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ABSTRACT

A HIERARCHICAL FRAMEWORK FOR ENERGY-EFFICIENT RESOURCE MANAGEMENT IN

GREEN DATA CENTERS

Data centers and high performance computing systems are increasing in both size and number.

The massive electricity consumption of these systems results in huge electricity costs, a trend that

will become commercially unsustainable as systems grow even larger. Optimizations to improve

energy-efficiency and reduce electricity costs can be implemented at multiple system levels, and

are explored in this thesis at the server node, data center, and geo-distributed data center levels.

Frameworks are proposed for each level to improve energy-efficiency and reduce electricity costs.

As the core count in processors continues to rise, applications are increasingly experiencing per-

formance degradation due to co-location interference arising from contention for shared resources.

The first part of this thesis proposes a methodology for modeling these co-location interference ef-

fects to enable accurate predictions of execution time for co-located applications, reducing or even

eliminating the need to over-provision server resources to meet quality of service requirements,

and improving overall system efficiency. In the second part of this thesis a thermal-, power-, and

machine-heterogeneity-aware resource allocation framework is proposed for a single data center

to reduce both total server power and the power required to cool the data center, while maximizing

the reward of the executed workload in over-subscribed scenarios. The final part of this thesis

explores the optimization of geo-distributed data centers, which are growing in number with the

rise of cloud computing. A geographical load balancing framework with time-of-use pricing and

integrated renewable power is designed, and it is demonstrated how increasing the detail of system

knowledge and considering all system levels simultaneously can significantly improve electricity

cost savings for geo-distributed systems.
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CHAPTER 1

INTRODUCTION AND OVERVIEW

The ever increasing scale and computing capacity of data centers and high performance com-

puting (HPC) systems have led to extremely large power consumption by these systems. This

increased power consumption has required system operators to expend even more power to cool

their systems, and has resulted in increasingly larger electricity costs. The trends will only continue

as computing systems grow in size, particularly as HPC systems push towards exascale. To reduce

the required cooling resources and resulting electricity costs, many new energy efficient systems,

management systems and operating strategies are being developed and implemented.

Modern computer systems rely heavily on multicore processors, and the the number of cores

within each processor continues to increase. The cores within each processor, however, share

the memory resources within the processor. When a large number of tasks, especially tasks that

require large amounts of memory, are run simultaneously, contention for shared memory resources

can lead to the slowdown of the applications. Since this performance degradation is difficult to

predict, many system administrators limit or disallow entirely the co-location of applications on

multicore processors to ensure that Quality-of-Service (QoS) requirements are met.

Reducing or eliminating co-location on multicore processor requires that many more proces-

sor be used to accomplish the same workload. Being able to accurately predict the slowdown of

co-located applications would enable system administrators to use less computer resources while

remaining confident that QoS requirements will be met. Chapter 2 proposes a framework method-

ology for modeling and predicting performance degradation of applications running on a multi-

core processor. Using several different processor architectures, many trials were performed using

benchmark applications in a variety of co-location scenarios. Detailed application performance
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information was collected during each test using the performance counters in the processors. Ma-

chine learning techniques, specifically linear regression and neural networks, were trained on the

collected data to generate models capable of accurately predicting performance degradation to to

co-location. In addition to their usefulness to real systems, these models also enable simulations

in other works to accurately represent co-location effects using real data.

Moving up to the data center level, there are many opportunities to improve efficiency and

reduce electricity cost. Chapter 3 proposes several resource allocation heuristics that use holistic

system knowledge (thermal, power, server heterogeneity, and task co-location effects) to maximize

the completed workload for a given energy budget. A detailed thermal model predicts the temper-

atures within nodes, taking into account the cooling effects of the computer room air conditioning

(CRAC) units and the power dissipated by all other nodes. Within each server, dynamic voltage

and frequency scaling (DVFS) is used to trade computing speed for power consumption. The pro-

posed resource allocation heuristics are run with and without the co-location effects described in

Chapter 2, to demonstrate the difference in the resulting allocation decisions and the importance

of including co-location effects in resource allocation techniques.

Chapter 4 extends the efforts of Chapter 3 by seeking to reduce electricity costs for a group of

geo-distributed data centers. Many utility companies now use time-of-use (ToU) electricity prices,

where the price of electricity is the highest during peak demand hours. This has led to operators

of groups of geo-distributed data centers to use geographical load distribution (GLD) to distribute

incoming workloads between data centers throughout the day, to take advantage of the cheapest

electricity prices. In addition to this, many data centers are installing renewable power generation

such as solar panels and wind turbines to reduce electricity bills. Chapter 4 proposes a hierarchical

framework for GLD that includes not only ToU pricing and renewable power, but the holistic data

2



center models described in Chapter 3, providing an unprecedented level of optimization at the geo-

distributed system level. Four heuristics are proposed, each with an increasing amount of system

knowledge to demonstrate the electricity cost reductions that can be obtained from these methods.
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CHAPTER 2

A METHODOLOGY FOR CO-LOCATION AWARE APPLICATION

PERFORMANCE MODELING IN MULTICORE COMPUTING1

2.1. INTRODUCTION

There is an inherent trade-off in large scale computer systems between reducing the use of

system resources by consolidating applications to as few server processor nodes as possible (to

reduce system power) and the performance degradation that occurs in these applications as a result

of sharing system resources with other applications. Memory interference caused by multiple

applications co-located on a multicore processor has been shown to negatively impact application

performance (e.g. [4], [5], [6], [7]). Specifically, sharing of system resources such as DRAM

and the last-level cache by co-located applications creates contention and increases the memory

intensity of all applications running on the multicore processor [5]. This increase in memory

intensity results in a corresponding increase in average memory access time, which ultimately

contributes to an increase in the application’s overall execution time. This increase in execution

time is significant, and in some cases can as much as double or triple the execution time of an

application as compared to its baseline execution time [8].

The use of multicore processors that experience performance degradation due to co-location

is pervasive throughout many kinds of computing systems, but its effects are most likely to be

1This work was done jointly with Ph.D. student Daniel Dauwe, and published at the Workshop on Advances in Parallel
and Distributed Computational Models in 2015.
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prevalent in large-scale server systems and high-performance computers. In these kinds of com-

puting systems, highly parallel applications running on multicore processors result in a sharing

of resources in a manner that creates memory interference and causes performance degradation.

Having a methodology that is capable of predicting how well a system will run in a particular

co-location scenario would be very useful for these systems. For example, the information gained

from accurate co-location performance degradation could be integrated into intelligent application

scheduling, and may lead to system performance improvement by more fully utilizing hardware

and thereby increasing opportunities for server consolidation to save power while still maintaining

quality of service constraints. The work presented in this chapter provides a methodology that

can be used to create co-location aware performance models.

The methodology for analyzing system performance that is described in this work is general

enough to be applicable to any set of applications running on any multicore processor. Once

application performance information for a particular combination of multicore processor and target

applications has been collected, our methodology uses machine learning techniques to construct

performance models characterizing that performance information. Once trained, these models

require only a single serial baseline measurement of parameters for each application running alone

in the system to make predictions about the performance degradation from memory interference

that will occur when the application is executing with different types of co-located applications.

While it has been shown in [6] that an application’s use of memory resources operates in varying

phases across its execution, this work shows that going into such a level of detail is not necessary

to make accurate predictions.

After describing how our methodology operates, our work validates the theory behind the

proposed methodology using real world data collected on two Intel Xeon server-class machines

running a collection of scientific application workloads, with some models performing with 98%

5



accuracy. In addition to creating and demonstrating a methodology that is capable of being ported

across processor architectures, this work provides insight into what memory use information is

most important to know about a set of applications running in a system.

This work makes the following key contributions: (a) we identify factors that can characterize

slowdown during application co-location scenarios, and methods to capture those factors; (b) we

propose a novel methodology to integrate these factors into multi-granularity and multi-fidelity

performance models that can be used to predict application performance under co-location scenar-

ios; (c) we show that a fine level of detail is not always necessary to achieve reasonable prediction

accuracy; and (d) we validate the methodology with real-world data obtained from running co-

located scientific workloads on contemporary Intel Xeon server-scale multicore processors with

up to 12 cores per processor.

The rest of the paper is organized as follows. The next section discusses related work in this

area. Our prediction modeling methodology is presented in Section 2.3. Section 2.4 describes

details of the testing environment and data collection. Experimental results validating the models

are shown in Section 2.5. The paper concludes with a discussion of practical applications that can

be taken from the experimental results in Section 2.6.

2.2. RELATED WORK

Several works have explored the impact of co-location on application performance in multicore

environments. Here we briefly summarize the most relevant prior works in this area.

The authors in [7] give an early examination of how co-locating multiple applications on a

single multicore processor affects performance. However, their work focuses on a general exami-

nation of the effects that co-location has on the system as a whole, and does not examine the effects

on specific applications or create co-location performance models the way that our work does.
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The study in [6] gives an excellent review of how the architecture that an application is run

on can affect the cache use and memory intensity of that application. The paper however does

not attempt to make predictions about performance degradation as we do, but it does show the

importance of including memory intensity and cache usage information when characterizing per-

formance degradation in the presence of application co-location.

Our work in [5] measures memory interference from application co-location, and its impact on

system performance for a single Intel i7 machine. However that work does not create models that

predict system performance, and the scope of the work is restricted to only a single consumer class

machine.

The work in [9] describes the challenges faced by applications sharing resources, and the need

for being able to perform precise predictions of performance degradation. The paper presents its

“Bubble-Up” methodology for predicting performance degradation results. However, it does not

consider the impact of dynamic voltage and frequency scaling on application performance, and

also does not collect experimental data or characterize the memory interference effect of having

more than two applications co-located.

The authors in [4] present an extension to the “energy roofline” model that explores the effect

of memory intensity (from the perspective of arithmetic intensity) on execution time and power

use. The study runs a series of constructed microbenchmarks on twelve machine architectures

and provides an analysis of the performance of the systems. While this study collects data about

performance degradation from memory interference on a set of real machines, it uses small “mi-

crobenchmark” tests on these machines, as opposed to the scientific workloads we use. Moreover

their work does not create models to predict performance due to memory interference.

7



Similar to our work, the work in [10] also looks at creating a portable methodology using

machine learning techniques for predicting application performance degradation from shared re-

sources. The authors in this paper also incorporate shared resources beyond the last-level cache.

However the addition of incorporating these resources forces the resulting model to be extremely

complicated, and their model requires constantly monitoring a large number of processor perfor-

mance counters, which can cause system-wide slowdown for all running applications. In contrast,

our methodology needs to collect performance counter information about each application only a

single time, and provides better prediction performance. Additionally, our methodology guaran-

tees a uniform selection of training data over the possible co-location space (allowing for more

portability) while the work from these authors selects the vast majority of its training data at ran-

dom.

The authors acknowledge that work exploring the effect of hyperthreading (SMT) on applica-

tion performance is an open and active area of research. Papers such as [11] and [12] examine

scheduling and resource use of applications utilizing SMT. We chose to focus our study on the

interference that applications experience at an inter-core granularity, and for this study we have

turned off hyperthreading to remove the possibility of application interference in the L1 cache.

2.3. MODELING METHODOLOGY

2.3.1. OVERVIEW. Our work uses two types of machine learning techniques, linear modeling

and neural networks, for constructing the predictive models. These techniques have been used in

prior work [10], [9] but were limited in attribute selection and scope. For each machine learning

technique, we design several models with varying levels of complexity and application features.
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2.3.2. MODEL FEATURES. The performance prediction models that we design use up to eight

separate features to predict how the target application performance is impacted by co-located ap-

plications. The eight features were chosen by performing a principal component analysis (PCA)

on the data collected from multicore processors considered in this work. PCA allows all of the

features that were gathered to be ranked according to variance of their output, giving an idea of

which features were most important to include in the models.

These features are a general set that are present in most multicore processors. We have con-

structed models that use increasingly complicated combinations of the features. These range from

combinations we felt would be most easily available to a resource manager making allocation deci-

sions, to combinations that required more information about the application’s baseline information

to construct. The eight features are shown in Table 2.1. The table gives the name of the feature in

the first column, and the aspect of the processor that it measures in the second column. The features

TABLE 2.1. Model Features

Feature name aspect of execution measured
baseExTime baseline execution time of target application at all P-states
numCoApp number of co-located applications
coAppMem sum of co-application memory intensities
targetMem target application memory intensity

coAppCM/CA sum of co-application last-level cache misses/cache accesses
coAppCA/INS sum of co-application last-level cache accesses/instructions
targetCM/CA target application last-level cache misses/cache accesses
targetCA/INS target application last-level cache accesses/instructions

of Table 2.1 can be combined to create models of various complexities. The “target” application in

the table is the one for which we are interested in determining slowdown due to co-location. The

baseline execution time seen in Table 2.1 is the execution time of the target application without

any co-location present. The model feature sets listed in Table 2.2 represent six possible scenarios,

one baseline scenario (model “A”) that uses only the baseExTime feature for predictions and five
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other scenarios. For each of the five other scenarios, the resource management system has a certain

amount of baseline information about the system, the target application, and the other applications

co-located on the system. The progression from one model to the next simulates a realistic process

where the resource management system progressively obtains more detailed information about the

system and the executing applications.

TABLE 2.2. Sets of Model Feature Groups

Set name feature groups within set
A baseExTime
B model A + NumCoApp
C model B + coAppMem
D model C + targetMem
E model D + coAppTCM/TCA, coAppTCA/INS
F model E + targetTCM/TCA, targetTCA/INS

2.3.3. LINEAR MODEL. To predict the impact of application performance due to co-location,

six linear models were developed using the six feature sets listed in Table 2.2. Each linear model

is the sum of the products of the utilized features and the model coefficients determined during

training, plus a constant. A general model for predicting co-located execution time using N fea-

tures would take the form of Equation 1. Linear regression is used to calculate the values for the

coefficients using the linear least squares function in the Python package SciPy.

(1) co-executiontime =
N∑
i=1

(coefficient i ∗ feature i) + constant

2.3.4. NEURAL NETWORK MODEL. From observation of the raw data, there are obvious

instances of nonlinearity in a few of the features of our data. This was the primary motivation

for attempting to create a prediction model using a neural network that can capture non-linearity

effects. Neural networks [13] are a machine learning technique that is commonly used when

making predictive models. The approach is inspired by attempting to mimic how the human brain
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is thought to work by defining a set of “neurons” that are used as nodes for the system. The inputs

to these neurons are propagated through the network via a series of functions located at each node

in the network. The final output value is determined by the input value’s propagation through the

network. For our model the input neurons are the features of the data available in each model, and

the outputs determine the predicted execution time with performance degradation that the model

will experience with co-location. The neural networks used in this work vary in the number of

nodes used from ten to twenty depending on the model feature set that is used as inputs to the

network. A scaled conjugate gradient numerical method was used to determine the co-efficient

values at each network node.

2.3.5. MODEL ACCURACY. All of the models are evaluated using Mean Percentage Error

and Normalized Root Mean Squared Error as two ways of comparing the predicted application

execution time for each test (predictedj) to the actual execution time for each test (actualj).

2.3.5.1. Mean Percent Error. Mean Percent Error (MPE) is defined in Equation 2. The magni-

tudes of the actual values within the data vary greatly (e.g., when modeling execution time, actual

values could range from as little as 150 seconds to over 1000 seconds based on the application that

is being executed and the state of co-location of the applications in the system), and MPE allows

the evaluation of prediction accuracy independent of these magnitudes for each of the M sample

points of data. This error value is taken for just the target application’s execution time.

(2) MPE = 100 ∗ 1

M

M∑
j=1

|predictedj − actualj
actualj

|

2.3.5.2. Normalized Root Mean Squared Error. Normalized Root Mean Squared Error (NRMSE)

gives an indication of the variance of our predicted values from the actual values. For M sample

points, NRMSE provides a ratio of Root Mean Squared Error and the interval of values that the
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actual data can take (actualmax − actualmin). Normalized root mean squared error is defined in

Equation 3.

(3) NRMSE =
100

M
∗

√∑M
j=1(

predictedj−actualj
actualj

)2

actualmax − actualmin

2.4. IMPLEMENTATION OVERVIEW

2.4.1. TESTING ENVIRONMENT.

2.4.1.1. Operating System. One of the objectives of this research was to design a methodol-

ogy that could be applied to a wide variety of computing systems. Our testing environment was

designed to be portable across many multicore processor architectures to allow for simplicity of

gathering test data and ease of recreating the testing environment for future users of this work. To

ensure accurate data is collected, the testing environment is run from a “lightweight” command

line version of the Ubuntu 14.04 operating system [14] installed on a USB drive. This is done to

minimize the effect that the operating system has on application execution. Unessential OS utilities

and kernel daemons were removed so that the applications being monitored suffer as little inter-

ference from unpredicted events in the OS as possible. Such an environment mimics a large-scale

computing platform meant to execute multiple parallel jobs.

2.4.1.2. Processor Performance Counters. Modern multicore processors provide the ability

for developers to monitor hardware events that occur inside a multicore processor during the ex-

ecution of an application. Through the use of specialized “performance counters” present in the

processor it is possible to track the number of occurrences of certain events that take place, such

as the number of instructions executed or last-level cache misses. These performance counters are
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architecture dependent, and due to differences between microarchitectures the number and types

of performance counters that are available to the system are not consistent (e.g. differences across

[15], [16], and [17]). Given the design goal of having portability for our methodology, interfacing

directly with these hardware performance counters is not a valid option. Therefore, the testing

environment makes use of two tools to facilitate interactions with the hardware.

The first tool is the “Performance Application Programming Interface" (PAPI) [18], an API that

was made specifically to provide portability when accessing performance counters across different

architectures. PAPI has created a general list of more than 100 standard performance counter

“presets” that are likely to be present in a modern processor. PAPI has made it more accessible to

interface with these counters across architectures.

The second tool our testing environment utilizes is the HPC toolkit [19]. This suite of appli-

cations interface with PAPI and make it easier to monitor and collect information from multiple

performance counters in the system. Specifically, HPC toolkit’s “hpcrun-flat” application profiler

is used to collect performance counter information because it is able to run with very low overhead.

2.4.1.3. Measuring Cache Use. From [5], it is known that applications that need to access

data from memory more often experience a larger amount of performance degradation due to co-

location. We incorporate these performance degradations into our prediction models by collecting

measurements of these effects. We have found that three hardware performance counter mea-

surements can be used to collect the information necessary for deriving the metrics used in our

methodology’s models:

• number of last-level cache misses an application experiences (LLC) representing the num-

ber of times an application must go to main memory

• number of instructions the application executes (NI)

• total number of last-level cache accesses the application attempts (TCA)
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Measured features derived from these measurements were listed in Section 2.3. It should be

noted that “last-level” cache misses and accesses are dependent on architecture, and can refer to

either the L2 or L3 cache depending on the multicore processor that is being used. It is also

important to note that when collecting test results for the execution of applications the values

measured in these performance counters suffer a loss of temporal information, so they can only

represent an average value across time.

One notable metric derived from this data is application memory intensity. Memory intensity

is defined to be a ratio of an application’s last-level cache misses to the number of instructions ex-

ecuted by that application. This metric gives an idea of the rate at which an application needs to go

to main memory to fetch data. It is useful because it shows whether an application’s execution will

be more likely to be memory bound relative to another application, meaning that its performance

depends more on its memory access speed rather than its computational speed. Memory intensity

also gives some idea of how much an application tends to access memory. A highly memory in-

tensive application will utilize the shared cache resource more, and therefore it will tend to affect,

and be more affected, by the memory interference from other applications.

2.4.1.4. Processor Performance States (P-states). Processor performance states (P-states) are

a set of discrete voltage and frequency values in which a multicore processor can operate. P-states

utilize dynamic voltage and frequency scaling (DVFS), supported in all contemporary multicore

processors. DVFS techniques can reduce the dynamic operating power of a multicore processor

to consume less power or to temporarily reduce the operating temperature due to the multicore

processor having exceeded a thermal cut-off. However, these benefits come at the cost of having to

throttle the multicore processor speed by decreasing the clock frequency. This generally increases

the execution time (decreasing system performance) of any application running on the multicore

processor. The range and number of P-state frequencies that are available in a system are highly
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dependent on the architecture of the multicore processor. Processor P-states are likely to change in

high performance computing systems based on the system’s need to reduce power or temperature.

This work focuses only on how changing P-states affects application execution time. This effect is

taken into account through knowledge of the baseline execution time of each application at a given

P-state.

2.4.2. DATA COLLECTION AND EXPERIMENTAL SETUP.

2.4.2.1. Benchmark Applications. The applications run as testing workloads for our model

validation were taken from two scientific benchmark suites. The set of eleven applications that we

considered varied in the types of tasks that they perform and are characterized by a wide spread

of memory intensity values. Table 2.3 shows the applications, those taken from the PARSEC

benchmark suite [20] are denoted with (P), and those from the NAS benchmark suite [21] are

denoted with (N). The table also shows the application’s associated baseline memory intensity

values, where baseline memory intensity values are measured when the applications are executed

on a multicore processor by themselves without interference caused by co-location.

As shown in Table 2.3, these applications have been categorized into four memory intensity

classes denoted as “Class I” through “Class IV.” Class I applications are the most memory in-

tensive applications (meaning that they have the highest number of last-level cache misses per

number of instructions executed and are more memory bound), while class IV applications are the

least memory intensive (meaning that they experience fewer last-level cache misses per number

of instructions executed, and their execution is more CPU bound). Categorizing the applications

into groups in this way allows applications from particular groups to be referred to more gener-

ally. These groupings allow for more broad use of this methodology for performance prediction.

Should a system developer not have detailed memory intensity information about the applications

running in the system, but still has a general idea of how memory intensive the applications might
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be, then having application class values will allow the developer to still be able to use the model.

The developer can still gain some insight as to the expected performance of the system by running

the model with average values for that application’s class.

It should be noted that the memory intensity values listed in Table 2.3 are from baseline mea-

surements for one specific system. We found that the memory intensity values do not vary widely

between the machines we tested, thus we used the memory intensity classes to accurately repre-

sent class categories for the Xeon family of multicore processors we consider. It is also important

to note that the memory intensity values between application classes tend to differ by orders of

magnitude. This allows for clearer distinctions to be drawn between application classes.

TABLE 2.3. Memory Intensity Classification

Applications classification baseline memory intensity (LLC / NI)
canneal (P) Class I 1.84×10−2
cg (N) Class I 1.56×10−2

ua (N) Class II 1.63×10−3
sp (N) Class II 1.50×10−3
lu (N) Class II 1.11×10−3

fluidanimate (P) Class III 8.60×10−4
freqmine (P) Class III 3.47×10−5
blackscholes (P) Class III 1.88×10−5

bodytrack (P) Class IV 8.69×10−7
ep (N) Class IV 6.27×10−10
swaptions (P) Class IV 4.22×10−10

2.4.2.2. Multicore Processors Tested. The specifications of the multicore processors tested

during the validation of our methodology are shown in Table 2.4. All multicore processors used are

from the Xeon family of multicore processors, with a varying number of available cores (ranging

from six to twelve), L3 (last-level) cache size, and frequency ranges. More detailed information

about these processors can be found in [16] and [17].

2.4.2.3. Training Setup. “Training data” was collected from each multicore processor to con-

struct the models discussed in Section 2.3. The training data for all of the machines was collected
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TABLE 2.4. Multicore Processors Used for Validation

Intel processor num. cores L3 cache frequency range
Xeon E5649 6 12MB 1.60-2.53 GHz
Xeon E5-2697v2 12 30MB 1.20-2.70 GHz

in the form of execution time values of various co-locations using all eleven applications as tar-

get applications co-located with a subset of only four of the applications available in the testing

environment. Specifically, cg, sp, fluidanimate, and ep were used as the applications that were

co-located with each “target” application to provide the training data with a selection of applica-

tions that are representative of each of the four classes of memory intensity. We limited our use of

co-location applications for training data to four applications to keep the number of tests that we

could run for training tractable.

When measuring application performance, data is collected for only a single “target” appli-

cation during any given co-location test. Initial baseline tests were run that measured each ap-

plication’s execution without co-location across six P-state frequencies to determine how each

application performed without interference from other applications. This baseline test provides a

basis of comparison for the effect of interference on application performance degradation. These

four applications were then scheduled co-located with each other in a manner that allowed the

machine being tested to have a sparsely distributed set of co-location tests that were evenly spread

across the number of total possible co-location combinations available to the machine for use as

training data.

In particular, training data was collected for each of the eleven target applications by running

tests co-locating each application with multiple instances of each of the four co-location appli-

cations mentioned earlier. These four co-location applications represent applications from each

of the four memory intensity classes. Multiple copies of each of these co-location applications
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were run co-located together for each of the number of co-locations denoted in the “number of co-

locations” column shown in Table 2.5. Each of these sets of tests where then run once for each of

the six selected P-states for each multicore processor. The P-state frequencies are shown in Table

2.5. It should be clarified that each of the columns three to six in the table represent nested loops

in the data collection code. Thus each attribute that is included as parameters to the data collec-

tion increases the size of the co-location space substantially. For example, the data collection was

generally conducted as:

f o r each m u l t i c o r e p r o c e s s o r :

f o r each f r e q u e n c y :

f o r each t a r g e t a p p l i c a t i o n :

f o r each co−l o c a t e d a p p l i c a t i o n :

f o r each co− l o c a t i o n s :

g e t _ e x e c _ t i m e _ o f _ t a r g e t ( )

The “num. of co-locations” column in Table 2.5 shows the number of additional applications

that were homogeneously co-located with the target application (i.e. all co-located applications

are of the same type). The applications ranged on each multicore processor from only a single co-

located application occupying one additional core, to co-located applications running on all of the

multicore processor’s available cores (i.e., one target application plus n−1 co-located applications

for a multicore processor that has n cores).

Setting up the training data in this way is an attempt to sample the set of all possible co-

locations for a given machine in a uniform way that minimizes the amount of training data that

is needed to calculate co-efficients for our model. At the same time, the training data is carefully

selected to provide a model that is flexible. The data that is collected for training the models is
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designed to be able to both predict between the training data’s gaps in the sample space, and extend

beyond the set of four co-location applications available to the training data and be able to make

predictions about applications that it has not seen previously.

TABLE 2.5. Training Schedule

Multicore
processor

number
CPUs
(n)

target
applications

co-location
applications

frequencies
(GHz)

number of co-
locations

Intel Xeon
E5649

6 all eleven ap-
plications

cg, sp, fluidan-
imate, ep

2.53, 2.40,
2.26, 2.00,
1.73, 1.60

1, 2, 3, 4, 5

Intel Xeon
E5-2697v2

12 all eleven ap-
plications

cg, sp, fluidan-
imate, ep

2.70, 2.40,
2.10, 1.80,
1.50, 1.20

1, 3, 5, 7, 9, 11

TABLE 2.6. Effects of Memory Interference on Canneal

num. co-located applications execution time (s) normalized execution time linear model F (MPE) neural network model F (MPE)
0 220 1.00 - -
1 229 1.04 11.0% 2.5%
3 239 1.09 9.4% 2.2%
5 253 1.15 7.3% 1.8%
7 266 1.21 4.5% 0.4%
9 277 1.26 4.1% 5.0%
11 292 1.33 1.7% 11.4%

2.4.2.4. Model Testing. Application testing was done by partitioning the training data de-

scribed in Section 2.4.2.3 through repeated random sub-sampling validation based on the boot-

strapping approach first described in [22]. Thirty percent of the data was randomly selected and

withheld from the training process of each model. After training, the withheld data was run through

each of the models and measured for accuracy. In this way, each model was tested using data that

had not been seen previously during testing. The partitioning process was repeated one-hundred

times, each time with a new random selection of points being withheld from training. The error

values from each of these one-hundred training and testing partitioning groups was then averaged

to determine the overall accuracy of each model.
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2.5. EXPERIMENTAL RESULTS

2.5.1. OVERVIEW. This section details the performance results of each of the 12 models we

propose (two classes of modeling techniques - linear, and neural network - with six variants each,

based on the six model feature groups in Table 2.2). Each of the feature groups offers a trade-off

between prediction accuracy and model complexity. Figures 2.1- 2.4 show the prediction accuracy

for the training data set and testing data set on the 6-core Intel Xeon E5649 and the 12-core Intel

Xeon E5-2697v2 multicore processors, respectively. Model prediction accuracy represented in

both MPE and NRMSE is included for each of the machine learning techniques.

Each data point in the figures represents the average training error and average testing error

from one-hundred partitions of the data for a particular model. In the case of each model, the error

for each partition that was tested did not vary much (at most a quarter of a percent), meaning that

each separate model shown has a tight confidence interval for its prediction accuracy.

2.5.2. THE EFFECTS OF MEMORY INTERFERENCE. Table 2.6 provides an example of the

performance degradation the canneal application experiences from memory interference due to

increasing numbers of the cg application co-located on cores of a 12-core Intel Xeon E5-2697v2

multicore processor. It can clearly be seen in the table how the application’s performance (the

execution time of canneal) is negatively impacted over canneal’s baseline execution time of 220

seconds as the number of co-located applications increases. The increase in execution time is

shown in the “normalized execution time” column of the table as the co-located execution time

normalized by the baseline execution time of the canneal application. In this case, increasing

application execution time by as much as 33%. The table also shows the accuracy of the execution

time predictions for linear and neural network models (using the MPE metric) making execution

time predictions using feature set “F.”
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2.5.3. RESULTS OF LINEAR MODELING. For both multicore processors tested, the more ad-

vanced linear models provide only a modest improvement over the baseline linear model (model

A) when feature information is added to the models. For the 6-core processor (Figure 2.1) the

linear model has an MPE training error and testing error of 8% for its baseline models. With the

addition of new features the 6-core processor is able to reduce its error down to an MPE of 6.5%

for the linear model. The 12-core processor does not show any improvement from the addition of

more model features (Figure 2.2). The linear NRMSE variance results for the 6-core and 12-core

processors (Figure 2.3 and Figure 2.4) follow very similar trends to the MPE model except that the

variance in predictions reduces from 4.25% to 3.75%.

The complexity of the sample space makes it challenging for the linear models to perform

well beyond the baseline model, and in each case the only cache use information that proves to

be helpful is information about the co-located applications. Given the fact that the model features

do not help to train these models very well, it is not surprising that performance of the testing

data very closely matches that of the training data. As mentioned earlier, non-linearity in the data

make predictions with these linear models less accurate. The 12-core processor results in particular

suffer from having to predict performance degradation for a much greater number of possible co-

locations.

2.5.4. RESULTS OF NEURAL NETWORK MODELING. The neural network models provide a

clear improvement and very accurate predictions over the linear models (Figures 1-4). It can clearly

be seen in the neural network models how the addition of application cache use helps to improve

the predictions of each model. Predictably, the most complex neural network models, which utilize

the most information, perform the best (operating with only a 2% MPE error on the testing data

for both multicore processors), however it appears as though the most important features are the
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features measuring the cache use information of the applications that are co-located with the target

(coAppMem, coAppCM/CA, and coAppCA/INS from Table 2.1).

As with the linear models, the NRMSE results show that the variance between the predictions

and actual values decrease with generally the same trends as the MPE graphs except that for both

machines the inclusion of the co-located application’s cache access related metrics in model E

reduced the NRMSE greater than it reduced the MPE.

2.5.5. MODEL ACCURACY. Figure 2.5(a) shows a detailed view of each application’s execu-

tion time distribution on a 6-core Intel Xeon E5649 machine. The points inside each application’s

distribution mark the specific execution time values measured for each test run for each application.

Space limitations prevent showing a detailed view of the performance of all models, however Fig-

ure 2.5(b) shows a detailed view of the performance of the neural network model using feature set

F (i.e. the most accurate model) on the execution time data shown in Figure 2.5(a). Distributions

of the percent error between the model’s execution time predictions and the application’s actual

execution time are shown for each application. The lines across each distribution represents the

distribution’s median (dashed line) and upper and lower quartiles (dotted lines). The figure shows

that the model’s predictions are generally accurate (there error is close to zero), that the majority

of the model’s predictions are ±2% from the actual execution time values, and that nearly all of

the predictions are within 5% of the actual execution time values.

2.6. CONCLUSIONS

In this chapter, we propose a modeling methodology that allows for predictions to be made

about the performance degradation that occurs from multiple applications running co-located on a

multicore processor. The methodology is general enough to be applied to any multicore processor

or set of applications. To validate the methodology we demonstrate its effectiveness by applying it
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FIGURE 2.1. Model performance per feature set for the 6 core Intel Xeon E5649.
(a) MPE for the training data set. (b) MPE for the testing data set. The figure shows
results for each of the machine learning techniques: linear (solid blue) and neural
networks (dashed green).

FIGURE 2.2. Model performance per feature set for the 12 core Intel Xeon E5-
2697v2. (a) MPE for the training data set. (b) MPE for the testing data set. The
figure shows results for each of the machine learning techniques: linear (solid blue)
and neural networks (dashed green).

FIGURE 2.3. Model performance per feature set for the 6 core Intel Xeon E5649.
(a) NRMSE for the training data set. (b) NRMSE for the testing data set. The figure
shows results for each of the machine learning techniques: linear (solid blue) and
neural networks (dashed green).
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FIGURE 2.4. Model performance per feature set for the 12 core Intel Xeon E5-
2697v2. (a) NRMSE for the training data set. (b) NRMSE for the testing data set.
The figure shows results for each of the machine learning techniques: linear (blue)
and neural networks (green).

to two server class Intel Xeon multicore processors with up to 12 cores, running real data workloads

from two scientific benchmark suites.

Specifically, this work looked at how machine learning techniques can be used to make predic-

tions about application performance degradation due to contention in shared cache and main mem-

ory resources when multiple applications were run co-located on the same multicore processor.

While simpler linear models do not seem to provide much benefit from the addition of application

cache use information, the results from Figure 2.1 and Figure 2.2 show that neural networks can

provide quite accurate predictions of application performance. For the neural network even the

addition of only some of the application features is capable of producing fairly accurate perfor-

mance predictions. Using all the features the neural network has only a very small MPE of 2%

and an NRMSE of around 1%. Considering that performance degradation due to co-location can

extend an application’s execution time quite significantly, even a model limited to only knowledge

of application memory intensity may be able to provide good enough predictions for performance.

Applying this methodology to create models for larger scale systems where the much greater

number of cores could cause significantly larger performance degradation due to co-location would

enable the design of a new class of interference-aware intelligent scheduling mechanisms that
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FIGURE 2.5. Distributions of each application’s execution time (a), and the accu-
racy of the neural network model using feature set F on each application (b), for the
6 core Intel Xeon E5649 machine.

could provide substantial performance improvement in those systems. In addition to possibilities

for optimizing application scheduling, a system for predicting application performance, such as

the method shown here, offers the possibility for use in other areas such as energy modeling.

Our next steps are to include monitoring of application power use into the testing environment.

The energy use of a system is heavily dependent on the time that the system spends executing

applications. Having this methodology that is capable of predicting an application’s execution
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time when presented with the uncertainty of memory interference from co-location allows this

work to lend itself very well to being able to also include the ability to estimate the energy used

by the system during execution of a particular application, as well as the increase in energy use

that is caused by memory interference. Finally, it would also be interesting to extend this work by

examining application performance on families of machines outside of Intel’s Xeon architecture.

26



CHAPTER 3

THERMAL, POWER, AND CO-LOCATION AWARE RESOURCE

ALLOCATION IN HETEROGENEOUS HIGH PERFORMANCE

COMPUTING SYSTEMS1

The power consumption of high-performance computing (HPC) systems and data centers

is increasing rapidly, leading to an increase in the amount of cooling resources required to operate

these HPC systems at a safe temperature threshold. The increase of power consumption to operate

today’s facilities has led to the design of power-efficient systems such as the TSUBAME-KFC at

the Tokyo Institute of Technology that tops the Green500 list with an efficiency of 4.5 GFLOP-

S/Watt [23]. Extrapolating the power consumption of the TSUBAME-KFC system to exascale,

it would consume 222 MW, which equates to approximately $145 million per year in electricity

costs in the United States. The Defense Advanced Research Projects Agency (DARPA) has set

the target for an exaflop system to consume no more than 20 MW [24], an order of magnitude of

power consumption lower than what can be achieved using today’s computing infrastructure.

One technique that can be used to reduce the power consumption and also manage thermal

issues in large-scale computing systems, such as data centers, is power-aware and thermal-aware

resource allocation. This approach involves exploiting system characteristics such as the hetero-

geneity among different servers (offering different levels of performance and power consumption),

1This work was done jointly with Ph.D. student Mark Oxley, and published at the International Green Computing
Conference in 2014.
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dynamic voltage and frequency scaling (DVFS) in cores, and the interactions between tempera-

tures of the compute nodes and computer room air conditioning (CRAC) units. By distributing

workloads, configuring DVFS, and setting CRAC thermostats in an intelligent manner, it becomes

possible to efficiently balance the compute performance with the power consumption and temper-

ature profiles of the HPC facility.

By the law of conservation of energy, the power consumed by servers is dissipated as heat.

This heat must be removed by the cooling infrastructure so that compute nodes can safely operate

beneath their specified redline temperatures (the maximum safe operating temperatures). The more

power that is consumed by compute nodes, the more power CRAC units must consume to remove

additional heat and maintain the redline temperatures. Cores within compute nodes are DVFS-

enabled, with performance states (P-states) that provide a trade-off between compute performance

and power consumed by each core. By intelligently configuring P-states of cores, power consump-

tion can be reduced at the compute nodes, which in turn results in less power that is needed by the

CRAC units to cool the facility.

As the number of cores increase in emerging multicore processors, access contention in shared

memory (e.g., last-level caches, DRAM) can have a pronounced impact on the execution time of

workloads [25]. We model this interference as a performance degradation in the execution rate of

tasks when different cores in the same multicore processor are executing tasks at the same time.

The performance degradation can be severe when memory-intensive tasks running on separate

cores of the same processor access the shared memory simultaneously. Thus, it is intuitive that to

minimize interference, one should co-locate memory-intensive tasks with compute-intensive tasks

(that have relatively fewer memory accesses), if possible.

We consider a steady-state model of a data center, where task flow rates, temperatures at com-

pute nodes and CRAC units, and the power consumption of the computing system and CRAC
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units remain invariant. The performance of the data center is measured by the reward collected

from completing tasks by their individual deadlines, where reward represents the worth of com-

pleting that task to the system. In the steady-state this is equivalent to the reward rate collected.

Our resource management techniques mitigate the impact of co-location interference by maximiz-

ing co-located reward rate, a measure for estimating reward rate when considering co-location

interference. By taking a holistic approach to the control of such a facility, we maximize the

co-located reward rate earned while ensuring that the compute nodes do not exceed their redline

temperatures and the total power consumed by the compute nodes and CRAC units do not exceed

a given constraint. To solve this optimization problem, we design a new greedy heuristic, a novel

genetic algorithm (GA) with local search, and improve a non-linear programming (NLP) approach

from our previous work [26] to consider the effect of co-locating tasks on multicore processors.

In summary, we make the following novel contributions:

• Derivation of a new detailed model of a heterogeneous HPC system that considers the

power consumption of both the compute servers and cooling system, thermal constraints,

DVFS P-states, memory-intensity of tasks, and co-location interference.

• Design of a greedy heuristic, a genetic algorithm with local search, and an adaptation of a

previously proposed non-linear programming approach that is the first work to our knowl-

edge to consider co-location while obeying power consumption and thermal constraints.

• Analysis and comparison of our resource allocation techniques with prior work that does

not consider co-location when optimizing for a power and thermal constrained data center.

• Analysis of the performance of our proposed techniques on three different platform sizes.

The rest of the chapter is organized as follows. We discuss related work in Section 3.1. In

Section 3.2, we explain our models for compute nodes, CRAC units, and workload as well as

how we consider co-location interference. Section 3.3 describes our proposed resource allocation
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techniques. Our evaluation setup and results are in Sections 3.4 and 3.5. In Section 3.6, we

conclude and discuss ideas for future work.

3.1. RELATED WORK

The power consumption of a data center’s cooling system can consume approximately 50% of

the total power consumed by the facility [27]. Proper thermal management of a data center can

therefore result in large savings in dollar expenditures due to reductions in energy consumption

of the compute and cooling infrastructure. Hot spots in the data center can be mitigated in sev-

eral ways, such as intelligent workload distribution, throttling of compute servers (typically using

DVFS), and better management of CRAC units. The techniques proposed in [28] distribute the

workload across a data center to minimize inefficiencies in heat removal and hot spot formation,

so as to minimize cooling costs. Throttling the performance of servers (or shutting them down)

is another technique for controlling the temperatures in an HPC facility. The research in [29] an-

alyzes whether it is more energy efficient to distribute the workload evenly to avoid hot spots, or

to concentrate the workload on a small number of servers to be able to deactivate many servers.

Methods for controlling the on/off state of CRAC units to minimize hot spots in a data center and

save cooling energy by reducing air flow in overprovisioned areas are proposed in [30]. These

works perform thermal-aware resource allocation by examining only one of either workload dis-

tribution, throttling servers, or managing CRAC units, whereas our work simultaneously considers

workload distribution, throttling through DVFS, and CRAC thermostat control.

The thermal-aware approach designed in [31] distributes the workload to servers in a spatial

manner such that hot spots are minimized, allowing the CRAC thermostats to be set to higher

temperatures so that cooling power is reduced. That work does not consider throttling of servers

to reduce the power consumption (and heat generation) of compute nodes. Our previous work
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considers managing the workload distribution, throttling of servers, and managing CRAC units

simultaneously. The goal of the study in [26] is to maximize the reward rate earned in a data center

under power consumption and thermal constraints. A novel non-linear programming technique

is designed to solve the resource allocation problem. We build upon this work by enhancing the

resource allocation technique to consider co-location interference, and by designing new resource

allocation techniques that scale better for larger system sizes.

In situations where tasks are co-located on the various cores of an individual processor, the

primary sources of performance degradation are the contention for shared caches and memory

bandwidth. Depending on the workload characteristics of the co-located task, the performance

degradation due to co-location can range from negligible to severe [25]. Prediction of the impact

of co-location requires an understanding of the memory system requirements of each task and how

each task would affect and be affected by the other tasks with which it is co-located. This under-

standing can be obtained by either characterizing individual tasks using synthetic testing structures

[32], or experimentally by pairing tasks together [25]. Co-location predictions could be used to

reserve memory bandwidth, such as the MemGuard technique described in [33] that predicts the

memory interference of an application and uses that knowledge in a scheduler to avoid co-location

effects. Our research uses the knowledge and experimental data presented in those works to con-

sider the co-location effects at a larger scale than the single-processor analyses in those works.

3.2. SYSTEM MODEL

3.2.1. OVERVIEW. Our model of a data center and workload builds on the model proposed

in [26]. We assume the data center is configured in a hot aisle/cold aisle fashion (Fig. 3.1). In such

a configuration, cold air is supplied from the CRAC units to a cold aisle through perforated floor

tiles that face the inlets of the compute nodes. The compute nodes consume power and expel hot
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air through the opposite end to a hot aisle. The CRAC units draw the hot air from the hot aisles to

cool. Our model can support isolated and non-isolated aisle configurations.

CRAC unit

heterogeneous compute nodes

ho
t a

isl
e

co
ld

 a
isl

e

perforated floor tile

CRAC intake

FIGURE 3.1. Data center in hot aisle/cold aisle configuration.

3.2.2. COMPUTE NODES. The number of compute nodes in the data center is NN , and

each compute node j belongs to a compute node type NT (j). We assume a heterogeneous data

center with the number of compute node types equal to NNT , and compute nodes that belong to

a specific compute node type NT (j) are identical and contain the same number of cores, power

characteristics, and performance characteristics. Cores within a compute node are homogeneous,

and we assume the cores can run in individual P-states that provide a tradeoff between power

consumption and performance [34]. The total number of cores in the data center is NC, and

CT (k) is the type of the compute node to which core k belongs.
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3.2.3. WORKLOAD. We assume that we have a set of T known task types. The arrival rate

of tasks of type i is given by λi. A reward ri is obtained for completing a task of type i by its

individual deadline di, relative to its arrival time.

As our system is heterogeneous, the power and performance characteristics of the compute

node types are different. Therefore, tasks of different types can have different execution rates on

different node types and P-states. We assume that we know the estimated computational speed

(ECS) of any task of type i on a core of type j in P-state k, ECS(i,j,k) (i.e., number of tasks

per second). In an actual system, these can be approximated using historical, experimental, or

analytical techniques [35–37]; in Section 3.4 we discuss the values used for our evaluation.

Our goal is to assign a desired fraction of time each core k will spend executing tasks of

type i, denoted DF (i, k), and the P-state each core k is configured to when executing tasks of

type i, denoted PS(i, k), to maximize the reward we can obtain and meet the power and thermal

constraints of the system. Given DF (i, k) and PS(i, k), we calculate the execution rate of tasks

of type i on core k, ER(i, k), as

(4) ER(i, k) = DF (i, k) · ECS(i, CT (k), PS(i, k)).

The total reward rate earned, denoted RR, without considering co-location interference is

(5) RR =
T∑
i=1

(
ri ·min(

NC∑
k=1

ER(i, k), λi)

)
.

Equation (5) states that the reward rate for a given task type i is the product of the reward earned

and its execution rate. The min function in Equation (5) enforces the intuitive constraint that if a

task is assigned for execution at a faster rate than its arrival rate λi, additional reward is not earned.
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Reward is earned only when tasks are completed by their deadline. We have no way of guar-

anteeing deadlines are met in our steady-state model, but we can help minimize the number of

deadlines that would be missed by eliminating any task type/core type/P-state combinations from

consideration that would result in a missed deadline even if a task of type i starts immediately after

its arrival, i.e., we eliminate combinations from consideration that violate

(6)
1

ECS(i, CT (k), PS(i, k) ≥ di
.

Another constraint that must be enforced is to ensure cores do not spend greater than 100%

of the time executing tasks. If a core k is spending greater than 100% of the time executing

tasks, we normalize the DF (i, k) values on that core to guarantee this constraint. Normalization

is performed by summing the desired fractions of time all task types spend executing on a given

core k, denoted SumDF (k), and dividing the desired fraction of time values for all T task types

by SumDF (k), forcing their sum to equal 100%. This normalization procedure is performed

before calculating execution rates (Equations 1, 9, and 10) and the power consumption of a node

(Equation 4, Section 3.2.4). Normalization is not performed on a core if the value of SumDF (k)

is less than 100%.

3.2.4. POWER AND THERMAL MODEL. We consider the overhead power consumption of

a compute node (e.g., from main memory, disks, fans, NICs) in addition to the power consumption

of the CPU cores. We assume that CPU cores are able to change P-states over time depending on

what task type is currently being executed, and that the time associated with switching P-states is

negligible in comparison to the execution time of tasks. The power consumed by cores is a function

of the task type being executed in addition to the P-state in which the core is executing a task. Let

O(j) be the overhead power consumption of compute node j, let APC(i,NT (j),PS(i, k)) be the
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average power consumed by cores in a node of type NT (j) executing tasks of type i in P-state

PS(i, k), and NCN(j) be the set of cores in node j. In the steady-state, we calculate the power

consumption of node j, PN(j), as

PN(j) = O(j)

+
∑

k∈NCN(j)

T∑
i=1

APC(i, NT (j), PS(i, k)) ·DF (i, k).
(7)

The power consumed at a CRAC unit is a function of the heat removed at that CRAC unit

in addition to the Coefficient of Performance (CoP) [38] of the CRAC unit. Let NCR be the

total number of CRAC units in the data center, TCin(i) be the inlet temperature of CRAC unit i,

TCout(i) be the outlet temperature of CRAC unit i, ρ be the density of air, C be the specific heat

capacity of air, and AFC(i) be the air flow rate of CRAC unit i. The power consumed by CRAC

unit i, PC(i), is calculated as [38]

(8) PC(i) =
ρ · C · AFC(i) · (TCin(i)− TCout(i))

CoP (TCout(i))
.

To calculate the steady-state temperatures at compute nodes and CRAC units, we use the Ab-

stract Heat Flow Model from [39]. Let TN in(i) be the inlet temperature at compute node i and

TN out(i) be the outlet temperature at compute node i. The outlet temperature at compute node i is

a function of the inlet temperature, the power consumed, and the air flow rate of the nodeAFN(i),

calculated as

(9) TN out(i) = TN in(i) + PN(j)/ (ρ · C · AFN(i)) .

35



Let Tout and Tin be the vectors of outlet and inlet temperatures of CRAC units and compute nodes.

Also, let A be a matrix of cross-interference coefficients where each element α(i, j) represents the

percentage of heat transferred from CRAC unit or node i to CRAC unit or node j. We can then

calculate our temperatures as [39]

(10) Tin = ATout.

If we let Tredline be the vector of redline temperatures, the thermal constraint is the element-wise

inequality

(11) Tin ≤ Tredline.

TABLE 3.1. % Performance Degradation Due to Task Co-Location

memory intensity of
task type

heavy medium light

heavy 100 30 5
medium 50 20 3
light 6 4 1

3.2.5. CO-LOCATION INTERFERENCE. Tasks competing for shared memory in multi-

core processors can cause severe performance degradation, especially when competing tasks are

memory-intensive [25]. The memory intensity of a task refers to the ratio of operations performed

in the CPU (e.g., floating point) to the number of bytes accessed in main memory. Based on exper-

imental data from [25] that measures the execution time slowdown of some SPEC benchmarks, we

create the degradation table shown in Table 3.1 that gives the performance degradation for a task

type of a categorized memory intensity in row i when co-located with another task type of a given

36



memory intensity in column j, given by PD(i, j). For simplicity, we assume that a task type’s

memory-intensity is represented by one of three categories: heavy, medium, or light. For example,

when a “heavy” task type is co-located with a “medium” task type, the PD value of 30% (from

Table 3.1) corresponds to a 30% increase in execution time.

We can probabilistically determine if a task type i would be executing on a core k by consid-

ering the DF (i, k) value as the probability that core k is running a given task type i. Using these

values, we can calculate the probability that cores within the same processor are executing any

combination of task types to help estimate performance degradation caused by co-location. On a

dual-core processor with cores k and l, we can estimate the co-located execution time of task type

i on core k, CET dual(i, k), as

(12) CET dual(i, k)=
1

ER(i, k)

(
1+

T∑
t=1

(DF (t, l) · PD(i, t))

)
.

Because execution rate is the reciprocal of execution time, the co-located execution rate for a dual-

core processor, CERdual(i, k), is 1/CET dual(i, k). The summation in Equation 12 represents the

the slowdown observed of task i on core k when the co-located core l is executing task types

assigned to it, weighted by the desired fractions of time those tasks would execute on core l.

With a processor containing more than two cores, the performance degradation is additive

based on the combination of task types executing on the cores co-located with core k. For example,

let us assume a processor with three cores k, x, and y and a “heavy” task type is executing on core

k. If assigning a “heavy” task type to core x increases the execution time of the task type on

core k by 100% (from Table 3.1), then assigning a “medium” task to core y increases the original

execution time of the task type on core k by an additional 30% (from Table 3.1), resulting in a total

execution time increase of 130%. We observed this trend in experimental data from our recent
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work (e.g., the Streamcluster application from the PARSEC benchmark suite) [40]. Thus, the co-

located execution time of task type i on core k on a quad-core processor with other cores x, y, and

z, CET quad(i, k), is

CET quad(i, k) =
1

ER(i, k)
·
(
1 +

T∑
a=1

T∑
b=1

T∑
c=1

(DF (a, x)·

DF (b, y) ·DF (c, z) · [PD(i, a) + PD(i, b) + PD(i, c)])

)(13)

The summation in Equation 13 represents the probability that task type a is executing on core x,

task type b is executing on core y, and task type c is executing on core z multiplied by the sum

of the performance degradation values of those particular task types. Again, execution rate is the

reciprocal of execution time, therefore the co-located execution rate for a quad-core processor,

CERquad(i, k), is 1/CET quad(i, k).

LetCER(i, k) be equal toCERdual(i, k) if k is on a dual-core processor and equal toCERquad(i, k)

if k is on a quad-core processor. To assist our resource management techniques in estimating ac-

tual reward rate under the effects of co-location interference, we introduce a new objective called

co-located reward rate (CRR), calculated as

(14) CRR =
T∑
i=1

(
ri ·min(

NC∑
k=1

CER(i, k), λi)

)
.

Thus, CRR ≤ RR.

The goal of this study is to maximize CRR when subject to power consumption and thermal

constraints. The total power consumed by both CRAC units and compute nodes must be less than

the power constraint, denoted φ. The thermal constraint is defined in (11). In the next section, we

describe several approaches to solve this problem.
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3.3. HEURISTICS

3.3.1. GREEDY HEURISTIC. We designed a greedy approach similar to those in [41, 42] to

assign task types to cores. Our greedy heuristic (Alg. 1) iteratively assigns task types to cores to

find the most efficient mapping, where we define efficiency for allocating a particular task type to

a core as the ratio of performance (ECS) to the power consumption. For a task of type i on a node

of type j in P-state k, we define the efficiency of that mapping, EFF(i,j,k), as

(15) EFF (i, j, k) = ECS(i, j, k)/APC(i, j, k).

We start by finding the P-states with the highest EFF values for all task types and node types

(line 1); all other P-states are not considered. All T×NNT task type to node type pairings are then

sorted by their efficiency in descending order (line 2). At each iteration of the heuristic, the first

pairing (i.e., most efficient) is selected and a single core of the chosen node type is assigned the

designated task type by assigning that core a 100% desired fraction of time for that task type (lines

4-5). After making an assignment, that core is removed from consideration (line 6). If there are

no cores available within the chosen node type (i.e., all cores within nodes of that node type been

assigned a task type), that pairing is removed from consideration (lines 7-8). The CRAC outlet

temperatures are set to the redline temperature, and then the outlet temperatures of all CRAC units

are iteratively decreased by one degree until the thermal constraints are met (line 9). The algorithm

repeats using the next pairing until the power constraint is violated or the execution rates for all

task types meet or exceed their arrival rates.

3.3.2. GENETIC ALGORITHM.

3.3.2.1. Overview. We also designed a genetic algorithm (GA) based on the Genitor GA [41,

43] to solve our optimization problem. Our genetic algorithm in this study operates on a population

39



Algorithm 1 Pseudo-code for our greedy heuristic
1. find most efficient P-state for all task type/node type pairs
2. sort all task type/node type pairs by efficiency
3. while power constraint not violated do
4. choose first task type/node type pair
5. assign 100% desired fraction of time for selected task type to a single core from selected
node type
6. remove core from future consideration
7. if no cores within selected node type available
8. remove task type/node type pair from consideration
9. set CRAC outlet temperatures to hottest temperatures such that thermal constraints are met
10. end while

of 200 chromosomes. Each chromosome represents one possible solution (i.e., a complete resource

allocation). A chromosome consists of a collection of |NC × T | genes, where each gene is a pair

of DF (i, k) and PS(i, k) values representing the desired fraction of time and P-state of a task

type/core combination. The initial population is generated by assigning random desired fractions of

time and P-states to each gene within the chromosome, and then normalizing the desired fractions

of time so that cores cannot spend greater than 100% of their time executing tasks. After the

initial population generation, the chromosomes in the population are evaluated and ranked by co-

located reward rate (CRR). We then perform crossover and mutation that alter existing solutions

to generate offspring chromosomes. After the offspring are generated, local search is performed

on the offspring to meet the power consumption and thermal constraints. The population is then

evaluated and ranked, and subsequently the population is trimmed to its original size by eliminating

the least-fit chromosomes.

3.3.2.2. Crossover and Mutation. Crossover starts by selecting two parent chromosomes us-

ing a linear bias [43] and two points are generated such that x < y ≤ |NC|. All genes for cores

ranging from x to y are swapped among parent chromosomes to create two offspring solutions.

Mutation is probabilistically performed on offspring chromosomes to introduce perturbations
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Algorithm 2 Pseudo-code for our local search technique
1. while power and thermal constraints not met do
2. set CRAC outlet temperatures to hottest temperatures such that thermal constraints are met
3. find node with highest temperature (node j)
4. while node j is hottest node do
5. choose random core/task type combination from node j
6. increase P-state assignment by 1 if not already in maximum P-state
7. end while
8. end while

in the genes, allowing a broader search. Offspring chromosomes have a probability pm of be-

ing mutated (empirically set to 0.1). If a chromosome is selected for mutation, each gene has a

probability pg of being mutated (empirically set to 0.05). If a gene is selected for mutation, the

desired fraction of time and P-state for its task type on this core are set to random values. Then the

chromosome is normalized so that the desired fractions of time for all cores sum to 100%.

3.3.2.3. Local Search. We perform a local search on offspring chromosomes that sets CRAC

outlet temperatures and P-states such that the power consumption and thermal constraints are met.

The pseudo-code for our local search is given in Alg. 2. The step described in line 2 is performed by

setting the CRAC outlet temperatures to the redline temperature, and then the outlet temperatures

of all CRAC units are iteratively decreased by one degree until the thermal constraints are met.

The steps performed in lines 3 to 6 have a two-fold effect to reduce power consumption. First,

increasing the P-state assignment (i.e., reducing the power and frequency) directly reduces the

power consumption of the node. Second, the CRAC units may be able to run with a higher outlet

temperature, reducing the overall power required to maintain redline temperatures.

3.3.3. NON-LINEAR PROGRAMMING APPROACH. We adapt a power and thermal-aware ap-

proach from [26] and improve it to include the effects of co-location by maximizing co-located re-

ward rate instead of just maximizing reward rate as done in [26]. The problem in [26] is formulated

as a non-linear program and then solved using approximations, heuristics, and linear programming.

We refer the reader to [26] for the full details of this technique, but give a brief summary below.
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The NLP technique is divided into three steps to solve the formulated mixed integer non-linear

program for maximizing reward rate (Equation (5)) while obeying the power and thermal con-

straints. The first step relaxes the integer constraint on P-states (by assuming continuous P-states)

and solves for the CRAC outlet temperatures and power consumption of compute cores such that

reward rate is maximized and the power and thermal constraints are met. Using the core power

consumption values obtained from the first step, the second step uses a simple heuristic to round the

continuous power consumption values of cores to discrete P-states, while maintaining the power

and thermal constraints. Lastly, a linear program is solved to maximize reward rate assuming the

CRAC outlet temperatures from the first step and the discrete P-state assignments from the second

step.

We improve upon this approach in two ways. First, we incorporate the knowledge of the mem-

ory intensity of tasks by considering the APC matrix (i.e., a core consumes a different amount of

power based on task type) instead of assuming all task types consume the same amount of power

in a given P-state. Also, the scaling of ECS values for different P-states is now a function of mem-

ory intensity in addition to clock frequency. Second, we incorporate knowledge of co-location

interference in this algorithm by modifying the objective function to maximize co-located reward

rate instead of reward rate in the first and third steps. We show in Section 3.5 how the modified

algorithm (NLPCL) makes significantly different resource allocation decisions than NLP because

it considers co-location interference.

3.4. EVALUATION SETUP

3.4.1. OVERVIEW. In our simulations, we consider three heterogeneous platforms of dif-

ferent sizes. The small platform consists of three CRAC units, eight task types, and 150 nodes

where each node is uniformly selected from two node types. The medium platform uses four CRAC
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TABLE 3.2. Node Types Used In Simulations

node type Fujitsu
TX140

IBM
x3200

Fujitsu
RX100

Acer
AT110

overhead power (W) 18.9 75.2 35 21.3
number of cores 4 2 4 4
number of P-states 14 4 11 16
power consumption of a core
in P-state 0 (W) 9.1 20.9 22.4 18.55

units, 500 nodes (belonging to one of of three node types) and ten task types. The large platform

uses 60 CRAC units, 5,000 nodes (belonging to one of four node types), and sixteen task types. The

power characteristics of our different node types were obtained from SPECpower_ssj2008 results

[44] (see Table 3.2), and the workload characteristics were obtained from SPEC_CPU2006 [45] re-

sults for the node types listed in Table 3.2. The results for these machines using those benchmarks

were collected between the years 2010 and 2012. We set the power constraint (φ) equal to 60%

of the maximum power of the system, i.e., when all cores are executing the most CPU-intensive

task type in P-state 0 with the CRAC units set to highest temperatures such that all nodes maintain

redline temperatures. Simulations were implemented in a custom C++ environment on a laptop

computer with a Core i7-4700HQ CPU and 8 GB of RAM in a VMware virtual machine running

Ubuntu 12.04.

3.4.2. WORKLOAD. The task types and corresponding ECS matrix entries for each node type

in P-state 0 are obtained from SPEC_CPU2006 results [45]. We use execution rate results for

lbm, bwaves, sphinx3, milc,cactusADM, calculix, wrf, and tonto for the task types on the small

platform size, add povray and deallII for the medium platform size, and then add zeusmp, gromacs,

leslie3d, namd, soplex, and GemsFDTD for the large platform size. These benchmarks were chosen

to enable a diverse portfolio of consumer and scientific applications on which to evaluate our

optimization frameworks. Experimental data from [33] is used to quantify the memory intensity
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of these benchmarks. We scale the ECS values for a task type in other P-states based on the clock

frequencies of the P-states and the memory intensity of the task type. Based on experimental

data from [46], the performance of the most memory-intensive SPEC_CPU2006 application (lbm)

scaled approximately 30% to that of the clock frequency. For example, halving the frequency

resulted in only a 30% increase in execution time. The most CPU-intensive application (povray)

scaled at approximately 100% to that of the clock frequency. We scale the ECS values for task

types in P-states based on the clock frequency and memory-intensity values from [33].

The reward for task types are generated based on a uniform random variable in the range

[0.5,1]. The di values, arrival rate λi values, and thermal coefficient matrix A are generated using

the same techniques as in [26].

3.4.3. CRAC UNITS. In this study, we assume that the CRAC units are homogeneous. The

Coefficient of Performance (CoP) for a CRAC unit is a function of its outlet temperature, τ , given

by CoP (τ) = 0.0068τ 2 + 0.0008τ + 0.458 [38] . The air flow rate of each CRAC unit is set so

that the sum of the air flow rates of the compute nodes is equal to the sum of the flow rates of the

CRAC units [26].

3.5. RESULTS

For our first experiment, we examine the value of accounting for co-location in our genetic

algorithm and non-linear programming techniques. We denote GA as our genetic algorithm that

uses reward rate to evaluate chromosomes, and GACL as a variation that uses co-located reward

rate to evaluate chromosomes. NLP represents the technique proposed in [26] and NLPCL de-

notes our modified approach that considers co-located reward rate and the memory intensity of

task types. The results in this section that show error bars represent the 95% confidence intervals

around the mean for 24 trials, with each trial varying in the ECS, deadline, reward values, and
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FIGURE 3.2. Comparison of co-located reward rate earned (non-hashed bars) by
greedy, GA, and NLP techniques on the small platform size, and reward rate earned
(hashed bars) by all techniques on the small platform size

arrival rate values.

Fig. 3.2 shows a comparison of the greedy, GA, and NLP techniques evaluated using the re-

ward rate (RR) measure (hashed bars) that does not consider co-location effects in addition to a

comparison of all resource allocation techniques evaluated using our new co-located reward rate

(CRR) measure (non-hashed bars). We normalize RR and CRR by the same total reward rate that

the system is capable of obtaining, i.e., when all task types are executing at rates equal to their

arrival rates. To make a fair comparison, the results for the GA and GACL heuristics are recorded

at the same amount of heuristic execution time it takes to perform NLP and NLPCL, respectively

(about one hour for the small platform size shown). All techniques are able to meet the power and

thermal constraints.

It can be observed in Fig. 3.2 that it is very important to consider the co-location interference,
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as evidenced by the performance of GACL compared to GA and NLPCL compared to NLP for co-

located reward rate. GACL and NLPCL significantly outperform their counterparts for co-located

reward rate. By incorporating the effects of co-location interference into the fitness evaluation,

GACL can make intelligent choices for selecting parent chromosomes that reduce the effects of

co-location interference as evidenced by the results for co-located reward rate. Similarly, NLPCL

avoids allocations that result in extreme performance degradation, such as placing two memory-

intensive task types on cores within the same processor. NLP provides a very poor CRR, but

NLPCL provides the best CRR.

Fig. 3.2 also shows the normalized reward rate (hashed bars) for the co-location unaware

greedy, GA, and NLP approaches. The reward rate for these approaches appears to be high com-

pared the results for co-located reward rate. However, in the presence of co-location interference,

the normalized reward rate is an inaccurate metric that does not consider performance degradation

from co-location interference. Thus, it overestimates the achievable reward rate.

Fig. 3.3 provides an in-depth view of the actual allocations provided by NLPCL and NLP

across five (out of the 150) nodes from Fig. 3.2. Fig. 3.3a shows an example of how NLPCL

allocates the desired fractions of time in cores within the same processor (i.e., those that share

memory resources). In the figure, a bar represents the desired fraction of time a core is allocated

to different task types. Nodes 1, 2, and 3 have quad-core processors and nodes 4 and 5 have dual-

core processors. Task types in the legend are ordered by their memory-intensity. We can observe

in Fig. 3.3a that NLPCL mitigates the impact of co-location interference by avoiding allocating

memory-intensive task types on cores within the same processor. We can see that the processors

in nodes 1, 2, and 3 allocate memory-intensive task types to only one core, and allocate CPU-

intensive task types to the remaining cores to reduce performance degradation. Interestingly, one

of the cores in node 4 is left to idle (no task type assigned) so the memory-intensive task type
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FIGURE 3.3. Desired fractions of time for task types allocated to five nodes (16
cores total) on the small platform size when using (a) NLPCL and (b) NLP.

allocated to the other core in node 4 can execute with no interference.

Fig. 3.3b shows the desired fractions of time allocations on those same nodes provided by the

NLP algorithm that does not consider co-location. In our heterogeneous environment, different

task types perform better (i.e., execute faster) on different node types. As it lacks knowledge of co-

location interference, NLP typically chooses to allocate task types to nodes that can execute them

the fastest. For example, in Fig. 3.3b, bwaves is the primary task type allocated to node 2, and

calculix is the only task type allocated to node 3, as nodes of these node types were found to be the

best-performing (i.e., greatest ECS values) for those task types. Without considering co-location
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interference this may seem to be a “good” choice, however we can see that nodes 1 and 2 have

memory-intensive task types allocated to all cores, which causes severe performance degradation.

It is obvious from Figs. 3.2 and 3.3 why it is important to consider co-location interference, as

NLPCL and GACL significantly outperform the techniques that do not consider co-location.

As HPC facilities become larger, it is important to address the practicality of resource alloca-

tion techniques on larger system complexities. Fig. 3.2a showed that NLPCL was able to achieve

the best results for the 150 node (small) platform size. However, the primary drawback associated

with the NLPCL technique is its poor scalability. Genetic algorithms hold an advantage in that

they are able to provide a solution within any given algorithm runtime bounds, though typically

better results are obtained the longer they run. Fig. 3.4 shows a comparison of greedy, GACL,

and NLPCL on the medium platform. We recorded the performance of GACL at many different

heuristic execution times to examine the benefits of running it as long as the NLPCL algorithm

takes to execute (twelve hours), and as short as the greedy algorithm takes to execute (just over a

minute). Even though the GACL algorithm still does not perform as well as NLPCL in the same

amount of time, we can obtain a reasonably good solution from GACL whenever one is needed,

e.g., for any system administrator specified heuristic runtime bounds. We can also see that GACL

does not perform as well as the greedy heuristic in the same amount of time that greedy takes to

execute, because GACL is only barely able to generate an initial population in the same amount of

time it takes the greedy heuristic to execute.

Fig. 3.5 compares greedy and GACL at many different heuristic execution time durations.

NLPCL results were excluded for the large platform size because we ran the algorithm for a week

(168 hours) and it still had not finished. Similar to Fig. 3.4, greedy is able to outperform GACL

in a similar amount of time, however the hill climbing capabilities of GACL provide better results

given more time.
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In summary, for a small platform and problem size, the better results obtained using the non-

linear programming (NLPCL) approach motivates its use to generate resource allocations that opti-

mize co-located reward rate. However, as the platform size becomes larger, the NLPCL technique

becomes intractable, and GACL offers a solution in a reasonable amount of time. If a resource

allocation needs to be found quickly, our greedy heuristic may be the desired approach to take.

Over time, however, our GACL heuristic is able to provide better solutions and can be terminated

at any point, e.g., when the steady-state of the data center changes and new execution rates and

P-states need to be found.
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FIGURE 3.4. Co-located reward rate of greedy, GACL (across different heuristic
execution time durations), and NLPCL on the medium platform.

3.6. CONCLUSIONS

We study the problem of maximizing the reward collected for completing tasks by their dead-

lines subject to power and thermal constraints. Co-location interference can have a significant

impact on the execution speeds of tasks (and thus total reward). We capture these effects with our

new performance metric called co-location reward rate. We designed: a greedy technique based on
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FIGURE 3.5. Co-located reward rate of greedy and GACL (across different heuris-
tic execution time durations) on the large platform.

assigning tasks to machines in order of their efficiency (most performance per unit of power), a ge-

netic algorithm combined with a local search technique that maximizes the co-located reward rate

and ensures the power and thermal constraints are met, and modified a non-linear programming

technique from our prior work to maximize co-located reward rate. We show the importance of

considering performance degradation due to co-location interference by analyzing the co-located

reward earned by our proposed techniques when they consider co-location interference and when

they do not consider it.

The results show that NLPCL offers superior solutions to our other proposed techniques, but

NLPCL scales poorly and the time to execute the algorithm increases dramatically as the number

of nodes and task types increases. When GACL executes for the same amount of time it takes our

greedy to execute, the greedy heuristic provides better results as our GACL heuristic because the

GACL is not able to execute very many iterations to improve upon the initial (random) population

at that time. However, our GACL algorithm provides better solutions over time and can be termi-

nated when a solution is needed.
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We have several directions we wish to pursue going forward with this study. We would like

to improve our genetic algorithm by initializing the population with different seeds to help guide

the search in an intelligent manner, as well as experiment with other methods of constrained opti-

mization besides the local search technique. We are designing a fast greedy linear programming

approximation approach to use as a seed and for comparison, and another greedy heuristic that

intelligently avoids co-location effects by assigning desired fractions for task types that avoid in-

terference (much like the allocation for NLPCL shown in Fig. 3.3a). We are also working on

creating a more refined model of task memory intensities and co-location interference, and con-

sidering a greater variety of workloads for our evaluation. Lastly, we want to perform a sensitivity

analysis on how the degree of heterogeneity of the system affects our techniques [47].
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CHAPTER 4

ENERGY COST OPTIMIZATION FOR GEOGRAPHICAL LOAD

BALANCING AND RESOURCE ALLOCATION WHEN

CONSIDERING THERMAL, POWER, AND CO-LOCATION ON

HETEROGENEOUS COMPUTING SYSTEMS1

4.1. INTRODUCTION

The strong success and extensive growth of cloud computing has resulted in data center oper-

ators geographically distributing their data center locations (e.g., Google [48] and Amazon [49]).

Distributing data centers geographically offers benefits to the clients (e.g., low latency due to

shorter communication distances). However, the primary motivation for operators to geograph-

ically distribute their data centers is to reduce electricity costs by exploiting time-of-use (TOU)

electricity pricing and free renewable power [50] that varies based on time-of-day and location.

Reducing electricity costs is now a focus of data center management as the annual electricity ex-

penditure for powering the average data center has surpassed cost to purchase the equipment itself

[51].

Relocating workload among geo-distributed data centers offers several benefits. First, work-

loads can be shifted to locations in different times zones to concentrate workload in the regions

with the lowest electricity prices at that time. Second, an opportunistic distribution of the workload

among data centers during periods of peak demand can allow individual servers to run in slower

1This work was done jointly with Ph.D. student Mark Oxley
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but more energy-efficient performance states (P-states), further reducing electricity costs. Due to

the ever-increasing electricity consumption of data centers, the use of on-site renewable energy

sources (e.g., solar and wind) has grown in recent years. Adding renewable power to geographical

load distribution (GLD) techniques can provide additional opportunities for electricity cost reduc-

tion.

The goal of our research is to design techniques for geographical load distribution that will

minimize energy cost for executing incoming workloads. We use detailed models of power, tem-

perature, and co-location interference at each data center to provide more accurate information to

the geo-distributed workload manager. By considering TOU pricing and renewable power mod-

els at each data center, we design workload management techniques that distribute or migrate the

workload to low-cost data centers at regular time intervals, while ensuring all of the workload

completes. The novel contributions of this work are as follows:

• A hierarchical framework for the GLD problem that considers cost-minimization oriented

workload management at both the geo-distributed and local heterogeneous data center

level;

• A detailed data center model that considers heterogeneous compute node types, P-states,

compute node temperatures, cooling power, renewable power sources, and performance

degradation caused by co-location interference;

• Design of four heuristics, three of which possess varying degrees of co-location inter-

ference prediction knowledge to demonstrate and motivate the use of detailed models in

workload management decisions.

The rest of the paper is organized as follows. In Section II, we review relevant prior work. Our

system model is characterized in Section III. Sections IV and V describe our specific problem in
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detail and the heuristics we propose to solve it. Finally, we discuss and evaluate the results of our

approach in Sections VI and VII, respectively.

4.2. RELATED WORK

There have been many recent efforts that propose methods to optimize electricity costs across

geo-distributed data centers, with the fundamental decisions of the optimization problem relying

on a TOU electricity pricing model. These models either predict or use traces of real utility prices,

where the electricity costs during peak hours of the day (typically 8 A.M. to 5 P.M.) are much

higher than off-peak hours. These TOU electricity cost models, sometimes in combination with

a model for revenue generation for computation, motivates the use of optimization techniques to

minimize energy cost.

Workload distribution for geo-distributed data centers has been studied in [52–58]. Knowledge

of TOU pricing is typically used to either minimize electricity costs across all geo-distributed data

centers (e.g., [52, 54–58]), or to maximize profits when a revenue model is included for comput-

ing (e.g., [53]). A quality of service (QoS) constraint of some form is recognized in most of the

aforementioned works, typically as a queuing delay constraint [52, 54, 56]. Others incorporate

QoS violations into the cost function, where a monetary penalty is associated with violating queu-

ing delay [53], latency [55], or migration [57] service level agreements (SLAs). The modeling

detail varies significantly, some works include dynamic voltage and frequency scaling (DVFS)

in decision making [54], some include power consumption of the cooling system in addition to

the computing system [55, 56], others consider real-world TOU pricing data [53, 54], and one

considers renewable energy sources at each data center location [57]. Our research includes all

aforementioned modeling aspects to assist in workload management decisions: DVFS to exploit

the power/performance tradeoffs of P-states, cooling system power to include thermal awareness
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and reduce cooling cost, TOU pricing data from an actual electric company, and renewable power

sources at each data center. To the best of our knowledge, our work is the first to encompass all

of these aspects within the GLD problem. In addition, unlike any prior work, we consider perfor-

mance degradation caused by co-location interference as part of our load distribution technique;

a phenomena that occurs when multiple cores within the same multicore processor are executing

applications simultaneously and compete for shared resources (e.g., last-level cache or DRAM).

Similar to [57], our study considers a renewable energy source at each geo-distributed data cen-

ter, a cooling system at each data center, and migration penalties associated with moving already-

assigned workloads to a different data center. We differ significantly from [57] by including real

TOU electricity pricing traces, consideration of DVFS P-state decisions in our management tech-

niques, and integrating interference effects caused by the co-location of multiple tasks to cores that

share resources.

4.3. SYSTEM MODEL

4.3.1. OVERVIEW. We propose a hierarchical framework for a geo-distributed resource manager

(GDRM) that consists of a high-level manager to distribute distribute incoming workload requests

and migrate already-allocated requests to geographically distributed data centers. Each data cen-

ter has its own local workload management system that takes the workload assigned to it by the

GDRM and maps requests to processing elements (compute cores) within the data center. We first

describe the system model at the geo-distributed level and then provide further details into the

models of components at the data center level.

4.3.2. GEO-DISTRIBUTED LEVEL. We assume a static workload management scheme that

distributes the incoming workload to geo-distributed data centers. The goal of the GDRM is to

minimize the total monetary cost of the system while servicing all requests. We divide time evenly
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into intervals called epochs. For the sake of simplicity, each epoch represents an hour of time (T e),

and a 24-epoch period represents a full day.

We assume that the beginning of each epoch represents a steady-state scheduling problem

where we assign execution rates of a set of I workload task types to D data centers. A task type

i ∈ I is characterized by its arrival rate ARi, and its estimated computational speeds on each of the

heterogeneous compute nodes in all P-states. The assignment problem at the geo-distributed level

is to map execution rates for each task type i to each data center d ∈ D such that total energy cost

across all data centers is minimized, and the execution rates of all task types exceed their arrival

rates (i.e., all tasks completed without being dropped).

Real-world electricity prices are not constant, but rather follow a TOU pricing model where the

cost of electricity varies based on the time of day (Fig. 4.1). Prices are greater when total electrical

grid demand is high, and are reduced during periods when electrical grid demand is low. A group

of data centers spread across time zones can take advantage of this by shifting more workload to

the data center with the lowest electricity cost at that time. The problem becomes more difficult

when considering the amount of renewable power at each data center, the heterogeneity of com-

pute nodes within a data center, and the constraint that the entire workload must complete. Having

information about TOU electricity pricing, a prediction of the amount of renewable energy at each

data center, the incoming workload, and the execution speeds of task types on the heterogeneous

compute nodes lets our GDRM make intelligent decisions for allocating the workload.

For each epoch τ , we assign a desired data center execution rate ERDC
d,i for each task type

i to each data center d such that the total execution rate for all task types exceed (or equal) the
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FIGURE 4.1. Time-of-use (TOU) electricity pricing, PG&E Schedule E-19 [1].
corresponding arrival rate, ARi, ensuring the workload is completed. That is,

(16)
D∑
d=1

ERDC
d,i (τ) ≥ ARi(τ), ∀i ∈ I.

4.3.3. DATA CENTER LEVEL.

4.3.3.1. Overview. Each data center d houses NNd compute nodes that are arranged in hot

aisle/cold aisle fashion (Fig. 4.2), and a cooling system comprised of NCRd computer room air

conditioning (CRAC) units. There exists heterogeneity among compute nodes. Each compute node

n is of a compute node type, where node types vary in their execution speeds, power consumption

characteristics, and number of cores. Cores within a compute node are homogeneous, and each

core is DVFS-enabled to allow independent configuration of its P-states. The number of cores in

node n is NCNn, and NTk is the compute node type to which core k belongs.

4.3.3.2. Core Execution Rates. Recall that our GDRM determines the distribution of each task

type i between all data centers. At each data center d, the sum of execution rates of all cores that

are assigned to execute task type i must exceed or equal ERDC
d,i (τ). We assume that we know the

estimated computational speed (ECS) of any task of type i on a core of node type n in P-state p,

ECS(i, n, p), determined using historical, experimental, or analytical techniques [37, 35].
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The execution rate of task type i on core k is the product of the assigned desired fraction,

DFi,k(τ), of time core k spends executing tasks of type i and the execution speed that core executes

tasks of type i in P-state PSi,k(τ). That is, the execution rate of task type i, on core k is

(17) ERcore
i,k (τ) = DFi,k(τ) · ECS(i, NTk, PSi,k(τ)).

At the data center level, we assign DFi,k(τ) and PSi,k(τ) such that power is minimized (see

Section 4.3.3.3), and the execution rates of all task types on cores in data center d exceeds the

execution rate assigned by the GDRM, ensuring that the arriving workload is fully executed. That

is,

(18)
NNd∑
n=1

NCNn∑
k=1

ERcore
i,k ≥ ERDC

i,d ∀i ∈ I,∀d ∈ D.

4.3.3.3. Power Model. The power consumption of a compute node consists of the overhead

(“base”) power consumption and dynamic power consumed by cores executing tasks. We define

On as the overhead power consumption (fixed power consumption regardless of workload, result-

ing from system components such as storage, network interfaces, etc.) of compute node n. Let

APC(i, NTk, PSi,k(τ)) be the average power consumed by core k in a node of type NTk when

executing tasks of type i in P-state PSi,k(τ) during epoch τ . The power consumption of node n

during epoch τ , PNn(τ), is

(19) PNn(τ) = On +
NCNn∑
k=1

I∑
i=1

APC(i, NTk, PSi,k(τ)) ·DFi,k(τ).
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The power consumed by a CRAC unit, PCRd,c(τ), is a function of the heat removed at that

CRAC unit and the Coefficient of Performance (CoP) of the CRAC unit [38], calculated using Eq.

5 of [2].

4.3.3.4. Renewable Energy Model. Each data center is equipped with and partially powered

by a renewable power source. Each location can have either solar power, wind power, or some

combination of both. Solar power Esolar
d and wind power Ewind

d (both kWh) are calculated for

each data center d as an average per epoch τ (Equations 20 and 21 are from [59–61]). Asolard is the

total active area of all solar panels, and Awindd is the total swept rotor area of all wind turbines. The

solar-to-electricity and wind-to-electricity conversion efficiency are given by α and β, respectively.

Lastly, sd(τ) is the average solar irradiance, vd(t) is the wind speed, and ρd(τ) is the air density,

as averaged for data center d during epoch τ . The total renewable energy, Rd(τ), available at data

center d during epoch τ is the sum of the wind and solar energy available at that time. We use these

models with historical data to predict the renewable power available at each data center.

(20) Esolar
d (τ) = α · Asolard · sd(τ) · T e

(21) Ewind
d (τ) = β · 1

2
· Awindd · ρd(τ) · vd(τ)3 · T e

(22) Rd(τ) = Esolar
d (τ) + Ewind

d (τ)

4.3.3.5. Thermal Model. Within each data center the compute nodes generate heat, and this

heat is removed by the CRAC units. Due to the airflow within a data center, the heat generated

by a node can increase the temperature of the air flowing through nearby nodes. Using the notion

59



CRAC unit

heterogeneous compute nodes

ho
t a

isl
e

co
ld

 a
isl

e
perforated floor tile

CRAC intake

FIGURE 4.2. Data center in hot aisle/cold aisle configuration [2].

of thermal influence indices [62] that we derive using computational fluid dynamics simulations,

we can calculate the steady-state temperatures at compute nodes and CRAC units in each data

center. Since we assume the same physical layout for each of the data centers (Fig. 4.2), we derive

these thermal influence indices for one data center, and assume they are the same for all other data

centers.

The outlet temperature of each compute node is a function of the inlet temperature, the power

consumed, and the air flow rate of the node. The inlet temperature of each compute node is a

function of the outlet temperatures of each CRAC unit and the outlet temperatures of all compute

nodes [2]. Lastly, for all nodes the inlet temperature of each node is constrained to be less than or

equal to the red line temperature (maximum allowable node temperature).

4.3.3.6. System Electricity Cost. The electricity price at data center d during epoch τ is de-

fined as Eprice
d (τ). Let Effd be the approximation of power overhead in data center d due to the
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inefficiencies of power supply units and uninterruptable power supplies. The total electricity cost

for data center d during epoch τ , PCd(τ), is defined as

PCd(τ) = Eprice
d (τ) ·[(

NCRd∑
c=1

PCRd,c(τ) +

NNd∑
n=1

PNn(τ)

)
· Effd −Rd(τ)

]
.

(23)

4.3.3.7. Server Activation/Deacitvation Cost. At each data center the number of servers of

each server type that are in use changes frequently between epochs. Inactive servers are placed

in a sleep state, but entering and exiting this sleep state takes a non-negligible amount of time

due to the actions required in both hardware and software to transition the system between states.

Each server that is active is considered to be active for the entire epoch, which requires that any

server transitioning to/from a sleep state do so during the epoch following/prior the current epoch,

respectively.

For each data center d, let N start
d,j (τ) be the number of servers of type j that are inactive during

epoch τ and active during epoch τ +1, and let N stop
d,j (τ) be the number of servers of type j that are

active during epoch τ−1 and inactive during epoch τ . Let P S
j , PD

j , and P Sleep
j be the average static

power, average peak dynamic power, and average sleep power for server type j, respectively, with

the average utilization of server type j defined as φEj . Let the coefficient to approximate CRAC

unit power at data center d be CUPd. We assume each data center contains the same number of

nodes, however each data center is heterogeneous in the sense that the number of nodes belonging

to each node type among data centers varies. Therefore, let Jd be the set of server types in data

center d. Let T S be the time required for a server to transition to/from a sleep state. Recall that T e

is the duration of an epoch. The server assignment cost ACd for data center d during epoch τ is

defined by Eq. 24.
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ACd(τ) =
∑
j∈Jd

Eprice
d (τ) · Effd ·

(
1 +

1

CUPd

)
· T

S

T e

·
(
φEj P

D
j + P S

j − P
Sleep
j

)
·
(
N start
d,j (τ) +N stop

d,j (τ)
)(24)

4.3.3.8. Co-Location Interference Model. Tasks competing for shared memory in multicore

processors can cause severe performance degradation, especially when competing tasks are memory-

intensive [25]. The memory-intensity of a task refers to the ratio of last-level cache misses to the

total number of instructions executed [63]. We adapt a linear regression model from [63] that uses

a set of features (i.e., inputs) based on the current applications assigned to a multicore processor to

predict the execution time of a target application i on core k. A description of the features we use,

in addition to the symbols representing each feature, is given in Table 4.1.

In a linear model, the output is a linear combination of all features and their calculated coeffi-

cients. We classify the task types into memory-intensity classes, and calculate the coefficients for

each memory-intensity class using the linear regression model. If we denote u, v, w, x, and y as

the linear model coefficients for feature symbolsA,B, C,D, andE, respectively, plus the constant

term z, the equation for co-located execution time of a task type i of memory-intensity class m on

core k (CETi,k(τ)) is

CETi,k(τ) = um,k · Ai,k + vm,k ·Bi,k + wm,k · Ci,k

+xm,k ·Dk + ym,k · Ei,k + zm,k .

(25)

The execution rate is the reciprocal of the execution time. Therefore the co-located execution

rate for task type i on core k, CERcore
i,k (τ), is 1/CETi,k(τ). The total execution rate for task type i

in epoch τ is therefore given by
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(26) CERi(τ) =
D∑
d=1

NCd∑
k=1

CERcore
i,k (τ).

Because co-location interference degrades the execution rate of task types, it could cause some

tasks to be unable to finish if task types are allocated to cores based on execution rates that do

not consider degradation effects (Eq. 17). To allocate tasks to cores when considering co-location

interference, some of our techniques use knowledge of CERcore
i,k to judge actual execution rates

more accurately than techniques that do not consider co-location interference. When considering

co-location the execution rate constraint becomes

(27)
NCd∑
k=1

CERcore
i,k (τ) ≥ ERDC

d,i (τ), ∀i ∈ I,∀d ∈ D.

TABLE 4.1. description of features for predicting execution time

name symbol description

number of co-located applica-
tions

Ai,k the number of applications co-located with target application
i on core k

base execution time Bi,k base execution time of target task i when executing alone on
core k in P-state PSi,k

frequency of target core Ci,k clock frequency of target core k when running target appli-
cation i in P-state PSi,k

average memory intensity Dk average memory intensity of all applications on the multi-
core processor that contains core k

target memory intensity Ei,k memory intensity of target application i on core k

4.4. PROBLEM FORMULATION

We consider a scenario where there are multiple data centers with a shared workload. The sys-

tem as a whole is under-subscribed, so all tasks must be completed without dropping. Even though

the system is under-subscribed, note that individual data centers may be executing at full capacity.

The tasks originate off-site from the data centers, and it is assumed that the transmission time and
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cost from a task origin to a data center is equivalent for all data centers.

4.5. ALGORITHM DESCRIPTIONS

The GDRM allocates the incoming workload to not only individual data centers, but also spe-

cific servers within each data center. Four GDRM heuristics are proposed, each having different

levels of detail of the system available to it.

4.5.1. FORCE DIRECTED LOAD DISTRIBUTION HEURISTICS. Force-directed load distribution

(FDLD) is a variation of force-directed scheduling [64], a technique often used for optimizing

semiconductor synthesis. FDLD is an iterative heuristic that selectively performs operations to

minimize system forces until all constraints are met. Because information for a detailed co-location

interference model may not always be available, we design three FDLD heuristics (FDLD-SO,

FDLD-TAO, and FDLD-CL) that each possess different amounts of information to solve this prob-

lem.

FDLD-SO, inspired by [65], uses simple over-provisioning to compensate for performance

degradation due to co-location. This technique over-provisions all task types equally by scaling

estimated task execution rates by the factor φC . The second technique, FDLD-TAO, improves upon

FDLD-SO by using task aware over-provisioning to estimate co-location effects for each task type

by a factor specific to each task type i, φCi . For both FDLD-SO and FDLD-TAO, the degree

of over-provisioning (φC and φCi , respectively) is determined empirically. Lastly, the FDLD-CL

heuristic uses the co-location models given in Sec. 4.3.3.8 to account for co-location effects when

calculating task execution rates. All versions of FDLD consider a system implementation where

the computing time of each server core is evenly divided among its assigned tasks.

The fundamental operation of all FDLD variants is described in Algorithm 3. To generate the
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initial solution, every server in every data center in every epoch is assigned to execute all task types

(step 1). Each operation of the FDLD removes one instance of one task type from a single server,

selecting the task to remove that would result in the lowest total system force, F S (steps 3-20). F S

is the sum of the execution rate forces (FER(τ)) and cost forces (FC(τ)) across all epochs.

The execution rate force FER is the ratio of task execution rate (calculated during steps 6-11)

to task arrival rate. Task execution rate is a function of the P-state of the server the task is ex-

ecuting on, but the FDLD is not designed to make DVFS decisions to set the execution rates of

task types, and therefore an average execution rate must be determined for all task types using

the average server utilization factor φEj for each server type j. Let ERj,i (PMAX) and ERj,i (P0)

be the execution rates of task type i running on a single core of a server of type j in the highest

numbered P-state and and lowest numbered P-state, respectively. Therefore, the equivalent single

core execution rate Rj,i of task type i on server type j is

(28) Rj,i = ERj,i (PMAX) + [ERj,i (P0)− ERj,i (PMAX)]φ
E
j

LetNd,j be the number of servers of type j in data center d. LetWd,j,m(τ) be the set of instances

of task type i placed on server m of server type j in data center d during epoch τ . Let Qd,j,i(τ)

be the equivalent number of servers of type j running task type i in data center d during epoch τ ,

given by

(29) Qd,j,i(τ) =

Nd,j∑
m=1


1

|Wd,j,m(τ)| if i ∈ Wd,j,m(τ)

0 else

The average estimated execution rate ERE
j,i(P ) of task type i on machine type j in P-state P

during epoch τ , when using either the FDLD-SO or FDLD-TAO versions, is given by Eq. 30.
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Note that ERE
j,i(P ) is subject to the constraint given in Eq. 31. To compensate for performance

degradation due to co-location effects, server over-provisioning is accomplished by the factor F . F

is replaced by either φC or φCi in Eq. 30 when using either FDLD-SO or FLDB-TAO, respectively.

(30) ERE
i (τ) =

D∑
d=1

∑
j∈Jd

Kj ·Rj,i · F ·Qd,j,i(τ)

(31) ERE
i (τ) ≥ ARi(τ) ∀i ∈ I

The execution rate force FER is calculated using Eq. 32. When using the FDLD-CL heuristic,

the term Z is replaced by CERi(τ), and is replaced by ERE
i (τ) when using either FDLD-SO or

FDLD-TAO. Observe that FER(τ) will decrease to zero as the ratio of Z to ARi(τ) decreases to

one.

(32) FER(τ) =
∑
i∈I

e

(
Z

ARi(τ)
−1

)
− 1

Recall that Rd(τ) is the renewable power available at data center d during epoch τ . For all FDLD

variants, let PCE
d (τ) be the estimated power cost at data center d during epoch τ , calculated as

PCE
d (τ) = Eprice

d (τ) ·∑
j∈Jd

Nd,j∑
m=0

PE
d,j,m ·

(
1 +

1

CUPd

)
· Effd −Rd(τ)

 .

(33)
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(34) PE
d,j,m =


P Sleep
j if |Wd,j,m| = 0, else:

φjPD
j + P S

j

Let Cactual
d (τ) be sum of power (PCE

d (τ)) and allocation (ACd(τ)) costs incurred at data cen-

ter d during epoch τ . Let Cmax
d (τ) be the maximum real power cost possible at data center d,

calculated using Eq. 35. The cost force FC can then be calculated with Eq. 36. Observe that the

value of FC goes to zero as the ratio of Cactual
d (τ) to Cmax

d (τ) decreases to zero.

(35) Cmax
d (τ) = Eprice

d (τ) ·
∑
j∈Jd

Nd,j ·
[
φjPD

j + P S
j

]

(36) FC(τ) =
D∑
d=1

e

(
Cactuald (τ)

Cmax
d

(τ)

)
− 1

Let N τ be the total number of epochs being considered. The total system force across all

epochs, F S , is calculated as

(37) F S =
Nτ∑
τ=1

FER(τ) + FC(τ).

4.5.2. GENETIC ALGORITHM HEURISTIC. We also designed a fourth heuristic; a genetic

algorithm load distribution with full co-location awareness (GALD-CL). The GALD-CL heuristic

(Algorithm 4) has two parts: a genetic algorithm based GDRM and a greedy heuristic serving as

the fitness function of the genetic algorithm. The GALD-CL assigns fractions of the global task

arrival rate to each of the data centers in the simulation (step 3), with the arrival rates of each task

type i at each data center d acting as the genes of the chromosomes. Using the task arrival rates
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Algorithm 3 Pseudo-code for FDLB heuristics
1. allocate an instance of each task type to every server in every data center in every epoch
2. while
3. for each server with tasks still allocated to it
4. for each task type on the server
5. temporarily remove task type from server
6. if FDLB-CL
7. estimate execution rates using Eq. 26 (CERi)
8. else if FDLB-TAO
9. estimate execution rates using Eq. 30 and φCi
10. else if FDLB-SO
11. calculate execution rates using Eq. 30 and φC

12. estimate power costs using Eq. 33
13. calculate F S from FER and FC

14. if execution rate constraints are not violated (Eq. for FDLB-CL, Eq. 31 FDLB-SO &
FDLB-TAO)
15. add to set of possible task removal operations
16. restore task type to server
17. if set of possible task removal operations is empty
18. break
19. else
20. chooses and implement the task type removal operation that would result in the lowest F S

21. end while
22. calculate final execution rates (CERi(τ), ∀i∈I , ∀τ ∈N τ )
23. calculate final cost from sum of power costs and allocation costs (PCd(τ) and ACd(τ),
∀d∈D, ∀τ ∈N τ )

assigned to each data center by the genetic algorithm at the geo-distributed level, the local greedy

heuristic assigns tasks types to execute on specific servers (steps 5-15). If the greedy heuristic

finds that the task arrival rate assigned to a data center exceeds the capacity of that data center

(step 16), the global arrival rates are adjusted slightly and the chromosome is evaluated once again

(steps 5-15), with further adjustments made to the global allocations within the chromosome until a

valid solution can be reached. The greedy heuristic has full knowledge of the entire system model,

including the co-location models and task-node power models, allowing it to make highly optimal

placement decisions.

The GALD-CL heuristic addresses two potential shortcomings of the FDLD variants. First,

the nature of the decision making within the FDLD variants prevents them from making any kind
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Algorithm 4 Pseudo-code for GALD-CL heuristic
1. create an initial population of chromosomes
2. while within time limit do
3. perform selection, crossover and mutation to create new chromosomes
4. for each new chromosome, evaluate:
5. for each data center
6. find most efficient P-state for all task type/node type pairs
7. sort all task type/node type pairs by efficiency
8. while power constraint not violated do
9. choose first task type/node type pair
10. assign 100% desired fraction of time for selected task type to a single core from
selected node type
11. remove core from future consideration
12. if no cores within selected node type available
13. remove task type/node type pair from use
14. set CRAC outlet temperatures to hottest temperatures such that thermal constraints
are met
15. end while
16. if solution is invalid
17. modify chromosome, return to step 5
18. trim population (with elitism)
19. end while
20. take final allocation from the best chromosome
21. calculate final execution rates (CERi(τ), ∀i∈I , ∀τ ∈N τ )
22. calculate final cost from sum of power costs and allocation costs (PCd(τ) and ACd(τ),
∀d∈D, ∀τ ∈N τ )

of DVFS decisions, therefore a single P-state is chosen for each server type regardless of the tasks

executing on the server. The greedy heuristic within the GALD-CL approach chooses the most

efficient P-state for each task type on each server type. Second, the FDLD variants are susceptible

to becoming trapped in local minima. The genetic algorithm portion of the GALD-CL approach

intrinsically enables escape from local minima, allowing a more complete search of the solution

space. The extra information and decision options available to the GALD-CL heuristic gives it a

strong advantage over the FDLD variants.
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4.6. SIMULATION RESULTS

Experiments were conducted for data center groups of three different sizes: four, eight, and

sixteen datacenters. Locations from the three test groups were selected from major cities around

the continental United States to provide a variety of wind and solar conditions between sites and

at different times of the day (Fig. 4.3). Experiments using a group size of four data centers used

locations one through four, while experiments using group sizes of eight and sixteen data centers

used locations one through eight and one through sixteen, respectively. The sites of each group

were selected so that each group would have a fairly even East to West distribution to better exploit

TOU pricing and renewable power. Each data center consists of 4,320 servers arranged in 4 aisles,

and is heterogeneous within itself, having servers from either two or three of the server types given

in Table 4.2, with most locations having three servers types and per-server core counts that range

from 4-12 cores depending on the mix of server types used.

The electricity prices used during experiments, as shown in Fig. 4.1, were taken directly from

FIGURE 4.3. Location of simulated data centers overlaid on solar irrandiance in-
tensity map (average annual direct normal irradiance). Wind data collected but not
shown [3].
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TABLE 4.2. Server Processor Types Used in Experiments

Intel processor # cores L3 cache frequency range

Xeon E3-1225v3 4 8MB 0.8 - 3.20 GHz
Xeon E5649 6 12MB 1.60 - 2.53 GHz
Xeon E5-2697v2 12 30MB 1.20 - 2.70 GHz

Pacific Gas and Electric (PG&E) Schedule E-19, which is for commercial locations consuming

between 500kW and 1MW [1]. Each data center had an installed renewable power generating

capacity equivalent to 20% of the maximum power consumption of the location during the month

with the highest generated power for that location. Renewable power at each location was either

wind power, solar power, or a combination of the two. For example, a location with high average

solar irradiance but low average wind speed would be restricted to having solar power only. Solar

and wind data was obtained from the National Solar Radiation Database [3]. An example of the

renewable power available at different locations per epoch is given in Fig. 4.4.

FIGURE 4.4. Example of renewable power available per hour for four locations.

Servers placed in a sleep state by a heuristic are considered to be in the Advanced Configuration

and Power Interface (ACPI) server sleep state S3, where RAM remains powered on. Sleep state S3,

also commonly referred to to as suspend or standby, allows greatly reduced power consumption

71



while still having a small latency to return to an active operating state. Sleep power for all servers

is calculated as a fixed percentage of static power for each server type, assumed to be 16% based

on a recent study of server power states [66]. The average server utilization factor used during

FDLD allocations, φE , is set as 0.75. The coefficient to approximate CRAC unit power at data

center d (CUPd) was determined empirically by simulating workloads of multiple levels at each

data center location, and its value ranged between 1.43 and 2.08 for the different configurations.

The time of each epoch τ was set to be one hour. The time required to transition a server to or from

a sleep state, T S , was assumed to be five minutes.

During all tests, the GALD-CL heuristic was limited to a run time of one hour for each epoch

it was solving for, to mimic the representative time of each epoch. The FDLD heuristics for four,

eight, and sixteen locations completed on average in one, four, and thirteen minutes per epoch

simulated, respectively.

Each simulation used a workload of five task types based on real data. Task execution times and

co-located performance data were obtained from running benchmark applications on the servers

listed in Table 4.2 [63]. Synthetic task arrival rates were constructed and are shown in Fig. 4.5

compared to the TOU prices for the East coast and the West coast.

FIGURE 4.5. Comparison of system arrival rate vs. example TOU prices.
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4.6.1. COST COMPARISON OF HEURISTICS. Our first set of experiments compared the cost

associated with using the four heuristics described in Section V. These experiments used a data cen-

ter group consisting of four locations and estimated costs over a 24-hour period (Fig. 4.6). It can

be observed that the FDLD-CL technique, using the co-location models, performs the best of the

FDLD variants for provisioning the minimum number of servers necessary to meet execution rate

requirements. The FDLD-SO technique performed the worst, severely over-provisioning servers.

The GALD-CL heuristic outperformed all other approaches. In several cases, the performance of

the FDLD-CL approached that of the GALD-CL, but did not surpass it. While not performing as

well as well as the GALD-CL, the FDLD variants do have the advantage of reaching a solution

more quickly, which may be beneficial in some cases.

It can be observed that the epoch-to-epoch cost differences of the FDLD variants were much

more irregular compared to the smooth curve of the GALD-CL. The FDLD variants are determin-

istic with no mechanism for escaping local minima, resulting in the more irregular values of the

final solutions. The nature of the GALD-CL heuristic inherently enables it to escape from local

minima, allowing for but not guaranteeing more optimal solutions.

FIGURE 4.6. System costs across twenty four epoch period for each heuristic, four
locations.
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4.6.2. WORKLOAD TYPE ANALYSIS. The previous experiments presented in this section

used a workload that was a mix of memory-intensive and CPU-intensive tasks types. Fig. 4.7

shows experiments for the FDLD-CL and GALD-CL heuristics for a group of four data centers

where two additional workload types have been added: one where all of the tasks are highly CPU-

intensive, and one where the tasks are highly memory-intensive. The composition of data center

workloads can vary greatly and can impact the resource requirements, and these experiments show

that the techniques presented in this work will perform well for a variety of workload types.

FIGURE 4.7. System costs across twenty four epoch period for different workload
types, for a group of four locations. FDLD-CL shown as solid line, GALD-CL
shown as dashed line.

4.6.3. TIME-OF-YEAR ANALYSIS. The peak renewable energy generating capacity is fixed

for each data center, but the amount of power actually generated at a given time of day will vary

depending on the month. All prior experiments use solar and wind information for the month of

June. Given the variability of renewable power throughout the year (e.g. solar power in the winter

versus summer months), it is important to understand how this would affect geographical load

distribution algorithms that incorporate renewable power. Fig. 4.8 compares the GALD-CL and
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FDLD-CL methods for the months of June and December for a group of four data centers. The

total system cost is higher in December due to reduced available renewable power, but the GDRM

is still able to minimize total system cost with either heuristic.

FIGURE 4.8. Comparison of performance during different months, four locations.

4.6.4. SCALABILITY ANALYSIS. Performing geographical load distribution for groups of

data centers with more than four locations is not only a more complex problem, but also allows for

more opportunities to take advantage of varying renewable power and TOU pricing. Additional

experiments were conducted using groups of eight and sixteen separate data centers. For each

of the data center group sizes, the average performance improvement of each technique over the

FDLD-SO method is given in Table 4.3. These experiments confirm that all approaches can still

perform well even for larger problem sizes. It should be noted that as the number of data centers in

the group grows larger, the time for the FDLD variants to reach a solution increases, and the num-

ber of GALD-CL generations that can take place within the time limit decreases. As previously

mentioned, the increase in the runtime of the FDLD heuristics was very manageable as the number

of data centers in the group increased.
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TABLE 4.3. Electricity cost reduction compared to FDLD-SO

Heuristic 4 datacenters 8 datacenters 16 datacenters

FDLD-TAO 5.2% 4.6% 5.7%
FDLD-CL 14.2% 15.7% 18.8%
GALD-CL 39.7% 39.2% 36.8%

4.7. CONCLUSION

We propose four workload allocation heuristics for workload allocation across geographically

distributed data centers. In this work, we explored adding different levels of knowledge of the sys-

tem, particularly co-location interference, to geographical workload distribution algorithms. We

demonstrated that including additional information in the decision process of the heuristics resulted

in a lower energy cost by reducing or eliminating server over-provisioning while still meeting all

required workload execution rates. Our FDLD-CL and GALD-CL heuristics resulted on average

in 10% and 37%, respectively, lower total cost than the prior work (represented by the FDLD-SO

heuristic).

To demonstrate the robustness of our approaches, we performed three additional investigations.

First, we compared the performance of the heuristics for three different workload types; CPU-

intensive, memory-intensive, and a hybrid combination of CPU-intensive and memory-intensive

tasks, demonstrating the ability of the heuristics to perform well for workloads with a range of lev-

els of performance degradation from co-location interference. Second, we tested the sensitivity of

the heuristic to variants in renewable power by simulating different months of the year, and showed

that heuristics still perform well. Lastly, we tested the scalability of our heuristics by simulating

three different data center group sizes of four, eight and sixteen data centers.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1. CONCLUSION

This thesis proposes hierarchical framework for reducing energy consumption and electricity

cost, and improving data center throughput efficiency. Each component considers a different level

of the system, including inter-processor performance degradation modeling, energy optimization

of a data center via power, thermal and co-location aware resource allocation, and cost-minimizing

geo-distributed resource allocation. The three components can be used individually or together as

complete unit to make more informed system management decisions.

The work of this thesis considers all system levels, each at an unprecedented level of detail,

when making optimization decisions. To enhance this detail, real data was used throughout wher-

ever possible, including server power consumption, task execution times for real tasks, co-location

performance degradation effects for real tasks, hourly solar irradiance data, hourly wind data, and

TOU pricing. This thorough use of real-world data enables more accurate simulations, and ensures

the validity and soundness of the presented heuristics.

Rising data center electricity consumption, and as a result increased electricity costs, have

led data center operators to seek ways of reducing power consumption by limiting server over-

provisioning and more efficiently using active servers. Future efforts to improve efficiency will

need to consider all system levels, and will need to support their work using real data. The hierar-

chical framework proposed within this thesis can serve as an effective template for future efforts

seeking to minimize cost and improve energy efficiency.
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5.2. FUTURE WORK

The study in Chapter 2 proposes methodologies to model and predict the increase in execution

time of applications due to contention for memory resources when they are co-located on different

cores of the same processor. Linear regression models and neural networks were designed using

information collected from multiple internal performance counters. This data, while useful, gave

only indirect insight into the performance degradation. Future efforts could explore other machine

learning techniques, and potentially identify useful higher-level trends. Additionally, the tests of

this study used only a few architectures, all of which are server-grade systems, and only a handful

of benchmark applications were used. Testing on more architectures and with more benchmarks

might yield trends previously missed.

The study in Chapter 3 attempts to minimize energy use in an over-subscribed data center

by simultaneously considering thermal, power, server heterogeneity, and co-location interference

during resource allocation. Several optimization techniques are presented, however all of them

optimize for a steady-state scenario. In a real system it is often very difficult to accurately predict

the arriving workload. Future extensions to this work could explore dynamic scheduling that still

takes all of the aforementioned system features into account. The largest change that would be

needed to implement a dynamic version of this work would be a way to model thermal effect in

near-real-time that is computationally feasible.

The study in Chapter 4 explores electricity cost minimization via intelligent resource allocation

for geo-distributed data centers. Time-of-use electricity pricing and renewable power are both

leveraged to reduce cost. Periods of peak renewable power, however, often do not coincide with

peak workload and peak electricity pricing, while peak workload and peak electricity pricing often

do coincide. The addition of energy storage would add another dimension to the solution space,

and allow either renewable energy (or even possibly grid-sourced energy during times of cheap
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electricity and minimal renewable energy) to be used during periods of peak workload and peak

electricity pricing. Additionally, delay shifting of workloads could be explored to reduce data

center load during peak periods.

Chapter 4 could further be expanded by exploring more advanced models for the transmission

and transfer of workload and data. In its current state, the study assumes that the workload orig-

inates from multiple locations off-site from the considered data centers. More advanced network

models, as well as different workload scenarios. Additionally, the current study is constrained to

the continental United States. A more advanced data center communication model could allow for

simulations of scenarios spanning multiple countries or even multiple continents.
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