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ABSTRACT OF DISSERTATION 

DATA MINING TECHNIQUES FOR TEMPORAL POINT PROCESSES 

APPLIED TO INSURANCE CLAIMS DATA 

We explore data mining on databases consisting of insurance claims information. 

This dissertation focuses on two major topics we considered by way of data mining 

procedures. One is the development of a classification rule using kernels and support 

vector machines. The other is the discovery of association rules using the Apriori 

algorithm, its extensions, as well as a new association rules technique. 

With regard to the first topic we address the question - can kernel methods 

using an SVM classifier be used to predict patients at risk of type 2 diabetes using 

three years of insurance claims data? We report the results of a study in which we 

tested the performance of new methods for data extracted from the MarketScan® 

database. We summarize the results of applying popular kernels, as well as new 

kernels constructed specifically for this task, for support vector machines on data 

derived from this database. We were able to predict patients at risk of type 2 diabetes 

with nearly 80% success when combining a number of specialized kernels. 

The specific form of the data, that of a timed sequence, led us to develop two 

new kernels inspired by dynamic time warping. The Global Time Warping (GTW) 

and Loc.a.l Time Warping (LTW) kernels build on an existing time warping kernel by 

including the timing coefficients present in classical time warping, while providing a 

solution for the diagonal dominance present in most alignment methods. We show 

that the LTW kernel performs significantly better than the existing time warping 

kernel when the times contained relevant information. 
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With regard to the second topic, we provide a new theorem on closed rules that 

could help substantially improve the time to find a specific type of rule. An insurance 

claims database contains codes indicating associated diagnoses and the resulting pro­

cedures for each claim. The rules that we consider are of the form diagnoses imply 

procedures. In addition, we introduce a new class of interesting association rules in the 

context of medical claims databases and illustrate their potential uses by extracting 

example rules from the MarketScan® database. 

Todd Ashley Iverson 
Department of Statistics 
Colorado State University 
Fort Collins, Colorado 80523 
Summer 2008 

iv 



ACKNOWLEDGEMENTS 

I would like to thank my advisors, Asa Ben-Hur and Hari Iyer for all of their 

support and guidance. I came to CSU with the goal of finding a good advisor, and 

I was lucky to end up with two of the best! In particular, I would like to thank Asa 

for his patience and guidance. I started this project with little knowledge in the area 

of Computer Science, and Asa did an excellent job guiding me to the tools needed to 

succeed. 

I would also like to thank Caterpillar Inc. and Dr. Syamala Srinivasan for 

the opportunity to start working on this great project. Without Dr. Srinivasan's 

inspiration, none of this would have happened. 

Finally, I would like to thank Thomson Medstat for the opportunity to do such 

exciting research based on their MarketScan® database. 

v 



DEDICATION 

To my parents, for all of their support and guidance; and especially to Jennifer 

and Cora, for giving my life purpose. 

VI 



CONTENTS 

1 Introduction 1 
1.1 Diabetes, Kernels and Support Vector Machines 2 
1.2 Mining Association Rules from Claims Data 3 
1.3 Insurance Claims Data 3 
1.3.1 Description of the Database 3 
1.3.2 Interesting Aspects of Claims Data 4 
1.4 Dissertation Layout 7 

2 Background 8 
2.1 Common Classification Methods 8 
2.1.1 Methods for Sequence Data 10 
2.1.2 Support Vector Machines 12 
2.1.2.1 Linear Classification with Large Margin Hyperplanes 12 
2.1.2.2 Soft Margin SVMs 15 
2.1.3 Kernels 16 
2.1.3.1 Linear Classifiers and the Kernel Trick 16 
2.1.3.2 Kernel Properties and Popular Kernels 18 
2.1.3.3 Kernel Construction - An Example 20 
2.1.4 Methods for Sequences Data 23 
2.1.4.1 Hidden Markov Models and the Fisher Kernel 23 
2.1.4.2 The Fisher Kernel 25 
2.1.4.3 The Local Alignment Kernel 26 

3 Time Warping Kernels 30 
3.1 Introduction 30 
3.2 Classical time warping 31 
3.3 The Problem with Classical Time Warping 33 
3.3.1 The Proposed Global Time Warping Kernel 34 
3.3.1.1 Kernels for Measurement/Time Pairs 34 
3.3.1.2 Similarity for a Single Time Warping 35 
3.3.1.3 A Kernel Over All Time Warping Alignments 36 
3.3.2 Local Time Warp Kernel 40 
3.3.2.1 Local Time Warping 40 
3.3.2.2 Local Time Warping Kernel 40 
3.3.3 Efficient Computation 43 
3.3.4 Experiments 46 

vn 



3.3.4.1 Three Classification Problems 46 
3.3.4.2 Classification Methods 49 
3.3.4.3 Parameter Tuning 50 
3.3.4.4 Testing the Classifier's Performance 51 
3.3.4.5 Results 52 
3.4 Conclusions 53 
3.5 Further Work 53 

4 Classifying Risk of Type 2 Diabetes Using Claims Data 55 
4.1 Introduction 55 
4.1.0.6 Facts about Type 2 Diabetes 56 
4.1.0.7 Previous Work 57 
4.1.1 Problem Statement 58 
4.2 Methodology 58 
4.2.1 Our Approach 59 
4.2.1.1 The Classifier 59 
4.2.1.2 Dealing with Heterogenous Data 60 
4.2.2 Kernel Construction and Adaptation 60 
4.2.2.1 Bag of Codes 60 
4.2.2.2 Hidden Markov Models and the Fisher Kernel 61 
4.2.2.3 Time Warping 62 
4.3 Experiments 62 
4.3.1 Data Set 63 
4.3.1.1 Selection of Examples 63 
4.3.1.2 Division of Examples - Tuning, Train-Test, and Extra Sets 64 
4.3.2 Timing, Model Selection, and Testing 65 
4.3.3 Kernel Implementation 66 
4.3.3.1 Cost Kernel 66 
4.3.3.2 Code and Drug Kernels 67 
4.3.3.3 Code Subset Selection 68 
4.3.3.4 Subset Selection Rule 68 
4.3.3.5 Selection of Rule Parameters 69 
4.3.3.6 Comparing the SBoCI and LTW Kernels 71 
4.3.3.7 Demographic Kernel 71 
4.3.3.8 Combined Kernels ' . . . 72 
4.4 Results 72 
4.4.1 Performance of Individual Data Types 72 
4.4.2 Combined Kernels - Full and Selected Codes 73 
4.4.3 Combined Kernels - Complete and Truncated Claim Windows 74 
4.5 Conclusion 75 
4.6 Future Work 76 

vm 



5 Associat ion Rules 81 
5.1 Association Rules: The Apriori Approach 81 
5.1.1 Mining Rules Using Closed Frequent Itemsets 84 
5.1.2 Closed Frequent Itemsets and Medical Databases 89 
5.1.3 Apriori-like Algorithms and Medical Databases 90 
5.2. A New Objective Related to Cost 92 
5.2.1 Problem Formulation - Interesting Rules 92 
5.2.2 Implementation 94 
5.2.3 First Example Family 94 
5.2.4 Second Example Family 95 
5.3 Further Research 98 

References 99 

A Fisher Features for an H M M 103 

B Learning Curve 106 

IX 



LIST OF FIGURES 

1 Illustration of claims data 5 

2 Separating claims data into three sequences 6 

1 Two alignments between abbca and abb 11 

2 Example of a classification problem 12 

3 A non-linear example 17 

4 A kernel for comparing two triangles 22 

5 A kernel for comparing triangles and/or quadrilaterals 24 

6 Two alignments between abbca and abb including gaps 28 

1 Illustration of a time warping alignment 32 

2 Illustration of a local time warping alignment 41 

3 A generative model 47 

4 The first classification problem 47 

5 The second classification problem 48 

6 The third classification problem 48 

1 Two HMM models 61 

2 ROC curves for various kernels: full codes 77 

3 ROC curves for various kernels: selected codes 78 

4 Comparing kernels for full and selected codes 79 

5 Results for the truncated data sets 80 

1 The complete lattice of itemsets 85 

x 



5.2 The meet semi-lattice of frequent itemsets 86 

B.l Learning curve for the BoC kernel 107 

XI 



LIST OF TABLES 

1 Summary of results for classification problems 1, 2, and 3 52 

1 Groupings of claim windows and their relative sizes 64 

2 Comparison of the SBoCI and LTW kernels on 1000 71 

3 Results for various data types and kernels 73 

1 Example of a transactional database 83 

2 Mean cost by gender for first example family 95 

3 Mean cost by age group for first example family 9G 

4 Mean cost by length of stay for first example family 96 

xn 



Chapter 1 

INTRODUCTION 

This dissertation is about mining useful information from insurance claims 

databases. The problem was motivated by Caterpillar Inc., who provided us with 

the Thomson Medstat MarketScan® insurance claims database [1]; and tasked us 

with finding methods for extracting useful information. The amount of information 

in the database is vast, as it contains up to five years worth of insurance claims for 

over 9.6 million patients. As health care cost is an important current topic, the avail­

ability of data and the computational capabilities of modern computers make this an 

excellent and relevant topic for current research. 

It is not hard to imagine a multitude of questions that can be asked: Pick any 

disease of interest. Can we use claims data to identify individuals who are at risk of 

this disease? How early can the risk of the disease be detected? What can we learn 

about the treatment of the disease? Can we identify different treatments for this 

disease and understand why they were selected? Did the different treatments differ 

in their cost? These are the questions that we addressed. 

In response to the first two questions, we developed methods that allow for 

identifying patients at risk of type 2 diabetes using only their insurance claims and 

investigated the methods' ability to detect risk of type 2 diabetes well before its onset. 

To answer the last two questions, we give results that will allow one to tailor existing 

association rule mining techniques to claims data, as well as redefine an "interesting" 

rule to account for the cost in different procedures used for the same set of diagnoses. 
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1.1 Diabetes, Kernels and Support Vector Machines 

Diabetes is a major source of this nation's medical expense [2] that differs from 

many health issues in two ways. First, type 2 diabetes is preceded by a pre-diabetes 

phase that allows for early detection of those at risk of type 2 diabetes [3], Second, 

the onset of the disease can be delayed or completely prevented through life-style 

changes in the form of diet and exercise [3]. On the other hand, a failure to detect 

and treat diabetes can lead to a progression of the disease. A recent study [4] showed 

that more than 25% of untreated patients with type 2 diabetes experienced worsening 

glycemic control. 

It has been shown that detecting those at risk of diabetes can be done in a very ac­

curate way (0.859 area under the ROC curve) using age, sex, ethnicity, blood pressure, 

body mass index, parental or sibling history of diabetes, and various measurements 

on the patient's blood [5]. The tests used to make these blood measurements is time 

consuming, costly, and inconvenient [5]. We wish to determine if a patient is at risk 

of type 2 diabetes using only the patient's insurance claims data. We have developed 

methods that allow accurate prediction of patients at risk of type 2 diabetes based on 

claims data alone. These methods can be used as an initial screening, cutting down 

on the number of individuals that need the costly test and helping identify patients 

that might not have otherwise been screened. We know of no other attempts to solve 

this specific problem. 

We use kernel methods and support vector machines to classify patients at risk 

of type 2 diabetes. Kernel methods provide ways to combine different forms of in­

formation and can be applied even when the data is not a fixed length vector. Some 

background information on support vector machines, kernels, and specific existing 

methods relevant to these data is given in Chapter 2. A new kernel we designed 

specifically with these data in mind is discussed in Chapter 3. Experiments to assess 

their performance when predicting type 2 diabetes are found in Chapter 4. 
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1.2 Mining Association Rules from Claims Data 

The second task involved exploring the database and identifying consistent, as 

well as unusual, patterns. Insurance databases contain much information on medi­

cal diagnoses, procedures, and expenditures. Health care cost is a current topic of 

national concern and any information on how this money is being spent is of interest. 

One method for learning relationships from a database of claims is through min­

ing association rules. There are a few specific needs that are not addressed by current 

rule-mining algorithms. First, we need a more efficient method for mining rules that 

are specifically of the form diagnosis implies procedure. Also, the standard definition 

of an interesting rule does not allow for the inclusion of cost information. Finally, 

current implementation of these algorithms leaves it up to the user to collect sets of 

related rules. 

We give a result that will help speed future algorithms when looking for rules 

of the form diagnosis implies procedure to address the first need. To address the 

second and third need, we develop a new definition of interesting families of rules 

that incorporate cost information. Details can be found in Chapter 5 

1.3 Insurance Claims Data 

Before proceeding to the main body of work, we would like to familiarize the 

reader with the insurance claims database. First, we will give specific information 

on the MarketScan® database. Then we point out the properties that make working 

with these data an interesting and research-worthy activity. 

1.3.1 Description of the Database 

All the proposed research was inspired by and conducted on Thomson Medstat's 

MarketScan® database of health insurance claims from 1999 to 2003. The database 

consists of private sector health claims collected from over 100 employers and in­

cludes over 10 million employees and dependents. The data contains the medical 
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service uses and medical expenditures for insured employees, early retirees, COBRA 

continuations, and dependents covered under the employees' health plan. 

For each person included in the database, referred to as an enrollee, individ­

ual health insurance claims are split by type: inpatient claims, outpatient claims, 

prescription drug claims, and enrollment information. The inpatient claims include 

services associated with a hospital admission. The outpatient claims are related to 

services that occur at a doctor's office, emergency room, or other outpatient facility. 

All inpatient and outpatient claims contain extensive information on the asso­

ciated expenditures. The inpatient and outpatient claims also contain associated 

diagnosis and procedure codes. The diagnosis codes come in the form of ICD-9-CM 

coded variables. The International Classification of Diseases, Ninth Revision, Clinical 

Modification (ICD-9-CM) is the recognized method for coding diagnoses and proce­

dures in United States hospitals. The procedure codes are coded either using the 

ICD-9-CM, CPT-4, or HCPCA protocols. The Current Procedural Terminology, 4th 

Edition (CPT-4) is used most frequently, with ICD-9-CM procedure codes the second 

most common and HCFA Common Procedural Coding System (HCPCA) the least 

prevalent. 

Partial or complete drug information is available for a large number of enrollees. 

These include both mail-order and card program prescription drug claims. These 

claims contain all relevant information about that particular prescription, including 

drug brand, dosage, number of days covered by the prescription, and cost information. 

Enrollment records include enrollment information as well as general demo­

graphic information about the enrollee. These includes age, gender, region, and 

employment information. 

1.3.2 Interesting Aspec t s of Claims D a t a 

The data that you find in a claims database comes in an interesting and challeng­

ing form. For each enrollee, we observe claims happening at various points throughout 
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Type: Drug 
Code(s): A 
Days: 14 
Cost: 132.00 

Type: Outpat. 
Diag:d1,d2 

j Proc: p1 
: Cost: 998.57 

Type: Drug 
Code(s):A 
Days: 14 
Cost: 132 

Type: Inpat. 
Diag: d3 
Proc: p4 
Cost: 57.00 

Type: Inpat. 
Diag: d3 
Proc: p2 
Cost: 457.47 

Enrollee 1 

Type: Drug 
Code(s): B 
Days: 30 
Cost: 787.00 

Enrollee 2 

Figure 1.1: Illustration of claims data. Claims data consists of timed sequence of 
events of different types. E]ach type of claim has different variables associated with 
it. The number of codes present also varies from claim to claim. 

their claim history. We can think of these as discrete events happening in continuous 

time, and refer to this type of data as a timed sequence. 

Furthermore, the events that we see are of different types, in this case inpatient, 

outpatient, and prescription drug claims. Each type of claim is associated with a 

different set of variables. Also, the number of drug, diagnosis, and procedure codes 

can vary from claim to claim. All of these facts make it very hard to use standard 

multivariate techniques that are designed for data that is described by fixed length 

vectors. 

The final point of interest is the timing involved in the claims. Suppose that we 

have two enrollee's that are affected by the same condition. At any point in time, 
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those enrollees could be at a different point in the progression of the condition. It 

may also be the case the enrollees progression will occur at different rates. For these 

reasons, we believe that the timing of the claims relative to one another may be an 

important feature of the data. 

Type: Drug 
Code(s): A 
Days: 14 
Cost: 132.00 

Type: Outpat. 
Diag:d1,d2 
Proc: p1 
Cost: 998.57 

Type: Inpat. 
Diag:d1,d4 
Proc: p3 
Cost: 1718.55 

, _... 

Type: Drug 
Code(s):A 
Days: 14 
Cost: 132 

Claim Sequence 

Cost: 132.00 ; Cost: 998.57 Cost: 1718.55 

Cost Sequence 

Code:d1,d2, 
P1 

Codes: d1,d4, 
p3 

Cost: 132 

Diagnosis/Procedure Sequence 

Code(s):A 
Days: 14.. 

Code(s):A 
Days: 14 

Drug Sequence 

Figure 1.2: Separating claims data into three sequences. There is one for each type 
of variable: cost, diagnosis/procedure codes, arid drug information. 

Our general strategy for dealing with these data is to split the data into several 

timed sequences, all with the same type of information. Figure 1.2 illustrates the 

approach. We make a separate sequence for the cost information, the diagnosis and 

procedure codes, and the prescription drug information. 
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1.4 Dissertation Layout 

The layout of the dissertation is as follows: We provide some background on 

classification methods, support vector machines, and kernels in Chapter 2. Chapter 

3 presents two new kernels that were inspired by the diabetes problem. We address 

the task of predicting subjects at risk of type 2 diabetes based solely on their insurance 

claims in Chapter 4 and an overview of how standard association rules mining can be 

applied to claims data, as well as a new definition of an "interesting" rule is given in 

Chapter 5. 



Chapter 2 

BACKGROUND 

In this chapter, we provide some background material on the two class classifica­

tion problem, classical methods for classification using sequence data, support vector 

machines (SVMs), and kernels. We also summarize some kernels designed specifically 

for sequences. 

2.1 Common Classification Methods 

In this section, we will review some of the common methods for handling a classi­

fication problem and motivate our choice of kernel methods. A thorough presentation 

of the general theory of classification problems and most of the following methods can 

be found in Hastie et. al. [6]. 

The specific problem that we face is a two class classification problem. For each 

observation, we denote the (known) features as x and use the variable y to denote 

the class associated with the observation. The task is to find a classifier that takes 

the features x as input and outputs a prediction of the class y. We hope to find a 

classifier that predicts the class of a new observation with a high rate of success. 

There are many methods for building classifiers. The statistical approach is 

as follows. Suppose that the data for each class is generated from a probability 

distribution P(x\c), where c is the class. We need to define a loss function, l(y,y), 

that assigns a penalty for a misclassification. A good classifier would have a small 

expected loss E(l(Y,Y)). 
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Suppose that we choose the zero-one loss, which assigns a loss of 1 for a mis-

classification and 0 for a correct classification. Then the classifier that minimizes the 

expected prediction error assigns the label of the most probable class given the features 

x, i.e. y — argmaxcP(C = c\x) [6]. This classifier is known as the Bayes classifier, 

and the associated (minimum) value of the expected prediction error is called the 

Bayes risk. Note that minimizing the zero-one loss is equivalent to maximizing the 

success rate. Thus, knowing the class distributions and the prior distributions for 

each class allow us to classify with the greatest success rate. 

Many methods either estimate the Bayes classifier for some assumed model or 

approximate this classifier by estimating the class distributions non-parametrically. 

The discriminant function obtained from the well known linear discriminant analy­

sis (LDA) leads to the Bayes classifier when the class distributions are normal and 

the two class distributions have the same covariance matrices, assuming we use the 

true class priors. The discriminant function from Quadratic discriminant analysis is 

related to the Bayes classifier when the class distributions are normal and both class 

distributions have possibly different covariance matrices. The Naive Bayes classi­

fier assumes that the marginal distributions of the features x are independent and 

estimates the class distributions accordingly. 

Suppose that the classes labeled +1 and —1 and the probability of a random 

observation coming from each class is n+i and 7r_i, respectively. The function 

'P(x\C = +l)\ 
l0{x) = ]°S\P(x\C = -l) 

is known as the log-odds, and it leads to the Bayes classifier when using the correct 

rule; namely lo(x) > log(7r_i/7r+i). Another classifier based on log-odds is logistic 

regression, a method that assumes the log-odds is a linear function for all classes and 

the best model is fit using the maximum likelihood criterion. 

There are many classifiers that don't rely on the Bayes theory in their devel­

opment. Some methods are based on classification using distance measures. For 
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example, the k-nearest neighbors (KNN) classifier is one such classifier. For each 

point, we find the k nearest points using some distance measure and the predicted 

class is the most frequent class amongst these points. 

There is a whole group of tree based classifiers based on building a set of classi­

fication rules. If the features are continuous, the rules are obtained by splitting the 

feature space into regions. A classification rule is assigned to each possible combina­

tion of regions of the feature vectors. These methods include CART [7], C4.5 [8], and 

Random Forests [9]. 

Support vector machines use large margin hyperplanes in conjunction with a 

kernel to generate a non-linear classification boundary. This is an example of a 

method that employs a trick known as "the kernel trick" (see section 2.1.3.1) to 

adapt and add greater flexibility to linear and simple distance based classification 

methods. Other methods that use the kernel trick include kernel LDA and the kernel 

k-nearest neighbors classifier. 

2.1.1 Methods for Sequence Data 

Sequence data arise in many other situations as well. These include speech and 

sound data, DNA and protein sequences, text documents, network traffic flows, and 

in our case, insurance claims data. The book by Sankoff and Kruskal [10] gives an 

overview of many early methods of dealing with sequences of different lengths. 

In some applications, the prediction variables used in developing a classifier are 

vectors of a given dimension, say d, and the classification problem can be tackled 

using traditional multivariate analysis techniques. However, in the diabetes problem, 

the predictors are not vectors of a fixed size, but rather a timed sequence of claims. 

Therefore, standard multivariate classification methods are not applicable here. 

There are two main methods of dealing with this type of data. The first in­

volves summarizing the sequences with a fixed number of statistics and employing 
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abbca abbca 

abb abb 

Figure 2.1: Two alignments between abbca and abb. 

standard multivariate methods. One example is the "bag of words" technique from 

text classification [11]. 

The second involves comparing the sequences directly through some form of 

alignment. Here are two examples of an alignment. Consider the strings abbca and 

abb. The alignments are shown in Figure 2.1. In the first example, we have aligned 

first a in abbca with the first b in abb and then second b in abbca with second b in abb. 

In the second alignment, we have the first three letters in abbca with the first three 

letters in abb. 

Not all alignments are intuitively pleasing. In this example, the second alignment 

is probably a better way to compare the sequences than the first. For this reason, 

alignment methods develop a scoring function that measures either the distance be­

tween, or similarity of, the sequences when using a particular alignment. 

To define an alignment scoring method, first define the collection of alignments 

that are being considered. The next step is to define a scoring function, or alignment 

score. Finally, all possible alignment scores are combined into one score, either by 

taking the minimum distance, maximum similarity, or taking a sum over all the scores. 

Examples of well-known methods that use this approach are the Needleman-Wunsch 



12 

Q 

of
 D

ru
g 

C
ou

nt
 

CO -

• * -

<M -

o -

+ 

+ + + 

0 

0 0 + 

0 0 

l l 1 l 

0 2 4 6 

Count of Diagnosis B 
(a) 

Q 

of
 D

ru
g 

C
ou

nt
 

CD -

^ -

CN -

o -

\ A 
\ -/ + v 

a p \ + 
i ' \ 

Q-d' \ 

i i i i 
0 2 4 6 

Count of Diagnosis B 
(b) 

Figure 2.2: Example of a classification problem, (a) The two dimensional prediction 
variables are plotted in the plane. Examples of the positive and negative classes are 
represented with + and O respectively, (b) The optimal separating plane for this 
example. 

score [12], the Smith-Waterman score [13], the local alignment kernel [14], and the 

time warping score [15] 

2.1.2 Support Vector Machines 

In the following sections we will provide an overview of support vector machines 

(SVMs) [16]. First we show how classification can be performed through optimal 

separating planes [17]. Then, we show how these methods are generalized through a 

soft-margin classifier [18]. 

2.1.2.1 Linear Classification with Large Margin Hyperplanes 

First, we look at the problem of finding a large margin hyperplane in the case 

when the data are linearly separable [17]. That is, there exists a hyperplane that 

completely separates the two groups (see Figure 2.2). 

We will use a representation for a hyperplane (a line if the data are represented in 

a two-dimensional Euclidean space) that will be convenient for discussions contained 
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in subsequent sections. Notice that a hyperplane vj\ X\ + w? £2 + • • • + Wd %d + b = 0 

can be written as 

{x\ (w,x) + b — 0} , 

where (w,x) denotes the inner product of the vectors w = (u>i,..., wa) and x — 

). We call the function f(x) = (w,x) + b the discriminant function and 

the hyperplane f{x) = 0 the decision boundary. The side of the hyperplane that a 

point lies on can be determined by sign(/(jc)), as all point on the same side of the 

hyperplane will share the same sign. We will use y = sign(/(cc)) as our prediction for 

the class of y. 

Consider the example from the last section in Figure 2.2(a). Here we have a 

case where the data are linearly separable, that is the two groups can be completely 

separated by a line. 

As there are lots of lines that separate the two groups, consider the question: 

Which line is the "optimal" line? There are many ways that we could define optimality 

one being the line that has the largest margin. The margin is the distance between 

the line and its closest point. Figure 2.2(b) on page 12 shows the line with largest 

margin. Geometrically, this line can be found by: 

1. Drawing the Convex Hull around each group. 

2. Finding the pair of points, one point on each hull, that are closest to each other. 

3. Finding the perpendicular bisector of the line segment connecting the points in 

2. 

The line from 3 is the optimal separating plane, that is it has the largest margin. 

The optimization is reworked in the following way: re-scale w and b such that 

the margin is unit length. Suppose that xpos is the closest point on positive side 

and xneg is the closest point on the negative side. The rescaling of w and b gives 



(w,xpos) + 6 = 1 and (w,xneg) + b = —1. This implies that (w, (xpos — xneg)) = 2 

and thus \ TT̂JTT•> (XPOS — xneg)) = TTJT. This shows that a large margin is the result of 

a small w. Thus, the optimization problem can be written 

min -||u>||2 (2.1) 
weud 2 
subject to yi((w, xt) + b) > 1 for all i = 1 , . . . , n 

A constrained optimization problem like this can be solved using Lagrangian 

Multipliers (see [19, page 166]). The Lagrangian for this problem is 

1 ™ 
L{w,b,a) = -\\w\\2 -J2al{yl{{xl,w)+b) - 1), (2.2) 

i=\ 

where a% > 0 for all i — 1 , . . . ,n. The Karush-Kuhn-Tucker(KKT) conditions tell us 

that a solution must occur at a saddle-point where L is maximized with respect to a 

and minimized with respect to (w,b). Thus 

d d 
— L = 0 and —L = 0 
ob aw 

which implies 
n 

J>#* = 0 (2.3) 

and 
n 

W = ^2aiylxi. (2.4) 

The KKT conditions also tell us that ai(yi((xi,w) + b) — 1) = 0 for all i = 

1 , . . . , n. Thus, either oti — 0 and it doesn't matter what value yi((xi, w) + b) takes 

or yi({xi,tv) + b) — 1 = 0 which indicates that CCJ is on the margin. Points on the 

margin are called support vectors. 

The dual optimization problem is constructed by substituting 2.3 and 2.4 into 2.2 

which gives a new form for the optimization problem that no longer depends on w 
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and b. The result is 

max V an - Y] a^a^y^x^ x.f) (2.5) 
i = l T , j = 1 

n 

subject to o.i > 0 for alH = 1 , . . . , n and \ J a ^ = 0. 

This is a quadratic optimization problem for which there are many known algorithms. 

2.1.2.2 Soft Margin SVMs 

Thus far we have assumed that the data is linearly separable. We can use a so-

called soft margin method [18] to deal with linearly non-separable cases by introducing 

a penalty for points on the wrong side of the decision boundary. Rewrite (2.2) as 

1.. ,., + C 
m m -l l tol l 2 -| 

-u>eRd,£eRd 2 n 

where C is a given cost parameter associated with the slack variables £. Apply­

ing Lagrangian multipliers and the KKT conditions leads to a similar dual problem 

as (2.6) 

max Y^ Q!j - Y^ aiCtji/iyjiXi, Xj) 
i = i ?;,j=i 

subject to 0 < at < — for alH = 1 , . . . , n and > atii/i — 0. 
n *-^ 

Once again, the solution space for this optimization problem depends only on the 

number of observations and not the dimension of x. The parameter C is a tuning 

parameter that can be chosen using cross-validation. 

Now it is time to make two very important points about SVMs. First, notice 

that we are optimizing on a and need to find n values, where n is the number of 

observations in the data set. Thus, the size of the search space for optimizing an 

SVM only depends on the number of observations, not the dimension of x. This 

makes SVM a great method for high-dimensional data. 
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Second, the only information that we need about the vectors the inner 

products (xi,Xj). This leads to the kernel trick. Suppose we have a function k such 

that k(Xi,Xj) = (4>(xi),4>(Xj)) for all i,j — 1,. . . , n. Then we need not store JEJ but 

only be able to evaluate k. As we will see in the next section, this leads to a nice 

method for developing non-linear classification methods, and also allows us to apply 

the machinery to non-vector data. 

2.1.3 Kernels 

In this section, we review how the capabilities of large margin classifiers can be 

greatly expanded through the use of kernels. We illustrate how kernels can be used to 

make non-linear decision boundaries. Then, the properties of kernels are discussed. 

2.1.3.1 Linear Classifiers and the Kernel Trick 

Consider the example data shown in Figure 2.3(a) where there are again two 

groups of points. It is clear that there is no line that is able to successfully separate 

the two groups of points, that is, the data are not linearly separable. Suppose we 

apply the map cj> that takes (x\,X2) to (x\,x\). Figure 2.3(b) shows the points in 

the new space, which are now linearly separable. The line that is shown is the result 

of applying a SVM classifier. The points on this line can be translated back to the 

original space, as shown in Figure 2.3(c). Notice that the net result is a non-linear 

classifier. 

Recall that the only values needed from the space (x\,x\) are the inner products, 

which are given by the function k(xi,x2) = (<f>(xi), 4>(x2)) = x\x\. We call such a 

function a kernel. In practice, we never actually do the transformation from {x\,x-i) 

to (x\,X2). Instead we simply evaluate k(x\,X2). 

This example illustrates the kernel trick. We imagine a mapping (f> from the data 

u to some vector x in a Hilbert Space H. For technical reasons, we need the mapping 

to land in a Hilbert Space, which is a vector space with an inner product in which 
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Figure 2.3: A non-linear example, (a) Two Groups • and +. (b) Plot of Square of 
Each Feature, (c) Optimal Separating Plane in the Square-Square Scale, (d) Optimal 
Separating Plane Translated In Original Scale. 

every Cauchy sequence has a limit that belongs to the space. Notice that the original 

data u need not be a vector. This allows Kernel Methods to be applied to data that 

can be represented by a graph or some other non-vector format. 

The kernel function k(xi,Xj) = (<f)(xi),(j)(xj)) is constructed and used to train 

a linear classifier in the new space 7i. The section above illustrated how the kernel 

trick could be applied to a SVM. There are many other linear methods that can 

take advantage of the kernel trick, including Linear Discriminant Analysis, Principal 

Component Analysis, and Ridge Regression. 

Clearly, a kernel exists for any mapping to a Hilbert Space. It is defined by 

k(x\,X2) = (cf>(xi),(j)(x2))- The next section answers the question: Given a function 
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k, is there a mapping 0 from the data to some Hilbert Space H such that k(x\,X2) — 

{(f)(xi), (f)(x2))^ If we can answer this question, we can simply use the kernel knowing 

that there is a corresponding mapping and Hilbert space without ever needing to 

construct this mapping. This will allow us to, for instance, consider mappings into 

infinite dimensional spaces. 

2.1.3.2 Kernel Properties and Popular Kernels 

What properties must a function k have for there to exist a mapping cj) into a 

Hilbert Space H such that k(ui, Uj) = (<fi(ui), 4>{UJ))1 For a given set of observations 

Ui,. .. ,un, we construct a matrix K whose i,jth. component is k(ui,Uj), which is 

called the Gram matrix. 

The necessary and sufficient conditions for k to be the kernel for some mapping 

4> into some Hilbert space 7i is: for every set of observations Ui,. .. ,un the Gram 

matrix K is positive definite [19]. Recall that a matrix is positive definite if it has all 

positive eigenvalues. 

Here are some examples of popular kernels. These kernels are all defined for data 

that is in vector form. The most basic kernel is the Euclidean inner product and is 

called a linear kernel: 

ki(xi,xj) = {xi,xj.) (2.6) 

Another popular kernel is the polynomial kernel of degree d. It corresponds to 

the feature space of monomial terms of the observations. 

kp(xi, Xj) = ({Xi, Xj) + a)d, (2.7) 

Where a and d are parameters whose value needs to be specified. We refer to such 

model parameters as tuning parameters. Typically, cross-validation is used to choose 

tuning parameters. 

Our last example of a common kernel is the Gaussian Kernel. It too has a tuning 

parameter, in this case a. Notice the resemblance to the Gaussian, or normal, pdf. 
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This gives us some intuition into the workings of this kernel. 

/ II l|2 \ 

kg(xi,xj)=exp(—Xl
2J

J j (2.8) 

The Gaussian kernel is very sensitive to normalization and the choice of a. We 

need for values of the exponent to generally be between -3 and 3 for this kernel to 

perform satisfactorily. The Gaussian kernel is an example of a kernel that represents 

a mapping into an infinite dimensional Hilbert space. 

The Gaussian kernel is an example of a universal kernel [20], a continuous 

kernel that is dense in the space of all continuous functions. To see why this is 

important, recall the set up for a two-class classification problem. Suppose that 

T = {(xj, yi),..,, (xn) yn)} is a training set generated from some probability dis­

tribution P, where x e X are the observations and y E { —1,+1} are the class 

labels. A classifier C uses a set of training examples T to build a decision function 

fc,T • X —> { —1,+1} that is used to classify new observations with unknown la­

bels. If we are using the zero-one loss function, the expected loss for fc,r is given by 

nfc,T) = P({(x,y)\fcAx)^y})-

Recall that the Bayes classifier is the classifier that minimizes the zero-one loss 

function, with this minimum value referred to as the Bayes risk, which we denote 

TlBayes- A classifier is called a consistent if 

l i m K(fCiT) = K Bayes 
|T|^oo 

holds in probability. A classifier that is consistent for all distributions is called uni­

versally consistent. 

Steinwart [20] was able to show that the SVM classifier is universally consistent 

provide we use a universal kernel. Thus, the SVM classifier using a Gaussian kernel 

is an asymptotically optimal classifier with respect to the zero-one loss. 

A important tool frequently used when using kernel methods is that of kernel 

construction. One method of constructing a kernel is to define the associated feature 
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map, 4>{x). The kernels value when evaluated on x and x' is (<t>(x), <j){x')). There are 

other properties of kernels that are useful in kernel construction. Suppose that a > 0 

is a constant and K\ and K2 are kernels on X x X. Then, in each of the following 

cases, K is also a kernel on X x X [21]. 

1. K(x,y) = a*Ki(x,y) 

2. K(x,y) = a + Ki(x,y) 

3. K(x,y) = Ki(x,y) + K2(x,y) 

4. K(x,y) = Ki(x,y)*K2(x,y) 

Consequently, these operations can be used to construct new kernels. We will illus­

trate this fact in the next section. 

2.1.3.3 Kernel Construction - An Example 

Two of the useful qualities of kernel methods are the ability to build kernels for 

objects that are not fixed length vectors and the ability to combine kernels using 

the closure properties given in the last section. We will illustrate these points by 

constructing an example that will allow us to compare triangles and simple convex 

quadrilaterals *. 

We start by building a kernel to compare two triangles. We use the following 

notation for a triangle. The angles of the triangle are denoted 7, (3, and a, with 7 

taking the value of the largest angle and f3 the value of the second largest angle. The 

length of the sides are denoted by a, b, and c, where c is the longest side and a is the 

shortes t . 

'A simple: quadrilateral is a four-sided polygon that is not self-interesting. Pick any two points 
from the edges of the quadrilateral. We say a quadrilateral is convex if the line connecting these 
points is guaranteed to be contained inside the quadrilateral. 
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One way to construct a kernel is to build a fixed number of features for the object. 

It is a well known fact that a triangle is completely determined when provided three 

pieces of information, say two of the angles and the length of a side. We will choose to 

use the two largest angles, 7 and (3, and the length of the longest side c to represent 

a triangle. 

When constructing kernels, it is useful to compare "like things". Thus, we start 

by defining a kernel for comparing the angles of two triangles. We do this by con­

structing the vector (7, /3)T for each triangle and using the inner product as our kernel 

The second kernel is constructed to compare the lengths of the sides of the triangle. 

It is the inner product of two one-dimensional vectors, each containing the length 

of the longest side of the respective triangle. Figure 2.4(a) illustrates both of these 

kernels. 

To combine these kernels, we can either add the kernels or multiply them. Sup­

pose that we have two triangles T and T'. Adding kernels is related to the "or" 

operation, in the sense that the resulting kernel will be relatively large if T or T" is 

large. Multiplying the kernels, on the other hand, is like an "and" operation, in that 

resulting kernel will be relatively large if T and T' are large. In this example we will 

combine the kernels using addition. 

Note that these two properties of a triangle, angles and length, might be of very 

different sizes or importance. To allow the user to scale the values, assign a relative 

importance to each, or simply tune the performance of the kernel, we introduce a 

tuning parameter 0 < A < 1 and add the kernels for angle and length using a 

weighted sum. Figure 2.4(a) shows the final form of the triangle kernel, KA . 

Now suppose that we want to construct a kernel that can be used to compare any 

combination of triangles and quadrilaterals. One useful way of compare items that are 

of different dimensionality is to break each item into "parts" and compare the parts. 

We already know how to compare triangles, so let's convert a quadrilateral into a 

number of triangles and do comparisons using our triangle kernel. Each quadrilateral 
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Figure 2.4: A kernel for comparing two triangles, (a) Ka compares the angles of the 
triangles by adding the inner products of the largest angles and the second largest 
angles, respectively. A'/ compares the length of the longest side of each triangle. The 
kernel for comparing triangles, A^ , is a weighted sum of Ka and A'/. We introduce 
the timing parameter 0 < A < 1 to allow the user to specify the relative importance 
of angles and lengths or tune for better performance, (b) We think of a quadrilateral 
as four triangles, each consisting of one of the interior angles, the two sides adjacent 
to said angle, and the appropriate diagonal. 

is broken into into four triangles, each consisting of one of the interior angles, the two 

sides adjacent to said angle, and the appropriate diagonal. That is, we represent a 

quadrilateral as a set of triangles, i.e. Q — {7\, T2, T3, T4}. This process is illustrated 

in Figure 2.4(b). 

We are now ready to build a kernel that can compare any two objects O and 

O', each being either a triangle or a quadrilateral. Let T be the space of all regular 

convex triangles, Q be the space of all regular convex quadrilaterals, and 0 = T U Q . 

First, we define some sets that unify our types of objects. Let 

{0} OeT 
So OeQ ' 
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The kernel used for comparing O, O' G. O is given by 

4A)(o,o')= J2 K%\TX). 
TeS0,T'£S0, 

Figure 2.5 illustrates the computation of this kernel for various combinations of ob­

jects. 

In summary, we first constructed a kernel for comparing a relatively simple ob­

ject, a triangle, using the properties of kernels. We then conceptualized a more 

complex object, a quadrilateral, as being composed of simpler parts (triangles). This 

allowed us to compare different types of objects(triangles and quadrilaterals), pro­

vided that they could be broken into the correct type of simpler parts(triangles). 

This illustrates a common method for kernel construction that was formalized by 

Haussler [22], known as a convolution kernel. The local alignment kernel, which is 

discussed in the next section, is an example of such a kernel. 

2.1.4 Methods for Sequences Data 

In this section, we will look at various existing methods for dealing with data 

that are sequences of different lengths. 

2.1.4.1 Hidden Markov Models and the Fisher Kernel 

First, we give an overview of hidden Markov models (HMM) [23]. The general 

idea behind an HMM is that the data is being generated from a probabilistic model 

that is always in one of a given set of states. The states are hidden from the observer, 

but we are able to observe an emitted signal that depends on the current state. 

When we first observe the system, we assume that the process is in some random 

state. Suppose that we have a finite number of states {mi, m-2,..., m^} = Ai. The 

starting probability is denoted pmi,..., pmN, where pmi is the probability that the 

process starts in state i. The simplest implementation assumes that a random state 

change occurs at each discrete time interval. We denote the transition probabilities 
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Figure 2.5: A kernel for comparing triangles and/or quadrilaterals. (A) When com­
paring two triangles, we simply apply K A . (B) When comparing a quadrilateral, Q 
to a triangle T, we compare the triangle T to each of the sub-triangles of Q using 
K^ and sum the results.(C) When comparing the quadrilaterals Q and Q', we com­
pare each sub-triangle of Q to each of the sub-triangles of Q' using A ̂  and sum the 
results. 
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Pt{rrii\mj) for all states mi,rrij £ M, where Pt(mi\mj) is the probability of a transition 

from state i to state j . 

At each time step, the system will emit a random signal. The distribution of 

the signals depends only on the current state. Suppose that the set A contains all of 

the possible signals. We define the emission probability Pe(a\m,i) for all ra?; e M and 

a G A, where Pe(a\m,i) is the chance of state i emitting the signal a. 

2.1.4.2 The Fisher Kernel 

The Fisher kernel [24] is a method that enables us to use a probabilistic gener­

ating function with kernel methods. Suppose that the sequence x is generated by 

some parametric model, where 6 = (9\,... ,9k) are the k parameters. The likelihood 

function l(6\x) is the result of plugging the observed values of x into the pmf/pdf 

and thinking of it as a function of the parameters 6. The score vector is the vector 

V S0i ' " " ' d9v 

where we make the appropriate assumptions about / such that the derivatives exist 2. 

The score vector was used in a classic statistical hypothesis test, the Rao score 

test [25], which decides whether the data comes from one of two specified models. 

Consider the following hypotheses 

Ho • Q = #o 

Ha • 6 = da 

where Ho and Ha are the null and alternate hypothesis, respectively. The parameters 

90 a.nd 9a are the parameters for the specified models, called the nidi model and al­

ternate model, respectively. Before showing the relationship between the score vector, 

2Taking s(6\x)/\/v. gives the: score vector as originally defined by Fisher. We will stick to the 
definition presented in [24]. 
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the Fisher kernel, and the Rao score test, we must define the Fisher information. The 

Fisher information is given by 

d2\nl{9\X) 
1(9) = -E 

Then the Rao score statistic is 

dOdO1 e 

s(90\x)TI(90)-
ls(90\x), 

which can be shown to have an asymptotic chi-square distribution with k degrees of 

freedom [26]. 

One definition for the Fisher kernel is 

s(0o\x)TI(Oo)-
ls{OQ\y), 

which seems to be inspired by the Rao score statistic. More commonly, the kernel is 

defined as 

s(9Q\x)Ts(90\x), 

which saves us from having to compute the Fisher information matrix. Refer to 

Appendix A for the explicit features related to a Fisher kernel based on an HMM. 

2.1.4.3 The Local Alignment Kernel 

The Local Alignment (LA) kernel [14] was developed to adapt the popular Smith 

Waterman algorithm for local sequence alignment into a kernel. To properly define 

the LA kernel, we first need to define an alignment for strings. 

Classically, one method of comparing sequences of different lengths used a "sim­

ilarity" score based on a system of aligning sequences and scoring said alignments. 

These scores can be classified as global, they measure the complete alignment of the 

sequences from start to finish; or local, measuring only the "similarity" between parts 

of each sequence. The Needleman-Wunsch algorithm gives one such score that is con­

sidered a global measurement for sequences. Another global comparison, this time for 
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-abbca abbca 

ab-b -- abb --

Figure 2.6: Two alignments between abbca and abb including gaps. To help in scoring 
the alignment, we introduce a gap in one sequence, denoted with an "-". whenever 
the alignment skips a. letter in the other sequence. Both the Needlenian-Wunsch and 
Smith-Waterman scores penalize gaps. 

time series with continuous measurements, is Dynamic Time Warping (DTW) [15]. 

A popular local scoring method for sequences is the Smith-Waterman score. All of 

these methods find the alignment with the minimum distance, and report this value 

as the score. 

Let's define an alignment. Let A be the alphabet of characters. The string x of 

length n is the concatenation of n letters from A. We let X be the class of all strings. 

An alignment of p positions between x, y is a pair of p-tuples: 

7 r = ( ( 7 r 1 ( l ) , . . . , 7 r 1 ( P ) ) , ( 7 r 2 ( l ) , . . . ^ 2 ( p ) ) ) e I N ^ 

that satisfies 

1 < 7Ti(l) < . . . < 7Ti(p) < |a;| 

l < v r 2 ( l ) < . . . < 7 r 2 ( p ) < \y\, 

And let TI(|cc|, \y\) be the collection of all such alignments. These are the alignments 

that are used by both the Needleman-Wunsch and Smith-Waterman algorithms. 

We have shown the alignments given in the example section 2.1.1 again in Fig­

ure 2.6, this time with gaps. To aid in understanding the computation of the score, 
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we introduce a gap in one sequence, denoted with an "-", whenever the alignment 

skips a letter in the other sequence. Note that the first alignment is given by 

((1,2), (3,3)). It may not be the best way of aligning these strings. The second 

alignment, ((1,1), (2, 2), (3,3)), will align the substrings abb that are found at the 

beginning of each string, and may be a more appealing way of aligning these partic­

ular strings. In that light, we need to develop a method for measuring the quality 

of each alignment for a specific pair of strings. The Smith-Waterman score will rate 

the similarity between the two strings aligned in a specific way. In particular, it is 

the local alignment score used by the Smith-Waterman algorithm, which ignores gaps 

before the first aligned position or after the last aligned postion. Suppose that we 

have a similarity function S for aligned letters and a gap function g for which assign 

a penalty to gaps according to the length of the gap. Let x and y be two strings. 

The local alignment score for alignment TX is given by 

M W-i 

sn(x,y) = ^ 5 ( a ; W x W , y f f 3 ( i ) ) - ^ ^ ( T T I ( Z + 1) - irx(i)) + g(n2{i + 1) - ir2(i))]. 

Notice that the score is the sum of the similarities between aligned symbols minus 

the penalty we accrued for gaps. 

The Smith-Waterman score is defined as 

sSw{x,y) = maxsn(x,y), 

that is, it is the score for the alignment that results in the highest similarity 

between x and y 3. One might ask "Is this function a kernel?". While there is at 

least one trivial combination of S and g that make this a kernel, other combinations 

have not produced a positive definite function [14]. 

•'The Necdleman-Wunsch global score is almost identical, the difference being that the global 
score penalizes gaps before the first alignment and after the second alignment., where; as the Smith-
Waterman score does not. 
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The LA kernel is defined in the following way: 

k{LA(xiV)= Yl exp((3sn(x,y)). 
nen(\X\,\y\) 

Instead of employing the maximum of the scores it uses a "soft max", the sum 

of the exponentiated score for each alignment. This score has the property that 

lim^oo 4 log k^(x, y) = ssw(x, y), while retaining information about all the align­

ment scores. 

This kernel is designed for aligning a string of symbols. The diabetes data set 

consists of a timed sequences of codes that happened at specific points in time. This 

leads to difficulties adapting these data to the LA kernel. In particular, there is no 

obvious way to incorporate the information about the timing of the claims in a string 

alignment setting. 

Having said that, the process by which the LA kernel converts the Smith Wa­

terman score into a kernel inspired us to attempt to do the same for an alignment 

method that does work for timed sequences: time warping. 



Chapter 3 

TIME WARPING KERNELS 

3.1 Introduction 

Two methods based on alignments were presented in the last chapter, namely the 

Smith-Waterman algorithm and the local alignment kernel. Both of these methods 

are designed for comparing un-timed sequences. Another alignment method, called 

time warping [27], is designed instead for comparing timed sequences. This method 

was made popular in the area of spoken word recognition. The general idea is to align 

two time series by "warping" time. The quality of a given alignment is assessed by 

an alignment score. The best score out of all possible alignments is used as the final 

measure of distance between the two sequences. 

Since claims data is also a timed sequence, this alignment method is of great 

interest. Consider two patients with the same disease. When comparing their claims 

history, it must be noted that (a) their diseases may not be progressing at different 

rates, (b) the patients may be at different points in the disease's progression at a 

given point in time, and (c) not all of the claims in a patient's history need be related 

to the disease. Because of (a), we believe using a method that incorporates time 

warping is justified. Due to (b) and (c) the use of a local alignment method seems to 

be warrented. 

To fully understand the need for our work, it is necessary to understand that 

the original definition of time warping included time coefficients used to weigh the 

severity of the time warping needed for a particular alignment (more details are given 
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in Section 3.2). In the last few years, there have been attempts to adapt dynamic time 

warping (DTW) for use with SVMs (see [28], [29], [30], and [31]), Of the attempts 

to adapt DTW to the SVM framework, only Shimodaira et. al. [28] have included 

these time coefficients. Only Cuturi et. al. [31] proved that their kernel is positive 

definite. All of these methods are global alignment methods. It is our contention that 

building a kernel that includes these time coefficients will lead to a better similarity 

score when the waiting times between observations are important. 

In this chapter, we extend the work of Cuturi et. al. [31] in the following ways: 

We introduce both local and global DTW kernels that include information about the 

time intervals between measurements. First, we review the definitions of classical 

time warping in section 3.2. In section 3.3.1, we motivate and define the global 

DTW (GTW) kernel. Section 3.3.2 introduces the local DTW (LTW) kernel. An 

efficient algorithm for each of these kernels is given in Section 3.3.3. We test our 

hypothesis that the new kernels are superior at discriminating between observations 

when the time between measurements is important in Section 3.3.4. We illustrate the 

performance of the LTW kernel when used in the diabetes problem in Section 4.3.3.6. 

3.2 Classical time warping 

Suppose that the vector x = (xi,... ,xm) contains a sequence of measurements 

from a space with a distance measure w. These measurements are taken at real-valued 

times tx(l) = 0 , . . . , tx{m), with tx(i) < tx(j) when i < j . Let Xm be the class of all 

such vectors of length m and X — UfcLi <^m-

The classical definition of a discrete (global) time warping (see Kruskal and 

Liberman [15]) is as follows: Let k — 1,...,K index the time warping alignments 

(i(k),j(k)). To represent a valid (global) time warping, i(k) must be a function 

outputting natural numbers such that i(k) < i(k + 1) < i(k) + 1, i(l) = 1, and 

i(K) — m. Similarly, j(k) must be a non-decreasing function of the natural numbers 
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Figure 3.1: Illustration of a time warping alignment, (a) The time warping (i(k),j(k)) 
aligns the points of a to b. Here at is aligned with b\. lh, and 63; a2 and a3 are aligned 
with b,i\ and so forth, (b) A matrix representation of a time warping. 

such that j(k) < j(k + 1) < j(k) + 1, j ( l ) = 1, and j(K) — n. We write n = 

((I(1),J(1)),...,(Z(K),J(K)). 

In the example illustrated in Figure 3.1, we see that cq is grouped/aligned with 

b\, 62 and b3. The term time warping comes from the fact that we are imagining 

expanding/compressing4 time in an attempt to match the sequences. In this case, 

the time that passed between measurements bx and 63 is compressed so that 61, b2, 

and 63 happen at the same instant as 01. 

It is common to talk in terms of the allowable changes from one pair to the next. 

The conditions given above allow for either adding one to i(k — 1), adding one to 

j(k — 1), or adding one to both i(k — 1) and j(k — 1). We refer to these as (1,0), 

(0,1), and (1,1) moves respectively. 

An equivalent expression of the time warping can be constructed as follows: we 

write Ai(k) = i{k) - i(k - 1) and Aj(k) = j(k) - j(k - 1) for k = 2 , . . . , K. As the 

time warping is forced to start at i(l) — j(l) = 1, it does not matter how Ai(l) is 

defined. For convenience, we define Az(l) = Aj(l) — 1. Finally, we use the notation 

4 This is a slightly different take 011 alignments than that taken by methods designed for strings 
of symbols. For example, the idea behind the Nccdlcman-Wunch algorithm is to insert and delete 
symbols to match two strings. 
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An = ((Ai(l), Aj(l)),..., (Ai(K), Aj(K)) to refer to this alternate representation 

of 7T. This representation explicitly gives which move was employed at each step: 

(1,0), (0,1), or (1,1). 

Suppose that we define the time coefficient function T as 

Tn(t,t\k) = tm)-t(i(k-l)) + t(j(k))-t{j(k-l))^ ( 3 1 ) 

Kruskal and Liberman [15] give the distance between x G Xm and y € Xn according 

to the time warping n as 

K 

d^{x,y) = 'Y^w{am,b3{k))T^{tx,ty,k), 
fc=i 

and the distance between x and y as 

D(x,y) = mmdv(x,y). 
TV 

The Kruskal and Liberman [15] definitions were motivated by a desire to make 

the scores symmetric in time. We are not concerned with this property and make no 

claims about the time symmetry of our method. 

3.3 The Problem with Classical Time Warping 

First, we give our intuition of how a time warping distance should behave. Sup­

pose that while aligning two timed sequences, we align two measurements x\ and xi 

that were taken at times t\ and t2 respectively. A time warping distance between the 

sequences should increase if we (1) change x\ and x% so that they are further apart or 

(2) change t\ and £2 so that they are further apart. Equivalently, we could consider 

the similarity (i.e. inner product) between the values. In this case, a time warping 

"similarity" should increase when if we (1) make x\ and X2 closer in value or (2) make 

t\ and t2 closer in time. 

The classical definition of time warping is the product of two distances, one for 

time and one for observations. The problem is that the product of two distances will 
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be small when either of the distances is small. A solution is to define the similarity 

between two observations as the product of two similarities. The product of similar­

ities between two observations will only be large if both of the similarities are large, 

which is more desirable. 

3.3.1 The Proposed Global Time Warping Kernel 

In this section, we will construct a kernel that is inspired by time warping. We 

do this by constructing a similarity between two time series based on time warping. 

We then show that this is a kernel. This work is an extension of the proof by Cuturi 

et. al. [31] in that it allows for variable lengths of time between observations. 

3.3.1.1 Kernels for Measurement/Time Pairs 

Let (xi,ti) and (x2,t2) be pairs such that x{ is the measurement that was taken 

and tf is the time since the last measurement. Suppose that S is a kernel for the 

measurements x and T is a kernel for the time values t. We define two squared 

distances between measurement-time pairs based on these kernels 

di((xi,ti), (x2,t2)) = S(xi,xi) - 2S(xi,x2) + S(x2,x2) (3.2) 

and 

d2((xl,t1),(x2,t2)) = T{ti,t1)S(xux1)-2T(tut2)S(xi,x2)+T(t2,t2)S(x2,x2). (3.3) 

Recall that the product of two kernels is also a kernel. Both of these distance 

functions are conditionally positive definite by construction (for both of these facts, 

see Scholkopf and Smola [19]). These squared distances are converted to kernels using 

a kernel similar to the Gaussian kernel 

R r t , , x , xx -dl((,x1,t1)Jx2,t2))-\n(0) 

Xi' ((xi,h),(x2,t2)) = e ^ (3.4) 

and 

X2
a{{xutx),{x2,t2)) = e - . (3.5) 
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We wish to show that X\ a n f l X2 a r e kernels. First, it is easy to show that 

if k(x,y) is conditionally positive definite, then so is k(x,y) + c for any real con­

stant c. It can also be shown that exp(—k(x,y)) is a kernel if and only if k(x,y) 

is conditionally positive definite [19]. Thus, X\ a n d X2 a r e positive definite since 

(d\((xi,ti), (x2,t2)) + ln(/3))/cr is conditionally positive definite. 

We are using two parameters to keep the size of final time warping kernel values 

in check. The parameter a > 0 plays the role of scaling the distances to an appropriate 

level. The parameter (3 > 1 will ensure the convergence of the time warping kernel by 

forcing Xi ^ < 1 for all inputs and has the added benefit of controlling the diagonal 

dominance5 of the kernel, which was a problem encountered by Cuturi et. al. 

3.3.1.2 Similarity for a Single Time Warping 

Let 7v G Ila(n,m) with n = ((i(l),j(l)),...,(i(K),j(K)). Suppose that 

x i , . . . ,xn are measurements taken at times t\,... ,tn with t\ = 1 and x[,... ,x'm 

are measurements taken at times t[,..., t'm with t[ — 1. 

We define the vectors 

v(x,t) = ((Zi(i),l),(a:i(2),*»(2) - * i ( i ) + 1), •••,(*»(*-) -U(K-\) + 1)) (3-6) 

and 

V (X ,t ) = ((£_,•(!), 1), (^j(2)i^(2) — tj(l) + ! ) ) • • • ) \tj{K) ~~ tj(K-l) + 1)) (3-7) 

Where there is no confusion, we refer to each of these simply as v and v'; and use 

v(k) and v'(k) as shorthand for v(x,t)(k) and v'(x,t)(k), the kth component of these 

vectors, respectively. We define the similarity between (x,t) and (x',tf) based on an 

alignment TT as 

,r>Supposo that, K is a kornol and we make a matrix G for whic:h the Ljth element is K(x,, x.j) for 
some collection of inputs x\,.,. ,xn. The kernel K is termed diagonally dominant when the values 
on the diagonal of G are much larger than the off diagonal elements. 



3fi 

^X,t)^,e)) = fl-^^M- (3.8) 

where /? > 1 and a > 0 are tuning parameters mentioned above. The use of this 

particular form will allow us to construct a positive definite kernel. 

3.3.1.3 A Kernel Over All Time Warping Alignments 

We define the Global Time Warping kernel KQ^W as 

K^TW((x,t),(x^t')) = ] T *£*((*, t ) , (* ' , f ) ) . (3-9) 

The following theorem states that - ^ r ^ w is indeed a kernel under natural assump­

tions. 

Theorem 3.3.1 Let x,x' e X be a collection of measurements taken at times t and 

t', respectively. Suppose that S : X x X —> R is a symmetric positive definite function. 

Then K^aj,yJ(x,t), (x',t')) is a symmetric positive definite function for all f3 > 1 

and a > 0. 

We start with an overview of the proof. First, we construct a feature space of 

vectors in a way that mirrors the rules for time warping alignment functions (i.e. 

i(k) < i(k + 1) < i(k) + 1, i(l) — 1, and i(K) — n). Next, we define a kernel 

on this feature space. The proof is concluded by showing this kernel is equal to 

K'(£pyr((x,t), (x',t')). Suppose that v is a vector. We will frequently use the either 

Vi or v(i) to refer to the ith component of v. 

Proof: Symmetry is clear from the definition. Let (3 > 1 and a > 0 be given. First, 

we construct a feature space of replicated vectors. Suppose that X is a space of 

measurements that are taken at times t e l . Let (X x R)* = I J i ^ i ^ x ^-Y- For each 

(x,t) E {X x R)* and a e IN^1 we define the followin g mappings: 
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*E<i — \X\, . . . } X\, X2, • . . , X2, • • • , Xn, . . . , Xn) 

ai times a2 times a„ times 
ta — ( h , • • • ,t>U t2, • . • , t y . . • ,tn, . . . , t n ) (3.10) 

ax times a2 times a„ times 
da = (1, 0 1 _ ^ 0 , 1 , g 1 _ ^ 0 , . . . , 1 , ( ^ ^ 0 ) 

a 1 — 1 times a2-i times a„-i times 

Finally, construct the vector Ata of the same length as xa such that Aia(l) = 1 

and for all i ^ 1 

At (i) = { taH) - ta(l - 1) + 1 da(i) = 1 
a^ ' [ 1 otherwise 

These are the appropriate time warping time differences U^) — U(k-\) +1 seen, for 

example, in Equation 3.6. The feature map, defined as (f)(x,t,a) = (xa,Ata), maps 

to the replicated measurements and the time difference vectors. 

The functions d\ and d2 are defined in Equations 3.2 and 3.3. Both of these 

functions are clearly conditionally positive definite(CPD)[19]. 

We define 

K({x,t),(x\t')) ^\{x02a{(^tk)^x'kA)) (3.11) 
fe=l 

which is positive definite, because it is a product of positive definite functions [19]. 

We can think of kernel on the triples (x,t, a). We extend K to 

« {{x,t,a),{x,t,a))-^ Q otherwise. 

Let IN* = U^IN*. Then define 

^ ( x , * ) , ^ ' , * ' ) ) = £ £ « * ( ( * , t, a), (a', t', a')) 
aSN* a'gN* 

^ K((x a )At a),(x:„Af f l ,)) , (3.12) 

a e f , a ' e N m 

l̂ -al = \xa'\ 
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which is also a kernel, provided that the sum converges. This is due to a well known 

fact about the closure of kernels with respect to summation [19]. To finish the proof, 

we show this kernel is the same as KAZ^^. 

We wish to show the relationship between time warpings and these replicated 

alignments, but to accomplish this we need to define similar mappings for replicating 

a time warping n. 

Let ix G IlG(n,m) with |7r| = K and c G NK. Recall that 7r(fc) = (i(k),j(k)) 

and A7r(/c) = (Ai(k),Aj(k)). Then we define 

TTC = (Tr(l),...,ir(l),...,7r(K),...,n(K)) 

a times cK times 

ATTC - (ATT(1), 0 , . . . ,0 , . . . , A T T ( / 0 , 0 . . . . .0 ) (3.13) 

ci-i times cK-\ times 

Now we show the relationship between the replicated vectors and the replicated 

time warpings. Suppose that we have u, v G {X x M.)* and a,b G N* such that 

\a\ = \v\, \b\ — |M|, and \ua\ = |ub|. Each pair of (a, 6) that fit this description is 

called a -u,i> couple. Let 7r G n<3(n,m) with |-7r| = K and c G N*\ We call such a 

pair (n, c) a 7r replicate. It was noted in Cuturi et. al. [31] that there is a one-to-one 

and onto mapping from the set of u, v couples to the set of 7r replicates. 

We will also construct replicated versions of the vectors seen in Equation 3.8. 

Let 

t>c=((afl(fc),Aifl(fc))£J 

v'c={(x'a!(k),At'a,(k))1^. (3.14) 
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In fact, these vectors illustrate the equivalence between u, v couples to the set of n 

replicates. Therefore 

K((x,t),(x',t')) E K((xa,Ata),(x'a„At'a>)) 

\Xa\ — \xa'\ 

\xa\ 

E I I XP2a((xa(k), Ata(k)), (x'a,(k), AC(fe))) 
aEN" ,a ' eN m k=1 

= E E n^wfc),<(fc)) 
7renG(ra,m) celNM k=\ 

Let / = {Z|ATTC(Z) = (0,0)} and Ic = {1,2 , . . . , |A7rc|}/L IC is the set of 

positions of the first instance of each unique element of an alignment and / is the set 

of positions for subsequent replications. Thus i € I implies Air(i) — (0,0), in which 

case x?'>c(fe),<(*0) = x^(vc(k),v'c(k)). 

|7<-ci 

K((x,t),(x',t'))= E E \[x2aiVo{k),v'c{k))) 
•n'GnG(n,m)ceINl7,'l i = l 

7 ren G (n ,m)fe=l celNl77! »£/ 

= E I I ^ ' X * ) . v'(k))(l + X^(v(k),v'(k)) + X
9{a(v(k),v'(k)f 

n£Ua(n,m) fc=l 

(3.15) 

V" TT ^2 fo 

la(n,m)k=l * 1 7r6nG(" i 'T i ) 

l GTW — /Cprp-[T7-(a;, £ ) , ( x , £ 

To get the equivalence between lines 2 and 3 of Equation 3.15, we switch 

the inner-most sum and inner-most product. Line 4 of this equation is the con­

sequence of the sum of the geometric series in line 3. Convergence of the series 
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1 + Xi (v(k)i v'{k)) + Xi (v(k)i v'(k))2 + . .. is guaranteed since Xi < 1 by construc­

tion. 

3.3.2 Local Time Warp Kernel 

We now present the local time warping (LTW) kernel. A global alignment is an 

alignment similar to those seen in the Needleman-Wunch algorithm. They force the 

entire sequences to be aligned from start to finish. The classical definition of time 

warping also imposes this condition. In some cases, however, the two sequences will 

show similarity only in part of the sequence. Local time warping, analogously to the 

Smith Waterman algorithm, allows us to align only portions of each sequence; with 

the unaligned portions of the sequence contributing nothing to the final score. 

3.3.2.1 Local Time Warping 

We define a local time warping as a collection of K ordered pairs 

n = {{i(k),j(h))}%=1 such that i(k) < i(k + 1) < i(k) + l , i ( l ) > l,i(K) < n 

and j(k) < j(k + 1) < j(k) + l,j(l) > l,j(K) < m. Notice that we have loosened 

the requirements for i(l) = 1, i(K) — rn, j(l) = 1, and j(K) = n. This allows a 

time warping to match two sequences locally. Let Hi{n,m) be the class of all local 

time warpings from vectors of length n to vectors of length m. This is a much larger 

collection of alignments than the collection of global alignments U.a(n,m). A local 

time warping is illustrated in Figure 3.2. 

3.3.2.2 Local Time Warping Kernel 

Suppose that TV G UL(n,m) with 7r = ((i(l),j(l)),...,(i(K),j(K)). As before, 

x\, . . . ,xn are measurement s taken at t imes ti,...,tn wi th t± = 1 and x\,...,x'm 

are measurements taken at times t\,..., t'm with t[ = 1. The Local Time Warping 

(LTW) kernel is defined analogously to the GTW kernel summing over all local time 

warpings, that is 
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Figure 3.2: Illustration of a local time warping alignment, (a) This local time warping 
aligns ft] to h2 and b3, and a2 and a$ are aligned with 6,|. Notice the local time warping, 
unlike the global time warping, is not required to start by aligning the first elements 
in the sequence. <i\ and b\. nor is it required to end by aligning the last element in 
each sequence, a5 and b(i. This allows for only part of each sequence; to be aligned, 
(b) A matrix representation of this local time warping. 

K^{{x,t),(x>,t')) = Y, k^((x,t),(x',t')). 
-Tren^ (n,m) 

(3.16) 

^3,(7 The following theorem states that ^ f qiw is indeed a kernel under natural as­

sumptions. 

Theorem 3.3.2 Let x,x' £ X be a collection of measurements that were taken at 

times t and t', respectively. Suppose that S : X x X —> R is a symmetric positive def­

inite function. Then K j^yMx,t), (x',t')) is a symmetric positive definite function 

for all f3 > 1 and a > 0. 

Proof: This proof is similar to the proof for the global time warping kernel and we 

will only highlight the differences. 

The first difference is that we need to account for the starting and ending posi­

tions of the alignment. Let s € IN2 such that 1 < sx < s2 < \x\, and a e ]NS2~Sl+1; 

we replace the triple (x,t,a) seen in the last proof with the four tuple (x,t,a,s). 
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The term s gives the starting and stopping position of the replicated vector, Thus 

the replicated vector definitions become 

(3.17) 
- v 

a\ times a2 times aS2_Sl+1 times 
T>CL,S ^Sl 1 • • • 1 t s i I "Sl + 1 ) • • • > "Sl + l ) • • • ! t s s ) • • ' ! £.92 J l " " W 

ai times a2 times aS2-sl+i times 

da,s = (1, 0 , . . . ,0 , 1 , 0 , . . . ,0 , . . . , 1 , 0 , . . . ,0 ) (3.19) 

ai-i times 02-1 times aS2_sl+i-i times 

(3.20) 

The definition of the vector Ata<s is defined the same as before, only starting and 

stopping at the new positions. 

The replicated terms for TT, namely 7rc, ATTC, VC, and nc , remain unchanged. To 

simplify the notation, for each cc, we define the set of acceptable replication pairs 

(a, s) as 

Sx = {(a ,s) | s G N2 ,a e N*,l < Si < s2 < |aj|,|o| = s2 - sa + 1} 

Again we have an equivalence between u, v couples to the set of iv replicates. 

To see this, we simply modify the define of a u, v couple as follows: Suppose that we 

have (x,t), (x',t') € {X x R)*, (a, s) G Sx, and (a',s') E Sx> We define a w, v couple 

as the set (s, s', a, a'). 

Then,(7r, c) is equivalent to ((x, t, s, a), (cc', t', s', a')) provided 

I- 7T(1) = (S1,S'1) 

2. 7T(tf) = (S 2 ,4) 

3. &7Tc(k) = {da<a(k),d'a,t8(k)),Vk 

Once we have established this equivalence, the only additional changes from the 

first proof come in the form of changes to the conditions related to sums and indicator 

functions. 
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For example, the new definition of K* is 

K*((x,t,a,a),(x',t',a',s')) = I K((xa,a,&ta,s),(x'a,,s„At'a,,s,)) 

0 otherwise 

a, a) eSx,(a',a') e Sa 
xa,s\ — \x

a',s'\ 

where the old condition for a non-zero element, I 

replaced with a condition incorporating the start and stop positions. K is defined to 

be summed over all replicated local time warpings, thus 

K((x,t),(x',t')) = Yl E K*((x,t,a,8),(x',t',a',8')) 
s.s'eN2 a,a'eN* 

E "((*«,«> Ata,s), «,,s„ At'a,ta,)) 
(a, a) € Sx 

(a',a')eSa 

P^a . s — \X„i af I 

1^0,3 | 

E II X^((xaAk),Ata,s(k)),(<'Ak)^t'a^3l(k))) 
(a,s)eSx

 fc=1 

(o',s') G Sx> 

= E E n (̂̂ w.̂ w) 
The remainder of the proof is identical to the end of the first proof. 

3.3.3 Efficient Computation 

In this section, we will show that the entries in both time warping kernels can 

be computed in 0(|a;||t/|) time using dynamic programming techniques. First, the 

dynamic programming algorithm is presented. Then, the proof that this algorithm 

indeed computes the value of the kernel is given and a proof is sketched. 

Theorem 3.3.3 Let Tc(i,j) be defined recursively as shown in Algorithm 1. Then 

KGTW(X'V) =TG(\x\,\y\). 



Algorithm 1 Dynamic Global Time Warping Kernel 

Initialize: 
#(o,o) = r(o,o) = 0 
for / = 1, m do 

H(i,Q) = T(z,0) = 0 
end for 
for j — 1, rn do 

/f(o,j)'=r(o,j) = o 
end for 
Main Loop: 
for i — 1, ??•;, do 

for 7 = 1, n do 
CI = exp((l/o-) * ( S ^ z * ) + S ( M ? ) - 2S(xi,yi) + ln(/?)) 
C2,,t = exp((l/V) * (Atx(t)&tx(i)S(xuXi) + A^/(.y)A/(/(j)5(y„y;) -
2AtK(/)Aiv(i)5(x i ; :y j) + ln(/V)) 
G21,o = exp(( l /a)*(A^(0At rW5(;r t ,x0 + 5 ( % , ^ ) - 2 A t r ( 2 ) 5 ( ^ , ^ ) + ln(^)) 

C20j = exp((l/a)<5(x i ,x i)+A^(j)A^(j)S'(?/^%)-2A^(j)5(a: i ,2/ j)+lii(^)) 

r (!Xp(C2l.()) 
-M,0 — 

LQ 

1 cxp(O'l) 
exp(C2o, j) 
l - e x p ( C l ) 

r _ exp(C2| , i ) 
^1 .1 _ 1 exp(Cl) 

if i =1 and j = 1 then 
H(i,j) = Lhl 

else 
H(i,j) = Li,0H(i - 1, j) + LOAH(I,J - 1) + Li,iH(i - 1.j - 1) 

end if 
T^j) = H(Lj) + T(i - U ) + T(x,.y - 1) - T(i - l , j - 1) 

end for 
end for 
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Algor i thm 2 Dynamic Local Time Warping Kernel 
Initialize: 

#(o,o) = r(o,o) = o 
for i — 1, rn do 

H(i,Q) = T(i,0) = 0 
end for 
for j = 1, rn do 

H(Q,j) = T(Q,j)=Q 
e n d for 
Main Loop: 
for i = l,rn do 

for 7 = 1, w do 
CI - e x p ( ( l » * (Six^Xi) + S(yvy]) - 2S(xr,V]) + ln(/?)) 
C2,,, = exp((l/<r) * (Atx(i)Atx(i)S(xuXi) + Aty(j)Aty(;i)S(y,t, ih) -
2Atx(r)Alv(j)S(xl,y1) + \n(0)) 
C21,0 = exp(( l /a)*(At, l / )A^(z)5(^,:r;^ + 5(y,,yJ)-2At I :(z)S ,(x / ! ?7J) + ln(^)) 

C2oj=oxp( ( l /a )* (5(3: i , xO+A^(j )A^(j )% j , y j ) -2At J / 0- )S ' (T i , y j )+ ln( /? ) ) 

l) + L , . 1 ) / f ( i - l i j - l ) + L0,() 
l ) - T ( ? : - l , j - l ) 

•^1,0 

^ 0 , 1 

Li.i 

Los) 
II 

<;xp(C2i,11) 
l -cxp(C' l ) 
GXp(C2(),l) 
l - e x p ( C J ) 
exp(C2i,i) 
l - e x p ( C l ) 

exp(CI) 
l - c x p ( C l ) 

?:,.7) = L , . 0 ^ ( i - l , . 7 ) + L0, 
T(i,j) = H(i,j) + T(i-l,j)-

end for 
end for 
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Theorem 3.3.4 Let TL(i,j) be defined recursively as shown in Algorithm 2. Then 

KLTW(X,V) = TL(\x\,\y\). 

Proof: The proof of both theorems is typical of dynamic programming algorithms, 

and will only be outlined. The local version of the kernel needs two modifications 

to the DTW algorithm presented in Kruskal [15]. First, an additional option must 

be added at each step that represents starting a new alignment at that particular 

point. Second, replacing the minimum with a sum over exponentials leads to the 

sum of products in Algorithms 1 and 2. The global version only needs to replace the 

minimum with a sum. 

3.3.4 Experiments 

In this section, we construct data from two generative models and illustrate the 

performance advantage of the new time warping kernels. 

3.3.4.1 Three Classification Problems 

Our intuition leads us to believe that the new time warping kernels will perform 

better than the kernel due to Cuturi et. al. [31] when the time between observations 

is important. In this section, we illustrate that our intuition is correct, at least in one 

situation. 

Consider a family of distributions. Each distribution will have the same basic 

structure, that of a Markov model with explicit state duration distributions. The 

distributions will differ in their emission and duration distributions. 

The specific model we used is illustrated in Figure 3.3. The first state, the 

emission state, emits one of two symbols, a or b. Exactly one symbol will be emitted 

before a transition to the second state. The second state, called the duration state, 

will not emit symbols. We will stay in this state a random amount of time. For 

simplicity, we have chosen a discrete distribution for the durations. Note that these 



(Duration) Emission) 

X / J 
( Start 

Figure 3.3: A generative model. Sequences alternate between the two states: Emis­
sion and Duration. The Emission state lasts one time unit and emits a random 
symbol. The Duration state lasts a random number of time units, and emits no 
symbols. 

sequences are timed sequences with the duration state providing the random time 

between observations. 

We will explore the ability of our kernel and the kernel by Cuturi et. al. [31] 

at classifying examples generated by two different instances of this model. The in­

stances will either differ in emission distributions, in duration distributions, or in both 

distributions. A description of the three specific classification problems follows. 

The first classification problem, illustrates the ability of the two kernels to differ­

entiate between instances of the model that vary only in the duration distributions. 

The distributions for each model are illustrated in Figure 3.4. 
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Figure 3.4: The first classification problem. In this classification problem, the dura­
tion distributions are slightly different while the emission distributions are the same. 
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In the second classification problem, we illustrate the ability of the two kernels 

to differentiate between two instances of the model that differ only in the emission 

distributions. See Figure 3.5 for an illustration of the distributions. 
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Figure 3.5: The second classification problem. The two models in this classification 
problem have identical duration distributions, and slightly different emission distri­
butions. 

The third classification problem explores the ability of the two kernels to differen­

tiate between two models that differ in both the duration and emission distributions. 

Figure 3.6 shows the different distributions. 
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Figure 3.6: The third classification problem. For the final classification problem, both 
the duration and emission distributions are slightly different. 
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3.3.4.2 Classification Methods 

We will use two different methods to classify observations for each of the three 

classification problems. A support vector machine (SVM) will be the base of both 

classifiers, one of which uses one of the proposed time warping kernels and the other 

uses an adaptation of Cuturi et. al.'s time warping kernel. 

In preliminary testing the local version the new time warping kernel outperformed 

the global variant. For this reason, we will focus on the results of the local time 

warping kernel. 

To make for a fair comparison, Cuturi et. al.'s kernel was also adapted to be a 

local alignment method, which involved minor changes to the dynamic programming 

equations. The performance of the local version was compared to the performance of 

the standard (global) kernel. Again, the local version had the best performance, and 

will be used for all comparisons. 

Next we describe the specific implementation of each kernel. We start by defining 

a kernel on the emissions. Since we have two possible observations the kernel is a 2x2 

matrix between observations. We use the matrix 

(3.21) 

which is non-negative definite. This kernel is then used to define the distances d\ and 

d2 given in Equations 3.2 and 3.3, thus defining an instance of the newly proposed 

local time warping kernel. 

The kernel by Cuturi et. al. requires us to define a kernel on emissions of the 

form x(x,y) = exp(—cf)(x,y)), such that x is positive definite and strictly less than 

1 in absolute value. We use x(x->v) = exp( —di(x,y)/a + (3), which was shown to fit 

these requirements in Theorem 3.3.3. 

As is typical for alignment kernels, the values of the kernel can be large and the 

matrix could be diagonally dominant(see, for example [14]). Diagonal dominance in 

5 = 
1 

- 1 
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particular is a problem for SVMs, as it means that the feature vectors are all nearly 

orthogonal, making classification difficult. As noted earlier, the tuning parameters j3 

and a will give us some control over this problem. 

Diagonal dominance was a problem encountered by Cuturi et. al. when illustrat­

ing the performance of their kernel [31]. They suggest taking the log of the kernel. 

Taking the log of a kernel matrix can cause some eigenvalues to become negative, and 

Cuturi et. al. added the identity matrix times the absolute value of the smallest eigen­

value to the kernel to guarantee the kernel remained positive definite. Unfortunately, 

this action can only increase any diagonal dominance. 

The addition of the parameter (5 allowed us to control diagonal dominance. For 

each of the kernels we compared the performance of the kernel "as-is" versus the log 

of the kernel plus a multiple of the identity matrix. In both cases, using the kernel 

"as-is" led to better performance. For this reason, we refrain from "massaging" either 

kernel in the following experiments. 

3.3.4.3 Parameter Tuning 

Next we need to decide on the final form of the kernel. This includes deciding 

on kernel normalization as well as fixing all tuning parameters. 

It is sometimes advantageous to normalize a kernel through the application of 

various functions. Suppose that K is a kernel. Then, for example, we might apply 

the cosine kernel 

KCOsine(x,y) = K(x, y)/^K{x, x)K(y, y), 

which has the effect of normalizing all vectors in the feature space to length one. 

When the application of such a kernel only changes the lengths of the vectors in the 

feature space, we refer to the action as kernel normalization. 

It may also be beneficial to change the feature space by nesting on kernel inside 

another. For example, we may apply the Gaussian kernel 

KG(x, y) = exp(-7 * (K(x, x) - 2K(x, y) + K(y, y))). 
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We may even put these kernels to use sequentially, i.e. apply a cosine kernel then a 

Gaussian kernel. 

We also have many parameters to tune. The parameters (3 and a were selected in 

a way to reduce the size of the kernel entries and reduce diagonal dominance. Other 

parameters, such as the soft margin SVM cost parameter C or parameters such as 

the Gaussian kernel's 7, as well as any kernel transformations, were selected using 

cross-validation. A list of possible kernels was made and for each candidate, a grid 

search over the space of tuning parameters (not including (5 and a from above) was 

performed to estimate performance. The performance measure was success rate when 

performing a 5-fold cross-validation on a set of examples set aside for tuning. The 

final form of the kernel was the transformation/tuning parameter combination with 

the best performance. 

3.3.4.4 Testing the Classifier's Performance 

Let p be the average classifier accuracy over all training sets of size 500. We 

wish to generate a confidence interval for p based on the performance of ten such 

randomly selected classifiers. This is a two part estimation problem, where first the 

performance of each classifier is independently estimated6, then the performance of 

all classifiers trained on 500 examples is estimated from the estimated performance 

of ten classifiers. An appropriate method of doing this is to generate a confidence 

interval for the mean of the estimated performance of the ten classifiers. We used 

Bonferroni's method to ensure that the comparisons for each classification problem 

had no worse than a 5% chance of any confidence interval being incorrect. 

To gauge the relative success for each classifier, the performance of the Bayes 

classifier was also estimated. The Bayes classifier is the classifier that has the highest 

''For oath classifier, a test sot of 1000 examples was independently generated and used to estimate 
the performance. 
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possible success rate. This is achieved by using full knowledge of the model and 

applying the log-odds classification rule. The success rate of the Bayes classifier was 

estimated for each classification problem by constructing a confidence interval for 

the true success rate using the success rate of 2 million examples, half from each 

distribution. This confidence interval was constructed simultaneously with the above 

intervals. 

3.3.4.5 Results 

Table 3.1: Summary of results for classification problems 1, 2, and 3. The Bayes 
classifier uses explicit knowledge of the model to pick the most probable class. This 
classifier has the best possible success rate. The Local Alignment Kernel is a. time 
warping kernel that includes the time coefficients present in the classical time warping. 
The kernel due to Cuturi et.al. is also time warping kernel, but without the time 
coefficients. 

Classification Problem 
1 
2 
3 

95% Simultaneous CI for Mean Success Rate 
Bayes 

(0.938, 0.939) 
(0.656, 0.658) 
(0.945, 0.946) 

LTW Kernel 
(0.924,0.937) 
(0.640, 0.663) 
(0.922,0.937) 

Cuturi et. al. Kernel 
(0.738.0.767) 
(0.642,0.679) 
(0.760,0.796) 

The results for the experiments are given in Table 3.1. We see that the LTW 

kernel does significantly better than local version of the kernel by Cuturi et. al. when 

there is a difference in the duration distributions 7 and has similar performance when 

the models have the same duration distributions. Furthermore, the LTW kernel is 

fairly close to the best possible success rate, that of the Bayes classifier! All of the 

differences are statistically significant at a 5% family error rate. 

7 l t may seem counter-intuitive that the kernel by Cuturi et. can do much better than 50% 
classification success on the first example, after all it docs not use any explicit information about the 
waiting times. Keep in mind how the examples were generated. To mirror the da ta in the diabetes 
problem, wc generated observations from a point process for a fixed window of time, which resulted 
in a variable number of observations. The lengths of the string contain some information about the 
duration distribution, and it is our contention tha t it is this information that allows the kernel by 
Cuturi et. to perform bettor than a 50% success rate. 
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3.4 Conclusions 

We presented two new kernels for time warping, one based on global alignment 

and the other on local alignment, that better capture the essence of time warping by 

including the timing coefficients that will properly penalize stretching time to align 

two sequences. We have also addressed an issue with the definition of classical time 

warping by substituting similarities for distances. 

For specific classification problems, we have shown that our local time warping 

kernel performs better than the kernel by Cuturi et. al. at classifying timed sequences 

when the timing between observations contains relevant information. 

Furthermore, it was shown that the performance of the new kernel for these 

classification problems was very close to the best obtainable success rates, that of the 

Bayes classifier. This is a promising result, as our kernel makes no use of information 

about the distribution from which the data is generated. 

3.5 Further Work 

The main challenge in using alignment methods, including the LTW and GTW 

kernels, is that of computation time. Computing even moderately sized kernel ma­

trices can take a long time. We will explore methods of reducing this computational 

burden, while attempting to keep the flavor of classical time warping intact. 

We would also like to explore other applications of this kernel. A problem that 

has been getting recent attention is that of classifying internet network traffic (see, 

for example, Moore and Papagiannaki [32]). Like claims data, this is another example 

of data that is a timed sequence. 

When two computers communicate over the internet, they send small "packets" 

of information. Each packet has a number of associated features: protocol (e.g. TCP, 

UDP), size, port number, source, and destination. A flow is defined as a sequence of 

packets from a source to a destination all with the same port number and protocol. In 



their work on this problem, Nguyen and Armitage [33] successfully used the minimum, 

maximum, mean and standard deviations of the inter-packet arrival times as part of 

their feature set. This leads us to believe that this is a good application for either 

the GTW or LTW kernel. 



Chapter 4 

CLASSIFYING RISK OF TYPE 2 DIABETES USING CLAIMS DATA 

4.1 Introduction 

In this chapter, we will present our research on predicting patients at risk of 

type 2 diabetes. Diabetes is a major problem both in terms of number of diagnosed 

individuals [2] and the financial burden [2] these individuals accrue. It has been shown 

that early detection of diabetes combined with an intervention can delay or prevent 

the onset of the disease [3]. 

Current methods for identifying patients in need of an intervention involves a 

costly and inconvenient test [5]. In this chapter, we have developed methods that 

allow accurate prediction of patients at risk of type 2 diabetes based on claims data 

alone. These methods can be used as an initial screening, cutting down on the number 

of individuals that need the costly test and helping identify patients that might not 

have otherwise been screened. To the best of our knowledge, no other paper attempts 

this classification problem using only insurance claims data. 

In this section, we will motivate the problem by discussing the specifics of type 2 

diabetes, look at specific reasons early detection of type 2 diabetes is useful, discuss 

the type of data that we have available, and ask the specific research questions we wish 

to answer: "Can you predict which patients will receive their first diabetes diagnosis 

using a three years window of their insurance claims data?" and "Can this be done 

well in advance of the date of this first diagnosis" ? 
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4.1.0.6 Facts about Type 2 Diabetes 

Next we will summarize the facts about diabetes presented in the Center for 

Disease Control and Prevention's National diabetes fact sheet, 2005 [2], Diabetes is 

a disease in which the body either doesn't produce insulin (type 1) or is resistant to 

insulin (type 2). A third form of diabetes (gestational) affects pregnant women. 

There are over 20 million Americans with diabetes. Type 1 diabetes only affects 

5-10% of people with diabetes and is usually diagnosed in children or young adults. 

Type 2 diabetes makes up the majority of the Americans with diabetes, between 90% 

and 95% of all diagnosed cases of diabetes. 

Insulin allows glucose to enter a cell. People with type 2 diabetes experience a 

build up of glucose in the blood due to their resistance to insulin. As glucose builds in 

the blood, the demand for insulin rises and the body slowly loses its ability to produce 

it. The complications of the disease are heart disease and stroke, high blood pressure, 

blindness, kidney disease, nervous system disease, amputations, dental disease, and 

complications of pregnancy. The treatments used to prevent these complications are 

glucose control, blood pressure control, control of blood lipids, and preventative care 

practices for the eyes, kidneys, and feet. It is estimated that the total cost of diabetes 

care was $132 billion dollars in 2002. 

People that have some resistance to insulin, but not enough to be considered 

diabetic are considered pre-diabetic. To give the medical definition of type 2 diabetes 

and pre-diabetes, we need to discuss the two tests used to diagnose patients, the 

fasting plasma glucose test (FPG) and the oral glucose tolerance test (OGTT) and 

the associated conditions they detect, impaired fasting glucose (IFG) and impaired 

glucose tolerance (IGT) respectively. 

IFG is detected using the fasting plasma glucose test (FPG). The FPG test 

involves first having a patient fast for at least 8 hours. At this point, a blood sample 

is taken and the persons blood glucose level is tested. If the blood glucose level is 126 
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mg/dl or more, the person is retested. If the second test is consistent, the person is 

diagnosed as having diabetes. If the patient has a blood glucose level greater than or 

equal to 100 mg/dl, but less than 126 mg/dl; they are considered to have pre-diabetes. 

IGT is tested for using the oral glucose tolerance test (OGTT). The OGTT in­

volves having a patient drink a solution containing 75g of glucose. Their blood glucose 

level is measured 2 hours after drinking the solution. If their blood glucose level is 

greater than or equal to 200 mg/dl they are diagnosed as having diabetes. Patients 

with a blood glucose level between 140 mg/dl and 200 mg/dl are pre-diabetic 8. 

It is important to note that the existence of a pre-diabetes condition allows for 

some hope in delaying or preventing entirely the onset of type 2 diabetes. There have 

been a number of successful attempts at an intervention program designed to detect 

people at risk of type 2 diabetes and help them make the necessary lifestyle changes 

needed to lower their risk [3]. 

In 2002, the American Diabetes Association released their position statement 

regarding the prevention of diabetes [3]. They concluded that (1) type 2 diabetes 

could be prevented or delayed, (2) persons at risk could be determined clinically 

using the above mentioned tests, and (3) intervention programs that focus on lifestyle 

changes such as weight loss and modest exercise are a cost-effective way of reducing 

the adverse effects of diabetes. Finally, they called for research on the question "What 

is the most effective way to identify individuals who are at high risk for unrecognized 

IFG or IGT?". We feel the following work addresses this need. 

4.1.0.7 Previous Work 

The presence of diabetes, along with the risk of future diabetes can be determined 

clinically using the FPG or OGTT tests. There have been other clinical alternative 

8To be clear, type 2 diabetes is clinically defined as a person with blood glucose level is 126 
mg/dl or more after the F P G test or a. blood glucose level is greater than or equal to 200 mg/dl 
after the O G T T test. 
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suggested (see for example [5]) but these tests remain the primary methods for de­

tection of type 2 diabetes and pre-diabetes. 

In Smith et. al. [34], the authors looked at predicting the onset of type 2 diabetes 

in women of the Pima Indian tribe. They used the following variables to make their 

prediction: number of times pregnant, plasma glucose concentration from the OGTT, 

diastolic blood pressure, triceps skin fold thickness, 2-hour serum insulin, body mass 

index (BMI), a diabetes pedigree function, and age. These data were made public 

through the UCI Machine Learning Repository [35] and many papers were published 

in attempts to improve classification performance [35]. Note that all of this research 

is on a small data set that is relevant only to a particular population. 

Claims data have been used to evaluate the quality of care of different providers, 

measure patients' use of various medical services, and identify patients with various 

diseases [36]. For diabetes in particular, there have been examples of using claims to 

measure the adherence to medications [37] and identify existing cases of the disease 

(see, for example, [38] and [39]). To the best of our knowledge, no one has attempted 

to predict patients at risk of a diabetes diagnosis in the future using claims data as 

their sole source of information. 

4.1.1 Problem Statement 

Our main point of interest is the following question: How well can one predict 

patients at risk of type 2 diabetes based on their insurance claims? First, we wish to 

determine if we can predict a patient's first diabetes diagnosis with all the information 

up to the day before the diagnosis. We also wish to determine how well we can predict 

a diabetes diagnosis without access to the most recent claims history. 

4.2 Methodology 

In this section, we will give an overview of the methods that we used to approach 

this problem. This includes the classification method that we selected, SVM and 
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kernel methods, our general approach for the different types of data, and the resulting 

kernels. 

4.2.1 Our Approach 

The data in this problem is interesting and complex. Each patient has a variable 

number of claims in their claim history. These claims also contain a variety of types 

of information, including diagnosis, procedure and drug codes, cost information, and 

demographic information. The different types of claims contain different components. 

Even claims of the same type may contain a different number of elements. All of these 

facts make it very hard to apply any method that relies on a fixed number of input 

variables. 

4.2.1.1 The Classifier 

SVMs, on the other hand, have had demonstrated success in a wide variety of 

problems that involve sequence data. SVMs have been used successfully in text classi­

fication [40]. They have also been used for a wide variety of problems in computational 

biology which involve sequences of different lengths, for example classification of genes 

and proteins and prediction along the DNA or protein strand [41]. SVMs have also 

been used successfully in content-based audio classification and retrieval [42], 

Furthermore, the properties of kernels allow the ability to easily combine kernels 

for very different types of data. For example, Noble [41] pointed out a number of ways 

that different types of information have been combined using SVMs. Perhaps most 

importantly, kernels do not require data to come in the form of a fixed length vector, 

and in fact, have been constructed for structures such as variable-length strings, 

graphs, and trees [43]. 

For these reasons, we have chosen to use kernels in conjunction with an SVM as 

our classifier. 
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4.2.1.2 Dealing with Heterogenous Data 

Our strategy in approaching this problem was to first split the data into its dif­

ferent types and find the best kernel we could for each specific type of information 

separately. The three timed sequences that we generate for each patient are discussed 

in Section 1.3.2 and illustrated in Figure 1.2. We also include the demographic in­

formation for each patient in the classification process. A kernel was constructed for 

each form of data. The kernels were then combined into a single kernel. Specifics on 

each kernel follow. 

4.2.2 Kernel Construction and Adaptation 

In this section we will give details of our kernel construction for each type of 

data: diagnosis/procedure codes, drug codes, cost, and demographic information. 

4.2.2.1 Bag of Codes 

We have constructed a number of kernels to deal with diagnosis, procedure and 

drug codes: the frequency-based Bag of Codes kernel (BoC), zero-one Bag of Codes 

kernel (BoCI), the frequency-based Stratified Bag of Codes kernel (SBoC), zero-one 

Stratified Bag of Codes kernel (SBoCI) 

For each of these Bag of Code kernels, we create one feature for each code in 

the database and let the value of the feature either be an indicator of the presence of 

that code in a patient's claim history (BoCI features), or the count of the number of 

times the code appears in the patients claim history (BoC features). The kernels are 

the inner products of these feature vectors. These kernels were inspired by a classic 

method in text classification called the "bag of words" technique [11]. 

The BoC and BoCI kernels completely ignore the time at which a code is ob­

served. To introduce some time information into the feature set, we implement the 

following change: We first divide each patient's claim window into n time strata of a 

fixed number of time units w. We set the number of strata, n such that all patients 
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have a claim window of at least n * w time units. For patients that have a claim 

window longer than n * w time units, the most recent n * w units are used. We then 

generate either the BoC or BoCI features for each stratum and concatenate them 

into one combined feature vector. The inner product of this vector gives the SBoC 

or SBoCI kernels, respectively. 

4.2.2.2 Hidden Markov Models and the Fisher Kernel 

Model 1 Model 2 

M \ 'p " \ / ' l ' \ 

Diab y ^ (Prediab )^B ^-(Non-diab)'^ 

-i \ 1 
( Start j Q Start") 

(a) (b) 

Figure1 4.1: Two HMM models, (a) Represents patients likely to become diabetic. 
Two states are prediabetic and diabetic, (b) Represents patients unlikely to become 
diabetic, thus one non-diabetic state. 

We construct a model for patients that will develop diabetes and a model for 

patients that will not, allowing us to model the data probabilistically and thus take 

advantage of the log-odds classifier. The first model has two states and is for patients 

that will become diabetic, state one being non-diabetic and state two being diabetic. 

The second model is for patients that do not develop diabetes. It is a one-state model 

that only contains the non-diabetic state. See Figure 4.1 for an illustration of the two 

models. 

The emission probabilities for each state were estimated on a set of examples 

separate from those that will be later used to tune and test the various methods. 
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The transition probabilities were treated as tuning parameters. One way to use these 

models is to make a classification using the log likelihood ratio based on the two 

models. 

We also constructed a Fisher kernel. As indicated in section 2.1.4.2, we imagine 

we are constructing a hypothesis test comparing two models, in this case the diabetes 

and non-diabetes HMMs. We treated the diabetes model, the model that includes 

both the diabetic and non-diabetic states, as the null model. Thus, the fisher kernel 

measures departures from the diabetes model. 

4.2.2.3 Time Warping 

We have developed two new kernels based on time warping presented in Chap­

ter 3. Both a local version, called the Local Time Warping kernel (LTW), and global 

version, called the Global Time Warping Kernel (GTW), are given. 

We will be aligning codes, either drug or diagnosis/procedure, using one of these 

kernels. We must decide if a local or global alignment method is appropriate. It is 

commonly assumed that the progression of diabetes is a continuous process. Since 

each patient in the database will most likely be at a different point in this process, it 

is important to be able to compare various portions of each claim history to look for 

similarity. Also, certain portions of the claim history maybe unrelated to diabetes. 

Because of these two facts, we will be using the LTW kernel. 

To implement the LTW kernel, we must specify a kernel on the codes. We used 

the kernel K(ci,c2) = /Cl=c2(
ci>c2) to compare the aligned codes, where ICl=C2 is the 

indicator function that is 1 when C\ = c^ and zero otherwise. 

4.3 Experiments 

This section contains details on the experiments that were used to develop ker­

nels for use in identifying patients at risk of type 2 diabetes and details of how the 

performance of the kernels was estimated. This includes the performance when using 
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complete or truncated patient histories, as well as the performance when using a full 

set of diagnosis, drug, and procedure codes or a subset of the codes. 

4.3.1 Data Set 

In this section, we will summarize the experiments used to evaluate and test the 

performance of various kernels. First, we discuss the construction of the data sets. 

Next, we give an overview of the process by which the various kernels will be tuned 

and tested. Finally, we give a description of each of the kernels that will be compared 

and point out any parameters that need tuning. 

4.3.1.1 Selection of Examples 

Let's define some of the important terms that we use when referring to the 

diabetes data. Our patients are members of the MarketScan® database. Each patient 

has a date on which they enrolled for the policy. We call this date startenrol. If they 

ended the policy, we keep track of the date the policy ended and call this value 

endenrol. If the patient was still a policy holder on 12/31/2003, we let endenrol be 

this date. The dates are stored as the number of days since some particular date in 

time. Thus the difference between two data variables gives the difference in number 

of days. 

A positive example is defined as a patient that has at least one observed diabetes 

diagnosis and has no insulin prescriptions prior to the first observed diabetes diag­

nosis. We make the assumption that the first observed diagnosis is the actual first 

diabetes diagnosis. We refer to the date of this first diabetes diagnosis as mindate. 

A negative example is defined as a patient that with no observed diabetes diag­

nosis and no observed insulin prescriptions. For negative examples, we set mindate 

to be 12/31/2003. 

We define the claim window in the following way: 

claimwindow = mm(endenrol, mindate) — max(l/l/1999, startenrol) 
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Table 4.1: Groupings of claim windows and their relative sizes 

Claim Window Group 

Train-Test Set 
Tuning Set 
Extra Set 

Counts 
Positive 

14,746 
14,777 

178,851 

Negative 
14,754 
14,723 

178,851 

Total 
29,500 
29,500 

357,702 

It is possible that a patient doesn't have complete drug information. We add the 

restriction that all positive and negative examples have full drug information for the 

years spanned by their claim window. 

4.3.1.2 Division of Examples - Tuning, Train-Test, and Extra Sets 

Here are the specifics on how the examples were divided. All of the positive 

examples with a claim window of length three to five years were split randomly into 

two equally sized sets, one for tuning and the other for training-testing the classifier, 

and an equal number of randomly selected negative examples with a 3 to 5 year claim 

window were added to complete each set. We refer to these sets as the tuning set and 

the train-test set, respectively. The total size of each set is given in Table 4.1. 

The reason that we decided to split the patients with a three to four year claim 

window in this way is two fold. First, there appears to be little difference between 

the performance when 29,500 patients are used verses the full 59,000 patients (see 

Appendix B for learning curves). Second, it is convenient to have the tuning set and 

the training-testing set of the same size. 

Finally, a set to be used in kernel construction, HMM parameter estimation, etc 

was set aside. It consisted of all diabetes patients that fit our definition of a positive 

example having a claim window of a length between zero and three years. A random 

sample of the same number of negative examples, also with a claim window between 

0 to 3 years, were added to this set. We call this the extra set of examples. 

For each group of examples, we will construct two data sets, one for each of our 

two research questions. We construct both a tuning and train-test set that includes 
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the full patient claim history up to and including the day before their initial diagnosis. 

We refer to these as a complete patient history or simply use the prefix "complete". 

These data are designed to answer the question: "Can we predict the onset of type 2 

diabetes the day before the initial diagnosis"? 

We also want to investigate our ability to detect at-risk patients early. Conse­

quently, we construct a data set for each set of examples, train-test and tuning, that 

have the most recent portion of the patients' history removed. We call these the 

truncated patient histories or simply use the prefix "truncated". 

When constructing the truncated data set, we were concerned that removing the 

same portion of the histories from all examples would leave them aligned to the first 

diabetes diagnosis. That is they all ended at the same spot relative to the event that 

was being predicted. To make sure that we weren't gaining a performance advantage 

through this alignment, we shortened the windows by truncating patient histories by 

a random amount. We constructed two data sets differing by the average amount of 

claims data that was removed. The first set had an average of 12 months removed 

and the second set had an average of 18 months removed. 

4.3.2 Tuning, Model Selection, and Testing 

We used the tuning set to tune the various tuning parameters for each kernel, as 

well as to give a preliminary comparison between the various methods. The initial 

comparison was done using a subset of the tuning set, and the methods were compared 

using the success rate resulting from five-fold cross-validation. The methods that 

showed promise were included in the later testing phase. 

Tuning was done by performing multiple runs of cross-validation over the entire 

tuning set and selecting the set of parameters that maximized the success rate. Mul­

tiple runs of cross-validation were done on the same randomly selected partitions to 

reduce the variability in the results and aid in comparison. 
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The final cross-validation results were computed using the train-test set. Five 

runs of five-fold cross-validation were used on the tuning parameters selected in the 

tuning phase. The final performance is measured using the mean success rate and 

mean area under the ROC curve, averaged over the five runs of cross-validation. We 

also plot an ROC curve for each kernel. All of these curves were generated through 

cross-validation on the same set of randomly selected folds. 

Please note that the test set was never used for kernel construction, tuning, or 

model selection; only the final testing phase. 

4.3.3 Kernel Implementation 

Recall our general strategy for dealing with the various forms of data in the 

database: The input data is split into four general types; diagnosis/procedure codes, 

drug codes, cost information, and demographic information. We construct one or 

more kernels for each type of data, and when necessary, select the best kernel through 

cross-validation. We then combine the best kernel for each type of data into an overall 

kernel by adding the kernels. The following sections give an overview of each type of 

data and the kernels that we have selected in each case. 

4.3.3.1 Cost Kernel 

For each claim, we have the total cost of the claim as part of our data. We wish 

to construct a kernel that will uses this information to aid in the prediction of the 

onset of diabetes. 

We constructed a stratified bin kernel. The details of the bin kernel follow. 

Suppose that we have a continuous variable x. We select a number of values that act 

as the boundaries of our bins. Suppose that 60 < b\ < . . . < bn are the boundaries of 

n bins. We construct a feature vector with one component per bin. The value of the 

ith component is f provided that the variable x is larger than the bin's upper limit 

bi, otherwise it is set to zero. When we take the inner product of such vectors, we get 

a count of how many bins the two values have in common. 
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Here is our specific implementation of the stratified bin kernel. First, the claims 

were stratified into six month sections. Then the total cost for each stratum was 

calculated. From the extra data set, we calculated the distribution of six month 

costs for those patients, and noted the 10th, 20th, ..., 90th percentiles. Theses values 

acted as the boundaries for our eight bins. The feature vector was made by using the 

features from each stratum's bin kernel. The only parameters that will need tuning 

are 7 from the Gaussian kernel and the SVM cost parameter C. This is the only cost 

kernel that we found to be competitive. 

Our preliminary search for a cost kernel took many paths, In one example, we 

calculated the total cost to date for each date in the patient's history. We then fit a 

polynomial through these points. The polynomial was of degree six and constructed 

using orthogonal components. We used the coefficients of this polynomial as the 

feature vector and used it with various classifiers. This method didn't prove to be 

successful. We also tried the local time warping (LTW) kernel on the cost data, but 

again, this method failed to produce results. 

4.3.3.2 Code and Drug Kernels 

The next kernels that we constructed were designed to take the diagnosis and 

procedure codes or drug codes as input. 

The methods that were tried include the Bag of Codes with counts (BoC),Bag 

of Codes with indicators (BoCI), Stratified Bag of Codes with counts (SBoC), Strat­

ified Bag of Codes with indicators (SBoCI), Fisher, and Local Time Warping (LTW) 

kernels. The kernels that passed the preliminary round of testing were the BoCI and 

SBoCI kernels. 

The BoCI only has the regular Gaussian kernel parameters that need tuning. 

We also needs to tune these parameters for the SBoCI kernels, as well as the width 

of the strata. We set the width of the strata at 6 months after preliminary testing 

indicated this was an acceptable value. 
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4.3.3.3 Code Subset Selection 

There are thousands of diagnosis, drug, and procedure codes in the database, and 

many of them likely have little to do with diabetes. Consider, for example, a diagnosis 

code for the flu. While it is possible that there is some hidden connection between 

the flu and type 2 diabetes, reasonable to think that many such codes are unrelated 

and uninformative with respect to diagnosing diabetes. Therefore, a method was 

developed for limiting the number of codes. 

The benefits are two fold. A patient history that is limited to only a select few 

codes is much shorter in terms of the number of observed codes. This leads to a 

savings in the computational cost. In the case of alignment kernels, such as the LA 

or LTW kernels, the computational cost goes from impractical for a full code set to 

feasible for a reduced code set. Also, if we are able to find a set of codes that is much 

smaller, say a few hundred, that predict nearly as well as the full set of codes (nearly 

ten thousand), we gain the ability to analyze the codes and their implications. This 

will be the goal of an upcoming research paper. 

In the next section, we will give details on the method that we used to select 

a subset of codes that can be used to accurately classify diabetes and non-diabetes 

patients. First we give a parametric rule used to generate this subset of codes, and 

then we discuss how we went about selecting the parameters involved in this rule. 

4.3.3.4 Subset Selection Rule 

The details of our code selection method follow. We consider a classifier that 

makes a prediction based off on presence/absence of a single code. Such a predictor 

would work best if there was a large difference in the number of times the code 

occurred for one class versus the other. We define n+ as the number of times a code 

was observed for positive examples and n_ as the number of times the code was 

observed for negative examples. We define absdiff = \n+ — n_|. A code is included in 

the subset of selected codes if absdiff > a, for some value of a. 
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Suppose that we have a code that is only present in a small number of the positive 

examples. Such a variable would not perform well, when used on all the examples, but 

it may predict a small number of positive examples with great accuracy and would 

be useful in conjunction with other codes. Such codes may not be selected by the 

absdiff criterion so we use an additional code selection criterion that captures such 

codes. 

The positive predictive value (ppv) is defined as the proportion of the examples 

we predict as positive that are actually true positives. We calculate this value for each 

code, based on the extra data set for our presence/absence classifier which, in this 

case, predicts the positive case on presence. We also calculate the negative predictive 

value (npv), defined as proportion of the examples we predict as negative that are 

actually true negatives, by having our presence/absence classifier predict the negative 

class on presence. 

We define predictive value as pv = max(npi>,ppv). If we simply allow all codes 

with a high pv into the code set, the set will contain many codes that are very 

infrequent. For this reason, we also set a minimum number of times that a code must 

be seen before it can be part of the code subset. Let total = n+ + n_. Our second 

rule for including a code is pv > p and total > t for some values of p and t. 

The overall rule is 

(absdiff > a) or (pv > p and total > t). 

4.3.3.5 Selection of Rule Parameters 

We wish select the values for a, p, and t so that the number of resulting codes is 

around some user-defined threshold. We found this to be a surprisingly difficult task, 

and in this section we share our method for tackling this problem. 

First, we illustrate the selection of a. For each code observed in the database, 

that code has a value of absdiff calculated using the extra data set. This collection 
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of values for absdiff give us all the relevant cut off values for a. For example, suppose 

that we have a database that only contains the codes c\, c2) and C3 and suppose that 

absdiff for these codes is 100, 200, and 300 respectively. Let C be the set of codes 

that are included after the selection process. Then 

a < 100 =» C = {ci ,c2 ,c3} 

100 < a< 200^ C = {c2,c3} 

200 < a < 300 =*• C = {c3} 

a > 300 => C = 0. 

Therefore, for each code we compute the absdiff value as well as the number of codes 

that would remain if we used this value for a. 

Similarly, knowing the values for total and pv for each code gives us all the 

necessary information for picking values of p and t. Thus, for each code, we calculate 

the value of the pair (pv, total) and also the number of codes that would remain if p 

and t were set to these values. 

Now we will discuss the method we used to arrive at the final values for a, p, 

and t. Suppose that we only want around 300 codes. Once the information above 

is collected, we search for values of a and values of the pair (p, t) that will result in 

between 250 and 300 codes remaining. Include all of resulting values of a in the set 

A and the resulting pairs (p, t) in the set P. All possible combinations of a € A and 

(p, t) G P are constructed, and the performance of the BoCI classifier when using this 

combination is estimated through cross-validation on the tuning set. We select the 

combination with the best performance as the final values for a, p, and t. 

We followed this procedure for drug codes and the combination of the diagnosis 

and procedure codes. We selected a number of thresholds, and selected the ones that 

balanced the number of codes with the classification success. The result was a set 

of a little over 250 diagnosis and procedure codes and around 60 drug codes. In the 
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Table 4.2: Comparison of the SBoCI and LTW kernels on 1000. Both kernels use the 
selected codes resulting from the method discussed in Section 4.3.3.3. The balanced 
success rate is the average of the success rate for each class. The value given in the 
table is the average of five independent five-fold cross-validations, with the same set 
of five partitions used for each kernel. The number in the parenthesis is the SE for 
the associated mean. 

Data Type 

SBoCI 
LTW 

Balanced 
Success Rate 

0.706 (0.002) 
0.697 (0.002) 

Area Under the 
ROC Curve 

0.772 (0.001) 
0.764 (0.001) 

results section, using a kernel on either of these subsets of codes will result in the 

prefix "selected". Kernels that used all available codes will get the prefix "full". 

4.3.3.6 Comparing the SBoCI and LTW Kernels 

Many of the methods listed above did not make it out of the first round of 

comparison. In particular, the LTW kernel was not used after this point, but we 

would like to highlight its performance. Table 4.2 is the comparison of of the LTW 

kernel and the SBoCI kernel using multiple runs of five-fold cross-validation. You can 

see that the LTW kernel is competitive with the SBoCI kernel. Both of the kernels 

used the subset of diagnosis and procedure codes discussed in the last sections. Due 

to the fact that the LTW kernel requires a much greater computation time, we have 

decided to focus on the various "bag of codes" kernels. 

4.3.3.7 Demographic Kernel 

This kernel was used to incorporate the patients' demographic information. All 

of the variables were categorical in nature. For each variable A, a feature vector was 

constructed with a length equal to the number of distinct values of A. Suppose that 

the possible values are {a\,..., an}. The ith component of the vector was associated 

with a,i, it's value being 1 when A = a\ and 0 otherwise. We then add the kernels for 

all the demographic variables to form the demographic kernel. The variables that are 

included in the kernel are age group, geographical region, employment classification of 
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the primary beneficiary, employment status of the primary beneficiary, relationship 

to the primary beneficiary, industry classification of the employee responsible for 

payment of the claim, and gender. The parameters that will need tuning are those 

associated with the Gaussian kernel, C and 7. 

4.3.3.8 Combined Kernels 

To get an idea of the best kernel of each type, we ran five-fold cross-validation 

using the tuning set as the examples. We found that the SBoCI kernel was the best 

kernel for both the drug codes and the combined diagnosis and procedure codes and 

the bin kernel was the best for the cost data. 

Once we have decided the best kernel of each type, the kernels are combined 

into one overall kernel. We do this by first normalizing each kernel using the cosine 

kernel and then adding the kernels together, which is equivalent to concatenating the 

feature vectors. We will be making two versions of this kernel, one with the full set 

of codes for diagnosis, drug, and procedure codes; and a kernel using selected code 

subset. 

4.4 Results 

4.4.1 Performance of Individual Data Types 

First, Table 4.3 gives the results for the individual kernels on the four types of 

data. ROC curves for the individual and summed kernels with the full set of codes are 

given in Figure 4.6. The curves for the kernels using the selected codes can be seen in 

Figure 4.6. We see that the type of data that has the best individual success (based 

on the ROC curves) was the BoCI code kernel for the diagnosis/procedure codes 

information, with an area under the ROC curve of 0.821 and a 74.3% success rate. 

The ROC curves also show that combining the kernels provides a clear improvement. 

The best kernel based on the full codes had an area under the ROC curve of 0.821 

while the best kernel based on selected codes had an area of 0.810. Thus, the subset 
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Table 4.3; Results for various data, typos and kernels. The balanced success rate is the 
average of the success rate for each class. The value given in the table is the average 
of five independent five-fold cross-validations, with the same set of five partitions used 
for each kernel. The number in parentheses is the SE for the associated mean. 

Data Type 
Cost 
Demographics 
Diagnosis/ 
Procedure 

Drug 

Kernel 
Stratified Bin 
Indicator 
Full Codes BoCI 
Full Codes SBoCI 
Selected Codes BoCI 
Selected Codes SBoCI 
Full Codes BoCI 
Full Codes SBoCI 
Selected Codes BoCI 
Selected Codes SBoCI 

Balanced 
Success Rate 
0.647(0.000) 
0.757(0.000) 
0.743(0.000) 
0.743(0.000) 
0.731(0.000) 
0.733(0.000) 
0.711(0.000) 
0.711(0.000) 
0.706(0.000) 
0.708(0.000) 

Area Under the 
ROC Curve 
0.686(0.000) 
0.807(0.000) 
0.821(0.000) 
0.818(0.000) 
0.809(0.000) 
0.810(0.000) 
0.759(0.000) 
0.764(0.000) 
0.759(0.000) 
0.758(0.000) 

of codes leads to nearly the same results as using the full codes, particular when 

comparing the summed kernels. 

4.4.2 Combined Kernels - Full and Selected Codes 

Next, we give the performance for the combined kernels, both for the full set 

of codes as well as using the partial code set. Results can be seen in the table in 

Figure 4.6. Notice that the process of combining the kernels leads to nearly a 3% 

gain in success rate, going from 75.7% for the best individual kernel to 78.5% for the 

combined kernel using the full code set. Thus, adding the kernels was successful in 

combining the different forms of information into an even better kernel. 

We also see that the kernel that uses the partial set of codes did very nearly as 

well as the kernel that used the full set of codes, with the full code set resulting in an 

area under the ROC curve of 0.865 and the selected codes having an area of 0.864. 

The benefit of this fact is that we have shown that a manageable number of codes 

can be used for nearly identical prediction performance. We will look into a specific 

analysis of these codes in a future paper. 
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Recall that the positive (negative) predictive value of a classifier is the proportion 

of the values that our classifier labels as positive (negative) that are truly positive 

(negative) examples. The sensitivity of the classifier is the proportion of positive 

example that are labeled correctly. The specificity is the proportion of negative 

examples that are labeled correctly. For the classifier based on the combined kernels 

with a full set of codes, we get a positive predictive value of 0.743, a negative predictive 

value of 0.841, a sensitivity of 0.867, and a specificity of 0.701. These values are nearly 

identical for the classifier using combined kernels for the selected codes. 

4.4.3 Combined Kernels - Complete and Truncated Claim Windows 

Finally, we compare the results of combined kernels when using a patient's entire 

claim window to using a truncated claim window. We used the BoCI kernel, but 

not the SBoCI kernel. The reason for this is simple: We cannot guarantee that the 

truncated patient histories will fill a full three years. 

The stratified kernel only gives fair comparisons when the patients being com­

pared have a full history over all strata. If we were to compare a patient with 2 

years of history with a patient with three years of history, two of the strata would 

lead to inner products of 0, indicating that these strata were from patients that were 

"orthogonal" to each other. The problem is that this sort of orthogonality is justified 

only by the different sized claim windows, not by virtue of any observed difference in 

the codes. 

Recall that we considered two versions of truncated claim windows, one with an 

average of 12 month removed and another with an average of 18 months removed. The 

results arc available in Table 4.6. The best kernel using the entire claims window had 

an area under the ROC curve of 0.867. The best kernel for the 12 month truncated 

claims windows had an area under the ROC curve of 0.859. Finally, the best kernel 

for the 18 month truncated claims windows had an area under the ROC curve of 

0.845. Here we see our most profound result: Even after removing an average of 18 
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months of a patients claim history, we are still able to classify the patients nearly 

as well. These results are promising in that our ability to successfully classify the 

patients is nearly as good over a year before the first diabetes diagnosis as it is the 

day before the diagnosis. 

4.5 Conclusion 

We have shown that medical claims data can be used to provide good results 

when classifying positive examples (patients with their first diabetes diagnosis in our 

claim window) vs. negative examples (patients with no indication of diabetes in the 

claim window). In this study, claims data was the only form of information used; 

which, to the best of our knowledge, has not been tried before. 

We were able to reduce the number of diagnosis, drug, and procedure codes to 

a manageable number while retaining performance that was comparable to the best 

kernel using the full set of codes. Most importantly, we showed that these data allow 

us to identify patients that will be diagnosed with type 2 diabetes in the next 15 to 

18 months with reasonable success. 

Diabetes is a costly and prevalent disease. It is somewhat unique in that it has 

a pre-disease state that can be detected before the onset of the disease. Overall, we 

see these methods as constituting a first step in an intervention program. A diabetes 

intervention program would give incentives to participants to lower their risk of type 

2 diabetes through moderate lifestyle changes. Such programs have shown success in 

delaying or completely preventing the onset of type 2 diabetes. The one thing that 

remained was a cost effective method for identifying candidates for an intervention. 

The methods presented here could be used as a very cheap method of identifying 

possible candidates for intervention, provided that the patient's insurance claims data 

is available. Persons identified as "positive" could then be tested for diabetes or pre­

diabetes using more expensive medical tests. The power of such a program is that 
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we will be able to detect people at risk of type 2 diabetes, most of whom won't get 

tested until it is too late. 

4.6 Future Work 

In a future paper, we will specifically analyze the codes that resulted from our 

codes subsetting method. Our hope is to provide supporting evidence for codes that 

are known to be related to diabetes, and perhaps provide new insight by identifying 

codes that would not be intuitively associated with diabetes. 

In the construction of our data set, we identified diabetes patients as enrollees 

with one or more diabetes diagnosis. It must be noted that the presence of a diabetes 

diagnosis does not necessarily mean that the patient has diabetes. There have been 

studies that looked at the ability of insurance claims to predict current diabetes pa­

tients9 through claims data. At least one [38] found that using a rule of 2+ diabetes 

diagnoses was a better rule for predicting diabetes than a rule of 1+ diabetes diag­

noses. It may be worthwhile to redo our experiments using a different definition of a 

positive example and compare the results. 

•'This is in contrast to our goal of identifying people that will be at a risk of diabetes in the 
future. 
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Figure 4.2: ROC curves for various kernels: full codes. 
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Figure 4.3: ROC curves for various kernels: selected codes. 
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Data Type 

Full Codes 
Selected Codes 

Balanced 
Success Rate 

0.785(0.000) 
0.782(0.000) 

Area Under the 
ROC Curve 

0.865(0.000) 
0.864(0.000) 

Figure 4.4: Comparing kernels for full and selected codes. PLOT: ROC curves for the 
two kernels. TABLE: Results for sum of the kernels for different data types. The Full 
Codes results are using all the available diagnosis, drug, and procedure codes. The 
Partial Codes results only use the codes resulting from the code subsetting discussed 
in Section 4.3.3.3. The balanced success rate is the average of the success rate for each 
class. The value given in the table is the average of live independent five-fold cross-
validations, with the same set of five partitions used for each kernel. The number in 
parentheses is the SE for the associated mean. 



80 

CD 

CD 

on 
CD 

> 
w 
o 
Q. 

3 

00 

d 

CD 

d 

d 

CM 

d 

q 
d 

1 1 

^ 

— Full Codes - None Removed 
Full Codes - 12 Months Remove 
Full Codes - 18 Months Remove 

I I I ! 

0.0 0.2 0.4 0.6 

False Positive Rate 

0.8 1.0 

Code 
Set 

Full Codes 
Selected Codes 

Full Codes 
Selected Codes 

Full Codes 
Selected Codes 

Average Amount 
Removed 

None 
None 

12 Month 
12 Month 

18 Month 
18 Month 

Balanced 
Success Rate 

0.784 (0.000) 
0.781 (0.000) 

0.771 (0.000) 
0.784 (0.000) 

0.770 (0.000) 
0.768 (0.000) 

Area Under the 
ROC Curve 

0.867 (0.000) 
0.865 (0.000) 

0.848 (0.000) 
0.859 (0.000) 

0.845 (0.000) 
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Figure 4.5: Results for the truncated data sets. PLOT: ROC plot for each of the 
full code kernels. The results for the selected codes were nearly identical. TABLE: 
The Full Codes results are using all the available diagnosis, drug, and procedure 
codes. The Select Codes results only use the codes resulting from the code subsetting 
discussed in Section 4.3.3.3. The 12 month and 18 month examples had a random 
amount of their most recent history removed that averaged out at 12 months and 18 
months respectively. We have included the results on the full histories using the BoCI 
code kernel for comparison. 



Chapter 5 

ASSOCIATION RULES 

In contrast to the last chapter, the current chapter is concerned with unsuper­

vised learning using the MarketScan® database. Here we are required to extract 

interesting and useful patterns from the database. A standard approach for unsuper­

vised learning on categorical data involves the mining of association rules [44], We 

first review a commonly used algorithm, called the Apriori algorithm [45], for extrac­

tion of rules. In this section, we also review the concept of closed rules and discuss 

some recent results from the literature. We then state and prove a new theorem which 

is particularly useful when considering mining for rules according to which a set of 

diagnoses imply a set of procedures. Additionally, we introduce a class of interesting 

rules that take into account costs associated with various procedures prescribed based 

on available diagnoses for a patient. We provide examples of such interesting rules 

by mining the MarketScan® database. 

5.1 Association Rules: The Apriori Approach 

Association rules were first introduced in relation to the market basket analysis 

problem. Let J denote the collection of all items sold at a supermarket. Suppose the 

supermarket has stored records of items purchased by customers. Each transaction 

is a subsets of 1 and has an identification number y. The set of all transaction 

identification numbers is denoted by T. Thus, saying Ty = {xyi,..., xVn } indicates 

that Ty (transaction with identification tag y) was associated with the purchase of 

the ny items xyi,..., xVn e T. 
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Our goal is to find rules of the form A 4> B, where A, B are disjoint subsets of 

X and Au B C Ty for some y E T. That is, the elements of A and B are common 

to at least one transaction Ty. 

Association rules typically have two attributes, the support and confidence. The 

support is defined as the number of transactions that contain the items in A U B. 

The confidence q is the probability that a transaction will contain B given that it 

contains A. 

Let's look at the total number of possible rules. For any subset of X with k 

elements, there are 2k — 2 possible rules. This comes from selecting all possible left-

hand-sides of the rule except the null set and the full set. Suppose that there are / 

unique elements in X. The total possible number of rules will be 

£(0(*-*) 
For 20 unique items, this is already just shy of 3.5 billion rules. This is far too 

many rules to mine from even a moderate database. We must apply some constraints 

to limit the size of the class of rules we wish to explore. 

Consider using constraints on the support of the item set to limit the number 

of possible solutions. Zaki et. al. [46] point out the relationship between finding 

frequent item sets and finding constrained bipartite cliques, a problem that has been 

well studied. Thus finding all frequent sets at or above some threshold for support K 

can be solved in polynomial time, but finding all frequent item sets with support of 

exactly K is NP-complete 10. For this reason, the Apriori algorithm and other similar 

algorithms force the support of a rule to be above a preset minsup (which stands for 

minimum support). Itemsets with a support greater than minsup are called frequent 

itemsets. 

Meaning it is a hard problem for which there no known polynomial time solution. 
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The confidence will need to be above minconf (minimum confidence), which will 

further limit the size of the set of resulting rules. Limiting the confidence of the rules 

is also an example of defining rules that are "interesting". 

The Apriori algorithm was the first major breakthrough in mining association 

rules. The search is divided into two parts. First, it uses a branch-and-bound ap­

proach to search the space of itemsets for frequent itemsets. We first look at all 

frequent item set of cardinality 1, then all frequent item sets of cardinality 2, etc. 

Next association rules are created for these frequent itemsets. The first portion dom­

inates the computation time, and as such is the focus of much of the discussion. 

To see how the Apriori algorithm works, notice that any subset of a frequent 

itemset must also be frequent. Taking advantage of this fact, we start with small 

itemsets and eliminate infrequent sets. No subset containing these eliminated sets 

need be searched, thus we limit our search space. 

Table 5.1: Example of a transactional database 

t.id 
1 
2 
3 
4 
5 
6 
7 
8 

items 
a, c 
a, b 
a, b, c 
a. b 
a, b. c 
a, c 
c 
c, d 

Consider the database in Table 5.1. There are 8 transaction and four items. 

Suppose that we set m/insup = 4. We start with the individual items a, b, c, d and scan 

the database to count their frequency. The only item that is not frequent (happens 

less than 4 times) is d, which we eliminate. This leaves a, b, c. We now form all pairs 

of frequent items, namely ab, ac, be and scan the database to count their frequency. 

The itemset be is not frequent and is removed leaving ab, ac. Again, all combinations 
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of frequent itemsets from the last set are generated and checked. In this case the 

procedure leads to abc which we know is infrequent because be is infrequent. There is 

nothing left to check and the algorithm terminates. Many variations on the Apriori 

algorithm exist. These variations focus on clever ways of storing and checking the 

frequency of the itemsets. 

There are a few problems with Apriori. First, we may miss low support items 

that are of interest. For example, as stated on [6, page 444], customers that purchase 

vodka may also purchase caviar. As these purchases happen infrequently, they will 

most likely be missed by an Apriori-like algorithm. 

Furthermore, high confidence does not translate to a dependence relationship. 

For example, suppose that A and B are independent and frequent, and B occurs in 

80% of the transactions. The confidence of the rale A=> B, P(B\A) = P(B), is high. 

This may be thought to indicate a predictive association between A and B, which is 

incorrect. Other metrics have been suggested to solve this problem. Many of these 

metrics attempt to measure the departure from independence in one way or another. 

5.1.1 Mining Rules Using Closed Frequent Itemsets 

Next, we review an appealing way, first introduced by Zaki and Hsiao [47], in 

which one can shrink the search space and eliminate redundant rules. Suppose that 

the items a,b,c 6 X always occur together and D C 1 not containing a, b, c. The fol­

lowing rules would form a redundant set of rules in the sense that they are guaranteed 

to have the same support and confidence. 

{a} 

{a, b} 

{a,c} 

{b,c} 

{a,b,c} 

4> 

4> 

^ 

4* 

A 

D 

D 

D 

D 

D 
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In this example, the set {a, b, c} is a closed set. We will now give some results from 

Formal Concept Analysis that will provide a definition for a closed set. We follow 

closely the notation and development given in [46]. The development starts with the 

definition of a partially ordered set and a lattice. 

ABCD 

ABC ACD BCD ABD 

AB AC^ AD ̂  BC ,BD CD 

B 

Figure 5.1: The complete lattice of itemsets. This is the lattice consisting of all 
subsets of our set of items. The meet for two items can be found by following lines 
down to a common vertex. The join can be found by following lines up to a common 
vertex. Notice:1 that the meet and join exists for all pairs of items, making it a lattice. 
The definition of complete is given in the main body of text. 

A partial order on a set S is a binary relation < with the following properties: 

Reflexive : x < x,\/x £ S. 
Anti-Symmetric: x < y and y < x, => x = y, Vx, y £ S. 
Transitive : x < y and y < z, =>- x < z,\/x, y, z G S. 

Let (5; <) be a partially ordered set and ACS. Define the following: 

Upper Bound of A: u e S such that a < u for all a £ A. 
Lower Bound of A: / £ S such that / < a for all a G A. 
Meet of A: The greatest lower bound, denoted / \ A. 
Join of A: The least upper bound, denoted V ^ -

A partially ordered set (L,<) is a lattice, provided that for any two elements x 

and y in L, the join x V y and meet x l\y always exist. L is a complete lattice if 
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f\A and \/ A exist for all A E L. The partially ordered set (V(S), C) is a complete 

lattice. Here V denotes the set of subsets of P (power set). The complete lattice for 

the itemsets in the database in Table 5.1 is shown in Figure 5.1. Sets that are higher 

in the lattice are "larger" than the sets below them according to the ordering defined 

by C. The meet for two items can be found by following lines down to a common 

vertex. The join can be found by following lines up to a common vertex. The sets AB 

and BCD meet at B and join at ABCD, their intersections and unions respectively. 

AB AC. 

\X\ 
A ^ B C 

\ ^ / 

Figure 5.2: The meet semi-lattice of frequent itemsets. This semi-lattice consists of 
all frequent subsets (minsup = 4) from our example database. While each pair of 
items has a meet, there are some items, for example B and C that don't have a 
frequent join. 

If we are only guaranteed that joins will exist, then L is called a join semi-lattice. 

If only meets are guaranteed to exist, then L is called a meet semi-lattice. Figure 5.2 

shows all frequent itemsets for our example database, which form a meet semi-lattice. 

Notice that for any two items, there is a common vertex below the pair, but not 

necessarily a vertex above above the pair. For example, B and C meet at 0 but their 

join, BC is not frequent. Here is the consequence of the fact that frequent itemsets 

form a meet semi-lattice: While we may search the lattice by starting with the (single) 

smallest item and moving up the lattice, we will not be able to search the lattice by 

starting at the one largest item and moving down. 

Now consider the connection between the complete lattice of itemsets (J, C) and 

the complete lattice of tidsets (transaction identification number sets) (T, C). Let 

X C I be an itemset and Y C T be a tidset. 
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First, define functions that map from one lattice to the other. 

t : V(I) -* V(T); t(X) = {y£ T\\fx e X; x5y] 

i : V(T) -+ V{I); i{Y) = {x G l|Vy G F; xSy} 

The notation rcfo/ means that x and y are "related", that is, item x occurs in 

transaction y (x € Ty). For example, in the database in Table 5.1, we can write aSl 

as item a occurs in transaction 1. 

The function i applied to Y gives all the items that occur together in every 

transaction in the tidset Y and the function t gives all the transactions that contain 

every item in the itemset X. It is obvious that t(X) — f]xeX t{x)-

As an illustration, consider the database in Table 5.1. One can see that t(ab) — 

2345 and z(12) = a. 

These functions form a Galois connection. A Galois connection must satisfy the 

following conditions: 

(i) xxcx2^ t(Xi) D t(x2). 
{n) YlCY2^> i{Yx) D i(Y2). 
(Hi) X C i(t{X)) and Y C t(i{Y)). 

The following proposition is easily proved. 

Proposition 5.1.1 The functions t : V(T) -* V(T) and % : V{T) -> V(l) form a 

Galois connection between (I, C) and (T, C). 

The utility of a Galois connection is that it gives us an easy way to form two 

closure operators. A function c : V(S) —>• V(S) is a closure operator on S if, for all 

X, Y C S, c satisfies the following properties: 
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(i) Extension: X C c(X). 
(ii) Monotonicity: if X C Y, then c(X) C c(Y). 
(Hi) Idempotency: c(c(X)) — c(X). 

A subset X of S is closed if c(X) = X. 

Proposition 5.1.2 Let X C I and Y C T . Let cit(X) = i(t(X)) and cu(Y) = 

t(i(Y)). Then cit : V(I) •—> V(I) and cti : V(T) —>• 'P(T) are both closure operators 

on itemsets and tidsets respectively. 

Define a closed itemset as an itemset X such that X = cu(X). For any closed 

itemset X, there exists a closed tidset given by Y, with the property that Y = t(X) 

and X = i(Y). Such a pair (X, Y) is called a concept. It turns out that the concepts 

form a lattice with meets and joins given in [47]. This leads us to the two main results 

from Zaki and Hsiao [47]. 

Theorem 5.1.1 For any itemset X, its support is equal to the support of its closure, 

i.e., \t(X)\ = \t(clt(X))\. 

Theorem 5.1.2 The rule X\ => Xi is equivalent to the rule cu(Xi) => Cit(X<z) in 

the sense the rules share the same support and q = p. 

The second theorem tells us that when searching for rules based on frequent 

itemsets, it suffices to find rules based on frequent closed itemsets. 

The big advantage of searching for closed itemsets is that one is searching over 

a smaller lattice, and hence can potentially get a much faster rule-mining algorithm. 

Furthermore, the list of association rules is smaller and does not contain redundant 

rules. We will see that there is even more benefit to looking for association rules 

between closed sets in a medical database. 
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5.1.2 Closed Frequent Itemsets and Medical Databases 

Suppose that our itemset T is partitioned into diagnoses T> and procedures V. 

We wish to find rules of the form D => P, where D C V and P C V. 

We will define two new functions that map from the transaction sets to each 

partition. 

iv : P(T) - V{V)- iv{Y) = {x e V\\/y e Y; x6y] 

iv : V(T) - • V{V)\ iv(Y) = {x^V\\/ye Y- x8y} 

If we ignore the items in V, the results of the previous subsection imply that 

iv and t form a Galois connection between the lattices (V(V),C) and ("P(J),C), 

and similarly i-p and t form a Galois connection between the lattices (V(V), C) and 

(V(1),C). Therefore, the functions civt(X) = iv(t(X)) and ctiv(Y) = t(iv(Y) are 

closure operators. Similarly, the functions cirt(X) = ip(t(X)) and ctiv(Y) = t(ip(Y) 

are closure operators. Therefore, methods described in Zaki and Hsiao [47] can be 

used to prove the following extention to Theorem 5.1.2. 

Theorem 5.1.3 The rule X\ =̂> Xi is equivalent to the rule ciT>t{X\) 4> civt(X2) in 

the sense that the rules share the same support and q = p. 

Proof: Note that we can find the support of an itemset X by applying t and counting 

the number of items in the resulting set, i.e. |t(X)|. Another important fact is that 

the support of a set is the same as the support of its closure. Thus 

\t{xxux2)\ = \tiXi) nt(x2)\ = \t(clvt(x1))nt(clvt(x2))\ = \t{c,vt{xl) uclrt(x2))\ 

and 

Piux2)| = \t(x1)nt(x2)\ = \t(Clvt(x1))nt(clrt(x2))\ = \t(clvt(xx)uclvt{x2))\ 
\t{Xi)\ \t(X1)\ \t(X,)\ \t{clvt{Xx))\ 

file:///tiXi
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Note that this theorem states that to find rules of the form D =§> F, it suffices to 

find rules from closed frequent diagnoses itemsets (closed with respect to the database 

containing only diagnoses) to frequent procedure itemsets (closed with respect to the 

database containing only procedures). This result has the possibility of reducing 

the search by a significant margin. If the length of the longest frequent diagnoses 

or the longest frequent procedure is much smaller than the length of the longest 

combined frequent itemset, we should see a major boost to the speed of the algorithm. 

For example, in the MarketScan® database the length of the longest diagnoses and 

procedure has size 15 for combined in-patient claims. On the other hand, the longest 

itemset has size 30. See Section 5.3 for a new proposed algorithm based on this 

theorem. 

5.1.3 Apriori-like Algorithms and Medical Databases 

Now suppose that the database has a row for each insurance claim. To apply the 

methods developed for market basket analysis (MBA), we first need to define what 

we mean by items and transactions. Let V denote the set of possible diagnoses and 

V the set of possible procedures that could be prescribed. These will take the place 

of items in MBA. 

There are a couple of ways to define the "transaction". Suppose that we consider 

a patients claims history as the transaction. This is the approach taken by Doddi et 

al [48] as well as Ordonez et. al. [49]. The work by Doddi et. al. resembles our work 

in that it only considers rules generated from insurance claims data. Ordonez et. al. 

consider finding rules for medical data that is not limited to insurance claims, but 

includes clinical data, such as weight, age and measurements estimating the health 

of certain regions of the heart. 

Using a patients history as a transaction allows for rules that span time and 

could suggest the progression of a medical condition. They do not necessarily tell us 
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about the decision making process of medical professionals, as two related codes need 

not even involve the same doctor. 

It was pointed out in Ordonez et. al. [49] that many rules that are generated 

by the standard association rules software are not interesting. These uninteresting 

rules come in many forms: effect predicts cause, well-known medical facts, rules with 

very high confidence, etc. [49]. The authors dealt with this problem by reworking the 

Apriori algorithm to eliminate uninteresting rules. The downside to their approach 

is that groups of codes that lead to uninteresting rules must be defined in advance by 

an expert in the field. We have also suggested a possible solution, specifically to the 

problem of rules of the form effect implies cause, by only searching for rules of the 

form diagnosis implies procedure using Theorem 5.1.2. 

The approach that we suggest in the next section differs from this previous 

work in two ways: We will consider an alternate definition of a transaction, namely 

a transaction is a patient claim. When a transaction is an insurance claim, the 

procedures and diagnoses are directly related, that is the prescribed procedures are a 

direct result of the diagnoses and a doctor's decision. Thus the doctor provides the 

link between diagnoses and procedures, since it was the doctors decision to use these 

procedures based on the diagnoses. 

Finally, we would like to point out that we may learn more about the doctors 

decision making process by considering groups of rules. For each claim, say claim 

number y in the database, we have a record of the patient's diagnoses dyi,..., dVnx G T> 

and the procedures pi,... ,pVm G V that were performed. 

Consider rules of the form D =$• P where D C V and P C P . These are natural 

rules to consider, as they represent a frequent and high probability decision that 

patients with diagnoses D would receive procedure P. For example, suppose we have 
7 

the rule {d\} => p\, and this rule is frequent. What have we learned? There is a high 

chance that a patient with diagnosis d\ will be prescribed procedure p\. 
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We believe there is more to the story than one rule can tell. If we instead knew 

that {c?i, <i2} =>• V2 a n d \d\ H d%} =?- p\, we are in a much better position. We now 

know that the common procedure for d\ is p\ except in the presence of d?, which leads 

to procedure p2. In this light, our reformulation of the problem in the next section 

will involve finding interesting collection of rules. 

5.2 A New Objective Related to Cost 

Let's reconsider this problem. If we are interested in finding connections between 

diagnoses and procedures then we should be interested in rules of the form D =>• P, 

where D C V and P C V. A few points need to be made. Use of rules where D C V 

should, for the most part, give us a general idea of which diagnoses are related to 

a procedure or set of procedures. They will not give us specific information on the 

decisions that doctors make on a patient by patient basis. 

On the other hand, suppose that a group of patients all have a claim with the 

same set of diagnoses D, but we observed different procedures. Some natural ques­

tions arise: Why did the same diagnoses result in different procedures? Did any of 

these procedures produce better results than others? Are there two procedures that 

produced similar results, but one costs less? This could be the starting place for some 

very interesting and fruitful investigation. 

The cost of health-care is of major concern. Association rules in their usual form 

do not allow for constraints involving individual, or in particular, total cost of either 

side of the rule. In a medical database, we have the cost information available. It 

would be useful to produce a way of restricting rules based on their individual or total 

cost as well as their frequency. 

5.2.1 Problem Formulation - Interesting Rules 

We suggest the following reformulation of the definition of interesting rules: 

Problem We wish to find a family of rules D =4- P\,D =!• P2,..., D =£ P„D, 

called a diagnoses family of rules where: 
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1. For each i, D and Pj are the entire set of diagnoses and procedures for a group 

of patients. 

2. We redefine the support of the rule D M- Pi as the number of patients that have 

D and Pj as their entire set of diagnoses and procedures. 

3. We redefine the confidence, qi} of the rule D =S> P, as the fraction of patients 

with diagnoses D that received procedure P .̂ 

4. We will compute the average cost for patients with diagnoses D and procedures 

Pi. 

5. The total cost of diagnoses D is the sum of the costs for all patients with 

diagnoses D. 

There are a number of ways that we can explore interesting diagnosis families. First, 

if there is a particular procedure of interest; we can find the diagnosis families that 

involve it by taking a "round-trip". First, we find all the diagnoses that lead to the 

procedure of interest. Then, we construct the diagnosis family for each unique diag­

nosis. This is done by collecting all the procedures that resulted from the diagnosis. 

An alternate way to find interesting diagnosis families is to define an "interesting" 

criteria. For example, a diagnoses family of rules could be deemed interesting if 

1. One of the rules in the family has a high total cost. In our exploratory work, 

the top 1000 total cost diagnoses are considered to have high total cost. 

2. There is a high amount of variability in the average cost of rules in the family. 

To find families with high variability, the top 1000 total cost families are sorted 

by their average cost variability. 

As a result, we will find collections of diagnoses and procedures that greatly 

contribute to high health care costs, but for one reason or another lead to a different 

procedures with different cost structures. It should be very interesting to study the 

reasons for the variability in cost of procedures. 
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5.2.2 Implementat ion 

Algorithmically, this problem is not as difficult as the original formulation of 

association rule mining. We are not searching the space of subsets, but instead we 

are only looking at sets that occur in totality. This a much smaller set of items. Even 

on a database the size of the Market Scan database, the search for individual rules 

can be done with SAS SQL in a relatively short amount of time. 

Next, we will illustrate the application of this new definition of association rules 

by giving two examples found in the MarketScan® database. 

5.2.3 First Example Family 

In this example we considered the 2003 MarketScan® database information on 

inpatient claims. The database consolidates all the claims for one visit to the hospital 

onto one line in a table. This line includes up to 15 diagnoses and 15 procedures, as 

well as some demographic information. 

We selected the top 1000 diagnoses in terms of maximum total cost and sorted 

these by the variability in the average cost of the family of procedures resulting 

from each diagnosis. The example that we show here is ranked 38th in variability of 

average cost of procedures. The two diagnoses are Intermediate Coronary Syndrome 

and Chest Pain. There were 351 different procedures that resulted from this diagnosis. 

A good question is: Can the variability be explained by the demographic infor­

mation that we have. Let's attempt to answer this question. First we will look at the 

average cost split by each demographic category. The standard error for each average 

is also included. This can be used when determining if two costs are "different". The 

total number of cases and the standard deviation have been provided. We can use 

the standard deviation to look for specific classes were there is a highly variable cost. 

All the numbers have been rounded to three significant digits. 

The family included two cases that had extreme relative costs. These two cases 

have a cost that is an order of magnitude larger than all other cases. It is unclear why 
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these two cases cost so much more, but it seems unlikely that it is a data entry error. 

The averages calculated after excluding these two patients is given in parenthesis. We 

will use these trimmed mean instead of the regular mean in our analysis. 

Some obvious things to note: Table 5.2.3 indicates that this diagnosis is more 

expensive for men than women. Excluding the two extremes, Table 5.2.3 shows 

that the cost tends to rise as the patient age increases. Not surprisingly, we see in 

Table 5.2.3 that the cost also increases with the length of stay. Once the two extremes 

are excluded, the other demographic variables at our disposal showed little difference 

in cost between categories. 

It seems strange that out of 359 patients with this diagnoses, there were 351 

different sets of procedures performed. It might be the case that a number of proce­

dure sets are only superficially different, but this would require more specific domain 

knowledge than is currently available to me. This is one place where medical experts 

can enhance the data-mining exercise by providing suitable metrics for similarity 

between diagnoses and/or procedures. 

Table 5.2: Mean cost by gender for first example family. Note that there were two 
cases with unusually high cost. Wo provide the trimmed mean cost that excludes 
these two cases in parentheses. 

Gender 
Male 
Female 

Mean Cost 
15700(13500) 

9810 

SE 
1750 
687 

Number 
237 
122 

Standard Deviation 
27000 

7590 

5.2.4 Second Example Family 

The next example family was picked with the desire to find a particular type of 

family. The desire was to find a parsimonious example where the diagnosis had a 

large number of occurrences, but a relatively small number of procedures. u 

11 As a side note, it; was a little shocking how difficult it; was to find this type of example. 
Typically, there; were nearly as many different procedures as there were patients for a given set of 
diagnoses. 
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Tabic 5.3: Mean cost by age; group for first, example family. Note that there were 
two cases with unusually high cost. We provide the trimmed mean cost that excludes 
these two cases in parentheses. 

Age Group 
18-34 
35-44 
45-54 
55-64 
65 and older' 

Mean Cost 
7240 

19600(9380) 
13800(11800) 

13000 
5270 

SE 
N/A 

10300 
2190 

859 
N/A 

Number 
1 

24 
142 
191 

1 

Standard Deviation 
N/A 

50400 
26000 
11900 
N/A 

Table 5.4: Mean cost by length of stay for first example family. Note that there were 
two cases with unusually high cost. We provide the trimmed mean cost that excludes 
these two cases in parentheses. 

Days 
1 
2 

3 
4 
5+ 

Mean Cost 
9440 

15800(13400) 
17800(12900) 

18200 
37400 

O C J 

552 
2630 
5070 
3510 
9160 

Number 
160 
118 
49 
27 

5 

Standard Deviation 
6980 

28600 
35500 
18200 
22000 

This family ranked 212th in total variability among the top 1000 maximum total 

cost families. There are 7 cases of the diagnosis family, which involves Digestive Sys­

tem Complications (IGD-9-CM code 278.01), Respiratory Distress (ICD-9-CM code 

786.09), and Localized Adiposity (ICD-9-CM 9974). It is interesting that these cases 

all involved the same doctor and patients with very few differences. One of the pa­

tients was charged a total of just over $110,000, where as all the other patients were 

charged close to $14,000. All of the procedures occurred between 02/03/2003 and 

04/24/2003. 

First thing to note, is that there appear to be a large number of mistaken entries 

in the total cost throughout the database. These are usually indicated by a total cost 

that is an order of magnitude above the typical cost, but having a net cost that is of 

the same magnitude as the typical cost. This difference is attributed to a data entry 

error in which an extra decimal is added to the total cost. This is not the case in 
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this example. Both the net and total cost are one order of magnitude larger for the 

high-cost patient than for the typical patient. 

Let's look at similarities and differences between the patient with the high cost 

and the typical patients. 

• All of the low-cost patients were treated in hospitals with the same zip-code 

(perhaps the same hospital). The high-cost patient received the procedure in a 

hospital with a different, but very similar, zip-code. 

• All of the patients had similar zip-codes and thus from nearly the same place. 

• All of the patients were discharged with the same status, Discharged to home 

self-care. 

• The length of stay for the high cost patient was 2 days, which was 1 day shorter 

than the other patients. 

• Five of the patients had a comprehensive insurance plan and the other two, 

including the high-cost patient, had a PPO plan. 

• The age of the high-cost patient was 46. The ages of the rest of the patients 

were 31, 47, 53, 54, 54, 58. 

• The high-cost patient and all but one of the low-cost patients were female and 

the spouse of the primary beneficiary. The other patient was male and the 

primary beneficiary. 

• The primary beneficiaries for all of the low-cost patients had employee classi­

fications of Hourly Union, where as the primary beneficiary for the high-cost 

patient was classified as Non-Union. 

• The primary beneficiary for the high-cost patient had an industry classification 

of Transportation, Communications, Utilities. The primary beneficiary for the 

rest of the patients was classified as Manufacturing, Durable Goods. 
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It would be very interesting to explore this family more. It seems unlikely that 

the difference in cost could be explained by the differences noted above. Perhaps the 

cost difference is a clerical error. It would definitely be worth the time of the employer 

or health insurance provider to find and investigate such a discrepancy further. 

5.3 Further Research 

There appears to be a potential to mine further knowledge from the diagnoses 

and procedure codes. One possible approach would be to have an expert assign a 

subjective "distance" between two procedures. If such a set of distances was available, 

a large number of learning methods would be applicable. 

In regards to the theorem presented in Section 5.1.3, we will be constructing a 

new algorithm to take advantage of this result. Our proposal involves adapting the 

CHARM algorithm [47] to find all frequent item sets using only the diagnosis codes 

and all frequent item sets using only the procedure codes. It should be noted that this 

approach will not have computed the support of the union X\ U X2, which we plan 

to deal with by using the methods developed by Zaki, namely using the diffsets [47]. 
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Appendix A 

FISHER FEATURES FOR AN HMM 

We were interested in the specific features that the Fisher kernel generated when 

applied to an HMM. In this section, we will work out the resulting features for a small 

example. This follows the work that can be found in Shawe-Taylor and Cristianini[50]. 

Let's look at the meaning of the fisher features for a Hidden Markov Model 

(HMM). We are looking specifically at a model for strings of length n. Note that 

we let s be the sequence of (observed) emissions, that is s = (s\, S2, • •., sn), where 

all the Si are part of some alphabet A. Let M be a collection of states and let 

m = (mx,m,2, •. • ,mn), rtii e M. for all i, be a possible sequence of (unobserved) 

states and M.n be the class of all state sequences of length n. We also add a special 

beginning state, 6, to allow us to begin in various states and for simplicity, we assume 

rriQ — b. 

We are interested in two model parameters: the state transition probabilities 

Pt(n\l) for all n e M and / e M U {6};and the set of emission probabilities Pe(a\n) 

for all n G M. and a G A. 

First, we need to remove the constraints that are a natural part of probability. 

We do this as follows: 

Pick one state and call it m'. For each state m in our state space, we replace 

P(m'\m) with 1 — J2mi^m' Pirn^m)- If there are nm states, this leads to an uncon­

strained model with nm — 1 parameters. 
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Let's find the Fisher features for P(n\l) where n E M/{m'} and I E M U {b}. 

Then 

(..A 1 ^ 
d dlogP(s) 

dPt(n\l) ~ P(s) ^ dPt(n\l) A i J J P t ^ f c l m f c - i J P e C s f c 1 TOfc] 

but 

dPt(mk\mk-i] 

dPt(n\l) 

1 mfc = n and m^^i = / 
- 1 mk = m' and m^-i = / 
0 otherwise 

Thus 

dlogP{s) _ 1 

0P t(n|O ~~ P(V EEC TOfc=n,mfc_i=( *mk=m',mk-i=l 

rn k 

Y[ [Pt(mj-|mj_i) * P e(s J |m j)] * Pe(sfc|mfc) 

= EE 
m fc 

= EE 

-'jnfe=n,?Tifc_i=( •*mfc=m',mfc_i=Z 

fc m 

= E 
fc 

= E 

£ ( - f M f e = n , M f e _ 1 = z | s ) ^ ( i ' M f c = m ' , M f c _ 1 = / | s ) 

Pt(n\l) Pt{m'\l) 

P{Mk = n, Mfc_! = Z|s) P(M fc = m', Mk^ = l\s) 

Pt(n\l) Pt{m'\l) 

Now let's consider the emission probabilities Pe(a\n), where a E A and n E M. 

Similar to before, we need to switch to an unconstrained model. We pick a symbol s' 

and replace Pe(s'\m) with 1 — Yls^s> Pe{s\m) for all states m E M. 

Then for all a E A/{s'} and all n E M 

dlogP(s) 1 ^ 3 
Voi SLj dPe(a\n) P(s) ^ dPJa\n, , 

Y\P{rnk\mk-X) * P(sk\mk), 

but 

dP(sk\mk) 

dP(a\n) 

1 sk = a and mk — n 
— 1 sk — s' and mk = n , 
0 otherwise 



105 

and therefore 

dlogP(s) 
->(c\ / J / J [^sk=a,mk=n J-sk=s',mk=n\ dPe{a\n) P{s) 

v ' ' v ' m k 

J J [Pt{mj\mj-X) * Pe(5 j|m i)] * Pt{mk\mk-i) 

V~"̂  V"^ J-sk=a,mk=n •*sk=s';mk=n l[1Tl, S) 

2-^2-J PJa\n) Pe(s'\n) P(s) 

_ V ^ \ ^ *sk=a,mk=n J-sk=s')mk=n p( \ \ 

k m v i / v i 

E E(Isk=a,Mk=n\S) _ E(ISk=s',Mk=n\s) 

k Pe{a\n) Pe(s'\n) 

_ ^ P(Sk = a, Mk = n\s) P{Sk = s', Mk = n\s) 

Y Pe{a\n) Pe(s'\n) 

This completes the derivation of the Fisher kernel for an HMM. 



Appendix B 

LEARNING CURVE 

First, it is necessary to make sure that we include enough examples to allow the 

classifier to achieve good performance. To get an idea of the effect of sample size 

on the accuracy of the SVM, we used our bag of codes(BoC) kernel applied to the 

diagnosis and procedure codes. The positive and negative examples selected above 

that had a three to five year claim window were used in the process. We tested 

the performance of a classifier trained with the following training set sizes: 100; 250; 

500; 1,000; 10,000; 20,000; 40,000; and 59,000. Performance was measured using mean 

classification success rate measured through multiple runs of five-fold cross-validation. 

Figure B.l shows the results of the experiment. We can see that the success rates 

quickly climb to the near maximum value and plateau. 
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Figure B.l: Learning curve for the BoC kernel. The curve represents an estimate of 
the average success rate, when trained on different sizes of sized training sets. 


