs Unk 

MOLA6 Moehringia lateriflora Forbs Unk 

NOFEG Noccaea montana fendleri Forbs Unk 

ORAL Oreoxis alpina Forbs Unk 

PEVI3 Penstemon virens Forbs Unk 

PEWH Penstemon whippleanus Forbs Unk 

PHSE Phacelia sericea Forbs Unk 

PHCO11 Phlox condensata Forbs Unk 

PHMU3 Phlox multifloa Forbs Unk 

POAL2 Poa alpina Grass Unk 

POPU3 Polemonium pulcherrimum Forbs Unk 

POVI Polemonium viscosum Forbs Unk 

PRAN Primula angustifolia Forbs Unk 

PSMO Cymopterus lemmonii Forbs Unk 

PUAL Pulsatille alpina Forbs Unk 

RHYD Rhydebergia grandiflora Forbs Unk 

SEIN4 Sedum integrifolium Forbs Unk 

SELA Sedum lanceolatum Forbs Yes 

RHRH4 Sedum rhodanthum Forbs Unk 
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Plant Code Scientific Name Plant Type Forage 

SIAC Silene acaulis Forbs Unk 

SIMO2 Sisyrinchium montanum Forbs Unk 

TEACC Tetraneuris acaulis Forbs Unk 

TRDU Tragopogon dubius Forbs Unk 

TRSP2 Trisetum spicatum Grass Unk 
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Table S2.2. Locations of insect transects at Mt. Evans (ME; 2013-2014) in Clear Creek County, 
Colorado, USA and Mesa Seco (MS; 2013 and 2014) in Hinsdale County, Colorado, USA. 
Subsites designate brood-use areas within study sites (there was only one delineated brood-use 
area at Mesa Seco during both years). UTM easting and northing were recorded in the NAD 83 
datum (zone 13N).  
 

Site Subsite Years Transect ID UTM Easting UTM Northing 

ME Mt. Evans - NE 2013-2015 T05 445387 4382578 

ME Mt. Evans - NE 2013-2015 T06 445510 4382162 

ME Mt. Evans - NE 2013-2015 T08 445755 4382153 

ME Mt. Evans - NE 2013-2015 T23 445662 4381877 

ME Mt. Evans - NE 2013-2015 T24 445311 4382537 

ME Mt. Evans - NE 2013-2015 T25 445858 4381839 

ME Mt. Warren 2013-2015 T26 446376 4383739 

ME Mt. Warren 2013-2015 T32 446394 4383928 

ME Mt. Warren 2013-2015 T36 446075 4384251 

ME Mt. Warren 2013-2015 T41 445909 4384263 

ME Mt. Warren 2013-2015 T42 446498 4383620 

ME Mt. Warren 2013-2015 T43 446377 4383615 

ME Mt. Rogers  2013-2015 T51 447526 4385426 

ME Mt. Rogers  2013-2015 T60 447360 4385450 

ME Mt. Rogers  2013-2015 T61 447481 4385701 

ME Mt. Rogers  2013-2015 T63 447417 4385347 

ME Mt. Rogers  2013-2015 T70 447402 4385415 

ME Mt. Rogers  2013-2015 T72 447483 4385167 

MS Mesa Seco 2013 T1 303261 4212165 

MS Mesa Seco 2013 T2 303217 4211925 

MS Mesa Seco 2013 T3 303244 4211598 

MS Mesa Seco 2013 T4 303245 4211297 
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Site Subsite Years Transect ID UTM Easting UTM Northing 

MS Mesa Seco 2014 T1 303022 4212121 

MS Mesa Seco 2014 T2 303546 4212466 

MS Mesa Seco 2014 T3 303399 4211570 

MS Mesa Seco 2014 T4 303729 4210773 
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Table S2.3. Invertebrate taxa identified from aphid paper traps at Mt. Evans in Clear Creek 
County, Colorado, USA (2013-2015), and Mesa Seco in Hinsdale County, Colorado, USA 
(2013-2014). Rows marked with an asterisk (*) represent a taxa of known dietary importance for 
white-tailed ptarmigan (Lagopus leucura) chicks, either through crop content inspection, or 
visually observing chicks consume invertebrates. Rows marked with “^” represent invertebrates 
from a taxonomic class other than insecta. NA = could not be identified to taxonomic level. 
 

Order Family Genus Species 

Araneae*,^ NA NA NA 

Coleoptera* Carabidae NA NA 

Coleoptera Carabidae Pterostichus NA 

Diptera Bombyliidae NA NA 

Diptera* Muscidae NA NA 

Diptera Phoridae NA NA 

Diptera Sciaridae NA NA 

Diptera Syrphidae NA NA 

Diptera* Tipulidae NA NA 

Hemiptera Cicadellidae NA NA 

Hymenoptera Apidae NA NA 

Hymenoptera Cynipoidea NA NA 

Hymenoptera Eulophidae NA NA 

Hymenoptera* Formicidae NA NA 

Hymenoptera Ichneumonidae NA NA 

Hymenoptera Tenthredinidae NA NA 

Lepidoptera Geometridae NA NA 

Lepidoptera Hesperiidae NA NA 

Lepidoptera Noctuidae NA NA 

Lepidoptera Nymphalidae Aglais milberti 

Lepidoptera Nymphalidae Boloria NA 

Lepidoptera Nymphalidae NA NA 
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Order Family Genus Species 

Lepidoptera Papilionidae Parnassius smintheus 

Lepidoptera Pieridae Colias meadii 

Lepidoptera Saturniidae Hemileuca NA 

Lepidoptera Sphingidae NA NA 

Orthoptera* Acrididae Aeropedellus clavatus 

Orthoptera Tettigoniidae Anabrus simplex 
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Table S2.4. Time lags and cross correlations between NDVI and plant bloom for three Colorado 
study sites. Locations were Mt. Evans (ME) in Clear Creek County, Trail Ridge (TR) in Larimer 
County, and Mesa Seco (MS) in Hinsdale County. Time lags represent the lag (in days) when 
positive correlations were the highest. Negative time lags indicate when onset of bloom preceded 
peak NDVI, while positive lags indicate when bloom occurred after peak NDVI. Average values 
for each site are provided at the bottom row of each species comparison, and average values by 
site are provided in the two right columns.  
 

Comparison Year 
Lag 
ME 

Lag 
TR 

Lag 
MS 

Cor. 
ME 

Cor. 
TR 

Cor. 
MS 

Ave. 
Lag 

Ave. 
Cor. 

          

Trifolium spp.  2013 0 -5 -34 0.558 0.453 0.254 -13 0.422 

Trifolium spp.  2014 -8 -40 -40 0.578 0.292 0.448 -29 0.439 

Trifolium spp.  2015 -5 -34 -33 0.453 0.254 0.295 -24 0.334 

Ave. Trifolium 

spp.  -4.3 -26.3 -35.7 0.530 0.333 0.332   

Geum rossii  2013 -6 -26 -5 0.555 0.334 0.289 -12 0.393 

Geum rossii  2014 0 -37 -21 0.674 0.282 0.328 -19 0.428 

Geum rossii  2015 0 0 -5 0.667 0.717 0.289 -2 0.558 

Ave. Geum rossii  -2.0 -21.0 -10.3 0.632 0.444 0.302   

Polygonum spp.  2013 0 -2 -14 0.967 0.590 0.884 -5 0.814 

Polygonum spp.  2014 3 -3 0 0.837 0.596 0.619 0 0.684 

Polygonum spp.  2015 0 -7 0 0.956 0.416 0.550 -2 0.641 

Ave. Polygonum 

spp.  1.0 -4.0 -4.7 0.920 0.534 0.684   

Artemisia spp.  2013 -2 -17 -40 0.765 0.315 0.465 -19.7 0.515 

Artemisia spp.  2014 12 -31 -25 0.733 0.316 0.316 -14.7 0.455 

Artemisia spp.  2015 0 0 0 0.626 0.939 0.229 0 0.598 

Ave. Artemisia 

spp.  3.3 -16.0 -21.7 0.708 0.523 0.337   
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Table S2.5. Time lags and cross correlations between NDVI and invertebrates for three Colorado 
study sites. Locations were Mt. Evans (ME) in Clear Creek County, Trail Ridge (TR) in Larimer 
County, and Mesa Seco (MS) in Hinsdale County. Time lags represent the lag (in days) when 
positive correlations were the highest. Negative time lags indicate when invertebrate abundance 
preceded peak NDVI, while positive lags indicate when invertebrate abundance occurred after 
peak NDVI. Average values for each site are provided at the bottom row of each species 
comparison, and average values by site are provided in the two leftmost columns.  
 

Comparison Year 

Lag 

ME 

Lag 

MS 

Cor. 

ME 

Cor. 

MS 

Ave. 

Lag 

Ave. 

Cor. 

        
Muscidae  2013 0 -19 0.815 0.309 -9.5 0.562 

Muscidae  2014 -10 0 0.463 0.88 -5 0.672 

Muscidae  2015 -29 NA 0.284 NA -29 0.284 

Ave. Muscidae 
 

-13.0 -9.5 0.521 0.595 
  

Acrididae 2013 8 0 0.769 0.867 4 0.818 

Acrididae 2014 29 0 0.557 0.917 14.5 0.737 

Acrididae 2015 0 NA 0.851 NA 0 0.851 

Ave. Acrididae 
 

12.3 0 0.726 0.892 
  

Cicadellidae 2013 -38 0 0.452 0.984 -19 0.718 

Cicadellidae 2014 -33 0 0.426 0.363 -16.5 0.395 

Cicadellidae 2015 -40 NA 0.313 NA -40 0.313 

Ave. Cicadellidae 
 

-37.0 0 0.397 0.674 
  

Papilionidae 2013 27 0 0.677 0.863 13.5 0.770 

Papilionidae 2014 31 0 0.61 0.917 15.5 0.764 

Papilionidae 2015 28 NA 0.531 NA 28 0.531 

Ave. Papilionidae 
 

28.7 0 0.606 0.89 
  

Nymphalidae 2013 0 -34 0.89 0.404 -17 0.647 

Nymphalidae 2014 2 0 0.891 0.522 1 0.707 

Nymphalidae 2015 0 NA 0.755 NA 0 0.755 
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Comparison Year 

Lag 

ME 

Lag 

MS 

Cor. 

ME 

Cor. 

MS 

Ave. 

Lag 

Ave. 

Cor. 

Ave. 

Nymphalidae 
 

0.7 -17.0 0.845 0.463 
  

Pieridae 2013 26 0 0.777 0.35 13 0.564 

Pieridae 2014 29 0 0.639 0.695 14.5 0.667 

Pieridae 2015 27 NA 0.508 NA 27 0.508 

Ave. Pieridae 
 

27.3 0.0 0.641 0.523 
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Table S2.6. Full model selection results for top nest survival models fit to data collected from 
white-tailed ptarmigan (Lagopus leucura) populations from 2013-2015 in Colorado, USA. The 
difference between AICc from the top model (Δ AICc), model support (AICc Weight), model 
likelihood, number of parameters (K), and model deviance are shown. Parameters in the nest 
survival model were daily survival (S). Group effects and covariates included null effects (.), 
study site (site), year of study (year), time of hatch relative to population (relative), time 
difference between hatch and peak productivity (td), trend (T), average site-level NDVI at hatch 
(ndvihatch), age of hen (hen age), first nest or renest (attempt), minimum and maximum 
temperatures (tmin and tmax, respectively), precipitation (precip), and area mismatch 
(mismatch). 
 

Model AICc 
Δ 

AICc 
AICc 

Weight Likelihood K Deviance 

S(site + relative) 367.9 0.0 0.15 1.00 4 359.9 

S(.)  368.2 0.3 0.13 0.87 1 366.2 

S(site)  368.7 0.8 0.10 0.69 3 362.7 

S(site + T) 369.0 1.1 0.08 0.57 4 361.0 

S(site + ndvihatch) 369.3 1.4 0.07 0.50 4 361.3 

S(site + relative2) 369.7 1.7 0.06 0.42 5 359.6 

S(site + td) 369.9 2.0 0.05 0.37 4 361.9 

S(site х T) 369.9 2.0 0.05 0.37 5 359.9 

S(site + ndviarea) 370.2 2.2 0.05 0.33 4 362.1 

S(site + henage) 370.3 2.4 0.04 0.31 4 362.3 

S(site + attempt) 370.6 2.7 0.04 0.26 4 362.6 

S(site + precip) 370.6 2.7 0.04 0.26 4 362.6 

S(site + tmin) 370.7 2.8 0.04 0.25 4 362.7 

S(year)  370.9 2.9 0.03 0.23 3 364.8 

S(site + year)  371.6 3.7 0.02 0.16 5 361.6 

S(site + tmax) 372.6 4.7 0.01 0.10 5 362.6 

S(site + tmax х precip) 373.8 5.9 0.01 0.05 6 361.8 

S(site + tmin х precip) 374.2 6.3 0.01 0.04 6 362.2 

S(site х year)  374.2 6.3 0.01 0.04 7 360.2 
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Table S2.7. Full model selection results for top brood survival models fit to data collected from 
white-tailed ptarmigan (Lagopus leucura) populations from 2013-2015 in Colorado, USA. The 
difference between AICc from the top model (Δ AICc), model support (AICc Weight), model 
likelihood, number of parameters (K), and model deviance are shown. Parameters in the model 
were apparent survival of chicks (ϕ) and recapture probability (p). Group effects and covariates 
included null effects (.), study site (site), year of study (year), chick age (age), minimum and 
maximum temperatures (tmin and tmax, respectively), precipitation (precip), area mismatch 
calculated from average NDVI curve (mismatch), and mismatch for species-specific plant 
curves, including Artemisia (art), Trifolium (tri), Geum (geum), Polygonum (poly) and the 
cumulative are under each forb curve combined (sumforage). 
 

Model AICc 
Δ 

AICc 
AICc 

Weight Likelihood K Deviance 

ϕ(site х year + site х age19 + age19 
х ndviarea) p(site) 1490.1 0.0 0.89 1.000 17 1455.1 

ϕ(site х year + site х age19 + 
precip) p(site) 1496.9 6.9 0.03 0.032 16 1464.1 

ϕ(site х year + site х age19 + age19 
х sumforage) p(site) 1498.2 8.2 0.01 0.017 17 1463.2 

ϕ(site х year + site х age19 + 
min)p(site) 1498.5 8.4 0.01 0.015 16 1465.6 

ϕ(site х year + site х age19 + age19 
х precip) p(site) 1499.0 8.9 0.01 0.012 17 1464.0 

ϕ(site х year + site х age19 + 
ndviarea) p(site) 1499.1 9.1 0.01 0.011 16 1466.2 

ϕ(site х year + site х age19 + age19 
х min) p(site) 1500.6 10.6 0.00 0.005 17 1465.6 

ϕ(site х year + site х age19 + tri) 
p(site) 1500.7 10.6 0.00 0.005 16 1467.8 

ϕ(site х year + site х age19) p(site)  1500.7 10.6 0.00 0.005 15 1469.9 

ϕ(site х year + site х age19+art) 
p(site) 1501.0 10.9 0.00 0.004 16 1468.1 

ϕ(site х year + site х age19 + max) 
p(site) 1501.4 11.3 0.00 0.004 16 1468.5 

ϕ(site х year + site х age19 + 
geum) p(site) 1501.6 11.5 0.00 0.003 16 1468.7 

ϕ(site х year + site х age19 + poly) 
p(site) 1502.3 12.2 0.00 0.002 16 1469.4 

ϕ(site х year + site х age19 + 
sumforage) p(site) 1502.3 12.3 0.00 0.002 16 1469.4 

ϕ(site х year + site х age19 + age19 
х tri) p(site) 1502.7 12.6 0.00 0.002 17 1467.7 

ϕ(site х year + site х age19 + age19 
х art) p(site) 1503.1 13.0 0.00 0.002 17 1468.1 
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Model AICc 
Δ 

AICc 
AICc 

Weight Likelihood K Deviance 

ϕ(site х year + site х age19 + age19 
х geum) p(site) 1503.7 13.6 0.00 0.001 17 1468.7 

ϕ(site х year + site х age19 + age19 
х poly) p(site) 1504.2 14.1 0.00 0.001 17 1469.2 

ϕ(site х year + age19) p(site)  1506.8 16.7 0.00 0.000 13 1480.2 

ϕ(age19) p(site)  1529.1 39.0 0.00 0.000 5 1519.0 

ϕ(site х year) p(site)  1593.5 103.4 0.00 0.000 12 1569.0 

ϕ(site + year) p(site)  1607.8 117.8 0.00 0.000 8 1591.6 

ϕ(site) p(site)  1611.7 121.7 0.00 0.000 6 1599.6 

ϕ(year) p(site)  1627.3 137.2 0.00 0.000 6 1615.1 

ϕ(.) p(site)  1628.0 137.9 0.00 0.000 4 1619.9 
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FIGURES 

 

Figure S2.1. Sample locations for vegetation monitoring at Mt. Evans (ME) in Clear Creek 

County, Colorado, USA. Sample points were within areas used by ptarmigan broods. Repeated 

sampling occurred at weekly intervals during the breeding season in 2013-2015. 
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Figure S2.2. Sample locations for vegetation monitoring at Trail Ridge (TR) in Rocky Mountain 

National Park in Larimer County, Colorado, USA. Sample points were within areas used by 

ptarmigan broods. Repeated sampling occurred at weekly intervals during the breeding season in 

2013-2015.  
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Figure S2.3. Sample locations for vegetation monitoring at Mesa Seco (MS) in Hinsdale County, 

Colorado, USA. Sample points were within areas used by ptarmigan broods. Repeated sampling 

occurred at weekly intervals during the breeding season in 2013-2015.   
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Figure S2.4. Series of pre-NDVI processed photographs taken at one sample point in 2014 in 

Trail Ridge (TR), Larimer County, Colorado. All photographs in the series are shown in raw 

format prior to NDVI processing. Photographs are cropped to the 1-m2 sample frame extent with 

a distortion correction. 

 

 

 



182 
 

 

Figure S2.5. Series of post-NDVI processed photographs taken at one sample point in 2014 in 

Trail Ridge (TR), Larimer County, Colorado. Photographs in this series are the same as in Fig. 

S4. Regions of the photographs that are red or magenta represent dead or absent vegetation. In 

contrast, areas yellow or light green represent live vegetation. Each pixel has an associated 

NDVI value which is averaged with all other pixels to calculate an NDVI value for each 

photograph. 

 

 

 



183 
 

 

Figure S2.6. Phenology curves for NDVI and probability of bloom for five species of forage forb 

for three years (2013-2015) and three study sites in Colorado, USA. Study sites were Mt. Evans 

(ME) in Clear Creek County, Trail Ridge (TR) in Larimer County, and Mesa Seco (MS) in 

Hinsdale County. Each column represents a study site and each row represents a year. Lines are 

plotted from generalized additive model predictions for relationships between the response 

variable (either NDVI or probability of being in bloom) and covariate (Julian day). Predictive 

lines are extrapolated beyond the range of data for the first and last week of 2013 at MS, the last 

week of 2014 at Mesa Seco, and the last 3 weeks of 2015 at Mesa Seco. Associated 95% 

confidence intervals are plotted for NDVI predictions (dashed lines). 
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Figure S2.7 Temporal abundance of plant productivity (NDVI, left y-axis) and  invertebrates 

(scaled taxa abundance, right y-axis) at Mt. Evans (ME) in Clear Creek County, Colorado, USA. 

Food invertebrates are in the left column for 2013-2015 (panels a, c, e), and invertebrates of 

unknown food quality are in the right column for the same years (panels b, d, and f). Solid lines 

represent predictions from a generalized additive model and dashed lines are the associated 95% 

confidence intervals.  
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Figure S2.8. Temporal abundance of plant productivity (NDVI, left y-axis) and  invertebrates 

(scaled taxa abundance, right y-axis) at Mesa Seco (MS) in Hinsdale County, Colorado, USA. 

Food invertebrates are in the left column for 2013-2014 (panels a and c), and invertebrates of 

unknown food quality are in the right column for the same years (panels b and d). Solid lines 

represent predictions from a generalized additive model and dashed lines are the associated 95% 

confidence intervals. Sampling was not completed at MS in 2015.  
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Figure S2.9. Cross-correlations for two temporally-overlapping time series (invertebrate food 

taxa and NDVI) at Mt. Evans (ME) in Clear Creek County, Colorado, USA. The y-axis 

represents the autocorrelation function at different lagged values in days (x-axis). The 

autocorrelation function is calculated between plant productivity values (NDVI) and invertebrate 

taxa for each year of the study (columns represent specific taxa and rows represent year). The 

blue dashed lines represent 95% confidence intervals beyond which autocorrelations are 

statistically different from zero. Negative lag values with positive correlations indicate 

correlations when invertebrates lead NDVI, and positive lag values indicate correlations when 

NDVI leads invertebrates. 
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Figure S2.10. Cross-correlations for two temporally-overlapping time series (invertebrate taxa of 

unknown forage quality and NDVI) at Mt. Evans (ME) in Clear Creek County, Colorado, USA. 

The y-axis represents the autocorrelation function at different lagged values in days (x-axis). The 

autocorrelation function is calculated between plant productivity values (NDVI) and invertebrate 

taxa for each year of the study (columns represent specific taxa and rows represent year). The 

blue dashed lines represent 95% confidence intervals beyond which autocorrelations are 

statistically different from zero. Negative lag values with positive correlations indicate 

correlations when invertebrates led NDVI, and positive lag values indicate correlations when 

NDVI led invertebrates. 
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Figure S2.11. Cross-correlations for two temporally-overlapping time series (invertebrate food 

taxa and NDVI) at Mesa Seco (MS) in Hinsdale County, Colorado, USA. The y-axis represents 

the autocorrelation function at different lagged values in days (x-axis). The autocorrelation 

function is calculated between plant productivity values (NDVI) and invertebrate taxa for each 

year of the study (columns represent specific taxa and rows represent year). The blue dashed 

lines represent 95% confidence intervals beyond which autocorrelations are statistically different 

from zero. Negative lag values with positive correlations indicate correlations when invertebrates 

led NDVI, and positive lag values indicate correlations when NDVI led invertebrates.
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Figure S2.12. Cross-correlations for two temporally-overlapping time series (invertebrate taxa of 

unknown forage quality and NDVI) at Mesa Seco (MS) in Hinsdale County, Colorado, USA. 

The y-axis represents the autocorrelation function at different lagged values in days (x-axis). The 

autocorrelation function is calculated between plant productivity values (NDVI) and invertebrate 

taxa for each year of the study (columns represent specific taxa and rows represent year). The 

blue dashed lines represent 95% confidence intervals beyond which autocorrelations are 

statistically different from zero. Negative lag values with positive correlations indicate 

correlations when invertebrates led NDVI, and positive lag values indicate correlations when 

NDVI led invertebrates. 
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Figure S2.13. Cross-correlations for two temporally-overlapping time series (bloom probability 

of forage species and NDVI) at Mt. Evans (ME) in Clear Creek County, Colorado, USA. The y-

axis represents the autocorrelation function at different lagged values in days (x-axis). The 

autocorrelation function is calculated between plant productivity values (NDVI) and probability 

of bloom for different forage species for each year of the study (columns represent specific taxa 

and rows represent year). The blue dashed lines represent 95% confidence intervals beyond 

which autocorrelations are statistically different from zero. Negative lag values with positive 

correlations indicate correlations when forage species led NDVI, and positive lag values indicate 

correlations when NDVI led forage species. 
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Figure S2.14. Cross-correlations for two temporally-overlapping time series (bloom probability 

of forage species and NDVI) at Trail Ridge (TR) in Rocky Mountain National Park in Larimer 

County, Colorado, USA. The y-axis represents the autocorrelation function at different lagged 

values in days (x-axis). The autocorrelation function is calculated between plant productivity 

values (NDVI) and probability of bloom for different forage species for each year of the study 

(columns represent specific taxa and rows represent year). The blue dashed lines represent 95% 

confidence intervals beyond which autocorrelations are statistically different from zero. Negative 

lag values with positive correlations indicate correlations when forage species led NDVI, and 

positive lag values indicate correlations when NDVI led forage species. 
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Figure S2.15. Cross-correlations for two temporally-overlapping time series (bloom probability 

of forage species and NDVI) at Mesa Seco (MS) in Hinsdale County, Colorado, USA. The y-axis 

represents the autocorrelation function at different lagged values in days (x-axis). The 

autocorrelation function is calculated between plant productivity values (NDVI) and probability 

of bloom for different forage species for each year of the study (columns represent specific taxa 

and rows represent year). The blue dashed lines represent 95% confidence intervals beyond 

which autocorrelations are statistically different from zero. Negative lag values with positive 

correlations indicate correlations when forage species led NDVI, and positive lag values indicate 

correlations when NDVI led forage species. 
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SUPPLEMENTARY MATERIALS: CHAPTER 3 (S3) 

 

TABLES 

 

Table S3.1. Model selection results for Cormack-Jolly-Seber (CJS) survival structures fit using 
the MCMC sampler program JAGS and ranked based on the Deviance Information Criteria 
(DIC). Models were fit to capture-recapture data for white-tailed ptarmigan (Lagopus leucura) at 
Mt. Evans (ME) and Trail Ridge (TR) in Colorado, USA. Columns represent model deviance, 
the difference between the top ranked model (∆ DIC), model penalt (pD), and deviance 
explained. Models are identified using shorthand notation (e.g., density x tmin is actually density 
+ tmin + density x tmin). Quadratic relationships are identified with a ‘2’ (e.g., tmin2). 
 

Model 
Deviance ∆ DIC pD 

Dev. 
Expl. 

ME     

density x tmin 1013.0 0.0 50.9 0.46 

tmin 1023.6 4.5 44.8 0.19 

density x sex 1022.8 8.3 49.3 0.21 

tmin2 1024.8 9.6 48.7 0.16 

tmin x sex 1023.6 11.4 51.7 0.19 

density 1027.7 11.7 47.9 0.08 

density x prec 1026.6 12.2 49.5 0.11 

constant 1030.8 12.5 45.5 NA 

prec2 1031.8 16.2 48.3 -0.02 

prec 1031.7 16.5 48.7 -0.02 

prec x sex 1032.7 17.1 48.3 -0.05 

time 992.0 37.6 109.4 NA 

TR     

tmin2 1183.3 0.0 42.3 0.40 

tmin 1186.9 0.6 39.3 0.24 

tmin x sex 1185.3 1.1 41.4 0.31 

density x tmin 1188.4 4.1 41.3 0.17 

constant 1191.9 5.1 38.8 NA 

density x sex 1194.3 8.4 39.7 -0.11 

density 1192.9 9.0 41.7 -0.04 

prec x sex 1194.1 9.6 41.2 -0.10 

prec2 1194.1 10.2 41.7 -0.10 

prec 1193.2 10.3 42.7 -0.06 
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Model 
Deviance ∆ DIC pD 

Dev. 
Expl. 

density x prec 1194.3 11.4 42.7 -0.11 

time 1170.5 39.9 95.0 NA 
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Table S3.2. Coefficient estimates for Cormack-Jolly-Seber (CJS) models fit to capture-recapture 
data for white-tailed ptarmigan (Lagopus leucura) collected at Mt. Evans (ME) and Trail Ridge 
(TR) in Colorado, USA. Model structure (shorthand notation) and DIC scores provided. 
 
 

Model DIC tmin tmin2 prec prec2 density 

ME       
density x tmin 1063.9 0.271 - - - -0.290 

  (0.114, 0.426) - - - (-0.480, -0.106) 

tmin 1068.4 0.182 - - - - 

  (0.050, 0.326) - - - - 

density x class 1072.2 - - - - -0.297 

  - - - - (-0.479, -0.119) 

tmin2 1073.5 0.189 -0.026 - - - 

  (0.047, 0.328) (-0.152, 0.107) - - - 

tmin x class 1075.3 0.115 - - - - 

  (-0.052, 0.286) - - - - 

density 1075.6 - - - - -0.140 

  - - - - (-0.28, -0.002) 

density x prec 1076.1 - - 0.051 - -0.097 

  - - (-0.125, 0.223) - (-0.246, 0.050) 

prec2 1080.1 - - 0.006 0.125 - 

  - - (-0.196, 0.202) (-0.156, 0.415) - 

prec 1080.4 - - 0.062 - - 

  - - (-0.108, 0.230) - - 

prec x class 1081.0 - - 0.059 - - 

  - - (-0.109, 0.230) - - 

TR  - - - - - 

tmin2 1225.6 -0.159 0.178 - - - 

  (-0.326, 0.029) (0.007, 0.0368) - - - 

tmin 1226.2 -0.207 - - - - 

  (-0.357, -0.053) - - - - 

tmin x class 1226.7 -0.287 - - - - 

  (-0.461, -0.105) - - - - 

density x tmin 1229.7 -0.196 - - - 0.020 

  (-0.346, -0.043) - - - (-0.124, 0.157) 

density x class 1234.0 - - - - 0.040 

  - - - - (-0.105, 0.191) 

density 1234.6 - - - - 0.031 

  - - - - (-0.093, 0.158) 

prec x class 1235.2 - - -0.021 - - 

  - - (-0.152, 0.114) - - 

prec2 1235.8 - - -0.027 0.026 - 

  - - (-0.190, 0.136) (-0.209, 0.266) - 

prec 1235.9 - - -0.015 - - 

  - - (-0.147, 0.114) - - 

density x prec 1237.0 - - 0.047 - 0.005 

  - - (-0.136, 0.236) - (-0.146, 0.155) 

 

 



197 
 

Model DIC tmin*density prec*density tmin*class prec*class density*class 

ME       
density x tmin 1063.9 -0.299 - - - - 

  (-0.516, -0.085) - - - - 

tmin 1068.4 - - - - - 

  - - - - - 

density x class 1072.2 - - - - 0.318 

  - - - - (0.074, 0.572) 

tmin2 1073.5 - - - - - 

  - - - - - 

tmin x class 1075.3 - - 0.144 - - 

  - - (-0.097, 0.388) - - 

density 1075.6 - - - - - 

  - - - - - 

density x prec 1076.1 - 0.175 - - - 

  - (-0.037, 0.403) - - - 

prec2 1080.1 - - - - - 

  - - - - - 

prec 1080.4 - - - - - 

  - - - - - 

prec x class 1081.0 - - - -0.013 - 

  - - - (-0.133, 0.123) - 

TR  - - - - - 

tmin2 1225.6 - - - - - 

  - - - - - 

tmin 1226.2 - - - - - 

  - - - - - 

tmin x class 1226.7 - - 0.207 - - 

  - - (-0.039, 0.464) - - 

density x tmin 1229.7 -0.027 - - - - 

  (-0.263, 0.198) - - - - 

density x class 1234.0 - - - - -0.015 

  - - - - (-0.239, 0.207) 

density 1234.6 - - - - - 

  - - - - - 

prec x class 1235.2 - - - -0.017 - 

  - - - (-0.113, 0.082) - 

prec2 1235.8 - - - - - 

  - - - - - 

prec 1235.9 - - - - - 

  - - - - - 

density x prec 1237.0 - -0.054 - - - 

  - (-0.199, 0.081) - - - 
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Table S3.3. Model selection results for fecundity structures fit using the MCMC sampler 
program JAGS and ranked based on the Deviance Information Criteria (DIC). Models were fit to 
count data for white-tailed ptarmigan (Lagopus leucura) at Mt. Evans (ME) and Trail Ridge 
(TR) in Colorado, USA. Columns represent model deviance, the difference between the top 
ranked model (∆ DIC), model penalt (pD), and deviance explained. Covariates fit to models 
included cumulative precipitation (prec) and a warm-dry index (ind). Fully time varying models 
(time) and a mean model (constant) were also tested. 
 

Model Deviance ∆ DIC pD Dev. Expl. 

ME     

time 266.1 0.0 49.6 NA 

prec 621.2 307.5 2.0 0.14 

ind 642.7 329.1 2.1 0.08 

constant 677.0 362.3 1.0 0.00 

TR     

time 243.1 0.0 39.5 NA 

prec 640.2 359.6 2.0 0.02 

constant 647.4 365.7 0.9 0.00 

ind 646.8 366.2 2.0 0.00 
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Table S3.4. Posterior distribution for integrated population model. The Cormack-Jolly-Seber 
(CJS) component of the model represents a structure with constant survival and recapture 
probabilities.      
 ( �, , � , � , ) = exp + ∑ ( � , ) += =   , ,  = . , , + . , ,  

�, , ,  = {� , � , − − −� , � , − − −  

[ , �, �, �, , �, ��, � , |�, , �] ∝ ∏∏no�mal( , |( , , + , , ), � , )5
==  

 × ∏∏Poisson( , , | , , − + , , − − . )5
==  

 × binomial( . , , | , , − , � , ) 

 × binomial( . , , | , , − , � , ) 

 × ∏Poisson( , , | )= Poisson( , , | ) 

 × inve�segamma(� , | . , . ) 

 × beta | ,  

 × ∏Poisson | ( , , � , � , )5
=  

 × no�mal( | , � )inve�segama(� | . , . ) 

 × ∏no�mal | ,=  

 × ∏∏∏ ∏ multinomial( �, , , | �, , , , )= +
−
==�=  

 × ∏beta(� , | , )= beta(� , | , ) 

 × beta | ,  
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FIGURES 

 

 

Figure 3.1. Comparison of residuals between survival (IPM estimate of survival minus separate 

CJS model estimate of survival) and population size (IPM population estimate of size minus 

separate state-space model estimate of size) for Mt. Evans (ME) in Clear Creek County, 

Colorado (a) and Trail Ridge (TR) in Larimer County, Colorado (b). Pearson’s correlation 
coefficients indicated a stronger correlation in the ME data (r = -0.336) than TR (r = -0.174). 

 


