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ABSTRACT 
 

 

 

NANOMETER-THICK YTTRIUM IRON GARNET FILM DEVELOPMENT AND 

SPINTRONICS-RELATED STUDY 

 
 
 

In the last decade, there has been a considerable interest in using yttrium iron garnet 

(Y3Fe5O12, YIG) materials for magnetic insulator-based spintronics studies. This interest derives 

from the fact that YIG materials have very low intrinsic damping. The development of 

YIG-based spintronics demands YIG films that have a thickness in the nanometer (nm) range 

and at the same time exhibit low damping similar to single-crystal YIG bulk materials.  

This dissertation reports comprehensive experimental studies on nm-thick YIG films by 

magnetron sputtering techniques. Optimization of sputtering control parameters and 

post-deposition annealing processes are discussed in detail. The feasibility of low-damping YIG 

nm-thick film growth via sputtering is demonstrated. A 22.3-nm-thick YIG film, for example, 

shows a Gilbert damping constant of less than 1.0 × 10-4. The demonstration is of great 

technological significance because sputtering is a thin film growth technique most widely used in 

industry. 

The spin Seebeck effect (SSE) refers to the generation of spin voltage in a ferromagnet (FM) 

due to a temperature gradient. The spin voltage can produce a pure spin current into a normal 

metal (NM) that is in contact with the FM. Various theoretical models have been proposed to 

interpret the SSE, although a complete understanding of the effect has not been realized yet. In 

this dissertation the study of the role of damping on the SSE in YIG thin films is conducted for 

the first time. With the thin film development method mentioned in the last paragraph, a series of 
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YIG thin films showing very similar structural and static magnetic properties but rather different 

Gilbert damping values were prepared. A Pt capping layer was grown on each YIG film to probe 

the strength of the SSE. The experimental data show that the YIG films with a smaller intrinsic 

Gilbert damping shows a stronger SSE. 

The majority of the previous studies on YIG spintronics utilized YIG films that were grown 

on single-crystal Gd3Ga5O12 (GGG) substrates first and then capped with either a thin NM layer 

or a thin topological insulator (TI) layer. The use of the GGG substrates is crucial in terms of 

realizing high-quality YIG films, because GGG not only has a crystalline structure almost 

perfectly matching that of YIG but is also extremely stable at high temperature in oxygen that is 

the condition needed for YIG crystallization. The feasibility of growing high-quality YIG thin 

films on Pt thin films is explored in this dissertation. This work is of great significance because it 

enables the fabrication of sandwich-like NM/YIG/NM or NM/YIG/TI structures. Such 

tri-layered structures will facilitate various interesting fundamental studies as well as device 

developments. The demonstration of a magnon-mediated electric current drag phenomenon is 

presented as an example for such tri-layered structures. 
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CHAPTER 1 

OVERVIEW 

 

 

 

1.1 Background and motivations 

There has been a considerable interest in using yttrium iron garnet (Y3Fe5O12, YIG) 

materials for spintronics in the last decade.1,2,3,4,5,6,7,8 This interest derives from the fact that YIG 

materials have very low intrinsic damping9 and is an electric insulator. The development of 

YIG-based spintronics demands YIG films that have a thickness in the nanometer (nm) range 

and at the same time exhibit low damping similar with single-crystal YIG bulk materials. 

Previous work demonstrated pulsed laser deposition (PLD) of YIG thin films with relatively low 

damping. 20-nm-thick PLD films, for example, showed a Gilbert damping constant of α = 

0.00023.10 However, obstacles of the PLD techniques applied to industry stand, like small wafer 

deposition, low repeatability, and instability of the system control. Magnetron sputtering, on the 

                                                             
1 Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. 

Takanashi, S. Maekawa, and E. Saitoh, Nature 464, 262 (2010). 
2 K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. 

Bauer, S. Maekawa, and E. Saitoh, Nat. Mater. 9, 894 (2010). 
3 J. Xiao, G. E. W. Bauer, K. Uchida, E. Saitoh, and S. Maekawa, Phys. Rev. B 81, 214418 (2010). 
4 C. W. Sandweg, Y. Kajiwara, A. V. Chumak, A. A. Serga, V. I. Vasyuchka, M. B. Jungfleisch, . Saitoh, and B. 

Hillebands, Phys. Rev. Lett. 106, 216601 (2011). 
5 B. Heinrich, C. Burrowes, E. Montoya, B. Kardasz, E. Girt, Y. -Y. Song, Y. Sun, and M. Wu, Phys. Rev. Lett. 107, 

066604 (2011). 
6 H. Kurebayashi. O, Dzyapko, V. E. Demidov, D. Fang, A. J. Ferguson, and S. O. Demokritov, Nat. Mater. 10, 660 

(2011). 
7 S. Y. Huang, X. Fan, D. Qu, Y. P. Chen, W. G. Wang, J. Wu, T. Y. Chen, J. Q. Xiao, and C. L. Chien, Phys. Rev. 

Lett. 109, 107204 (2012). 
8 H. Nakayama, M. Althammer, Y. -T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprags, M. Opel S. 

Takahashi, R. Gross, G. E. W. Bauer, S. T. B. Goennenwein, and E. Saitoh, Phys. Rev. Lett. 110, 206601 (2013). 
9 Y. Sun and M. Wu, Solid State Physics 64, 157 (2013). 
10 Y. Sun, Y. -Y. Song, H. Chang, M. Kabatek, M. Jantz, W. Schneider, M. Wu, H. Schultheiss, and A. Hoffmann, 

Appl. Phys. Lett. 101, 152405 (2012). 
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other hand, is a thin film fabrication physical vapor deposition (PVD) technique most widely 

used in industry that allows for the production of large-size wafers with uniform properties. 

Other advantages of sputtering include convenient control, high repeatability, and fast 

production. In this dissertation, the demonstration of using magnetron sputtering to grow 

high-quality polycrystalline YIG nm-thick films on gadolinium gallium garnet (Gd3Ga5O12, 

GGG) substrates is discussed in details, which is of great technological significance for 

industrialization as well as scientific research.11 The damping constant of the YIG films is 

comparable or even smaller than that of the PLD films.12 Such demonstration of high-quality 

nm-thick YIG films has made possible the nanoscale patterning of YIG films13 and the future 

development of YIG-based nanoscale devices. 

The spin Seebeck effect (SSE) refers to the generation of a spin voltage in a ferromagnet 

(FM) due to a temperature gradient. This spin voltage can produce a pure spin current in an 

adjacent normal metal (NM) that is in contact with the FM. The SSE was first discovered in 

ferromagnetic metals14,15,16 and then was also observed in magnetic insulators2,17,18,19,20,21 and 

                                                             
11 T. Liu, H. Chang, V. Vlaminck, Y. Sun, M. Kabatek, A. Hoffmann, L. Deng, and M. Wu, J. Appl. Phys. 115, 

17A501 (2014). 
12 H. Chang, P. Li, W. Zhang, T. Liu, A. Hoffmann, L. Deng, and M. Wu, IEEE Magn. Lett. 5, 6700104 (2014). 
13 N. Zhu, H. Chang, A. Franson, T. Liu, X. Zhang, E. J. Halperin, M. Wu, and H. Tang, Appl. Phys. Lett. 110, 

252401 (2017). 
14 K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Nature 455, 778 

(2008). 
15 K. Uchida, T. Ota, K. Harii, S. Takahashi, S. Maekawa, Y. Fujikawa, and E. Saitoh, Solid State Commun. 150, 

524–528 (2010). 
16 K. Uchida, H. Adachi, T. An, T. Ota, M. Toda, B. Hillebrands, S. Maekawa, and E. Saitoh, Nat. Mater. 10, 

737–741 (2011). 
17 H. Adachi, K. Uchida, E. Saitoh, J. Ohe, S. Takahashi, and S. Maekawa, Appl. Phys. Lett. 97, 252506 (2010). 
18 K. Uchida, T. Nonaka, T. Ota, and E. Saitoh, Appl. Phys. Lett. 97, 262504 (2011). 
19 E. Padrón-Hernández, A. Azevedo, and S. M. Rezende, Phys. Rev. Lett. 107, 197203 (2011). 
20 M. B. Jungfleisch, T. An, K. Ando, Y. Kajiwara, K. Uchida, V. I. Vasyuchka, A. V. Chumak, A. A. Serga, E. 

Saitoh, and B. Hillebrands, Appl. Phys. Lett. 102, 062417 (2013). 
21 D. Qu, S. Y. Huang, J. Hu, R. Wu, and C. L. Chien, Phys. Rev. Lett. 110, 067206 (2013). 
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semiconductors.22,23 Although a complete understanding of the SSE effect has not been realized 

yet, various theoretical models have been proposed to interpret the effect2,3,16,17,23,24,25,26,27, 

among which the magnetic damping is engaged as a critical ingredient of the SSE, though in 

very different ways. In spite of these theoretical aspects, however, there has been no experiment 

on the effects of the damping on the SSE so far, to the best of our knowledge. With the use of 

the magnetron sputtering techniques with a systematic, repeatable fabrication method, YIG 

samples with different damping constants and identical other magnetic properties could be 

achieved, making such SSE experiments feasible. 

For certain monolithic devices (like coupled-line and stripline-type devices) as well as 

potential applications in spintronic devices, one needs to grow FM films on metals. Generally 

speaking, it is technically challenging to grow high-quality YIG films on metallic films, and 

possible issues include the oxidation and peeling-off of the metallic layer, interfacial diffusion, 

and formation of pin-holes in the films during the growth or post-annealing process. Previous 

work28 has demonstrated the feasibility of thick YIG film fabrication with PLD techniques on 

metallic layers. Realization of growing YIG films on metals by magnetron sputtering technique 

with a more convenient method, as illustrated in this dissertation, will provide significant 

implications for the future development of YIG-based spintronic devices in industry. As an 

                                                             
22 C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, J. P. Heremans, and R. C. Myers, Nat. Mater. 9, 898 

(2010). 
23 C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, R. C. Myers, and J. P. Heremans, Phys. Rev. Lett. 106, 

186601 (2011). 
24 S. Hoffman, K. Sato, and Y. Tserkovnyak, Phys. Rev. B 88, 064408 (2013). 
25 S. M. Rezende, R. L. Rodríguez-Suárez, R. O. Cunha, A. R. Rodrigues, F. L. A. Machado, G. A. Fonseca Guerra, 

J. C. Lopez Ortiz, and A. Azevedo, Phys. Rev. B 89, 014416 (2014). 
26 U. Ritzmann, D. Hinzke, and U. Nowak, Phys. Rev. B 89, 024409 (2014). 
27 A. Kehlberger, U. Ritzmann, D. Hinkzke, E.-J. Guo, J. Cramer, G. Jakob, M. C. Onbasli, D. Kim, C. A. Ross, M. 

B. Jungfleisch, B. Hillebrands, U. Nowak, and M. Kläui, Phys. Rev. Lett. 115, 096602 (2015). 
28 Yttrium iron garnet nano films: Epitaxial growth, damping, spin pumping, and magnetic proximity effect by Sun, 

Yiyan, Ph. D., Colorado State University, 2014, 82 pages; AAT 3624377 
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example of facilitating interesting fundamental studies in spintronics, the demonstration of a 

magnon-mediated electric current drag phenomenon is discussed. 

1.2 Dissertation organization 

This dissertation presents comprehensive studies on YIG thin film development by the 

magnetron sputtering techniques, including control parameter optimization, thin film 

characterization, and development of YIG films on metallic layers. Demonstration of 

spintronics-related experiments and research on some fundamental topics in spintronics, like the 

spin Seebeck effect and the magnon-mediated electric current drag phenomenon are also 

discussed. 

Chapter 2 introduces the basic structural and magnetic properties of YIG materials as well as 

the basics of magnetron sputtering techniques, including the mechanisms of plasma generation, 

sputtering process, thin film formation, and argon ion etching process. Some measurement 

techniques that are frequently mentioned in the following chapters are also discussed briefly. 

Chapter 3 presents conceptual and qualitative discussions of dispersion relations for 

ferromagnetic resonance (FMR) modes and spin wave modes in magnetic thin films. Only the 

uniform resonance mode will be touched in the following chapters. The damping mechanism and 

the linewidth broadening for the uniform resonance mode under the Gilbert model are discussed. 

Chapter 4 presents the growth and magnetic properties of low-damping nm-thick 

polycrystalline YIG films by magnetron sputtering techniques. Details on the optimization 

process, the dependence of YIG film properties on critical control parameters, and the 

characterization and magnetic properties of YIG thin films are discussed in details. 

Chapter 5 reports on the role of damping in the SSE in the Pt/YIG/GGG system. This is a 

continuous study following that presented in Chapter 4. A series of thin film samples with 
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identical magnetic properties but different damping values are made based on the thin film 

development study in Chapter 4. The study on the SSE in the Pt/YIG/GGG system indicates a 

stronger SSE strength for a lower damping value. 

Chapter 6 presents the study of developing YIG thin films on metallic thin films. A unique 

thin film development method is created for successful fabrication of YIG thin films on Pt 

metallic layers. Spin pumping experiments show efficient spin transfer at the YIG/Pt interface. 

The magnon-mediated electric current drag phenomenon is studied as a demonstration of its 

application on fundamental studies in spintronics. 
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CHAPTER 2 

INTRODUCTION 

 

 

 

2.1 Structure and magnetic properties of YIG 

Yttrium iron garnet (Y3Fe5O12, YIG) was first discovered by Bertaut and Forrat in 1956.29 

YIG is a synthesized ferrimagnetic oxide insulator with nearly cubic symmetry. One cubit unit 

cell has a lattice constant of 12.376 Å and consists of eight chemical formula units, with 24 Y3+ 

cations, 40 Fe3+ cations, and 96 O2- anions.30,31 Figure 2.1 shows schematic diagrams for the iron 

and yttrium cations surrounded by oxygen anions in YIG materials. Each Y3+ ion is located on a 

c-site, surrounded by eight nearest oxygen anions which form a dodecahedron. Among the 40 

Fe3+ cations, 40% are located on a-sites and 60% are located on d-sites. Six oxygen anions 

surround one a-site cation, forming an octahedron, while four anions are around one d-site cation 

and form a tetrahedron. Gadolinium gallium garnet (Gd3Ga5O12, GGG) substrates are usually 

used for YIG thin film fabrication. The GGG single crystal has the identical crystal structure as 

that of the YIG crystal. The difference between the YIG and GGG lattice constants is as small as 

0.0001 Å. 

 

                                                             
29 F. Bertaut and F. Forrat, Compt. Rend. 242, 382 (1956). 
30 M. A. Gilleo and S Geller, Phys. Rev. 110, 73 (1958). 
31 G. Winkler, Magnetic Garnets (Friedr. Vieweg & Sohn Verlagsgesellschaft GmbH: Braunschweig, 1981). 
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Figure 2.1. Schematic diagrams of three different sites occupied by cations in yttrium iron garnet. 

Figure 2.2 shows the cation arrangement in one octant of an YIG unit cell. The 

magnetization in the YIG originates from super-exchange interaction32,33 between a-site and 

d-site Fe3+ cations. The Y3+ cations have no magnetic moment. Based on Anderson’s theory33, in 

magnetic ion – oxygen ion – magnetic ion bonds, the interaction is strongest with a bond angle 

near 180o and weakest for 90o. In the YIG crystal structure, the largest bond angle of 126.6o 34 

occurs at “a-site Fe3+" - O2- - "d-side Fe3+” and such interaction leads to anti-paralleled magnetic 

moments between the a-site and d-site Fe3+ ions. Each Fe3+ ion contributes 5 Bohr magnetons 

(B) and each unit cell in YIG material has a net magnetic moment of 40 B (Bohr magneton). 

This corresponds to a theoretical saturation induction (4πMS) of 2470 G at 0 K, which is very 

close to the value (2463 G) measured for YIG thin films at 4.2 K.35 The 4πMS value at room 

temperature is about 1750 G and may vary from 1450 to 2100 G, depending on fabrication 

methods and defects in the films. 

                                                             
32 H. A. Kramers, Physica 1, 182 (1934). 
33 P. W. Anderson, Phys. Rev. 79, 350 (1950). 
34 B. Lax and K. J. Button, Microwave Ferrites and Ferrimagnetics (McGraw-Hill, New York, 1962). 
35 H. A. Algra and P. Hansen, Appl. Phys. A 29, 83 (1982). 

O2- Fe3+ Fe3+ Y3+

d site 

(tetrahedral site)

a site 

(octahedral site)

c site 

(dodecahedral site)
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Figure 2.2. Cation arrangement in one octant of a YIG unit cell. A-site ions form a body-centered cubit 
(bcc) sub-unit cell. D-site and c-site cations are distributed symmetrically along the center lines of the 
cubic faces. 

The single-crystal yttrium iron garnet has a weak cubic magneto-crystalline anisotropy with 

the easy axis along (111) direction. The first- and second-order cubit anisotropy constants are 

-6100 erg/cm3 and -260 erg/cm3, respectively, at room temperature,36 corresponding to the 

effective magnetic anisotropy fields of -87.6 Oe and -3.7 Oe, respectively, for a saturation 

induction of 1750 Oe. The negative sign indicates easy-plane anisotropy. 

The ferromagnetic resonance (FMR) linewidth originated from intrinsic damping in near 

perfect YIG single crystals is about 0.2 Oe at 10 GHz,37,38 which corresponds to an intrinsic 

Gilbert damping constant α of about 310-5 assuming zero inhomogeneous linewidth broadening. 

This value is about one order of magnitude smaller than that in barium hexagonal ferrites39 and 

two orders of magnitude smaller than that in ferromagnetic metals. The extremely small intrinsic 

magnetic damping makes YIG a material of choice for studies of spin waves as well as magnetic 

                                                             
36 D. Stancil and A. Prahakar, Spin Waves – Theory and Applications (Springer, New York, 2009). 
37 M. Sparks, Ferromagnetic-Relaxation Theory (McGraw Hill, New York, 1964). 
38 A. G. Gurevich and G. A. Melkov, Magnetization Oscillations (CRC Press, Boca Raton, 2000). 
39 Y. Y. Song, S. Kalarickal, and C. E. Patton, J. Appl. Phys. 94, 5103 (2003). 
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insulator-based spintronics applications. More structural and physical properties of single-crystal 

YIG are provided in Table 2.1. All values listed are for room temperature unless specified. 

Table 2.1. Properties of yttrium iron garnet 
 

Parameter Value Reference 

Lattice constant a (273 K) 12.3760.004 Å 31, 34 

Lattice constant a (77 K) 12.361 Å 31 

Lattice constant a (4 K) 12.359 Å 31 

Thermal expansion coefficient (298 K) 8.310-6 31 

Thermal expansion coefficient (623 K) 11.010-6 31 

Density 5.17 g/cm-3 36 

Band gap 2.85 eV 36 

Saturation induction 4Ms 1750 G 34 

Saturation induction 4Ms (4.2 K) 2463 G 35 

Cubic anisotropy constant K1 -6100 erg/cm3 36 

Cubic anisotropy constant K2 -260 erg/cm3 36 

Curie temperature Tc 559 K 36 

Exchange constant  310-12 cm2 36 

Intrinsic damping constant  310-5 37 

Faraday rotation (1.2 m) 240 deg/cm 36 

Dielectric constant (10 GHz) 14.7 40 

Dielectric loss tangent (10 GHz) 0.0002 40 

2.2 Magnetron sputtering techniques 

Magnetron sputtering is a widely used physical vapor deposition (PVD) technique. Its 

creation traces back to 1930s when F. M. Penning described the trapping of electrons in certain 

                                                             
40 H. How, P. Shi, C. Vittoria, L. C. Kempel, and K. D. Trott, J. Appl. Phys. 87, 4966 (2000). 
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electric and magnetic field configurations,41,42,43 a concept that leads to the further development 

of the modern magnetron sputtering configurations in the 1970s.44,45,46 This technique has been 

widely implemented in thin film fabrication industries including semiconductors, optics, 

magnetic storage, and many others because it allows for fast production, pre-surface sputter 

cleaning, easy control, and uniformity over a large size, among others. 

2.2.1 Plasma ignition and sputtering process 

In magnetron sputtering, plasma needs to be ignited and created before sputtering target 

materials to substrates. A plasma is a dilute ionized gas containing free electrons and positive 

ions. In a vacuum chamber, argon gas is typically filled in with low pressure, typically several 

mTorr. Then a voltage between the cathode (targets) and the anode (shutters or substrate holders) 

is applied (2-5 kV). If the voltage is larger than the breakdown voltage, ionization of argon 

atoms occurs, making the gas electrically conductive and forming a plasma. This process is 

called glow discharge as the plasma will glow with colors. The actual color depends on the type 

of the gas in the chamber. 

The breakdown voltage is critical for the plasma ignition. It can be described by Paschen’s 

law, as shown by Eq. 2.1, which was initially proposed by Friedrich Paschen when he studied 

gas glow under low pressure in a glass tube in 1889.47 A brief derivation of the Paschen’s law is 

in Appendix A for interested readers. 

                                                             
41 F. M. Penning, Physica 8, 137 (1928). 
42 F. M. Penning, Proc. Roy. Soc. Amst. 31, 14 (1928). 
43 F. M. Penning, Proc. Roy. Soc. Amst. 33, 841 (1930). 
44 I. I. Aksenov, V. A. Belous, V. G. Padalka, and V. M. Khoroshikh, Phys. Chem. Mater. Process. 6, 89 (1977). 
45 M. S. P. Lucas, J. H. A. Owen, W. C. Stewart, and C. R. Vail, Rev. Sci. Instrum. 32, 203 (1961). 
46 A. A. Snaper, “Arc deposition process and apparatus”, US 3,625,848 (1971). 
47 F. Paschen, Annalen der Physik. 273, 69 (1889). 
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))/11ln(ln()ln( 


Apd

Bpd
VBD     (2.1) 

Equation 2.1 describes the breakdown voltage VBD. In the equation, p is the pressure of the 

neutral gas, d is the gap distance between the cathode (the target) and the anode (the substrate), Ȗ 

is the secondary electron emission coefficient at the cathode, A is the saturation ionization in the 

gas at a particular electric field/pressure ratio, and B is related to the excitation and ionization 

energies. Table 2.2 shows the minimum breakdown voltage and the corresponding pd products 

for some gases. Some Paschen’s curves for gases are shown in Fig. 2.3. 

Table 2.2 Minimum breakdown voltages and the corresponding pd products for some gases48 
 

Gas (VBD)min (V) pdmin (Torr ˑ cm) 

Air 327 0.567 

Ar 137 0.9 

CO2 420 0.51 

H2 273 1.15 

N2 251 0.67 

He 156 4.0 

 
There is a minimal point in each Paschen’s curve in Fig. 2.3. The physical explanation is as 

follows. For a bigger pd product, electrons will collide frequently and cannot acquire sufficient 

energy to ionize neutral particles. Thus, a bigger electric potential should be applied for plasma 

ignition. While for a smaller pd product, more electrons will collide with the anode before 

colliding and ionizing the gas, also leading to a bigger breakdown voltage. 

                                                             
48 M. S. Naidu and V. Kamaraju, High Voltage Engineering 2nd (McGraw Hill, 1995). 
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Figure 2.3. Paschen’s curves for some gases 

For the system used in the laboratory with a general setup, the distance d between the 

cathode and the anode is ~10 cm. And the argon gas pressure is from 3 to 20 mTorr. Based on 

this, the breakdown voltage lands on the monotonically decreasing range in Fig. 2.3. In this 

range one needs to increase the distance d and/or the gas pressure to get a lower breakdown 

voltage for an easy plasma ignition. Experimentally, it is convenient to use a higher gas pressure 

than that used in a fabrication recipe for the ignition. When the plasma is ignited and stabilized, 

the pressure is reduced gradually to the designated value for thin film deposition. One physical 

reason that argon gas is widely used for sputtering is the relatively low breakdown voltage 

compared with other gases, as shown in Table 2.2 and Fig. 2.3. This makes the ionization 

process easier. Other reasons include inertness, safety in transportation, and cost. 

As the plasma is created and sustained by frequent collisions between electrons and argon 

atoms, argon ions with positive charges will move to and collide with the target (cathode) 

surface and the free electrons will fly to the substrates (anode) due to the electric field. From 
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material fabrication perspective, there are two shortcomings in this process. First, large amount 

of free electrons impinge the surface of the substrate (and the film) with high energy acquired 

from the acceleration in the electric field, which will damage and heat the substrate. This is not 

desired for either smooth interfaces or sustainable growth. Second, the plasma needs to be 

maintained with high pressure, as electrons and argon particles keep moving away so that the 

collision rate is thus decreased. 

 

Figure 2.4. Top view of a modern magnetron sputtering gun. The bar magnets surrounded have identical S 
poles pointing up and the center magnet has an opposite pole direction. Sometimes the center magnet is 
replaced with a Cu rod for non-magnetic materials, as shown in the figure. 

These problems can be solved with a smart design of trapping electrons in a magnetic field. 

Figure 2.4 shows the top view of a modern magnetron gun. The center magnet has an opposite 

pole with the surrounding magnets. Sometimes a Cu center bar is used instead of a magnetic bar 

for non-magnetic materials. The target was mounted on top of the surface and the electric field 

(DC or RF) is applied vertically to the gun surface. The motion of electrons can be described as 

follows. For convenience of description without loss of generality, the area near the top surface 

of the target can be decomposed into two regions: the cathode dark space (CDS) region right on 

top of the target surface and the negative glow region (NG) as shown in Fig. 2.5. Approximately, 
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a free electron moves mainly under the influence of the electric field in CDS region and the 

magnetic field in NG region. A free electron, first located on the surface of the target, will be 

accelerated by the electric field in the CDS region and move to the NG region with some kinetic 

energy. Then, via the Lorentz force, the magnetic field will bend the electron path so that the 

electron will spiral in the bended magnetic field and circle around the center axis, being confined 

in the NG region. As more electrons are confined, more collisions will happen between gas 

atoms and electrons, which helps ionize the neutral argon atoms and sustain the plasma. The 

bending effect of the magnetic field is mass dependent, so argon ions will be far less affected. 

The exhausted electrons, after loss of kinetic energies due to multiple collisions with atoms and 

ions, will fly away from the CDS region towards the anode region without breaking or heating 

up the substrate surface. 

 

 

Figure 2.5. Cartoon illustration for field distribution and electron motion near the surface of the target. 
CDS and NG denote the cathode dark space and the negative glow regime, respectively. 

On the other hand, argon ions will be accelerated under the electric field and move towards 

the cathode target materials with an energy range from 100 eV to 2000 eV, in which the collision 
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of argon ions and the atoms of the target surface can be modeled as hard sphere collisions in 

which the momentum transfer process dominates. Some relevant discussion is in Sec. 2.2.2. 

About 95% of the incident energy is transferred to heat in the target and only a small portion 

(about 5%) is absorbed by atoms (5–100 eV) on the surface. Target atoms will eject if the 

absorbed energy is larger than their binding energy. As most of the energy from argon ions is 

transferred to heat in the target, damage will occur to the cathode without proper cooling. In a 

magnetron sputtering gun, chilling water is supplied on the back to remove excessive heat. For 

high efficient momentum transfer, the atomic weight of the sputtering gas should be close to that 

of the target material. Argon gas is chosen as a compromise for light and heavy element atoms. 

Target ions may also be ejected with a small portion (1-2%). These energetic ionized 

materials will fly to the substrates or the wall of the chamber, causing re-sputtering process. This 

process will contaminate the fabricated layer and should be suppressed. A moderate increase in 

the argon pressure will help suppress this re-sputtering process by slowing down such ionized 

materials with multiple collisions. There are also electrons ejected from the target surface as 

mentioned in Appendix A, which will help sustain the plasma.  

As target atoms (5–100 eV) move through the plasma and the neutral gas phase, they collide 

with argon atoms and ions as well as electrons. This process can be treated as random walk and 

will make the energy of target atoms further down to 1 – 10 eV. This is critical for film formation 

because such an energy range is large enough for the atoms to stick to the substrates but 

sufficiently small to avoid being bounced back from the substrate surface. Some more details are 

provided in Appendix B for interested readers. 

In DC magnetron sputtering process, positive charges will build up at the target surface and 

can be conducted away for metallic targets. For ceramic targets like YIG, positive charges will 
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accumulate and block the sputtering process. Thus, an alternating electric potential instead of a 

DC field is applied between targets and substrates to remove accumulated excessive electrons. 

Figure 2.6 shows the pace of the alternating potential and sputtering process occurs when the 

target is negative. The typical frequency for the alternating potential is in the MHz range. The 

reason is as follows. 

 

Figure 2.6. Alternating electric field for excessive electron removal. A reversed electric field with a small 
amplitude for a quarter of the period is applied for electron removal. The rest of the period is for 
sputtering and deposition. 

For an RF electric field with a frequency less than about 50 kHz, electrons and ions in the 

plasma are mobile. Both will follow the switching pattern of the anode and cathode. In this 

situation, two steps happen within one period. For the first three quarters of the period, the target 

surface is the cathode and the substrate is the anode. Normal sputtering process happens on the 

target surface and the deposition process happens on the substrate side. For the last quarter of the 

period, the sign of the electric field is switched and the target surface becomes the anode while 

the substrate becomes the cathode. In this case, the sputtering process will happen on the 

substrate surface and the deposition will happen on the target. This process will damage the 

substrate surface and contaminate the target. To avoid this situation, the frequency of the electric 

field needs to be much higher than 50 kHz so that ions with heavy mass can no longer follow the 
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electric field switching pattern while electrons can respond to the switching and neutralize 

positive charge built up on the target surface. 

The magnetron sputtering system used in the laboratory was from AJA Inc. It has two 

chambers. One is for metallic material deposition with three magnetron guns. The other has a 

face-to-face setup for ceramic material deposition. A heating box is on the back of the substrate 

holders for high-temperature (up to 800 oC) deposition and in-situ annealing. Both DC and RF 

(alternating frequency=13.56 MHz) sputtering modes are available. The substrate holders can 

rotate, allowing for uniform deposition. Beside argon gas, nitrogen and oxygen gases are 

available during deposition as supplement to improve thin film texture. The maximum gas flow 

rate is 20 sccm. In this dissertation, all the thin films were fabricated by using this magnetron 

sputtering system unless otherwise noted. 

2.2.2 Deposition process, film formation, and ion etching process 

Deposition, film formation, and ion etching are extremely complicated physical processes. 

Here, a one-dimensional linear chain model49 under harmonic approximation is utilized to 

facilitate qualitative discussions on atom trapping and dissociation phenomena. 

 

Figure 2.7. Cartoon of a one-dimensional linear chain model. The hollow spheres represent lattice 
particles in crystals, and the shaded one represents the incident particle. 

A schematic diagram of the model is shown in Fig. 2.7. The hollow spheres represent the 

ions (mass M) in the crystal of the substrate which interact with the nearest neighbors through 

                                                             
49 B. McCarroll and G. Ehrlich, J. Chem. Phys. 38, 523 (1963). 
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harmonic oscillation (force constant K). The shaded sphere represents an incident atom with 

mass M0. When the incident particle arrives at position 0, it starts to interact with the first lattice 

particle. Such interaction is described by a harmonic potential with a force constant K0. The 

details of derivation and the program for the calculation of the results in Fig. 2.8-2.10 are given 

in Appendixes B and C for interested readers. Some main results and analysis are presented 

below. 

 

Figure 2.8. Relative displacements of adjacent particle pairs of atoms in the crystal chain as a function of 

dimensionless time tMK /2 . 0 represents the incident particle, as shown in Fig. 2.7. 
Displacements and velocities are normalized with respect to the initial relative displacement of particle 
pair 0-1. (a) 1.0/0 MM , 1.0/0 KK , and an initial velocity of 0 for light mass and weak force 

constant of the incident particle; (b) 5/0 MM , 8.0/0 KK , and an initial velocity of -2.5 for 

heavy mass and strong force constant of the incident particle. 

Two extreme cases are discussed first. Figure 2.8 shows the relative displacements of 

adjacent particle pairs of atoms in the crystal chain as a function of dimensionless time. 0 

represents the incident particle and other numbers represent the particle in the one-dimensional 

crystal. For Fig. 2.8 (a), at 0  the incident particle starts to interact with the first particle in 

the one-dimensional crystal. As the time evolves, both the incident particle and the crystal 

particles oscillate but with different amplitudes. The incident particle can take almost free 

oscillation with slow decay in amplitude and is hardly captured by the crystal because of the very 
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weak interaction. So the binding energy transmitted to the lattice is low. The crystal lattice will 

also oscillate in response to the incident particle but with a quite smaller amplitude. This is 

because the mass of the incident particle is very small. For Fig. 2.8 (b), the situation is quite 

different. Due to the heavy mass, strong interaction with crystal particles, and big initial incident 

velocity of the incident particle, the crystal particles are punched deeply into the crystal, causing 

dislocation, surface defects, and other defects. 

 

Figure 2.9. Relative displacements of adjacent particle pairs of atoms in a crystal chain as a function of 

dimensionless time tMK /2 . 1/0 MM  and 1/0 KK . (a) Initial velocity equal to 0; (b) 

initial velocity equal to -4.96; (c) initial velocity equal to -20. 

Next, the case where the incident particle has an identical mass and an interaction constant 

with the lattice atoms is considered. On the contrary with the case of Fig. 2.8 (a), the binding 

energy is rapidly transmitted to the lattice even after the first oscillation period even with an 

initial velocity equal to 0, as shown in Fig. 2.9(a). In this case, the approach to the equilibrium 

state is more rapid. This particle capture process is critical for deposition in sputtering 

techniques. A further increase in the initial velocity from 0 will increase the oscillation amplitude 

of the lattice atoms. Figure 2.9(b) shows a critical point where the incident particle will bounce 

back to the original incident position with zero velocity after the first oscillation period. As seen 

from Fig. 2.9 (b), the oscillation amplitude of the lattice atoms is even bigger than that of the 

incident particle. This is an indication for startup of potential lattice particle dissociation, which 
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depicts the process of the ion etching process or the atom dissociation process. The critical point 

divides the collision into two opposite processes: (1) Deposition process (particle capture) for 

lower incident velocity (kinetic energy) and (2) etching process (lattice particle dissociation) for 

higher incident velocity (kinetic energy). In the magnetron sputtering chamber, ions in plasma 

with high kinetic energies collide with target materials and etching process takes place. Target 

atoms will bound up and move to the substrate under the electric field. Collisions between target 

atoms and particles in plasma help decrease the kinetic energy and the deposition process takes 

place at the substrate surface. Thus, target atoms are captured by the substrate and a thin film is 

formed. The critical energy for given relative mass ratio MM /0 and interaction constant ratio

KK /0  is shown in Fig. 2.10. 

 

Figure 2.10. Critical kinetic energy of the incident particle as a function of MM /0  and KK /0 . The 

kinetic energy is scaled to   21 0
2
1

xK , the energy necessary for extracting the end particle from a 

homogeneous linear lattice. Note that  01x  is the initial relative displacement of particle pair 0-1. 

The concept of the critical point dividing the deposition and etching processes can be 

intuitive and applied to analysis in actual deposition/etching processes. Take YIG thin film 
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deposition as an example. If the argon pressure is a little higher than a baseline, the kinetic 

energy of the incident particles (Y, Fe, and O) is below the critical kinetic energy and the 

deposition process takes place with a normal rate (~1 nm/min). With a lower argon pressure, the 

kinetic energy of the incident target atoms will increase. This, on one hand, will make the 

deposition rate increase as higher kinetic energy leads to faster deposition. On the other hand, 

however, the quality of the YIG thin films may become low because the etching process will 

gradually arise near the critical point which leads to the dissociation and surface defects of the 

substrates as well as the deposited thin film. A further decease of the argon pressure (~5 mTorr) 

will lead to a serious dissociation and etching case. This situation corresponds to Fig. 2.9(c) 

where the kinetic energies of the incident particles are huge due to low argon pressure. As shown 

in Fig. 2.9(c), the relative displacements of particles on the lattice are much bigger than those in 

Fig. 2.9(a) and (b), indicating a bond-breaking and dissociation of particles at substrate surfaces. 

 

Figure 2.11. X-ray reflectometry data for Cr2O3 deposited with identical control parameters but different 
RF power. (a) 50 W; (b) 75 W. 

Another example is the sputtering process of Cr2O3 thin films. The kinetic energies of 

incident target atoms can be tuned by controlling the output power of the electric field. Figure 

2.11 shows the x-ray reflectometry data for Cr2O3 thin films deposited with different RF powers. 

The thin film deposited with 75 W RF power and 30 min shows a normal oscillation curve, as 

presented in Fig. 2.11 (b), with a thickness of 45.8 nm. The film deposited with 50 W RF power 
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and 30 min, in a contrast, has a thickness of 7.6 nm only and low quality indicated by a poor fit. 

With the 50 W power the kinetic energies of the target atoms are too low (< 1 eV) for particle 

capture and adhesion. This situation corresponds to the case shown in Fig. 2.8 (a) where incident 

particles have little interaction and energy transfer with the lattice. 

The limitation of this one-dimensional linear chain model for particle deposition, adhesion, 

etching, and dissociation includes ignorance of anharmonicity, finite temperature, lattice defects, 

and restriction of three-dimensional motion to one dimension. In real materials, oblique collision, 

diffusions, and nucleation of incident particles happen and thereby make the deposition and 

etching processes much more complicated. In spite of the severe limitations of this model, some 

qualitative features of the calculation, such as the existence of critical point of the kinetic energy 

of incident particles for dividing deposition, etching, and punching processes, should still be 

valid and intuitive in the three-dimensional case. 

2.3 Measurement techniques 

2.3.1 X-ray diffraction 

X-ray diffraction techniques utilized x-ray to determine the atomic structure of crystals, 

either bulk or thin films. In a typical configuration, a fine focused monochromatic beam of 

x-rays is beamed at samples and scattered elastically, forming diffraction patterns. The angles 

and intensities of these diffraction patterns provide information on lattice constants, chemical 

bonds, lattice types, and others.  
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Figure 2.12. Left: X-ray 2ș scan spectrum of an 11-nm-thick YIG film. Right: illustration of the lattice 
constant a and spacing d111 along <111>. 

The left graph of Fig. 2.12 shows the YIG and GGG substrate peaks of a typical x-ray 2ș 

scan with a Bruker D8 system in the Central Instrument Facility (CIF) at Colorado State 

University (CSU). The 2ș angle of the YIG (444) peak is ~50.9°. The wavelength of the Cu x-ray 

source is 0.154 nm (Kα). With these parameters, one can estimate the YIG lattice constant by 

using the Braggs law 

                                                  sin2  nd  (2.2) 

where d is the spacing between neighboring diffraction planes in the crystal, n is a positive 

integer indicating the Miller index which is 4 here, and   is the x-ray wavelength. One can 

calculate the lattice constant a as   414.123sin2/4333 111  da Å. This value is 

close to the standard value which is 12.376 Å at room temperature. 

2.3.2 Atomic force microscopy 

Atomic force microscopy (AFM) is a typical surface scanning technique and can have a 

resolution better than one nanometer. By measuring the atomic force between the probe tip and 

the sample, surface information like height, friction, and magnetism can be detected and 

acquired.  
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Figure 2.13. Pictures of the AFM device used in the magnetic laboratory at CSU. 

Figure 2.13 shows the AFM device used in the magnetic laboratory at CSU. This Vecco 

Innova AFM device can support typical surface imaging with tapping and contact modes. A 

high-resolution microscopy on top of the probing block is for precise operations of tip mounting 

and laser beam alignment. 

 

Figure 2.14. Front view (a) and side view (b) of the AFM configuration. 

Figure 2.14 shows the configuration of the AFM device. The laser is beamed onto the back 

of the tip and reflected back into a photo diode, as shown in Fig. 2.14 (a). The tip oscillates at its 
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eigen-frequency and is controlled by a piezoelectric element through the cantilever, as shown in 

Fig. 2.14 (b). When the cantilever is scanning across the surface of the sample, the tip is tapping 

or contacting with the surface of the sample. Due to the atomic forces between the sample and 

the tip, the oscillating amplitude changes with the height of the surface, leading to deflection of 

the cantilever. This displacement is tracked by the angle and amplitude change of the reflected 

laser through the photodiode. Imaging information is then gathered, integrated, and displayed. 

2.3.3 Vibrating sample magnetometry 

Vibrating sample magnetometry (VSM) is a technique that measures magnetic properties of 

samples. Figure 2.15 shows the schematic of the key part of the VSM instrument. A quartz rod is 

suspended with the magnetic sample attached to one end. An electromagnet is used to magnetize 

the sample. By vibrating the quartz rod up and down with a high frequency, the coil can pick up 

a current signal from the changing magnetic field generated from the sample due to the Faraday’s 

Law of Induction. By analyzing signal change with the external static magnetic field, magnetic 

properties of the sample such as saturation induction and coercivity can be acquired. 

 

Figure 2.15. A schematic of the VSM instrument 



26 

 

2.3.4 Ferromagnetic resonance measurements 

In real magnetic materials, magnetic moments can precess about the net magnetic field if 

they have a different orientation from the field. However, this precessional motion cannot be 

sustained without a continuous driving force. The interactions of magnon-phonon, 

magnon-electron, and magnon-magnon and other interactions will damp the precession and make 

it decay with time. This damping process is called magnetization relaxation. 

Ferromagnetic resonance techniques have been widely used to study the magnetization 

dynamics, relaxation, spin transfer torques, domain wall motion, and magnetization switching in 

materials. The measurement of the FMR responses can provide information on magnetization 

dynamic properties, such as the Gilbert damping constant, as well as static magnetic properties, 

such as the saturation induction, anisotropy field, and gyromagnetic ratio. 

 

Figure 2.16. (a) The schematic for a typical FMR device using a rectangular waveguide, a lock-in 
amplifier, and an electromagnet. (b) A typical power absorption curve in an FMR measurement. (c) A 
typical curve of power absorption derivative in an FMR measurement with field modulation. 

Fig. 2.16 (a) presents a schematic diagram of a typical FMR system. A sample is mounted at 

the end of a rectangular waveguide in which a microwave field can propagate and drive the 

magnetic moments in the sample. The electromagnets supply a constant external magnetic field 

to saturate the sample. The dynamic behavior of the magnetization in the sample can be 

described by the Gilbert equation Eq. 3.3. During the measurement, either the microwave 
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frequency or the external field is swept continuously till the resonance condition is satisfied. The 

FMR conditions can be predicted by the dispersion relations discussed in details in Chapter 3. At 

resonance, the power absorption reaches the maximum, and a peak (or a dip) as shown in Fig. 

2.16 (b) will arise in the reflected microwave signal. Sometimes a lock-in amplifier and field 

modulation are utilized to enhance the signal-to-noise ratio. In this case, the detected signal will 

be the derivative of the absorption curve. The peak-to-peak linewidth shown in Fig. 2.16 (c) 

reflects the relaxation process. The relation between the FMR linewidth broadening and the 

Gilbert damping constant for the uniform resonance mode in a linear regime is described by Eq. 

3.45. Reference [50] elaborates much details on the setup, calibration, and modification of the 

FMR system. 

                                                             
50 C. Poole Jr., Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniqus (Interscience 

Publishers, New York, 1967). 
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CHAPTER 3 

INTRODUCTION TO SPIN WAVE THEORY AND 

RELAXATION 

 

 

 

Magnetization dynamics was first studied by Lev D. Landau and E. M. Lifshitz in 1935 with 

a phenomenological model.51 Since then it has been studied for years in both bulk and thin film 

materials. Magnetic materials have been widely used in many areas like microwave applications, 

power conversion, and magnetic recording. Research on the behavior of magnetization dynamics 

is fundamental for the improvement of both applications in existing magnetic recording media 

and development of novel and new magnetic materials. The purpose of this chapter is to 

introduce briefly the concepts of magnetization dynamics and spin waves, especially 

ferromagnetic resonance (FMR) for thin films with consideration of different boundary 

conditions. Relaxation for the uniform resonance mode is also discussed. These are necessary for 

both understanding collective motion of spins in magnetic materials and study of FMR. 

 

3.1 Equations of motion and boundary conditions for magnetic 

moments in materials 

As mentioned in many textbooks,36-38 the precession motion of a magnetic moment 


 

under a uniform magnetic field H can be described by 

                                                             
51 L. Landau and E. Lifshitz, Physik. Zeits. Sowjetunion 8, 153 (1935). 
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                                                       H
dt

d 


 
(3.1) 

where   is the gyromagnetic ratio and is described by 

                                                                
2 qm

q
g (3.2) 

In Eq. (3.2), q is electron charge, qm  is the mass, and g is the Landé factor. g has the value 2 for 

a pure spin and 1 for pure orbital angular momenta. For the mixtures of the two, it has an 

intermediate value. In YIG materials, the magnetic moments are entirely from spins of electrons 

and one has  2.8 MHz/Oe. The orbital magnetic moments are “quenched”.36 As described by 

Eq. (3.1), the magnetic moment precesses around the direction of the uniform magnetic field and 

never reaches the equilibrium position. The equation conserves both the energy and the 

magnitude of the magnetic moment. 

For a macroscopic magnetization vector M


representing the mass spins per unit volume, its 

motion under an external field can be described by a similar equation but a damping term should 

be added for description of energy dissipation and absorption in real materials. L. Landau and E. 

Lifshitz proposed a term51 to obtain a phenomenological equation of the spin dynamics. Later T. 

Gilbert suggested a viscous force52,53 term in 1955 to the equation of precession motion Eq. (3.1) 

which is more favorable because it predicts slower motion with increasing damping as well as 

fits for numerical computing: 
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52 T. Gilbert and H. Ekstein, Bull. Amer. Phys. Soc. 1, 25 (1956). 
53 T. Gilbert, IEEE Trans. Magn., 40, 3443 (2004). 
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In the Gilbert equation Eq. (3.3), the second term in the right hand, or the damping torque term, 

points towards the precession axis and thereby drags the magnetization back to the equilibrium 

position. α is the Gilbert damping constant and is dimensionless. M


 represents the total 

magnetic moments in a unit volume and is defined as 

                                                                
i

i

V
M


(3.4) 

where i  is the spin on site i and V is the volume. effH


 is the effective magnetic field applied 

to the magnetic moments including the static internal field, anisotropy field, dynamic dipolar 

field, dynamic exchange field, and others. 

The collective motion of magnetic moments in materials under excitation is called spin 

waves or magnons in the wave picture of quantum mechanics. These magnetic waves have 

wavelengths much greater than the lattice parameters and propagate in low-loss ferromagnetic 

films for distances much greater than their wavelengths. In this section the problem of solving 

dispersion relations for dipole – exchange spin wave spectra with boundary conditions is 

mathematically formed with physical considerations and approximation added to Eq. (3.1). A 

general solution of the dispersion relations is derived in Sec. 3.2. The explicit form of dispersion 

relations for the uniform resonance mode is analyzed which is useful in the following chapters. 

Relaxation (or damping) mechanisms for the uniform resonance mode is discussed in Sec. 3.4. 
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Figure 3.1. The coordinate configurations in the thin film sample 

Figure 3.1 shows the configuration used in the dispersion relation derivation. A thin film is 

displayed as a cuboid. The external and internal fields are He and Hi, respectively. The 

magnetization of the film is M0. (ξ, Ș, ȗ) and (x, y, z) are the two sets of coordinate systems The 

thickness of the sample is L and the lateral dimension is sufficiently large that it can be assumed 

infinite. Axis ξ is perpendicular to the film plane and ȗ is set to parallel with the spin wave vector 

kȗ. Axis z is along the magnetization direction and the angle between z and ξ is ș. Axis y is in the 

film plane and perpendicular with z. The angle between the external magnetic field and ξ is șe. 

The angle between the xz plane and ȗ is φ. Parameters d1 and d2 are pinning parameters for top 

and bottom surfaces, respectively, with the form 

                                                                      
ex

S

A

K
d  (3.5) 

where KS is the surface anisotropy constant and Aex is the exchange coefficient with the unit of 

m2 in the Gaussian unit system54. The film is assumed to be fully saturated. The (x, y, z) 

coordinate system is introduced to conveniently describe the precession. 

                                                             
54 R. Soohoo, Phys. Rev. 131, 594 (1963).  
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First, dynamic interactions between spins in the material are discussed. Precessing magnetic 

moments confined in the material can interact with each other, for example, through dipole 

interaction and exchange interaction. For the dipole interaction, two magnetic moments in space 

will interact through magnetic fields and the potential energy of the interaction has the form 

                                     
3

4 212213
0





  rr

rr
E

 



(3.6) 

where ȝ0 is the magnetic permeability constant in vacuum, r is the distance between the two 

moments, and i


 is the magnetic moment vector (i = 1, 2). Though a weak energy, it has a 

relatively longer interaction distance than that of the exchange interaction and is fundamental for 

spin waves with not-too-big wave vectors. Usually the dipole interaction can be described by a 

dipole field which is the effective field from all other magnetic moments acting on one magnetic 

moment in the material. Instead of a common method36 used in many textbooks, a Green’s 

function form of the dipole field is derived and used here for a more precise description. Details 

of the derivation for this dipole field in the Green’s function form from Eq. (3.6) are provided in 

Appendix D for interested readers. Equation (3.7a) shows that the dipole field acting on one 

magnetic moment is the integral of contributions from all dynamic magnetic moments m


. 

Equation (3.7b) provides the exact form of the tensor. The subscripts mark the (ξ, Ș, ȗ) coordinate 

system shown in Fig. 3.1. 
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where 

                                       
2

   k

P e
k

G (3.7c) 

                                )sgn(   PQ GG (3.7d) 

and k  is the wave vector of spin waves propagating along the ȗ direction. The dipole field 

described by Eq. (3.6) is the volume type which is important to spin waves with non-zero wave 

vectors. For a uniformly precessing mode, this contribution is zero as k  goes to zero. The 

other dipole field, the surface dipole field (or demagnetization field) induced by the surface 

magnetic moments, is approximately zero for spin waves with wavelengths much smaller than 

sample dimensions. However, it is critical for the uniform mode and is discussed in Appendix E. 

Another important type of dynamic interaction between spins in the material is the exchange 

interaction which accounts for room-temperature ferromagnetism and is a quantum effect. 

“Exchange” refers to the property of electrons that leads to the Pauli exclusion principle. In the 

formation of magnetic crystals, as the ions get closer, electrons are shared and electrostatic 

energy arises from electrons being either closer together or further apart depending on whether 

they have the same spin orientation or not. The simplest form of the orientation-dependent 

interaction energy between spins of the ith and jth sites in the crystal is 

                                                       2 jiij
ex
ij SSJE


 (3.8) 

where ijJ , the exchange constant, has the dimension of energy and is positive for parallel 

alignment and negative for anti-parallel alignment. In a material, the following form  

                                                           2mAH exex


 (3.9) 
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is used36 where exA is the exchange coefficient with the unit of m2 in the Gaussian unit system 

and m


represents the dynamic magnetic moment vector. 

The static interactions between the spins and the external fields are discussed in Appendix E. 

The mathematical form of the magnetization (the total magnetic moments per unit volume) M


, 

under stimulation (like microwave) with an angular frequency ω, can also be decomposed into 

the dynamic and static part as 

                                 ˆ),,(),( 0zMtmtrM  
(3.10a) 

where a slight decrease of the magnetization along the z direction is neglected for small-angle 

precession and )(m


 is also the dynamic component of the plane spin wave with the form 

                                  )(),,( )(   kti
emtm




(3.10b) 

M0 is the static component of the magnetization and is biased under the internal static magnetic 

field. As calculated in Appendix E, the relations between the static magnetic fields (the external 

uniform field, the demagnetization field, and the internal field) and the angles are 

                             cos4coscos 0  MHH eei  (3.11a) 

                                  )sin(22sin4 0 eeHM   (3.11b) 

                                 cos4cos 2
0  MHH eei  (3.11c) 

Note that the magneto-crystalline anisotropy field is not considered here.  

The total effective field, including the static and dynamic parts, for spin waves has the form 

                          ),(),(ˆ 2 trmAtrhzHH exdieff


 (3.12) 

By inserting Eq. (3.10) and Eq. (3.12) into the Gilbert equation Eq. (3.3) and neglecting the 
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damping term, one can get 

     ),(),(ˆ),,(ˆ),,(ˆ 2
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
  (3.13) 

Neglecting the second order terms in Eq. (3.12) leads to the linearized form 
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(3.14) 

With some calculation given in Appendix F, a neat form is obtained 
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Though not explicitly addressed, the dynamic magnetic moment vectors should be represented in 

the (x, y, z) coordinate system. 

Boundary conditions are necessary for solving the integral-differential equation Eq. (3.15) 

and have the form54 
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The d is the pinning parameter mentioned in Fig. 3.1. Equations (3.15) and (3.16) complete the 

problem for solving the dispersion relations of dipole-exchange spin waves. 

3.2 Dispersion relations for dipole-exchange spin waves 

Mathematically it is impossible to get an analytical solution of the complete problem 

described by Eqs. (3.15) and (3.16). However, if m


 can be expanded in a series of some proper 

complete orthogonal basis which also satisfies the boundary condition, an approximate solution 

can be acquired to any accuracy. The operator N̂  is chosen with the boundary conditions to 

form a general Sturm-Liouville (S-L) problem and addressed as follows. 
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The subscripts 1 and 2 are for the upper and the lower surfaces of the film, respectively. A 
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detailed derivation for solving this ordinary differential equation is elaborated in Appendix G. 

The eigenfunctions of the S-L problem are 
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 

                              
0

  , 
0 



























y

n

y

n

x

nx

n SS


(3.18a) 

where 

               ),( 
2

sin
2

cos 2 yxp
LdL

A p

np

n

p
p

n

p

n

p

n 






















 














  


 (3.18b) 

and the transverse wavenumber p

n  of the spin wave obeys 

                                       tan 2121

2 ppp
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ppp
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where 

 2
2,12,12,12,1 cos       2cos dddd yx   

The eigenvalues are 

                                                   
22 p
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M
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n kAN 



  (3.19) 

The eigenfunctions have the orthonormality property as 

                                                   , pqnm

q

m

p

n LSS   (3.20) 

where the bracket denotes the integral across the thickness of the thin film sample and   is the 

Kronecker function. The amplitude of the eigenfunctions p

nA  in Eq. (3.18b) can be acquired 

from the normalization condition Eq. (3.20) and is derived in detail in Appendix H for interested 

readers. 

The series solution of Eq. (3.17) can be expanded on an orthogonal basis of the operator N̂  

as 
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Let us now come back to the complete problem of spin waves. By substituting Eq. (3.21) 

into Eq. (3.15), one can get 
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The only undetermined term is the tensor of the Green’s function xyĜ  in the xy plane. Details of 

the derivation are in Appendix I for interested readers. By inserting the explicit form of the 

two-dimensional Green’s function tensor 
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in Eq. (3.22), one can then obtain the second term on the right side of Eq. (3.22) as 
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Then the explicit form of Eq. (3.22) is  
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(3.24) 

Equation (3.24) provides the explicit form of equations for spin wave amplitudes x

nm  and y

nm . 

After simplification (see Appendix J), a compact form of Eq. (3.24) is acquired as 
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The physical significance of the two terms in Eq. (3.25) is interpreted as follows. nnD̂  

describes the dynamic behavior of spin waves with a given mode n without perturbation from 

other spin waves and nnR 
ˆ  describes the perturbation and interaction from other spin wave 

modes n’ through dipole interaction on mode n. 

Mathematically the exact dispersion relations for propagating spin waves can be achieved 

by calculating the eigenvalues of the determinant of the infinite system of Eq. (3.25). However, a 

zero-order dispersion relation for dipole-exchange spin waves is sufficient for deriving (quasi) 

ferromagnetic resonance uniform mode and calculated. 

For the zero-order approximation without perturbation terms, Eq. (3.25) leads to 

                                                   0ˆdet nnD (3.27) 

The corresponding vector amplitude of the spin wave with the mode index n is 





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1

1)0(
nm


 

So the dynamic magnetization of the eigenwave for the n mode is 

      yxmm y

n

x

nn
ˆˆ0  
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Substituting Eq. (3.26a) into Eq. (3.27), one can get 
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This leads to, with some algebra and help from Eqs. (3.26b)-(3.26d), 
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where 
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The explicit forms of each term in Eq. (3.28) are 
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The derivation of the explicit forms of J1 and J2 is elaborated in Appendix K for interested 

readers. Equation (3.28) is the explicit form of the zero-order approximate dispersion relation for 

the propagating spin wave with the mode index n, and it finalizes the task of this section. The 

advantage of the method of derivation applied in Sections 3.1 and 3.2 for spin waves is to take 

into account the top and bottom boundary conditions. This is especially useful for calculation 

and applications in studies of dynamics in ferromagnetic magnetic thin films (e.g. YIG and 

barium hexagonal ferrites) with different adjacent top (vacuum, Pt, or topological insulators) 

and/or bottom (GGG or Pt) media. Some special cases and formulas are discussed in the next 

section which are frequently used through the dissertation. 

3.3 Ferromagnetic resonance uniform modes 

In this section, the dispersion relations for the uniform resonance mode is discussed where 

all precessing spins are parallel with each other. This is the mode excited by microwaves if the 

sample dimensions are much smaller than the wavelength of microwaves and is fundamental for 

characterizing magnetic properties in the samples. To find the dispersion relation, the explicit 

analytical form rather than the integral form of  kP pp

nn


  and  kQ pp

nn


  should be calculated. To 

avoid tedious calculations, the derivation is presented in Appendix K for interested readers. 
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For resonance modes (uniform or standing wave modes), as there is no propagating spin 

wave but resonances, k  is zero which leads to zeros of  kP pp

nn


  and  kQ pp

nn


 . Then Eq. 

(3.28) can be simplified as 
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Equation (3.29) is the dispersion relation for resonant spin waves with an arbitrary internal field 

direction and arbitrary exchange boundary conditions. From Eq. (3.18b), nonzero n  is related 

to standing wave modes across the thickness direction bounded and modified by boundary 

conditions. This standing wave mode is not considered here. With 0n , Eq. (3.13b) indicates 

the (quasi-) uniform precession mode across the thickness. With some calculations, the 

dispersion relation, the amplitude of the magnetization and the relations between static fields are 

therefore 

                                                     sin
1 2
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0  MHHyxT
 (3.30a) 
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This is the (quasi-) uniform resonance mode for arbitrary external fields and arbitrary 

boundary conditions. It should be noted that, according to Eq. (3.18c), the (quasi-) uniform 

resonance mode requires 11 Ld p  and 12 Ld p . In most experiments of the following 

chapters, the external field is either perpendicular or parallel to the film plane (namely along the 

principal axis). In this case e  . Then Eq. (3.30a) is simplified as 

                                             4 0

00

MH
T

f eyx



 (3.31a) 
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 (3.31b) 

where f is the microwave frequency, and 04 M  is the saturation magnetization. yxT00  can be 

calculated from Eqs. (3.26d) and (3.30b) 
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The value of yxT00  is very close to 1. The physical significance of yxT00  is the shift of the 

frequency of the FMR mode due to non-uniform (linear) distribution of the magnetization 

amplitude under different boundary pinning conditions p

id . Only when the pinning conditions of 

the top and bottom surfaces are identical, the exact uniform precession mode exists and the 

magnetization amplitude is uniformly distributed across the thickness.  

Another interesting phenomenon indicated by Eq. (3.31) is that the deposition of an adjacent 

layer on the ferromagnetic film may shift the resonance frequency. Further, this shift correlates to 

the pinning/coupling at the interface. For example, a layer of Pt/Cu deposited on an YIG film can 

shift the resonance frequency from that of the bare YIG film for 0 – 30 Oe.55 

In the following chapters, most FMR fits assume that the resonance is uniform ( 100 yxT ) 

and the following formula derived from Eq. (3.31) is used for fitting. 

                                                 4 effFMR MHf   (3.32a) 

                                                             
55 Y. Sun, H. Chang, M. Kabatek, Y. -Y. Song, Z. Wang, M. Jantz, W. Schneider, M. Wu, E. Montoya, B. Kardasz, B. 

Heinrich, S. G. E. te Velthuis, H. Schultheiss, and A. Hoffmann, Phys. Rev. Lett. 111, 106601 (2013). 
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                                     4// effFMRFMR MHHf   (3.32b) 

The subscript “eff” indicates that there might be a potential uniaxial anisotropy field that is added 

to the saturation magnetization term. For other special cases and modes, the readers can refer to 

Appendix K. 

3.4 Damping caused linewidth broadening in FMR measurements 

In this section the linewidth broadening due to damped magnetization precession is 

discussed due to non-avoidable loss. Only the Gilbert model Eq. (3.3) and the ferromagnetic 

uniform resonance mode are related here. 

For the uniform resonance mode, the amplitude of the dynamic magnetization is identical 

and independent of position. The exchange field and the volume dipole field are suppressed and 

neglected so that Eq. (3.10) is modified as 
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The angle φ is zero in Fig. 3.1 and the transformation matrix (Appendix I) is modified as 
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A dynamic surface demagnetization field arises due to the precession of the magnetization, 
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where 
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1  NNN  

in the (ξ, Ș, ȗ) coordinate system. Both the sample geometry and the magnetization orientation 

will affect the demagnetization field. For magnetic thin films, one has 1N and 0  NN . 

With the help of the transformation matrix, the demagnetization matrix in the (x, y, z) coordinate 

system is 
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(3.34) 

The external magnetic field should include a dynamic component to compensate damping and 

stimulate precession. This dynamic component may originate from the applied microwave or 

other stimulation and is assumed to have the following form 

                                           ˆˆ 00
ti

yx eyhxhh 


(3.35) 

The effective field includes the internal field (the constant external field, the static 

demagnetization field), the dynamic external field, and the dynamic surface demagnetization 

field 

                                       ˆ
deieff hhzHH


 (3.36) 

By substituting Eqs. (3.33) and (3.36) into the Gilbert equation (Eq. (3.3)), one can get 
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With some calculations, the equation above can be re-organized as 
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With MS ~M0 and a small signal approximation which is valid for small angle precession, all the 

second and higher order terms in the above equation can be dropped. The linearized Gilbert 

equation is then expressed as 
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By substituting Eqs. (3.34) and (3.35) and the explicit forms of each term in the effective field 

expression into the equation above, one can get 
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where the elements of the susceptibility tensor are given below. 
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The real parts of the elements are related to the dispersive properties of the materials while the 

imaginary parts are related with the damping in the material. A typical value of the Gilbert 
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damping constant   is small, from 10-2 to 10-5 dependent on the material. If terms with 2  

are dropped in the susceptibility tensor elements, one can get from Eq. (3.37) 
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The resonance happens when the real part of the denominator is set to zero. 

                                         sin4 2
0  MHH iiFMR  (3.39) 

By substituting the expression of the internal field Eq. (3.11c) into Eq. (3.39), one can obtain 

                   2cos4coscos4cos 0
2

0  MHMH eeeeFMR  (3.40) 

For a perpendicular external field, one has 0 e  and Eq. (3.40) is equivalent with Eq. 

(3.32a). For an in-plane external field, one has 90 e °, and Eq. (3.40) is equivalent with 

Eq. (3.32b). This confirms the validity of the derivation and formulas obtained in Sec. 3.3. 

FMR experiments involve the measurement of the microwave power absorbed by the 

sample which depends on the loss in the material. The time-averaged microwave power P  

absorbed by the sample is connected with the imaginary part of the magnetic susceptibility tensor 

as56 

                                                             
56 Two magnon scattering and relaxation in thin ferrite films by Michael Hurben, Ph. D., 238 pages, OCLC 

35896674. 
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The existence of damping in the material will broaden the linewidth of the resonance peak, as 

shown in Fig. 2.16 in Chapter 2. The half-power linewidth of the absorption curve can be 

expressed in the frequency spectrum as 

                                                sin42 2
0  MH i (3.41) 

In some FMR measurements and this dissertation, the frequency of the microwave is fixed 

and the external magnetic field is swept. The corresponding linewidth broadening in the field 

spectrum can be obtained by 
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Equation (3.42) indicates that the linewidth broadening in the magnetic field spectrum is linear 

with the resonance frequency for the Gilbert damping term. This may not be true if there are 

other non-linear mechanisms, like two-magnon scattering37. Besides, there is always an 

inevitable nonzero linewidth intercept at zero frequency in the measurement which may be due 

to inhomogeneous linewidth broadening. A modified semi-empirical equation is used for fitting: 
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0H  reflects the inhomogeneous linewidth broadening of the thin film sample. The physical 

meaning of the cosine denominator is the apparent broadening of the linewidth due to angle 

deviation (misalignment) of the oblique external magnetic field from the magnetization direction. 

In conventional FMR measurements, magnetic field modulation and lock-in detection are usually 
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introduced to increase signal-to-noise ratios (SNR). In this case the measured signal may be a 

derivative of the microwave power absorption. Fig. 4.10(a) shows an example of an experimental 

FMR profile for a YIG sample. The line shows the fit to a derivative of Lorentzian trial function. 

The linewidth acquired is the peak-to-peak linewidth which has the form 

 
                               

cos3
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e
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 (3.44) 

For the case where the field is either perpendicular or parallel to the film plane, one has 
e   

and Eq. (3.44) becomes 

                                                   
3

2
0HfH FMRpp 


 (3.45) 

Equation (3.45) is one of the main results that is used in the following chapters. Note that α is an 

effective damping parameter which is only valid for the Gilbert model. The damping 

mechanisms in magnetic materials are too complicated to describe with a single term.  

3.5 Summary 

Chapter 3 presents conceptual and quantitative discussions of dispersion relations for both 

spin wave modes as well as (quasi-) uniform resonance modes. The damping mechanism under 

the Gilbert model for the uniform resonance mode is discussed in details where the linewidth 

broadening has a linear dependence on the microwave frequency. Equations (3.32) and (3.45) are 

the two main results that are applied for FMR data analyses in the following chapters. 
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CHAPTER 4 

DEVELOPING YIG NANO FILMS BY 

SPUTTERING TECHNIQUES 

 

 

 

As mentioned in the beginning of this dissertation, recent years witnessed a considerable 

interest in using yttrium iron garnet (Y3Fe5O12, YIG) for spintronics.1-8,19,55,57 This interest was 

due to the extremely small magnetization damping property of YIG. Specifically, the intrinsic 

Gilbert damping constant in YIG materials is α0≈3×10-5,37 which is two orders of magnitude 

smaller than that in ferromagnetic metals58,59 and one order of magnitude smaller than that in 

hexagonal ferrites.39 In addition, YIG materials are also electrically insulating, which is 

particularly attractive since insulator-based spintronic devices not only require substantially 

lower power compared to conductor-based devices, but also do not have issues intrinsically 

associated with charge currents. 

The development of YIG-based spintronics demands YIG thin films that have a thickness in 

the nanometer range and at the same time exhibit low damping. In spite of considerable work on 

the growth of micron-60,61 and submicron-thick YIG films,62,63,64,65,66,67,68,69,70 there has been a 

                                                             
57 V. Castel, N. Vlietstra, J. B. Youssef, and B. J. van Wees, Appl. Phys. Lett. 101, 132414 (2012). 
58 Z. Celinski and B. Heinrich, J. Appl. Phys. 70, 5935 (1991). 
59 S. S. Kalarickal, P. Krivosik, M. Wu, and C. E. Patton, J. Appl. Phys. 99, 093909 (2006). 
60 R. C. LeCraw, E. G. Spencer, C. S. Porter, Phys. Review, 110, 1311 (1958). 
61 R. C. Linares, R. B. McGraw, and J. B. Schroeder, J. Appl. Phys. 36, 2884 (1965). 
62 P. C. Dorsey, S. E. Bushnell, R. G. Seed, and C. Vittoria, J. Appl. Phys. 74, 1242 (1993). 
63 M.-B. Park, B. J. Kim, and N.-H. Cho, IEEE Trans. Magn. 35, 3049 (1999). 
64 T. Boudiar, S. Capraro, T. Rouiller, M.-F. Blanc-Mignon, B. Payet-Gervy, M. Le Berre, and J.-J. Rousseau, Phys. 

Stat. Sol. (C) 1, 3347 (2004). 
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trend to grow nanometer-thick YIG films in the last two decades.10,71,72 Particularly in Ref. [10], 

nanometer-thick YIG films deposited by pulsed laser deposition (PLD) techniques with 

significantly smaller linewidths were reported. In this chapter the development of radio 

frequency (RF) sputtered YIG nano films on gadolinium gallium garnet (Gd3Ga5O12, GGG) 

substrates and their properties are presented. Compared with the PLD growth, the sputtering 

growth of YIG films has several advantages as follows. (i) The sputtered films are more uniform 

than the PLD films. (ii) Sputtering growth is much faster than the PLD. (iii) Sputtering is more 

widely used in industry than the PLD. 

4.1 Optimization of fabrication parameters for uniform YIG nano 

films 

In contrast to considerable previous work on the growth of micron- or submicron-thick YIG 

films and nanometer-thick YIG films by PLD, little work has been carried out on the growth of 

nm-thick YIG films using magnetron sputtering techniques. The optimized fabrication 

parameters and experience from the PLD10 are introduced as a quick startup for YIG film 

development. Therefore, a brief discussion of PLD techniques is necessary to find initial 

fabrication parameters. 

                                                                                                                                                                                                    
65 S. Yamamoto, H. Kuniki, H. Kurisu, M. Matsuura, and P. Jang, Phys. Stat. Sol. (A) 201, 1810 (2004). 
66 S. -Y. Sung, X. Qi, and B. J. H. Stadler, Appl. Phys. Lett. 87, 121111 (2005). 
67 Y.-M. Kang, S.-H. Wee, S.-I. Baik, S.-G. Min, S.-C. Yu, S.-H. Moon, Y.-W. Kim, and S.-I. Yoo, J. Appl. Phys. 97, 

10A319 (2005). 
68 S. A. Manuilov, R. Fors, S. I. Khartsev, and A. M. Grishin, J. Appl. Phys. 105, 033917 (2009). 
69 Y. Krockenberger, K.-S. Yun, T. Hatano, S. Arisawa, M. Kawasaki, and Y. Tokura, J. Appl. Phys. 106, 123911 

(2009). 
70 S. A. Manuilov and A. M. Grishin, J. Appl. Phys. 108, 013902 (2010). 
71 N. Kumar, D. S. Misra, N. Venkataramani, S. Prasad, and R. Krishnan, J. Magn. Magn. Mater. 272-276, e899 

(2004). 
72 E. Popova, N. Keller, F. Gendron, M. Guyot, M. -C. Brianso, Y. Dumond, and M. Tessier, J. Appl. Phys. 90, 1422 

(2001). 
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Figure 4.1. The schematic of a typical PLD system. 

Figure 4.1 shows the schematic of a typical PLD system. High-power laser pulses are 

guided into a vacuum chamber by a set of optical apertures. The target material is then ablated by 

the laser beam and is evaporated onto substrates. The substrates can be heated for a designated 

deposition temperature or for a post-annealing process. For oxides and ceramic materials, the 

inlet allows O2 gas into the chamber for oxygen compensation. 

Table 4.1. Optimized parameters for fabricating YIG thin films with PLD techniques 

D
e
p

o
si

ti
o
n

 

Target-substrate distance 6.0 cm 

Substrate temperature 850 oC 

O2 pressure 0.1 Torr 

Laser energy fluence 1.7 J/cm2 

Laser pulse repetition 1 Hz 

Laser pulse duration 30 ns 

A
n

n
e
a

li
n

g
 O2 pressure 100 Torr 

Annealing temperature 850 C 

Annealing time 10 min 

Cooling rate 2 C/min 
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Table. 4.1 presents the optimized parameters for fabricating YIG nanometer-thick films by 

PLD techniques. Three main ideas from the concept of PLD fabrication of YIG films are: (i) the 

deposition process is at high temperature for better crystallization; (ii) High gas pressure is 

sustained during the deposition process; (iii) in-situ post annealing process with oxygen gas 

guarantees the crystallization process and compensates the oxygen element in the YIG. Based on 

the main concepts, a set of trial fabrication parameters are developed and applied for YIG 

deposition by sputtering techniques. Table 4.2 presents the trial parameters. 

Table 4.2. A set of trial fabrication parameters for sputtering techniques. 

S
p

u
tt

er
in

g
 

Target to substrate 6.8 cm 

Substrate temperature 750 oC 

Ar pressure 10 mTorr 

Ar flow rate 16 sccm 

Sputtering power 75 W 

A
n

n
ea

li
n

g
 O2 pressure 1.12 Torr 

Annealing temperature 800 C 

Annealing time 4 hr 

Cooling rate 1 C/min 

The sputtering deposition used a 2-in. YIG target, 0.5-mm-thick (111) GGG substrates, and 

high-purity argon (99.9997%), and was followed by an in-situ annealing process. The films were 

prepared with the following parameters. (1) The target-to-substrate distance was 6.8 cm. (2) Prior 

to sputtering, the vacuum chamber had a base pressure of 1.0×10-8 Torr. (3) The sputtering was at 

high temperature (800 °C). (4) During the sputtering and deposition process, the argon pressure 

was 10 mTorr and the flow rate was 16 sccm (standard cubic centimeter per minute at 0 °C). (5) 

The annealing is in situ with a temperature of 800 °C and an oxygen pressure of ~ 1 Torr. 
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Figure 4.2. Properties of a 10-nm-thick YIG film with big grains. Graphs (a) and (b) give the SEM and 
AFM surface images, respectively. Graph (c) presents an FMR profile and two fits. Graph (d) gives ΔHpp 
as a function of f. 

Figure 4.2 presents the data for a 10-nm-thick YIG film which was prepared by sputtering 

with the parameters and processes shown in Table 4.2. The images of Figs. 4.2(a) and 4.2(b) 

indicate that the surface has a smooth background surface but contains some big grains in a 

100-400 nm lateral size range and a height above 80 nm. Figure 4.2(c) shows the FMR profile 

taken at 9.47 GHz. Two fitting trial functions are used – Lorentzian and Gaussian functions as 

indicated in the legend. The linewidth is on the same order of magnitude with that in the YIG 

sample made by PLD techniques.10 Besides, the Lorentzian fit is a little better than the Gaussian 

fit, which may indicate long-range homogeneity of the film. Figure 4.2(d) gives the peak-to-peak 

FMR linewidth ΔHpp vs. microwave frequency f response. This response is strongly nonlinear, in 

stark contrast to the linear responses predicted by Eq. (3.45). Such a nonlinear frequency 
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dependence is usually an indication of two-magnon scattering (TMS).37, 73 , 74 , 75 , 76  It is 

conceivable that big grain-associated TMS occurs in the film. The nonlinear frequency 

dependence of the TMS is mainly due to the field dependence of the density of degenerate spin 

waves. 

Though an apparent decent linewidth is acquired at 9.48 GHz, the YIG film is not uniform, 

as indicated by the SEM and AFM images. Similar surfaces have been observed in films made 

by using a wide range of deposition temperatures, as shown in Fig. 4.3. 

 

Figure 4.3. SEM images of nanometer-thick YIG films grown by sputtering and annealed at 750 °C. The 
argon pressure is 10 mTorr and the flow rate is 16 sccm. The deposition temperatures are (a) 550 °C, (b) 
650 °C, and (c) 750 °C. 

The shape of the grains indicates excessive crystallization in the YIG. The failure of getting 

uniform films indicates that the physical process of deposition of sputtering techniques is 

different from PLD techniques. The main attribute of the PLD technique is layer-by-layer 

deposition. Target materials will be ablated by pulsed laser with a slow repetition rate (< 50 Hz) 

and evaporated onto the substrates. With a laser pulse repetition rate of ~ 1 Hz, material 

molecules will diffuse at a high temperature and move uniformly in microseconds before the 

next input pulse. On the contrary, sputtering is a continuous growth method. Under a high 

                                                             
73 R. Arias and D. L. Mills, Phys. Rev. B 60, 7395 (1999). 
74 R. D. McMichael and P. Krivosik, IEEE Trans. Magn. 40, 2 (2004). 
75 K. Lenz, H. Wende, W. Huch, K. Baberschke, K. Nagy, and A. Janossy, Phys. Rev. B 73, 144424 (2006). 
76 S. S. Kalarickal, P. Krivosik, J. Das, K. S. Kim, and C. E. Patton, Phys. Rev. B 77, 054427 (2008). 
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temperature, atoms from the target will diffuse insufficiently. Atoms will pile up in local clusters 

due to this incomplete diffusion and be distributed and crystallized non-uniformly, forming the 

grains with sharp edges. From this analysis, two arguments can be inferred: (1) extension of 

deposition time will lead to the development of the excessive crystallized clusters into granular 

films, and (2) the grains may be eliminated if the clustering effect is suppressed so that atoms are 

distributed uniformly. This can be achieved by sputtering at lower temperatures to suppress the 

diffusion of attached atoms. 

 

Figure 4.4. SEM images of YIG thin films grown using different deposition times. The fabrication 
parameters are the same as those in Table 4.2. The thicknesses are 8.92 nm, 107 nm, and 215 nm for the 
films using 5 min., 1 hr, and 2 hr deposition times, respectively. 

Figure 4.4 presents the surface morphology of YIG thin films grown using different 

deposition times, as indicated. The images are measured by scanning electron microscopy (SEM). 

One can see clearly that as the deposition time is extended, the thin film develops into a granular 

film and some clusters are piled up forming localized excessive crystalized grains. This result 

proves the first argument. Besides, the thicknesses of the films deposited with 5 min, 1 hr, and 2 

hr periods are 8.92 nm, 107 nm, ad 215 nm, respectively, showing an unchanged deposition rate 

for time periods no longer than 2 hr. 
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Figure 4.5. The surface images of a 20-nm-thick YIG thin film measured by AFM. The fabrication 
parameters are the same as those in Table. 4.2 except that it was deposited at room temperature. (a) 3D 
image and (b) 2D surface image. 

The second argument is checked by depositing YIG films at room temperature. Figure 4.5 

presents the surface images of a YIG thin film deposited at room temperature. One can see that 

the surface shown in Fig. 4.5(a) is smoother than that shown in Fig. 4.2(b). The surface 

morphology pattern shown in Fig. 4.5(b) is very different from that shown in Fig. 4.2(a), 

indicating that the excessive crystallization is suppressed. This is consistent with the previous 

analysis. However, the surface is still not uniform or smooth. 

 

Figure 4.6. Properties of a 10.2-nm-thick YIG film. Graphs (a), (b), and (c) show the SEM, AFM, and 
XRD data, respectively. Graphs (d)-(f) present FMR properties, with the points showing experimental 
data and the curves showing numerical fits. 
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This problem is solved by decreasing the argon gas flow rate, as shown by the data in Fig. 

4.6. The YIG thin film is deposited at room temperature and the argon flow rate is 4 sccm. The 

other fabrication parameters are the same as those in Table 4.2. Figures 4.6(a) and 4.6(b) give a 

SEM surface image and a 3D AFM surface image, respectively. The data indicate a very smooth 

and uniform surface with a roughness of 0.28 ± 0.03 nm. Figure 4.6(c) presents an XRD 

spectrum, which shows that the YIG film has a (111) orientation. Figure 4.6(d) gives an FMR 

profile measured at 9.48 GHz using an X-band rectangular cavity, while Figs. 4.6(e) and 4.6(f) 

give the FMR field (HFMR) and the peak-to-peak linewidth (ΔHpp), respectively, as a function of 

frequency f measured using a Ku-band rectangular shorted waveguide. In all the graphs, the 

points show the experimental data, and the curves show the fits. In Fig. 4.6(d), the solid and 

dashed curves show the fits to the derivatives of a Lorentzian function and a Gaussian function, 

respectively. In Fig. 4.6(e), the curve shows a fit to the Kittel equation Eq. (3.32b)). The fitting 

yields G  17704 effM and MHz/Oe 80.2 . The line in Fig. 4.6(f) shows a linear fit to Eq. 

(3.45). The fitting yields   4105.03.10  . 

Several points should be mentioned regarding the data shown in Fig. 4.6. (1) The   value 

exactly equals the standard value. (2) The effM4  value falls into the range reported for YIG 

bulk materials which is 1730 – 1780 Oe.34 Later it will be shown that the uniaxial anisotropy of 

such YIG thin films are very small at room temperature so that the effective magnetization is 

very close to the saturation magnetization value. (3) The film has a linewidth comparable to the 

values of PLD YIG films.10 (4) The damping of the film is about 3 times larger than that of the 

PLD film10 but is significantly smaller than that of metallic films of similar thicknesses.58,59 (5) 

The film is homogeneous as indicated by the following two facts: (i) The Lorentzian function fits 

the FMR profile much better than the Gaussian function as shown in Fig. 4.6(d) and (ii) the 
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linear fit in Fig. 4.6(f) yields a small ΔH0 value (< 3 Oe). These results together indicate the high 

quality of the film and thereby demonstrate the feasibility of the sputtering growth of YIG nano 

films. The mechanism of the relation between such surface morphology and the argon gas flow 

rate is still unknown and further study is needed in the future. One of the reasons might be that 

plasma will be distributed more homogeneously with a lower flow rate. Then the distribution of 

kinetic energy of incident particles is spatially uniform. 

4.2 Dependence of YIG film properties on sputtering processes 

In this section, the dependence of YIG thin film properties on some fabrication parameters 

are discussed in details to elaborate the physical process of sputtering techniques. 

 

Figure 4.7. Graphs (a) and (b) give the 4πMeff and ΔHpp values, respectively, as a function of film 
thickness. Graph (c) gives the ΔHpp vs. f responses for three films, as indicated. Graph (d) gives the 
roughness as a function of film thickness. 

Figure 4.7 shows how the film properties vary with the film thickness d, after annealing at 

750 °C. The fabrication parameters are shown in Table. 4.3 which are optimized as discussed in 
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Section 4.1. Figure 4.7(a) gives 4πMeff as a function of d. The 4πMeff values were obtained by 

fitting the HFMR vs. f responses with Eq. (3.32(b)), using |Ȗ|=2.80 MHz/Oe. The dashed lines 

indicate the 4πMS range expected for YIG bulk materials.34 Figure 4.7(b) shows ΔHpp as a 

function of d obtained from FMR measurements at 9.48 GHz. In Fig. 4.7(c), the symbols present 

the ΔHpp vs. f responses for three films while the lines show fits to Eq. (3.45). The fitting-yielded 

α values are also indicated in the graph. Figure 4.7(d) presents the surface roughness as a 

function of d. The dashed lines indicate the roughness range of the GGG substrate, which is 0.14 

± 0.04 nm. 

Table 4.3. Optimized fabrication parameters for sputtering YIG films at room temperature and smaller Ar 
flow rates. 

S
p
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g
 

Target to substrate 6.8 cm 

Substrate temperature 23 oC 

Ar pressure 10 mTorr 

Ar flow rate 4 sccm 

Sputtering power 75 W 

A
n

n
ea

li
n

g
 O2 pressure 1.12 Torr 

Annealing temperature 750 C 

Annealing time 4 hr 

Cooling rate 1 C/min 

Four important results are evident from the data in Fig. 4.7. (1) For films in the 7 – 26 nm 

thickness range, the 4πMS values are close to those expected for YIG bulk materials, the ΔHpp 

values are all smaller than 10 Oe, and the roughness values are in the 0.1 – 0.4 nm range and are 

close to the roughness of the GGG substrate. These results together indicate that the films in the 

7 – 26 nm range have high quality. (2) The 7 – 26 nm films also show an increase in ΔHpp when 
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the film thickness is reduced, as shown in Fig. 4.7(b). The film surface imperfections can 

enhance ferromagnetic relaxation (such as magnon-phonon scattering, two-magnon scattering, or 

charge transfer relaxation) at the film surface. This surface-associated damping contributes to the 

overall damping of the YIG film and plays stronger roles as d is reduced. This interpretation is 

supported by the increase of α with a decrease in d shown in Fig. 4.7(c). (3) The 3.5-nm-thick 

film shows a much lower 4πMff and a much larger ΔHpp than the 7 – 26 nm films. This might 

indicate that such optimized sputtering and annealing control parameters given above are not 

appropriate to the growth of ultrathin YIG films. (4) The 89-nm-thick and 214-nm-thick films 

show relatively low 4πMeff values, as shown in Fig. 4.7(a). Although not shown, the films also 

show some small pin holes on the surfaces. These results indicate that the above-described 

processes might also be inappropriate for the growth of relatively thick films. Nevertheless, the 

89-nm and 214-nm films both show a ΔHpp value of less than 7 Oe. In addition, if one compares 

the data presented by squares in Fig. 4.7(c) to the data shown in Fig. 4.6(f), one can see that the 

film annealed at 800 °C shows not only a smaller ΔH0 but also a smaller α than the film annealed 

at 750 °C. This indicates that annealing at 800 °C is more preferable than annealing at 750 °C. 
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Figure 4.8. Thickness vs. deposition temperature for a deposition time period of 5 min. All other 
parameters are the same as those in Table 4.3. 
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Figure 4.8 presents the thickness vs. deposition temperature data. As the deposition 

temperature increases, the film thickness decreases. For higher temperatures, the kinetic energy 

of gas atoms and ions in the plasma is higher, which results in more frequent collisions with 

target atoms and deters the deposition process. 

Table 4.4. Fabrication parameters for sputtering YIG films with varied argon gas pressures. 
S

p
u

tt
er

in
g

 

Target to substrate 6.8 cm 

Substrate temperature 23 oC 

Ar pressure 10 - 40 mTorr 

Ar flow 4 sccm 

Sputtering power 75 W 

Sputtering time 30 min 

A
n

n
ea

li
n

g
 O2 pressure 1.12 Torr 

Annealing temperature 750 C 

Annealing time 4 hr 

Cooling rate 1 C/min 

Another fabrication parameter discussed is the argon pressure during the deposition. Table 

4.4 shows the fabrication parameters. The optimized annealing temperature 800 °C is used. All 

parameters including the sputtering time are fixed except for the argon pressure. Table 4.5 

presents the data of five YIG thin films prepared at different argon pressures. 

Table 4.5. Effects of the Ar pressure in sputtering on the properties of YIG thin films. 

Ar 
pressure 
(mTorr) 

Film 
thickness 

(nm) 

Surface 
roughness 

(nm) 

4Ms 
(G)  (×10-5) 

10 39.7 0.100.01 1550 20.33.2 
20 23.4 0.090.01 1720 12.50.4 
25 22.3 0.130.05 1770 8.580.21 
30 19.7 0.100.01 1790 28.10.5 
40 19.5 0.230.02 1720 30.72.3 
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Several results are evident from the data in Table 4.5. (1) When the deposition time is the 

same, the film thickness decreases with an increase in the argon pressure. Such a change is 

strong particularly for relatively low argon pressures. For higher argon pressure, collisions 

between target atoms and gas atoms/ions are more frequent, leading to a decrease of the kinetic 

energy of incident particles as well as a slow deposition processes. (2) Except for the thickest 

film, all the films show a very small surface roughness, which is only 0.1 nm. (3) Except for the 

thinnest film, all the films show a saturation induction very close to the value for YIG bulk 

materials. For the thinnest film, as the argon pressure is low, collisions between gas atoms/ions 

and target atoms are less frequent, which may lead to the transfer of excessive kinetic energies of 

incident atoms to the substrates. As analyzed in Section 2.2, when the argon pressure is 

deceased, it makes the kinetic energy of incident particles increase by decreasing collision 

probability. In this situation, the deposition rate is increased. But the quality of the YIG thin film 

may become low because the thin film as well as the surface atoms of the substrate might be 

punched and/or dissociated by incident particles with such excessive energy. A further decrease 

in the argon pressure (~5 mTorr) will lead to etching and dissociation phenomena with incident 

particles of a kinetic energy higher than the critical one. Materials of the target can barely be 

deposited. (4) The Gilbert damping constant vs. argon pressure response shows an overall dip 

behavior and indicates the existence of an optimal argon pressure which is about 25 mTorr. This 

agrees with the discussed observations. The film obtained at the lowest Ar pressure has a 

saturation induction largely different from the bulk value. The film obtained at the highest Ar 

pressure has a relatively large surface roughness. Besides, the films obtained at mediate argon 

pressures have a saturation induction much closer to the bulk value and are also smoother. (5) 

The films deposited at 20, 25, 30, and 40 mTorr have slightly different thicknesses but very 
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different  values. This indicates that the argon pressure-caused thickness change is not the 

dominant reason for the  change shown in Table 4.5. Rather, it is the change of the film 

microstructure properties with the argon pressure that is responsible for the  change. These 

results show the critical role of the argon pressure in the sputtering growth of YIG thin films. 

4.3 High-quality YIG nano films developed by sputtering techniques 

This section reports on the results of sputtering growth of high-quality YIG films with a 

damping substantially smaller than that in previously sputtered films. 

Table 4.6. The optimized fabrication parameters for the 22.3-nm-thick YIG film. 

S
p

u
tt

er
in

g
 

Target to substrate 6.8 cm 

Substrate temperature 23 oC 

Ar pressure 25 mTorr 

Ar flow 4 sccm 

Sputtering power 75 W 

Sputtering time 30 min 

A
n

n
ea

li
n

g
 O2 pressure 1.12 Torr 

Annealing temperature 800 C 

Annealing time 4 hr 

Cooling rate 1 C/min 

Table 4.6 gives the fabrication parameters optimized through the work described in Sections 

4.1 and 4.2. As discussed previously, room temperature deposition, a smaller argon flow rate, a 

moderate argon pressure, and high annealing temperature are critical for high-quality YIG film 

development, all reflected in Table 4.6. 
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Figure 4.9. Properties of the 22.3-nm-thick YIG film fabricated by sputtering. (a) shows an XRD 
spectrum, and (b) shows the same spectrum in an expanded angle scale. (c) presents an AFM surface 
image. (d) gives a hysteresis loop measured with an in-plane magnetic field by a superconducting 
quantum interference device (SQUID). 

Figure 4.9 presents the XRD, AFM, and SQUID data of a YIG film prepared at an argon 

pressure of 25 mTorr and other control parameters listed in Table 4.6. The film has a thickness of 

22.3 nm, which was determined via the XRR analysis. Figure 4.9(a) shows an XRD spectrum of 

the film, while Fig. 4.9(b) shows the same spectrum in an expanded angle scale. The data 

confirm the existence of the YIG phase in the sample and also indicate the (111) orientation of 

the film. The data show no evidences for the existence of any additional phases. Figure 4.9(c) 

gives an AFM surface image of the film, which indicates that the film surface is uniform and 

smooth. Additional AFM data indicate that the film has an rms surface roughness of 0.13  0.05 

nm. Figure 4.9(d) shows the SQUID data measured with a magnetic field applied in the film 

plane. The data indicate a very small coercivity, which is 0.42 Oe. The data also indicate 4Meff 

= 1795  18 G, which is only 2.5% larger than the value for bulk YIG crystals (1750 G). The 

above results together clearly indicate that the film has high quality and may thereby show a low 

damping constant. The damping properties of the film are presented below. 
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Figure 4.10. FMR data obtained with the same YIG film cited in Fig. 4.9. The left and right columns 
show the FMR data measured with a static magnetic field applied perpendicular to and in the plane of the 
YIG film, respectively. 

Figure 4.10 presents the FMR data obtained with the same film discussed above. The graphs 

on the left show the FMR data obtained with an out-of-plane magnetic field. In Fig. 4.10(a-i), the 

circles give an FMR profile measured at 16.5 GHz, while the curve shows a fit to the derivative 

of a Lorentzian trial function. The fitting yielded Hpp = 7.40  0.01 Oe, as indicated. The fitting 

also yielded the FMR field (HFMR), although it is not indicated in the graph. Similar fitting was 

carried out to other FMR profiles, and such fitting yielded all the HFMR and Hpp data presented 

in this section. In Fig. 4.10(a-ii), the dots present the FMR fields at different frequencies f, while 

the line shows a fit to Eq. 3.32(a). One can see that the fitting is almost perfect. The fitting gave 

|| = 2.83  0.01 MHz/Oe and 4Meff = 1766  16 G, whose rationalizations are provided below. 
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Figure 4.10(a-iii) presents Hpp as a function of f. The dots show the data, while the line shows a 

linear fit to Eq. 3.45. The fitting gave α = (8.58  0.21)×10-5 and H0 = 6.80  0.01 Oe. 

The above-described FMR study gave three important parameters of the YIG film: ||, 

4Meff, and α. To confirm these parameters, FMR measurements were also carried out for the 

field-in-plane configuration. The main data are presented in the right column of Fig. 4.10, in the 

exactly same format as in the left column. The curve in Fig. 4.10(b-ii) is a fit to Eq. (3.32(b)). 

One sees an almost perfect fitting, as in Fig. 4.10(a-ii). The fitting gave || = 2.817  0.001 

MHz/Oe and 4Meff = 1775  8 G. These values agree very well with those obtained for the 

out-of-plane configuration, with the differences less than 1%. The line in Fig. 4.10(b-iii) is a 

linear fit to Eq. 3.45. The fitting yielded α = (8.74  0.33)×10-5 and H0 = 6.35  0.02 Oe. This α 

value is very close to and thereby confirms the damping constant obtained from the out-of-plane 

FMR study. Note that the fits shown in Fig. 4.10(a-ii), (a-iii), (b-ii), and (b-iii) are all least 

squares fits. 

Three important points should be emphasized. First, α = (8.580.21)×10-5, which was 

obtained for the out-of-plane configuration, is about 10 times smaller than the damping constant 

of previously sputtered YIG films11 and is about 3 times smaller than that of PLD YIG films 

reported previously.10,77 Second, the α value for the in-plane configuration is slightly larger, 

which is most likely due to two-magnon scattering (TMS). The difference, however, is very 

small (less than 2%), which indicates that the TMS process in the film is very weak at least at 

room temperature. Note that the TMS process is allowed in a magnetic film when it is 

magnetized with an in-plane magnetic field but is prohibited when the magnetic field is 

                                                             
77 O. d’Allivy Kelly, A. Anane, R. Bernard, J. Ben Youssef, C. Hahn, A H. Molpceres, C. Carrétéro, E. Jacquet, C. 

Deranlot, P. Bortolotti, R. Lebourgeois, J. -C. Mage, G. de Loubens, O. Klein, V. Cros, and A. Fert, Appl. Phys. 
Lett. 103, 082408 (2013). 
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out-of-plane.74,78 Finally, || = 2.830.01 MHz/Oe is very close to the standard value; and 

4Meff=176616 G agrees almost perfectly with the value for YIG bulk materials. In brief, it is 

evident from the data in Figs. 4.9 and 4.10 that the film has high quality in terms of both 

structural, static magnetic, and high-frequency magnetic properties. Note that, although the 

in-plane FMR yielded 4Meff value is close to the out-of-plane yielded value, the 4MS value 

obtained with the SQUID measurements is a little large (about 1.6%). Possible reasons for this 

are the error of the film thickness or surface area measurement and the existence of a small 

uniaxial anisotropy field. 

4.4 Summary 

The work in this chapter demonstrates the sputtering growth of high-quality YIG nano films 

and reveals their FMR properties, including details on the optimization of the fabrication process. 

The films in the 7–26 nm thickness range showed a surface roughness of 0.1–0.4 nm, a standard 

gyromagnetic ratio, a saturation magnetization very close to the YIG bulk value, and an FMR 

linewidth comparable to values obtained in PLD films. Dependence of YIG film properties on 

sputtering processes is discussed from several aspects. The best film, which was deposited at the 

optimal argon pressure and is 22.3 nm thick, showed a surface roughness of 0.13  0.05 nm, || = 

2.83  0.01 MHz/Oe, 4Meff = 1766  16 G, and α = (8.58  0.21)×10-5. The demonstration in 

this chapter is of great technological significance as sputtering is a widely applied PVD 

technique. It should also be emphasized that the low-damping nm-thick YIG films demonstrated 

make possible nano-patterning of YIG films and development of YIG-based devices. 

                                                             

78 P. Krivosik, N. Mo, S. Kalarickal, and C. E. Patton, J. Appl. Phys. 101, 083901 (2007). 
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CHAPTER 5 

ROLE OF DAMPING IN SPIN SEEBECK EFFECT 

IN YTTRIUM IRON GARENT THIN FILIMS 

 

 

 

5.1 Introduction – the spin Seebeck effect and theoretical models 

The spin Seebeck effect (SSE) refers to the generation of a spin voltage in a ferromagnet 

(FM) due to a temperature gradient. This spin voltage can produce a pure spin current into a 

normal metal (NM) that is in contact with the ferromagnet. The SSE was first discovered in 

ferromagnetic metals,14,15,16 but not long after was also observed in magnetic insulators2,17-21 and 

semiconductors.22,23 The experiments usually utilize a FM/NM bi-layered hetero-structure with 

the magnetization in the FM layer saturated in-plane and often take a longitudinal configuration 

in which a temperature gradient is established across the thickness of the FM/NM structure. 

Various theoretical models have been proposed to interpret the SSE,2,3,16,17,23-27 although a 

complete understanding of the effect has not been realized yet. Among the early models, the one 

attracting slightly more interest is the so-called magnon-driven SSE model proposed in Ref. [3]. 

More recent models include those proposed in Refs. [24-27]. Although proposed separately, 

these recent models all involve magnon flows across the FM thickness and emphasize the bulk 

origin of the SSE. The bulk origin has been supported by SSE experiments using FM films of 

different thicknesses.25,27 The four SSE models mentioned above all engage magnetic damping in 

the FM film as a critical ingredient of the SSE in very different ways, as summarized below. 
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The magnon-driven SSE model was developed on the basis of the stochastic Gilbert 

equation.3 The essence of this model is that the magnon subsystem in an FM can become 

thermalized internally before it equilibrates with the phonon subsystem. As a result, the spatial 

distribution of the magnon temperature Tm in the FM deviates from that of the phonon 

temperature Tp, although the average of Tm may be the same as that of Tp. This temperature 

distribution difference can further result in a difference between Tm in the FM and the electron 

temperature Te in a neighboring NM at the interface and a corresponding pure spin current in the 

NM. This model yields an analytical expression for the spin current pumped from the FM to the 

NM. The expression involves the damping constant  in a rather complicated manner, but the 

general trend is that the spin current increases monotonically as  decreases. 

In the study of Hoffman et al.24, on the other hand, the origin of the SSE was analyzed using 

the stochastic Landau-Lifshitz theory. According to the model in Ref. [24], the magnons in the 

FM film establish a non-equilibrium steady state by coupling with phonons in the FM via bulk 

damping and with electrons in the neighboring NM via interfacial spin pumping. The analysis 

identified several characteristic length scales that governed the SSE strength, and for all of those 

scales the SSE coefficient depends on , though in different manners. In the case of a Y3Fe5O12 

(YIG) film thinner than 100 nm, the model suggests that the SSE coefficient is proportional to , 

which is opposite to the above-mentioned expectation of the model in Ref. [3]. 

In contrast to Xiao et al.3 and Hoffman et al.24, in the study of Rezende et al.,25 the SSE 

phenomenon was studied through microscopic calculations using the Boltzmann equation of the 

magnons. In the model of Rezende et al.,25 the temperature gradient leads to the generation of the 

magnons in the bulk of the FM, and the magnon spin current into the NM is needed to ensure the 

continuity of the spin flow at the FM/NM interface. Different from the models in Xiao et al.3 and 
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Hoffman et al.24, this model assumes that the magnon and phonon systems in the FM share the 

same temperature as demonstrated in a slightly earlier experimental study.79 As in Ref. [3], in 

Ref. [25] the analytical expression for the spin current also involves  in a very complicated 

manner, but the main point of the model is that the spin current into the NM increases with a 

decrease in the magnon relaxation rate, while the latter increases with an increase in . 

Lastly, in the studies of Ritzmann et al.26 and Kehlberger et al.27, the SSE was examined by 

numerical simulations that took into account the linear dependence of the SSE strength on Tm-Tp 

in the FM near the interface3 and considered the decay of Tm-Tp with a certain characteristic 

length scale from the interface into the bulk of the FM. The simulations show that in the presence 

of a spatial temperature step in the FM, a magnon flow can arise from the hot side to the cold 

side, and the length of the magnon propagation is inversely proportional to . Although no 

explicit analytical expression for the dependence of the spin current or the SSE coefficient on  

was given, the simulation results revealed an increase in the SSE strength with a decrease in . 

Despite the above-discussed theoretical aspects, however, there have been no experiments 

on the actual effects of the damping on the SSE so far, to the best of our knowledge. There was 

an experimental investigation on the SSE that used a large number of diverse garnet ferrites 

exhibiting different damping properties.80 However, those materials did not allow for the study 

of the roles of  in the SSE because they had significantly different static magnetic properties.  

This chapter reports on the role of the damping on the SSE in Y3Fe5O12 (YIG) thin films. 

The experiments used YIG films grown on Gd3Ga5O12 (GGG) substrates by sputtering.11,12 The 

films showed very similar structural and static magnetic properties but rather different  values, 

                                                             
79 M. Agrawal, V. I. Vasyuchka, A. A. Serga, A. D. Krenowska, G. A. Melkov, and B. Hillebrands, Phys. Rev. Lett. 

111, 107204 (2013). 
80 K. Uchida, T. Nonak, T. Kikkawa, Y. Kajiwara, and E. Saitoh, Phys. Rev. B 87, 104412 (2013). 
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resulting from careful control of fabrication conditions. To probe the strength of the SSE, a Pt 

capping layer was grown on each YIG sample. During the SSE measurements, the temperature at 

the Pt side of the sample was kept constant, while that at the GGG side was varied to realize a 

temperature difference (T) across the sample thickness. Upon the presence of T, the SSE takes 

place and produces a pure spin current in the Pt layer. Via the inverse spin Hall effect 

(ISHE),81,82,83 the spin current then produces an electric voltage (V) across one of the lateral 

dimensions of the Pt layer. The SSE-produced voltage V was measured as a function of T. The 

data show that the slope of the V vs. T response increases with a decrease in . This indicates 

that the smaller the damping is, the stronger the SSE is, which is qualitatively consistent with the 

theoretical models in previous works3,25-27. Furthermore, the SSE coefficient versus  response 

shows almost linear behavior, which was not predicted explicitly in previous works3,25-27. The 

experiments also indicate that the SSE strength shows no notable correlations with the enhanced 

damping due to spin pumping at the YIG/Pt interface. This can be understood in the frame of the 

models described by Xiao et al.3 and Kehlberger et al.27. 

5.2 Properties of the YIG and YIG/Pt samples 

The Y3Fe5O12 (YIG) thin films were grown on 0.5-mm-thick, single-crystal, (111)-oriented 

Gd3Ga5O12 (GGG) substrates by RF sputtering at room temperature first and were then annealed 

in-situ at high temperature in oxygen. Among the various sputtering and annealing control 

parameters, the most critical parameters for the control of YIG film quality include the argon 

pressure and the argon flow rate during the sputtering process, the annealing temperature, and the 

                                                             
81 J. E. Hirsch, Phys. Rev. Lett. 83, 1834-1837 (1999). 
82 S. O. Valenzuela and M. Tinkham, Nature 442,176 (2006). 
83 A. Hoffmann, IEEE Trans. Magn. 49, 5172 (2013). 
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annealing time, as discussed in Chapter 4. For the fabrication of the six YIG thin film samples 

considered in the SSE study, these four parameters have been carefully chosen so that the YIG 

samples exhibited very different damping but very similar structural and static magnetic 

properties (except the surface morphology, as discussed below). Table 5.1 lists the corresponding 

parameters used for the fabrication of those six samples. The other control parameters which are 

not listed in the table are very close to those described in Ref. [12]. For given control parameters, 

the YIG films from different deposition runs show very similar quality as long as the GGG 

substrates exhibit the same quality. 

Table 5.1. Major control parameters for YIG thin film fabrication. 

 

The YIG thin films fabricated by sputtering was 10 mm by 10 mm squares. They were then 

cut into smaller pieces. One of those YIG pieces (about 3 mm by 10 mm) was used for the 

deposition of a Pt capping layer, and the resultant YIG/Pt sample was then used for the SSE 

measurements. The other YIG pieces (about 3 mm by 3 mm) were used, directly or after 

deposition of 5 nm Pt, for characterization, which included X-ray diffraction (XRD), X-ray 

rocking curve, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and 

ferromagnetic resonance (FMR) measurements. The Pt capping layers were grown by DC 

sputtering at room temperature with a thickness of about 5 nm. 

Sample # Ar pressure (mTorr) Ar flow rate (sccm) Annealing temperature(oC) Annealing time (hr)

1 20 4 800 4

2 20 4 800 3

3 20 4 800 2

4 20 4 800 1

5 25 4 800 4

6 30 4 800 4
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5.2.1 Crystalline and structural properties 

X-ray diffraction (XRD), X-ray rocking curve, X-ray photoelectron spectroscopy (XPS), 

and atomic force microscopy (AFM) measurements were carried out to characterize the 

crystalline and structural properties of five of the six YIG samples considered in this chapter. 

Sample #2 was damaged during an ultra-sonic cleaning process, but it is fortunate that the static 

magnetic and damping properties of sample #2 had been measured previously and had been 

found to be close to those of sample #1, as shown later in Table 5.3. 

 

Figure 5.1 presents the XRD data for the five samples. Fig. 5.1(a) presents the XRD spectra, 

and Fig. 5.1(b) gives the rocking curves for the YIG (444) peaks shown in (a). Figure 5.1(b) also 

gives the averaged full width at half maximum (FWHM) and corresponding standard deviation 

(ı) of the curves. It is evident from the data in Fig. 5.1 that the YIG peaks all appear at the same 

position (see the vertical dashed lines) and exhibit similar amplitudes and similar linewidths (ı 

<0.004°). These results together clearly indicate that the YIG films in the five samples have 

similar crystalline properties. Note that the appearance of the two GGG (444) peaks in Fig. 5.1(a) 

results from the coexistence of the Kα1 and Kα2 components of the Cu X-ray source. 

 
Figure 5.1. XRD data for five YIG thin film samples. (a) XRD spectra. (b) Rocking curves of the YIG 
(444) peak. The vertical dashed lines indicate the positions of the YIG (444) peaks. 
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Figure 5.2 gives the XPS data for the five samples. Figure 5.2(a) gives the full XPS spectra, 

with all the main peaks identified, and Fig. 5.2(b) presents the spectra in a narrower binding 

energy range to show the XPS peaks for the Fe 2p states. In Fig. 5.2(a), in addition to the 

expected Fe, O, and Y peaks, the Ga peaks are from the GGG substrate, the C peaks result from 

organic compounds and CO2 absorbed on the sample surface, and the N peaks probably come 

from N2 absorbed on the sample surface. No additional peaks are notable in the spectra, 

indicating the pure YIG phase in the films. In Fig. 5.2(b), the two major peaks correspond to the 

Fe 2p1/2 and Fe 2p3/2 states, and the appearance of the satellite peaks in-between the two major 

peaks is a strong evidence for the presence of Fe3+ only in the YIG films (no Fe2+).84,85 

 

                                                             
84 T. Yamashita, P. Hayes, Appl. Surf. Sci. 254, 2441 (2008). 
85 Y. Zhang, J. Xie, L. Deng, L. Bi, IEEE Trans. Magn. 51, 2503604 (2015). 

 
Figure 5.2. XPS data for five YIG thin film samples. (a) Full XPS spectra. (b) XPS profiles in a narrow 
binding energy range showing the peaks for the Fe 2p states. 
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The AFM surface images of the five YIG samples are presented in Fig. 5.3. The first row 

gives the 3D images, while the second row gives the 2D views of the 3D images in the first row. 

The AFM analysis-yielded rms surface roughness values are given in Table 5.2, where the first 

and second rows list the roughness values for the YIG film samples and the YIG/Pt samples, 

respectively. The corresponding errors, which are not provided in the table, are either ± 0.01 nm 

or less. One can see from the AFM images that the YIG films show surface textures, from finer 

to bigger as one goes from the left to right. Despite the difference in the surface morphology, 

however, all the films show very similar roughness values, with the standard deviations of ı = 

0.04 nm for bare YIG films and ı = 0.01 nm for YIG/Pt films. 

Table 5.2. Surface rms roughness (nm) of bare YIG and YIG/Pt film samples. 

 

 

Sample

#1

Sample

#3

Sample

#4

Sample

#5

Sample

#6
Average

Standard 

deviation

YIG 0.51 0.52 0.46 0.54 0.45 0.50 0.04

YIG/Pt 0.14 0.13 0.11 0.14 0.13 0.13 0.01

 
Figure 5.3. AFM surface images of five YIG thin films samples. The first row shows 3D images, while 
the second row shows the 2D views of the images in the first row. 
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5.2.2 Magnetic properties 

The static and dynamical magnetic properties of the bare YIG film and YIG/Pt samples 

were determined through comprehensive ferromagnetic resonance (FMR) measurements and 

subsequent data analyses. Figure 5.4 gives the representative FMR data and the numerical fits. 

From Fig. 5.4(c)-(f), one can see that the |Ȗ|, 4πMeff, and α values obtained for the 

field-in-plane configuration are almost the same as those obtained for the field-out-of-plane 

configuration. What’s more, this is true for both the samples. This consistency clearly shows the 

reliability of the FMR results obtained with either field configuration. Furthermore, the 

consistency of the α values indicates that the contribution of two-magnon scattering to the α 

values is negligible in the sputtered YIG films, as reported previously.12 In the case that 

two-magnon scattering occurs, one would expect that the α values measured with in-plane fields 

are notably larger than those measured with out-of-plane fields.74,78 It should be noted that the 

4πMeff values presented here may include a perpendicular anisotropy field contribution, but this 

contribution, if present, is expected to be small, considering the facts that the YIG films have 

very weak magnetocrystalline anisotropy37,86 and minimal strain-induced anisotropy due to 

almost perfect lattice matching with the GGG substrates and the high-temperature annealing 

process. In addition, none of the previous works on YIG thin films reported the presence of 

notable perpendicular anisotropy in the films.10-12,77,87 

                                                             
86 M. Wu and A. Hoffmann, Recent Advances in Magnetic Insulators – From Spintronics to Microwave 

Applications (Solid State Physics Vol. 64, Academic Press, Burlington, 2013, 432 pages). 
87 C. Tang, M. Aldosary, Z. Jiang, H. Chang, B. Madon, K. Chan, M. Wu, J. E. Garay, and J. Shi, Appl. Phys. Lett. 

108, 102403 (2016). 



79 

 

 

Figure 5.4. FMR properties of bare YIG thin film samples and YIG/Pt bi-layered samples. (a) and (b) 
show FMR profiles for bare YIG thin film sample #5 before and after the growth of a 5-nm-thick Pt 
capping layer, respectively. The symbols show the data, while the curves are fits to a Lorentzian trial 
function. (c) and (d) show the FMR field and linewidth, respectively, as a function of frequency for two 
different magnetic field (H) configurations for bare YIG thin film sample #5. The symbols show the data, 
and the lines show the fits to Eq. (3.32) and Eq. (3.45) for (c) and (d) respectively. (e) and (f) present the 
data in the same format as in (c) and (d) for bare YIG thin film sample #6. (g) presents the FMR linewidth 
data (symbols) and numerical fits (lines) for six bare YIG thin film samples, while (h) presents the data 
and fits for the corresponding YIG films after the growth of a 5-nm-thick Pt capping layer. The error bars 
in (g) and (h) represent the standard error from the Lorentzian fitting function. 
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Note that for both the samples the inhomogeneous line broadening ΔH0 obtained for the 

field-out-of-plane configuration is larger than that for the in-plane configuration. There are two 

reasons for this result. First, inhomogeneous line broadening in materials with weak anisotropy is 

usually more pronounced for the out-of-plane configuration than for the in-plane configuration, 

as discussed previously in Ref. [88]. Second, the samples used in the out-of-plane measurements 

had larger dimensions than those used in the in-plane measurements; and in general the larger the 

sample dimensions are, the more the inhomogeneity contributes to FMR line broadening. 

Figure 5.4(g) presents the peak-to-peak linewidth ΔH vs. f data for six bare YIG film 

samples, as indicated. As in Fig. 5.4(d) and (f), the dots show the ΔH data and the lines show the 

numerical fits with Eq. 3.45. One can see that all the six sets of data can be fitted very well. The 

fitting-yielded damping values, termed as αYIG, are listed in Table 5.3 and are discussed shortly. 

The fitting-yielded ΔH0 value for sample #3 is notably larger than the values for other samples, 

but this difference speaks nothing about the damping, as ΔH0 does not represent loss but results 

from sample inhomogeneity-caused linewidth increase. 

Figure 5.4(h) shows the ΔH vs. f data, in the same format as in Fig. 5.4(g), for the YIG 

samples after the deposition of a 5-nm-thick Pt capping layer. One can see that the growth of a Pt 

capping layer not only enhances the linewidth values but also results in notable increases in the 

slopes. As in Fig. 5.4(g), all the six sets of data in graph (h) can be fitted very well. The 

fitting-yielded damping values, termed as αYIG/Pt, are given in Table 5.3. Note that the data in 

graphs (g) and (h) were all measured with in-plane magnetic fields. 

Table 5.3 summarizes the magnetic properties as well as the dimensions of the six YIG thin 

film samples without Pt capping layers in rows 2-5 and those of the samples after the growth of a 

                                                             
88 L. Lu, Z. Wang, G. Mead, C. Kaiser, Q. Leng, and M. Wu, Appl. Phys. Lett. 105, 012405 (2014). 
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Pt capping layer in rows 6-10. Row 2 gives the thicknesses (d) of the YIG films which were 

determined based on the growth rate and the sputtering time. The YIG growth rate was calibrated 

by thickness measurements using X-ray reflection and spectral ellipsometry techniques.89,90 The 

|γ|, 4πMeff, and αYIG values in rows 3-5 were obtained via numerically fitting the FMR data, as is 

shown in Fig. 5.4(c)-(f). Rows 6, 7, and 8 present the strip length (L), strip width (w), and Pt 

resistance (RPt) data of the YIG/Pt strip samples, which were indeed the same samples used in 

the spin Seebeck effect (SSE) measurements. For the damping data in rows 9 and 10, the FMR 

measurements used smaller samples, which were squares with sides in the 2-4 mm range. 

Table 5.3. Properties of six YIG thin film samples before and after the growth of a 5-nm Pt capping layer. 

 
Sample 

#1 
Sample 

#2 
Sample 

#3 
Sample 

#4 
Sample 

#5 
Sample 

#6 
Average 

Standard 
deviation 

d (nm) 23.4 23.4 23.4 23.4 19.7 22.3 22.6 1.4 

|Ȗ| (MHz/Oe) 2.825 2.824 2.816 2.816 2.817 2.820 2.820 0.004 

4πMeff (G) 1820 1956 1757 1827 1924 1913 1866 70 

αYIG (10-5) 8.5±0.2 8.7±0.5 9.4±0.3 16.5±0.3 45±1 59±2 - - 

L (mm) 9.18 9.60 8.94 9.38 8.94 8.97 9.17 0.27 

w (mm) 3.53 3.29 2.74 3.20 2.64 2.65 - - 

RPtw (Ωm) 1.37 1.11 1.21 1.37 1.24 1.23 1.26 0.10 

αYIG/Pt (10-5) 55.8±0.8 58.4±0.8 35±1 58±1 77±2 99±2 - - 

αsp (10-5) 
(αsp=αYIG/Pt-αYIG) 

47.3 49.7 25.6 41.5 32 40 39.4 8.4 

 

It is evident from Table 5.3 that the six YIG films have very similar thicknesses (standard 

deviation ı = 1.4 nm), almost equal |γ| values (ı = 0.004 MHz/Oe), and comparable 4πMeff 

values (ı = 70 G), but their αYIG values differ by a factor of about 7. Since magnon-electron 

scattering does not occur in insulators, two-magnon scattering is negligible as indicated by the 

FMR data in graphs (d) and (f) in Fig. 5.4, three-magnon scattering is prohibited as the FMR 

                                                             
89 E. Jakubisova-Liskova, S. Visnovsky, H. Chang, and M. Wu, J. Appl. Phys. 117, 17B702 (2015). 
90 E. Jakubisova-Liskova, S. Visnovsky, H. Chang, and M. Wu, Appl. Phys. Lett. 108, 082403 (2016). 
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frequency is relatively high, and four-magnon scattering is expected to be weak due to low 

microwave power (3 dBm) used in the FMR measurements, one can conclude that the damping 

in the YIG films originates mainly from magnon-phonon relaxation. Note that the 

magnon-phonon relaxation in a magnetic material is realized through magnon-phonon scattering 

in which a magnon is annihilated, and some phonons are created and perhaps others 

annihilated.37 Via this scattering, the energy of the magnons dissipates into the lattice of the 

material. The magnon-phonon relaxation is an intrinsic, universal relaxation process, and is 

usually non-trivial in magnetic insulators but over-dominated by magnon-electron scattering in 

ferromagnetic metals. Considering the facts that the six YIG films exhibit very similar structural 

and static magnetic properties but show very different damping, it can be concluded that the 

films constitute a good system for exploring the rold of damping in the SSE. It should be noted 

that the average of the six 4πMeff values given in Table 5.3 is 1866 G, and the corresponding 

standard deviation is 70 G, indicating that the 4πMeff values are comparable. This fact is 

important for the determination of the roles of the damping in the SSE because the SSE strength 

varies with 4πMeff as demonstrated by previous experimental studies.80 

After the growth of a Pt capping layer, however, the damping in the YIG film also contains 

a contribution due to spin pumping from the YIG film to the Pt layer. As a result, the damping 

constant consists of two components, namely, αYIG/Pt = αYIG + sp. αYIG describes the contribution 

from the intrinsic damping in the bulk of the YIG, while αsp describes the interfacial coupling 

between the magnons in the YIG film and the electrons in the Pt layer. The magnon-electron 

coupling at the YIG/Pt interface is realized through the s-d exchange interaction, where “s” 

refers to conduction electrons in the Pt layer and “d” refers to localized electrons in the YIG 
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film. 91  Such s-d exchange interaction may serve as an interface pinning, modify the 

magnetization along thickness direction, and lead to FMR field shift as indicated by Eq. 3.31 and 

Sec. 3.3. However, such FMR field shift is very small (<15 Oe) and is irrelevant with the SSE 

experiment. It is fortunate that these two components, αYIG and αsp, can be separated 

unambiguously, as shown in Table 5.3, and this facilitates the examination of the effects of each 

damping component on the SSE, as discussed later. Note that the magnons in the YIG film are 

also coupled to the phonons in the Pt layer, but the contribution of this coupling to the damping 

is expected to be much weaker than that of the magnon-electron coupling. In addition to αsp, the 

growth of the Pt capping layer might also lead to an enhancement in the surface 

imperfection-associated damping in the YIG film. However, this damping should be much 

smaller than αsp, as is shown by previous experimental studies on the damping in YIG/Cu and 

YIG/Cu/Pt layered samples.56 

Several additional points should be made regarding the data presented in Table 5.3. 

(1) The |Ȗ| values are all close to the standard value (2.8 MHz/Oe), indicating that the YIG 

films are of high quality. 

(2) All the samples had a 4πMeff value larger than the bulk value (1750 G). Possible reasons 

for this deviation include that there might exist weak anisotropy in the films,37,86 and the films 

might be slightly off-stoichiometric.56 The standard deviation of 4πMeff, however, is only 3.8% 

of the bulk value. This indicates the comparability of the 4πMeff values. 

(3) The products of RPtw are comparable. Considering that the samples had similar lengths, 

this means that the Pt layers should have very similar thicknesses. Since the Pt resistivity 

                                                             
91 S. Takahashi, E. Saitoh, and S. Maekawa, J. Phys. Conf. Ser. 200, 062030 (2010). 
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increases sharply with a decrease in the Pt thickness over the 1-10 nm range,92 a small change in 

the thickness would lead to a big change in RPt×w. 

(4) αsp changes from sample to sample, which is likely due to the YIG surface quality (such 

as, the texture)-associated difference in the quality of the YIG/Pt interface. However, the range 

of the αsp variation is significantly narrower than that of αYIG. Also, this variation does not 

significantly influence the comparison of the SSE efficient across different samples, although it 

does affect the absolute amplitudes of the SSE-produced ISHE voltage signals. 

(5) αYIG for sample #1 represents the lowest damping value reported so far for YIG films 

with a thickness of about 20 nm.93 It is also the lowest damping reported ever for any magnetic 

thin films with a thickness in the nanometer range (<100 nm). 

The samples described above constitute a good material system for testing the role of the 

damping on the SSE in YIG thin films. There are two reasons. First, the damping constants in the 

YIG films differ by as large as a factor of 7, as shown by the FMR measurements. Second, 

except the surface morphology the other properties are either very close or comparable for the 

different YIG films, as listed below 

1) The film thicknesses are all close to 22.6 nm, with ı = 1.4 nm. 

2) The surface roughness values are all close to 0.50 nm, with ı = 0.04 nm. 

3) The films were grown on almost identical substrates, all being 0.50 mm thick. 

4) The films have similar crystalline properties, as shown by the XRD data. 

5) The films have Fe3+ ions only (no Fe2+), as shown by the XPS data. 

6) The 4πMeff values are close to each other (ı = 70 G) and is only 3.8% of the bulk value. 

                                                             
92 J. S. Agustsson, U. B. Arnalds, A. S. Ingason, K B. Gylfason, K. Johnsen S. Olafsson, and J. T. Gudmundsson, J. 

Phys. Conf. Ser. 100, 082006 (2008). 
93 B. M. Howe, S. Emori, H. -M. Heon, T. M. Oxholm, J. G. Jones, K. Mahalingam, Y. Zhuang, N. X. Sun, and G. J. 

Brown, IEEE Magn. Lett. 6, 3500504 (2015). 
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7) The |Ȗ| values are almost equal to each other, with ı = 0.004 MHz/Oe, and are all close to 

the standard value. 

It is important to highlight that the damping in the YIG films in this work originates mainly from 

magnon-phonon scattering, which is an intrinsic relaxation process. This is because 

• Magnon-electron scattering does not occur in insulators. 

• Two-magnon scattering is negligible as indicated by comparing the FMR data measured 

with in-plane and out-of-plane fields. 

• Three-magnon scattering is prohibited as the FMR frequency is relatively high. 

• Four-magnon scattering is expected to be weak as the microwave power used in the FMR 

measurements is relatively low (3 dBm). 

It should be noted that the damping discussed above measures the relaxations of the uniform 

mode in the YIG films, while the SSE involves non-uniform spin-wave modes. However, it is 

expected that the damping of spin waves varies between the six YIG films in the same trend as 

the damping value determined by the FMR measurements. This is because the spin-wave 

dispersion is given for a particular film and a particular external magnetic field, while for a given 

dispersion the spin-wave damping generally increases with the damping of the uniform mode.35 

Based on the discussions above, one can conclude that the magnon-phonon scattering in the six 

YIG film samples has different strength. It is likely that this difference results from the 

difference in the microstructure properties of the YIG films. The YIG films show very similar 

XRD and XPS results as well as very comparable surface roughness as discussed above, but the 

surface morphology differs for different films as indicated by the AFM measurements. Also, 

there exists a correlation between the YIG surface texture and the damping constant. It is 

believed that the YIG films with different surface textures exhibit dissimilar granular properties, 
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while the dissimilarity in the surface morphology and grain properties gives rise to a difference 

in the level of magnon-phonon coupling. The fact that the films show different surface 

morphology is because they were prepared under different sputtering and annealing conditions. 

5.3 Spin Seebeck measurements 

Turn now to the SSE experiments on the YIG/Pt samples. Figure 5.5(a) shows a schematic 

diagram of the experimental setup. During the SSE measurement, an external field of about 930 

Oe was applied in-plane and perpendicular to the length of the YIG/Pt strip. The temperature at 

the Pt side of the YIG/Pt sample, TPt, was kept constant, while temperature at the GGG side of 

the sample, TGGG, was varied. This was realized by placing a Peltier device on the Pt side of the 

sample, inserting a thermal couple in-between the Peltier device and the sample to measure TPt, 

 
Figure 5.5. SSE measurements. (a) shows a schematic of the experimental setup. (b)-(d) give the data 
obtained with YIG/Pt sample #1. (b) presents the temperatures on the Pt and GGG sides of the sample, TPt 
and TGGG. (c) presents T (=TGGG-TPt) and the corresponding voltage signal V. The horizontal axes in (b) 
and (c) show sampling points, and 1000 points correspond to a period of 4 minutes. (d) shows the V vs. 
T response plotted using the data in (c). The thin blue line in (d) shows a linear fit. 
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and utilizing a computer to take the feedback from the couple to control the Peltier device. A 

second Peltier device was placed on the GGG side of the sample to vary its temperature, TGGG, 

which was probed by another thermal couple inserted in-between the Peltier device and the GGG 

substrate. When the difference ΔT=TGGG-TPt is non-zero, the SSE occurs in the YIG and 

produces a pure spin current flowing into the Pt. The spin current then gives rise to a measurable 

voltage V across the length of the Pt strip via the ISHE.81-83 Note that the purpose of keeping TPt 

constant is to minimize the change of the average temperature of the YIG and thereby to avoid 

the effects due to the change of the absolute temperature. The other purpose is to minimize the 

change of the possible temperature gradient along the length of the Pt strip during the SSE 

voltage VSSE vs. ΔT (TGGG-TPt) measurements. Such temperature gradients, if present, give rise to 

non-zero VSSE offsets in the VSSE vs. ΔT plots. 

Figures 5.5(b), (c), & (d) give SSE data obtained with YIG/Pt sample #1. Figure 2(b) 

presents the TPt and TGGG data, while Fig. 2(c) presents ΔT (left axis) and the corresponding V 

data (right axis). For the data shown in Fig. 5.5(b) & (c), the horizontal axis is equivalent to the 

time where the sampling period was about 240 ms. During the SSE measurements, the data 

acquisition was suspended whenever TPt deviated away from 15.5 ± 0.1 °C. For this reason, the 

time recorded in the raw data was not continuous, and for better presentation the axis was named 

as “sampling points” where 1000 points correspond to a time period of about 4 minutes. One can 

see that during the measurements TPt was kept constant at 15.5 °C, TGGG was varied over a range 

of about 15-33 °C, and V changed in almost the same manner as ΔT. These results indicate that 

the voltage signal is associated with the temperature gradient in the YIG, rather than the absolute 

temperature of the YIG or the Pt. Note that one can consider that the average temperature in the 

YIG was almost constant just as TPt, based on the fact that the GGG substrate (0.5 mm) is 
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considerably thicker than the YIG film (~ 20 nm). Figure 5.5(d) plots V as a function of ΔT, 

using the data in Fig. 5.4(g). The red coarse line consists of the experimental data points, and the 

blue thin line shows a fit. One can see that the V vs. ΔT response is almost perfectly linear. This 

linear behavior is expected by all the four SSE models described in the introduction.3,24,25,27 

Several additional notes should be made regarding the data shown in Fig. 5.5. First, it 

should be mentioned that reversing the magnetic field direction resulted in a flip in the voltage 

sign, as shown in Fig. 5.6 and discussed below. This is the same as reported previously.17,21 It is 

because the direction of the magnetization in the YIG film dictates the polarization direction of 

the SSE-produced spin current in the Pt layer. Second, the data in Fig. 5.5(d) do not show any 

hysteresis or loop behavior in response to the change of ΔT from 0 °C to about 17 °C first and 

then back to 0 °C. This indicates that the GGG side of the sample reached a quasi-equilibrium 

during the SSE measurements. Finally, the measured SSE voltage might contain a small 

contribution from the anomalous Nernst effect in the Pt layer. Such a contribution is expected to 

be negligible in comparison with SSE signals, as demonstrated by a recent experimental study.94 

 

                                                             
94 B. F. Miao, S. Y. Huang, D. Qu, and C. L. Chien, AIP Adv. 6, 015018 (2016). 

 
Figure 5.6. Effects of the magnetic field direction on the SSE. The left and right graphs show the SSE 
voltage vs. temperature difference data obtained under opposite magnetic fields on an YIG(30 nm)/Pt(2.5 
nm) sample. The green dots show the experimental data, and the purple lines show linear fits. 
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Fig. 5.6 shows the SSE data for two opposite the magnetic field directions. When the 

direction of the magnetic field was reversed, the voltage VSSE flipped its sign. This is consistent 

with the theoretical expectation in which the direction of the magnetization vector in the YIG 

layer dictates the polarization of the SSE-produced spin current in the Pt layer, and the reversal 

of the magnetization direction results in a flip in the spin-current polarization and a 

corresponding change in the sign of VSSE. This effect is demonstrated by the data shown in Fig. 

5.6, where the left and right graphs present the SSE data obtained with opposite external 

magnetic fields. Several results are evident in Fig. 5.6. First, the data can be fitted very well, 

confirming the linear behavior shown by the data in Fig. 5.5 (d). Second, it is very clear that a 

flip in the field direction leads to a flip in the sign of VSSE, as discussed above. Third, in spite of 

the sign change the absolute values of the two slopes perfectly match each other, indicating that 

the reverse of the field direction does not affect the SSE strength, as expected. Note that the 

fitting-yielded slopes for the left and right graphs are 119.08 ± 0.04 nV/K and -119.22 ± 0.10 

nV/K, respectively. Finally, it should be mentioned that the data in Fig. 5.6 were measured after 

the experimental setup was carefully arranged to minimize the VSSE offsets at ΔT = 0. The 

fitting-yielded offsets for the left and right graphs are 6.79 ± 0.38 nV and -25.86 ± 0.80 nV, 

respectively. These offsets are one or two orders of magnitude smaller than those shown in Fig. 

5.5(d). They also differ significantly from each other, and this is because the samples were 

re-positioned and the nano-voltmeter was reconnected between the two measurements. 

5.4 Role of damping on the SSE 

Figure 5.7 presents the key results of this chapter. Fig. 5.7(a) presents the SSE-produced V 

as a function of ΔT for six YIG/Pt samples, as indicated. Figure 5.7(b) presents the linear fits to 

the data in Fig. 5.7 (a). In Fig. 5.7 (b) the y-axis intercepts are all removed for a better 
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presentation. Those intercepts are independent of ΔT and are therefore not associated with the 

SSE. They might result from the conventional Seebeck effect-produced voltage in response to a 

possible temperature gradient along the Pt length and small voltage offsets in the voltmeter. One 

can significantly reduce those voltage intercepts by carefully arranging the experimental setup, 

as is shown in Fig. 5.6 of Sec. 5.3. If one takes D as the sample thickness and L as the distance 

between the two electrodes (see Fig. 5.5(a)) and defines95 
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as the geometry-free SSE coefficient, one can then use the slope of the V vs. ΔT lines in Fig. 

5.7(b) to determine the ξSSE values for different samples and thereby examine how ξSSE varies 

                                                             
95 A. Sola, M. Kuepferling, V. Basso, M. Pasquale, T. Kikkawa, K. Uchida, and E. Saitoh, J. Appl. Phys. 117, 

17C510 (2015). 

 
Figure 5.7. Effects of damping in the SSE. (a) shows the SSE-produced voltage as a function of T 

(=TGGG-TPt) measured on six different YIG/Pt samples. (b) shows the linear fits to the data in (a). (c), (d), 
and (e) give the SSE coefficient, which is defined by Eq. 5.1, as a function of YIG, sp, and YIG+ sp, 
respectively. 

0 3 6 9 12 15
0.0

0.5

1.0

1.5

2.0
#1 #2 #3

#4

#5

#6

0 3 6 9 12 15 18
-0.5

0.0

0.5

1.0

1.5

2.0

 

#1
#2

#3

#4

#5

#6

S
S

E
 v

o
lt

a
g

e
 V

(
V

)

Temperature difference T (C)

S
S

E
 v

o
lt

a
g

e
 V

(
V

)

Temperature difference T (C)

(a) (b)

20 30 40 50
3

4

5

6

7

8

9

 

0 10 20 30 40 50 60
3

4

5

6

7

8

9

 Data

 Linear fit

 
S

S
E

 c
o

e
ff

ic
ie

n
t 
 S

S
E

(n
V

/K
)

Damping YIG (10-5) Damping sp (10-5)

(c) (d)

Damping YIG+SP (10-5)

(e)

40 60 80 100
3

4

5

6

7

8

9

 



91 

 

with the damping by plotting ξSSE as a function of αYIG, αsp, or αYIG + αsp. Such plots are 

presented in Figs. 5.7(c), 5.7(d), and 5.7(e). 

It is evident from the data in Fig. 5.7(c) that ξSSE increases with a decrease in αYIG, 

indicating that the SSE is stronger if the damping is weaker. This result is qualitatively consistent 

with the theoretical models proposed in Refs. [3] and [25] and simulation results presented in 

Refs. [26] and [27]. The underlying physics is that the damping in the YIG films originates 

mainly from magnon-phonon scattering as discussed above; the weaker the magnons are coupled 

to the phonons, the more the magnon temperature Tm deviates from the phonon temperature Tp at 

the YIG/Pt interface, according to the model proposed in Ref. [3]. Note that previous work has 

demonstrated a good agreement between the simulations using this model and the experiments 

using YIG/Pt heterostructures.96 In the terminology described in Refs. [25-27], the underlying 

physics is that the weaker the damping is, the more the magnons propagate from the bulk to the 

interface and contribute to the SSE signal. Further, the data in Fig. 5.7(c) also indicate that the 

ξSSE vs. αYIG response shows quasi-linear behavior for the given damping range, as suggested by 

the red dashed line. Understanding of this quasi-linear response calls for new theoretical studies. 

In a stark contrast, the data in Fig. 5.7(d) do not show any obvious correlations between ξSSE 

and αsp. This can be understood in the frame of the SSE models described in Refs. [3] and [27]. 

Specifically, αsp plays two roles in the process in which the SSE in the YIG produces spin 

currents in the Pt. On one hand, a larger αsp value indicates a more efficient spin transfer at the 

YIG/Pt interface,5 and one should therefore expect larger spin currents in the Pt in samples with 

larger αsp. On the other hand, the spin transfer at the interface at the same time causes a decrease 

in the difference between Tm in the YIG and Te in the Pt near the interface, resulting in a weaker 

                                                             
96 M. Schreier, A. Kamra, M. Weiler, J. Xiao, G. E. W. Bauer, R. Gross, and S. T. B. Goennenwein, Phys. Rev. B 88, 

094410 (2013). 
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SSE. One can see that these two roles are opposite, and as a result ξSSE does not show an explicit 

dependence on αsp. Note that the blue dashed line in Fig. 5.7(d) indicates the average ξSSE. 

Considering that some of the previous theoretical analyses involved the total damping in the 

FM,3,24 in Fig. 5.7(e) ξSSE is plotted as a function of αYIG + αsp. One can see that the overall trend 

is ξSSE increases with a decrease αYIG + αsp. This trend results from the facts that ξSSE clearly 

increases with decreasing αYIG but shows no explicit correlations with αsp, as discussed above. 

5.5 Summary 

The effects of the intrinsic damping in the YIG bulk (αYIG) and the enhanced damping due to 

interfacial spin pumping (αsp) on the SSE in the YIG/Pt bi-layered structures have been studied 

experimentally. The data show that smaller damping αYIG gives stronger SSE. This observation is 

consistent with some existing theoretical models.3,25-27 The SSE coefficient vs. αYIG response is 

almost linear and was not predicted explicitly by previous models. The data also show no explicit 

correlations between the SSE strength and αsp, which can be interpreted using the terminology of 

two existing models.3,27 One can expect similar results in other magnetic insulator/NM 

heterostructures. The results, however, might be different in ferromagnetic metal/NM 

heterostructures, due to the facts that (1) in ferromagnetic metals magnon-electron scattering 

plays critical roles in the intrinsic damping36,97,98 and (2) the spin transfer at a ferromagnetic 

metal/NM interface is much more efficient than that at a magnetic insulator/NM interface.99,100 

 

                                                             
97 J. Kuneš and V. Kamberský, Phys, Rev. B 65, 212411 (2002). 
98 K. Gilmore, Y. U. Idzerda, and M. D. Stiles, Phys. Rev. Lett. 99, 027204 (2007). 
99 R. Urban, G. Woltersdorf, and B Heinrich, Phys. Rev. Lett. 87, 217204 (2011). 
100 Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002). 
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CHAPTER 6 

SPUTTERING GROWTH OF Y3Fe5O12 ON 

PLATINUM LAYERS AND SPIN TRANSFER AT 

Y3Fe5O12/Pt INTERFACES 

 

 

 

6.1 Motivation 

As mentioned previously, recently there is a strong interest in studying Y3Fe5O12 

(YIG)-based spintronics, and this interest is mainly driven by the fact that YIG materials have a 

damping constant lower than any other magnetic materials. In terms of the Gilbert damping, the 

damping constant (α) in YIG materials is found to be α ≈ 3 × 10-5, which is two orders of 

magnitude lower than that in conventional ferromagnetic metals.37 Apart from the low damping 

feature, YIG materials are also electrically insulating, shunting no current when an electric 

current flows in a neighboring normal metal (NM) or topological insulator (TI) layer. 

The majority of the previous studies on YIG spintronics utilized YIG films that were grown 

on single-crystal Gd3Ga5O12 (GGG) substrates first and then capped with either a thin NM 

layer2,7,8,101,102,103,104,105,106 or a thin TI layer107,108. The use of the GGG substrates is crucial in 

                                                             
101 G. L. da Silva, L. H. Vilela-leão, S. M. Rezende, and A. Azevedo, J. Appl. Phys. 111, 07C513 (2012). 
102 P. Pirro, T. Brächer, A. V. Chumak, B. Lägel, C. Dubs, O. Surzhenko, P. Görnert, B. Leven, and B. Hillebrands, 

Appl. Phys. Lett. 104, 012402 (2014). 
103 J. Flipse, F. K. Dejene, D. Wagenaar, G. E. W. Bauer, J. Ben Youssef, and B. J. van Wees, Phys. Rev. Lett. 113, 

027601 (2014). 
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terms of realizing high-quality YIG films, because GGG not only has a crystalline structure 

almost perfectly matching that of YIG but is also extremely stable at high temperature in oxygen 

that is the condition needed for YIG crystallization. The growth of the NM or TI capping layer 

on the top of the YIG, on the other hand, is fairly easy to achieve and usually does not alter the 

properties of the YIG layer except enhancing the damping via spin pumping. 

This chapter discusses the feasibility of growing high-quality YIG thin films on Pt thin films. 

It is technically challenging to grow high-quality YIG films on metallic films, and possible issues 

include the oxidation and peeling-off of the metallic layer, interfacial diffusion, and formation of 

pin-holes in the films during the growth or post-annealing process. In this work a unique 

sputtering process was developed that successfully resolved these issues. 

The feasibility demonstrated in this work is of great significance because it enables the 

fabrication of sandwich-like NM/YIG/NM or NM/YIG/TI structures. Such tri-layered structures 

will facilitate various interesting fundamental studies as well as device developments where, for 

example, one can use the top NM or TI layer as a writing layer to induce precession dynamics, 

domain wall motion, or even magnetization reversal in the middle YIG layer and use the bottom 

NM layer as a reading layer to probe the magnetization status in the YIG layer. In fact, in 2016 

Pt/YIG/Pt sandwich structures have been used, independently by Wu et al.109 and Li et al.110, to 

                                                                                                                                                                                                    
104 M. Collet, X. de Milly, O. d’Allivy Kelly, V. V. Naletov, R. Bernard, P. Bortolotti, J. Ben Youssef, V. E. Demidov, 

S. O. Demokritov, J. L. Prieto, M. Muñoz, V. Cros, A. Anane, G. de Loubens, and O. Klein, Nat. Commun. 7, 
10377 (2016). 

105 M. B. Jungfleisch, W. Zhang, J. Sklenar, J. Ding, W. Jiang, H. Chang, F. Y. Fradin, J. E. Pearson, J. B. Ketterson, 
V. Novosad, M. Wu, and A. Hoffmann, Phys. Rev. Lett. 116, 057601 (2016). 

106 K. Ganzhorn, S. Klingler, T. Wimmer, S. Geprägs, R. Gross, H. Huebl, and S. T. B. Goennenwein, Appl. Phys. 
Lett. 109, 022405 (2016). 

107 Y. Fan, P. Upadhyaya, X. Kou, M. Lang, S. Takei, Z. Wang, J. Tang, L. He, L. -T. Chang, M. Montazeri, G. Yu, 
W. Jiang, T. Nie, R. N. Schwartz, Y. Tserkovnyak, and K. L. Wang, Nat. Materials, 13, 699 (2014). 

108 Z. Jiang, C. -Z. Chang, M. R. Masir, C. Tang, Y. Xu, J. S. Moodera, A. H. MacDonald, and J. Shi, Nat. Commun. 
7, 11458 (2016). 

109 H. Wu, C. H. Wan, X. Zhang, Z. H. Yuan, Q. T. Zhang, J. Y. Qin, H. X. Wei, X. F. Han, and S. Zhang, Phys. Rev. 
B 93, 060403 (2016). 
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demonstrate for the first time magnon-mediated electric current drag, a phenomenon predicted 

by Zhang et al. in 2012.111  However, despite the intriguing physics which those works 

demonstrated, the YIG layers in the structures exhibited relatively low quality. Specifically, in 

the work by Li et al. the YIG layers had a relatively low resistivity and underwent current 

leakage at room temperature (RT) 110, and in the work by Wu et al. the YIG layers showed a large 

peak-to-peak ferromagnetic resonance (FMR) linewidth (ΔH), about 358 Oe at 9 GHz.109 

6.2 Samples fabrication and characterization 

This section presents the use of an optimized sputtering process to grow YIG/Pt bi-layers on 

GGG substrates that show high quality in terms of the FMR linewidth, damping, and electric 

resistivity in the top YIG layer. Control experiments are also discussed.  

6.2.1 High-quality YIG/Pt/GGG thin film samples by optimized development 

process 

The YIG(58 nm)/Pt(12 nm) sample was prepared using the optimized sputtering and 

annealing parameters listed in Table 6.1. The films were grown on 0.5-mm-thick, (111)-oriented, 

single-crystal GGG substrates. In this structure, the YIG layer showed ΔH= 8 - 9 Oe over 13-18 

GHz, which is considerably smaller than the ΔH value cited above,109 and a damping constant 

less than 4.7 × 10-4, which is comparable to the α value in YIG films grown on GGG substrates 

by pulsed laser deposition (PLD).10,77,93,112 

                                                                                                                                                                                                    
110 J. Li, Y. Xu, M. Aldosary, C. Tang, Z. Lin, S. Zhang, R. Lake, and J. Shi, Nat. Commun. 7, 10858 (2016). 
111 S. S. -L. Zhang and S. Zhang, Phys. Rev. Lett. 109, 096603 (2012). 
112 M. C. Onbasli, A. Kehlberger, D. H. Kim, G. Jakob, M. Kläui, A. V. Chumak, B. Hillebrands, and C. A. Ross, 

APL Mater. 2, 106102 (2014). 
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There are three major procedures: (i) Pt deposition by DC sputtering, (ii) YIG deposition by 

RF sputtering at RT, and (iii) post-annealing at high temperatures. For the Pt deposition, the 

GGG substrate temperature plays a rather critical role. The Pt layers deposited at RT exhibit 

smooth surfaces but encompass large stress, and stress releasing during the later annealing 

process often produces bumps and spikes on the surface of the top YIG layer. On the other hand, 

Table 6.1. Main steps and major control parameters for the fabrication of the YIG(58 nm)/Pt(12 
nm)/GGG(0.5 mm) sample. 

Steps 
Major control 

parameters 

1st Pt 

deposition  

Ar pressure 3 

mTorr 

Ar flow 3 sccm 

Substrate 

temperature 

400 °C 

Sputtering power 

(DC) 

60 W 

Sputtering time 25 s 

2nd Pt 

deposition 

Ar pressure 3 

mTorr 

Ar flow 3 sccm 

Substrate 

temperature 

25 °C 

Sputtering power 

(DC) 

60 W 

Sputtering time 47 s 

YIG 

deposition 

Ar pressure 20 

mTorr 

Ar flow 4 sccm 

Substrate 

temperature 

25 °C 

Sputtering power 

(RF) 

75 W 

Sputtering time 60 min 

1st 

annealing 

O2 pressure 1.1 

Torr 

Annealing 

temperature 

650 °C 

Annealing time 60 min 

2nd 

annealing 

O2 pressure 1.1 

Torr 

Annealing 

temperature 

700 °C 

Annealing time 30 min 
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deposition at higher temperatures can yield Pt films with much less stress, but such films are 

usually granular and exhibit very rough surfaces that affect the subsequent YIG deposition and 

prevent the realization of high-quality YIG/Pt interfaces. For this reason, a two-step Pt growth 

process is taken, in which one deposits a thin Pt layer at 400 °C first and then deposits further by 

RT sputtering. The first step serves to grow a thin Pt layer with relatively low stress and strong 

adhesion to the substrate, while the second ensures a relatively smooth surface needed by the 

subsequent YIG deposition. The Pt growth is followed by the deposition of an amorphous YIG 

layer by RT sputtering and then two distinct annealing steps. The first annealing is done at a 

relatively low temperature (650 ºC) for a relatively long time (60 min), mainly serving to release 

the stress in the structure. The second is carried out at a higher temperature (700 ºC) required for 

YIG crystallization for a relatively short time period (30 min) that is just sufficiently long for 

YIG crystallization. The other parameters not listed are the same as those described in Ref. [12]. 

Figures 6.1 gives representative data that show the structural and morphologic properties of 

the YIG(58 nm)/Pt(12 nm)/GGG(0.5 mm) sample. Figures 6.1(a) and 6.1(b) present two 

high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) 

images of the sample cross-section using different scales, as indicated. The STEM measurements 

used an FEI Titan G2 60–300 S/TEM system equipped with a Schottky X-FEG gun and operated 

at 200 kV. 



98 

 

 

Figures 6.1(c) and 6.1(d) show an atomic force microscopy (AFM) surface image and an 

X-ray diffraction (XRD) spectrum of the sample, respectively. The STEM images in Figs. 6.1(a) 

and 6.1(b) clearly indicate that the Pt layer manifests itself as a film with a smooth bottom 

surface and a rough top surface. The further analysis indicates that the Pt grains have an average 

lateral size of about 27 nm. In spite of the polycrystalline nature of the Pt layer and the rough 

Pt/YIG interface, however, the YIG layer is crystallized and exhibits a (111) orientation, as 

shown in Figs. 6.1(b) and 6.1(d), and the top surface of the YIG layer is very smooth, as shown 

in Figs. 6.1(a) and 6.1(c). Several notes should be made. First, prior to the annealing, the YIG 

film is amorphous as it is deposited at RT. The above results indicate that during the annealing 

the YIG film is well self-crystallized even though the bottom Pt layer is polycrystalline. This is 

similar with the previous work on Bi-doped YIG films, where amorphous films coated on glass 

 

 
Figure. 6.1. Structural and morphologic properties of YIG(58 nm)/Pt(12 nm)/GGG(0.5 mm). (a) 
HAADF-STEM cross-section image. (b) HAADF-STEM cross-section image with a scale 10 times 
bigger than that in (a). (c) AFM surface image. (d) XRD spectrum with a 2ș range from 50 to 52 degrees. 
No significant peak is shown outside of this angle range. 
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substrates become crystalline with a specific crystal orientation after the annealing.113 the 

formation of the (111) texture is probably because the YIG lattice has a face-center-cubic 

structure in which the (111) plane is the most closely packed, and the (111) film has the lowest 

surface energy. Second, the analysis of the AFM data indicates that the YIG film surface has a 

rms roughness of about 0.15 ± 0.05 nm. Third, the two-step Pt deposition process and the two 

annealing steps described above played important roles in the realization of the smooth YIG 

surface, and the latter is critical for achieving a high-quality interface if an additional NM or TI 

layer is grown on the top of the YIG layer. The necessity of the two-step Pt deposition as well as 

annealing processes are discussed along with control experiments in the next subsection. 

 

Figure 6.2 presents the cross-section compositional maps measured with energy-dispersive 

X-ray spectroscopy (EDX). Except the one for Fe, the EDX maps all indicate very clear 

boundaries between the layers, suggesting very weak interfacial diffusion. In particular, the maps 

indicate that Pt, Ga, and Gd are all absent in the YIG layer, which is important for the realization 

of a high-quality YIG layer. Surprisingly, Fe is clearly present at the GGG/Pt interface, possibly 

                                                             
113 A. Kirihara, K. Uchida, Y. Kajiwara, M. Ishiba, Y. Nakamura, T. Manako, E. Saitoh, and S. Yorozu, Nature Mater. 

11, 686 – 689 (2012). 

 
Figure 6.2. HAADF-STEM image (top-left) and corresponding EDX compositional maps. The composite 
intensity (atomic %) for individual-element maps has been rescaled for visibility. 
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due to the diffusion of Fe from the YIG layer through the Pt layer during the annealing. It is 

fortunate that the presence of Fe at the GGG/Pt interface does not affect the spin transfer across 

the Pt/YIG interface, although it may lead to Fe deficiency in the YIG film and prevent the 

realization of a YIG film with perfect quality. It will not play roles in the study of spin effects in 

Pt/YIG/NM or Pt/YIG/TI, if such tri-layered structures are fabricated. In addition to the EDX 

maps, EDX line scans across the 5 nm depth of the YIG film were also obtained. The data, 

presented in Fig. 6.3, indicate an atomic Y/Fe ratio of 3/5, which is the same as expected. The 

EDX results together with the XRD results shown in Fig. 6.1(d) confirm the composition of the 

YIG film and the absence of other oxide phases in the sample. 

 

Figure 6.3. EDX data of the YIG/Pt/GGG sample which were measured across the randomly sampled 5 
nm depth of the YIG layer. The horizontal axis shows the depth of the detection with 0 marking the top 
surface of the YIG layer. The vertical axis indicates atomic percentages. 

Turn now to the magnetic properties of the YIG layer. Figure 6.4 presents the magnetic 

hysteresis responses measured by a vibrating sample magnetometer (VSM) using different fields, 

as indicated. The analysis of the data in Fig. 6.4(a) yields a coercivity of Hc ≈ 20 Oe and a 

saturation induction of 4Ms1.37 kG. The analysis of the data in Fig. 6.4(b) indicates 
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4Ms1.575 kG and a saturation field of about 1.518 kG. These values are compared with the 

corresponding values from the FMR and spin pumping measurements shortly. 

 

Figure 6.5 presents FMR data measured with shorted X-band and Ku-band waveguide. 

Figures. 6.5(a) and (b) give the derivatives of the FMR power absorption for in-plane and 

out-of-plane fields, respectively. The circles show the data, while the red curves show the 

Lorentzian fits. The Lorentzian fitting-yielded FMR field (HFMR) and ΔH data are presented in 

Figs. 6.5(c)-(f). In Figs. 6.5(c) and (d), the symbols show HFMR as a function of frequency (f), 

while the lines show the fits to the Kittel equations Eqs. 3.32 (b) & (a) for the field-in-plane and 

field-out-of-plane configurations, respectively. The || and 4Meff values indicated in Figs. 6.5(c) 

and (d) were obtained from the fitting. One can see that the two || values are very close to each 

other, and they are also both close to the standard value (2.8 MHz/Oe). 

 

 
Figure 6.4. Static magnetic properties. (a) and (b) show the hysteresis loops measured by a vibrating 
sample magnetometer using different fields, as indicated. The sample size is 5 mm by 4 mm. The dashed 
lines in (b) indicates how the saturation field is determined. 
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In Figs. 6.5(e) and 6.5(f), the symbols show H as a function of f, and the lines show fits to 

Eq. (3.45). The fitting-produced  and H0 values are also given in Figs. 6.5(e) and 6.5(f). The 

data indicate three important results. First, the linewidth values are slightly larger than those of 

the films grown on GGG substrates10,12,77,93,112 but are substantially smaller than the value 

 

 
Figure 6.5. FMR properties. (a) and (b) present the FMR profiles measured with in-plane and 
out-of-plane fields, respectively. The circles show the data and the curves show the Lorentzian fits. (c) 
and (d) plot the Lorentzian fitting-yielded FMR field as a function of the frequency for two different field 
configurations, as indicated. (e) and (f) present the fitting-yielded FMR linewidth as a function of the 
frequency for different fields, as indicated. In (c)-(f), the symbols show the data, while the lines show the 
fits. 
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reported for the YIG films grown on Pt (about 358 Oe at 9 GHz).109 Second, the ΔH vs. f 

response in Fig. 6.5(e) show linear behavior over the entire frequency range, indicating that the 

two-magnon scattering is weak if it presents in the YIG film.74,75 Third, the α value for the 

field-in-plane configuration is notably larger than that for the field-out-of-plane configuration. 

This difference is mainly from the difference in spin pumping for the two field configurations. 

Previous theoretical work has showed that in ferromagnet/ non-magnetic metal bi-layers spin 

pumping-produced damping exhibits an anisotropic nature, being larger for in-plane fields than 

for out-of-plane fields.114 Finally, considering that the damping constant of (4.69  0.03)10-4 

given in Fig. 6.5(f) contains a contribution from spin pumping, one can conclude that the actual 

damping of the YIG film should be smaller than (4.69  0.03)10-4 and is therefore comparable 

to that of the YIG films grown on GGG substrates by PLD. The low  values reported previously 

for the PLD films include 2.310-4,10,77 2.210-4,112 and 1.810-4.93 

6.2.2 Discussion of the two-step Pt deposition and two-step annealing processes 

In order to elaborate the necessity of the two-step Pt deposition process and the physics 

behind it, two control experiments were conducted and the results are shown as follows. We 

found that a Pt layer grown at 400 oC is a granular film, which will result in the YIG film 

deposited on the top also being granular after the annealing, as shown in the AFM image in Fig. 

6.6(a). On the other hand, if the Pt and YIG layers are both deposited at room temperature, there 

will be high spikes after the annealing process, indicating a drastic stress release process. Those 

large spikes can be seen in Fig. 6.6(b). 

                                                             
114 K. Chen and S. Zhang, Phys. Rev. Lett. 114, 126602 (2015). 
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Figure 6.6. AFM surface morphology of (a) a Pt/GGG thin film sample deposited at 400 oC with no 
further annealing. (b) AFM surface image of a YIG/Pt/GGG sample with both the Pt and YIG layers 
deposited at room temperature and then annealed at 700 oC. The scan areas for (a) and (b) are 5 by 5 μm2 
and 40 by 40 μm2, respectively. The corresponding scale heights are -20 nm – 20 nm and -20 nm – 60 nm, 
respectively. 

 
For this reason, we use a 2-step method to grow the Pt layer in order to make it easier to 

release stress and at the same time show a relatively smooth surface. We deposit a thin Pt layer at 

400 °C first and then deposit further by RT sputtering. The first step serves to grow a thin Pt 

layer with relatively low stress and strong adhesion to the substrate, while the second ensures a 

relatively smooth surface needed by the subsequent YIG deposition. Based on the Pt growth rate 

and time, we estimated that the first and second Pt layers are 3 nm and 11 nm thick, respectively. 

 

Figure 6.7. AFM surface images of YIG/Pt/GGG thin film samples prepared using different annealing 
parameters. (a) 650 ºC for 90 min, (b) 700 ºC for 30 min, and (c) 700 ºC for 90 min. 

Figure 6.7 shows the surface morphology of YIG/Pt/GGG samples fabricated using different 

annealing processes. If the sample is only annealed at a low temperature for relatively long time, 
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the sample surface can be smooth (see graph (a)) but the YIG layer cannot be crystallized and no 

FMR signal is detected. If the sample is directly annealed at a high temperature, the sample 

surface becomes pretty rough. For example, as shown in graph (b), bubble-like patterns form 

after annealing at 700 ºC only for 30 minutes; the sample surface becomes even rougher if the 

sample is annealed at 700 ºC for an even longer time (90 minutes), as shown in graph (c). These 

results indicate that the only possible understanding of the 2-step annealing process is that the Pt 

layer needs to firstly release the stress that is developed due to the thermal coefficient difference 

of the different layers, and at the same time the YIG film is relatively stable and maintains its 

smooth surface. After the stress is totally released in the Pt, the Pt layer becomes relatively stable 

and the temperature can be increased to crystallize the YIG film, which is the second annealing 

process. 

6.3 Spin pumping at YIG/Pt interfaces 

The magnetic properties presented above clearly indicate that the YIG film grown on the Pt 

film exhibits high quality. They, however, do not speak for the quality of the YIG/Pt interface in 

terms of spin transfers. In this section spin pumping experiments were carried out to examine the 

interface quality. During the measurements, one drives the magnetization precession in the YIG 

by placing an end-shorted microstrip line on the top of the YIG film and feeding it with a 

microwave signal. The precession in the YIG layer pumps a spin current into the Pt layer that 

flows across the Pt thickness and produces an electrical voltage across the Pt lateral dimension 

via the inverse spin Hall effect (ISHE).83 
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Figure 6.8 presents the spin pumping data. Figure 6.8(a) sketches the experimental setup. 

Figure 6.8(b) presents a spin pumping signal map where the horizontal axis shows the strength of 

an external field applied along the +x direction, the vertical axis shows the frequency of the 

microwave signal applied to the microstrip line, and the color shows the ISHE voltage (VISHE) 

measured across the Pt length (along the y axis). The blue dashed curve shows a fit to Eq. 

(3.32(b)), and the fitting used || = 2.8 MHz/Oe and took 4Meff as the fitting parameter. Figure 

6.8(c) shows the VISHE data measured in the same way as those shown in Fig. 6.8(b) except that 

the field was in an opposite direction (along the -x direction). As the blue dashed curve in Fig. 

6.8(b), the red dashed curve in Fig. 6.8(c) also shows a fit to Eq. (3.32(b)). For both the 

measurements, the sample is 5.5 mm long and 2.5 mm wide, the microstrip line is 3.0 mm long 

and 50 m wide and has a nominal impedance of 50 , and the microwave power applied to the 

microstrip line is about 100 mW. 

Several results are evident from the data in Fig. 6.8. First, the VISHE signals are strong, 

indicating that the interface allows for efficient spin transfers. The signal strength is close to 

those measured with Pt/YIG/GGG samples. For example, measurements using a similar 

 

 
Figure 6.8. Spin pumping measurements. (a) Experimental setup. (b) and (c) present the spin 
pumping-produced electrical voltage (color) measured across the Pt length as a function of the external 
field (horizontal axis) and the microwave frequency (vertical axis) for different field directions, as 
indicated. The dashed curves show the fits to Eq. (3.32(b)). 
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experimental configurations yielded VISHE=10-50 V for a Pt(8 nm)/YIG(20 nm)/GGG(0.5 mm) 

sample and VISHE≈24 V for a Pt(14 nm)/YIG(58 nm)/GGG(0.5 mm) sample. Second, the 

reverse of the field direction leads to a flip in the voltage sign. This is consistent with the fact 

that in spin pumping the direction of the magnetization in the magnetic layer dictates the 

polarization of the spin current pumped into the non-magnetic layer.1,105 Third, the voltage signal 

is the strongest at about 2 GHz, and this is true for both the field directions. It is known that the 

amplitude of the ISHE voltage is proportional to the strength of the spin current in the Pt, while 

the latter is proportional to sin2ș, where ș is the angle of the magnetization precession in the YIG 

(assuming a circular precession).115 In the low-damping and small-angle approximations, the 

Gilbert equation yields 
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where h is the amplitude of the RF magnetic field and the field H changes with the frequency f 

according to the Kittel equation. Thus, one can write the peak voltage amplitude VISHE as a 

function of f as 
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where C scales with the microwave power h2, the spin mixing conductance at the interface, and 

the spin Hall angle in Pt. The frequency dependence of VISHE on f is not monotonic and it shows 

a maxima at 2 GHz. VISHE decreases as f is shifted away from the corresponding maxima. Lastly, 

the frequencies of the strongest voltage signals can be fitted nicely with Eq. (3.32(b)), as shown 

by the dashed curves in Figs. 6.8(b) and 6.8(c), indicating that the spin pumping is mainly 

associated with the quasi-FMR modes in the portion of the YIG film right beneath the microstrip 

                                                             
115 O. Mosendz, V. Vlaminck, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D. Bader, and A. Hoffmann, Phys. Rev. 

B, 82, 214403, (2010). 
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line. The fitting yields 4Meff = 1487 G for the data in Fig. 6.8(b) and 4Meff = 1486 G for those 

in Fig. 6.8(c). 

The spin mixing conductance is an important metric for spin transfer efficiency at YIG/Pt 

interfaces. For an estimate of spin mixing conductance on the YIG/Pt/GGG sample, it is assumed 

that the spin pumping process causes a damping enhancement in the YIG for the field-in-plane 

configuration but does not for the field out-of-plane configuration. Thus, for the out-of-plane 

configuration, the measured damping constant is approximately equal to the actual damping in 

the YIG film, namely, α≈α0. Then, the spin pumping-induced damping in the in-plane 

configuration can be estimated as αSP≈α//-α0≈α//-α=0.000777-0.000469=0.000308. The spin 

mixing conductance can then be evaluated as 
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This value is comparable to the values reported previously for Pt/YIG/GGG samples, including 

• 1.31014 cm-2 (experimental), Appl. Phys. Lett. 103, 092404 (2013) 

• 6.91014 cm-2 (experimental), Appl. Phys. Lett. 110, 062402 (2017) 

• 51014 cm-2 (theoretical), Phys. Rev. B 87, 144411 (2013) 

Note that the above-estimated spin mixing conductance is an underestimate because the damping 

in the out-of-plane configuration may also include a weak spin pumping contribution.114 

Finally, several points should be made about the quality of the YIG film. First, the 

above-mentioned six saturation induction values obtained from the VSM, FMR, and spin pumping 

measurements are all within 1.470.10 kG, so they are reasonably close to each other. The small 

difference between those values may result from the VSM calibration error, the error in the YIG 

sample volume estimation, the slight misalignment of the fields in the FMR and spin pumping 
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measurements, and the presence of weak crystalline anisotropy in the YIG film, among other. 

Second, the similarity of those values suggests that there is no notable anisotropy in the YIG film. 

Note that the crystalline anisotropy field in single-crystal YIG bulk materials is usually several 

tens of Oe. Third, the average value 1.47 kG is about 16% lower than the well accepted bulk value 

(1.75 kG), and the reason for this big discrepancy is still unknown. The EDX analysis indicates 

that the YIG film has the right composition, but it is worth to confirm this using more sensitive 

techniques. Fourth, the RT electrical resistance measurements on a 120-m-long, 30-m-wide 

Hall bar structure made of a Pt(3.0 nm)/YIG(58.0 nm)/Pt(12.0 nm)/GGG(0.5 mm) sample (Sec. 

6.4) indicate that the YIG film has a resistivity higher than 1.4109 m at RT, indicating the 

electrical insulating nature of the YIG film. For a comparison, for the Pt/YIG/Pt structure reported 

in Ref. [110] the resistivity is significantly lower, about 9.6105 m at 300 K and 1.9107 m at 

250 K. Finally, it is believed that it is possible to grow YIG thin films with similar quality on other 

metals rather than Pt as long as they have comparable or higher melting temperatures and have 

thermal expansion coefficients close to those of the substrate and the YIG. 

6.4 Magnon-mediated current drag 

The quality of the YIG/Pt interface in terms of spin transfers presented above clearly 

indicate that the YIG film grown on the Pt film exhibits high quality. In this section experiments 

on the magnon-mediated current drag effect were carried out to further examine the interface 

quality. A YIG(58 nm)/Pt(14 nm)/GGG sample is prepared with the fabrication method 

mentioned in Table 6.1. A 3-nm-thick top Pt layer is then deposited at room temperature. 
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Figure 6.9. Schematic for magnon-mediated current drag effects. The x and y axes in the film plane are 
perpendicular and parallel to the current density respectively. The z axis is perpendicular to the film plane. 

Figure 6.9 shows a schematic diagram for magnon-mediated current drag effects predicted 

by Zhang et al.111 The ferromagnetic layer is magnetized along a direction indicated in Fig. 6.9. 

An electric current (density j1) flowing through the first nm-thick Pt layer Pt (left) will generate a 

transverse spin current via the spin Hall effect into the ferromagnetic YIG insulator layer with 

identical spin polarizations. Angular momenta are transferred at the Pt/YIG interface and carried 

by magnon/spin waves in the YIG. They are then transferred to the other YIG/Pt interface 

through spin-wave propagation and cause an angular momentum transfer again at the right 

interface to polarize spins of free electrons in the second Pt layer (right). The polarized electrons 

then diffuse along the thickness direction and generate a transverse electromotive force along the 

j2 direction as indicated in Fig. 6.9. 

About this magnon-mediated current drag effect, three points should be emphasized. First, 

the direction of the output electric current j2 is always opposite to the input current j1. Second, 

the magnitude of j2 is dependent on the direction of magnetization in the YIG layer. For the case 

of the magnetization perpendicular to the direction of j1, the output magnitude is maximum, 
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while for the case of the magnetization parallel to j1, the output magnitude is minimum and the 

current is suppressed. Third, the predicted efficiency η=j2/j1 is approximately 10-5 for a nm-thick 

YIG layer. 

 

Figure 6.10. Patterned Pt/YIG/Pt sandwiched structure for magnon-mediated current drag measurements. 

Figure 6.10 presents the patterned nanostructures for electric measurements. The bottom Pt 

layer (14 nm) is patterned with three T-shape electrodes extended out to bond to a current source, 

which is for the application of an electric current. The middle YIG layer (58 nm) is patterned 

with the lateral dimensions indicated in the bottom of Fig. 6.10. The top Pt layer (3 nm) is 

patterned to cover the YIG layer and extend three gold electrodes out for voltage detection. The 

thicknesses of the three layers are confirmed by TEM cross section imaging measurements. 
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Figure 6.11. A top view of the patterned Pt/YIG/Pt structure taken with an optical microscope. 

Figure 6.11 shows the top view of the patterned Pt/YIG/Pt structure. The top two gold wires 

connect the top Pt layer to a voltage detector. The two side wires connect the bottom Pt layer to a 

current source. The YIG layer is magnetized to saturation by a constant magnetic field with a 

magnitude of 1 kOe. 

 

Figure 6.12. Magnon-mediated current drag measurements. (a) The top view of the patterned YIG layer 
and the angle between the external field and the horizontal direction. (b) The voltage data detected at 350 
K using an input electric current of 10 mA. The dots show the data, while the red curve shows the fit. 

Figure 6.12 shows the data of the magnon-mediated current drag measurements. Graph (a) 

shows the top view of the patterned structure and the field angle. Graph (b) shows the angle 

dependent voltage signal measured at 350 K using an input electric current of 10 mA. Three 
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points should be mentioned. First, the output voltage signal is maximum at 90 °C and 270 °C and 

suppressed at 0 °C and 180 °C. This is consistent with the theoretical prediction.111 Second, 

though not shown here, the direction of the output electric current is opposite to the direction of 

the input electric current. Third, the voltage reaches 11 nV at 90 °C and 4 nV at 270 °C which is 

not equal. This is different from what the theory predicted and can be accounted by the spin 

Seebeck effect. A temperature gradient is generated through the thickness direction of the 

sandwiched structure due to the Joule heating of the bottom input electric current. Thus an 

unavoidable spin Seebeck signal is generated and superimposed onto the voltage signal of the 

magnon-mediated current drag effect. The angle dependences of the spin Seebeck signal and the 

magnon-mediated current drag signal are different and can be separated by fitting with 

                                                  sinsin 2
DragSSE0  VVVV  (6.3) 

where V is the voltage signal measured, V0 is a constant background voltage signal, VSSE is the 

magnitude of the voltage produced by the spin Seebeck effect, and VDrag is the signal due to the 

magnon-mediated current drag effect. The fitting in Fig. 6.12(b) yields 3.26 nV for the SSE and 

6.73 nV for the magnon-mediated current drag effect. The efficiency of this drag effect is then 
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The efficiency is on the same order of magnitude with the one reported by Li et al110, and both 

are one order of magnitude smaller than that predicted by Zhang et al111. This result may indicate 

that the more factors than those in in Ref [111] should be considered. It should be noted that the 

sandwiched Pt/YIG/Pt structure used here has a better quality than that used in Ref. [110], but 

the efficiencies are on the same order of magnitude. It indicates that the low efficiency may be 

irrelevant with the sample quality and other factors should be considered in the future. 
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6.5 Summary 

In summary, this chapter demonstrates the sputtering growth of a Pt/YIG structure where the 

Pt layer was grown first and the YIG layer was then deposited on the top. The YIG layer shows 

well-oriented (111) texture, a surface roughness of 0.15 nm, and a damping constant less than 

4.710-4, and the YIG/Pt interface allows for efficient spin transfers as confirmed by the spin 

pumping and magnon-mediated current drag measurements. This demonstration indicates the 

feasibility of fabricating high-quality NM/YIG/NM tri-layered structures for new physics 

studies. 
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CHAPTER 7 

SUMMARY AND OUTLOOK 

 

 

 

The Experimental investigation and research have been carried out on high-quality yttrium 

iron garnet nanometer-thick film development on gadolinium gallium garnet insulator substrates 

as well as platinum metallic layers through magnetron sputtering techniques. Multiple methods 

were utilized for related thin film sample characterization on surface morphology, static and 

dynamic properties, microstructure as well as stoichiometry analysis. Besides, effects of multiple 

deposition parameters in sputtering techniques on thin film quality were investigated. Role of 

damping in spin Seebeck effect in the magnetic layer is investigated experimentally for the first 

time. 

The last decade witnesses the increasing interest of utilizing yttrium iron garnet thin films in 

spintronics – related study and applications. The research topics and arguments in this 

dissertation provide a good reference for magnetic thin film development under annealing with 

magnetron sputtering techniques. Topics that are relevant to the studies in this dissertation and/or 

of great interest for future study may include the following: 

(1) Yttrium iron garnet thin film development on more metallic layers (Ta, W) or substrates 

(SiO2, sapphire) 

(2) Correlation between damping properties and microstructures of yttrium iron garnet 

(3) Nano patterning and applications to yttrium iron garnet based devices 
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APPENDIX 

 

 

 

A. Derivation of Paschen’s law 

The objective of this appendix is to derive Paschen’s law47 and elucidate the mechanism of 

plasma ignition and the conditions for it to sustain for interested readers, though similar 

derivations exist in many textbooks.  

 

Figure A.1. Cartoon for the gas filled in a cylinder-like container. The blue dots show the neutral gas 
particle. The arrows indicate the flow direction of free electrons and scattering processes. 

Assume gas (like argon, helium, neon, air) is sealed in a cylinder with a cathode and an 

anode at x=0 and x=d respectively, as is shown in Fig. A.1. The use of the cylindrical shape here 

is to simplify the calculation and focus only on the physical process but not trivial algebra. If a 

voltage is applied and strong enough, an avalanche process will be triggered and the gas will 

breakdown and form plasma.  

Initial ions are created with ionizing radiation, like cosmic rays. An original ionization event 

produce an ion pair, the positive ion and a free electron. The positive ion will fly to the cathode 

while the free electron will be accelerated under a big voltage towards the anode. If the electric 

field is strong enough, the free electron can gain sufficient energy to collide with and ionize a 
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neutral particle. This process will generate a new positive ion and a new free electron. The new 

free electron repeat the process and cause a chain reaction called Townsend avalanche. The 

number of collisions grows exponentially. Finally, all free electrons, if no supplement, will reach 

the anode and it cannot be sustained. In reality, however, there is supplement from the cathode. 

The ionized positive particles will also be accelerated and collide with the cathode. Due to its 

relatively big mass, there is a big chance that the ion will free an electron from the cathode. This 

process is called secondary emission. These secondary electrons are supplement to the free 

electrons and is critical for sustaining the plasma.  

Assume that there is no current leaving or entering the vessel except through the electrodes. 

The continuity condition results in  

)()0( djj        (A.1) 

where j is the current density. Assuming a single ion species, like argon. Eq. A.1 can be rewritten 

as  

)()()0()0( djdjjj ieie       (A.2) 

where subscripts e and i are for electrons and ions respectively. The increase of electron current 

density, je(x), after passing a distance dx, is 

dxxjxdj ee )()(   

and α is the ionization rate per unit length. The integration gives 

x

ee ejxj )0()(       (A.3) 

In the cylindrical container there is no input of ions from the anode, so  

0)( dji
          (A.4) 

Substituting Eq. A.3 and A.4 into Eq. A.2 results in 
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)1)(0()0(  d

ei ejj       (A.5) 

Define γ as the probability of an ion releasing a secondary electron, then  

)0(/)0( ie jj      (A.6) 

Substitute Eq. A.6 into Eq. A.5 and we have 

)/11ln(  d      (A.7) 

Eq. A.7 is the first main results in this appendix. The ionization rate α is not a measurable 

parameter and we have to connect it with the physical parameters that are easy to measure. 

In statistical physics, we have 
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where Ȝ is the mean free path of a free electron, ı is the cross-section of the collision between a 

neutral particle and the electron. kB is the Boltzmann constant. T is the temperature of the gas and 

p is the pressure. 1/Ȝ reflects the rate of collisions with a neutral particle per unit length along the 

cylindrical container. Once collided, the free electron will be lost. The change of the number of 

free electrons after travelling a distance dx is 


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where )(xn free
 is the number of free electrons at position x. Integrated, we have 
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where δ is a small distance. The right-hand side of Eq. A.9 is independent of x0. So at any point, 

the probability that a free electron has travelled a distance of at least δ without collision is  

 /)  tranveleddistance( eP   
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If each individual electron is sufficiently energetic, every collision will ionize the neutral particle 

so that  


 1
  

But this is not generally true. Only a portion of these electrons can ionize neutral particles. 

Assume 
IU  is the minimum energy of a free electron to ionize a neutral particle, we have 


 )energy ith electron w( IUP 
     (A.10) 

Since the electric field accelerates the electrons, we have  

eV

dU I
I   

where 
I  is the minimum distance for an electron to gain 

IU , d is the length of the cylindrical 

container, and V is the electric potential between the electrodes. Here a uniform electric field 

distribution is assumed. Then, Eqn. (10) can be rewritten as 
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Combine Eq. A.7, A.8, and A.11, we have 

V

Bpd
Apd  )ln())/11ln(ln(   

where A=ı/kBT and B=UI ı/ekBT. Since V represents the voltage where breakdown just happens, 

we add a subscript BD and rearrange the equation above, 

))/11ln(ln()ln( 

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Bpd
VBD     (A.12) 

This is the Paschen’s law. 
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B. Derivation of one-dimensional model for atom deposition and 

dissociation 

The objective of this appendix is to qualitatively explain the trapping and dissociation 

process of incident particles to substrates through a simple but effective one-dimensional chain 

model under harmonic approximation. For details and more discussion, please refer to Ref [49]. 

 

Figure B.1. Cartoon of one-dimensional linear chain model. The hollow spheres represent lattice particles 
in crystals and the shaded one represents the incident particle. 

The schematic of the model is shown in Fig. B.1. The hollow spheres represent the ions 

(mass M) in the crystal of substrates and they interact with the nearest neighbor through 

harmonic oscillation (force constant K). The shaded sphere represents an incident atom with 

mass M0. When the incident particle (0) arrives at position 0, it starts to interact with the first 

lattice particle and such interaction is described by a harmonic potential with a force constant K0 

and an initial velocity ṙ0(0). The location of any particle n is indicated by the displacement rn 

from its equilibrium position. The equations of motion, from Newton’s second law, are 
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For simplicity, some variables and transformation are introduced as follows. 
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By inserting all the equations above into Eq. B.1-3, one gets 
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It seems that the RHS of the last equation above is only valid for even integers 2n. However, 

based on the transformation relation, 
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So it is true for all integers but 0 and 2. Finally, the equations of motion, after transformation, are 
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The interest is on the relative displacement )(1 x  and velocity )(1 x  between the incident 
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particle and the first particle in the chain as well as the absolute velocity of the incident particle 

)(0 x  evolved with time. With these solution, the connection between the kinetic energy of the 

incident particle, energy loss as well as trapping and dissociation conditions could be figured out. 

The next goal is to find a solution (analytical or serial) of )(1 x  and )(0 x . 

The first step is to find the differential equation which only contains )(1 x . Differentiation 

of Eq. B.6 for n=1 gives 
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where 

 
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1

. Now the problem is to remove )(3 x  from Eq. (B.7). Here the generating 

function method, introduced by Schrödinger116 and by Rubin117 is used to determine )(3 x  in 

terms of )(1 x  and the initial conditions. 

The generating function is defined as 
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116 E. Schrödinger, ANN. Physik 44, 916 (1914). 
117 R. J. Rubin, Proceedings of the International Symposium on Transport Processes in Statistical Mechanics, held in 

Brussels, August 27-31, 1956 (Interscience Publishers, Inc., New York, 1958), p. 155. 
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Here Eq. B.4 - 6 and Eq. B.8 are used. The general solution for the differential Eq. B.9 is  
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Set Ĳ to zero, one gets ),( GC  . So 
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Insert Eq. B.8 and the following series expansion into Eqn. B.10, 
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where )(nJ  is the Bessel function. We get  
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By comparing the coefficients of ρ2n+1 on the LHS and RHS of the Eq. B.11, we have  
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By comparing the coefficients of ρ-2n+1 on the LHS and RHS of Eq. B.11, we have 
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The equation above could be simplified with the following properties of Bessel functions, 













oddn for   )(

evenn for   )(
)(





n

n

n
J

J
J  

After simplification, we have 

                          )()()1()()()()(
2
1

(-1))()0(0

0 11202112

1

m-1)(-2n
)12(





















dssxsJsxsJsxsJ

Jx

nnn

m

nmm

(B.13) 

By adding up the LHS and RHS of Eq. B.12 and 13 respectively, one gets  
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Remember that for Bessel functions, we have the following recurrence relation 
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Set n=1, we have 
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Now )(3 x  is represented by solely the variable )(1 x . And the final differential equation for 

)(1 x , by substituting Eq. B.16 into Eq. B.7, is 

     )1()()()0()(
)(

2
)(

4
1

)(
2

130 1
2

11 


 
m

m

mmm JJxdssx
s

sJ
xx 


 (B.17) 



125 

 

If the lattice is initially at rest, then 0)0( mx  for m>1, the sum in Eq. B.17 is zero and 
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The next step is to solve this differential-integral function Eq. B.18 for )(1 x . Since there 

are Bessel functions in Eq. B.18, it is convenient to expand the solution as follows, 
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By substituting the series expansion Eq. B.19 into Eq. B.18, one gets 
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Both sides of Eq. B.20 need to be simplified for coefficients comparison. Note that 
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Then the LHS of Eq. B.20 is simplified as 
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Then the RHS of Eq. B.20 is 
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With some simply algebra, we have, from Eq. B.20, 
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Rearrange n according to )(nJ , we have 
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So the recursion relations for the coefficients are 
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Once the values of 0a  and 1a  are determined, the numerical solution of )(1 x  could be 

found. Further, the relative displacement from equilibrium for any two adjacent lattice atoms 

could also be found with Eq. B.15 and the solution of )(1 x , which is  
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One of the useful quantities is the twice of the velocity of the incident particle, 
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Now all the quantities necessary for calculation are determined. The values of 0a  and 1a  

need to be determined. These could be acquired by setting τ=0 in Eq. B.19, we have 10 a . 

Then taking the first derivative of Eq. B.19 and setting τ=0 leads to 11 a . 

For the specific interest in fabrication of YIG on GGG substrates, though there are 

compound elements, each individual element in YIG has a smaller atomic mass than that in GGG. 

Then the mass ratio ȝ interested resides in interval [0, 1]. The interaction between the incident 

particle and the ions at the lattice surface should be weaker than that between the lattice ions. 

The force constant ratio ȕ interested is within [0, 1]. Mathematically, the series acquired from the 

recursion relation of Eq. B.21, however, is not always bounded. For ȝ in [0, 1], the series will 

diverge with a bigger ȕ value. Luckily, Eq. B.19 is still valid as each product term of the 

coefficient and the Bessel function gives a finite value and this series is convergent. 

C. One dimensional collision model programs for data analysis and 

graph depiction 

In this appendix, programs of the one-dimensional linear chain atomic collision model are 

provided for interested readers. Programs are based on Python 3. 

########################################################################## 

#Program 1 for Fig. 2.8 and 2.9 in the main text 
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########################################################################## 

import numpy    #module for array-type data 

from scipy import special  #module containing bessel functions of the first kind 

import matplotlib.pyplot as plt #graph drawing package 

########################################################################## 

#global input variables 

########################################################################## 

#N length of series used for calculatioin 

#miu relative mass 

#beta relative force constant 

#z=2x'1(0)/x1(0), twice the incident particle's velocity scaled to x1(0) 

#tao_max the max time of the time iterval 

#step the time step 

N=248 

miu=0.25 

beta=0.8 

z=-1.0 #close to critical value 

tao_max=50 

step=0.1 

tao=numpy.arange(0,tao_max,step)  #tao descreted time intervals 

Nt=len(tao)     #Nt number of descreted tao 

numpy.savetxt('tao.txt',tao) 

########################################################################## 
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#function for coefficients calculation 

########################################################################## 

#N length of series used for calculatioin 

#miu relative mass 

#beta relative force constant 

def coefficients(N,miu,beta):   #input N, miu, beta 

 gamma=beta*(1.0+miu)/miu  #calculate gamma 

 a=numpy.zeros(N+1)   #generate an array from 0 to N filled with zero 

 a[0]=1.0 

 a[1]=1.0 

 a[2]=a[0]*(2-gamma) 

 a[3]=a[1]*(3-gamma) 

 a[4]=a[0]*(beta-2)+a[2]*(2-gamma)   #calculate a0 to a4 

 for i in range(5,N+1): 

  a[i]=a[i-4]*(beta-1)+a[i-2]*(2-gamma) #calculate a5 to aN 

 return a 

a=coefficients(N,miu,beta) 

print(a) 

########################################################################## 

#x1(t): relative displacement between the incident and first particles, 

#corresponding to x1(t)/x1(0) in the equation. 

########################################################################## 

x1=numpy.zeros(Nt) 
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for i in range(Nt): 

 j=0 

 while 2*j<=N: 

  x1[i]+=a[2*j]*special.jn(2*j,tao[i]) 

  j+=1 

 j=0 

 while 2*j+1<=N: 

  x1[i]+=z*a[2*j+1]*special.jn(2*j+1,tao[i]) 

  j+=1 

numpy.savetxt('x1.txt',x1) 

########################################################################## 

#x3(t): relative displacement between the and first and second particles in 

#the lattice, corresponding to x3(t)/x1(0) in the equation. 

########################################################################## 

x3=numpy.zeros(Nt) 

for i in range(Nt): 

 j=0 

 while 2*j<=N: 

  x3[i]+=beta*a[2*j]*special.jn(2*j+2,tao[i]) 

  j+=1 

 j=0 

 while 2*j+1<=N: 

  x3[i]+=beta*z*a[2*j+1]*special.jn(2*j+3,tao[i]) 
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  j+=1 

numpy.savetxt('x3.txt',x3) 

########################################################################## 

#x5(t): relative displacement between the second and third particles in 

#the lattice, corresponding to x5(t)/x1(0) in the equation. 

########################################################################## 

x5=numpy.zeros(Nt) 

for i in range(Nt): 

 j=0 

 while 2*j<=N: 

  x5[i]+=beta*a[2*j]*special.jn(2*j+4,tao[i]) 

  j+=1 

 j=0 

 while 2*j+1<=N: 

  x5[i]+=beta*z*a[2*j+1]*special.jn(2*j+5,tao[i]) 

  j+=1 

numpy.savetxt('x5.txt',x5) 

########################################################################## 

#x7(t): relative displacement between the third and fourth particles in 

#the lattice, corresponding to x7(t)/x1(0) in the equation. 

########################################################################## 

x7=numpy.zeros(Nt) 

for i in range(Nt): 
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 j=0 

 while 2*j<=N: 

  x7[i]+=beta*a[2*j]*special.jn(2*j+6,tao[i]) 

  j+=1 

 j=0 

 while 2*j+1<=N: 

  x7[i]+=beta*z*a[2*j+1]*special.jn(2*j+7,tao[i]) 

  j+=1 

numpy.savetxt('x7.txt',x7) 

########################################################################## 

#x9(t): relative displacement between the fourth and fifth particles in 

#the lattice, corresponding to x9(t)/x1(0) in the equation. 

########################################################################## 

x9=numpy.zeros(Nt) 

for i in range(Nt): 

 j=0 

 while 2*j<=N: 

  x9[i]+=beta*a[2*j]*special.jn(2*j+8,tao[i]) 

  j+=1 

 j=0 

 while 2*j+1<=N: 

  x9[i]+=beta*z*a[2*j+1]*special.jn(2*j+9,tao[i]) 

  j+=1 
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numpy.savetxt('x9.txt',x9) 

########################################################################## 

#x'1(t): the first derivative of x1(t) 

########################################################################## 

x11=numpy.zeros(Nt) 

for i in range(Nt): 

 j=0 

 while 2*j<=N: 

  x11[i]+=a[2*j]*special.jvp(2*j,tao[i],1) 

#jvp(m,x,n), the nth derivative of mth order bessel function of the first kind with respect to x 

  j+=1 

 j=0 

 while 2*j+1<=N: 

  x11[i]+=z*a[2*j+1]*special.jvp(2*j+1,tao[i],1) 

  j+=1 

numpy.savetxt('x\'1.txt',x11) 

plt.plot(tao,x1,tao,x3,tao,x5,tao,x7,tao,x9) 

plt.show() 

plt.plot(tao,x1,tao,x11) 

plt.show() 

########################################################################## 

#Program 2 for Fig. 2.10. 

########################################################################## 
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import numpy    #module for array-type data 

from scipy import special  #module containing bessel functions of the first kind 

import matplotlib.pyplot as plt #graph drawing package 

########################################################################## 

#global input variables 

########################################################################## 

#N: initial length of series used for calculatioin 

#miu: relative mass 

#miu_min: minimum value of miu 

#miu_max: maximum value of miu 

#step_miu: the miu step 

#beta: relative force constant 

#beta_min: minimum value of beta 

#beta_max: maximum value of beta 

#step_beta: the beta step 

#z=2x'1(0)/x1(0), twice the incident particle's velocity scaled to x1(0) 

#tao_max the max time of the time iterval 

#step the time step 

N=500 

miu_min=0.1 

miu_max=1.01 

step_miu=0.01 

miu=numpy.arange(miu_min,miu_max,step_miu) 
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Nmiu=len(miu)   #Nmiu number of descreted miu 

beta_min=0.1 

beta_max=1.01 

step_beta=0.01 

beta=numpy.arange(beta_min,beta_max,step_beta) 

Nbeta=len(beta)   #Nbeta number of descreted beta 

tao_max=50 

step=0.2 

tao=numpy.arange(0,tao_max,step) #tao descreted time intervals 

Nt=len(tao)    #Nt number of descreted tao 

z=numpy.arange(0,-100,-0.5)  #coarse searching area of z 

Nz=len(z) 

########################################################################## 

#function for coefficients calculation 

########################################################################## 

#N length of series used for calculatioin 

#miu relative mass 

#beta relative force constant 

def coefficients(N,miu_a,beta_a):  #input N, miu, beta 

 gamma_a=beta_a*(1+miu_a)/miu_a #calculate gamma 

 b=numpy.zeros(N+1)   #generate an array from 0 to N filled with zero 

 b[0]=1 

 b[1]=1 
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 b[2]=b[0]*(2-gamma_a) 

 b[3]=b[1]*(3-gamma_a) 

 b[4]=b[0]*(beta_a-2)+b[2]*(2-gamma_a)   #calculate a0 to a4 

 for i in range(5,N+1): 

  b[i]=b[i-4]*(beta_a-1)+b[i-2]*(2-gamma_a)  #calculate a5 to aN 

  if abs(b[i])<=0.00001 and i>=200: 

   break 

 return i,b   #i is the ith coefficient that first smaller than 0.0001.  

########################################################################## 

#File I/O 

########################################################################## 

f=open('critical z with respect to miu and beta.txt','a') 

f.write('miu\tbeta\tz(velocity)\ttao(critical time)\tx1(position)\tx11(velocity)\n') 

f.close() 

########################################################################## 

#For each set of (miu,beta), find z that satisfies x1(tc)=0 & x11(tc)=0 

#x1(t): relative displacement between the incident and first particles 

#x11(t): velocity of x1(t) 

########################################################################## 

for m in range(Nmiu): 

 for b in range(Nbeta): 

  N_flexible, a=coefficients(N,miu[m],beta[b])     

 #cofficients caculation;N_flexible is the number of terms used with accuracy 0.0001 
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  print('********************') 

  print('Start:miu=',miu[m],'beta=',beta[b]) 

  print('coefficients calculation done with',N_flexible,'terms') 

  print('********************') 

  k=1 

  while k <= Nz: 

   for i in range(1,Nt): 

    x11_left=0.0 

    x11_right=0.0 

    j=0 

    while 2*j+1<=N_flexible: 

     x11_left+=a[2*j]*special.jvp(2*j,tao[i],1)\ 

     +z[k]*a[2*j+1]*special.jvp(2*j+1,tao[i],1) 

#calculation of two neighboring deivatives in time 

     x11_right+=a[2*j]*special.jvp(2*j,tao[i+1],1)\ 

     +z[k]*a[2*j+1]*special.jvp(2*j+1,tao[i+1],1) 

     j+=1 

    if x11_left>0 and x11_right<0 

#find a coarse interval containing the critical time 

     min_interval=tao[i] 

     max_interval=tao[i+1] 

     q=(min_interval+max_interval)/2.0 

     break 

   print('timeintervalfound.min_t=',min_interval,'\ 
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   max_t=',max_interval,'z=',z[k]) 

   x11=0 

   j=0 

   while 2*j+1<=N_flexible: 

    x11+=a[2*j]*special.jvp(2*j,q,1)\ 

    +z[k]*a[2*j+1]*special.jvp(2*j+1,q,1) 

    j+=1 

   print('x11=',x11) 

   while abs(x11)>0.0001: 

    if x11>0: 

     min_interval=q 

    elif x11<0: 

     max_interval=q 

    q=(max_interval+min_interval)/2.0 

    j=0 

    x11=0 

    while 2*j+1<=N_flexible: 

     x11+=a[2*j]*special.jvp(2*j,q,1)\ 

     +z[k]*a[2*j+1]*special.jvp(2*j+1,q,1) 

#find the critical time that makes x11==0 

     j+=1 

   x1=0 

   j=0 
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   while 2*j+1<=N_flexible: 

    x1+=a[2*j]*special.jn(2*j,q)\ 

    +z[k]*a[2*j+1]*special.jn(2*j+1,q) 

    j+=1 

   if x1-1<0: 

    min_z=z[k] 

    k+=1 

   elif x1-1>0: 

    max_z=z[k] 

#find the z interval that have x1=1 at the critical time 

    break 

  mean_z=(min_z+max_z)/2.0 

  print('initial mean_z found',mean_z,'\n') 

  while abs(x1-1)>0.0001: 

   for i in range(1,Nt): 

    x11_left=0.0 

    x11_right=0.0 

    j=0 

    while 2*j+1<=N_flexible: 

     x11_left+=a[2*j]*special.jvp(2*j,tao[i],1)\ 

     +mean_z*a[2*j+1]*special.jvp(2*j+1,tao[i],1) 

#calculation of two neighboring deivatives in time 

     x11_right+=a[2*j]*special.jvp(2*j,tao[i+1],1)\ 
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     +mean_z*a[2*j+1]*special.jvp(2*j+1,tao[i+1],1) 

     j+=1 

    if x11_left>0 and x11_right<0: 

#find a coarse interval containing the critical time 

     min_interval=tao[i] 

     max_interval=tao[i+1] 

     q=(min_interval+max_interval)/2 

     break 

   x11=0 

   j=0 

   while 2*j+1<=N_flexible: 

    x11+=a[2*j]*special.jvp(2*j,q,1)\ 

    +mean_z*a[2*j+1]*special.jvp(2*j+1,q,1) 

    j+=1 

   while abs(x11)>0.0001: 

    if x11>0: 

     min_interval=q 

    elif x11<0: 

     max_interval=q 

    q=(max_interval+min_interval)/2 

    j=0 

    x11=0 

    while 2*j+1<=N_flexible: 
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     x11+=a[2*j]*special.jvp(2*j,q,1)\ 

     +mean_z*a[2*j+1]*special.jvp(2*j+1,q,1) 

#find the critical time that makes x11==0 

     j+=1 

   x1=0 

   j=0 

   while 2*j+1<=N_flexible: 

    x1+=a[2*j]*special.jn(2*j,q)\ 

    +mean_z*a[2*j+1]*special.jn(2*j+1,q) 

    j+=1 

   if x1-1<0: 

    min_z=mean_z 

   elif x1-1>0: 

    max_z=mean_z 

   mean_z=(min_z+max_z)/2 

  print('results found! miu=',miu[m],'\tbeta=',beta[b],\ 

  '\tz=',mean_z,'\ttao=',q,'x1=',x1,'\tx11=',x11) 

  f=open('critical z with respect to miu and beta.txt','a') 

  f.write(str(miu[m])) 

  f.write('\t') 

  f.write(str(beta[b])) 

  f.write('\t') 

  f.write(str(mean_z)) 
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  f.write('\t') 

  f.write(str(q)) 

  f.write('\t') 

  f.write(str(x1)) 

  f.write('\t') 

  f.write(str(x11)) 

  f.write('\n') 

  f.close() 

f.close() 

input('All calculation done! Press any key.') 

D. Derivation of the Green’s function tensor of the dipole field 

The Maxwell equations and the magneto-static approximation36 provides 
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where dh


 is the dipole field acting on the local magnetization m


. A spin wave propagating 

along ȗ direction with a wavelength kȗ and a single frequency is assumed here. With some simple 

algebra, Eq. D.1a and D.1b can be combined into the following differential equation 
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All the vectors are in the (ξ, Ș, ȗ) coordinate system. By decomposing the dipole field along the 

three directions, three Poisson’s equations are acquired from Eq. D.2, 
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where the subscripts indicate vector components in the (ξ, Ș, ȗ) coordinate system. The solutions 

for the three Poisson’s equations are 
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V is the volume of the sample and x


 and x


 are position vectors. The dipole field could be 

written with a clean form after integration, 
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where the tensor of Green’s function has the form 
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                                 )sgn(   PQ GG (D.7b) 

Here δ is the Dirac delta function and sgn is the sign function. The subscripts indicate the 

representation form in the (ξ, Ș, ȗ) coordinate system. One important symmetric property of this 

Green function components is 

                                      ),(),(   PP GG (D.8a) 

                                    ),(),(   QQ GG (D.8b) 

E. The mathematical form of the internal field 

Only the external field and demagnetization field from shape anisotropy are considered in 

calculating the internal field. Thus, 
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where the demagnetization field is 
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For the configuration shown in Fig. 3.1, N =1, N = N =0. This leads to 

                                    ˆcos4 0 MHde 
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The internal field is parallel to the saturation magnetization. This means 
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With some simple algebra, one can get 
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Equation 3.11c can be acquired by checking the ξ component of the internal field, external field 

and demagnetization field. The amplitude of the internal field is 
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F. Linearized precession equation 

By inserting Eq. 3.10b into the LHS of Eq. 3.14, one can get  
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For the RHS of Eq. 3.14, 
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Insert Eq. F.1 and F.2 into Eq. 3.14 as well as the integral form of the dipole field, one can get 
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One thing should be noted that only the precessional components (x, y components) of the 

dynamic magnetic moments contribute to the equation and the tensor of the Green’s function 

xyĜ  describing the dipole field should be derived from 3-dimensional tensor into 2-dimensional 

tensor and from the (ξ, Ș, ȗ) coordinate system to the (x, y, z) system. The explicit form of xyĜ  

is derived in Appendix I. Dropping the exponential terms on both sides and multiplying with the 

unit vector of z direction leads to 
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The LHS of Eq. F.4 can be simplified as 
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and the superscripts indicate the vector components in the x and y directions. Define 
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Eq. F4 can be simplified as 

   )(),(ˆ)(ˆ)(ˆ 2

2

2
2

2

 













L

L xy

MM

H
exex dmGmTimIkAA 







 


(F.7) 

and I is the 2 × 2 unit matrix. 
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G. Solutions for the Sturm-Liouville problem 

This section serves as a supplemental material to those who are interested in finding the 

solutions for the S-L problem. The S-L problem for x and y components are independent and 

similar except for a little difference in the boundary condition. By solving the problem of the x 

component and getting the solutions for x direction first, one can get the solutions of for y 

direction by simply replacing cos2ș with cos2ș. The problem is readdressed as 
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By solving the ordinary differential Eq. G.1, we can get 
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1nA  and 2nA  are coefficients determined by the boundary conditions. The subscript n marks the 

eigenfunction corresponding to the countable eigenvalue N in Eq. G.1. By inserting Eq. G.2a in 

the boundary conditions, one can get 
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Rearrange and one can get 
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Both equations are valid for arbitrary 1nA  and 2nA . So 
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After some simple and tedious algebra, one can get 
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H. The amplitude of the eigenfunctions 

This section serves as reference for interested readers on the derivation of the amplitude for 

the eigenfunctions Eq. 3.18b. By substituting Eq. 3.18 into the orthogonality condition Eq. 3.20, 

one can get 
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After the integration, one can get the expression of the amplitude with the form 
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I. Tensor of Green’s functions for dipole fields in xy plane 

Based on Fig. 3.1, one can write down the transformation matrix of the two sets of 

coordinate system 
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and the reverse transformation matrix 
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The tensor in the (x, y, z) coordinate system has the form 
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By inserting Eq. I.1 and I.2, one can get 
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Then the explicit form of the tensor in the xy plane is  
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J. Simplification of the equation for spinwave amplitude 

The equation for spin wave amplitude Eq. 3.24 is rewritten as 
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For convenience, define 
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It is easy to verify that 

0and    1for  0  





yy

nn

xx

nn

yy

nn

xx

nn

yy

nn

xx

nn QQTTnnTT  

By inserting these into Eq. J.2, one can get 
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Multiply Eq. J.1 by       y
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 and integrating across the thickness, one can get 
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This leads to, after some calculation, 
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Combine Eq. J.3 and J.4 into a matrix form and one can get 
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K. Explicit analytical form of operators P and Q 

This section serves as detailed derivation of the explicit analytical form of operators pp

nnP

  

and pp

nnQ

  in some special cases. 

By substituting Eq. 3.7c and Eq. 3.7d in Eq. 3.26b and Eq. 3.26c, one can get 

   
     

2
21

21

JJ
kQkQ

JJkPkP

pp

nn

pp

nn

pp

nn

pp

nn






















 

where 

   

   

















22

2
2

2

2

2
1

2

2
L

kp

n

L

L

kp

n

L

kp

n

L

L

kp

n

dede
L

k
J

dede
L

k
J





 









 

By substituting Eq. 3.18b in the second integral of the expressions for 1J , one can get 
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With the help of the following two integral formulas, 
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With a similar method applied on 2J , one can get 
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By repeating the substitution and calculation, one can get the explicit form as 
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which finalized the task of this section. 

Two special cases are discussed below for interested readers. The first case is when both 

components of the transverse magnetization are pinned uniformly ( 111 ddd yx  , 222 ddd yx  ) 

but different on the top and bottom sides. In this case the explicit forms of P and Q are
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With 0nnQ , 1nnT  for uniformly pinned case, the dispersion relations Eq. 3.28 can be 

simplified as 
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where 
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The second case is when the two surfaces are totally pinned (  21 dd ) or unpinned 

( 021  dd ). For the pinned surface, the dynamic component of magnetization is fixed and 

cannot rotate. This indicates  21 dd  and leads to 
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For totally unpinned surface, the dynamic component of magnetization can rotate freely, which 

means 021  dd  and leads to 
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Further, for long wave approximation ( 1Lk ) and totally pinned or unpinned surfaces, 

nnP  has a simple form as 
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