

THESIS

HETEROGENEOUS PRIORITIZATION FOR NETWORK-ON-CHIP

BASED MULTI-CORE SYSTEMS

Submitted by

Tejasi Pimpalkhute

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2013

Master’s Committee:

 Advisor: Sudeep Pasricha

 Wim Bohm

Anura P. Jayasumana

 Copyright by Tejasi Pimpalkhute 2013

All Rights Reserved

ii

ABSTRACT

HETEROGENEOUS PRIORITIZATION FOR NETWORK-ON-CHIP

BASED MULTI-CORE SYSTEMS

In chip multi-processor (CMP) systems, communication and memory access both play an

important role in influencing the performance achievable by the system. The manner in which

the network packets (on-chip cache requests/responses) and off-chip memory bound packets are

handled, in multi-core environment with several applications executing in parallel, determines

end-to-end latencies across the network and memory. Several techniques have been proposed in

the past that schedule packets in either an application-aware manner or memory requests in a

DRAM row/bank locality-aware manner. Prioritization of memory requests is a major factor in

increasing the overall system throughput. Moreover, with the increasing diversity in CMP

systems, applying the same prioritization rules to all packets traversing the NoC as is done in the

current implementations may no longer be a viable approach.

In this thesis, a holistic framework is proposed that integrates novel prioritization

techniques for both network and memory accesses and operates cohesively in an application-

aware and memory-aware manner to optimize overall system performance. The application-

aware technique makes fine grain classification of applications with a newly proposed ranking

scheme. Two novel memory-prioritization algorithms are also proposed, one of which is

specifically tuned for high-speed memories. Upon analyzing the fairness issues that arise in a

multi-core environment, a novel strategy is proposed and employed system-wide to ensure

iii

fairness in the system. The proposed heterogeneous prioritization framework is validated using a

detailed cycle-accurate full system event-driven simulator and shows significant improvement

over Round Robin and other recently proposed network and memory prioritization techniques.

iv

ACKNOWLEDGEMENTS

I take this opportunity to thank all the wonderful people who contributed in their own

special ways and supported me to attain the completion of this thesis work.

First and foremost, I express heartfelt gratitude towards my advisor, Dr. Sudeep Pasricha

who agreed to make me a part of his research group and mentor me for this thesis. It was only his

guidance, encouragement and motivation that kept me progressing through this thesis. I had a

very little information about Network-on-chip (NoC) and the related research area when I first

arrived at CSU for my Master’s program. After meeting Dr. Pasricha for the first time, I was

really inspired by his work in NoCs and decided to pursue this area. He has been very patient and

approachable as well as an amazing guide inspite of being extremely busy. I owe my thesis as

well as my learning experience to him.

I would also like to sincerely thank all my colleagues in Multi-core Embedded Computing

Systems (MECS) lab- Shirish Bahirat, Nishit Kapadia, Yong Zou, Yi Xiang, Srinivas Desai who

provided their helpful feedback from time to time and were instrumental in my learning process.

In my initial days in the research group, Nishit, Yong and Yi helped me to get the hang of

network-on-chip concepts and the simulation tools.

I am extremely grateful to my committee members- Dr. Anura Jayasumana and Dr. Wim

Bohm for agreeing to be on my thesis committee. I appreciate them taking time out of their busy

schedule to review my thesis and provide valuable inputs for improvement in this work.

Last, but not the least, I would like to thank my family back in India, who supported my

decision of coming to the US for Master’s. My deepest gratitude to my mother Savita

Pimpalkhute, who has always stood by me and encouraged me for pursuing my dreams. She has

been a pillar of strength to me. I would like to dedicate this thesis to my mother. My loving

v

brother, Omkar Pimpalkhute and my dearest friends, who are also my second family in

Colorado, Ketki Kolte, Hrushikesh Kulkarni, Manish Mohanpurkar and Kaustubh Gadkari have

been great unconditional support in this process. I thank from the bottom of my heart all these

amazing people for their love and support.

vi

DEDICATION

To my mother, Savita

And

Dearest friends and family

Without their incessant support and understanding,

This would have been only a dream for me

vii

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iv

DEDICATION ... vi

LIST OF TABLES ... ix

LIST OF FIGURES .. x

Chapter 1 Introduction ... 1

1.1 Overview of Multi-core Systems .. 1

1.2 Overview of Networks-on-chip (NoC) architectures .. 6

1.3 Motivation ... 8

1.4 Contributions ... 13

1.5 Outline ... 15

Chapter 2 Preliminaries.. 16

2.1 NoC Basics .. 16

2.2 Multi-Programmed CMPs ... 23

2.2.1 Packet Criticality .. 24

2.2.2 System Fairness Issues ... 30

2.3 SDRAM Architecture and Memory Level Parallelism ... 33

2.3.1 SDRAM Operation ... 33

2.3.2 Typical Memory Controller Functionalities ... 35

2.3.3 Bank Level Parallelism ... 36

Chapter 3 Problem Statement .. 40

Chapter 4 Related Work... 44

4.1 Heterogeneous NoC Architecture ... 44

4.2 Memory-bound Packet Scheduling Techniques .. 45

4.3 NoC Packet Scheduling Techniques ... 46

4.4 Fair Scheduling Techniques .. 46

4.5 Inter-application Interference Reduction Techniques ... 47

Chapter 5 Proposed Network Prioritization Techniques - I ... 48

5.1 Time-based Batching... 50

5.2 Stage I Application-aware Algorithm ... 51

5.2.1 Proposed Ranking Scheme ... 51

5.3 Stage II Memory-aware algorithm .. 55

viii

5.4 Experimental Setup ... 59

5.5 Experimental Results... 65

5.5.1 Performance Comparison Across Workload Types ... 65

5.5.2 Performance with Different Main Memory .. 68

5.5.3 Platform Scalability Analysis ... 70

5.5.4 Overhead Analysis .. 72

Chapter 6 Proposed Network Prioritization Techniques-II ... 74

6.1 Anti-starvation Technique ... 74

6.2 Application- and Memory-aware Packet Scheduling.. 77

6.3 Experimental Setup ... 83

6.4 Experimental Results... 86

6.4.1 Multi-programmed Workload Evaluation on Baseline CMP 87

6.4.2 Memory Speed Scaling Evaluation .. 89

6.4.3 Network Size Scalability Evaluation .. 91

6.4.4 Energy Consumption Evaluation .. 93

6.4.5 Area Overhead Estimation.. 94

Chapter 7 Conclusion and Future Work .. 97

7.1 Summary ... 97

7.2 Conclusion ... 98

7.3 Future Work .. 99

References ... 102

Appendix A ... 108

Appendix B ... 115

ix

LIST OF TABLES

Table 2.1: SDRAM timing parameters ... 35

Table 5.1: Baseline CMP system configuration ... 61

Table 5.2: Average L1 MPKI and highest MLP degree exhibited for SPLASH-2 and SPEC2K

benchmarks ... 63

Table 5.3: Classification of SPLASH-2 and SPEC2K applications ... 63

Table 5.4: Three workload categories for a 36-core CMP .. 64

Table 6.1: Baseline CMP configuration.. 84

Table 6.2: Workloads for execution on baseline CMP ... 86

Table 7.1: Key improvements of proposed framework .. 99

Table B.1: Source code for NoC modules .. 136

Table B.2: Source code for memory modules .. 137

x

LIST OF FIGURES

Figure 1.1: AMD Opteron 6200 series processor [33] ... 2

Figure 1.2: Intel’s SCC [27].. 3

Figure 1.3: Block diagram of Intel’s SCC [27]... 4

Figure 1.4: Schematic representation of Tile64 processor [43] .. 5

Figure 1.5: Intel’s Teraflop processor [45] ... 5

Figure 1.6: NoC-based multi-core system .. 9

Figure 1.7: Journey of a packet in 3×3 2D mesh CMP ... 11

Figure 1.8: Memory wall [46] ... 12

Figure 2.1: Breakdown of a packet at NI .. 16

Figure 2.2: NoC router architecture .. 18

Figure 2.3: 5-stage virtual channel NoC router micro-architecture .. 18

Figure 2.4: NoC topologies: (a) 2D Mesh, (b) Octagon, .. 20

(c) k-ary n-fly Butterfly, and (d) Fat-tree [3] .. 20

Figure 2.5: Multi-programmed NoC-based CMP ... 23

Figure 2.6: Packet injection trend for benchmarks from SPLASH-2 suite over a window of (a)

1M, and (b) 10M instructions. .. 27

Figure 2.7: Processor-to-network interface [21] ... 28

Figure 2.8: (a) L1 MPKI, and (b) number of outstanding requests in L1 MSHR queue over time

for SPLASH-2 and SPEC2K benchmarks. ... 29

Figure 2.9: Slowdown for (a) memory-intensive workload (gap) (b) compute-intensive workload

(barnes) (standalone vs together). ... 31

xi

Figure 2.10: DRAM architecture .. 34

Figure 2.11: Memory subsystem representation [50] ... 37

Figure 2.12: Logical organization of a SDRAM DIMM [35] .. 37

Figure 2.13: Timing constraints- tRRD and tRCD [24] ... 38

Figure 2.14: Timing constraints- tRRD and tFAW [24] ... 39

Figure 5.1: Proposed HEPI framework ... 49

Figure 5.2: Time-based batching anti-starvation scheme ... 50

Figure 5.3: Application criticality ranking scheme ... 52

Figure 5.4: Flowchart for application ranking .. 53

Figure 5.5: Stage I application-aware algorithm... 54

Figure 5.6: Stage II memory-aware algorithm .. 57

Figure 5.7: Representation of the RUB table .. 58

Figure 5.8: % Improvement over Local RR: (a) system throughput, (b) average memory latency,

and (c) weighted speedup ... 67

Figure 5.9: % Improvement over Local RR for DDR3-1333: system throughput, (b) average

memory latency, and (c) weighted speedup ... 70

Figure 5.10: % Improvement over Local RR for different platform complexities: (a) system

throughput, (b) average memory latency, and (c) weighted speedup ... 71

Figure 5.11: Overall area estimation ... 73

Figure 6.1: Pseudo-code for threshold determination in anti-starvation technique 76

Figure 6.2: Pseudo code for anti-starvation technique.. 77

Figure 6.3: Pseudo code for DSPK-I application-aware technique .. 79

Figure 6.4: Pseudo code for DSPK-II memory-aware technique ... 81

xii

Figure 6.5: Proposed framework applied to a NoC-based CMP .. 83

Figure 6.6: L1MPKI and MLP results of application profiling for benchmarks from the

SPLASH-2 and SPEC2K suites .. 86

Figure 6.7: Performance evaluation (a) system throughput, (b) average memory latency, and (c)

maximum slowdown with DDR3-1333 for workloads from Table 6.2. 88

Figure 6.8: Memory speed scaling evaluation (a) system throughput, (b) average memory

latency, and (c) maximum slowdown for DDR3-1600 with baseline CMP system 90

Figure 6.9: Network scalability evaluation (a) system throughput, (b) average memory latency,

and (c) maximum slowdown for 3×3 (36 core), 4×4 (48 core) and 5×5 (50 core) CMPs 93

Figure 6.10: Normalized energy consumption across mixed (w-1), compute-intensive (w-2) and

memory-intensive (w-3) workloads. ... 94

Figure 6.11: Area estimation for scheduling techniques: (a) NoC router area, and (b) overall NoC

fabric area.. 95

Figure A.1: Top level GEM5 overview. ... 109

Figure B.1: Configuration directory structure .. 116

1

Chapter 1

Introduction

Today’s computing chip platforms are becoming increasingly complex with highly parallel

architectures and tens to hundreds of components crammed together on a single die. With the

number of cores on a chip growing due to the benefits of shrinking nanometer technology, a lot

of pressure is put on the interconnection network fabric to handle communication flows from

various multi-programmed (i.e., multiple co-running application based) workloads efficiently. In

addition, due to the well publicized “memory wall” between processors and main memory, new

techniques are needed to overcome mismatches between processor and memory performance.

This chapter intends to provide an overview of current challenges faced by today’s multi-core

systems and the motivation for this research.

1.1 Overview of Multi-core Systems

As Moore’s law continues to hold true, we see increasingly denser chips in modern

semiconductor technology. Performance gains with single-core computing are limited. Thus, to

increase the performance many-fold, parallelism in hardware along with software needs to be

exploited. Hence, single-core computing is rapidly being replaced with multi-core computing in

today’s chip architectures. A modern chip multi-processor (CMP) consists of many cores

connected to each other, executing various workloads in parallel.

With the advent of multi-core computing and shrinking nanometer technology,

interconnection technology dons a role more significant than ever before. Interconnects are

responsible for communication between various processing elements on a chip. As process

2

technology scales down, gate delays are reducing significantly butwiring delays are not. Hence,

there is an inherent limitation to the performance gain achievable by advancing nanometer

technology alone. Emerging CMP designs require an interconnection fabric that is modular and

scalable.

Several CMPs have been commercially introduced recently that consist of multiple

processing elements on a single chip. A few of the more prominent CMP designs are discussed

below.

AMD Opteron

Figure 1.1: AMD Opteron 6200 series processor [33]

Figure 1.1 shows the AMD Opteron 6200 series multi-core system. It consists of 16

cores in the multi-core system and uses the HyperTransport 3.0 interconnect technology. It

can operate on clock rates upto 3.3 GHz. This system supports a shared L3 cache and low

voltage DDR3 main memories to reduce overall power consumption.

3

Intel’s Single-Chip Cloud Computer (SCC)

Figure 1.2 shows Intel’s Single-Chip Cloud Computer (SCC) CMP. It consists of 48

cores on a single chip. The interconnection fabric used to connect all cores to each other

and to main memory is a Network-on-chip (NoC) that will be discussed in the following

section. The name of the chip is derived from the fact that this chip provides a cluster of

compute nodes similar to the “cloud” of computing resources over the internet. Figure 1.3

shows an internal block diagram of SCC. This particular chip has 24 tiles connected

together in a 2D mesh NoC topology with two cores per tile. Each core has a private L1

and L2 cache. It has four integrated memory controllers that handle the traffic for off-chip

DDR3 memory.

Figure 1.2: Intel’s SCC [27]

4

Figure 1.3: Block diagram of Intel’s SCC [27]

TILE64 Multi-processor

Figure 1.4 shows the schematic diagram of the Tile64 processor from Tilera. This

multi-core system is comprised of 64 cores interconnected in a 2D NoC mesh topology.

Each tile represents a general pupose core with L1 and L2 caches as well as a switch to

route packets. The cores can operate upto a frequency of 900 MHz. The on-chip processing

elements communicate with the off-chip DDR2 memory through four memory controllers

connected to the network.

5

Figure 1.4: Schematic representation of Tile64 processor [43]

Intel’s Teraflop Processor

Figure 1.5 shows Intel’s research chip- Teraflop processor [45]. It contains 80 tiles

interconnected using a NoC fabric in a 2D mesh topology. Each tile consists of a switching

element called router and a core with private L1 cache. These cores can operate upto a

frequency of 5.7 GHz and can achieve performance upto 1.81 Teraflops.

Figure 1.5: Intel’s Teraflop processor [45]

6

As can be observed from the above examples, there are several shared resources in any

given multi-core system, such as shared main memory, shared caches, shared interconnects, etc.

It is crucial to manage these shared resources efficiently in order to enhance system performance.

As we put numerous processing elements together to achieve performance benefits, it puts forth

tremendous challenges in architectural design. The main challenges for modern heterogeneous

CMPs, which desire optimum performance are:

 Instruction Throughput

 Power

 Memory Throughput

 Scalability

Due to the highly adapatable and scalable properties of NoCs, these fabrics are emerging as

the most promising interconnect medium for modern CMP systems, such as the ones discussed

above. This thesis focuses mainly on NoC-based systems; it sheds light on the current research in

this area and presents solutions to overcome some of the key performance challenges pertaining

to NoC-based multi-core systems. In the next section, we present a brief overview of NoC

interconnection architectures.

1.2 Overview of Networks-on-chip (NoC) architectures

A network-on-chip (NoC) is a type of interconnection fabric for multi-core systems that

uses packet-based switching for communication. NoC architectures provide modularity,

7

scalability and adaptability for intra-chip communication in modern CMPs; hence they are

rapidly replacing traditional buses to become the backbone of modern multi-core systems [1][2]

as seen in the examples of emerging multi-core chips presented in the previous section. Network-

on-chip interconnect technology comprises of three main components-

 Network Interface: This is the interface between interconnect and processing

elements. It is responsible for converting request/response packets into an appropriate

format to be compatible with the processing elements or the interconnect.

 Router: This is the packet-switching element in the NoC fabric. A router is responsible

for routing packets on a hop-by-hop basis from their source to destination.

 Links: Interconnection links are used to connect any two routers or a router and a

processing element in a NoC-based system. Links provide a path for packet traversal in

the network.

A NoC fabric possesses four key defining characteristics:

 Topology: This is the structure in which the processing elements in a CMP are

connected to each other. The 2D mesh, as seen in Section 1.1, is the most commonly

used topology.

 Switching Techniques: The method of allocation of various interconnect resources

such as buffers, links, etc. to the communication unit (e.g., message, packet, etc.) is

called switching, and several switching techniques can be used (e.g., wormhole packet

switching, virtual circuit switchin, etc).

8

 Routing Schemes:The manner in which a route is selected for a packet to traverse the

NoC from the source to the destination is governed by the chosen routing scheme. The

most commonly used routing scheme for 2D mesh topologies is X-Y routing. In this

routing scheme, the packets advance from one router to another in X-direction followed

by Y-direction to reach their destination node.

 Flow Control Techniques: The mechanism of controlling communication flows

between various nodes in the network to regulate the network traffic and reduce

congestion or provide fault tolerance is governed by flow control techniques.

A detailed discussion of these NoC components and concepts is presented in Chapter 2.

1.3 Motivation

This thesis focuses mainly on improving overall system performance in multi-core

platforms by improving memory throughput as well as communication efficiency. Typically, in

today’s multi-core systems, there are several applications co-running at any given time and

sharing critical resources such as the NoC fabric, caches, memory controller and main memory.

Figure 1.6 shows a representation of a typical NoC-based multi-core system. It consists of 16

tiles connected together in a 4×4 2D mesh. The system has a shared main memory, four shared

memory controllers, and a shared L2 cache. In such a shared environment, the application

packets are constantly in competition to win the race to reach their destination. Consequently,

they are always interfering with other application packets resulting in slowdown of applications

in the shared environment as opposed to when they are running alone. Determining which one

packets gets precedence over another packet has a significant impact on overall system

9

performance. An inefficient NoC packet prioritization strategy can starve critical applications

and reduce system throughput. Thus, it is important that requests are prioritized (i.e., scheduled)

in an application-specific manner that is globally optimal, to minimize network latency and

benefit overall system performance.

Figure 1.6: NoC-based multi-core system

Application data and instruction requests may encounter misses in the on-chip cache

hierarchy, requiring request packets to traverse the NoC to reach the memory controller and

subsequently access off-chip main memory. For such requests, in addition to the network latency,

a notable main memory latency is added that increases the overall end-to-end packet latency.

Memory latency can be elevated if packets experience stalls in the main memory due to bank

conflicts and data contention. It is the responsibility of the memory controller to re-order

requests going to the main memory so that memory stall cycles are minimized and memory

utilization is maximized. The memory controller accomplishes this by keeping track of which

10

bank is being utilized currently and preparing against bank conflicts by scheduling packets to

maximize bank level parallelism (BLP). Intelligent techniques for memory scheduling can

improve memory latency and end-to-end latency, thereby significantly improving overall system

throughput. Given that the heterogeneity in modern multi-core designs is increasing, these

techniques must exploit heterogeneity in application characteristics [1][2], NoC utilization [3]

and memory level parallelism (MLP) [4]-[6] to manage resource allocation of NoC and memory

subsystems efficiently. In this thesis, we will refer to the on-chip cache packets as network

packets and off-chip memory packets as memory packets.

Importance of NoC Packet Scheduling: The performance of applications is increasingly

impacted by communication and memory performance. In particular, the throughput of an

application is dependent on how fast its requested packets return to the core. It is very interesting

to study the journey of a request packet originating at a core and back to the core and how

different parameters affect its end-to-end latency. Figure 1.7 shows a 3×3 NoC-based CMP

connected in a 2D concentrated mesh topology. Each router is connected to two cores having

private L1 caches and one L2 cache bank through the network interface. In addition, a memory

controller is connected to node 0, which is further connected to the main memory. As depicted in

Figure 1.7, when a request originates at a core e.g. A, initially its private L1 cache is checked, if

a miss is encountered, the request is sent to the next level in the memory hierarchy through the

network. In Figure 1.7, the packet originating at core A misses its L1 cache and is injected in the

network to access shared L2 cache. It traverses the network using the X-Y routing scheme to

access a remote L2 cache bank L. If the request gets satisfied at L, it returns to the core A with

the requested data. However, if a miss is encountered, it traverses the network again to go to the

11

memory controller M and further to the main memory. After fetching data from main memory, it

traverses the network again to deliver the data to its source core A. The network latency of

packets in these cases varies due to different hop distances and runtime NoC contention. Further,

if a request encounters a miss at an L2 cache bank, it has to reach the memory controller and then

access main memory. Once a request reaches the memory controller, it can face delays due to

factors such as bank conflicts, read-write turnaround, bus busy etc. Thus, there are several factors

contributing to the end-to-end latency of a request. At every step, a request packet experiences

slowdown due to interference from other packets and contention. Hence, we need to prioritize

packets such that in situations of contention where several packets are competing for bandwidth,

the requests that are most crucial to the overall system throughput can proceed before other

requests.

Figure 1.7: Journey of a packet in 3×3 2D mesh CMP

Importance of Memory Level Parallelism (MLP): Instruction Level Parallelism (ILP) has

reached its limits because of the growing gap between memory and processor performance [4].

12

Increasing ILP is no longer beneficial as CPU performance is currently bounded by memory. In

contemporary out-of-order superscalar processors even if the instruction issue width is increased

or clock frequency is increased, the processor needs to stall until it receives its requested data

from the memory. Thus, these optimizations for enhancing ILP would go unused unless memory

access becomes faster. But memory performance is not improving as fast as processor

performance. The “memory wall” is a major issue facing CMP designers today. The performance

gap is increasing by ~50% each year between processors and main memories. Figure 1.8 shows

the increasing gap between processor speed and memory speed. With technology shrinking

down, processor speed is increasing exponentially but memory speed is not able to cope up with

processor data bandwidth demands.

In such a situation, it becomes essential to exploit parallelism in order to improve memory

throughput. Modern memories including caches are parallel architectures with multiple banks

capable of operating simultaneously. Thus, we can improve memory throughput by maximizing

bank level parallelism.

Figure 1.8: Memory wall [46]

13

Importance of Prioritization: As discussed earlier, it is vital to emphasize the prioritization of

network and memory requests to enhance system throughput. However, the key question to be

answered is: at what point should request prioritization occur? One stage where request

prioritization typically occurs in today’s systems is in the memory controller. However, out-of-

order buffers for request scheduling in these controllers take up a lot of area and add a notable

latency, especially when congestion in the network is high or memory-intensive workloads are

running. In contrast, NoC routers have simple FIFO input/output buffers, with multiple requests

competing for the same output channel simultaneously. As the NoC becomes more and more

congested, it is vital to analyze such requests as early as possible, to uncover their impact on

individual workloads as well as system performance and appropriately adjust their priorities.

Thus, it is more cost-effective to apply workload-aware prioritization techniques in the NoC

closer to the source rather than prioritizing the same requests at the memory controller. At the

same time, improving main memory performance necessitates an increase in row buffer hits and

a reduction in memory bank conflicts. This information is more readily available closest to the

memory. Rather than relying on costly re-ordering in the memory controller, memory-aware

prioritization techniques in the NoC can enable more cost-effective distinctions between

requests.

1.4 Contributions

In this thesis, we make the following contributions:

 We introduce the novel concept of heterogeneous multi-staged prioritization in NoC

intercinnection architectures. We demonstrate that by employing different prioritization

criteria in two different parts of the NoC (e.g., part of the network closer to the memory

14

controller and farther away from the memory controller), overall system performance

can be notably improved.

 We propose new algorithms to be employed in each of these two stages of

prioritization. The first algorithm, for routers close to their originating cores, prioritizes

request packets as per criticality of their applications. The second algorithm, which is

for routers in proximity to memory controllers, aims to reduce bank conflict for

memory requests as they proceed to the memory controller.

 We propose a new ranking scheme for determining criticality of applications. We

evaluate previously proposed ranking metrics and show that our ranking scheme is

more accurate.

 We evaluate the constraints on BLP in modern high-speed memories and propose an

improved memory scheduling algorithm. We propose to employ our memory-

scheduling algorithm in NoC routers in the vicinity of the memory controller (instead of

modifying the controller) for better scalability and improved performance.

 We discuss the fairness issues in multi-programmed NoC-based systems and propose a

novel anti-starvation algorithm to prevent slowdown of applications and boost overall

system performance.

 We compare our work with some of the best performing recent work on packet

prioritization and demonstrate the effectiveness of our proposed staged prioritization

technique over these prior efforts.

15

Our experimental studies show consistent improvement with our proposed techniques over

a baseline configuration frequently used in CMPs, as well as the best performing prior works in

the area of network and memory prioritization.

1.5 Outline

This thesis is organized as follows. We discuss the preliminaries of this research area such

as NoC basics, SDRAM operation, memory level parallelism, application characteristics and

significance of packet scheduling in detail in Chapter 2. In Chapter 3, we elaborate on the

problem statement of this thesis. In Chapter 4, we discuss the details of some of the state-of-the-

art work proposed to address some existing challenges in NoC-based multi-core systems.

Chapter 5 presents the proposed framework for our novel application-aware and memory-aware

techniques and presents a new ranking metric for dynamic classification of applications. Chapter

6 presents an improved memory-aware packet scheduling technique specially tuned for high-

speed memories. In Chapters 5 and 6, two different anti-starvation techniques are used for

ensuring fairness in NoC-based systems. The experimental results and analysis for our

hypotheses in Chapters 5 and 6 are presented along with the corresponding techniques. Finally,

in Chapter 7, we present a summary and conclusion of this thesis and discuss future research

directions for this work.

16

Chapter 2

Preliminaries

In this chapter, we discuss the basics of networks-on-chip and off-chip memory, mainly,

their challenges and optimizations for improvement of overall system performance. We also

discuss the significance of application-awareness and memory-awareness for efficient

communication in modern multi-core systems.

2.1 NoC Basics

 In this section, we will delve into the details of the NoC components and concepts briefly

mentioned in Chapter 1. The major building blocks of NoC architecture are described as follows.

Network Interface (NI): Each processing element is connected to the router through a network

interface (NI). This NI is responsible for breaking down read/write requests from processors into

packets that are further partitioned into smaller data units called flits for on-chip traversalA

packet is broken down into three types of flits- Header flit, Body flit and Tail flit. Figure 2.1

shows the breakdown of a packet at NI.

Figure 2.1: Breakdown of a packet at NI

17

The header flit carries the most significant information regarding destination. The body and

tail flits simply follow the header flit in the network. The NI re-integrates the packet structure at

the destination after all the flits belonging to the packet have been received from the network.

This packet is parsed and the relevant data is then extracted and sent toto the processing element

or memory component at the destination.

Router: A router is a key component of the NoC architecture, which directs packets to their

destinations. Each router is connected to interconnect links through a certain number of input and

output ports. Typically, routers have five input and five output ports in 2D mesh topologies.

Figure 2.2 shows a standard router architecture. It has one port each on East, West, North and

South directions and also a local port (to connect to a processor or memory) for that node. The

flits arrive at these ports through the network interface. A state of the art 5-stage router is shown

in Figure 2.3. For a 5-stage virtual channel router, a flit has to undergo the following stages-

 Buffer Write and Route Compute: An input flit is stored in the buffer in this stage.

There are input buffers at the input port which contain multiple virtual channels. The

routing path for this flit determines the output port the flit will be sent to, and this route

computation is governed by the routing scheme chosen in the network.

 VC Allocation: The next stage is output virtual channel (VC) allocation. Only header

flits go through this stage. The stage is responsible for reserving a virtual channel for

body and tail flits for the packet to which the header flit belongs. Body and tail flits

skip this step and follow the header flit to the next stage.

 Switch Allocation: In this stage, all the flits at a particular input port arrive at the

18

crossbar of the switch and contend for output ports with flits at other input ports. The

switch allocation logic determines which flits gets each output port.

Figure 2.2: NoC router architecture

Figure 2.3: 5-stage virtual channel NoC router micro-architecture

19

 Switch Traversal: The winner flit in the earlier stage for each output port advances to

the next stage by traversing a switch (crossbar) and arrives at the output port. This stage

is called switch traversal.

 Link Traversal: After switch traversal, the flit has to traverse the link in order to go to

the next router along its destination path.

Apart from the building blocks discussed above, NoCs are characterized by four key concepts:

 Topology

 Switching Techniques

 Routing Schemes

 Flow Control Techniques

These concepts are discussed in detail as follows.

Topology: The processing elements can be connected in different ways by a NoC and this

connection structure is referred to as the NoC topology. There are two types of topologies- direct

topologies and indirect topologies. In direct topologies, each node has a direct link to its

neighbouring nodes. On the other hand, in indirect topologies, each node is connected to an

external switch (i.e., router) which in turn has direct links to other switches in the network. Some

of the important topologies are shown in Figure 2.4. The topologies- 2D mesh and octagon

(Figure 2.4 (a) and (b)) represent direct topologies, whereas, the topologies- k-ary n-fly butterfly

and fat-tree (Figure 2.4 (c) and (d)) represent indirect topologies.

20

(a) (b)

 (c) (d)

Figure 2.4: NoC topologies: (a) 2D Mesh, (b) Octagon,

 (c) k-ary n-fly Butterfly, and (d) Fat-tree [3]

Mesh topology is the most widely used topology for NoC-based CMPs. In this thesis, we

mainly focus on multi-core processors connected in a 2D mesh topology in a NoC-based

architecture.

Switching Techniques: Switching techniques govern the movement of communication

messages in the network. There are three main types of switching techniques-

 Circuit Switching: In this type of switching technique, a path is first reserved in the

network from source to destination before a message is sent through the network. This

21

path is broken only when complete transfer of the message takes place. This technique

is rarely used in NoCs due to its inefficient usage of network resources.

 Virtual Circuit Switching (VCS): This technique uses multiple virtual circuits that

may share the same physical communication links, to improve network utilization. A

scheduling technique such as Time Division Multiplexing (TDM) is used to grant a

virtual circuit access to a shared link..

 Packet Switching: Instead of reserving a path (circuit) and then transmitting a

complete message over the network, in packet switching a message is broken down into

multiple packetsthat proceed to traverse the network independently to reach their

destination. This is the most cost-effective way to enable inter-node communication in

multi-core systems. We adapt a variant of packet switching called wormhole packet

switching for the NoC architecture considered in our work in this thesis.

Routing Schemes: The manner in which a route is selected for a packet to traverse the NoC

from the source to the destination is governed by the chosen routing scheme. These schemes are

meant to perform an error-free, congestion-free, deadlock- and livelock-free, quick as well as

efficient routing of packets. There are two major types of routing schemes-

 Static Routing: In this type of routing, fixed routing paths are used for data transfers in

the network. These routing paths are computed based on static information about the

network regarding shortest path from source to destination, etc. These routing schemes

are very simple to implement and have lower overhead. Deterministic X-Y routing

22

scheme (mentioned in Chapter 1) is a static routing technique and most widely used for

mesh topology. Therefore we use this routing scheme in our work.

 Dynamic Routing: In this type of routing, the routing decisions are changed depending

on the current network traffic. These routing schemes incorporate load balancing and

fault tolerance mechanisms (for faulty links) in addition to mechanisms to determine

the lowest latency paths to the destination. However, these routing schemes have a high

hardware complexity and overhead.

Flow Control Techniques: With increasing number of cores on a chip and the number of

parallel applications running on them, the network can easily become congested. In order to

handle such network congestion as well as any network transmission errors, flow control

mechanisms are often employed in the network. Some of the commonly used flow control

schemes are- ACK-NACK flow control, Credit-based flow control and Xon/Xoff flow control.

Amongst these schemes, credit-based flow control is the most popular. In this technique, a credit

count is tracked by an upstream router’s virtual channel. With each flit leaving the upstream

router, this credit count is decremented. Backpressure is applied when the credit count becomes

zero to prevent any further incoming flits – i.e., the upstream router stops injecting flits into the

NoC if the credit count becomes zero. When buffers in the virtual channel in downstream routers

get freed by forwarding the flits, credits are sent to upstream routers, after which flits injection

by these routers can be resumed. We utilize this credit-based flow control technique in our work.

23

2.2 Multi-Programmed CMPs

Figure 2.5: Multi-programmed NoC-based CMP

Figure 2.5 shows a representation of a typical NoC-based multi-programmed CMP system.

There are 16 cores connected together in a 4×4 2D NoC mesh, running multiple parallel

applications independently. This figure will be referred to in the following subsections.

Application Characteristics: We have reached the saturation point for Instruction Level

Parallelism (ILP) now and hence use multiple parallel cores for faster turnaround of programs. A

multi-core system such as the one shown in Figure 2.5 consists of several diverse applications

executing simultaneously. These applications inject packets into the network every time there is

a private cache miss. Such application packets may seek data from shared L2 cache or main

memory for which they have to traverse the network to reach a remote node. The packets from

multiple applications interfere with each other at the routers where they often compete for an

output channel at the same time. Such inter-application interference causes unnecessary delays

and leads to a deterioration in the system throughput. Hence, it is important to analyse the

applications running on the system and make appropriate optimizations to enhance the system

performance.

24

2.2.1 Packet Criticality

In multi-programmed CMPs, system throughput is governed by the harmonious execution

of multiple applications running together. In such systems, routers face a lot of contention due to

request/response packets of different applications interfering with each other for the same output

channels. It is very important to distinguish between packets of different applications as opposed

to treating all packets equally, to optimize system performance. The problem of categorizing

packet criticality has been studied in a few recent works [16][17][19] that propose various

classification metrics. These metrics are summarized below:

 Packet slack estimation: In [17], the authors compute the slack of a request packet to

determine a packet’s criticality. Slack is defined as the maximum delay a packet can

tolerate in the network without affecting performance at its source core. For example,

consider the scenario where a processor has two outstanding load misses that result in

successive network request packets Pkt1 and Pkt2. If Pkt2 encounters lower NoC

latency and returns with data before Pkt1, it cannot commit its corresponding load until

Pkt1 returns. Thus Pkt2 has some slack for which it can be delayed without reducing

application performance.The slack is used in arbitration decisions to prioritize packets

with smaller slack over others. This metric is based on the nature of a request packet

and its destination irrespective of the application it belongs to. But network contention

is not considered in the process of estimation, which can lead to incorrect values of

packet slack and hence flawed determination of the packet’s criticality.

 Network episode height and length estimation: An application typically goes through

two phases in its execution span- compute phase and network phase. Compute phase is

25

the execution interval in which there are no outstanding requests to the memory from

that application. On the contrary, network phase is the execution phase in which the

application has pending requests to the memory. In [19], the authors use the metrics-

network episode length and episode height to perform fine grain classification of

applications and their requests. The episode length is the number of cycles measured

from the time of injection of a packet in the network by an application, until all requests

for that application is satisfied. Episode height is the number of outstanding L1 misses

captured for this episode length. The episode length and height value is an indicator of

the intensiveness of an application’s network-phase, which allows predicting memory

intensiveness of an application and its packet criticality. To determine an episode

length, a count of cycles is kept for which the MSHR (Miss Status Handling Registers)

queue [20] is occupied. However, this metric has some drawbacks. MSHR queues

remove an entry only when the request is satisfied [21] (details about MSHR follow

later in this section). Hence, if the request is delayed in the network due to contention, it

will result in longer network episodes. As a result, there is a high probability of

incorrectly projecting that the application is more network-intensive with this approach.

 Private cache miss count estimation: In [16], the authors use private cache misses per

instructions (MPI) as a ranking metric for determining stall time criticality of an

application packet. They form eight clusters of ranks based on the relative MPI of all

the applications. The application with the lowest MPI gets the highest rank. This metric

is unaffected by the network congestion state and is a reliable indicator of an

application’s memory-intensiveness. However, it gives us a very broad idea about the

nature of an application in terms of its latency criticality and does not capture the

26

memory level parallelism (MLP) of an application.

Need for a dynamic fine-grain application classification strategy: In a shared CMP with

multiple parallel applications, at any given time, two or more packets can be contending for the

same resource. Intelligent techniques are required to efficiently allocate resources based on the

needs of different applications and their respective network and memory packets. Applications

rarely demonstrate invariant characteristics and usually fluctuate between memory-intensive and

compute-intensive phases over their lifetime. Figure 2.6 shows packet injection trends in terms

of L1MPKI (L1 misses per thousand instructions) for applications from the SPLASH-2

benchmark suite. The benchmarks show varying degree of memory-intensiveness at different

times and hence the throughput demands of the applications change as well.

 We can observe from Figure 2.6 that some applications (e.g., fft and radix) have similar

packet injection trend, so using L1MPKI alone to distinguish between packets of different

applications during scheduling is not sufficient as done in some prior works (e.g., [16]). We need

a more sophisticated metric to perform finer grain classification of applications that can exploit

unique application-specific characteristics of packet injection. In addition, applications

demonstrate varying degrees of memory level parallelism depending on their temporal and

spatial localities. A classification metric should be able to exploit this information.

27

(a)

(b)

Figure 2.6: Packet injection trend for benchmarks from SPLASH-2 suite over a window

of (a) 1M, and (b) 10M instructions.

Figure 2.7 shows a typical process to network interface and flow of packets from processor

to network. For an application running on Core, it requires some data to be fetched from the

memory. First, the private L1 cache is checked for the required data. If there is a L1 miss, the

data request is sent to the next level of cache (mostly shared). The request has to go through the

MSHR (Miss Status Handling Registers) module attached to the L1 cache’s circuitry, before it

28

can enter into the network to access shared L2 cache. There are multiple MSHRs which form a

MSHR queue. MSHR queues are checked on each L1 cache miss. The entry regarding current

miss is added to the queue only if a miss to the same block as the current miss does not already

exist. The greater the MSHR queue occupancy, the larger is the number of blocks demonstrating

MLP in an application [21]. This MSHR queue occupancy also indicates the instantaneous

network demands of an application. We term the MSHR queue occupancy as MLP index.

Figure 2.7: Processor-to-network interface [21]

As applications typically demonstrate behavioral variations over the span of their

execution, their network demands and therefore criticality also varies over time. To better

understand this phenomenon, we captured the L1MPKI as well as number of outstanding

requests in the L1 MSHR queue for applications from the SPLASH-2 and SPEC2K benchmark

suites. Figure 2.8 (a)-(b) show varying L1 MPKI and MLP index values for the various

29

applications over a period of 5M cycles. An interesting observation is that even though L1 MPKI

may be constant over an interval for an application, its MLP index can change significantly

during that time (e.g., for ammp, lucas, etc). The results demonstrate a need for fine-grain

classification of applications based on their time-varying network demands and MLP.

(a)

(b)

Figure 2.8: (a) L1 MPKI, and (b) number of outstanding requests in L1 MSHR queue

over time for SPLASH-2 and SPEC2K benchmarks.

30

2.2.2 System Fairness Issues

Modern multi-core systems typically execute multiple applications in parallel. Such

applications inject packets into the NoC, where routers handle the journey of these packets to

their destination. Routers must frequently cope with contention while granting the output channel

to one of the contending packets. In such scenarios of inter-application interference, it is

important to distinguish between packets and make an appropriate choice in prioritizing one

packet over others. During such packet scheduling that is usually based on a certain criteria (e.g.

stall time criticality [16], packet slack [17]), there is a possibility that certain packets get de-

prioritized all the time and suffer from starvation. As a result, some application packets get

significantly slowed down. Figure 2.9 shows the slowdown experienced by the applications

barnes and gap when they are run together in a multi-programmed environment employing an

arbitration strategy as in [16] versus when they are run in a standalone manner with no

interference from other applications. Barnes is a compute-intensive application while gap is

memory-intensive, thus gap injects more packets into the NoC. When these applications are run

together, both applications experience some slowdown. As gap is memory-intensive and is

frequently de-prioritized by the strategy in [16] over the barnes compute-intensive application,

its application throughput (instructions per cycle) takes a more significant hit (Figure 2.9). To

prevent this slowdown and ensure fairness in the system, anti-starvation strategies are often

employed in addition to scheduling algorithms. Some of the standard and previously proposed

anti-starvation strategies are discussed below.

31

(a)

(b)

Figure 2.9: Slowdown for (a) memory-intensive workload (gap) (b) compute-intensive

workload (barnes) (standalone vs together).

In [16][17][18], time-based (TB) batching is employed to enable fairness among

application packets. In time-based batching, a packet is tagged with a batch id that is a function

of the time when it is injected into the NoC. Requests originating at the same time or within the

same batching interval form a batch. At the interval of every T cycles, this batch id is

incremented cyclically. With the view of enforcing fairness, when two packets belonging to

different batches compete with each other, the packet with lower batch id is given priority over

the other packet. The underlying assumption is that the older packet has been starved for a long

32

time. However, batching is not necessarily an effective way of coping with starvation. For

example, with a typically used batching interval of 16,000 cycles, a packet injected at cycle 0 has

batch id 0 and a packet injected at cycle 15,998 also has batch id 0. In the following interval, the

batch id is incremented and now the packet originating at cycle 16,002 has batch id 1. If the

packet originating at cycle 15,998 competes with one originating at cycle 16,002, the former

packet will win out even though it may not be starved, rendering the TB batching technique

ineffective in such scenarios.

In another similar technique called packet-based (PB) batching [16], instead of a time-

based threshold, the threshold is based on number of packets injected. Here the batch id is

incremented when N packets have been injected into the NoC. This technique has the same

disadvantages as those discussed for TB batching. In addition, this technique requires co-

ordination among all the nodes to enable a global batching across the system, resulting in a

prohibitive communication overhead.

The two batching techniques discussed above are widely used in NoC packet scheduling to

enforce fairness but face inherent drawbacks as discussed above. Moreover, both strategies do

not distinguish between on-chip cache requests and off-chip memory requests. Thus, higher

ranked off-chip memory packets can defeat lower ranked on-chip cache request packets.

However, de-prioritizing lower latency on-chip cache requests can hurt overall performance.

Thus, more balanced anti-starvation scheduling mechanisms are essential to aggressively

improve performance. Chapter 6 presents our proposed anti-starvation mechanism.

33

2.3 SDRAM Architecture and Memory Level Parallelism

In this section, we will discuss the basic SDRAM operation and how SDRAM

characteristics and memory level parallelism can be exploited to improve memory throughput

and overall system throughput in turn.

2.3.1 SDRAM Operation

Widely used SDRAMs operate with three main commands: precharge (PRE), activate

(ACT) and Read/Write (R/W) [6]. For any request, the SDRAM memory controller needs to

know its bank address, row address and column address. When a request arrives at the controller,

it checks if the bank being requested is already active and if not, issues an ACT command. The

desired row is then copied into a row buffer to access the requested address. Once the data is

fetched, a PRE command is issued to restore the row in the row buffer and idle the bank

depending on whether the memory implements a closed-page or an open-page policy. Most

memories implement an open-page policy to encourage row hits and minimize ACT and PRE

commands. Another facet of SDRAMs is that while one bank is busy another bank can still be

activated and accessed under certain conditions. It is also desirable for requests approaching

memory to do so in a manner that will avoid consecutive requests approaching different rows of

the same bank, to reduce memory latency.

34

Figure 2.10: DRAM architecture

Figure 2.10 shows a typical DRAM architecture which consists of a 2D array of rows and

columns (wordlines and bitlines). Whenever a request arrives at main memory, the address is

decoded to identify the row to be addressed. This is called Row Access Strobe (RAS). This row

is then copied into the row buffer. The column address is then decoded to know which bitline

from the copied row needs to be accessed. This is called Column Access Strobe (CAS). Memory

access latency is dependent on how many cycles are taken for the above operations, for any

request. Some of the commonly used timing parameters for SDRAM are shown in Table 2.1.

35

Table 2.1: SDRAM timing parameters

Timing Parameters Abbreviations Description

tRAS Row Access Latency Cycles consumed for accessing data from

a row when it is opened.

tCAS Column Access Latency Time for reading data from the specified

column in an opened row.

tRCD Row Cycle Delay Minimum time between accesses to

different rows of the same bank.

tRP Pre-charge Delay Cycles to precharge the DRAM bank

tWTR Write- Read Delay When read request follows write request

to a same memory location, tWTR cycles

are required to perform operation.

2.3.2 Typical Memory Controller Functionalities

Before requests go to the main memory, they have to pass through the memory controller.

Modern memory controllers perform a variety of functions in addition to generating commands

for the main memory. When an off-chip memory request arrives at the memory controller, it

translates the request address to main memory address and issues appropriate commands. Some

of the typical functionalities of a memory controller are-

 Issuing DRAM commands like ACT/PRE/READ/WRITE to activate or de-activate a

bank and perform read/write operations;

 Issuing REFRESH commands to the DRAM cells so that the written data is retained;

 Managing power states of the main memory with the goal of minimizing main memory

power consumption;

 Request Scheduling of the packets before they go to the main memory to avoid stalls

due to bank busy/data contention;

36

 Ensuring reliability of request packets by employing error correction strategies in the

memory controller;

Memory controllers are placed on-chip and as the number of functions performed by them

increases, their hardware complexity increases. In particular, reorder buffers inside memory

controllers take up a lot of area and energy. Hence, efforts are being made to incorporate some of

the memory controller functionalities in the on-chip interconnect (mostly routers) in the NoC-

based multi-core systems. SDRAM-aware router [13] is one such technique which uses existing

resources in a router (input/output queues and switch arbitration) to perform request scheduling

so that memory controller is relieved of the expensive reorder buffers. We adapt this goal and

attempt to improve overall memory performance by employing more efficient memory

scheduling techniques in network routers. We present two such techniques in Chapters 5 and 6.

2.3.3 Bank Level Parallelism

Modern memories are no longer monolithic structures but rather multi-bank architectures

that can operate in parallel. The memory structure is shown as follows in Figure 2.11. A memory

controller is connected to the main memory through channel. A channel may consist of one or

more DIMMs (Dual In-line Memory Module). An SDRAM DIMM represents an independent

memory device. Figure 2.12 shows the logical organization of a SDRAM DIMM. A DIMM

consists of multiple logical ranks which further consist of banks. Different banks have separate

command generator circuitry; hence they can be operated in parallel.

37

Figure 2.11: Memory subsystem representation [50]

Figure 2.12: Logical organization of a SDRAM DIMM [35]

38

Figure 2.13: Timing constraints- tRRD and tRCD [24]

The timing diagram in Figure 2.13 shows the constraints for operating different banks in

parallel and the same bank in succession for different rows. The parameter, tRRD represents the

number of cycles it takes to activate two different banks in succession. Figure 2.13 shows that

once Bank x is activated, Bank y can be activated after tRRD cycles whereas Bank y can again be

activated after tRCD cycles. Usually, tRRD is much lesser than tRCD and hence different banks

activated in succession are considered as almost concurrent. However, for higher capacity

SDRAMs (> 1GB or eight banks) and high-speed memories, there is a constraint on how many

banks can be activated in parallel. In such memories, over a window of tFAW number of cycles,

only four banks can be activated. This is to avoid current surge and excessive power

consumption. This constraint is termed as tFAW (Four Activate Window). If another bank of the

same rank needs to be accessed, it has to wait until tFAW number of cycles or one of the already

activated banks are pre-charged. Thus, even if we try to maximize bank level parallelism (BLP)

by exploiting spatial locality of packets, packets can still experience head of the queue latency at

the memory if they encounter the above-mentioned scenario. The figure below shows the timing

representation of the tFAW constraint.

39

Figure 2.14: Timing constraints- tRRD and tFAW [24]

In Figure 2.14, bank a, b, c and d can be activated concurrently. However, when bank e

needs to be activated, there is no bank conflict or data contention issue but it has to wait until

tFAW cycles have passed since the activation of bank a. This puts a constraint on maximum

bank level parallelism possible. We address this issue in our second memory-scheduling

algorithm described in Chapter 6.

40

Chapter 3

Problem Statement

With the advent of multi-core computing, there is a significant amount of research going on

to improve the overall system performance in multi-core chips. As the number of components on

a chip increase, the management of shared resources such as interconnects, shared caches,

memory controller as well as main memory becomes more critical. Each module in a system is

inter-dependent due to communication and therefore it is important to consider on-chip as well as

off-chip components while performing synthesis.

The key metrics that determine overall system performance are –

 Application throughput System throughput

 Memory utilization Network utilization

 Network latency Power and Energy consumption

 Main memory latency System fairness

Research in NoC-based multi-core systems has been focused on optimizing one or more of

these metrics to enhance the achievable performance. This thesis aims to optimize the following

factors to benefit overall system performance in multi-core chip designs:

 Increase system throughput

 Minimize energy consumption

 Minimize main memory latency

 Increase system fairness

41

A multi-core system executes multiple workloads in parallel, ranging from heavily

memory-intensive to memory non-intensive applications. This thesis aims to address the

following challenges in order to achieve the abovementioned performance goals:

 Packet arbitration: The end-to-end journey of a packet requested by a core plays a

significant role in determination of QoS and consequently performance. Every

application demands data or instructions from the memory; some applications do so

more often than others. In its journey to the destination, a packet might face slowdown

due to other packets interfering with it at the routers or memory access delays.

Techniques such as prefetching and application- and memory-mapping minimize

memory delays by keeping the data needed by any application closer to its core.

However, application characteristics often vary with time, so it is difficult to accurately

predict what data is needed by the application throughout an application’s execution.

Efficient packet arbitration can enables high gains in performance by tracking the

changing data demands of applications. NoC routers can accelerate or decelerate certain

packets in order to reduce memory stalls and benefit the system throughput. This thesis

explores the potential of packet arbitration in a NoC-based system.

 System latency: The overall system latency of a packet comprises of network latency

and memory latency. Network latency is primarily governed by the on-chip

interconnects and is determined by the communication latency of packets traversing the

network. Memory latency is governed by the number of stalls faced due to row/bank

conflicts and data contention (Read-Write turnaround). System throughput is a function

of system latency, and is defined as the total amount of work done (i.e., instructions

42

executed) over a certain number of cycles. This thesis aims at reducing system latency

to improve system throughput.

 Application-awareness: Modern multi-core systems execute diverse workloads in

parallel to maximize performance. There are two broad categories of applications-

Compute-Intensive and Memory-Intensive. Compute-intensive applications are latency

sensitive and benefit system throughput more as the processors executing these

applications spend most of the time on computation rather than waiting for data to be

fetched from memory. Memory-intensive applications, on the other hand, are relatively

more latency tolerant. These types of applications do not hamper the system

performance even if their packets face some delays.

 Memory-awareness: Main memory latency is the most significant contributor to

system latency. Memory latency can be minimized by mitigating stalls due to bank

busy and row conflicts. Also, the spatial or temporal locality of application packets

determines their memory access latencies. Hence, memory-state awareness is important

in taking scheduling decisions so that bank and row conflicts, which are the main cause

of memory access delays, are mitigated. Hence, this thesis exploits memory-awareness

in NoC routers to achieve improvement in memory throughput and efficiency.

 System fairness: Along with system performance, it is equally important to preserve

system fairness. In multi-programmed systems, inter-application interference is

inevitable. This results in slowdown of applications. In such cases, when one

application is repeatedly prioritized over others, some applications may suffer from

starvation and cause a reduction in the overall system performance. Hence, this thesis

also aims to establish system fairness while improving system throughput.

43

 Heterogeneity in architecture: With increasing heterogeneity in multi-core systems

like AMD Fusion, Tegra SoCs etc. where the system is composed of CPUs, GPUs,

image processors, video encoders and other types of processors, it is important that we

consider the fact that systems might no longer consist of coherent processing elements.

Hence, we need mechanisms that can deal with heterogeneity in terms of workloads

executing, NoC router architectures, and heterogeneous memories. We thus introduce

the concept of heterogeneous prioritization framework to suit the requirement of

modern heterogeneous multi-core computing systems.

This thesis first explores and analyzes application packet criticality and memory access

behavior. Based on this analysis, we propose techniques to address the above mentioned

challenges leading to performance improvement in terms of system throughput, memory latency,

system fairness and energy consumption.

44

Chapter 4

Related Work

The potential of efficient packet prioritization in influencing overall performance for multi-

core systems is well recognized. Several recent efforts have proposed architectural and

algorithmic strategies for either NoC packet scheduling or memory-bound packet scheduling.

Several other efforts have focused on designing heterogeneous NoC architectures with support

for fairness. We summarize a representative subset of these techniques below.

4.1 Heterogeneous NoC Architecture

Several efforts propose to architect NoCs to cope with diverse applications running in

parallel and their communication demands. In [39], Grot et al. propose KiloNoC, a topology-

aware QoS-enabled NoC architecture. In [19], Mishra et al. propose sub-networks for separating

compute-intensive and memory-intensive applications in NoC based systems. For the sub-

networks proposed in [19], additional hardware circuitry redirects packets injected into the

network into a sub-network based on the application type. In [40], the authors propose using

heterogeneous routers that can more effectively match application packet QoS requirements

while saving power. In [14], Phadke et al. propose heterogeneous main memory architecture for

optimizing latency, bandwidth and power requirements. All of these prior works demand

extensive customization of hardware blocks which may be costly or even impractical for

commodity processing cores and memory.

45

4.2 Memory-bound Packet Scheduling Techniques

Several prior efforts such as Thread Cluster Memory Scheduling [1], Stall Time Fair

Memory Scheduling [7], ATLAS [8], SMS [9] and PARBS [10] have proposed memory

scheduling techniques that modify memory controllers to improve memory access performance.

These techniques consider thread criticality and fairness while scheduling requests in the

memory controller [1][7][8][10]. However, such scheduling algorithms have a large

communication overhead due to limited visibility of the network. These techniques are also

unaware of the network and cores executing the applications. The techniques proposed in

[11][12] schedule memory requests based on network contention and executing applications, but

assume that information about each core is available in the memory controller. Such an

assumption entails a huge communication overhead between the memory controller and cores

and as such, these techniques are prohibitive and expensive to implement in practice. Main

memory requests often face delays due to stalls at the head of the issue queue owing to bank

conflicts or data contention. Hence, it is important to re-order these requests, as has been

explored in some previous efforts on memory scheduling. For example, in [13], SDRAM-aware

NoC routers are proposed that are programmed with the main memory timing parameters,

allowing for request re-ordering in a memory-aware manner to improve performance. However,

this approach reduces portability as well as scalability in emerging heterogeneous memory

systems [14]. The technique in [15] enhances the technique from [13] by distinguishing between

demand packets and prefetch packets while reordering requests as per memory state, but the

fundamental drawbacks mentioned for [13] still remain. In [42], Ebrahimi et al. propose a new

memory-scheduling algorithm for parallel applications aiming to reduce inter-thread interference

in the memory system. However, this approach is again agnostic to the network congestion.

46

4.3 NoC Packet Scheduling Techniques

Das et al. propose NoC scheduling using the ranking metrics stall time criticality [16] and

packet slack [17] for co-running applications. Stall time criticality is calculated based on the

number of L1 cache misses per thousand instructions (L1MPKI) and packet slack is a measure of

delay tolerance of a particular packet in the NoC. However, L1MPKI cannot be used as a fine

grain classifier of applications (as discussed in Chapter 2) and this metric does not consider

network congestion while determining slack. Therefore, these metrics are not very accurate for

ranking application criticality. Recently proposed network scheduling schemes such as [18] aim

to bring uniformity in network latencies and main memory bank utilization. In [18], Sharifi et al.

propose to apply separate prioritization rules to request and response packets. However, the

techniques are application-oblivious and can lead to increased delays in the system while trying

to equalize packet latencies. In addition, these techniques prioritize off-chip memory requests

and responses only and ignore the on-chip cache requests and responses.

4.4 Fair Scheduling Techniques

Das et al. [16][17] use time-based batching and packet-based batching techniques to ensure

anti-starvation in a strict priority enforced environment. In [41], the authors propose a source-

based throttling mechanism to ensure fairness in shared CMPs. However, none of these

techniques differentiates between on-chip cache requests and main memory requests for their

starvation criteria. Our technique presented in Chapter 6 describes a novel anti-starvation method

to be applied system-wide to ensure fairness and differentiates between network packets and

memory packets.

47

4.5 Inter-application Interference Reduction Techniques

The TCM technique [1] by Kim et al. proposes a mechanism to determine interference

caused by any thread. It uses insertion shuffling between high priority and low priority threads to

guarantee fairness amongst all threads (cores). Muralidhara et al. [34] propose having separate

memory channels depending on the application type to reduce the interference between heavily

interfering applications. In addition, in [19], the authors propose various sub-networks within a

network to run a specific type of application, which reduces inter-application interference to a

significant extent. Such techniques aim to mitigate inter-application interference to minimize the

slowdown of applications running on systems and boost its performance.

In summary, existing memory scheduling techniques are typically network-unaware,

whereas existing network scheduling techniques are agnostic to main memory performance,

often being analyzed using simple memory models with fixed latencies. However, we believe

that as overall system performance is a function of both network latency and memory latency,

focusing on one of these aspects alone to improve performance is sub-optimal. Hence, we

propose a novel holistic solution for intelligently prioritizing (i.e., scheduling) network packets

(on-chip cache requests/responses) and memory packets (off-chip requests/responses) to

overcome the key drawbacks of existing techniques and improve overall performance. The

optimization goal for techniques mentioned in Section 4.5, i.e., reduction of inter-application

interference, is orthogonal to the optimization goals for this thesis and can be used along with

our proposed techniques described in Chapters 5 and 6.

48

Chapter 5

Proposed Network Prioritization Techniques - I

In Chapters 1 and 2, we discussed some key issues and challenges in multi-core NoC-based

systems. Chapter 4 presented some relevant research efforts in this area and their drawbacks. In

this chapter, we address these drawbacks and propose a NoC framework with heterogeneous

prioritization (HEPI). HEPI is comprised of a new dynamic ranking scheme for application

classification, an application-aware prioritization algorithm and a memory-aware prioritization

algorithm. After evaluating fairness issues in multi-programmed systems and the drawbacks of

existing anti-starvation techniques (Section 2.2.2), we also apply a system-wide anti-starvation

technique.

Our proposed heterogeneous prioritization (HEPI) framework is inspired by the insight that

there is always a race among request packets originating at different cores to reach their

destinations. The overall system throughput is impacted by which requests get served faster and

allocation of NoC resources plays a significant role in determining this. Request/response

packets also often interfere with each other at NoC routers to acquire an output channel. It is the

responsibility of router arbitration mechanisms to determine which packets get access to an

output channel at every cycle. In Round Robin (RR) based arbitration schemes that are widely

used in NoCs, the arbitration is fair but packet criticality oblivious. Moreover, for off-chip

memory requests, when packets reach the memory controller, a great deal of power and latency

is expended in re-ordering these requests to optimally access memory in contemporary memory

controller nodes. To overcome both of these limitations, we propose a novel heterogeneous two-

stage prioritization technique for packets traversing the NoC. The first stage applies application-

49

aware prioritization, with packets being prioritized as per their criticality, which in turn depends

on their latency sensitivity and MLP characteristics.

Figure 5.1: Proposed HEPI framework

The second stage applies memory-aware prioritization, with packets being reordered as per

memory state to minimize stalls. Figure 5.1 shows how the two types of prioritizations are

applied to NoC routers. The routers in close proximity (i.e., at one or less hop distance) from the

memory controller employ the second stage prioritization mechanisms while all other routers,

relatively farther from memory employ the first stage prioritization mechanisms. As we show

later, such a framework can notably improve system throughput and memory access

performance.

In the following subsections, we first describe a time based batch prioritization mechanism

used in all NoC routers to prevent packet starvation, followed by details of the Stage I

application- aware and Stage II memory-aware arbitration algorithms.

50

5.1 Time-based Batching

We employ a time-based batching technique that is loosely adapted from [16] to prevent

starvation of packets in the NoC. The time-based batching technique is summarized in Figure

5.2.

Time-based batching scheme

Parameter Definitions:

β: number of cycles in a batching interval

K : Maximum Batching levels

CBID: Current Batch Injection ID counter

PBID: Packet’s tagged Batch ID

Batch assignment for application packets at core network interface:

At the end of every β cycles-

1: CBID = CBID + 1

2: if (CBID >= K)

3: CBID = CBID % K //wraps around for compact ids

4: PBID = CBID

Relative batch priority of packet p at router during arbitration at cycle T:

 RBP (p) = (CBID at T – PBID) % K

Figure 5.2: Time-based batching anti-starvation scheme

After each batching interval β, the packets originating in that interval from a network

interface are assigned a batch id. This batch id is a timestamp that can be used in routers to

determine how long the packet has spent in the NoC. The batch id counter is incremented at each

batching interval until K levels, after which it starts over again (steps 1-3) to maintain compact

ids. The network interface (NI) of each core tags a packets’ header flit with a batch id before it is

injected into the NoC. When any packet p arrives at a NoC router, a relative batch priority of p

(RBP) is computed based on current batch injection id (CBID) and packet batch id (PBID) for p.

This RBP value is used to include starvation information as part of the prioritization scheme in

both stage I and stage II NoC routers as discussed next.

51

5.2 Stage I Application-aware Algorithm

This algorithm prioritizes packets in NoC routers as per their application-specific criticality

and also ensures freedom from starvation. We use our novel ranking scheme to determine

application-specific packet criticality and the time-based batching technique (Section 5.2.1) to

prevent starvation of packets. The ranking scheme is described as follows.

5.2.1 Proposed Ranking Scheme

Different applications contribute differently to the overall system throughput. If an

application requires a lot of its operands to be fetched from memory, it spends most of its time

stalling and waiting for the requests to be satisfied by the main memory. Such applications

cannot contribute much to the overall system throughput (defined as total number of instructions

executed per unit time). We can thus classify such memory-intensive applications as latency-

tolerant applications that do not impact performance notably even if their packets face a small

delay. In contrast, there are some applications that have a very high CPU utilization due to their

high compute intensity and that require very few operands to be fetched from memory over long

periods. Such compute-intensive applications can be classified as latency-critical, as they are

very crucial for the performance of the system, i.e., any additional wait time for a core executing

this application can make the CPU stall which otherwise it could have spent executing

instructions.

In our proposed criticality ranking scheme, applications (and their corresponding packets)

are classified dynamically into four categories based on their latency criticality and MLP. The

pseudo-code in Figure 5.3 summarizes the classification.

52

Dynamic application criticality ranking scheme

Counters at core’s network interface:

cL1MPKI: counter for average L1 MPKI

cMLPIndex: counter for MLP index

Rank assignment for application packets at core network interface:

At the end of every τ cycles-

case ((cL1MPKI ≤ τ0) AND (cMLPIndex ≤ τ1)) : Rank 0

case ((cL1MPKI ≤ τ0) AND (cMLPIndex > τ1)) : Rank 1

case ((cL1MPKI > τ0) AND (cMLPIndex ≤ τ1)) : Rank 2

case ((cL1MPKI > τ0) AND (cMLPIndex > τ1)) : Rank 3

cL1MPKI = 0; cMLPIndex = 0 //reset counters

Figure 5.3: Application criticality ranking scheme

At each core’s network interface, a count of L1 cache misses is kept to broadly classify an

application as latency-critical or latency-tolerant. To perform fine-grain classification of

applications as per their memory access patterns and MLP index exhibited, we also keep a count

of entries in the L1 MSHR queue. These counters are queried for the purposes of dynamic

classification and then reset at each application-profiling interval of τ cycles. At the profiling

intervals of τ cycles, L1 miss counters and MLP index counters at a core’s network interface are

checked. If the L1 cache miss count is below a threshold τ0 then that application is identified as

latency-critical and further checked for its MLP index. Intuitively, in the latency-critical class,

applications with MLP index lower than a certain threshold τ1 are indicative of multiple row hit

requests or high criticality for an application’s compute phase, so we give them the highest

priority i.e., rank 0. If a latency-critical application has MLP index greater than τ1 then it comes

immediately next in priority because its MLP is likely to enhance the performance of the system.

Similarly, if the L1 cache miss count exceeds the threshold τ0, then that application is put in the

latency-tolerant category and further classified depending on its MLP capabilities as mentioned

53

for the latency-critical class. In this manner, our approach performs a fine-grain online

classification that captures the changing dynamics of application execution over time. Figure 5.4

shows a flowchart for the abovementioned application ranking process. Here, T0 represents τ0

and T1 represents τ1.

Figure 5.4: Flowchart for application ranking

The network interface (NI) of each core uses our proposed ranking scheme to compute

application rank and then tags a packets’ header flit with its rank before injecting it into the NoC.

The pseudo-code in Figure 5.5 summarizes the Stage I algorithm.

54

Stage I Application-aware Algorithm

Parameter Definitions

O: set of NoC router output ports

I: set of NoC router input ports

MBP: Maximum Batch Priority //priority of oldest batch

PBP: Packet Batch Priority //batch priority for current packet

Prioritization of packets at stage I NoC router:

1: for all o: o ∈ O do: {

2: Initialize min_rank to 5; priority_port to -1; MBP to -K.

3: for each i: i ∈ I do: {

4: if (packet p ∋ p at i ↦ o) { // packet p at i going to o

5: if (RBP (p) > MBP) {

6: MBP = RBP (p)

7: priority_port = i

8: } else if (RBP (p) == MBP) {

9: if (rankp < min_rank) {

10: min_rank = rankp

11: priority_port = i

12: } else if (rankp == min_rank) {

13: priority_port = (type (p) == L2 packet)? i : priority_port

14: } // if rankp > min_rank, do nothing

15: }// else if (RBP(p) <MBP), do nothing

16: }

17: }

18: if (!(priority_port == -1)) {

19: priority_port ← grant port o

20: }

21: }

Figure 5.5: Stage I application-aware algorithm

For every output port o, the arbiter checks input ports to see if there are packets that need to

go to port o (steps 3-4). For an input port i with a packet p destined for output port o, the RBP

value of p is compared against the value stored in the Maximum Batch Priority (MBP) register

(steps 5-15). If RBP for p is higher than MBP (step 5), it indicates a starved packet that must be

given the highest priority, which is done by updating the priority_port register with p’s

corresponding input port i (step 6). The value of MBP is also updated with the priority of the

oldest batch (step 7). If RBP is equal to MBP (step 8), prioritization occurs as per packet

55

criticality (steps 9-14). The rank of p (rankp) is first compared against the value stored in the

min_rank register. If rankp is less than min_rank, the value in min_rank is updated and i becomes

the priority port (steps 9-11). If rankp is equal to min_rank (step 12), then we have a case where

the priority of two packets destined for o is the same. In this case, p is prioritised only if it is an

L2 packet, as prioritizing such on-chip packets that can finish quickly over off-chip requests

improves system throughput (step 13). Finally, if RBP is less than MBP (step 15), it indicates a

situation where another packet set the MBP value and is more severely starved; therefore packet

p at the current input port i is not given higher priority (i.e., priority_port register is not updated).

Once all input ports have been checked, the arbiter grants the priority port access to the output

port o (steps 18-20). These steps are performed in parallel in stage I NoC routers for all output

ports at every cycle, to determine which packets from the input ports can proceed to their

destination output ports.

5.3 Stage II Memory-aware algorithm

This algorithm prioritizes packets in NoC routers so as to avoid bank conflicts and

encourage row hits and bank level parallelism (BLP). One of the major reasons that off-chip

memory requests are delayed is due to stalls experienced as a result of bank conflicts. We

observed that in addition to prioritizing applications in the network, system performance can be

improved if the prioritized requests do not spend time stalling due to such bank conflicts. We

thus propose the use of the arbitration inherent in NoC routers to prepare DRAM memory

requests to proceed to the memory controller in a manner that prevents bank conflicts and

relieves the memory controller from costly reordering of requests to minimize bank conflicts and

improve row-buffer hits. We impart this memory-awareness to routers in the proximity of a

56

memory controller (Stage II routers; Figure 5.1). Much like the Stage I routers, the Stage II

routers also use a time-based batching technique (Section 5.1) to prevent packet starvation. The

pseudo-code in Figure 5.6 summarizes the Stage II algorithm.

Stage II routers share a small recently used bank (RUB) table with information about the

main memory state that includes the N distinct recently used banks, their corresponding rows and

a valid bit to indicate if the corresponding request has been processed. A valid bit value of 0 for

an entry indicates that the bank is free whereas 1 indicates that the bank is busy servicing the

request. For every output port o, the arbiter checks input ports to see if there are packets that

need to go to port o (steps 3-4). For an input port i with a packet p destined for output port o, we

first check if the packet has been starved by applying an RBP check as we did in the stage I

prioritization algorithm (steps 5-7), to ensure that no packet suffers from starvation. If packets

from the same batch are competing with each other (step 8), then memory packets (i.e. DRAM

requests) and network packets (e.g., DRAM responses, shared cache requests/responses or cache

coherence data) are handled separately. For a DRAM request, the router queries the RUB table

and prioritizes packet p under the following conditions (steps 10-12): i) if the entry for p’s

destination bank is absent in RUB; or ii) if p’s destination bank is present in RUB and matches

the corresponding row (valid or invalid). The first condition enhances bank level parallelism by

accessing multiple banks in parallel; the second condition indicates a row hit. If these conditions

are not satisfied, then if a more critical packet (i.e. with lower rank than min_rank) is

encountered, it is prioritized if the bank’s RUB entry has been invalidated, which indicates that

the bank is not busy (steps 13- 15). These conditions ensure freedom from stalls at the DRAM.

The priority_port and min_rank registers are updated with the packets i and rankp values if the

above conditions are satisfied.

57

Stage II Memory-aware Algorithm

Parameter Definitions

O: set of NoC router output ports

I: set of NoC router input ports

Prioritization of packets at stage II NoC router:

1: for all o: o ∈ O do :{

2: Initialize min_rank to 5; priority_port to -1; MBP to -K.

3: for each i: i ∈ I do: {

4: if (packet p ∋ p at i ↦ o) { // packet p at i going to o

5: if (RBP (p) > MBP) {

6: MBP = RBP (p)

7: priority_port = i

8: } else if (RBP (p) == MBP) {

9: if ((type (p) == DRAM request) {

10: if ((dest.bank(p) ∉ RUB) || // bank level parallelism

 (dest.{bank, row}(p) ∈ RUB)) { //row hit

11: min_rank = rankp

12: priority_port = i

13: } else if ((dest.bank(p) ∈ RUB) && valid==0)

 &&(rankp < min_rank)) { //bank conflict

14: min_rank = rankp

15: priority_port = i

16: } // else do nothing

17: } else { // for network packets

18: if (rankp < min_rank) { //packet criticality

19: min_rank = rankp

20: priority_port = i

21: } // if rankp ≥ min_rank, do nothing

22: }

23: } // if RBP < MBP do nothing

24: }

25: }

26: if (!(priority_port == -1)) {

27: priority_port ← grant port o

28: }

29: }

Figure 5.6: Stage II memory-aware algorithm

 If none of the above conditions are satisfied by memory packets at input ports, then the

arbiter prioritizes network packets even if they have higher ranks (lower priority) than memory

58

packets. By de-prioritizing the bank conflict/row conflict memory packets in this manner, head

of queue stalls at the memory controller are avoided. The network packets are prioritized based

on their ranks (steps 17-20) compared with the value in min_rank. The input port of the highest

priority (lowest rank) packet is stored in the priority_port register (step 20). After iterating

through all input ports, the output port o is granted to the priority_port (steps 26-28). These steps

are performed in parallel for all output ports in stage II routers at every cycle, to determine

packets from input ports that can proceed to their output ports.

Figure 5.7: Representation of the RUB table

Figure 5.7 shows a representation of the RUB table. All stage II routers have read access to

the shared RUB table; however, only the router directly connected to the memory controller node

has write access to the table. When a DRAM request wins the arbitration in this router, the RUB

table is updated with the request bank and row entries, and the valid bit for the entry is set to 1. If

the bank entry for the winner is already present in the RUB table, the row entry is overwritten

59

and the valid bit is set to 1. The memory controller sends notifications to this router when a bank

becomes free following which this router invalidates the bank entry by setting its valid bit to 0. If

the table is full, the oldest bank entry with a valid bit of 0 is overwritten with the new request.

The size of the table is kept small to allow for fast table lookup and avoid delays during

arbitration.

The next section presents experiments performed to validate our hypotheses.

5.4 Experimental Setup

Evaluation Platform: We use the cycle-accurate event-driven GEM5 full system simulator [22]

for validating our proposed prioritization framework. GEM5 is a full system simulator providing

support for state-of-the-art out-of-order processor cores as well as models for a detailed NoC

architecture, cache hierarchy and main memory subsystem [23]. We use the directory-based

MESI coherence protocol as our default coherence protocol for the on-chip cache hierarchy.

Table 1 shows the configuration of our baseline CMP consisting of a 3×3 concentrated mesh

NoC with a concentration factor of four (i.e., four cores connected to each router) for a total of

36 cores on the die. We assume one-to-one application to core mapping with requests from a

core allowed to access L2 cache banks at remote cores. Each NoC router has a state-of-the-art 5-

stage pipelined implementation. For our baseline CMP, we use one memory controller connected

to node zero and assume a NUMA-based system to support scalability. The baseline memory

controller serves requests in a first come first served manner.

HEPI Implementation: For our proposed heterogeneous prioritization (HEPI) framework, the

network interface for a core requires counters to keep track of a core’s L1 misses and outstanding

60

requests in the MSHR queue at each ranking interval. We empirically choose the ranking interval

as τ =100K cycles considering the tradeoff between ranking accuracy and its overhead. The

network interface has the (straightforward) logic to compute ranks of applications over a ranking

interval, as discussed in Section 5.2.1 and assigns a 2-bit rank to the header flit of each packet for

prioritization in downstream routers. Unlike prior work such as STC [16] where at each

predefined interval the L1 MPKI values of each core are communicated to a centralized decision

logic (CDL) to rank applications, our approach is more scalable and possesses lower overhead as

ranking decisions are made locally. Based on the application profiling done for SPEC2K and

SPLASH2 benchmarks, the median value of average L1 MPKI was found to be 15 whereas MLP

Index was found to be 3. Hence, we set the classification threshold τ0 as 15 and classification

threshold τ1 as 3. The batching interval value (β) was empirically set to 16K cycles and the

maximum batching levels (K) set to 8. Finally, for stage II routers, we chose the RUB table size

(N) as 8 entries per rank. This table size is small enough to allow for fast lookup, while also

providing sufficient visibility into recently used banks given that modern DRAMs typically

possess eight banks per rank.

61

Table 5.1: Baseline CMP system configuration

CPU configuration 1 GHz; out of order

L1 Cache I/D-cache 16 KB, 2-way, 2-cycle latency, cacheline 128B, 16

MSHRs

L2 Cache Unified, 128kB bank shared, 4-way set associative, cacheline 128B

Main Memory 2GB, DDR2-667, 2 ranks/DIMM, 8 banks per rank, detailed

memory model using open-row policy and row-interleaving

Router 5-stage virtual channel router; credit-based flow control, 4 VCs per

port, 4 buffers/data virtual channel, 1 buffer/ctrl virtual channel

Network Topology 3×3 2D concentrated mesh, concentration factor 4

Routing scheme Deterministic X-Y

Comparison with Prior Work: We modeled our proposed HEPI approach as well as the best

known prior works on NoC and memory prioritization for comparison. The prior works and

configurations we compare against include: 1) a baseline localized Round Robin technique

(Local RR) that uses a fair round-robin algorithm in all NoC routers; 2) SDRAM-aware router

[13] that uses SDRAM-specific timing parameters to determine delay and priority of an off-chip

memory request at specific SDRAM-aware routers (SDAR); and 3) Stall Time Criticality (STC)

[16] that employs application-aware prioritization based on batching and application ranking as

per L1 MPKI at all the NoC routers. The parameters used for STC are 1) batching

interval=16000 cycles; 2) ranking interval=350K cycles 3) batching as well as ranking levels=8.

For SDRAM-Aware, we use DDR2-667 timing parameters from Micron datasheets [24] and

replace three conventional NoC routers in the vicinity of the memory controller with SDRAM-

aware routers. These prior techniques have used a trace-based simulator for their evaluation

purposes while we use an event-driven simulator with detailed micro-architecture models. All

the simulations in our studies were run for at least 180M instructions.

62

Workloads: We profile 17 diverse applications from the SPLASH-2 and SPEC2K benchmark

suites. We use different combinations of these applications to form a multi-programmed

workload environment to compare our approach with the baseline system and prior work. We

profiled all of the applications and divided them up into two categories based on their compute-

and memory-intensity as shown in Table 5.3.

Following table shows the average L1 MPKI of each of the applications profiled from

SPLASH2 and SPEC2K benchmark suite. As shown in Table 5.2, gcc is the most memory-

intensive application amongst above mentioned benchmarks while radix is the most compute-

intensive benchmark. However, these benchmarks have different degrees of Memory Level

Parallelism (temporal locality or spatial locality) at different time intervals. Hence, to

demonstrate that two compute-intensive or memory-intensive benchmarks can be totally

different in their MLP characteristics, we captured the maximum MLP degree exhibited by any

benchmark in a window of 10M cycles. As shown in Table 5.2, barnes and lucas are both

compute-intensive benchmarks (low L1 misses per instruction), however, lucas exhibits more

spatial locality than barnes in a given window of cycles.

We use these benchmarks with multiple combinations to form a multi-programmed

workload. We form three categories of multi-programmed workloads- heterogeneous workloads

i.e. memory-intensive as well as compute-intensive workloads co-running on a system (case I),

homogeneous workload systems comprising all compute-intensive workloads (case II) and all

memory-intensive workloads co-running on a multi-core system (case III). We perform

experiments for each of these workload cases. Table 5.4 shows how various benchmarks are

combined to create the three workload cases. The number next to a benchmark corresponds to its

parallelization degree (number of cores it runs on).

63

Table 5.2: Average L1 MPKI and highest MLP degree

exhibited for SPLASH-2 and SPEC2K benchmarks

Benchmark Average L1

MPKI

Highest MLP

exhibited

Radix 0.7296 2

Fft 1.104 3

Swim 1.2605 3

Barnes 2.3959 2

Lucas 6.7095 6

Fmm 8.1248 4

Crafty 10.8114 4

Sixtrack 13.7612 3

Equake 16.1462 5

Ocean 16.7009 4

Galgel 19.1546 7

Ammp 21.2576 4

Mgrid 26.9914 2

Apsi 31.265 2

Gap 38.4858 2

Gcc 47.282 5

Table 5.3: Classification of SPLASH-2 and SPEC2K applications

Compute-intensive Memory-intensive

ammp, apsi, gap, galgel,

gcc, mgrid, ocean

barnes, crafty, fft, fmm, lucas,

radix, sixtrack, swim, equake,

applu

64

Table 5.4: Three workload categories for a 36-core CMP

Heterogeneous

Workloads

(Case I)

ocean(4), gcc(8), apsi(6), swim(8), equake(10)

ammp(5), apsi(9), radix(10), gap(8),lucas(4)

crafty(7), gap(9), applu(11), gcc(4), barnes(5)

Compute-Intensive

Workloads

(Case II)

lucas(12),barnes(12), radix(12)

fft(9), swim(9), barnes(9), fmm(9)

equake(12), crafty(12), applu(12)

Memory-Intensive

Workloads

(Case III)

ocean(9), apsi(9), mgrid(9), gcc(9)

gcc(16), ammp(8), galgel(12)

apsi(9), gap(9), mgrid(9), gcc(9)

Evaluation Metrics: We focus on the following performance related metrics:

 Overall System Throughput

We measure overall system throughput as the number of instructions executed in the

entire system over duration of certain number of cycles. It represents how the overall

system performs with different priority algorithms implemented in terms of latency for

a fixed number of instructions.

 Weighted Speedup

This metric is system-level and has significance in a multi-programmed environment. It

is defined as:

 a

 a

over all applications, where IPCshared and IPCalone are the instructions executed per cycle

(IPC) when executing multiple workloads and single workloads, respectively. This

metric is useful in that it captures inter-application interference.

65

 Average Memory Latency

We capture average memory latency for packets from the memory controller to the

main memory and back. This gives us an estimate of how the prioritization techniques

handle bank conflicts and data contention occurring at main memory.

5.5 Experimental Results

This section presents experimental results that compare our proposed HEPI framework

with the following prioritization techniques: 1) baseline Local RR; 2) SDAR [13]; and 3) STC

[16]. Modern CMP systems are often multi-programmed, executing either heterogeneous

workloads (a mix of compute- and memory-intensive) or homogeneous workloads (only

compute-intensive or only memory-intensive).

In the following section (Section 5.5.1), results for system throughput, memory latency and

weighted speedup for the comparison against prior prioritization frameworks are presented

across the three workload categories. We explore the impact of utilizing a high speed memory

(DDR3-1333) for various prioritization techniques in Section 5.5.2. In Section 5.5.3, we also

show results for the scalability of our framework for three different network sizes with varying

number of cores. Finally, we compare the overhead of our proposed approach and other

techniques in Section 5.5.4.

5.5.1 Performance Comparison Across Workload Types

Figure 5.8 shows the comparison between HEPI and other techniques, with averaged

results shown for the three workload cases shown in Table 5.5. The numbers over the bars in the

figures indicate percentage improvement of the techniques over the baseline Local RR technique.

66

For case I heterogeneous workloads, HEPI shows an improvement over the baseline/SDAR/STC

techniques of 8.4%/4.6%/5.9% for system throughput, 7.3%/3.3%/5.4% for memory latency and

9.3%/4.9%/6.1% for weighted speedup, motivating the need for packet prioritization over

fairness. The SDAR technique supports memory-aware packet prioritization closer to the

memory controller but is oblivious to application-specific packet criticality. Hence, it does not

contribute towards improving the system throughput as effectively as the multi-stage HEPI

technique does.

(a)

(b)

67

(c)

Figure 5.8: % Improvement over Local RR: (a) system throughput,

 (b) average memory latency, and (c) weighted speedup

In contrast, STC enables application-specific packet prioritization but relies on L1 MPKI

only to determine criticality of a packet and does not consider its memory access characteristics.

Also, it is inefficient in handling DRAM requests as it is memory-unaware. Hence, it is

outperformed by HEPI which not only exploits the unique characteristics of each application to

determine packet criticality and better prioritize them upstream in the network via stage I routers,

but also maximizes row hits and prevents bank-conflicts downstream in the network (closer to

the memory) via stage II routers.

For case II compute-intensive workloads, we can observe that HEPI again outperforms the

other techniques, but by a smaller magnitude than for heterogeneous workloads. HEPI shows an

average improvement of 6.1%/2.9%/3.9% for system throughput, 4.7%2.8%/3.7% for memory

latency and 6.5%/ 3.2%/4% for weighted speedup over the baseline/SDAR/STC techniques. The

smaller magnitude of improvement for HEPI with compute-intensive workloads in contrast to

heterogeneous workloads is because for compute intensive workloads, network traffic is much

lower, which reduces opportunities for applying prioritization and consequently diminishes the

68

benefits of using the HEPI technique. Moreover, as all the workloads have similar behavior, there

is little scope for distinguishing between applications in this case. Finally, for case III memory-

intensive workloads, we see an average improvement of 6.2%/3.2%/4% for system throughput,

4.9%/2.8%/3.9% for memory latency and 6.7%/3.6%/4.1% for weighted speedup over the

baseline/SDAR/STC techniques. Intuitively, with higher network traffic under memory-intensive

workloads, the magnitude of improvement for HEPI is also slightly larger than for compute-

intensive case II workloads with low network traffic. The improvements for case III workloads

are, however, lower than that for case I workloads. This is because, case I workloads are

heterogeneous and thus, there is more opportunity to identify packets from different types of

applications, rank them and exploit stage I routers to benefit criticality of applications; which is

not as effective with homogeneous case III workloads.

5.5.2 Performance with Different Main Memory

Next, we were interested in understanding the impact of changing the main memory type

and observing if the performance benefits of HEPI still hold with respect to the other

prioritization techniques. We modeled the high speed DDR3-1333 with parameters taken from

Micron datasheets [26] and used it to replace the baseline DDR2-667 main memory model [24]

in our simulation framework. Figure 5.9 shows the results for system throughput, average

memory latency and weighted speedup for the high speed DDR3 memory. The results show the

percentage improvement of the techniques over the baseline Local RR scheme and are averaged

for the three workload cases in Table 5.5. We observed that the improvements with HEPI were

more pronounced when using the high speed DDR3 memory, than with the DDR2 memory. This

is because for high speed memories with a faster clock frequency, bank conflicts can become a

69

major bottleneck due to larger number of pre-charge and activate cycles. The stage II

prioritization algorithm in HEPI is able to better route requests to the main memory than other

techniques, allowing prioritization of requests such that accesses to free banks and row hits are

maximized. The better performance for the stage II prioritization in HEPI is the main reason that

it achieves greater improvements with DDR3 than with DDR2.

(a)

(b)

70

(c)

Figure 5.9: % Improvement over Local RR for DDR3-1333:

system throughput, (b) average memory latency, and (c) weighted speedup

5.5.3 Platform Scalability Analysis

In this set of experiments, we were interested in observing the impact of scaling the

platform complexity (mesh size, core count, memory controller count) on the performance of

HEPI and other prioritization techniques. We explored performance for three different network

sizes: i) 3×3 mesh with a concentration factor of three (27 cores) and one memory controller, ii)

4×4 mesh with concentration factor of three (48 cores) and one memory controller; and iii) 8×8

mesh with concentration factor of one (64 cores) with two memory controllers on diagonally

opposite sides. Figure 5.10 shows the percentage improvement for system throughput, average

memory latency and weighted speedup over the baseline Local RR technique, for the three

different platform complexities.

71

(a)

(b)

(c)

Figure 5.10: % Improvement over Local RR for different platform complexities:

 (a) system throughput, (b) average memory latency, and (c) weighted speedup

The results are averaged over the three heterogeneous workload configurations in case I

72

from Table 5.5 (results for case II and case III workloads showed similar trends). It can be

observed that HEPI scales well with increasing core counts, network complexity and memory

controller complexity, showing notable improvements over other techniques. With higher

network traffic and more opportunity to prioritize requests, the results are more pronounced.

Hence, we get the best improvements for the 4×4 configuration with 48 cores as it has the most

NoC traffic.

5.5.4 Overhead Analysis

This final set of results attempts to quantify and compare the overheads of implementing

the HEPI prioritization technique with the implementation overhead for other prioritization

techniques. Figure 5.11 shows the overall NoC fabric area for the baseline Local RR, SDAR,

STC and HEPI frameworks for the 32nm CMOS process technology node and the 36 core CMP

configuration. Not surprisingly, the baseline technique having a NoC router with a simple round

robin prioritization mechanism has the lowest area overhead. For the SDAR technique, the

SDRAM-Aware NoC router has memory-specific information tables at each SDRAM-aware

router and also requires buffers to store complete addresses of the previous arbitration winners.

These additional components drive up its area overhead compared to the baseline case. STC

routers require buffers to store L1 MPKI information for all the cores and central decision logic

to calculate ranks for each application dynamically, hence this technique has a very high area

overhead. In contrast, HEPI has a lower area overhead than for STC and SDAR as it performs

ranking and application-centric prioritization locally with simple circuitry in stage I. HEPI stage

II routers have low overhead as they require only a small RUB table shared by multiple routers

and minimal circuitry to query/update the table.

73

Figure 5.11: Overall area estimation

Thus, our experimental results show that the proposed HEPI framework outperforms fair

prioritization techniques by up to 12.6% as well as other application-specific techniques from

prior work by up to 6.9% for various multi-programmed workloads. HEPI also shows consistent

improvements with increasing platform complexity. Furthermore, the benefits achievable with

HEPI are improved when emerging high speed memories are utilized. Given its competitive area

overhead compared to other competing prioritization techniques, HEPI provides an attractive

alternative for inclusion in emerging CMPs with multi-programmed workloads.

74

Chapter 6

Proposed Network Prioritization Techniques-II

Chapter 5 presented an application-aware and a memory-aware packet prioritization

algorithm. The memory-aware algorithm prioritizes packets to enhance bank level parallelism

and consequently memory throughput. However, as discussed in Chapter 2, high-speed

memories place a constraint on BLP degree of any memory device to avoid power spikes. We

therefore enhanced our work presented in Chapter 5 to create an improved memory-aware

algorithm for high-speed memories considering this constraint. The architectural proposition of

heterogeneous prioritization framework is retained but the framework presented in this chapter

employs a different memory-aware prioritization technique and a new anti-starvation technique.

We will refer to the framework described in this chapter as the Dual Scheduled Packet

Framework (DSPK).

DSPK is composed of two main components: (i) a packet classification technique that is

application-aware at the first level and memory-aware at the second level; and (ii) an anti-

starvation technique employed system-wide to prevent unfairness in the system due to strict

priority-based scheduling. Details of our framework are presented next.

6.1 Anti-starvation Technique

On-chip L2 cache request packets have a lower overall latency than off-chip memory

packets. If the on-chip cache request packets encounter a hit, they can contribute to overall

performance (system throughput) to a much greater extent than packets going off-chip. However,

when one application is ranked higher than the other, there are instances when L2 packets of

75

lower ranked applications consistently lose out to off-chip memory requests of higher ranked

applications. Such L2 packets will get a “starved” status only after a significant amount of time

has elapsed (corresponding to the batch interval size) if the batching strategies – time-based

batching or packet-based batching described in Chapter 2 are employed. We conjecture that there

should be different starvation criteria for L2 requests and off-chip requests. We, therefore,

propose an anti-starvation technique that decides the “starved” status of a packet depending on

not only how long it has been delayed but also depending on its destination. The network

interface tags a packet with initial request time as soon as it is injected in the NoC. In the switch

allocation stage at each NoC router, current delay faced by the packet is calculated by

subtracting its initial request time from current time. We set separate thresholds for L2 and off-

chip requests in each router that are calculated based on the running average of current delay

values for the L2 and off-chip destined packets seen by a router in the last N cycles. The pseudo

code in Figure 6.1 describes our threshold determination process. After keeping track of average

L2 request and memory request delays for N cycles, thresholds for L2 packets (α0) and memory

packets (α1) are stored at each router to determine starvation conditions. If the current delay of a

network or memory packet exceeds the relevant threshold at a router, then the packet is

considered starved and immediately granted the output channel over other higher ranked packets.

Figure 6.2 describes identification of starved packets. The next subsection discusses how we

classify and rank packets.

76

Anti-starvation Strategy Threshold Computation

Parameter Definitions:

Set of all packets: P

Set of all routers: R

α0 : Threshold for L2 cache requests

α1 : Threshold for memory requests

Compute average packet delay at each r:

∀ r: r ∈ R

∀ p: p ∈ P at r do:

While (current_cycle != N) do:

 if (type (p) == L2 cache request) then

 l2_lat += (current_cycle – initial_request_cycle)

 l2_pkt ++

 else //if p is a memory request)

 mem_lat += (current_cycle – initial_request_cycle)

 mem_pkt++

 end if

end while

average_delay_0 = l2_lat/l2_pkt // Average L2 delays

average_delay_1 = mem_lat/mem_pkt // Average memory delays

α0 = (average_delay_0 * 1.5)

α1 = (average_delay_1 * 1.5)

Figure 6.1: Pseudo-code for threshold determination in anti-starvation technique

77

Anti-starvation Strategy

Apply the following anti-starvation check at the router:

 ∀ r: r ∈ R do:

 ∀ p: p ∈ P at r do:

 Case based on type(p)

 Case DRAM request:

 if (delay (p) ≥ α1) then

 packet p is starved

 end if
 Case L2 request:

 if (delay (p) ≥ α0) then

 packet p is starved

 end if

 Default:
 packet is not starved

 End Case

 Figure 6.2: Pseudo code for anti-starvation technique

6.2 Application- and Memory-aware Packet Scheduling

Applications are frequently classified based on their memory access behavior either as

memory-intensive if they spend most of their execution time communicating with memory or as

compute-intensive if they spend most of their time performing computations and not accessing

memory as often. Intuitively, in scenarios with multiple co-running applications, the compute-

intensive applications contribute to a greater extent towards system throughput (i.e., total

instructions executed per cycle across all cores in the system). Therefore, packets from these

applications should be given higher priority during scheduling. But, it is also important to

consider the varying degrees of memory-intensiveness and memory level parallelism (MLP)

exhibited by different applications over their lifetime. To capture these unique application-

specific characteristics while assigning ranking (priority) weights to packets from applications,

we propose using a two-stage approach.

In the first stage, we dynamically measure the memory-intensiveness of an application at

78

runtime using the metric average L1 misses per Kilo Instructions (L1MPKI). If the average

L1MPKI over a time window is less than a threshold TS1, it can be categorized as a compute-

intensive application whose packets deserve higher priority (weightage). On the other hand, if

average L1MPKI is less than the threshold, the application is labeled as memory-intensive and

its packets assigned lower weights. In the second stage of classification, we consider the memory

level parallelism (MLP) capabilities of an application to assign its final weights. We measure the

MLP of an application using the outstanding count in the request queues of L1 MSHRs (Miss

Status Handling Registers) [20]. The length of the MSHR queue has been shown to be directly

proportional to MLP exhibited by the application [21]. If this length is less than a certain

threshold TS2, the application has lower MLP and is more critical. Thus, applications with low

L1MPKI and low MLP are assigned the highest weight (3 on a scale of 0-3). This is followed by

applications with low L1MPKI and higher MLP being assigned a weight of 2. Memory-intensive

applications with low MLP are assigned a weight of 1 and the applications in the remaining

categories are assigned the lowest weight of 0. Counters at each nodes network interface keep

track of average L1MPKI of the application running at that node and the length of the MSHR

queue over a time interval. The counters are reset and weights are assigned at the start of every

new interval (every 100K cycles). Header flits of packets injected into the NoC have a 2-bit field

that contains the assigned weight.

The application-aware strategy is presented in Figure 6.3. At each arbitration cycle, the

router iterates through input ports to find a suitable request to be granted output channel. While

iterating through input port i, if there is a packet p such that it desires output channel o (step 6),

then the packet p should satisfy certain constraints in order to gain priority over packets at other

input ports. If packet p is starving i.e. p being a L2 request packet exceeds threshold α0 or p being

79

a memory request exceeds threshold α1, then it is immediately granted channel o because a

starving packet takes priority over other packets (steps 8 to 12). If the packet is not starved, the

priority is given on the basis on weights assigned to the packets.

DSPK I Application-aware Algorithm

Parameter Definitions:

O: set of NoC router output ports

I: set of NoC router input ports

Prioritization of packets at stage I NoC router:

1: for each o ∈ O do: {

2: max_weight = -1 // initialization value

3: priority_port = -1 //initialization value

5: for each i ∈ I do: {

6: if (packet p ∋ p at i ↦ o) { // packet p at i going to o

8: if ((type (p) == L2 cache request)

 && (delay (p) ≥ α0){

9: i ← grant port o
10: } else if ((type (p) == memory request)

 && (delay (p) ≥ α1)) {

11: i ← grant port o

12: } else { // no packet is starving

13: if (weightp > max_weight) {

14: max_weight = weightp

15: priority_port = i

16: } else if (weightp == max_weight) {

17: priority_port = (type (p) == L2 request) ? i : priority_port

18: } // if weightp < max_weight, do nothing

19: }

20: }

21: }

22: if (!(priority_port == -1)) {

23: priority_port ← grant port o

24: }

25: }

Figure 6.3: Pseudo code for DSPK-I application-aware technique

The value for priority_port stored in register is to determine the highest priority port. If the

weight of packet p (weightp) is greater than value stored in max_weight register, then the value

80

of max_weight and priority_port are updated. If the weights are equal then the priority_port is

updated only if p is a L2 request packet since on-chip cache request packets have a faster

turnaround time. Finally, the port with highest priority (priority_port) wins the arbitration. We

implement this two-stage weighing based classification at the NoC routers two or more hops

away from the memory controller. This technique at this level is referred to as DSPK-I.

Most of the network packets are handled by DSPK-I. However, the request packets that

miss on-chip caches and must traverse the NoC again to go to off-chip memory must be treated

differently, to prepare them against bank conflicts and row misses. Hence, a second-level

scheduling algorithm must be applied on these memory packets. This algorithm is employed at

NoC routers that are a single hop away from the memory controller. The technique at this level is

referred to as DSPK-II. The primary focus here is to schedule memory packets to exploit bank

level parallelism and maximize row hits while taking into account the constraints in modern high

speed memories.

The pseudo-code in Figure 6.4 summarizes DSPK-II scheduling algorithm. DSPK-II NoC

routers maintain a Used Bank Row (UBR) table for each rank. This table maintains the bank and

row history for a maximum of N previous requests for each rank. It has a valid bit associated

with each entry to know if the bank is still processing the request. In addition, we also need to

consider that no more than four banks can be activated in a rank in a window of T cycles for

modern DDR3 memories (as discussed in Chapter 2). We employ n-bit counters for each logical

rank at DSPK-II routers to count up to T cycles. The value of T is set to tFAW (a maximum 5-bit

value specified in DDR3 datasheets) when the number of UBR table entries for any rank

becomes equal to four. The value of this tFAW counter is decremented every cycle until it

becomes 0 to indicate that BLP can be exploited (step 2). For a packet p at input port i

81

contending for output port o, starvation check is applied and granted channel immediately

DSPK II Memory-aware Algorithm

Initialization of parameters:

Set of Output ports: O

Set of Input ports: I

ctFaw: counters for counting tFaw cycles

Prioritization of packets at stage II routers:

1: for all o ∈ O do:{

2: if (ctFaw !=0) ctFaw --

3: priority_port = -1; max_weight = -1 //initialization

4: for each i ∈ I do: {

5: if (packet p ∋ p at i ↦ o) { //p at i maps to o

6: if (type (p) == DRAM request) {

7: if ((delay (p) ≥ α1)) {

8: i ← grant port o

9: } else {
10: if (((dest.bank(p) ∉ UBR) &&
 ((sizeof (UBR) ≤ 4) || (ctFaw == 0))) //BLP
 || (dest.{bank, row}(p) ∈ UBR) //row hit
 || ((dest.bank(p) ∈ UBR) && valid==0) &&

 (weightp > max_weight))) { //bank conflict

11: priority_port = i

12: max_weight = weightp

13: } // else do nothing

14: } else { // for network packets

15: if ((delay (p) ≥ α0)) {

16: i ← grant port o

17: } else {

18: if (weightp > max_weight) { //packet criticality

19: priority_port = i

20: max_weight = weightp

21: } // if max_weight ≥ weightp , do nothing

22: }

23: }

24: }

25: }

26: if (!(priority_port == -1)) {

27: priority_port ← grant port o

28: }

29: }

Figure 6.4: Pseudo code for DSPK-II memory-aware technique

if identified as starved (steps 7-8, 15-16). When memory requests are contending at a DSPK-II

82

router for an output channel towards the memory controller, entries in the UBR table are checked

(step 10). If the entry is absent and if the BLP degree is not maximized (i.e. tFAW constraint

applicable), then the packet is prioritized (priority_port and max_weight registers updated with

values i and weightp) to benefit from bank level parallelism (step 11-12). Packet is also

prioritized if there is a possibility of row hit i.e. the bank entry and row entry matches or if a

more critical DRAM request has invalid entry in UBR table. Otherwise, the bank is declared as

busy and the packet is held at the router granting the output channel, with preference given to

other network packets with applicable check for weights (steps 18-21). This prevents head of the

queue stalls at the memory controller due to bank busy requests.

Figure 6.5 summarizes how our framework is applied to a NoC-based CMP. The figure

shows a 3×3 mesh NoC with a concentration degree of two (i.e., two cores/router) and how our

proposed DSPK-I and DSPK-II scheduling techniques are applied to various NoC routers. In

addition, the proposed anti-starvation technique is applied to all NoC routers. Together, these

techniques constitute a holistic framework for addressing the scheduling challenges facing

modern NoC-based multi-core systems.

83

Figure 6.5: Proposed framework applied to a NoC-based CMP

6.3 Experimental Setup

We use the cycle-accurate event-driven GEM5 simulator [22] for validating our proposed

packet scheduling framework. GEM5 is a full system simulator providing support for state-of-

the-art out-of-order cores as well as models for a detailed NoC architecture, cache hierarchy and

main memory subsystem [23]. We use the directory-based MESI coherence protocol as our

default coherence protocol for the on-chip cache hierarchy. Table 6.1 shows the configuration of

our baseline CMP consisting of a 3×3 concentrated mesh NoC with a concentration factor of

three (i.e., three cores connected to each router) for a total of 27 cores on the die. We assume

one-to-one application to core mapping with requests from a core allowed to access L2 cache

banks at a remote core. Each NoC router has a state-of-the-art 5-stage pipelined implementation.

For our baseline CMP, we use one memory controller connected to node 0 and assume a NUMA

configuration to support scalability. The default memory controller services requests in a first

come first served manner.

84

Table 6.1: Baseline CMP configuration

CPU 1 GHz; out of order;128 instruction queue

L1 Cache I/D-cache 16 KB, 2-way, 2-cycle latency, cacheline 128B, 16

MSHRs

L2 Cache Unified, 128kB bank shared, 4-way set associative, cacheline 128B

Main Memory 2GB, DDR3-1333, 2 ranks/DIMM, 8 banks per rank, detailed memory

model using open-row policy and row-interleaving

NoC Router 5-stage virtual channel router; credit-based flow control, 4 VCs per

port, 4 buffers/data virtual channel, 1 buffer/control virtual channel

NoC Topology 3×3 2D concentrated mesh, concentration factor 3

Routing scheme Deterministic X-Y

For our proposed framework, we empirically set the value of threshold TS1 as 15 and TS2 as

3 in DSPK-I routers. For DSPK-II routers, we set a UBR table size of 8. For the anti-starvation

technique, we keep a track of packets arriving at each router over a window of 4096 cycles. We

modeled our proposed approach as well as the best-known prior works on NoC and memory

scheduling for comparison. The prior works and configurations we compare against are: 1) a

baseline technique (Round-Robin) that uses a fair round-robin scheduling algorithm in all NoC

routers and is widely used in CMPs today; 2) a memory-aware technique [13] that uses SDRAM-

specific timing parameters to determine delay and priority of an off-chip memory request at

specific routers (MAT); and 3) an application-aware technique (AAT) [16] that employs

application-aware scheduling based on batching and application ranking (using L1MPKI values)

at all the NoC routers. The parameters used for AAT are: batching interval=16000 cycles;

ranking interval=350K cycles; batching as well as ranking levels=8. For MAT, we use DDR3

timing parameters from the Micron datasheet [26] and replace three conventional NoC routers in

the vicinity of the memory controller with memory-aware routers. These prior techniques have

used a trace-based simulator for their evaluation purposes while we use an event-driven

85

simulator with detailed micro-architecture models. All the simulations in our studies were run for

at least 150M instructions. For workloads, we considered 17 diverse applications from the

SPLASH-2 [28] and SPEC2K [47] benchmark suites. We first profiled all of the applications and

separated them into two categories: compute-intensive and memory intensive. Benchmarks with

average L1MPKI values less than equake are classified as compute-intensive while the

remaining benchmarks are classified as memory-intensive. Figure 6.6 shows the L1MPKI and

memory level parallelism (MLP) exhibited by the benchmarks. We then used different

combinations of these benchmarks to create several multi-programmed workloads. Table 6.2

shows the benchmark combinations we created for our experimental studies. Workloads 1 and 4

are formed by mixing compute-intensive and memory-intensive benchmarks; whereas workloads

2, 3 and 5 represent homogeneous workloads with either all-compute-intensive or all-memory-

intensive benchmarks co-running on the system. The number next to a benchmark refers to the

degree of parallelization (i.e. the number of cores it runs on).

86

Figure 6.6: L1MPKI and MLP results of application profiling for benchmarks from the

SPLASH-2 and SPEC2K suites

Table 6.2: Workloads for execution on baseline CMP

Workload 1 ocean(4), gcc(4), apsi(6), swim(8), applu(5)

Workload 2 lucas(9),barnes(9), radix(9)

Workload 3 gcc(5), ammp(9), galgel(7), gap(6)

Workload 4 crafty(5), gap(7), fft(6), gcc(5), barnes(4)

Workload 5 equake(9), crafty(9), applu(9)

6.4 Experimental Results

In this section, we provide results for our experimental evaluations for the baseline Round

Robin, Application-Aware technique (AAT) [16] and Memory-Aware technique (MAT) [13]

compared to our proposed technique (DSPK). In Section 6.4.1 we present comparison results for

our baseline CMP. In Section 6.4.2, we evaluate the impact of memory speed scaling on the

effectiveness of scheduling techniques. In Section 6.4.3, we explore the scalability of our

technique for different network sizes. In Section 6.4.4, we compare the energy consumption for

the different scheduling techniques. Finally, in Section 6.4.5, we evaluate the area overhead of

87

the NoC routers of the techniques considered.

6.4.1 Multi-programmed Workload Evaluation on Baseline CMP

With the growing heterogeneity of applications co-running on modern multi-core systems,

it is important that the packet scheduling techniques perform well for various workload

combinations. Figure 6.7 shows the performance comparison and presents results for system

throughput and average memory latency for the various scheduling techniques. It can be seen

that our proposed DSPK framework outperforms the previously proposed scheduling techniques

from [13] and [16] and the baseline Round Robin scheme for all workload combinations.

(a)

88

(b)

(c)

Figure 6.7: Performance evaluation (a) system throughput, (b) average memory latency,

and (c) maximum slowdown with DDR3-1333 for workloads from Table 6.2.

This improvement is due to the comprehensive nature of DSPK in scheduling both network

packets and memory packets efficiently by considering application-specific and memory-specific

characteristics of the system, unlike any of the other techniques. DSPK improves system

throughput on an average by 14.4%/7.4%/6.8% and average memory latency by 11%//6%/7%

over the baseline Round Robin, MAT and AAT techniques, respectively. To evaluate our fairness

technique, we compare the maximum slowdown experienced by the applications in a multi-

89

programmed environment. We found that our fairness technique improves the system fairness by

11.5%/7.1%/6.4% over Round Robin, MAT and AAT respectively.

6.4.2 Memory Speed Scaling Evaluation

Today’s multi-core systems employ high-speed memories to help overcome the “memory

wall”. However, as memory speed (clock frequency) increases, the number of cycles taken for

any memory operation also rises. Any memory-aware scheduling technique should comply with

the characteristics and constraints of the memory architecture being utilized in the system. To

check for applicability and suitability of our scheduling technique for higher speed memories, we

compared its performance to that of other scheduling techniques for the baseline CMP system

running with a faster memory model DDR3-1600 [26], instead of the baseline DDR3-1333

model.

(a)

90

(b)

(c)

Figure 6.8: Memory speed scaling evaluation (a) system throughput, (b) average

memory latency, and (c) maximum slowdown for DDR3-1600 with baseline CMP system

Figure 6.8 shows the results of this comparison study. We observed that the performance of

MAT takes a dip with the higher speed memory, because its memory-aware scheduling algorithm

does not consider the four activate window constraint (discussed in Chapter 2) while aiming to

maximize bank level parallelism. Packets using the MAT technique face frequent head of the

queue stalls at the memory controller, thereby increasing its memory latency and lowering its

system throughput. AAT is agnostic to memory and hence it achieves the some performance

91

improvement on the basis of application-aware scheduling. However, DSPK outperforms all the

techniques as it is prepared for these issues and handles memory packets and network packets

very efficiently ensuring fairness in the system. DSPK achieves an average improvement of

10.3%/4.6%/3.6% for overall system throughput and 10%/5.3%/6% for average memory latency

and 11%/6.7%/7.2% for fairness over the baseline Round Robin, MAT and AAT techniques,

thereby proving the superior memory speed scalability of our technique.

6.4.3 Network Size Scalability Evaluation

Next, we were interested in observing how our technique scales with increasing system

complexity and for larger network sizes. Therefore, we studied three different CMP platform

complexities with varying network sizes: a 3×3 concentrated NoC with concentration degree of 4

(36 cores), a 4×4 concentrated NoC with concentration degree of three (48 cores) and a 5×5

concentrated NoC with concentration degree of two (50 cores). Figure 6.9 shows the results for

system throughput and memory latency averaged over all workloads from Table 6.2 adapted for

the three different platforms considered. We observed that our proposed DSPK framework works

even better when congestion in the network is higher, as it creates many more opportunities to

classify packets and schedule them efficiently. We also noted that AAT ranks applications

according to their relative L1MPKI requiring co-ordination among all the nodes in the system to

enable a global batching; hence for workloads running on larger network sizes, the technique has

a higher overhead making it less effective. MAT focuses only on memory packets with the help

of its three memory-aware routers while ignoring network packets, which results in lower

performance for larger network sizes with more network packet dominated communication

flows. DSPK has an edge over all of these techniques owing to its holistic nature, providing an

92

average improvement of 16.7%/11.8%/11.4% for overall system throughput, 6.7%/3.8%/4.8%

for average memory latency and 5.5%/2.7%/3.5% for network slowdown over the baseline

Round Robin, MAT and AAT techniques for the three CMP platforms with DDR3-1333 memory.

(a)

(b)

93

(c)

Figure 6.9: Network scalability evaluation (a) system throughput, (b) average memory

latency, and (c) maximum slowdown for 3×3 (36 core), 4×4 (48 core) and 5×5 (50 core)

CMPs

6.4.4 Energy Consumption Evaluation

We were also interested in evaluating the energy consumption of DSPK and comparing it

with other previously proposed scheduling techniques. We calculated the power for out-of-order

cores, on-chip network and memory (caches and DDR3 DRAM) using McPAT [48], Orion 2.0

[29] and CACTI 4.0 [49]. We carried out our experiments on the baseline 3×3 CMP platform

with 27 cores, for three different workload combinations consisting of compute-intensive

workloads (w-2), memory-intensive workloads (w-3) and a mix of these two types of workloads

(w-1). Figure 6.10 presents the energy consumption results from this evaluation study. We

observed that the baseline Round Robin scheduling based configuration consumes the highest

energy due to its application and memory-oblivious nature, which increases execution time

considerably (even though its power overhead is lower than the other techniques due to the

simplicity of its implementation). MAT improves upon the baseline Round Robin technique as it

schedules packets in a memory-operation friendly manner, thereby lowering memory latency and

94

saving memory energy. AAT is unaware of the memory but does application-aware scheduling

efficiently for w-1 and w-2 workloads where network packets are in the majority, while for w-3

its energy consumption increases as the memory packets in the network increase and AAT is

unable to handle them efficiently. DSPK, on the other hand, has lower energy consumption than

all of these techniques as it is able to handle all kinds of workloads efficiently. We observe an

average improvement of 10%/5%/4.7% for overall energy consumption with DSPK over the

baseline Round Robin, MAT and AAT techniques.

Figure 6.10: Normalized energy consumption across mixed (w-1), compute-intensive (w-

2) and memory-intensive (w-3) workloads.

6.4.5 Area Overhead Estimation

Lastly, we evaluated the area overhead for our technique in comparison with others

techniques. Figure 6.11 (a) shows the area of the intelligent routers in DSPK and other

scheduling techniques for the 32nm CMOS technology node. The Round Robin scheme is the

simplest and therefore not surprisingly has the lowest area overhead. MAT keeps memory-

specific information at each router and stores the complete addresses of winners from previous

arbitrations which increases its overhead. AAT stores the L1 MPKI of each core and has the

95

circuitry to compute ranks of all the cores, which significantly increases its area overhead. DSPK

uses small counters locally and also operates on a smaller header flit compared to AAT (as it does

not carry a larger batch id and only needs 2-bit rank data).

(a)

(b)

Figure 6.11: Area estimation for scheduling techniques: (a) NoC router area, and

(b) overall NoC fabric area.

96

Therefore, its overhead is lower than the AAT technique. We also calculated the total area

of the NoC fabric with each of the scheduling techniques and found that DSPK adds only 9% to

the overall NoC area over the baseline Round Robin scheme and 5.6% more area over the MAT

scheme. When compared to the AAT scheme, DSPK has 4.8% lower area overhead. Thus, our

DSPK framework improves system throughput and reduces memory latency and energy

consumption at the cost of a slight increase in the area.

Our proposed scheduling framework (DSPK) was shown to achieve up to 16.7%, 11% and

10% improvements in system throughput, average memory latency and energy consumption,

respectively, as compared to the other previously proposed scheduling techniques. Given its

scalability and superior performance across various workload types, we believe that our

approach is an attractive option for future multi-core NoC-based systems executing multiple and

diverse applications.

97

Chapter 7

Conclusion and Future Work

This chapter highlights the key contributions of the thesis, summarizes how our proposed

prioritization framework addresses the previously discussed challenges and can be effective in

achieving maximum performance benefits, and finally describes scope for future extensions to

our work.

7.1 Summary

As the number of processing elements on a die are rapidly growing, interconnects are

becoming increasingly crucial for overall system performance along with the memory

subsystem. Interconnects play a significant role in determining maximum achievable

performance as inter-processor and processor-memory communication is dependent on it. The

main contribution of this thesis is the design of novel heterogeneous prioritization techniques for

network and memory packets in NoCs. Chapter 1 introduced this thesis and described in detail

our motivation to pursue this area of research. Chapter 2 provided the essential background

relevant to this research area including NoC basics, multi-programmed CMPs, SDRAM

functionality, etc. In Chapter 3, the thesis optimization goals and parameters were specified. A

representative subset of relevant research in this area was presented in Chapter 4 as related work,

along with a discussion of some of the existing issues and challenges in the area. To address

these issues and achieve performance goals, we proposed a holistic heterogeneous prioritization

framework. Within the umbrella of this heterogeneous prioritization framework, an application-

aware prioritization technique, application classification metric, two memory-aware

98

prioritization techniques and an anti-starvation technique were proposed and presented in

Chapters 5 and 6. In these chapters, the experimental results and analyses were also presented.

7.2 Conclusion

In conclusion, our proposed heterogeneous prioritization framework has addressed the

packet scheduling challenge faced by state-of the-art NoC-based CMPs. We discussed the

shortcomings with some of the best performing recently proposed works on packet scheduling.

To overcome these shortcomings, we proposed a holistic prioritization framework to optimize

the end-to-end latency of packets in CMPs with multiple co-running applications. Due to the

multi-level nature of our prioritization approach, it can intelligently identify the specific

network- or memory-characteristics of a packet and give it an appropriate priority in arbitration

decisions. Two different packet prioritization approaches were proposed and applied to NoC

routers, depending on whether the routers are nearer or farther away from the off-chip memory

subsystem. A new ranking scheme for classifying an application’s criticality was also proposed.

We also proposed a novel anti-starvation mechanism for establishing fairness in multi-

programmed workload based systems.

Our experiments were performed using a full-system, cycle-accurate event-driven

simulator that validated our motivation and intuition. We evaluated our proposed framework for

system throughput, average memory latency, and energy consumption compared to other

previously proposed scheduling techniques. In a nutshell, the best improvements achieved by our

proposed techniques over the baseline Round Robin prioritization mechanism and prior works

are summarized in table 7.1.

99

Table 7.1: Key improvements of proposed framework

Prioritization

Techniques

System

Throughput

Memory Latency Energy Consumption

Baseline Round

Robin

16.7% 11% 10%

State-of-the-art

techniques

11.8% 7% 5%

Given its scalability and superior performance across various workload types, we believe

that our proposed prioritization framework is an attractive option for future multi-core NoC-

based systems executing multiple and diverse applications.

7.3 Future Work

As discussed in Chapter 4, a significant amount of research is being done for NoC-based

multi-core systems. In Chapters 5 and 6, a holistic solution was proposed to resolve the

performance challenges related to on-chip and off-chip memory communication as well as

fairness issues faced by modern multi-core systems executing parallel applications. However,

this work can certainly be extended to improve achievable system performance. Some of the

possible research directions to extend this work are presented below-

 Finer-grain application classification strategy- Our application-aware strategy uses a

packet-criticality and destination-based approach to prioritize applications. We use four

ranking levels to classify applications. An alternate method for application

classification can be devised. Having more number of ranking levels can ensure finer

classification among application packets and enable higher scalability. However, it

comes with an additional hardware cost and area overhead.

100

 Adaptability with emerging memory technologies- Two memory-aware strategies to

be implemented in NoC routers are proposed in this thesis. We have considered the

DRAM memory models- DDR2-667, DDR3-1333 and DDR3-1600. Emerging alternate

memory models like Spin-Torque Transfer RAM (STT-RAM) and Phase Change RAM

(PCRAM) can be implemented to see if the proposed techniques are adaptable and

effective for memory hierarchies with these new memories.

 Power-aware optimizations- We evaluated energy consumption for some recently

proposed techniques and our proposed framework. We achieved reduction in energy

consumption due to reduced system latency. It would be interesting to devise some

power-aware optimizations for NoC routers in conjunction with the proposed

framework for further benefits in power and energy.

 Eliminating inter-application interference- There are several research papers that

focus on eliminating or mitigating inter-application interference [19][34]. Since we

make minimal hardware alterations, our proposed work cannot eliminate inter-

application interference although it handles it by prioritizing one application over

another. With customization of hardware, inter-application interference could be

prevented to improve system performance more aggressively at the cost of more

complex hardware and higher power dissipation.

 Combination with application mapping techniques- An application mapping

technique can be integrated with the proposed framework to obtain higher gains in

performance. With intelligent mapping of the applications to the cores, the proposed

dual stage NoC routers will be more productive in terms of handling memory and on-

chip network traffic.

101

This area of NoC and memory optimizations has a large scope for future research and can

enable huge performance gains with appropriate system design tradeoffs. The above mentioned

directions are not exhaustive by any means and represent some of the multiple ways in which

future research can alleviate bottlenecks in the NoC and memory subsystems for multi-core chip

platforms.

102

References

[1] Y. Kim, M. Papamichael, O. Mutlu and M. Harchol-Balter, “Thread Cluster Memory

Scheduling: Exploiting differences in Memory Access Behavior.”, Proc. MICRO-43,

2010.

[2] Y. Jin, R. Wang, W. Choi and T.Pinkston, “Thread Criticality Support in On-Chip

Networks”, Proc. NoCArc 2010.

[3] S. Pasricha and N. Dutt, “On-Chip Communication Architectures”, Morgan Kauffman,

Apr 2008.

[4] A. Glew, “MLP Yes! ILP No! Memory Level Parallelism, or, Why I No Longer Worry

About IPC”, Proc. ASPLOS WACI Session, 1998.

[5] N. Dutt, “Memory-aware NoC Exploration and Design”, Proc. DATE 2008, pp. 1128-

1129.

[6] S. Rixner, W. Dally, U. Kapasi, P. Mattson and J. Owens, “Memory Access Scheduling,”

Proc. ISCA 2000.

[7] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for Chip

Multiprocessors”, Proc. MICRO-40, 2007.

[8] Y. Kim, D. Han, O. Mutlu and M. Harchol-Balter, “ATLAS: A Scalable and High-

performance Scheduling Algorithm for Multiple Memory Controllers”, Proc. HPCA-16,

2010.

[9] R. Ausavarungnirun, K. Chang, L. Subramanian, G.Loh and O. Mutlu, “Staged Memory

Scheduling: Achieving High Performance and Scalability in Heterogeneous Systems”,

Proc. ISCA 2012.

103

[10] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing both

Performance and Fairness of Shared DRAM Systems”, Proc. ISCA-35, 2008.

[11] Z. Fang, X. Sun, Y. Chen and S. Byna, “Core-Aware Memory Access Scheduling

Schemes”, Proc. IEEE International Parallel and Distributed Processing Symposium,

(IPDPS) 2009, pp. 1-12.

[12] D. Kim, S. Yoo and S. Lee, “A Network Congestion-Aware Memory Controller”, Proc.

NOCS 2010.

[13] W. Jang and D. Pan, “An SDRAM-Aware Router for Networks-on-Chip”, Proc. DAC

2009, pp. 800-805.

[14] S. Phadke and S. Narayanasamy, “MLP-aware Heterogeneous Memory System”, Proc.

DATE 2011, pp. 1-6.

[15] W. Jang and D. Pan, “Application-Aware NoC Design for Efficient SDRAM Access”,

Proc. DAC 2010, pp. 453-456.

[16] R. Das, O. Mutlu, T. Moscibroda and C. Das, “Application-Aware Prioritization

Mechanisms for On-Chip Networks”, Proc. MICRO-42, 2009, pp. 280-291.

[17] R. Das, , O. Mutlu, T. Moscibroda and C. Das, “Aérgia: Exploiting Packet Latency Slack

in On-Chip Networks”, Proc. ISCA 2010.

[18] A. Sharifi, E. Kultursay, M. Kandemir and C. Das, “Addressing End-to-End Memory

Access Latency in NoC-Based Multicores”, Proc. MICRO 2012, pp. 294-304.

[19] A. K. Mishra, O. Mutlu and C. Das, “A Heterogeneous Multiple Network-On-Chip

Design: An Application-Aware Approach”, Proc. DAC 2013.

[20] D. Kroft, “Lock-up Free Instruction Fetch/pre-fetch Cache Organization”, Proc. ISCA

1981, pp. 81-87.

104

[21] N. Jerger and L. Peh, “On-Chip Networks”, Synthesis Lectures on Computer

Architecture, Morgan & Claypool Publishers 2009.

[22] N. Binkert, B. Beckmann, G. Black, S. Reinhardt, A. Saidi, A. Basu, J. Hestness, D.

Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. Hill and D.

Wood, “The Gem5 Simulator”, ACM SIGARCH Computer Architecture News, vol. 39,

Issue 2, May 2011, pp. 1-7.

[23] N. Agarwal, , T. Krishna, L. Peh and N. Jha, “GARNET: A Detailed On-Chip Network

Model Inside a Full-System Simulator”, ISPASS 2009.

[24] “Micron datasheet DDR2-667”,

http://download.micron.com/pdf/datasheets/modules/ddr2/HTF16C128_256x64H.pdf

[25] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for Multiprogram

Workloads”, IEEE Micro, May-June 2008, pp. 42-53.

[26] “Micron datasheet DDR3-1333”,

 http://download.micron.com/pdf/datasheets/dram/ddr3/2Gb_DDR3_SDRAM.pdf

[27] “Intel’s SCC”,

 http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-

computer.html

[28] S.C. Woo, S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2

Programs: Characterization and Methodological Considerations”, Proc. ISCAS 1995.

[29] A. B. Kahng, B. Li, L. Peh, and K. Samadi, “ORION 2.0: A Power-Area Simulator for

Interconnection Networks”, Trans. Very Large Scale Integration (VLSI) Systems, 20(1),

Jan. 2012.

http://download.micron.com/pdf/datasheets/dram/ddr3/2Gb_DDR3_SDRAM.pdf
http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-computer.html
http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-computer.html

105

[30] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Interconnection

Networks”, Proc. DAC, Jun. 2001, pp. 684-689.

[31] L. Benini and G. De Micheli, “Networks on Chips: A New SoC Paradigm”, Computer,

vol. 35, no. 1, Jan. 2002, pp. 70-78.

[32] W. J. Dally and B. Towles, “Principles and Practices of Interconnection Networks”,

Morgan Kaufmann, 2003.

[33] “AMD Opteron 6200 series processors”,

 http://www.amd.com/US/PRODUCTS/SERVER/PROCESSORS/6000-SERIES-

PLATFORM/6200/Pages/6200-series-processors.aspx

[34] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir and T. Moscibroda,

“Reducing Memory Interference in Multicore Systems via Application-Aware Memory

Channel Partitioning”, Proc. MICRO-44, 2011, pp. 374-385.

[35] “Main Memory lecture by Prof. S. Pasricha, Colorado State University”,

 http://www.engr.colostate.edu/~sudeep/teaching/%20ppt_554/lecture05-dram.pdf

[36] J. Balfour and W. J. Dally, “Design Tradeoffs for Tiled CMP On-Chip Networks”, Proc.

ICS 2006, pp. 187-198.

[37] S. Sair and M. Chamey, "Memory Behavior of the SPEC2000 Benchmark Suite", IBM

Thomas J. Waston Research Center Technical Report RC-21852, October 2000.

[38] V. Cuppu, B. Jacob, B. Davis and T. Mudge, “A Performance Comparison of

Contemporary DRAM Architectures”, Proc. ISCA 1999.

[39] B.Grot, J. Hestness, S. Keckler and O. Mutlu, “Kilo-NOC: A Heterogeneous Network-

on-Chip Architecture for Scalability and Service Guarantees”, Proc. ISCA 2011.

http://www.amd.com/US/PRODUCTS/SERVER/PROCESSORS/6000-SERIES-PLATFORM/6200/Pages/6200-series-processors.aspx
http://www.amd.com/US/PRODUCTS/SERVER/PROCESSORS/6000-SERIES-PLATFORM/6200/Pages/6200-series-processors.aspx
http://www.engr.colostate.edu/~sudeep/teaching/%20ppt_554/lecture05-dram.pdf

106

[40] A.Mishra, N. Vijaykrishnan and C. Das, “A Case for Heterogeneous on-Chip

Interconnects for CMPs”, Proc. ISCA 2011, pp. 389-400.

[41] E. Ebrahimi, C. Lee, O. Mutlu, Y. Patt, “Fairness via Source Throttling: A Configurable

and High-Performance Fairness Substrate for Multi-Core Memory Systems”, Proc.

ASPLOS 2010.

[42] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. Lee, J. Joao, O. Mutlu and Y. Patt,

“Parallel Application Memory Scheduling”, Proc. MICRO-44, 2011, pp. 362-373.

[43] “Tile64 processor”,

 http://www.tilera.com/sites/default/files/productbriefs/TILEPro64_Processor_PB019_v4.

pdf

[44] “Interconnection Networks lecture by Prof. S. Pasricha, Colorado State University”,

 http://www.engr.colostate.edu/~sudeep/teaching/lectures_452.htm

[45] “Intel’s Teraflop”, http://static.trustedreviews.com/94/836ed2/0e6e/3477-80core.jpg

[46] “Memory wall”,

 http://www.engr.colostate.edu/~sudeep/teaching/ppt_554/lecture03-review2.pdf

[47] “SPEC2K benchmark suite”, http://www.spec.org/cpu2000/

[48] S. Li, J. Ahn, J. Brockman and N. Jouppi, “McPAT: An Integrated Power, Area, and

Timing Modeling Framework for Multicore and Manycore Architectures”, Proc.

MICRO-42 2009.

[49] “CACTI 4.0”, http://www.hpl.hp.com/research/cacti/

http://www.tilera.com/sites/default/files/productbriefs/TILEPro64_Processor_PB019_v4.pdf
http://www.tilera.com/sites/default/files/productbriefs/TILEPro64_Processor_PB019_v4.pdf
http://www.engr.colostate.edu/~sudeep/teaching/lectures_452.htm
http://static.trustedreviews.com/94/836ed2/0e6e/3477-80core.jpg
http://www.engr.colostate.edu/~sudeep/teaching/ppt_554/lecture03-review2.pdf
http://www.spec.org/cpu2000/
http://www.hpl.hp.com/research/cacti/

107

Appendix

Disclaimer: The information presented in Appendices I and II is taken from a few sources along

with my own experiences. The main motive is to put useful information together and make it easy

for anyone who intends to use the GEM5 platform for research pertaining to NoC-based systems.

Please note that GEM5 is a vast full system simulator, so it is not possible to include every detail

in the appendices. Please refer to the sources cited for more information.

108

Appendix A

GEM5 Usage Guide

GEM5 is an event-driven full system simulator which consists of state-of-the-art

processors, private and shared caches, on-chip interconnect and detailed memory subsystem.

This appendix intends to provides basic pointers for setting up GEM5.

1. Download GEM5

GEM5 is an open source simulation software. It can be downloaded freely on a linux-based

machine from here. It is advisable to download using mercurial so that it can be updated with

newer versions easily. Before compiling Gem5, these softwares must be installed on your

system. Use SWIG 1.3.34 and gcc 4.5 versions in case there are any issues compiling it.

GEM5 overview: In order to start simulating with GEM5, let us have a look at the top Level

GEM5 structure. Figure A.1 shows high level GEM5 structure. It has two modules for modeling

system architecture- Simple and Ruby. Simple model is basic high level modeling whereas Ruby

model is more detailed and state-of-the-art model for CMPs. Both Simple and Ruby models have

network and memory models. Ruby model comprises of Garnet network and ruby memory

model.

http://gem5.org/Download
http://www.m5sim.org/Compiling_M5

109

Figure A.1: Top level GEM5 overview.

There are two main modes in which Gem5 can operate:

 FS (Full System) mode: As the name suggests, this mode operates as a full system in

the form of a virtual machine. However, this mode is very slow for running applications

and can be avoided unless research is related to kernel operations and ISA

optimizations. More details about running this mode can be found here.

 SE (System Emulation) mode: This is a simpler and faster way of simulations in

Gem5. Most of the times it is sufficient to use SE mode as we deal with application

level performance. As the name suggests, this mode emulates the full system by

emulating system calls by kernel instead of actually booting the kernel.

We will study mainly SE mode with Ruby model for implementing contemporary techniques.

http://www.m5sim.org/Running_M5_in_Full-System_Mode

110

2. Compiling GEM5

Once the local GEM5 repository is created and required softwares are installed on the

system, GEM5 is ready to be compiled.

Command for Compiling Gem5:

%scons build/<arch>/gem5.<binary> -j4

Replace <arch> by any architecture (of your choice) as mentioned below. For binaries, replace it

preferably by gem5.opt (for faster compiling) or gem5.debug (slower compiling but has debug

information).

Architecture capabilities: GEM5 provides platform for following mainly used processor

architectures:

 ALPHA: This is the most established architecture in GEM5 with least bugs.

 ARM: Developed thoroughly using ARM Realview development suite. Useful for

embedded mobile computing related studies.

 X86: PC-based architecture platform.

 SPARC: Based on Sun T1 architecture.

111

In addition to choosing the processor architecture, it is beneficial to choose the cache

coherence protocol for using Ruby model. GEM5 provides the following primary cache

coherence protocols:

 MESI CMP DIRECTORY: This is a directory-based protocol. In this coherence

protocol, each core has a private L1 cache and subsequent caches are shared.

 MOESI HAMMER: This is a snooping protocol. This protocol has private L1 and L2

caches.

Depending upon one’s requirement about directory-based or snoop-based protocols or

private L2 or shared L2 caches, one can choose the appropriate cache coherence protocol. It

should be specified at the time of compiling GEM5. A typical command line to use can be-

%scons build/ALPHA_MESI_CMP_directory/gem5.opt \

PROTOCOL=MESI_CMP_directory \ RUBY=TRUE

3. Running Simulations on GEM5

Once GEM5 is compiled successfully, the binary gem5.opt/gem5.debug generated can be

used to run simulations.

3.1 Simulation commands

You can try your first simulation by this simple command line.

112

%./build/ALPHA/gem5.opt configs/example/se.py \

-c tests/test-progs/hello/bin/alpha/linux/hello

In addition to the above command, there are several system specific options that can be

specified via command line to create a user defined system. These options can be viewed using:

%./build/ALPHA/gem5.opt -h

%./build/ALPHA/gem5.opt configs/examples/se.py -h

3.2 Running Benchmarks on GEM5

GEM5 supports multi-core computing and can be used to execute standard benchmarks

from benchmark suite like SPLASH2, PARSEC, SPEC benchmarks, etc. Pre-cross-compiled

Splash2 binaries for ALPHA platform can be downloaded from here.

Parsec and original Splash2 benchmarks can be downloaded from here and can be cross

compiled as per desired platform. The SPEC benchmarks require license and needs to be

purchased. GEM5 provides utility to run SPEC benchmarks. These documents provides some

useful information about specifying command line options for SPEC benchmarks- SPECINT and

SPECFP.

GEM5 uses script to run desired benchmarks as per user defined system configurations.

Examples of such scripts are in gem5/configs/example directory.

Running GEM5 with multiple workloads:

http://www.m5sim.org/dist/m5_benchmarks/v1-splash-alpha.tgz
http://parsec.cs.princeton.edu/parsec3-doc.htm
http://kbarr.net/specint2000-commandlines
http://kbarr.net/specfp2000-commandlines

113

Following is an example of command line specified for running multi-programmed

workloads. An example code of script for using below mentioned command line is provided in

Appendix B.

%./build/ALPHA_MESI_CMP_directory/gem5.opt

configs/example/se_multiprogram.py -n 8 --cpu-type=detailed

--clock=1GHz --topology=MeshDirCorners --caches

--cacheline_size=128 --l2cache --num-l2caches=64

--l1d_size=16kB --l1i_size=16kB --l2_size=128kB

--l1d_assoc=2 --l1i_assoc=2 --l2_assoc=2 --num-dirs=4

--mesh-rows=2 --ruby --garnet-network=fixed

--benchmark="ammp;apsi;radix;gap;crafty;barnes;ocean;gcc"

-I 400000000

The results of simulations are output to the folder gem5/m5out. Files generated for results are-

 config.ini – This file provides information about connection tree of the system i.e.

the way in which one module in the system is connected to another and specifications

of each module e.g. size, version, capacity, etc.

 stats.txt – This file provides detailed information about each individual processor

executing workload e.g. total simulation time, IPC of application running on any core,

etc.

 ruby.stats – This file is generated only when ‘--ruby’ option is specified in the

command line while running GEM5. It provides statistics for memory and network

114

usage e.g. number of L1 misses, number of main memory requests, network utilization,

virtual channel load, etc.

115

Appendix B

GEM5 Source Code Modification Guide

Being a full system simulator, GEM5 has a vast code base consisting of models for CPU,

ISA, kernel, interconnect, cache, memory and other microarchitecture. In order to use GEM5 for

research, one needs to understand the existing codebase and modify it. The official website fof

GEM5 provides general information about the simulator but not really code specific. This

appendix aims provides pointers to the code structure of GEM5 to facilitate modifying the code.

Hopefully, this will be helpful to understand the simulator model flow and ease the pain of

hacking GEM5 code .

GEM5 has two major code components:

1. Configuration code and

2. Source code

Section 1 provides information regarding configuration code and Section 2 sheds light on

GEM5 source code. GEM5 is comprised of C++ code for modeling system level components

like cpu, caches, network, memory, etc and bound by a python wrapper to facilitate

communication between these modules.

1. GEM5 Configuration code

GEM5 cofiguration code is written in python. This code is located in gem5/configs.

116

Directory Structure: Figure below shows sub-folders of configs directory containing

configuration code.

Figure B.1: Configuration directory structure

configs

common example ruby topologies boot splash2

• CacheConfig.py, Caches.py - Cache
configuration

• CpuConfig .py - CPU configuration

• Options.py - Commandline options

• Simulation.py - Simulation
configuration

• For any new command line option
added, corresponding changes
must be made in script used to run
GEM5.

common

• se.py - Basic script to setup system
for SE mode

• fs.py - Basic script to setup system
for FS mode without ruby

• ruby_fs.py - Basic script to setup
system for FS mode with ruby

• Add new scripts here for setting up
a different system configuration
for running applications

example

117

We provide a sample script to run multi-programmed workloads using Ruby system in

SE mode. It includes options for benchmarks from SPLASH2 and SPEC2K benchmark suite.

However, this is a sample file and in order to use directly with your GEM5 environment a few

changes will be needed in configs/common/Options.py and configs/ruby/Ruby.py.

• Each file is a different topology

• A new topology can be created by
modifying existing files and
interconnection between
components

• E.g. connect multiple cores to a
single router- concentrated Mesh
topology.

topologies

• Ruby.py - Basic script to setup
ruby system

• Cache coherence protocol
configuration files.

ruby

• Contains .rcS files for full system simulations
for benchmarks boot

• contains basic scripts for running splash2
benchmarks without ruby system. splash2

118

B.1 se_multiprogram.py

Author: Tejasi Pimpalkhute

Simple script for multi-programmed workloads

“se_multiprogram.py"

import optparse

import sys

import m5

from m5.defines import buildEnv

from m5.objects import *

from m5.util import addToPath, fatal

addToPath('../common')

addToPath('../ruby')

addToPath('../topologies')

import Options

import Ruby

import Simulation

import CacheConfig

from Caches import *

from cpu2000 import *

def get_processes(options):

 """Interprets provided options and returns a list of processes"""

 multiprocesses = []

 inputs = []

 outputs = []

119

 errouts = []

 pargs = []

 workloads = options.cmd.split(';')

 if options.input != "":

 inputs = options.input.split(';')

 if options.output != "":

 outputs = options.output.split(';')

 if options.errout != "":

 errouts = options.errout.split(';')

 if options.options != "":

 pargs = options.options.split(';')

 idx = 0

 for wrkld in workloads:

 process = LiveProcess()

 process.executable = wrkld

 if len(pargs) > idx:

 process.cmd = [wrkld] + pargs[idx].split()

 else:

 process.cmd = [wrkld]

 if len(inputs) > idx:

 process.input = inputs[idx]

 if len(outputs) > idx:

 process.output = outputs[idx]

 if len(errouts) > idx:

 process.errout = errouts[idx]

 multiprocesses.append(process)

 idx += 1

120

 if options.smt:

 assert(options.cpu_type == "detailed" or options.cpu_type == "inorder")

 return multiprocesses, idx

 else:

 return multiprocesses, 1

parser = optparse.OptionParser()

Options.addCommonOptions(parser)

Options.addSEOptions(parser)

#Benchmark options

parser.add_option("--rootdir1",

 help="Root directory of Splash2 Benchmarks",

 default="splash2/codes")

parser.add_option("--rootdir2",

 help="Root directory of Spec2K Benchmarks",

 default="spec2k")

parser.add_option("-b", "--benchmark",

 help="Benchmark to run")

if '--ruby' in sys.argv:

 Ruby.define_options(parser)

(options, args) = parser.parse_args()

if args:

 print "Error: script doesn't take any positional arguments"

 sys.exit(1)

121

Define Splash2 Benchmarks

====================

class cholesky(LiveProcess):

 cwd = options.rootdir1 + '/kernels/cholesky'

 executable = options.rootdir1 + '/kernels/cholesky/CHOLESKY'

 cmd = ['CHOLESKY', #, '-p' + str(options.num_cpus),

 options.rootdir1 + '/kernels/cholesky/inputs/tk25.O']

class fft(LiveProcess):

 cwd = options.rootdir1 + '/kernels/fft'

 executable = options.rootdir1 + '/kernels/fft/FFT'

 cmd = ['FFT', '-m18'] #, '-p', str(options.num_cpus), '-m18']

class LU_contig(LiveProcess):

 executable = options.rootdir1+ '/kernels/lu/contiguous_blocks/LU'

 cmd = ['LU'] #, '-p', str(options.num_cpus)]

 cwd = options.rootdir1 + '/kernels/lu/contiguous_blocks'

class LU_noncontig(LiveProcess):

 executable = options.rootdir1 + '/kernels/lu/non_contiguous_blocks/LU'

 cmd = ['LU'] #, '-p', str(options.num_cpus)]

 cwd = options.rootdir1 + '/kernels/lu/non_contiguous_blocks'

class Radix(LiveProcess):

 executable = options.rootdir1 + '/kernels/radix/RADIX'

 cmd = ['RADIX', '-n524288'] #, '-p', str(options.num_cpus)]

 cwd = options.rootdir1 + '/kernels/radix'

class barnes(LiveProcess):

 executable = options.rootdir1 + '/apps/barnes/BARNES'

 cmd = ['BARNES']

122

 input = options.rootdir1 + '/apps/barnes/input' #+ str(options.num_cpus)

 cwd = options.rootdir1 + '/apps/barnes'

class fmm(LiveProcess):

 executable = options.rootdir1 + '/apps/fmm/FMM'

 cmd = ['FMM']

 #if str(options.num_cpus) == '1':

 input = options.rootdir1 + '/apps/fmm/inputs/input.2048'

 #else:

 # input = options.rootdir1 + '/apps/fmm/inputs/input.2048.p' +

str(options.num_cpus)

 cwd = options.rootdir1 + '/apps/fmm'

class Ocean_contig(LiveProcess):

 executable = options.rootdir1 + '/apps/ocean/contiguous_partitions/OCEAN'

 cmd = ['OCEAN'] #, '-p', str(options.num_cpus)]

 cwd = options.rootdir1 + '/apps/ocean/contiguous_partitions'

class Ocean_noncontig(LiveProcess):

 executable = options.rootdir1 + '/apps/ocean/non_contiguous_partitions/OCEAN'

 cmd = ['OCEAN'] #, '-p', str(options.num_cpus)]

 cwd = options.rootdir1 + '/apps/ocean/non_contiguous_partitions'

Define Spec Benchmarks

====================

#class mcf(LiveProcess):

executable = options.rootdir2 + '/spec-alpha/mcf00.peak.ev6'

input = options.rootdir2 + '/000.input/CINT2000/181.mcf/data/test/input/inp.in'

cmd = ['mcf00.peak.ev6', '> inp.out 2> inp.err']

cwd = options.rootdir2

123

class bzip2(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/bzip200.peak.ev6'

 input = options.rootdir2 +

'/000.input/CINT2000/256.bzip2/data/test/input/input.random'

 cmd = ['bzip200.peak.ev6', '> input.random.out 2 > input.random.err']

 cwd = options.rootdir2

class swim(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/swim00.peak.ev6'

 input = options.rootdir2 + '/000.input/CFP2000/171.swim/data/test/input/swim.in'

 cmd = ['swim00.peak.ev6', ' > swim.out 2> swim.err']

 cwd = options.rootdir2

class apsi(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/apsi00.peak.ev6'

 input = options.rootdir2 + '/000.input/CFP2000/301.apsi/data/test/input/apsi.in'

 cmd = ['apsi00.peak.ev6', '> apsi.out 2> apsi.err']

 cwd = options.rootdir2

class equake(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/equake00.peak.ev6'

 input = options.rootdir2 + '/000.input/CFP2000/183.equake/data/test/input/inp.in'

 cmd = ['equake00.peak.ev6', '> inp.out 2> inp.err']

 cwd = options.rootdir2

class gcc(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/gcc00.peak.ev6'

 input = options.rootdir2 + '/000.input/CINT2000/176.gcc/data/test/input/cccp.i'

 cmd = ['gcc00.peak.ev6']

 cwd = options.rootdir2

124

class gzip(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/gzip00.peak.ev6'

 input = options.rootdir2 +

'/000.input/CINT2000/164.gzip/data/test/input/input.compressed'

 cmd = ['gzip00.peak.ev6', '> input.compressed.out 2> input.compressed.err']

 cwd = options.rootdir2

class mgrid(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/mgrid00.peak.ev6'

 input = options.rootdir2 + '/000.input/CFP2000/172.mgrid/data/test/input/mgrid.in'

 cmd = ['mgrid00.peak.ev6', '> mgrid.out 2> mgrid.err']

 cwd = options.rootdir2

class applu(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/applu00.peak.ev6'

 input = options.rootdir2 + '/000.input/CFP2000/173.applu/data/test/input/applu.in'

 cmd = ['applu00.peak.ev6', '> applu.out 2> applu.err']

 cwd = options.rootdir2

class wupwise(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/wupwise00.peak.ev6'

 input = options.rootdir2 +

'/000.input/CFP2000/168.wupwise/data/test/input/wupwise.in'

 cmd = ['wupwise00.peak.ev6', '> wupwise.out 2> wupwise.err']

 cwd = options.rootdir2

class twolf(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/twolf00.peak.ev6'

 input = options.rootdir2 +

'/000.input/CINT2000/300.twolf/data/test/input/test.pin'

125

 cmd = ['twolf00.peak.ev6']

 cwd = options.rootdir2

class gap(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/gap00.peak.ev6'

 input = options.rootdir2 + '/000.input/CINT2000/254.gap/data/test/input/test.in'

 cmd = ['gap00.peak.ev6', '-l', './', '-q', '-m', '64M', '> test.stdout 2>

test.err']

 cwd = options.rootdir2

class crafty(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/crafty00.peak.ev6'

 input = options.rootdir2 +

'/000.input/CINT2000/186.crafty/data/test/input/crafty.in'

 cmd = ['crafty00.peak.ev6', '> crafty.out 2> crafty.err']

 cwd = options.rootdir2

class perlbmk(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/perlbmk00.peak.ev6'

 input = options.rootdir2 +

'/000.input/CINT2000/253.perlbmk/data/test/input/test.in'

 cmd = ['perlbmk00.peak.ev6', '-I.', '-I./lib test.pl', '> test.out 2> test.err']

 cwd = options.rootdir2

class vortex(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/vortex00.peak.ev6'

 input = options.rootdir2 +

'/000.input/CINT2000/255.vortex/data/test/input/lendian.raw'

 cmd = ['vortex00.peak.ev6', '> vortex.out 2> vortex.err']

 cwd = options.rootdir2

class lucas(LiveProcess):

126

 executable = options.rootdir2 + '/spec-alpha/lucas00.peak.ev6'

 input = options.rootdir2 +

'/000.input/CFP2000/189.lucas/data/test/input/lucas2.in'

 cmd = ['lucas00.peak.ev6', '> lucas2.out 2> lucas2.err']

 cwd = options.rootdir2

class galgel(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/galgel00.peak.ev6'

 input = options.rootdir2 +

'/000.input/CFP2000/178.galgel/data/test/input/galgel.in'

 cmd = ['galgel00.peak.ev6', '> galgel.out 2> galgel.err']

 cwd = options.rootdir2

class facerec(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/facerec00.peak.ev6'

 input = options.rootdir2 +

'/000.input/CFP2000/187.facerec/data/test/input/test.in'

 cmd = ['facerec00.peak.ev6', '> test.out 2> test.err']

 cwd = options.rootdir2

class fma3d(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/fma3d00.peak.ev6'

 input = options.rootdir2 + '/000.input/CFP2000/191.fma3d/data/test/input/fma3d.in'

 cmd = ['fma3d00.peak.ev6', '> test.out 2> test.err']

 cwd = options.rootdir2

class sixtrack(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/sixtrack00.peak.ev6'

 input = options.rootdir2 +

'/000.input/CFP2000/200.sixtrack/data/test/input/inp.in'

 cmd = ['sixtrack00.peak.ev6', '> inp.out 2> inp.err']

 cwd = options.rootdir2

127

class ammp(LiveProcess):

 executable = options.rootdir2 + '/spec-alpha/ammp00.peak.ev6'

 input = options.rootdir2 + '/000.input/CFP2000/188.ammp/data/test/input/ammp.in'

 cmd = ['ammp00.peak.ev6', '> ammp.out 2> ammp.err']

 cwd = options.rootdir2

#class art(LiveProcess):

executable = options.rootdir2 + '/spec-alpha/art00.peak.ev6'

#input = options.rootdir2 +

'/000.input/CFP2000/179.art/data/test/input/lucas2.in'

cmd = ['art00.peak.ev6', '[-startx 134]', '[-starty 220]', '-endx 139', '-endy

225', '-stride 2', '-scanfile /000.input/CFP2000/179.art/data/test/input/c756hel.in',

'-trainfile1 #/000.input/CFP2000/179.art/data/test/input/a10.img', '-objects 1 >

test.out 2> test.err']

cwd = options.rootdir2

#==#

np = options.num_cpus

Pick the correct Splash2 Benchmarks

====================

def pick_benchmark(workload):

 if workload == 'cholesky':

 bench = cholesky()

 elif workload == 'fft':

 bench = fft()

 elif workload == 'LUContig':

 bench = LU_contig()

 elif workload == 'LUNoncontig':

 bench = LU_noncontig()

 elif workload == 'radix':

128

 bench = Radix()

 elif workload == 'barnes':

 bench = barnes()

 elif workload == 'fmm':

 bench = fmm()

 elif workload == 'ocean':

 bench = Ocean_contig()

 elif workload == 'OceanNoncontig':

 bench = Ocean_noncontig()

 elif workload == 'mcf':

 bench = mcf()

 elif workload == 'swim':

 bench = swim()

 elif workload == 'bzip2':

 bench = bzip2()

 elif workload == 'apsi':

 bench = apsi()

 elif workload == 'equake':

 bench = equake()

 elif workload == 'gcc':

 bench = gcc()

 elif workload == 'mgrid':

 bench = mgrid()

 elif workload == 'wupwise':

 bench = wupwise()

 elif workload == 'applu':

 bench = applu()

 elif workload == 'gzip':

 bench = gzip()

 elif workload == 'crafty':

 bench = crafty()

 elif workload == 'perlbmk':

129

 bench = perlbmk()

 elif workload == 'gap':

 bench = gap()

 elif workload == 'twolf':

 bench = twolf()

 elif workload == 'lucas':

 bench = lucas()

 elif workload == 'art':

 bench = art()

 elif workload == 'vortex':

 bench = vortex()

 elif workload == 'galgel':

 bench = galgel()

 elif workload == 'facerec':

 bench = facerec()

 elif workload == 'fma3d':

 bench = fma3d()

 elif workload == 'sixtrack':

 bench = sixtrack()

 elif workload == 'ammp':

 bench = ammp()

 else:

 print >> sys.stderr, """The --benchmark environment variable was set to something

improper.

Use Cholesky, FFT, LUContig, LUNoncontig, Radix, Barnes, FMM, OceanContig,

OceanNoncontig, Raytrace, WaterNSquared, or WaterSpatial"""

 sys.exit(1)

 return bench

multiprocesses = []

numThreads = 1

130

if options.benchmark:

 workloads = options.benchmark.split(';')

 if len(workloads) >= 1:

 for workload in workloads:

 process = pick_benchmark(workload)

 multiprocesses.append(process)

 print process

 #else :

 #multiprocesses.append(workloads)

if options.bench:

 apps = options.bench.split("-")

 if len(apps) != options.num_cpus:

 print "number of benchmarks not equal to set num_cpus!"

 sys.exit(1)

 for app in apps:

 try:

 if buildEnv['TARGET_ISA'] == 'alpha':

 exec("workload = %s('alpha', 'tru64', 'ref')" % app)

 else:

 exec("workload = %s(buildEnv['TARGET_ISA'], 'linux', 'ref')" % app)

 multiprocesses.append(workload.makeLiveProcess())

 except:

 print >>sys.stderr, "Unable to find workload for %s: %s" %

(buildEnv['TARGET_ISA'], app)

 sys.exit(1)

elif options.cmd:

 #multiprocesses, numThreads = get_processes(options)

 workloads = options.cmd.split(';')

 if len(workloads) > 1:

131

 #process = []

 inputs = []

 outputs = []

 errouts = []

 #workload = []

 wrkld_idx = 0

 if options.input != "":

 inputs = options.input.split(';')

 if options.output != "":

 outputs = options.output.split(';')

 if options.errout != "":

 errouts = options.errout.split(';')

 for workload in workloads:

 process = LiveProcess()

 process.executable = workload

 process.cmd = workload + " " + options.options

 if inputs and inputs[wrkld_idx] :

 process.input = inputs[wrkld_idx]

 if outputs and outputs[wrkld_idx]:

 process.output = outputs[wrkld_idx]

 if errouts and errouts[wrkld_idx]:

 process.errout = errouts[wrkld_idx]

 multiprocesses.append(process)

 wrkld_idx += 1

#else:

print >> sys.stderr, "No workload specified. Exiting!\n"

sys.exit(1)

132

(CPUClass, test_mem_mode, FutureClass) = Simulation.setCPUClass(options)

CPUClass.clock = options.clock

CPUClass.numThreads = numThreads

Check -- do not allow SMT with multiple CPUs

if options.smt and options.num_cpus > 1:

 fatal("You cannot use SMT with multiple CPUs!")

np = options.num_cpus

system = System(cpu = [CPUClass(cpu_id=i) for i in xrange(np)],

 physmem =SimpleMemory(range=AddrRange("3072MB")),

 membus = CoherentBus(), mem_mode = test_mem_mode)

Sanity check

if options.fastmem:

 if CPUClass != AtomicSimpleCPU:

 fatal("Fastmem can only be used with atomic CPU!")

 if (options.caches or options.l2cache):

 fatal("You cannot use fastmem in combination with caches!")

num_processes = len(multiprocesses)

if (num_processes == 1):

 system.cpu[00].workload = multiprocesses

for i in xrange(np):

 if options.smt:

 system.cpu[i].workload = multiprocesses

 #elif len(multiprocesses) == 1:

 # system.cpu[i].workload = multiprocesses[0]

 elif len(multiprocesses) == np:

 system.cpu[i].workload = multiprocesses[i]

133

 else:

 system.cpu[i].workload = multiprocesses[i % (num_processes)]

 if options.fastmem:

 system.cpu[i].fastmem = True

 if options.checker:

 system.cpu[i].addCheckerCpu()

 system.cpu[i].createThreads()

if options.ruby:

 if not (options.cpu_type == "detailed" or options.cpu_type == "timing"):

 print >> sys.stderr, "Ruby requires TimingSimpleCPU or O3CPU!!"

 sys.exit(1)

 # Set the option for physmem so that it is not allocated any space

 system.physmem.null = True

 options.use_map = True

 Ruby.create_system(options, system)

 assert(options.num_cpus == len(system.ruby._cpu_ruby_ports))

 for i in xrange(np):

 ruby_port = system.ruby._cpu_ruby_ports[i]

 # Create the interrupt controller and connect its ports to Ruby

 # Note that the interrupt controller is always present but only

 # in x86 does it have message ports that need to be connected

 system.cpu[i].createInterruptController()

 # Connect the cpu's cache ports to Ruby

134

 system.cpu[i].icache_port = ruby_port.slave

 system.cpu[i].dcache_port = ruby_port.slave

 if buildEnv['TARGET_ISA'] == 'x86':

 system.cpu[i].interrupts.pio = ruby_port.master

 system.cpu[i].interrupts.int_master = ruby_port.slave

 system.cpu[i].interrupts.int_slave = ruby_port.master

 system.cpu[i].itb.walker.port = ruby_port.slave

 system.cpu[i].dtb.walker.port = ruby_port.slave

else:

 system.system_port = system.membus.slave

 system.physmem.port = system.membus.master

 CacheConfig.config_cache(options, system)

root = Root(full_system = False, system = system)

m5.disableAllListeners()

Simulation.run(options, root, system, FutureClass)

2. GEM5 Source Code

For implementing an existing work or new techniques in GEM5, modification of source

code is required. This section of Appendix B gives a brief overview of GEM5 source code

structure and modification guidelines.

Being a full system simulator GEM5 has separate modules for CPU, caches, on-chip

interconnects, memory controller and main memory. Consider the following path for further

references:

 $ROOT_PATH = gem5/src

 $RUBY_PATH = $ROOT_PATH /mem/ruby

 $NETWORK_PATH = $RUBY_PATH/network/garnet/fixed-pipeline

135

 $MEMORY_PATH = $RUBY_PATH/system

$ROOT_PATH/cpu: It has the source code for cpu functionality which includes- Timing

Simple CPU, Inorder CPU and Out-of-Order CPU models.

$RUBY_PATH: It has the most crucial source code to handle all requests which are originated

at CPU and need to access on-chip caches (private or shared), on-chip interconnects and/or

memory.

$RUBY_PATH/network: It contains the code for Garnet and Simple network-on-chip. Within

Garnet, models for fixed pipeline and flexible pipeline are provided. Fixed pipeline has 5-stage

virtual channel router and flexible pipeline router has flexible stages for router which can be

configured in GarnetRouter.py.

$NETWORK_PATH: This directory has code for NoC components. The relevant code for NoC

modules is mentioned in the table.

136

Table B.1: Source code for NoC modules

NoC Components NoC module code Comments

Input Port InputUnit_d.* Structure of input buffers and input port for

routers can be modified.

Output Port OutputUnit_d.* Structure of output buffers and output port

for routers can be modified.

Virtual Channels VCallocator_d.*,

VirtualChannel_d.*,

OutVcState_d.*

Number/structure of virtual channels (data

and command), VC allocation process can

be modified.

Flits flit_d.*, flitBuffer_d.* Addition/deletion of a field for flits,

information carried by flits can be changed.

Network links GarnetLink_d.*,

CreditLink_d.*,

NetworkLink_d.*

Link bandwidth, link scheduling, flow

control techniques can be modified with

these files.

NoC Router (Garnet) GarnetRouter_d.py,

Router_d.*, RoutingUnit_d.*

Main router configuration, functionalities of

a router, storage buffers, etc. can be

modified.

Network Interface NetworkInterface_d.* NI can be altered by adding new

functionalities or modifying existing ones.

Switch Allocation SWallocator_d.* Router arbitration code for switch traversal.

$MEMORY_PATH: This directory has code for memory components. The relevant code for

memory modules is mentioned in the table.

137

Table B.2: Source code for memory modules

Memory Components Memory module code Comments

MemoryController MemoryControl.*,

RubyMemoryControl.*

MemoryControl is a parent class from

which RubyMemoryControl is derived.

RubyMemoryControl is a handle for

modifying memory controllers only for

ruby based memory systems. Memory

configurations can be changed in

RubyMemoryControl.py.

Ruby System configuration RubySystem.py This is a configuration file for ruby

system setup (system with ruby

components).

Ruby Port RubyPort.* This port connects the CPUs to the Ruby

system consisting of caches, cache

coherence protocol, NoC and memory

subsystem. More information can be

found here.

Sequencer Sequencer.* This is a entry point for the messages

coming into the Ruby jurisdiction.

Details can be found here.

Cache Cache.py,

CacheMemory.*

These files help modify cache structure

and configuration.

**Note: To add or delete a module to a subsystem- network or memory, the corresponding files

must be added to Sconscript files belonging to that module. E.g., for addition of a new garnet

network submodule in $NETWORK_PATH, $NETWORK_PATH/Sconscript must be modified.

http://www.m5sim.org/Ruby
http://www.m5sim.org/Coherence-Protocol-Independent_Memory_Components

