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ABSTRACT 

 

 

HETEROGENEOUS PRIORITIZATION FOR NETWORK-ON-CHIP 

BASED  MULTI-CORE SYSTEMS 

 

In chip multi-processor (CMP) systems, communication and memory access both play an 

important role in influencing the performance achievable by the system. The manner in which 

the network packets (on-chip cache requests/responses) and off-chip memory bound packets are 

handled, in multi-core environment with several applications executing in parallel, determines 

end-to-end latencies across the network and memory. Several techniques have been proposed in 

the past that schedule packets in either an application-aware manner or memory requests in a 

DRAM row/bank locality-aware manner. Prioritization of memory requests is a major factor in 

increasing the overall system throughput. Moreover, with the increasing diversity in CMP 

systems, applying the same prioritization rules to all packets traversing the NoC as is done in the 

current implementations may no longer be a viable approach.  

In this thesis, a holistic framework is proposed that integrates novel prioritization 

techniques for both network and memory accesses and operates cohesively in an application-

aware and memory-aware manner to optimize overall system performance. The application-

aware technique makes fine grain classification of applications with a newly proposed ranking 

scheme. Two novel memory-prioritization algorithms are also proposed, one of which is 

specifically tuned for high-speed memories. Upon analyzing the fairness issues that arise in a 

multi-core environment, a novel strategy is proposed and employed system-wide to ensure 
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fairness in the system. The proposed heterogeneous prioritization framework is validated using a 

detailed cycle-accurate full system event-driven simulator and shows significant improvement 

over Round Robin and other recently proposed network and memory prioritization techniques.  
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Chapter 1  

Introduction 

 

Today’s computing chip platforms are becoming increasingly complex with highly parallel 

architectures and tens to hundreds of components crammed together on a single die. With the 

number of cores on a chip growing due to the benefits of shrinking nanometer technology, a lot 

of pressure is put on the interconnection network fabric to handle communication flows from 

various multi-programmed (i.e., multiple co-running application based) workloads efficiently. In 

addition, due to the well publicized “memory wall” between processors and main memory, new 

techniques are needed to overcome mismatches between processor and memory performance. 

This chapter intends to provide an overview of current challenges faced by today’s multi-core 

systems and the motivation for this research. 

 

1.1 Overview of Multi-core Systems 

As Moore’s law continues to hold true, we see increasingly denser chips in modern 

semiconductor technology. Performance gains with single-core computing are limited. Thus, to 

increase the performance many-fold, parallelism in hardware along with software needs to be 

exploited. Hence, single-core computing is rapidly being replaced with multi-core computing in 

today’s chip architectures. A modern chip multi-processor (CMP) consists of many cores 

connected to each other, executing various workloads in parallel.  

With the advent of multi-core computing and shrinking nanometer technology, 

interconnection technology dons a role more significant than ever before. Interconnects are 

responsible for communication between various processing elements on a chip. As process 
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technology scales down, gate delays are reducing significantly butwiring delays are not. Hence, 

there is an inherent limitation to the performance gain achievable by advancing nanometer 

technology alone. Emerging CMP designs require an interconnection fabric that is modular and 

scalable.  

Several CMPs have been commercially introduced recently that consist of multiple 

processing elements on a single chip. A few of the more prominent CMP designs are discussed 

below. 

 

AMD Opteron  

 

 

Figure 1.1: AMD Opteron 6200 series processor [33] 

 

Figure 1.1 shows the AMD Opteron 6200 series multi-core system. It consists of 16 

cores in the multi-core system and uses the HyperTransport 3.0 interconnect technology. It 

can operate on clock rates upto 3.3 GHz. This system supports a shared L3 cache and low 

voltage DDR3 main memories to reduce overall power consumption.  
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Intel’s Single-Chip Cloud Computer (SCC)  

Figure 1.2 shows Intel’s Single-Chip Cloud Computer (SCC) CMP. It consists of 48 

cores on a single chip. The interconnection fabric used to connect all cores to each other 

and to main memory is a Network-on-chip (NoC) that will be discussed in the following 

section. The name of the chip is derived from the fact that this chip provides a cluster of 

compute nodes similar to the “cloud” of computing resources over the internet. Figure 1.3 

shows an internal block diagram of SCC. This particular chip has 24 tiles connected 

together in a 2D mesh NoC topology with two cores per tile. Each core has a private L1 

and L2 cache. It has four integrated memory controllers that handle the traffic for off-chip 

DDR3 memory. 

 

 

Figure 1.2: Intel’s SCC [27] 

 



4 

 

 

Figure 1.3: Block diagram of Intel’s SCC [27] 

 

TILE64 Multi-processor 

Figure 1.4 shows the schematic diagram of the Tile64 processor from Tilera. This 

multi-core system is comprised of 64 cores interconnected in a 2D NoC mesh topology. 

Each tile represents a general pupose core with L1 and L2 caches as well as a switch to 

route packets. The cores can operate upto a frequency of 900 MHz. The on-chip processing 

elements communicate with the off-chip DDR2 memory through four memory controllers 

connected to the network. 
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Figure 1.4: Schematic representation of Tile64 processor [43] 

 

 

Intel’s Teraflop Processor 

Figure 1.5 shows Intel’s research chip- Teraflop processor [45]. It contains 80 tiles 

interconnected using a NoC fabric in a 2D mesh topology. Each tile consists of a switching 

element called router and a core with private L1 cache. These cores can operate upto a 

frequency of 5.7 GHz and can achieve performance upto 1.81 Teraflops.   

 

 

Figure 1.5: Intel’s Teraflop processor [45] 
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As can be observed from the above examples, there are several shared resources in any 

given multi-core system, such as shared main memory, shared caches, shared interconnects, etc. 

It is crucial to manage these shared resources efficiently in order to enhance system performance. 

As we put numerous processing elements together to achieve performance benefits, it puts forth 

tremendous challenges in architectural design. The main challenges for modern heterogeneous 

CMPs, which desire optimum performance are: 

 

 Instruction Throughput 

 Power 

  

 Memory Throughput 

 Scalability 

 

Due to the highly adapatable and scalable properties of NoCs, these fabrics are emerging as 

the most promising interconnect medium for modern CMP systems, such as the ones discussed 

above. This thesis focuses mainly on NoC-based systems; it sheds light on the current research in 

this area and presents solutions to overcome some of the key performance challenges pertaining 

to NoC-based multi-core systems. In the next section, we present a brief overview of NoC 

interconnection architectures. 

 

1.2 Overview of Networks-on-chip (NoC) architectures 

A network-on-chip (NoC) is a type of interconnection fabric for multi-core systems that 

uses packet-based switching for communication. NoC architectures provide modularity, 
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scalability and adaptability for intra-chip communication in modern CMPs; hence they are 

rapidly replacing traditional buses to become the backbone of modern multi-core systems [1][2] 

as seen in the examples of emerging multi-core chips presented in the previous section. Network-

on-chip interconnect technology comprises of three main components- 

 

 Network Interface: This is the interface between interconnect and processing 

elements. It is responsible for converting request/response packets into an appropriate 

format to be compatible with the processing elements or the interconnect. 

 Router: This is the packet-switching element in the NoC fabric. A router is responsible 

for routing packets on a hop-by-hop basis from their source to destination. 

 Links: Interconnection links are used to connect any two routers or a router and a 

processing element in a NoC-based system. Links provide a path for packet traversal in 

the network. 

 

A NoC fabric possesses four key defining characteristics: 

 

 Topology: This is the structure in which the processing elements in a CMP are 

connected to each other. The 2D mesh, as seen in Section 1.1, is the most commonly 

used topology.  

 Switching Techniques: The method of allocation of various interconnect resources 

such as buffers, links, etc. to the communication unit (e.g., message, packet, etc.) is 

called switching, and several switching techniques can be used (e.g., wormhole packet 

switching, virtual circuit switchin, etc).     
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 Routing Schemes:The manner in which a route is selected for a packet to traverse the 

NoC from the source to the destination is governed by the chosen routing scheme. The 

most commonly used routing scheme for 2D mesh topologies is X-Y routing. In this 

routing scheme, the packets advance from one router to another in X-direction followed 

by Y-direction to reach their destination node. 

 Flow Control Techniques: The mechanism of controlling communication flows 

between various nodes in the network to regulate the network traffic and reduce 

congestion or provide fault tolerance is governed by flow control techniques.   

 

A detailed discussion of these NoC components and concepts is presented in Chapter 2. 

 

1.3 Motivation 

This thesis focuses mainly on improving overall system performance in multi-core 

platforms by improving memory throughput as well as communication efficiency.  Typically, in 

today’s multi-core systems, there are several applications co-running at any given time and 

sharing critical resources such as the NoC fabric, caches, memory controller and main memory. 

Figure 1.6 shows a representation of a typical NoC-based multi-core system. It consists of 16 

tiles connected together in a 4×4 2D mesh. The system has a shared main memory, four shared 

memory controllers, and a shared L2 cache. In such a shared environment, the application 

packets are constantly in competition to win the race to reach their destination. Consequently, 

they are always interfering with other application packets resulting in slowdown of applications 

in the shared environment as opposed to when they are running alone. Determining which one 

packets gets precedence over another packet has a significant impact on overall system 
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performance. An inefficient NoC packet prioritization strategy can starve critical applications 

and reduce system throughput. Thus, it is important that requests are prioritized (i.e., scheduled) 

in an application-specific manner that is globally optimal, to minimize network latency and 

benefit overall system performance.  

 

 

Figure 1.6: NoC-based multi-core system 

 

Application data and instruction requests may encounter misses in the on-chip cache 

hierarchy, requiring request packets to traverse the NoC to reach the memory controller and 

subsequently access off-chip main memory. For such requests, in addition to the network latency, 

a notable main memory latency is added that increases the overall end-to-end packet latency. 

Memory latency can be elevated if packets experience stalls in the main memory due to bank 

conflicts and data contention. It is the responsibility of the memory controller to re-order 

requests going to the main memory so that memory stall cycles are minimized and memory 

utilization is maximized. The memory controller accomplishes this by keeping track of which 
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bank is being utilized currently and preparing against bank conflicts by scheduling packets to 

maximize bank level parallelism (BLP). Intelligent techniques for memory scheduling can 

improve memory latency and end-to-end latency, thereby significantly improving overall system 

throughput. Given that the heterogeneity in modern multi-core designs is increasing, these 

techniques must exploit heterogeneity in application characteristics [1][2], NoC utilization [3] 

and memory level parallelism (MLP) [4]-[6] to manage resource allocation of NoC and memory 

subsystems efficiently. In this thesis, we will refer to the on-chip cache packets as network 

packets and off-chip memory packets as memory packets.   

 

Importance of NoC Packet Scheduling: The performance of applications is increasingly 

impacted by communication and memory performance. In particular, the throughput of an 

application is dependent on how fast its requested packets return to the core. It is very interesting 

to study the journey of a request packet originating at a core and back to the core and how 

different parameters affect its end-to-end latency. Figure 1.7 shows a 3×3 NoC-based CMP 

connected in a 2D concentrated mesh topology. Each router is connected to two cores having 

private L1 caches and one L2 cache bank through the network interface. In addition, a memory 

controller is connected to node 0, which is further connected to the main memory. As depicted in 

Figure 1.7, when a request originates at a core e.g. A, initially its private L1 cache is checked, if 

a miss is encountered, the request is sent to the next level in the memory hierarchy through the 

network. In Figure 1.7, the packet originating at core A misses its L1 cache and is injected in the 

network to access shared L2 cache. It traverses the network using the X-Y routing scheme to 

access a remote L2 cache bank L. If  the request gets satisfied at L, it returns to the core A with 

the requested data. However, if a miss is encountered, it traverses the network again to go to the 
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memory controller M and further to the main memory. After fetching data from main memory, it 

traverses the network again to deliver the data to its source core A. The network latency of 

packets in these cases varies due to different hop distances and runtime NoC contention. Further, 

if a request encounters a miss at an L2 cache bank, it has to reach the memory controller and then 

access main memory. Once a request reaches the memory controller, it can face delays due to 

factors such as bank conflicts, read-write turnaround, bus busy etc. Thus, there are several factors 

contributing to the end-to-end latency of a request. At every step, a request packet experiences 

slowdown due to interference from other packets and contention. Hence, we need to prioritize 

packets such that in situations of contention where several packets are competing for bandwidth, 

the requests that are most crucial to the overall system throughput can proceed before other 

requests.  

 

 

Figure 1.7: Journey of a packet in 3×3 2D mesh CMP 

 

 

Importance of Memory Level Parallelism (MLP): Instruction Level Parallelism (ILP) has 

reached its limits because of the growing gap between memory and processor performance [4]. 
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Increasing ILP is no longer beneficial as CPU performance is currently bounded by memory. In 

contemporary out-of-order superscalar processors even if the instruction issue width is increased 

or clock frequency is increased, the processor needs to stall until it receives its requested data 

from the memory. Thus, these optimizations for enhancing ILP would go unused unless memory 

access becomes faster. But memory performance is not improving as fast as processor 

performance. The “memory wall” is a major issue facing CMP designers today. The performance 

gap is increasing by ~50% each year between processors and main memories. Figure 1.8 shows 

the increasing gap between processor speed and memory speed. With technology shrinking 

down, processor speed is increasing exponentially but memory speed is not able to cope up with 

processor data bandwidth demands. 

In such a situation, it becomes essential to exploit parallelism in order to improve memory 

throughput. Modern memories including caches are parallel architectures with multiple banks 

capable of operating simultaneously. Thus, we can improve memory throughput by maximizing 

bank level parallelism.  

 

 

Figure 1.8: Memory wall [46] 
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Importance of Prioritization: As discussed earlier, it is vital to emphasize the prioritization of 

network and memory requests to enhance system throughput. However, the key question to be 

answered is: at what point should request prioritization occur? One stage where request 

prioritization typically occurs in today’s systems is in the memory controller. However, out-of-

order buffers for request scheduling in these controllers take up a lot of area and add a notable 

latency, especially when congestion in the network is high or memory-intensive workloads are 

running. In contrast, NoC routers have simple FIFO input/output buffers, with multiple requests 

competing for the same output channel simultaneously. As the NoC becomes more and more 

congested, it is vital to analyze such requests as early as possible, to uncover their impact on 

individual workloads as well as system performance and appropriately adjust their priorities. 

Thus, it is more cost-effective to apply workload-aware prioritization techniques in the NoC 

closer to the source rather than prioritizing the same requests at the memory controller. At the 

same time, improving main memory performance necessitates an increase in row buffer hits and 

a reduction in memory bank conflicts. This information is more readily available closest to the 

memory. Rather than relying on costly re-ordering in the memory controller, memory-aware 

prioritization techniques in the NoC can enable more cost-effective distinctions between 

requests.  

 

1.4 Contributions 

In this thesis, we make the following contributions:  

 We introduce the novel concept of heterogeneous multi-staged prioritization in NoC 

intercinnection architectures. We demonstrate that by employing different prioritization 

criteria in two different parts of the NoC (e.g., part of the network closer to the memory 
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controller and farther away from the memory controller), overall system performance 

can be notably improved.  

 We propose new algorithms to be employed in each of these two stages of 

prioritization. The first algorithm, for routers close to their originating cores, prioritizes 

request packets as per criticality of their applications. The second algorithm, which is 

for routers in proximity to memory controllers, aims to reduce bank conflict for 

memory requests as they proceed to the memory controller. 

 We propose a new ranking scheme for determining criticality of applications. We 

evaluate previously proposed ranking metrics and show that our ranking scheme is 

more accurate.  

 We evaluate the constraints on BLP in modern high-speed memories and propose an 

improved memory scheduling algorithm. We propose to employ our memory-

scheduling algorithm in NoC routers in the vicinity of the memory controller (instead of 

modifying the controller) for better scalability and improved performance. 

 We discuss the fairness issues in multi-programmed NoC-based systems and propose a 

novel anti-starvation algorithm to prevent slowdown of applications and boost overall 

system performance.  

 We compare our work with some of the best performing recent work on packet 

prioritization and demonstrate the effectiveness of our proposed staged prioritization 

technique over these prior efforts.  
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Our experimental studies show consistent improvement with our proposed techniques over 

a baseline configuration frequently used in CMPs, as well as the best performing prior works in 

the area of network and memory prioritization. 

 

1.5 Outline 

This thesis is organized as follows. We discuss the preliminaries of this research area such 

as NoC basics, SDRAM operation, memory level parallelism, application characteristics and 

significance of packet scheduling in detail in Chapter 2.  In Chapter 3, we elaborate on the 

problem statement of this thesis. In Chapter 4, we discuss the details of some of the state-of-the-

art work proposed to address some existing challenges in NoC-based multi-core systems. 

Chapter 5 presents the proposed framework for our novel application-aware and memory-aware 

techniques and presents a new ranking metric for dynamic classification of applications. Chapter 

6 presents an improved memory-aware packet scheduling technique specially tuned for high-

speed memories. In Chapters 5 and 6, two different anti-starvation techniques are used for 

ensuring fairness in NoC-based systems. The experimental results and analysis for our 

hypotheses in Chapters 5 and 6 are presented along with the corresponding techniques. Finally, 

in Chapter 7, we present a summary and conclusion of this thesis and discuss future research 

directions for this work.   
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Chapter 2  

Preliminaries 

 

In this chapter, we discuss the basics of networks-on-chip and off-chip memory, mainly, 

their challenges and optimizations for improvement of overall system performance. We also 

discuss the significance of application-awareness and memory-awareness for efficient 

communication in modern multi-core systems.  

 

2.1 NoC Basics 

 In this section, we will delve into the details of the NoC components and concepts briefly 

mentioned in Chapter 1. The major building blocks of NoC architecture are described as follows. 

 

Network Interface (NI): Each processing element is connected to the router through a network 

interface (NI). This NI is responsible for breaking down read/write requests from processors into 

packets that are further partitioned into smaller data units called flits for on-chip traversalA 

packet is broken down into three types of flits- Header flit, Body flit and Tail flit. Figure 2.1 

shows the breakdown of a packet at NI. 

 

 

Figure 2.1: Breakdown of a packet at NI 
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The header flit carries the most significant information regarding destination. The body and 

tail flits simply follow the header flit in the network. The NI re-integrates the packet structure at 

the destination after all the flits belonging to the packet have been received from the network. 

This packet is parsed and the relevant data is then extracted and sent toto the processing element 

or memory component at the destination. 

 

Router: A router is a key component of the NoC architecture, which directs packets to their 

destinations. Each router is connected to interconnect links through a certain number of input and 

output ports. Typically, routers have five input and five output ports in 2D mesh topologies. 

Figure 2.2 shows a standard router architecture. It has one port each on East, West, North and 

South directions and also a local port (to connect to a processor or memory) for that node. The 

flits arrive at these ports through the network interface. A state of the art 5-stage router is shown 

in Figure 2.3. For a 5-stage virtual channel router, a flit has to undergo the following stages- 

 

 Buffer Write and Route Compute: An input flit is stored in the buffer in this stage. 

There are input buffers at the input port which contain multiple virtual channels. The 

routing path for this flit determines the output port the flit will be sent to, and this route 

computation is governed by the routing scheme chosen in the network. 

 VC Allocation: The next stage is output virtual channel (VC) allocation. Only header 

flits go through this stage. The stage is responsible for reserving a virtual channel for 

body and tail flits for the packet to which the header flit belongs. Body and tail flits 

skip this step and follow the header flit to the next stage. 

 Switch Allocation: In this stage, all the flits at a particular input port arrive at the 
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crossbar of the switch and contend for output ports with flits at other input ports. The 

switch allocation logic determines which flits gets each output port. 

 

 

Figure 2.2: NoC router architecture 

 

 

Figure 2.3: 5-stage virtual channel NoC router micro-architecture 
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 Switch Traversal: The winner flit in the earlier stage for each output port advances to 

the next stage by traversing a switch (crossbar) and arrives at the output port. This stage 

is called switch traversal. 

 Link Traversal: After switch traversal, the flit has to traverse the link in order to go to 

the next router along its destination path.  

 

Apart from the building blocks discussed above, NoCs are characterized by four key concepts: 

 

 Topology 

 Switching Techniques 

 Routing Schemes 

 Flow Control Techniques 

 

These concepts are discussed in detail as follows. 

   

Topology: The processing elements can be connected in different ways by a NoC and this 

connection structure is referred to as the NoC topology. There are two types of topologies- direct 

topologies and indirect topologies. In direct topologies, each node has a direct link to its 

neighbouring nodes. On the other hand, in indirect topologies, each node is connected to an 

external switch (i.e., router) which in turn has direct links to other switches in the network. Some 

of the important topologies are shown in Figure 2.4. The topologies- 2D mesh and octagon 

(Figure 2.4 (a) and (b)) represent direct topologies, whereas, the topologies- k-ary n-fly butterfly 

and fat-tree (Figure 2.4 (c) and (d)) represent indirect topologies. 
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(a)                                                       (b) 

                     

                                         (c)                                                              (d) 

 

Figure 2.4: NoC topologies: (a) 2D Mesh, (b) Octagon,  

           (c) k-ary n-fly Butterfly, and (d) Fat-tree [3]  

 

Mesh topology is the most widely used topology for NoC-based CMPs. In this thesis, we 

mainly focus on multi-core processors connected in a 2D mesh topology in a NoC-based 

architecture.  

 

Switching Techniques: Switching techniques govern the movement of communication 

messages in the network. There are three main types of switching techniques-  

 Circuit Switching: In this type of switching technique, a path is first reserved in the 

network from source to destination before a message is sent through the network. This 
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path is broken only when complete transfer of the message takes place. This technique 

is rarely used in NoCs due to its inefficient usage of network resources. 

 Virtual Circuit Switching (VCS): This technique uses multiple virtual circuits that 

may share the same physical communication links, to improve network utilization. A 

scheduling technique such as Time Division Multiplexing (TDM)  is used to grant a 

virtual circuit access to a shared link..  

 Packet Switching: Instead of reserving a path (circuit) and then transmitting a 

complete message over the network, in packet switching a message is broken down into 

multiple packetsthat proceed to traverse the network independently to reach their 

destination. This is the most cost-effective way to enable inter-node communication in 

multi-core systems. We adapt a variant of packet switching called wormhole packet 

switching for the NoC architecture considered in our work in this thesis.  

 

Routing Schemes: The manner in which a route is selected for a packet to traverse the NoC 

from the source to the destination is governed by the chosen routing scheme. These schemes are 

meant to perform an error-free, congestion-free, deadlock- and livelock-free, quick as well as 

efficient routing of packets. There are two major types of routing schemes-  

 

 Static Routing: In this type of routing, fixed routing paths are used for data transfers in 

the network. These routing paths are computed based on static information about the 

network regarding shortest path from source to destination, etc. These routing schemes 

are very simple to implement and have lower overhead. Deterministic X-Y routing 
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scheme (mentioned in Chapter 1) is a static routing technique and most widely used for 

mesh topology. Therefore we use this routing scheme in our work. 

 Dynamic Routing: In this type of routing, the routing decisions are changed depending 

on the current network traffic. These routing schemes incorporate load balancing and 

fault tolerance mechanisms (for faulty links) in addition to mechanisms to determine 

the lowest latency paths to the destination. However, these routing schemes have a high 

hardware complexity and overhead.   

 

Flow Control Techniques: With increasing number of cores on a chip and the number of 

parallel applications running on them, the network can easily become congested. In order to 

handle such network congestion as well as any network transmission errors, flow control 

mechanisms are often employed in the network. Some of the commonly used flow control 

schemes are- ACK-NACK flow control, Credit-based flow control and Xon/Xoff flow control. 

Amongst these schemes, credit-based flow control is the most popular. In this technique, a credit 

count is tracked by an upstream router’s virtual channel. With each flit leaving the upstream 

router, this credit count is decremented. Backpressure is applied when the credit count becomes 

zero to prevent any further incoming flits – i.e., the upstream router stops injecting flits into the 

NoC if the credit count becomes zero. When buffers in the virtual channel in downstream routers 

get freed by forwarding the flits, credits are sent to upstream routers, after which flits injection 

by these routers can be resumed.  We utilize this credit-based flow control technique in our work. 
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2.2 Multi-Programmed CMPs 

 

 

Figure 2.5: Multi-programmed NoC-based CMP 

 

Figure 2.5 shows a representation of a typical NoC-based multi-programmed CMP system. 

There are 16 cores connected together in a 4×4 2D NoC mesh, running multiple parallel 

applications independently. This figure will be referred to in the following subsections. 

 

Application Characteristics: We have reached the saturation point for Instruction Level 

Parallelism (ILP) now and hence use multiple parallel cores for faster turnaround of programs. A 

multi-core system such as the one shown in Figure 2.5 consists of several diverse applications 

executing simultaneously. These applications inject packets into the network every time there is 

a private cache miss. Such application packets may seek data from shared L2 cache or main 

memory for which they have to traverse the network to reach a remote node. The packets from 

multiple applications interfere with each other at the routers where they often compete for an 

output channel at the same time. Such inter-application interference causes unnecessary delays 

and leads to a deterioration in the system throughput. Hence, it is important to analyse the 

applications running on the system and make appropriate optimizations to enhance the system 

performance. 
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2.2.1 Packet Criticality 

In multi-programmed CMPs, system throughput is governed by the harmonious execution 

of multiple applications running together. In such systems, routers face a lot of contention due to 

request/response packets of different applications interfering with each other for the same output 

channels. It is very important to distinguish between packets of different applications as opposed 

to treating all packets equally, to optimize system performance. The problem of categorizing 

packet criticality has been studied in a few recent works [16][17][19] that propose various 

classification metrics. These metrics are summarized below: 

 

 Packet slack estimation: In [17], the authors compute the slack of a request packet to 

determine a packet’s criticality. Slack is defined as the maximum delay a packet can 

tolerate in the network without affecting performance at its source core. For example, 

consider the scenario where a processor has two outstanding load misses that result in 

successive network request packets Pkt1 and Pkt2. If Pkt2 encounters lower NoC 

latency and returns with data before Pkt1, it cannot commit its corresponding load until 

Pkt1 returns. Thus Pkt2 has some slack for which it can be delayed without reducing 

application performance.The slack is used in arbitration decisions to prioritize packets 

with smaller slack over others. This metric is based on the nature of a request packet 

and its destination irrespective of the application it belongs to. But network contention 

is not considered in the process of estimation, which can lead to incorrect values of 

packet slack and hence flawed determination of the packet’s criticality.  

 Network episode height and length estimation: An application typically goes through 

two phases in its execution span- compute phase and network phase. Compute phase is 
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the execution interval in which there are no outstanding requests to the memory from 

that application. On the contrary, network phase is the execution phase in which the 

application has pending requests to the memory. In [19], the authors use the metrics- 

network episode length and episode height to perform fine grain classification of 

applications and their requests. The episode length is the number of cycles measured 

from the time of injection of a packet in the network by an application, until all requests 

for that application is satisfied. Episode height is the number of outstanding L1 misses 

captured for this episode length. The episode length and height value is an indicator of 

the intensiveness of an application’s network-phase, which allows predicting memory 

intensiveness of an application and its packet criticality. To determine an episode 

length, a count of cycles is kept for which the MSHR (Miss Status Handling Registers) 

queue [20] is occupied. However, this metric has some drawbacks. MSHR queues 

remove an entry only when the request is satisfied [21] (details about MSHR follow 

later in this section). Hence, if the request is delayed in the network due to contention, it 

will result in longer network episodes. As a result, there is a high probability of 

incorrectly projecting that the application is more network-intensive with this approach. 

 Private cache miss count estimation: In [16], the authors use private cache misses per 

instructions (MPI) as a ranking metric for determining stall time criticality of an 

application packet. They form eight clusters of ranks based on the relative MPI of all 

the applications. The application with the lowest MPI gets the highest rank. This metric 

is unaffected by the network congestion state and is a reliable indicator of an 

application’s memory-intensiveness. However, it gives us a very broad idea about the 

nature of an application in terms of its latency criticality and does not capture the 
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memory level parallelism (MLP)  of an application. 

 

Need for a dynamic fine-grain application classification strategy: In a shared CMP with 

multiple parallel applications, at any given time, two or more packets can be contending for the 

same resource. Intelligent techniques are required to efficiently allocate resources based on the 

needs of different applications and their respective network and memory packets. Applications 

rarely demonstrate invariant characteristics and usually fluctuate between memory-intensive and 

compute-intensive phases over their lifetime. Figure 2.6 shows packet injection trends in terms 

of L1MPKI (L1 misses per thousand instructions) for applications from the SPLASH-2 

benchmark suite. The benchmarks show varying degree of memory-intensiveness at different 

times and hence the throughput demands of the applications change as well.  

 We can observe from Figure 2.6 that some applications (e.g., fft and radix) have similar 

packet injection trend, so using L1MPKI alone to distinguish between packets of different 

applications during scheduling is not sufficient as done in some prior works (e.g., [16]). We need 

a more sophisticated metric to perform finer grain classification of applications that can exploit 

unique application-specific characteristics of packet injection. In addition, applications 

demonstrate varying degrees of memory level parallelism depending on their temporal and 

spatial localities. A classification metric should be able to exploit this information. 
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(a) 

 

(b) 

Figure 2.6: Packet injection trend for benchmarks from SPLASH-2 suite over a window 

of (a) 1M, and (b) 10M instructions. 
 

Figure 2.7 shows a typical process to network interface and flow of packets from processor 

to network. For an application running on Core, it requires some data to be fetched from the 

memory. First, the private L1 cache is checked for the required data. If there is a L1 miss, the 

data request is sent to the next level of cache (mostly shared). The request has to go through the 

MSHR (Miss Status Handling Registers) module attached to the L1 cache’s circuitry, before it 
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can enter into the network to access shared L2 cache. There are multiple MSHRs which form a 

MSHR queue. MSHR queues are checked on each L1 cache miss. The entry regarding current 

miss is added to the queue only if a miss to the same block as the current miss does not already 

exist. The greater the MSHR queue occupancy, the larger is the number of blocks demonstrating 

MLP in an application [21]. This MSHR queue occupancy also indicates the instantaneous 

network demands of an application. We term the MSHR queue occupancy as MLP index. 

 

 

Figure 2.7: Processor-to-network interface [21] 

   

As applications typically demonstrate behavioral variations over the span of their 

execution, their network demands and therefore criticality also varies over time. To better 

understand this phenomenon, we captured the L1MPKI as well as number of outstanding 

requests in the L1 MSHR queue for applications from the SPLASH-2 and SPEC2K benchmark 

suites. Figure 2.8 (a)-(b) show varying L1 MPKI and MLP index values for the various 
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applications over a period of 5M cycles. An interesting observation is that even though L1 MPKI 

may be constant over an interval for an application, its MLP index can change significantly 

during that time (e.g., for ammp, lucas, etc). The results demonstrate a need for fine-grain 

classification of applications based on their time-varying network demands and MLP.   

     

 

(a) 

 

(b) 

Figure 2.8: (a) L1 MPKI, and (b) number of outstanding requests in L1 MSHR queue 

over time for SPLASH-2 and SPEC2K benchmarks.  

 



30 

 

2.2.2 System Fairness Issues  

Modern multi-core systems typically execute multiple applications in parallel. Such 

applications inject packets into the NoC, where routers handle the journey of these packets to 

their destination. Routers must frequently cope with contention while granting the output channel 

to one of the contending packets. In such scenarios of inter-application interference, it is 

important to distinguish between packets and make an appropriate choice in prioritizing one 

packet over others. During such packet scheduling that is usually based on a certain criteria (e.g. 

stall time criticality [16], packet slack [17]), there is a possibility that certain packets get de-

prioritized all the time and suffer from starvation. As a result, some application packets get 

significantly slowed down. Figure 2.9 shows the slowdown experienced by the applications 

barnes and gap when they are run together in a multi-programmed environment employing an 

arbitration strategy as in [16] versus when they are run in a standalone manner with no 

interference from other applications. Barnes is a compute-intensive application while gap is 

memory-intensive, thus gap injects more packets into the NoC. When these applications are run 

together, both applications experience some slowdown. As gap is memory-intensive and is 

frequently de-prioritized by the strategy in [16] over the barnes compute-intensive application, 

its application throughput (instructions per cycle) takes a more significant hit (Figure 2.9). To 

prevent this slowdown and ensure fairness in the system, anti-starvation strategies are often 

employed in addition to scheduling algorithms. Some of the standard and previously proposed 

anti-starvation strategies are discussed below. 
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(a) 

 

(b) 

Figure 2.9: Slowdown for (a) memory-intensive workload (gap) (b) compute-intensive 

workload (barnes) (standalone vs together). 

 

In [16][17][18], time-based (TB) batching is employed to enable fairness among 

application packets. In time-based batching, a packet is tagged with a batch id that is a function 

of the time when it is injected into the NoC. Requests originating at the same time or within the 

same batching interval form a batch. At the interval of every T cycles, this batch id is 

incremented cyclically. With the view of enforcing fairness, when two packets belonging to 

different batches compete with each other, the packet with lower batch id is given priority over 

the other packet. The underlying assumption is that the older packet has been starved for a long 
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time. However, batching is not necessarily an effective way of coping with starvation. For 

example, with a typically used batching interval of 16,000 cycles, a packet injected at cycle 0 has 

batch id 0 and a packet injected at cycle 15,998 also has batch id 0. In the following interval, the 

batch id is incremented and now the packet originating at cycle 16,002 has batch id 1. If the 

packet originating at cycle 15,998 competes with one originating at cycle 16,002, the former 

packet will win out even though it may not be starved, rendering the TB batching technique 

ineffective in such scenarios.  

In another similar technique called packet-based (PB) batching [16], instead of a time-

based threshold, the threshold is based on number of packets injected. Here the batch id is 

incremented when N packets have been injected into the NoC. This technique has the same 

disadvantages as those discussed for TB batching. In addition, this technique requires co-

ordination among all the nodes to enable a global batching across the system, resulting in a 

prohibitive communication overhead.  

The two batching techniques discussed above are widely used in NoC packet scheduling to 

enforce fairness but face inherent drawbacks as discussed above. Moreover, both strategies do 

not distinguish between on-chip cache requests and off-chip memory requests. Thus, higher 

ranked off-chip memory packets can defeat lower ranked on-chip cache request packets. 

However, de-prioritizing lower latency on-chip cache requests can hurt overall performance. 

Thus, more balanced anti-starvation scheduling mechanisms are essential to aggressively 

improve performance. Chapter 6 presents our proposed anti-starvation mechanism. 
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2.3 SDRAM Architecture and Memory Level Parallelism 

In this section, we will discuss the basic SDRAM operation and how SDRAM 

characteristics and memory level parallelism can be exploited to improve memory throughput 

and overall system throughput in turn.   

 

2.3.1 SDRAM Operation 

Widely used SDRAMs operate with three main commands: precharge (PRE), activate 

(ACT) and Read/Write (R/W) [6]. For any request, the SDRAM memory controller needs to 

know its bank address, row address and column address. When a request arrives at the controller, 

it checks if the bank being requested is already active and if not, issues an ACT command. The 

desired row is then copied into a row buffer to access the requested address. Once the data is 

fetched, a PRE command is issued to restore the row in the row buffer and idle the bank 

depending on whether the memory implements a closed-page or an open-page policy. Most 

memories implement an open-page policy to encourage row hits and minimize ACT and PRE 

commands. Another facet of SDRAMs is that while one bank is busy another bank can still be 

activated and accessed under certain conditions. It is also desirable for requests approaching 

memory to do so in a manner that will avoid consecutive requests approaching different rows of 

the same bank, to reduce memory latency. 
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Figure 2.10: DRAM architecture 

 

Figure 2.10 shows a typical DRAM architecture which consists of a 2D array of rows and 

columns (wordlines and bitlines). Whenever a request arrives at main memory, the address is 

decoded to identify the row to be addressed. This is called Row Access Strobe (RAS). This row 

is then copied into the row buffer. The column address is then decoded to know which bitline 

from the copied row needs to be accessed. This is called Column Access Strobe (CAS). Memory 

access latency is dependent on how many cycles are taken for the above operations, for any 

request. Some of the commonly used timing parameters for SDRAM are shown in Table 2.1. 
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Table 2.1: SDRAM timing parameters 

Timing Parameters Abbreviations Description 

tRAS Row Access Latency Cycles consumed for accessing data from 

a row when it is opened. 

tCAS Column Access Latency Time for reading data from the specified 

column in an opened row. 

tRCD Row Cycle Delay Minimum time between accesses to 

different rows of the same bank. 

tRP Pre-charge Delay Cycles to precharge the DRAM bank 

tWTR Write- Read Delay When read request follows write request 

to a same memory location, tWTR cycles 

are required to perform operation. 

 

2.3.2 Typical Memory Controller Functionalities 

Before requests go to the main memory, they have to pass through the memory controller. 

Modern memory controllers perform a variety of functions in addition to generating commands 

for the main memory. When an off-chip memory request arrives at the memory controller, it 

translates the request address to main memory address and issues appropriate commands. Some 

of the typical functionalities of a memory controller are- 

 

 Issuing DRAM commands like ACT/PRE/READ/WRITE to activate or de-activate a 

bank and perform read/write operations;  

 Issuing REFRESH commands to the DRAM cells so that the written data is retained;  

 Managing power states of the main memory with the goal of minimizing main memory 

power consumption; 

 Request Scheduling of the packets before they go to the main memory to avoid stalls 

due to bank busy/data contention; 
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 Ensuring reliability of request packets by employing error correction strategies in the 

memory controller; 

 

Memory controllers are placed on-chip and as the number of functions performed by them 

increases, their hardware complexity increases. In particular, reorder buffers inside memory 

controllers take up a lot of area and energy. Hence, efforts are being made to incorporate some of 

the memory controller functionalities in the on-chip interconnect (mostly routers) in the NoC-

based multi-core systems. SDRAM-aware router [13] is one such technique which uses existing 

resources in a router (input/output queues and switch arbitration) to perform request scheduling 

so that memory controller is relieved of the expensive reorder buffers. We adapt this goal and 

attempt to improve overall memory performance by employing more efficient memory 

scheduling techniques in network routers. We present two such techniques in Chapters 5 and 6. 

 

2.3.3 Bank Level Parallelism 

Modern memories are no longer monolithic structures but rather multi-bank architectures 

that can operate in parallel. The memory structure is shown as follows in Figure 2.11. A memory 

controller is connected to the main memory through channel. A channel may consist of one or 

more DIMMs (Dual In-line Memory Module). An SDRAM DIMM represents an independent 

memory device. Figure 2.12 shows the logical organization of a SDRAM DIMM. A DIMM 

consists of multiple logical ranks which further consist of banks. Different banks have separate 

command generator circuitry; hence they can be operated in parallel.  
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Figure 2.11: Memory subsystem representation [50]  

 

 

Figure 2.12: Logical organization of a SDRAM DIMM [35] 
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Figure 2.13: Timing constraints- tRRD and tRCD [24] 

 

The timing diagram in Figure 2.13 shows the constraints for operating different banks in 

parallel and the same bank in succession for different rows. The parameter, tRRD represents the 

number of cycles it takes to activate two different banks in succession. Figure 2.13 shows that 

once Bank x is activated, Bank y can be activated after tRRD cycles whereas Bank y can again be 

activated after tRCD cycles. Usually, tRRD is much lesser than tRCD and hence different banks 

activated in succession are considered as almost concurrent. However, for higher capacity 

SDRAMs (> 1GB or eight banks) and high-speed memories, there is a constraint on how many 

banks can be activated in parallel. In such memories, over a window of tFAW number of cycles, 

only four banks can be activated. This is to avoid current surge and excessive power 

consumption. This constraint is termed as tFAW (Four Activate Window). If another bank of the 

same rank needs to be accessed, it has to wait until tFAW number of cycles or one of the already 

activated banks are pre-charged. Thus, even if we try to maximize bank level parallelism (BLP) 

by exploiting spatial locality of packets, packets can still experience head of the queue latency at 

the memory if they encounter the above-mentioned scenario. The figure below shows the timing 

representation of the tFAW constraint.  



39 

 

 

Figure 2.14: Timing constraints- tRRD and tFAW [24] 

 

In Figure 2.14, bank a, b, c and d can be activated concurrently. However, when bank e 

needs to be activated, there is no bank conflict or data contention issue but it has to wait until 

tFAW cycles have passed since the activation of bank a. This puts a constraint on maximum 

bank level parallelism possible. We address this issue in our second memory-scheduling 

algorithm described in Chapter 6.  
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Chapter 3  

Problem Statement 

 

With the advent of multi-core computing, there is a significant amount of research going on 

to improve the overall system performance in multi-core chips. As the number of components on 

a chip increase, the management of shared resources such as interconnects, shared caches, 

memory controller as well as main memory becomes more critical. Each module in a system is 

inter-dependent due to communication and therefore it is important to consider on-chip as well as 

off-chip components while performing synthesis.  

The key metrics that determine overall system performance are – 

 

 Application throughput                          System throughput   

 Memory utilization  Network utilization            

 Network latency    Power  and Energy consumption 

 Main memory latency  System  fairness  

 

Research in NoC-based multi-core systems has been focused on optimizing one or more of 

these metrics to enhance the achievable performance. This thesis aims to optimize the following 

factors to benefit overall system performance in multi-core chip designs: 

 

 Increase system throughput   

 Minimize energy consumption 

 Minimize main memory latency 

 Increase system  fairness 
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A multi-core system executes multiple workloads in parallel, ranging from heavily 

memory-intensive to memory non-intensive applications. This thesis aims to address the 

following challenges in order to achieve the abovementioned performance goals: 

 

 Packet arbitration: The end-to-end journey of a packet requested by a core plays a 

significant role in determination of QoS and consequently performance. Every 

application demands data or instructions from the memory; some applications do so 

more often than others. In its journey to the destination, a packet might face slowdown 

due to other packets interfering with it at the routers or memory access delays. 

Techniques such as prefetching and application- and memory-mapping minimize 

memory delays by keeping the data needed by any application closer to its core. 

However, application characteristics often vary with time, so it is difficult to accurately 

predict what data is needed by the application throughout an application’s execution. 

Efficient packet arbitration can enables high gains in performance by tracking the 

changing data demands of applications. NoC routers can accelerate or decelerate certain 

packets in order to reduce memory stalls and benefit the system throughput. This thesis 

explores the potential of packet arbitration in a NoC-based system.  

 System latency: The overall system latency of a packet comprises of network latency 

and memory latency. Network latency is primarily governed by the on-chip 

interconnects and is determined by the communication latency of packets traversing the 

network. Memory latency is governed by the number of stalls faced due to row/bank 

conflicts and data contention (Read-Write turnaround). System throughput is a function 

of system latency, and is defined as the total amount of work done (i.e., instructions 
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executed) over a certain number of cycles. This thesis aims at reducing system latency 

to improve system throughput. 

 Application-awareness: Modern multi-core systems execute diverse workloads in 

parallel to maximize performance. There are two broad categories of applications- 

Compute-Intensive and Memory-Intensive. Compute-intensive applications are latency 

sensitive and benefit system throughput more as the processors executing these 

applications spend most of the time on computation rather than waiting for data to be 

fetched from memory. Memory-intensive applications, on the other hand, are relatively 

more latency tolerant. These types of applications do not hamper the system 

performance even if their packets face some delays.  

 Memory-awareness: Main memory latency is the most significant contributor to 

system latency. Memory latency can be minimized by mitigating stalls due to bank 

busy and row conflicts. Also, the spatial or temporal locality of application packets 

determines their memory access latencies. Hence, memory-state awareness is important 

in taking scheduling decisions so that bank and row conflicts, which are the main cause 

of memory access delays, are mitigated. Hence, this thesis exploits memory-awareness 

in NoC routers to achieve improvement in memory throughput and efficiency.  

 System fairness: Along with system performance, it is equally important to preserve 

system fairness. In multi-programmed systems, inter-application interference is 

inevitable. This results in slowdown of applications. In such cases, when one 

application is repeatedly prioritized over others, some applications may suffer from 

starvation and cause a reduction in the overall system performance. Hence, this thesis 

also aims to establish system fairness while improving system throughput. 
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 Heterogeneity in architecture: With increasing heterogeneity in multi-core systems 

like AMD Fusion, Tegra SoCs etc. where the system is composed of CPUs, GPUs, 

image processors, video encoders and other types of processors, it is important that we 

consider the fact that systems might no longer consist of coherent processing elements. 

Hence, we need mechanisms that can deal with heterogeneity in terms of workloads 

executing, NoC router architectures, and heterogeneous memories. We thus introduce 

the concept of heterogeneous prioritization framework to suit the requirement of 

modern heterogeneous multi-core computing systems.   

 

This thesis first explores and analyzes application packet criticality and memory access 

behavior. Based on this analysis, we propose techniques to address the above mentioned 

challenges leading to performance improvement in terms of system throughput, memory latency, 

system fairness and energy consumption. 
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Chapter 4  

Related Work 

 

The potential of efficient packet prioritization in influencing overall performance for multi-

core systems is well recognized. Several recent efforts have proposed architectural and 

algorithmic strategies for either NoC packet scheduling or memory-bound packet scheduling. 

Several other efforts have focused on designing heterogeneous NoC architectures with support 

for fairness. We summarize a representative subset of these techniques below. 

 

4.1 Heterogeneous NoC Architecture 

Several efforts propose to architect NoCs to cope with diverse applications running in 

parallel and their communication demands. In [39], Grot et al. propose KiloNoC, a topology-

aware QoS-enabled NoC architecture. In [19], Mishra et al. propose sub-networks for separating 

compute-intensive and memory-intensive applications in NoC based systems. For the sub-

networks proposed in [19], additional hardware circuitry redirects packets injected into the 

network into a sub-network based on the application type. In [40], the authors propose using 

heterogeneous routers that can more effectively match application packet QoS requirements 

while saving power. In [14], Phadke et al. propose heterogeneous main memory architecture for 

optimizing latency, bandwidth and power requirements. All of these prior works demand 

extensive customization of hardware blocks which may be costly or even impractical for 

commodity processing cores and memory.  
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4.2 Memory-bound Packet Scheduling Techniques 

Several prior efforts such as Thread Cluster Memory Scheduling [1], Stall Time Fair 

Memory Scheduling [7], ATLAS [8], SMS [9] and PARBS [10] have proposed memory 

scheduling techniques that modify memory controllers to improve memory access performance. 

These techniques consider thread criticality and fairness while scheduling requests in the 

memory controller [1][7][8][10]. However, such scheduling algorithms have a large 

communication overhead due to limited visibility of the network. These techniques are also 

unaware of the network and cores executing the applications. The techniques proposed in 

[11][12] schedule memory requests based on network contention and executing applications, but 

assume that information about each core is available in the memory controller. Such an 

assumption entails a huge communication overhead between the memory controller and cores 

and as such, these techniques are prohibitive and expensive to implement in practice. Main 

memory requests often face delays due to stalls at the head of the issue queue owing to bank 

conflicts or data contention. Hence, it is important to re-order these requests, as has been 

explored in some previous efforts on memory scheduling. For example, in [13], SDRAM-aware 

NoC routers are proposed that are programmed with the main memory timing parameters, 

allowing for request re-ordering in a memory-aware manner to improve performance. However, 

this approach reduces portability as well as scalability in emerging heterogeneous memory 

systems [14]. The technique in [15] enhances the technique from [13] by distinguishing between 

demand packets and prefetch packets while reordering requests as per memory state, but the 

fundamental drawbacks mentioned for [13] still remain. In [42], Ebrahimi et al. propose a new 

memory-scheduling algorithm for parallel applications aiming to reduce inter-thread interference 

in the memory system. However, this approach is again agnostic to the network congestion.   
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4.3 NoC Packet Scheduling Techniques 

Das et al. propose NoC scheduling using the ranking metrics stall time criticality [16] and 

packet slack [17] for co-running applications. Stall time criticality is calculated based on the 

number of L1 cache misses per thousand instructions (L1MPKI) and packet slack is a measure of 

delay tolerance of a particular packet in the NoC. However, L1MPKI cannot be used as a fine 

grain classifier of applications (as discussed in Chapter 2) and this metric does not consider 

network congestion while determining slack. Therefore, these metrics are not very accurate for 

ranking application criticality. Recently proposed network scheduling schemes such as [18] aim 

to bring uniformity in network latencies and main memory bank utilization. In [18], Sharifi et al. 

propose to apply separate prioritization rules to request and response packets. However, the 

techniques are application-oblivious and can lead to increased delays in the system while trying 

to equalize packet latencies.  In addition, these techniques prioritize off-chip memory requests 

and responses only and ignore the on-chip cache requests and responses. 

 

4.4 Fair Scheduling Techniques 

Das et al. [16][17] use time-based batching and packet-based batching techniques to ensure 

anti-starvation in a strict priority enforced environment. In [41], the authors propose a source-

based throttling mechanism to ensure fairness in shared CMPs. However, none of these 

techniques differentiates between on-chip cache requests and main memory requests for their 

starvation criteria. Our technique presented in Chapter 6 describes a novel anti-starvation method 

to be applied system-wide to ensure fairness and differentiates between network packets and 

memory packets. 

 



47 

 

4.5 Inter-application Interference Reduction Techniques 

The TCM technique [1] by Kim et al. proposes a mechanism to determine interference 

caused by any thread. It uses insertion shuffling between high priority and low priority threads to 

guarantee fairness amongst all threads (cores). Muralidhara et al. [34] propose having separate 

memory channels depending on the application type to reduce the interference between heavily 

interfering applications. In addition, in [19], the authors propose various sub-networks within a 

network to run a specific type of application, which reduces inter-application interference to a 

significant extent. Such techniques aim to mitigate inter-application interference to minimize the 

slowdown of applications running on systems and boost its performance.  

 

In summary, existing memory scheduling techniques are typically network-unaware, 

whereas existing network scheduling techniques are agnostic to main memory performance, 

often being analyzed using simple memory models with fixed latencies. However, we believe 

that as overall system performance is a function of both network latency and memory latency, 

focusing on one of these aspects alone to improve performance is sub-optimal. Hence, we 

propose a novel holistic solution for intelligently prioritizing (i.e., scheduling) network packets 

(on-chip cache requests/responses) and memory packets (off-chip requests/responses) to 

overcome the key drawbacks of existing techniques and improve overall performance. The 

optimization goal for techniques mentioned in Section 4.5, i.e., reduction of inter-application 

interference, is orthogonal to the optimization goals for this thesis and can be used along with 

our proposed techniques described in Chapters 5 and 6. 
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Chapter 5  

Proposed Network Prioritization Techniques - I 

 

In Chapters 1 and 2, we discussed some key issues and challenges in multi-core NoC-based 

systems. Chapter 4 presented some relevant research efforts in this area and their drawbacks. In 

this chapter, we address these drawbacks and propose a NoC framework with heterogeneous 

prioritization (HEPI). HEPI is comprised of a new dynamic ranking scheme for application 

classification, an application-aware prioritization algorithm and a memory-aware prioritization 

algorithm. After evaluating fairness issues in multi-programmed systems and the drawbacks of 

existing anti-starvation techniques (Section 2.2.2), we also apply a system-wide anti-starvation 

technique.  

Our proposed heterogeneous prioritization (HEPI) framework is inspired by the insight that 

there is always a race among request packets originating at different cores to reach their 

destinations. The overall system throughput is impacted by which requests get served faster and 

allocation of NoC resources plays a significant role in determining this. Request/response 

packets also often interfere with each other at NoC routers to acquire an output channel. It is the 

responsibility of router arbitration mechanisms to determine which packets get access to an 

output channel at every cycle. In Round Robin (RR) based arbitration schemes that are widely 

used in NoCs, the arbitration is fair but packet criticality oblivious. Moreover, for off-chip 

memory requests, when packets reach the memory controller, a great deal of power and latency 

is expended in re-ordering these requests to optimally access memory in contemporary memory 

controller nodes. To overcome both of these limitations, we propose a novel heterogeneous two-

stage prioritization technique for packets traversing the NoC. The first stage applies application-
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aware prioritization, with packets being prioritized as per their criticality, which in turn depends 

on their latency sensitivity and MLP characteristics. 

 

 

Figure 5.1: Proposed HEPI framework 

 

The second stage applies memory-aware prioritization, with packets being reordered as per 

memory state to minimize stalls. Figure 5.1 shows how the two types of prioritizations are 

applied to NoC routers. The routers in close proximity (i.e., at one or less hop distance) from the 

memory controller employ the second stage prioritization mechanisms while all other routers, 

relatively farther from memory employ the first stage prioritization mechanisms. As we show 

later, such a framework can notably improve system throughput and memory access 

performance.  

In the following subsections, we first describe a time based batch prioritization mechanism 

used in all NoC routers to prevent packet starvation, followed by details of the Stage I 

application- aware and Stage II memory-aware arbitration algorithms. 
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5.1 Time-based Batching  

We employ a time-based batching technique that is loosely adapted from [16] to prevent  

starvation of packets in the NoC. The time-based batching technique is summarized in Figure 

5.2.  

 

Time-based batching scheme 

 

Parameter Definitions: 

β: number of cycles in a batching interval 

K : Maximum Batching levels       

CBID: Current Batch Injection ID counter 

PBID: Packet’s tagged Batch ID 

 

Batch assignment for application packets at core network interface: 

At the end of every β cycles- 

1:    CBID  = CBID + 1 

2:    if (CBID >= K)       

3:         CBID = CBID % K   //wraps around for compact ids 

4:    PBID = CBID 

 

Relative batch priority of packet p at router during arbitration at cycle T: 

      RBP (p) = (CBID at T – PBID) % K  

 

Figure 5.2: Time-based batching anti-starvation scheme 

 

After each batching interval β, the packets originating in that interval from a network 

interface are assigned a batch id. This batch id is a timestamp that can be used in routers to 

determine how long the packet has spent in the NoC. The batch id counter is incremented at each 

batching interval until K levels, after which it starts over again (steps 1-3) to maintain compact 

ids. The network interface (NI) of each core tags a packets’ header flit with a batch id before it is 

injected into the NoC. When any packet p arrives at a NoC router, a relative batch priority of p 

(RBP) is computed based on current batch injection id (CBID) and packet batch id (PBID) for p. 

This RBP value is used to include starvation information as part of the prioritization scheme in 

both stage I and stage II NoC routers as discussed next.  
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5.2 Stage I Application-aware Algorithm 

This algorithm prioritizes packets in NoC routers as per their application-specific criticality 

and also ensures freedom from starvation. We use our novel ranking scheme to determine 

application-specific packet criticality and the time-based batching technique (Section 5.2.1) to 

prevent starvation of packets. The ranking scheme is described as follows. 

 

5.2.1 Proposed Ranking Scheme 

Different applications contribute differently to the overall system throughput. If an 

application requires a lot of its operands to be fetched from memory, it spends most of its time 

stalling and waiting for the requests to be satisfied by the main memory. Such applications 

cannot contribute much to the overall system throughput (defined as total number of instructions 

executed per unit time). We can thus classify such memory-intensive applications as latency-

tolerant applications that do not impact performance notably even if their packets face a small 

delay. In contrast, there are some applications that have a very high CPU utilization due to their 

high compute intensity and that require very few operands to be fetched from memory over long 

periods. Such compute-intensive applications can be classified as latency-critical, as they are 

very crucial for the performance of the system, i.e., any additional wait time for a core executing 

this application can make the CPU stall which otherwise it could have spent executing 

instructions.  

In our proposed criticality ranking scheme, applications (and their corresponding packets) 

are classified dynamically into four categories based on their latency criticality and MLP. The 

pseudo-code in Figure 5.3 summarizes the classification.  
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Dynamic application criticality ranking scheme 

 

Counters at core’s network interface: 

cL1MPKI: counter for average L1 MPKI 

cMLPIndex: counter for MLP index 

 

Rank assignment for application packets at core network interface: 

At the end of every τ cycles-  

case  ((cL1MPKI  ≤ τ0) AND (cMLPIndex ≤ τ1)) : Rank 0 

case  ((cL1MPKI  ≤ τ0) AND (cMLPIndex > τ1)) : Rank 1 

case  ((cL1MPKI  > τ0) AND (cMLPIndex ≤ τ1)) : Rank 2 

case  ((cL1MPKI  > τ0) AND (cMLPIndex > τ1)) : Rank 3 

 

cL1MPKI = 0; cMLPIndex = 0  //reset counters 

 

  

Figure 5.3: Application criticality ranking scheme 

 

At each core’s network interface, a count of L1 cache misses is kept to broadly classify an 

application as latency-critical or latency-tolerant. To perform fine-grain classification of 

applications as per their memory access patterns and MLP index exhibited, we also keep a count 

of entries in the L1 MSHR queue. These counters are queried for the purposes of dynamic 

classification and then reset at each application-profiling interval of τ cycles. At the profiling 

intervals of τ cycles, L1 miss counters and MLP index counters at a core’s network interface are 

checked. If the L1 cache miss count is below a threshold τ0 then that application is identified as 

latency-critical and further checked for its MLP index. Intuitively, in the latency-critical class, 

applications with MLP index lower than a certain threshold τ1 are indicative of multiple row hit 

requests or high criticality for an application’s compute phase, so we give them the highest 

priority i.e., rank 0. If a latency-critical application has MLP index greater than τ1 then it comes 

immediately next in priority because its MLP is likely to enhance the performance of the system. 

Similarly, if the L1 cache miss count exceeds the threshold τ0, then that application is put in the 

latency-tolerant category and further classified depending on its MLP capabilities as mentioned 
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for the latency-critical class. In this manner, our approach performs a fine-grain online 

classification that captures the changing dynamics of application execution over time. Figure 5.4 

shows a flowchart for the abovementioned application ranking process. Here, T0 represents τ0  

and T1 represents τ1. 

 

 

Figure 5.4: Flowchart for application ranking 

 

The network interface (NI) of each core uses our proposed ranking scheme to compute 

application rank and then tags a packets’ header flit with its rank before injecting it into the NoC. 

The pseudo-code in Figure 5.5 summarizes the Stage I algorithm. 
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Stage I Application-aware Algorithm 

 

Parameter Definitions 

O: set of NoC router output ports 

I: set of NoC router input ports 

MBP: Maximum Batch Priority        //priority of oldest batch 

PBP: Packet Batch Priority            //batch priority for current packet 

 

Prioritization of packets at stage I NoC router: 

1:   for all o: o ∈ O do: { 

2:      Initialize min_rank to 5; priority_port to -1; MBP to -K.  

3:      for each i: i ∈ I do:  { 

4:         if (packet p ∋ p at i ↦ o) {     // packet p at i going to o                                                        

5:            if (RBP (p) > MBP) { 

6:               MBP = RBP (p) 

7:                    priority_port = i  

8:            } else if (RBP (p)  == MBP) { 

9:               if (rankp < min_rank) { 

10:                min_rank = rankp 

11:                          priority_port = i   

12:              } else if (rankp == min_rank) { 

13:                          priority_port = (type (p) == L2 packet)? i : priority_port 

14:               } // if rankp > min_rank, do nothing    

15:           }// else if (RBP(p) <MBP), do nothing  

16:        } 

17:     }       

18:     if (!(priority_port == -1)) {  

19:         priority_port ← grant port o 

20:     } 

21:  }      

 

Figure 5.5: Stage I application-aware algorithm 

 

For every output port o, the arbiter checks input ports to see if there are packets that need to 

go to port o (steps 3-4). For an input port i with a packet p destined for output port o, the RBP 

value of p is compared against the value stored in the Maximum Batch Priority (MBP) register 

(steps 5-15). If RBP for p is higher than MBP (step 5), it indicates a starved packet that must be 

given the highest priority, which is done by updating the priority_port register with p’s 

corresponding input port i (step 6). The value of MBP is also updated with the priority of the 

oldest batch (step 7). If RBP is equal to MBP (step 8), prioritization occurs as per packet 
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criticality (steps 9-14). The rank of p (rankp) is first compared against the value stored in the 

min_rank register. If rankp is less than min_rank, the value in min_rank is updated and i becomes 

the priority port (steps 9-11). If rankp is equal to min_rank (step 12), then we have a case where 

the priority of two packets destined for o is the same. In this case, p is prioritised only if it is an 

L2 packet, as prioritizing such on-chip packets that can finish quickly over off-chip requests 

improves system throughput (step 13). Finally, if RBP is less than MBP (step 15), it indicates a 

situation where another packet set the MBP value and is more severely starved; therefore packet 

p at the current input port i is not given higher priority (i.e., priority_port register is not updated). 

Once all input ports have been checked, the arbiter grants the priority port access to the output 

port o (steps 18-20). These steps are performed in parallel in stage I NoC routers for all output 

ports at every cycle, to determine which packets from the input ports can proceed to their 

destination output ports. 

 

5.3 Stage II Memory-aware algorithm 

This algorithm prioritizes packets in NoC routers so as to avoid bank conflicts and 

encourage row hits and bank level parallelism (BLP). One of the major reasons that off-chip 

memory requests are delayed is due to stalls experienced as a result of bank conflicts. We 

observed that in addition to prioritizing applications in the network, system performance can be 

improved if the prioritized requests do not spend time stalling due to such bank conflicts. We 

thus propose the use of the arbitration inherent in NoC routers to prepare DRAM memory 

requests to proceed to the memory controller in a manner that prevents bank conflicts and 

relieves the memory controller from costly reordering of requests to minimize bank conflicts and 

improve row-buffer hits. We impart this memory-awareness to routers in the proximity of a 
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memory controller (Stage II routers; Figure 5.1). Much like the Stage I routers, the Stage II 

routers also use a time-based batching technique (Section 5.1) to prevent packet starvation. The 

pseudo-code in Figure 5.6 summarizes the Stage II algorithm. 

Stage II routers share a small recently used bank (RUB) table with information about the 

main memory state that includes the N distinct recently used banks, their corresponding rows and 

a valid bit to indicate if the corresponding request has been processed. A valid bit value of 0 for 

an entry indicates that the bank is free whereas 1 indicates that the bank is busy servicing the 

request. For every output port o, the arbiter checks input ports to see if there are packets that 

need to go to port o (steps 3-4). For an input port i with a packet p destined for output port o, we 

first check if the packet has been starved by applying an RBP check as we did in the stage I 

prioritization algorithm (steps 5-7), to ensure that no packet suffers from starvation. If packets 

from the same batch are competing with each other (step 8), then memory packets (i.e. DRAM 

requests) and network packets (e.g., DRAM responses, shared cache requests/responses or cache 

coherence data) are handled separately. For a DRAM request, the router queries the RUB table 

and prioritizes packet p under the following conditions (steps 10-12): i) if the entry for p’s 

destination bank is absent in RUB; or ii) if p’s destination bank is present in RUB and matches 

the corresponding row (valid or invalid). The first condition enhances bank level parallelism by 

accessing multiple banks in parallel; the second condition indicates a row hit. If these conditions 

are not satisfied, then if a more critical packet (i.e. with lower rank than min_rank) is 

encountered, it is prioritized if the bank’s RUB entry has been invalidated, which indicates that 

the bank is not busy (steps 13- 15). These conditions ensure freedom from stalls at the DRAM. 

The priority_port and min_rank registers are updated with the packets i and rankp values if the 

above conditions are satisfied.  
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Stage II Memory-aware Algorithm 

 

Parameter Definitions 

O: set of NoC router output ports 

I: set of NoC router input ports 

 

Prioritization of packets at stage II NoC router: 

1:  for all o: o ∈ O do :{ 

2:     Initialize min_rank to 5; priority_port to -1; MBP to -K.  

3:     for each i: i ∈ I do: { 

4:      if (packet p ∋ p at i ↦ o) {               // packet p at i going to o                                                         

5:        if (RBP (p) > MBP) { 

6:            MBP = RBP (p) 

7:              priority_port = i  

8:        } else if (RBP (p) == MBP) {    

9:            if ((type (p) == DRAM request) {  

10:            if ((dest.bank(p) ∉ RUB) ||      // bank level parallelism 

                  (dest.{bank, row}(p) ∈ RUB)) { //row hit 

11:                   min_rank = rankp 

12:                   priority_port = i 

13:             } else if ((dest.bank(p) ∈ RUB) && valid==0)  

                      &&(rankp < min_rank)) {    //bank conflict 

14:                   min_rank = rankp 

15:                               priority_port = i   

16:            } // else do nothing           

17:           } else {                           // for network packets 

18:              if (rankp < min_rank) {               //packet criticality 

19:                    min_rank = rankp 

20:                                priority_port = i   

21:              } // if rankp ≥ min_rank, do nothing    

22:           }   

23:       } // if RBP < MBP do nothing   

24:     } 

25:    }    

26:    if (!(priority_port == -1)) { 

27:        priority_port ← grant port o   

28:    } 

29:  }   

     

 

Figure 5.6: Stage II memory-aware algorithm 

 

  If none of the above conditions are satisfied by memory packets at input ports, then the 

arbiter prioritizes network packets even if they have higher ranks (lower priority) than memory 
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packets. By de-prioritizing the bank conflict/row conflict memory packets in this manner, head 

of queue stalls at the memory controller are avoided. The network packets are prioritized based 

on their ranks (steps 17-20) compared with the value in min_rank. The input port of the highest 

priority (lowest rank) packet is stored in the priority_port register (step 20). After iterating 

through all input ports, the output port o is granted to the priority_port (steps 26-28). These steps 

are performed in parallel for all output ports in stage II routers at every cycle, to determine 

packets from input ports that can proceed to their output ports.  

 

 

Figure 5.7: Representation of the RUB table 

 

Figure 5.7 shows a representation of the RUB table. All stage II routers have read access to 

the shared RUB table; however, only the router directly connected to the memory controller node 

has write access to the table. When a DRAM request wins the arbitration in this router, the RUB 

table is updated with the request bank and row entries, and the valid bit for the entry is set to 1. If 

the bank entry for the winner is already present in the RUB table, the row entry is overwritten 
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and the valid bit is set to 1. The memory controller sends notifications to this router when a bank 

becomes free following which this router invalidates the bank entry by setting its valid bit to 0. If 

the table is full, the oldest bank entry with a valid bit of 0 is overwritten with the new request. 

The size of the table is kept small to allow for fast table lookup and avoid delays during 

arbitration. 

The next section presents experiments performed to validate our hypotheses.  

 

5.4 Experimental Setup 

 

Evaluation Platform: We use the cycle-accurate event-driven GEM5 full system simulator [22] 

for validating our proposed prioritization framework. GEM5 is a full system simulator providing 

support for state-of-the-art out-of-order processor cores as well as models for a detailed NoC 

architecture, cache hierarchy and main memory subsystem [23]. We use the directory-based 

MESI coherence protocol as our default coherence protocol for the on-chip cache hierarchy. 

Table 1 shows the configuration of our baseline CMP consisting of a 3×3 concentrated mesh 

NoC with a concentration factor of four (i.e., four cores connected to each router) for a total of 

36 cores on the die. We assume one-to-one application to core mapping with requests from a 

core allowed to access L2 cache banks at remote cores. Each NoC router has a state-of-the-art 5-

stage pipelined implementation. For our baseline CMP, we use one memory controller connected 

to node zero and assume a NUMA-based system to support scalability. The baseline memory 

controller serves requests in a first come first served manner. 

 

HEPI Implementation: For our proposed heterogeneous prioritization (HEPI) framework, the 

network interface for a core requires counters to keep track of a core’s L1 misses and outstanding 
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requests in the MSHR queue at each ranking interval. We empirically choose the ranking interval 

as τ =100K cycles considering the tradeoff between ranking accuracy and its overhead. The 

network interface has the (straightforward) logic to compute ranks of applications over a ranking 

interval, as discussed in Section 5.2.1 and assigns a 2-bit rank to the header flit of each packet for 

prioritization in downstream routers. Unlike prior work such as STC [16] where at each 

predefined interval the L1 MPKI values of each core are communicated to a centralized decision 

logic (CDL) to rank applications, our approach is more scalable and possesses lower overhead as 

ranking decisions are made locally. Based on the application profiling done for SPEC2K and 

SPLASH2 benchmarks, the median value of average L1 MPKI was found to be 15 whereas MLP 

Index was found to be 3. Hence, we set the classification threshold τ0 as 15 and classification 

threshold τ1 as 3. The batching interval value (β) was empirically set to 16K cycles and the 

maximum batching levels (K) set to 8. Finally, for stage II routers, we chose the RUB table size 

(N) as 8 entries per rank. This table size is small enough to allow for fast lookup, while also 

providing sufficient visibility into recently used banks given that modern DRAMs typically 

possess eight banks per rank. 
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Table 5.1: Baseline CMP system configuration 

CPU configuration 1 GHz; out of order 

L1 Cache I/D-cache 16 KB, 2-way, 2-cycle latency,  cacheline 128B, 16 

MSHRs 

L2 Cache Unified, 128kB bank shared, 4-way set associative, cacheline 128B  

Main Memory 2GB, DDR2-667, 2 ranks/DIMM, 8 banks per rank, detailed 

memory model using open-row policy and row-interleaving 

Router 5-stage virtual channel router; credit-based flow control, 4 VCs per 

port, 4 buffers/data virtual channel, 1 buffer/ctrl virtual channel 

Network Topology 3×3 2D concentrated mesh, concentration factor 4 

Routing scheme Deterministic X-Y 

 

Comparison with Prior Work: We modeled our proposed HEPI approach as well as the best 

known prior works on NoC and memory prioritization for comparison. The prior works and 

configurations we compare against include: 1) a baseline localized Round Robin technique 

(Local RR) that uses a fair round-robin algorithm in all NoC routers; 2) SDRAM-aware router 

[13] that uses SDRAM-specific timing parameters to determine delay and priority of an off-chip 

memory request at specific SDRAM-aware routers ( SDAR); and 3) Stall Time Criticality (STC) 

[16] that employs application-aware prioritization based on batching and application ranking as 

per L1 MPKI at all the NoC routers. The parameters used for STC are 1) batching 

interval=16000 cycles; 2) ranking interval=350K cycles 3) batching as well as ranking levels=8. 

For SDRAM-Aware, we use DDR2-667 timing parameters from Micron datasheets [24] and 

replace three conventional NoC routers in the vicinity of the memory controller with SDRAM-

aware routers. These prior techniques have used a trace-based simulator for their evaluation 

purposes while we use an event-driven simulator with detailed micro-architecture models. All 

the simulations in our studies were run for at least 180M instructions.  
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Workloads: We profile 17 diverse applications from the SPLASH-2 and SPEC2K benchmark 

suites. We use different combinations of these applications to form a multi-programmed 

workload environment to compare our approach with the baseline system and prior work. We 

profiled all of the applications and divided them up into two categories based on their compute- 

and memory-intensity as shown in Table 5.3.  

Following table shows the average L1 MPKI of each of the applications profiled from 

SPLASH2 and SPEC2K benchmark suite. As shown in Table 5.2, gcc is the most memory-

intensive application amongst above mentioned benchmarks while radix is the most compute-

intensive benchmark. However, these benchmarks have different degrees of Memory Level 

Parallelism (temporal locality or spatial locality) at different time intervals. Hence, to 

demonstrate that two compute-intensive or memory-intensive benchmarks can be totally 

different in their MLP characteristics, we captured the maximum MLP degree exhibited by any 

benchmark in a window of 10M cycles. As shown in Table 5.2, barnes and lucas are both 

compute-intensive benchmarks (low L1 misses per instruction), however, lucas exhibits more 

spatial locality than barnes in a given window of cycles. 

We use these benchmarks with multiple combinations to form a multi-programmed 

workload. We form three categories of multi-programmed workloads- heterogeneous workloads 

i.e. memory-intensive as well as compute-intensive workloads co-running on a system (case I), 

homogeneous workload systems comprising all compute-intensive workloads (case II) and all 

memory-intensive workloads co-running on a multi-core system (case III). We perform 

experiments for each of these workload cases. Table 5.4 shows how various benchmarks are 

combined to create the three workload cases. The number next to a benchmark corresponds to its 

parallelization degree (number of cores it runs on). 
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Table 5.2: Average L1 MPKI and highest MLP degree  

exhibited for SPLASH-2 and SPEC2K benchmarks 

Benchmark Average L1 

MPKI 

Highest MLP 

exhibited 

Radix 0.7296 2 

Fft 1.104 3 

Swim 1.2605 3 

Barnes 2.3959 2 

Lucas 6.7095 6 

Fmm 8.1248 4 

Crafty 10.8114 4 

Sixtrack 13.7612 3 

Equake 16.1462 5 

Ocean 16.7009 4 

Galgel 19.1546 7 

Ammp 21.2576 4 

Mgrid 26.9914 2 

Apsi 31.265 2 

Gap 38.4858 2 

Gcc 47.282 5 

 

Table 5.3: Classification of SPLASH-2 and SPEC2K applications 

Compute-intensive Memory-intensive 

ammp, apsi, gap, galgel, 

gcc, mgrid, ocean 

barnes, crafty, fft, fmm, lucas, 

radix, sixtrack, swim, equake, 

applu 

 

  



64 

 

Table 5.4: Three workload categories for a 36-core CMP 

Heterogeneous 

Workloads 

(Case I) 

ocean(4), gcc(8), apsi(6), swim(8), equake(10) 

ammp(5), apsi(9), radix(10), gap(8),lucas(4) 

crafty(7), gap(9), applu(11), gcc(4), barnes(5) 

Compute-Intensive  

Workloads 

(Case II) 

lucas(12),barnes(12), radix(12) 

fft(9), swim(9), barnes(9), fmm(9) 

equake(12), crafty(12), applu(12) 

Memory-Intensive  

Workloads 

(Case III) 

ocean(9), apsi(9), mgrid(9), gcc(9) 

gcc(16), ammp(8), galgel(12) 

apsi(9), gap(9), mgrid(9), gcc(9) 

 

Evaluation Metrics: We focus on the following performance related metrics:  

 

 Overall System Throughput 

We measure overall system throughput as the number of instructions executed in the 

entire system over duration of certain number of cycles. It represents how the overall 

system performs with different priority algorithms implemented in terms of latency for 

a fixed number of instructions.   

 Weighted Speedup 

This metric is system-level and has significance in a multi-programmed environment. It 

is defined as:  

                          a   

 

     a      

over all applications, where IPCshared and IPCalone are the instructions executed per cycle 

(IPC) when executing multiple workloads and single workloads, respectively. This 

metric is useful in that it captures inter-application interference. 
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 Average Memory Latency 

We capture average memory latency for packets from the memory controller to the 

main memory and back. This gives us an estimate of how the prioritization techniques 

handle bank conflicts and data contention occurring at main memory. 

 

5.5 Experimental Results 

This section presents experimental results that compare our proposed HEPI framework 

with the following prioritization techniques: 1) baseline Local RR; 2) SDAR [13]; and 3) STC 

[16]. Modern CMP systems are often multi-programmed, executing either heterogeneous 

workloads (a mix of compute- and memory-intensive) or homogeneous workloads (only 

compute-intensive or only memory-intensive).  

In the following section (Section 5.5.1), results for system throughput, memory latency and 

weighted speedup for the comparison against prior prioritization frameworks are presented 

across the three workload categories. We explore the impact of utilizing a high speed memory 

(DDR3-1333) for various prioritization techniques in Section 5.5.2. In Section 5.5.3, we also 

show results for the scalability of our framework for three different network sizes with varying 

number of cores. Finally, we compare the overhead of our proposed approach and other 

techniques in Section 5.5.4. 

 

5.5.1 Performance Comparison Across Workload Types 

Figure 5.8 shows the comparison between HEPI and other techniques, with averaged 

results shown for the three workload cases shown in Table 5.5. The numbers over the bars in the 

figures indicate percentage improvement of the techniques over the baseline Local RR technique. 
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For case I heterogeneous workloads, HEPI shows an improvement over the baseline/SDAR/STC 

techniques of 8.4%/4.6%/5.9% for system throughput, 7.3%/3.3%/5.4% for memory latency and 

9.3%/4.9%/6.1% for weighted speedup, motivating the need for packet prioritization over 

fairness. The SDAR technique supports memory-aware packet prioritization closer to the 

memory controller but is oblivious to application-specific packet criticality. Hence, it does not 

contribute towards improving the system throughput as effectively as the multi-stage HEPI 

technique does. 

 

 

(a) 

 

(b) 
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(c) 

Figure 5.8: % Improvement over Local RR: (a) system throughput,  

         (b) average memory latency, and (c) weighted speedup 

 

In contrast, STC enables application-specific packet prioritization but relies on L1 MPKI 

only to determine criticality of a packet and does not consider its memory access characteristics. 

Also, it is inefficient in handling DRAM requests as it is memory-unaware. Hence, it is 

outperformed by HEPI which not only exploits the unique characteristics of each application to 

determine packet criticality and better prioritize them upstream in the network via stage I routers, 

but also maximizes row hits and prevents bank-conflicts downstream in the network (closer to 

the memory) via stage II routers. 

For case II compute-intensive workloads, we can observe that HEPI again outperforms the 

other techniques, but by a smaller magnitude than for heterogeneous workloads. HEPI shows an 

average improvement of 6.1%/2.9%/3.9% for system throughput, 4.7%2.8%/3.7% for memory 

latency and 6.5%/ 3.2%/4% for weighted speedup over the baseline/SDAR/STC techniques. The 

smaller magnitude of improvement for HEPI with compute-intensive workloads in contrast to 

heterogeneous workloads is because for compute intensive workloads, network traffic is much 

lower, which reduces opportunities for applying prioritization and consequently diminishes the 
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benefits of using the HEPI technique. Moreover, as all the workloads have similar behavior, there 

is little scope for distinguishing between applications in this case. Finally, for case III memory-

intensive workloads, we see an average improvement of 6.2%/3.2%/4% for system throughput, 

4.9%/2.8%/3.9% for memory latency and 6.7%/3.6%/4.1% for weighted speedup over the 

baseline/SDAR/STC techniques. Intuitively, with higher network traffic under memory-intensive 

workloads, the magnitude of improvement for HEPI is also slightly larger than for compute-

intensive case II workloads with low network traffic. The improvements for case III workloads 

are, however, lower than that for case I workloads. This is because, case I workloads are 

heterogeneous and thus, there is more opportunity to identify packets from different types of 

applications, rank them and exploit stage I routers to benefit criticality of applications; which is 

not as effective with homogeneous case III workloads. 

 

5.5.2 Performance with Different Main Memory  

Next, we were interested in understanding the impact of changing the main memory type 

and observing if the performance benefits of HEPI still hold with respect to the other 

prioritization techniques. We modeled the high speed DDR3-1333 with parameters taken from 

Micron datasheets [26] and used it to replace the baseline DDR2-667 main memory model [24] 

in our simulation framework. Figure 5.9 shows the results for system throughput, average 

memory latency and weighted speedup for the high speed DDR3 memory. The results show the 

percentage improvement of the techniques over the baseline Local RR scheme and are averaged 

for the three workload cases in Table 5.5. We observed that the improvements with HEPI were 

more pronounced when using the high speed DDR3 memory, than with the DDR2 memory. This 

is because for high speed memories with a faster clock frequency, bank conflicts can become a 



69 

 

major bottleneck due to larger number of pre-charge and activate cycles. The stage II 

prioritization algorithm in HEPI is able to better route requests to the main memory than other 

techniques, allowing prioritization of requests such that accesses to free banks and row hits are 

maximized. The better performance for the stage II prioritization in HEPI is the main reason that 

it achieves greater improvements with DDR3 than with DDR2. 

 

 

(a) 

 

(b) 
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(c) 

Figure 5.9: % Improvement over Local RR for DDR3-1333: 

system throughput, (b) average memory latency, and (c) weighted speedup 

 

5.5.3 Platform Scalability Analysis 

In this set of experiments, we were interested in observing the impact of scaling the 

platform complexity (mesh size, core count, memory controller count) on the performance of 

HEPI and other prioritization techniques. We explored performance for three different network 

sizes: i) 3×3 mesh with a concentration factor of three (27 cores) and one memory controller, ii) 

4×4 mesh with concentration factor of three (48 cores) and one memory controller; and iii) 8×8 

mesh with concentration factor of one (64 cores) with two memory controllers on diagonally 

opposite sides. Figure 5.10 shows the percentage improvement for system throughput, average 

memory latency and weighted speedup over the baseline Local RR technique, for the three 

different platform complexities. 
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(a) 

 

(b) 

 

(c) 

Figure 5.10: % Improvement over Local RR for different platform complexities:  

        (a) system throughput, (b) average memory latency, and (c) weighted speedup 

 

The results are averaged over the three heterogeneous workload configurations in case I 



72 

 

from Table 5.5 (results for case II and case III workloads showed similar trends). It can be 

observed that HEPI scales well with increasing core counts, network complexity and memory 

controller complexity, showing notable improvements over other techniques. With higher 

network traffic and more opportunity to prioritize requests, the results are more pronounced. 

Hence, we get the best improvements for the 4×4 configuration with 48 cores as it has the most 

NoC traffic. 

 

5.5.4 Overhead Analysis  

This final set of results attempts to quantify and compare the overheads of implementing 

the HEPI prioritization technique with the implementation overhead for other prioritization 

techniques. Figure 5.11 shows the overall NoC fabric area for the baseline Local RR, SDAR, 

STC and HEPI frameworks for the 32nm CMOS process technology node and the 36 core CMP 

configuration. Not surprisingly, the baseline technique having a NoC router with a simple round 

robin prioritization mechanism has the lowest area overhead. For the SDAR technique, the 

SDRAM-Aware NoC router has memory-specific information tables at each SDRAM-aware 

router and also requires buffers to store complete addresses of the previous arbitration winners. 

These additional components drive up its area overhead compared to the baseline case. STC 

routers require buffers to store L1 MPKI information for all the cores and central decision logic 

to calculate ranks for each application dynamically, hence this technique has a very high area 

overhead. In contrast, HEPI has a lower area overhead than for STC and SDAR as it performs 

ranking and application-centric prioritization locally with simple circuitry in stage I. HEPI stage 

II routers have low overhead as they require only a small RUB table shared by multiple routers 

and minimal circuitry to query/update the table.  
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Figure 5.11: Overall area estimation  

 

Thus, our experimental results show that the proposed HEPI framework outperforms fair 

prioritization techniques by up to 12.6% as well as other application-specific techniques from 

prior work by up to 6.9% for various multi-programmed workloads. HEPI also shows consistent 

improvements with increasing platform complexity. Furthermore, the benefits achievable with 

HEPI are improved when emerging high speed memories are utilized. Given its competitive area 

overhead compared to other competing prioritization techniques, HEPI provides an attractive 

alternative for inclusion in emerging CMPs with multi-programmed workloads. 
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Chapter 6  

Proposed Network Prioritization Techniques-II 

 

Chapter 5 presented an application-aware and a memory-aware packet prioritization 

algorithm. The memory-aware algorithm prioritizes packets to enhance bank level parallelism 

and consequently memory throughput. However, as discussed in Chapter 2, high-speed 

memories place a constraint on BLP degree of any memory device to avoid power spikes. We 

therefore enhanced our work presented in Chapter 5 to create an improved memory-aware 

algorithm for high-speed memories considering this constraint. The architectural proposition of 

heterogeneous prioritization framework is retained but the framework presented in this chapter 

employs a different memory-aware prioritization technique and a new anti-starvation technique. 

We will refer to the framework described in this chapter as the Dual Scheduled Packet 

Framework (DSPK).   

DSPK is composed of two main components: (i) a packet classification technique that is 

application-aware at the first level and memory-aware at the second level; and (ii) an anti-

starvation technique employed system-wide to prevent unfairness in the system due to strict 

priority-based scheduling. Details of our framework are presented next.    

 

6.1 Anti-starvation Technique  

On-chip L2 cache request packets have a lower overall latency than off-chip memory 

packets. If the on-chip cache request packets encounter a hit, they can contribute to overall 

performance (system throughput) to a much greater extent than packets going off-chip. However, 

when one application is ranked higher than the other, there are instances when L2 packets of 
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lower ranked applications consistently lose out to off-chip memory requests of higher ranked 

applications. Such L2 packets will get a “starved” status only after a significant amount of time 

has elapsed (corresponding to the batch interval size) if the batching strategies – time-based 

batching or packet-based batching described in Chapter 2 are employed. We conjecture that there 

should be different starvation criteria for L2 requests and off-chip requests. We, therefore, 

propose an anti-starvation technique that decides the “starved” status of a packet depending on 

not only how long it has been delayed but also depending on its destination. The network 

interface tags a packet with initial request time as soon as it is injected in the NoC. In the switch 

allocation stage at each NoC router, current delay faced by the packet is calculated by 

subtracting its initial request time from current time. We set separate thresholds for L2 and off-

chip requests in each router that are calculated based on the running average of current delay 

values for the L2 and off-chip destined packets seen by a router in the last N cycles. The pseudo 

code in Figure 6.1 describes our threshold determination process. After keeping track of average 

L2 request and memory request delays for N cycles, thresholds for L2 packets (α0) and memory 

packets (α1) are stored at each router to determine starvation conditions. If the current delay of a 

network or memory packet exceeds the relevant threshold at a router, then the packet is 

considered starved and immediately granted the output channel over other higher ranked packets. 

Figure 6.2 describes identification of starved packets. The next subsection discusses how we 

classify and rank packets. 
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Anti-starvation Strategy Threshold Computation 

 

Parameter Definitions: 

Set of all packets: P 

Set of all routers: R 

α0 : Threshold for L2 cache requests 

α1 : Threshold for memory requests 

 

Compute average packet delay at each r:  

∀ r: r ∈ R 

∀ p: p ∈ P at r do: 

While (current_cycle != N) do: 

     if (type (p) == L2 cache request) then 

         l2_lat += (current_cycle – initial_request_cycle) 

         l2_pkt ++ 

     else              //if p is a memory request) 

         mem_lat += (current_cycle – initial_request_cycle) 

         mem_pkt++ 

     end if 

end while 

 

average_delay_0 = l2_lat/l2_pkt            // Average L2 delays 

average_delay_1 = mem_lat/mem_pkt   // Average memory delays 

 

α0 = (average_delay_0 * 1.5) 

α1 = (average_delay_1 * 1.5) 

 
 

Figure 6.1: Pseudo-code for threshold determination in anti-starvation technique 
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Anti-starvation Strategy  

Apply the following anti-starvation check at the router: 

  

   ∀ r: r ∈ R do: 

   ∀ p: p ∈ P at r do: 

   Case based on type(p) 

        Case DRAM request: 

                  if (delay (p) ≥ α1) then 

                         packet p is starved 

                   end if 
         Case L2 request: 

                   if (delay (p) ≥ α0) then 

                          packet p is starved 

                    end if 

         Default: 
                    packet is not starved 

   End Case  
 

 Figure 6.2: Pseudo code for anti-starvation technique          

          

6.2 Application- and Memory-aware Packet Scheduling 

Applications are frequently classified based on their memory access behavior either as 

memory-intensive if they spend most of their execution time communicating with memory or as 

compute-intensive if they spend most of their time performing computations and not accessing 

memory as often. Intuitively, in scenarios with multiple co-running applications, the compute-

intensive applications contribute to a greater extent towards system throughput (i.e., total 

instructions executed per cycle across all cores in the system). Therefore, packets from these 

applications should be given higher priority during scheduling. But, it is also important to 

consider the varying degrees of memory-intensiveness and memory level parallelism (MLP) 

exhibited by different applications over their lifetime. To capture these unique application-

specific characteristics while assigning ranking (priority) weights to packets from applications, 

we propose using a two-stage approach. 

In the first stage, we dynamically measure the memory-intensiveness of an application at 



78 

 

runtime using the metric average L1 misses per Kilo Instructions (L1MPKI). If the average 

L1MPKI over a time window is less than a threshold TS1, it can be categorized as a compute-

intensive application whose packets deserve higher priority (weightage). On the other hand, if 

average L1MPKI is less than the threshold, the application is labeled as memory-intensive and 

its packets assigned lower weights. In the second stage of classification, we consider the memory 

level parallelism (MLP) capabilities of an application to assign its final weights. We measure the 

MLP of an application using the outstanding count in the request queues of L1 MSHRs (Miss 

Status Handling Registers) [20]. The length of the MSHR queue has been shown to be directly 

proportional to MLP exhibited by the application [21]. If this length is less than a certain 

threshold TS2, the application has lower MLP and is more critical. Thus, applications with low 

L1MPKI and low MLP are assigned the highest weight (3 on a scale of 0-3). This is followed by 

applications with low L1MPKI and higher MLP being assigned a weight of 2. Memory-intensive 

applications with low MLP are assigned a weight of 1 and the applications in the remaining 

categories are assigned the lowest weight of 0. Counters at each nodes network interface keep 

track of average L1MPKI of the application running at that node and the length of the MSHR 

queue over a time interval. The counters are reset and weights are assigned at the start of every 

new interval (every 100K cycles). Header flits of packets injected into the NoC have a 2-bit field 

that contains the assigned weight. 

The application-aware strategy is presented in Figure 6.3. At each arbitration cycle, the 

router iterates through input ports to find a suitable request to be granted output channel. While 

iterating through input port i, if there is a packet p such that it desires output channel o (step 6), 

then the packet p should satisfy certain constraints in order to gain priority over packets at other 

input ports. If packet p is starving i.e. p being a L2 request packet exceeds threshold α0 or p being 
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a memory request exceeds threshold α1, then it is immediately granted channel o because a 

starving packet takes priority over other packets (steps 8 to 12). If the packet is not starved, the 

priority is given on the basis on weights assigned to the packets.  

 

DSPK I Application-aware Algorithm 
 

Parameter Definitions: 

O: set of NoC router output ports 

I: set of NoC router input ports 

 

Prioritization of packets at stage I NoC router: 

1:   for each o ∈ O do: { 

2:      max_weight = -1         // initialization value  

3:      priority_port = -1        //initialization value 

5:      for each i ∈ I do:  { 

6:        if (packet p ∋ p at i ↦ o) {     // packet p at i going to o                                                        

8:           if ((type (p) == L2 cache request)  

                  && (delay (p) ≥ α0){ 

9:                 i ← grant port o  
10:         } else if ((type (p) == memory request)  

                   && (delay (p) ≥ α1)) { 

11:               i ← grant port o 

12:         } else {                     // no packet is starving 

13:            if (weightp > max_weight) { 

14:               max_weight = weightp 

15:                        priority_port = i   

16:            } else if (weightp == max_weight) { 

17:                        priority_port = (type (p) == L2 request) ? i : priority_port 

18:            } // if weightp < max_weight, do nothing    

19:         }  

20:      } 

21:    }       

22:    if (!(priority_port == -1)) {  

23:         priority_port ← grant port o 

24:    } 

25: }      

 

Figure 6.3: Pseudo code for DSPK-I application-aware technique 

 

The value for priority_port stored in register is to determine the highest priority port. If the 

weight of packet p (weightp) is greater than value stored in max_weight register, then the value 
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of max_weight and priority_port are updated. If the weights are equal then the priority_port is 

updated only if p is a L2 request packet since on-chip cache request packets have a faster 

turnaround time. Finally, the port with highest priority (priority_port) wins the arbitration. We 

implement this two-stage weighing based classification at the NoC routers two or more hops 

away from the memory controller. This technique at this level is referred to as DSPK-I. 

Most of the network packets are handled by DSPK-I. However, the request packets that 

miss on-chip caches and must traverse the NoC again to go to off-chip memory must be treated 

differently, to prepare them against bank conflicts and row misses. Hence, a second-level 

scheduling algorithm must be applied on these memory packets. This algorithm is employed at 

NoC routers that are a single hop away from the memory controller. The technique at this level is 

referred to as DSPK-II. The primary focus here is to schedule memory packets to exploit bank 

level parallelism and maximize row hits while taking into account the constraints in modern high 

speed memories.  

The pseudo-code in Figure 6.4 summarizes DSPK-II scheduling algorithm. DSPK-II NoC 

routers maintain a Used Bank Row (UBR) table for each rank. This table maintains the bank and 

row history for a maximum of N previous requests for each rank. It has a valid bit associated 

with each entry to know if the bank is still processing the request. In addition, we also need to 

consider that no more than four banks can be activated in a rank in a window of T cycles for 

modern DDR3 memories (as discussed in Chapter 2). We employ n-bit counters for each logical 

rank at DSPK-II routers to count up to T cycles. The value of T is set to tFAW (a maximum 5-bit 

value specified in DDR3 datasheets) when the number of UBR table entries for any rank 

becomes equal to four. The value of this tFAW counter is decremented every cycle until it 

becomes 0 to indicate that BLP can be exploited (step 2). For a packet p at input port i 
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contending for output port o, starvation check is applied and granted channel immediately  

DSPK II Memory-aware Algorithm 
 

Initialization of parameters: 

Set of Output ports: O 

Set of Input ports: I 

ctFaw: counters for counting tFaw cycles 
 

Prioritization of packets at stage II routers: 

1:   for all o ∈ O do:{ 

2:        if (ctFaw !=0) ctFaw --   

3:        priority_port = -1; max_weight = -1          //initialization 

4:        for each i ∈ I do: { 

5:           if (packet p ∋ p at i ↦ o) {          //p at i maps to o  

6:               if (type (p) == DRAM request) {  

7:                   if ((delay (p) ≥ α1)) { 

8:                       i ← grant port o 

9:                   } else { 
10:                         if (((dest.bank(p) ∉ UBR) &&   
                                ((sizeof (UBR)  ≤ 4)  ||  (ctFaw == 0)))                   //BLP  
                              || (dest.{bank, row}(p) ∈ UBR)                                //row hit  
                          || ((dest.bank(p) ∈ UBR) && valid==0)  &&  

                              (weightp > max_weight))) {                                //bank conflict  

11:                              priority_port = i   

12:                              max_weight = weightp   

13:                 } // else do nothing           

14:             } else {                           // for network packets  

15:                  if ((delay (p) ≥ α0)) { 

16:                       i ← grant port o 

17:                  } else { 

18:                       if (weightp > max_weight) {               //packet criticality  

19:                              priority_port = i  

20:                              max_weight = weightp    

21:                       } // if max_weight ≥ weightp , do nothing    

22:                  }   

23:             }  

24:        } 

25:     }    

26:     if (!(priority_port == -1)) { 

27:         priority_port ← grant port o   

28:     } 

29: }    

 

Figure 6.4: Pseudo code for DSPK-II memory-aware technique 

 

if identified as starved (steps 7-8, 15-16). When memory requests are contending at a DSPK-II 
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router for an output channel towards the memory controller, entries in the UBR table are checked 

(step 10).  If the entry is absent and if the BLP degree is not maximized (i.e. tFAW constraint 

applicable), then the packet is prioritized (priority_port and max_weight registers updated with 

values i and weightp) to benefit from bank level parallelism (step 11-12). Packet is also 

prioritized if there is a possibility of row hit i.e. the bank entry and row entry matches or if a 

more critical DRAM request has invalid entry in UBR table. Otherwise, the bank is declared as 

busy and the packet is held at the router granting the output channel, with preference given to 

other network packets with applicable check for weights (steps 18-21). This prevents head of the 

queue stalls at the memory controller due to bank busy requests.  

Figure 6.5 summarizes how our framework is applied to a NoC-based CMP. The figure 

shows a 3×3 mesh NoC with a concentration degree of two (i.e., two cores/router) and how our 

proposed DSPK-I and DSPK-II scheduling techniques are applied to various NoC routers. In 

addition, the proposed anti-starvation technique is applied to all NoC routers. Together, these 

techniques constitute a holistic framework for addressing the scheduling challenges facing 

modern NoC-based multi-core systems.  
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Figure 6.5: Proposed framework applied to a NoC-based CMP 

 

6.3 Experimental Setup 

We use the cycle-accurate event-driven GEM5 simulator [22] for validating our proposed 

packet scheduling framework. GEM5 is a full system simulator providing support for state-of-

the-art out-of-order cores as well as models for a detailed NoC architecture, cache hierarchy and 

main memory subsystem [23]. We use the directory-based MESI coherence protocol as our 

default coherence protocol for the on-chip cache hierarchy. Table 6.1 shows the configuration of 

our baseline CMP consisting of a 3×3 concentrated mesh NoC with a concentration factor of 

three (i.e., three cores connected to each router) for a total of 27 cores on the die. We assume 

one-to-one application to core mapping with requests from a core allowed to access L2 cache 

banks at a remote core. Each NoC router has a state-of-the-art 5-stage pipelined implementation. 

For our baseline CMP, we use one memory controller connected to node 0 and assume a NUMA 

configuration to support scalability. The default memory controller services requests in a first 

come first served manner. 
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Table 6.1: Baseline CMP configuration 

CPU 1 GHz; out of order;128 instruction queue 

L1 Cache I/D-cache 16 KB, 2-way, 2-cycle latency,  cacheline 128B, 16 

MSHRs 

L2 Cache Unified, 128kB bank shared, 4-way set associative, cacheline 128B  

Main Memory 2GB, DDR3-1333, 2 ranks/DIMM, 8 banks per rank, detailed memory 

model using open-row policy and row-interleaving 

NoC Router 5-stage virtual channel router; credit-based flow control, 4 VCs per 

port, 4 buffers/data virtual channel, 1 buffer/control virtual channel 

NoC Topology 3×3 2D concentrated mesh, concentration factor 3 

Routing scheme Deterministic X-Y 

 

For our proposed framework, we empirically set the value of threshold TS1 as 15 and TS2 as 

3 in DSPK-I routers. For DSPK-II routers, we set a UBR table size of 8. For the anti-starvation 

technique, we keep a track of packets arriving at each router over a window of 4096 cycles. We 

modeled our proposed approach as well as the best-known prior works on NoC and memory 

scheduling for comparison. The prior works and configurations we compare against are: 1) a 

baseline technique (Round-Robin) that uses a fair round-robin scheduling algorithm in all NoC 

routers and is widely used in CMPs today; 2) a memory-aware technique [13] that uses SDRAM-

specific timing parameters to determine delay and priority of an off-chip memory request at 

specific routers (MAT); and 3) an application-aware technique (AAT) [16] that employs 

application-aware scheduling based on batching and application ranking (using L1MPKI values) 

at all the NoC routers. The parameters used for AAT are: batching interval=16000 cycles; 

ranking interval=350K cycles; batching as well as ranking levels=8. For MAT, we use DDR3 

timing parameters from the Micron datasheet [26] and replace three conventional NoC routers in 

the vicinity of the memory controller with memory-aware routers. These prior techniques have 

used a trace-based simulator for their evaluation purposes while we use an event-driven 
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simulator with detailed micro-architecture models. All the simulations in our studies were run for 

at least 150M instructions. For workloads, we considered 17 diverse applications from the 

SPLASH-2 [28] and SPEC2K [47] benchmark suites. We first profiled all of the applications and 

separated them into two categories: compute-intensive and memory intensive. Benchmarks with 

average L1MPKI values less than equake are classified as compute-intensive while the 

remaining benchmarks are classified as memory-intensive. Figure 6.6 shows the L1MPKI and 

memory level parallelism (MLP) exhibited by the benchmarks. We then used different 

combinations of these benchmarks to create several multi-programmed workloads. Table 6.2 

shows the benchmark combinations we created for our experimental studies. Workloads 1 and 4 

are formed by mixing compute-intensive and memory-intensive benchmarks; whereas workloads 

2, 3 and 5 represent homogeneous workloads with either all-compute-intensive or all-memory-

intensive benchmarks co-running on the system. The number next to a benchmark refers to the 

degree of parallelization (i.e. the number of cores it runs on). 
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Figure 6.6: L1MPKI and MLP results of application profiling for benchmarks from the 

SPLASH-2 and SPEC2K suites 

 

Table 6.2: Workloads for execution on baseline CMP 

Workload 1 ocean(4), gcc(4), apsi(6), swim(8), applu(5) 

Workload 2 lucas(9),barnes(9), radix(9) 

Workload 3 gcc(5), ammp(9), galgel(7), gap(6)   

Workload 4 crafty(5), gap(7), fft(6), gcc(5), barnes(4) 

Workload 5 equake(9), crafty(9), applu(9) 

 

6.4 Experimental Results 

In this section, we provide results for our experimental evaluations for the baseline Round 

Robin, Application-Aware technique (AAT) [16] and Memory-Aware technique (MAT) [13] 

compared to our proposed technique (DSPK). In Section 6.4.1 we present comparison results for 

our baseline CMP. In Section 6.4.2, we evaluate the impact of memory speed scaling on the 

effectiveness of scheduling techniques. In Section 6.4.3, we explore the scalability of our 

technique for different network sizes. In Section 6.4.4, we compare the energy consumption for 

the different scheduling techniques. Finally, in Section 6.4.5, we evaluate the area overhead of 
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the NoC routers of the techniques considered.    

 

6.4.1 Multi-programmed Workload Evaluation on Baseline CMP 

With the growing heterogeneity of applications co-running on modern multi-core systems, 

it is important that the packet scheduling techniques perform well for various workload 

combinations. Figure 6.7 shows the performance comparison and presents results for system 

throughput and average memory latency for the various scheduling techniques. It can be seen 

that our proposed DSPK framework outperforms the previously proposed scheduling techniques 

from [13] and [16] and the baseline Round Robin scheme for all workload combinations.   

 

 

(a) 
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(b) 

 

(c) 

Figure 6.7: Performance evaluation (a) system throughput, (b) average memory latency, 

and (c) maximum slowdown with DDR3-1333 for workloads from Table 6.2. 

 

This improvement is due to the comprehensive nature of DSPK in scheduling both network 

packets and memory packets efficiently by considering application-specific and memory-specific 

characteristics of the system, unlike any of the other techniques. DSPK improves system 

throughput on an average by 14.4%/7.4%/6.8% and average memory latency by 11%//6%/7% 

over the baseline Round Robin, MAT and AAT techniques, respectively. To evaluate our fairness 

technique, we compare the maximum slowdown experienced by the applications in a multi-
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programmed environment. We found that our fairness technique improves the system fairness by 

11.5%/7.1%/6.4% over Round Robin, MAT and AAT respectively. 

 

6.4.2 Memory Speed Scaling Evaluation 

Today’s multi-core systems employ high-speed memories to help overcome the “memory 

wall”. However, as memory speed (clock frequency) increases, the number of cycles taken for 

any memory operation also rises. Any memory-aware scheduling technique should comply with 

the characteristics and constraints of the memory architecture being utilized in the system. To 

check for applicability and suitability of our scheduling technique for higher speed memories, we 

compared its performance to that of other scheduling techniques for the baseline CMP system 

running with a faster memory model DDR3-1600 [26], instead of the baseline DDR3-1333 

model. 

 

 

(a) 
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(b) 

 

(c) 

Figure 6.8: Memory speed scaling evaluation (a) system throughput, (b) average 

memory latency, and (c) maximum slowdown for DDR3-1600 with baseline CMP system 

 

Figure 6.8 shows the results of this comparison study. We observed that the performance of 

MAT takes a dip with the higher speed memory, because its memory-aware scheduling algorithm 

does not consider the four activate window constraint (discussed in Chapter 2) while aiming to 

maximize bank level parallelism. Packets using the MAT technique face frequent head of the 

queue stalls at the memory controller, thereby increasing its memory latency and lowering its 

system throughput. AAT is agnostic to memory and hence it achieves the some performance 
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improvement on the basis of application-aware scheduling. However, DSPK outperforms all the 

techniques as it is prepared for these issues and handles memory packets and network packets 

very efficiently ensuring fairness in the system. DSPK achieves an average improvement of 

10.3%/4.6%/3.6% for overall system throughput and 10%/5.3%/6% for average memory latency 

and 11%/6.7%/7.2% for fairness over the baseline Round Robin, MAT and AAT techniques, 

thereby proving the superior memory speed scalability of our technique. 

   

6.4.3 Network Size Scalability Evaluation 

Next, we were interested in observing how our technique scales with increasing system 

complexity and for larger network sizes. Therefore, we studied three different CMP platform 

complexities with varying network sizes: a 3×3 concentrated NoC with concentration degree of 4 

(36 cores), a 4×4 concentrated NoC with concentration degree of three (48 cores) and a 5×5 

concentrated NoC with concentration degree of two (50 cores). Figure 6.9 shows the results for 

system throughput and memory latency averaged over all workloads from Table 6.2 adapted for 

the three different platforms considered. We observed that our proposed DSPK framework works 

even better when congestion in the network is higher, as it creates many more opportunities to 

classify packets and schedule them efficiently. We also noted that AAT ranks applications 

according to their relative L1MPKI requiring co-ordination among all the nodes in the system to 

enable a global batching; hence for workloads running on larger network sizes, the technique has 

a higher overhead making it less effective. MAT focuses only on memory packets with the help 

of its three memory-aware routers while ignoring network packets, which results in lower 

performance for larger network sizes with more network packet dominated communication 

flows. DSPK has an edge over all of these techniques owing to its holistic nature, providing an 
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average improvement of 16.7%/11.8%/11.4% for overall system throughput, 6.7%/3.8%/4.8% 

for average memory latency and 5.5%/2.7%/3.5% for network slowdown over the baseline 

Round Robin, MAT and AAT techniques for the three CMP platforms with DDR3-1333 memory. 

 

 

(a) 

 

(b) 
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(c) 

Figure 6.9: Network scalability evaluation (a) system throughput, (b) average memory 

latency, and (c) maximum slowdown for 3×3 (36 core), 4×4 (48 core) and 5×5 (50 core) 

CMPs 

 

6.4.4 Energy Consumption Evaluation 

We were also interested in evaluating the energy consumption of DSPK and comparing it 

with other previously proposed scheduling techniques. We calculated the power for out-of-order 

cores, on-chip network and memory (caches and DDR3 DRAM) using McPAT [48], Orion 2.0 

[29] and CACTI 4.0 [49]. We carried out our experiments on the baseline 3×3 CMP platform 

with 27 cores, for three different workload combinations consisting of compute-intensive 

workloads (w-2), memory-intensive workloads (w-3) and a mix of these two types of workloads 

(w-1). Figure 6.10 presents the energy consumption results from this evaluation study. We 

observed that the baseline Round Robin scheduling based configuration consumes the highest 

energy due to its application and memory-oblivious nature, which increases execution time 

considerably (even though its power overhead is lower than the other techniques due to the 

simplicity of its implementation). MAT improves upon the baseline Round Robin technique as it 

schedules packets in a memory-operation friendly manner, thereby lowering memory latency and 
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saving memory energy. AAT is unaware of the memory but does application-aware scheduling 

efficiently for w-1 and w-2 workloads where network packets are in the majority, while for w-3 

its energy consumption increases as the memory packets in the network increase and AAT is 

unable to handle them efficiently. DSPK, on the other hand, has lower energy consumption than 

all of these techniques as it is able to handle all kinds of workloads efficiently. We observe an 

average improvement of 10%/5%/4.7% for overall energy consumption with DSPK over the 

baseline Round Robin, MAT and AAT techniques.      

 

 

Figure 6.10: Normalized energy consumption across mixed (w-1), compute-intensive (w-

2) and memory-intensive (w-3) workloads. 

 

6.4.5 Area Overhead Estimation 

Lastly, we evaluated the area overhead for our technique in comparison with others 

techniques. Figure 6.11 (a) shows the area of the intelligent routers in DSPK and other 

scheduling techniques for the 32nm CMOS technology node. The Round Robin scheme is the 

simplest and therefore not surprisingly has the lowest area overhead. MAT keeps memory-

specific information at each router and stores the complete addresses of winners from previous 

arbitrations which increases its overhead. AAT stores the L1 MPKI of each core and has the 
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circuitry to compute ranks of all the cores, which significantly increases its area overhead. DSPK 

uses small counters locally and also operates on a smaller header flit compared to AAT (as it does 

not carry a larger batch id and only needs 2-bit rank data).  

 

 

(a) 

 

(b) 

Figure 6.11: Area estimation for scheduling techniques: (a) NoC router area, and  

(b) overall NoC fabric area. 

 



96 

 

Therefore, its overhead is lower than the AAT technique. We also calculated the total area 

of the NoC fabric with each of the scheduling techniques and found that DSPK adds only 9% to 

the overall NoC area over the baseline Round Robin scheme and 5.6% more area over the MAT 

scheme. When compared to the AAT scheme, DSPK has 4.8% lower area overhead. Thus, our 

DSPK framework improves system throughput and reduces memory latency and energy 

consumption at the cost of a slight increase in the area. 

Our proposed scheduling framework (DSPK) was shown to achieve up to 16.7%, 11% and 

10% improvements in system throughput, average memory latency and energy consumption, 

respectively, as compared to the other previously proposed scheduling techniques. Given its 

scalability and superior performance across various workload types, we believe that our 

approach is an attractive option for future multi-core NoC-based systems executing multiple and 

diverse applications. 
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Chapter 7  

Conclusion and Future Work 

 

This chapter highlights the key contributions of the thesis, summarizes how our proposed 

prioritization framework addresses the previously discussed challenges and can be effective in 

achieving maximum performance benefits, and finally describes scope for future extensions to 

our work. 

 

7.1 Summary 

As the number of processing elements on a die are rapidly growing, interconnects are 

becoming increasingly crucial for overall system performance along with the memory 

subsystem. Interconnects play a significant role in determining maximum achievable 

performance as inter-processor and processor-memory communication is dependent on it. The 

main contribution of this thesis is the design of novel heterogeneous prioritization techniques for 

network and memory packets in NoCs. Chapter 1 introduced this thesis and described in detail 

our motivation to pursue this area of research. Chapter 2 provided the essential background 

relevant to this research area including NoC basics, multi-programmed CMPs, SDRAM 

functionality, etc. In Chapter 3, the thesis optimization goals and parameters were specified. A 

representative subset of relevant research in this area was presented in Chapter 4 as related work, 

along with a discussion of some of the existing issues and challenges in the area. To address 

these issues and achieve performance goals, we proposed a holistic heterogeneous prioritization 

framework. Within the umbrella of this heterogeneous prioritization framework, an application-

aware prioritization technique, application classification metric, two memory-aware 
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prioritization techniques and an anti-starvation technique were proposed and presented in 

Chapters 5 and 6. In these chapters, the experimental results and analyses were also presented.   

 

7.2 Conclusion 

In conclusion, our proposed heterogeneous prioritization framework has addressed the 

packet scheduling challenge faced by state-of the-art NoC-based CMPs. We discussed the 

shortcomings with some of the best performing recently proposed works on packet scheduling. 

To overcome these shortcomings, we proposed a holistic prioritization framework to optimize 

the end-to-end latency of packets in CMPs with multiple co-running applications. Due to the 

multi-level nature of our prioritization approach, it can intelligently identify the specific 

network- or memory-characteristics of a packet and give it an appropriate priority in arbitration 

decisions. Two different packet prioritization approaches were proposed and applied to NoC 

routers, depending on whether the routers are nearer or farther away from the off-chip memory 

subsystem. A new ranking scheme for classifying an application’s criticality was also proposed. 

We also proposed a novel anti-starvation mechanism for establishing fairness in multi-

programmed workload based systems.  

Our experiments were performed using a full-system, cycle-accurate event-driven 

simulator that validated our motivation and intuition. We evaluated our proposed framework for 

system throughput, average memory latency, and energy consumption compared to other 

previously proposed scheduling techniques. In a nutshell, the best improvements achieved by our 

proposed techniques over the baseline Round Robin prioritization mechanism and prior works 

are summarized in table 7.1. 
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Table 7.1: Key improvements of proposed framework  

Prioritization 

Techniques 

System 

Throughput 

Memory Latency Energy Consumption 

Baseline Round 

Robin 

16.7% 11% 10% 

State-of-the-art 

techniques 

11.8% 7% 5% 

 

Given its scalability and superior performance across various workload types, we believe 

that our proposed prioritization framework is an attractive option for future multi-core NoC-

based systems executing multiple and diverse applications. 

 

7.3 Future Work 

As discussed in Chapter 4, a significant amount of research is being done for  NoC-based 

multi-core systems. In Chapters 5 and 6, a holistic solution was proposed to resolve the 

performance challenges related to on-chip and off-chip memory communication as well as 

fairness issues faced by modern multi-core systems executing parallel applications. However, 

this work can certainly be extended to improve achievable system performance. Some of the 

possible research directions to extend this work are presented below- 

 

 Finer-grain application classification strategy- Our application-aware strategy uses a 

packet-criticality and destination-based approach to prioritize applications. We use four 

ranking levels to classify applications. An alternate method for application 

classification can be devised. Having more number of ranking levels can ensure finer 

classification among application packets and enable higher scalability. However, it 

comes with an additional hardware cost and area overhead. 
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 Adaptability with emerging memory technologies- Two memory-aware strategies to 

be implemented in NoC routers are proposed in this thesis. We have considered the 

DRAM memory models- DDR2-667, DDR3-1333 and DDR3-1600. Emerging alternate 

memory models like Spin-Torque Transfer RAM (STT-RAM) and Phase Change RAM 

(PCRAM) can be implemented to see if the proposed techniques are adaptable and 

effective for memory hierarchies with these new memories.  

 Power-aware optimizations- We evaluated energy consumption for some recently 

proposed techniques and our proposed framework. We achieved reduction in energy 

consumption due to reduced system latency. It would be interesting to devise some 

power-aware optimizations for NoC routers in conjunction with the proposed 

framework for further benefits in power and energy.  

 Eliminating inter-application interference- There are several research papers that 

focus on eliminating or mitigating inter-application interference [19][34]. Since we 

make minimal hardware alterations, our proposed work cannot eliminate inter-

application interference although it handles it by prioritizing one application over 

another. With customization of hardware, inter-application interference could be 

prevented to improve system performance more aggressively at the cost of more 

complex hardware and higher power dissipation.  

 Combination with application mapping techniques- An application mapping 

technique can be integrated with the proposed framework to obtain higher gains in 

performance. With intelligent mapping of the applications to the cores, the proposed 

dual stage NoC routers will be more productive in terms of handling memory and on-

chip network traffic. 
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This area of NoC and memory optimizations has a large scope for future research and can 

enable huge performance gains with appropriate system design tradeoffs. The above mentioned 

directions are not exhaustive by any means and represent some of the multiple ways in which 

future research can alleviate bottlenecks in the NoC and memory subsystems for multi-core chip 

platforms. 
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Appendix 

 

Disclaimer: The information presented in Appendices I and II is taken from a few sources along 

with my own experiences. The main motive is to put useful information together and make it easy 

for anyone who intends to use the GEM5 platform for research pertaining to NoC-based systems. 

Please note that GEM5 is a vast full system simulator, so it is not possible to include every detail 

in the appendices. Please refer to the sources cited for more information. 
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Appendix A 

GEM5 Usage Guide 

 

GEM5 is an event-driven full system simulator which consists of state-of-the-art 

processors, private and shared caches, on-chip interconnect and detailed memory subsystem. 

This appendix intends to provides basic pointers for setting up GEM5.   

 

1. Download GEM5 

GEM5 is an open source simulation software. It can be downloaded freely on a linux-based 

machine from here. It is advisable to download using mercurial so that it can be updated with 

newer versions easily.  Before compiling Gem5, these softwares must be installed on your 

system. Use SWIG 1.3.34 and gcc 4.5 versions in case there are any issues compiling it.    

 

GEM5 overview: In order to start simulating with GEM5, let us have a look at the top Level 

GEM5 structure. Figure A.1 shows high level GEM5 structure. It has two modules for modeling 

system architecture- Simple and Ruby. Simple model is basic high level modeling whereas Ruby 

model is more detailed and state-of-the-art model for CMPs. Both Simple and Ruby models have 

network and memory models. Ruby model comprises of Garnet network and ruby memory 

model.  

 

 

 

 

http://gem5.org/Download
http://www.m5sim.org/Compiling_M5
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Figure A.1: Top level GEM5 overview. 

 

There are two main modes in which Gem5 can operate:  

 FS (Full System) mode: As the name suggests, this mode operates as a full system in 

the form of a virtual machine. However, this mode is very slow for running applications 

and can be avoided unless research is related to kernel operations and ISA 

optimizations. More details about running this mode can be found here.    

 SE (System Emulation) mode: This is a simpler and faster way of simulations in 

Gem5. Most of the times it is sufficient to use SE mode as we deal with application 

level performance. As the name suggests, this mode emulates the full system by 

emulating system calls by kernel instead of actually booting the kernel.   

 

We will study mainly SE mode with Ruby model for implementing contemporary techniques. 

 

 

 

http://www.m5sim.org/Running_M5_in_Full-System_Mode
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2. Compiling GEM5 

Once the local GEM5 repository is created and required softwares are installed on the 

system, GEM5 is ready to be compiled. 

 

Command for Compiling Gem5: 

 

%scons build/<arch>/gem5.<binary> -j4 

 

Replace <arch> by any architecture (of your choice) as mentioned below. For binaries, replace it 

preferably by gem5.opt (for faster compiling) or gem5.debug (slower compiling but has debug 

information).  

 

Architecture capabilities: GEM5 provides platform for following mainly used processor 

architectures: 

 

 ALPHA: This is the most established architecture in GEM5 with least bugs.  

 ARM: Developed thoroughly using ARM Realview development suite. Useful for 

embedded mobile computing related studies. 

 X86: PC-based architecture platform. 

 SPARC: Based on Sun T1 architecture. 
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In addition to choosing the processor architecture, it is beneficial to choose the cache 

coherence protocol for using Ruby model. GEM5 provides the following primary cache 

coherence protocols: 

 MESI CMP DIRECTORY: This is a directory-based protocol. In this coherence 

protocol, each core has a private L1 cache and subsequent caches are shared.   

 MOESI HAMMER: This is a snooping protocol. This protocol has private L1 and L2 

caches.  

 

Depending upon one’s requirement about directory-based or snoop-based protocols or 

private L2 or shared L2 caches, one can choose the appropriate cache coherence protocol. It 

should be specified at the time of compiling GEM5. A typical command line to use can be- 

 

%scons build/ALPHA_MESI_CMP_directory/gem5.opt \ 

PROTOCOL=MESI_CMP_directory \ RUBY=TRUE 

 

3. Running Simulations on GEM5 

Once GEM5 is compiled successfully, the binary gem5.opt/gem5.debug generated can be 

used to run simulations. 

 

3.1 Simulation commands  

You can try your first simulation by this simple command line.  
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%./build/ALPHA/gem5.opt configs/example/se.py  \ 

-c tests/test-progs/hello/bin/alpha/linux/hello 

 

In addition to the above command, there are several system specific options that can be 

specified via command line to create a user defined system. These options can be viewed using: 

 

%./build/ALPHA/gem5.opt -h 

 

%./build/ALPHA/gem5.opt configs/examples/se.py -h 

 

3.2 Running Benchmarks on GEM5 

GEM5 supports multi-core computing and can be used to execute standard benchmarks 

from benchmark suite like SPLASH2, PARSEC, SPEC benchmarks, etc. Pre-cross-compiled 

Splash2 binaries for ALPHA platform can be downloaded from here.  

Parsec and original Splash2 benchmarks can be downloaded from here and can be cross 

compiled as per desired platform. The SPEC benchmarks require license and needs to be 

purchased. GEM5 provides utility to run SPEC benchmarks. These documents provides some 

useful information about specifying command line options for SPEC benchmarks- SPECINT and 

SPECFP.  

GEM5 uses script to run desired benchmarks as per user defined system configurations. 

Examples of such scripts are in gem5/configs/example directory. 

Running GEM5 with multiple workloads: 

http://www.m5sim.org/dist/m5_benchmarks/v1-splash-alpha.tgz
http://parsec.cs.princeton.edu/parsec3-doc.htm
http://kbarr.net/specint2000-commandlines
http://kbarr.net/specfp2000-commandlines
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Following is an example of command line specified for running multi-programmed 

workloads. An example code of script for using below mentioned command line is provided in 

Appendix B. 

 

%./build/ALPHA_MESI_CMP_directory/gem5.opt 

configs/example/se_multiprogram.py -n 8 --cpu-type=detailed         

--clock=1GHz --topology=MeshDirCorners --caches                    

--cacheline_size=128 --l2cache --num-l2caches=64                   

--l1d_size=16kB --l1i_size=16kB --l2_size=128kB                    

--l1d_assoc=2 --l1i_assoc=2 --l2_assoc=2 --num-dirs=4               

--mesh-rows=2 --ruby --garnet-network=fixed                        

--benchmark="ammp;apsi;radix;gap;crafty;barnes;ocean;gcc"          

-I 400000000 

 

The results of simulations are output to the folder gem5/m5out. Files generated for results are-  

 config.ini – This file provides information about connection tree of the system i.e.  

the way in which one module in the system is connected to another and specifications 

of each module e.g. size, version, capacity, etc.  

 stats.txt – This file provides detailed information about each individual processor 

executing workload e.g. total simulation time, IPC of application running on any core, 

etc. 

 ruby.stats – This file is generated only when ‘--ruby’ option is specified in the 

command line while running GEM5. It provides statistics for memory and network 
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usage e.g. number of L1 misses, number of main memory requests, network utilization, 

virtual channel load, etc. 
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Appendix B 

GEM5 Source Code Modification Guide 

 

Being a full system simulator, GEM5 has a vast code base consisting of models for CPU, 

ISA, kernel, interconnect, cache, memory and other microarchitecture. In order to use GEM5 for 

research, one needs to understand the existing codebase and modify it. The official website fof 

GEM5 provides general information about the simulator but not really code specific. This 

appendix aims provides pointers to the code structure of GEM5 to facilitate modifying the code. 

Hopefully, this will be helpful to understand the simulator model flow and ease the pain of 

hacking GEM5 code . 

GEM5 has two major code components: 

 

1. Configuration code and  

2. Source code 

 

Section 1 provides information regarding configuration code and Section 2 sheds light on 

GEM5 source code. GEM5 is comprised of C++ code for modeling system level components 

like cpu, caches, network, memory, etc and bound by a python wrapper to facilitate 

communication between these modules. 

 

1. GEM5 Configuration code 

GEM5 cofiguration code is written in python. This code is located in gem5/configs. 
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Directory Structure: Figure below shows sub-folders of configs directory containing 

configuration code.  

 

 

Figure B.1: Configuration directory structure 

 

 

configs 

common example ruby topologies boot splash2 

• CacheConfig.py, Caches.py - Cache 
configuration  

• CpuConfig .py  - CPU configuration 

• Options.py - Commandline options 

• Simulation.py -  Simulation 
configuration 

• For any new command line option 
added, corresponding changes 
must be made in script used to run 
GEM5.  

 

common 

• se.py - Basic script to setup system 
for SE mode 

• fs.py - Basic script to setup system 
for FS mode without ruby 

• ruby_fs.py - Basic script to setup 
system for FS mode with ruby 

• Add new scripts here for setting up 
a different system configuration 
for running applications 

example 
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We provide a sample script to run multi-programmed workloads using Ruby system in 

SE mode. It includes options for benchmarks from SPLASH2 and SPEC2K benchmark suite. 

However, this is a sample file and in order to use directly with your GEM5 environment a few  

changes will be needed in configs/common/Options.py and configs/ruby/Ruby.py. 

  

• Each file is a different topology 

• A new topology can be created by 
modifying existing files and 
interconnection between 
components 

• E.g. connect multiple cores to a 
single router- concentrated Mesh 
topology. 

topologies 

• Ruby.py - Basic script to setup 
ruby system  

• Cache coherence protocol 
configuration files. 

ruby 

• Contains .rcS files for full system simulations 
for benchmarks boot 

• contains basic scripts for running splash2 
benchmarks without ruby system. splash2 
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B.1 se_multiprogram.py 

# Author: Tejasi Pimpalkhute  

# 

# Simple script for multi-programmed workloads 

# “se_multiprogram.py" 

 

import optparse 

import sys 

 

import m5 

from m5.defines import buildEnv 

from m5.objects import * 

from m5.util import addToPath, fatal 

 

addToPath('../common') 

addToPath('../ruby') 

addToPath('../topologies') 

 

import Options 

import Ruby 

import Simulation 

import CacheConfig 

from Caches import * 

from cpu2000 import * 

 

def get_processes(options): 

    """Interprets provided options and returns a list of processes""" 

 

    multiprocesses = [] 

    inputs = [] 

    outputs = [] 
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    errouts = [] 

    pargs = [] 

 

    workloads = options.cmd.split(';') 

    if options.input != "": 

        inputs = options.input.split(';') 

    if options.output != "": 

        outputs = options.output.split(';') 

    if options.errout != "": 

        errouts = options.errout.split(';') 

    if options.options != "": 

        pargs = options.options.split(';') 

 

    idx = 0 

    for wrkld in workloads: 

        process = LiveProcess() 

        process.executable = wrkld 

 

        if len(pargs) > idx: 

            process.cmd = [wrkld] + pargs[idx].split() 

        else: 

            process.cmd = [wrkld] 

 

        if len(inputs) > idx: 

            process.input = inputs[idx] 

        if len(outputs) > idx: 

            process.output = outputs[idx] 

        if len(errouts) > idx: 

            process.errout = errouts[idx] 

 

        multiprocesses.append(process) 

        idx += 1 
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    if options.smt: 

        assert(options.cpu_type == "detailed" or options.cpu_type == "inorder") 

        return multiprocesses, idx 

    else: 

        return multiprocesses, 1 

 

 

parser = optparse.OptionParser() 

Options.addCommonOptions(parser) 

Options.addSEOptions(parser) 

 

#Benchmark options 

parser.add_option("--rootdir1", 

                  help="Root directory of Splash2 Benchmarks", 

                  default="splash2/codes") 

parser.add_option("--rootdir2", 

                  help="Root directory of Spec2K Benchmarks", 

                  default="spec2k") 

parser.add_option("-b", "--benchmark", 

                  help="Benchmark to run") 

 

 

if '--ruby' in sys.argv: 

    Ruby.define_options(parser) 

 

(options, args) = parser.parse_args() 

 

if args: 

    print "Error: script doesn't take any positional arguments" 

    sys.exit(1) 
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# -------------------- 

# Define Splash2 Benchmarks 

# ==================== 

class cholesky(LiveProcess): 

    cwd = options.rootdir1 + '/kernels/cholesky' 

    executable = options.rootdir1 + '/kernels/cholesky/CHOLESKY' 

    cmd = ['CHOLESKY', #, '-p' +  str(options.num_cpus), 

            options.rootdir1 + '/kernels/cholesky/inputs/tk25.O'] 

 

class fft(LiveProcess): 

    cwd = options.rootdir1 + '/kernels/fft' 

    executable = options.rootdir1 + '/kernels/fft/FFT' 

    cmd = ['FFT', '-m18'] #, '-p', str(options.num_cpus), '-m18'] 

 

class LU_contig(LiveProcess): 

    executable = options.rootdir1+ '/kernels/lu/contiguous_blocks/LU' 

    cmd = ['LU'] #, '-p', str(options.num_cpus)] 

    cwd = options.rootdir1 + '/kernels/lu/contiguous_blocks' 

 

class LU_noncontig(LiveProcess): 

    executable = options.rootdir1 + '/kernels/lu/non_contiguous_blocks/LU' 

    cmd = ['LU'] #, '-p', str(options.num_cpus)] 

    cwd = options.rootdir1 + '/kernels/lu/non_contiguous_blocks' 

 

class Radix(LiveProcess): 

    executable = options.rootdir1 + '/kernels/radix/RADIX' 

    cmd = ['RADIX', '-n524288'] #, '-p', str(options.num_cpus)] 

    cwd = options.rootdir1 + '/kernels/radix' 

 

class barnes(LiveProcess): 

    executable = options.rootdir1 + '/apps/barnes/BARNES' 

    cmd = ['BARNES'] 
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    input = options.rootdir1 + '/apps/barnes/input' #+ str(options.num_cpus) 

    cwd = options.rootdir1 + '/apps/barnes' 

 

class fmm(LiveProcess): 

    executable = options.rootdir1 + '/apps/fmm/FMM' 

    cmd = ['FMM'] 

    #if str(options.num_cpus) == '1': 

    input = options.rootdir1 + '/apps/fmm/inputs/input.2048' 

    #else: 

     #   input = options.rootdir1 + '/apps/fmm/inputs/input.2048.p' + 

str(options.num_cpus) 

    cwd = options.rootdir1 + '/apps/fmm' 

 

class Ocean_contig(LiveProcess): 

    executable = options.rootdir1 + '/apps/ocean/contiguous_partitions/OCEAN' 

    cmd = ['OCEAN'] #, '-p', str(options.num_cpus)] 

    cwd = options.rootdir1 + '/apps/ocean/contiguous_partitions' 

 

class Ocean_noncontig(LiveProcess): 

    executable = options.rootdir1 + '/apps/ocean/non_contiguous_partitions/OCEAN' 

    cmd = ['OCEAN'] #, '-p', str(options.num_cpus)] 

    cwd = options.rootdir1 + '/apps/ocean/non_contiguous_partitions' 

 

# -------------------- 

# Define Spec Benchmarks 

# ==================== 

 

#class mcf(LiveProcess): 

#    executable = options.rootdir2 + '/spec-alpha/mcf00.peak.ev6' 

#    input = options.rootdir2 + '/000.input/CINT2000/181.mcf/data/test/input/inp.in' 

#    cmd = ['mcf00.peak.ev6', '> inp.out 2> inp.err'] 

#    cwd = options.rootdir2 
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class bzip2(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/bzip200.peak.ev6' 

    input = options.rootdir2 + 

'/000.input/CINT2000/256.bzip2/data/test/input/input.random' 

    cmd = ['bzip200.peak.ev6', '> input.random.out 2 > input.random.err'] 

    cwd = options.rootdir2 

 

class swim(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/swim00.peak.ev6' 

    input = options.rootdir2 + '/000.input/CFP2000/171.swim/data/test/input/swim.in' 

    cmd = ['swim00.peak.ev6', ' > swim.out 2> swim.err'] 

    cwd = options.rootdir2 

 

 

class apsi(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/apsi00.peak.ev6' 

    input = options.rootdir2 + '/000.input/CFP2000/301.apsi/data/test/input/apsi.in' 

    cmd = ['apsi00.peak.ev6', '> apsi.out 2> apsi.err'] 

    cwd = options.rootdir2 

 

class equake(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/equake00.peak.ev6' 

    input = options.rootdir2 + '/000.input/CFP2000/183.equake/data/test/input/inp.in' 

    cmd = ['equake00.peak.ev6', '> inp.out 2> inp.err'] 

    cwd = options.rootdir2 

 

class gcc(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/gcc00.peak.ev6' 

    input = options.rootdir2 + '/000.input/CINT2000/176.gcc/data/test/input/cccp.i' 

    cmd = ['gcc00.peak.ev6'] 

    cwd = options.rootdir2 
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class gzip(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/gzip00.peak.ev6' 

    input = options.rootdir2 + 

'/000.input/CINT2000/164.gzip/data/test/input/input.compressed' 

    cmd = ['gzip00.peak.ev6', '> input.compressed.out 2> input.compressed.err'] 

    cwd = options.rootdir2 

 

 

class mgrid(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/mgrid00.peak.ev6' 

    input = options.rootdir2 + '/000.input/CFP2000/172.mgrid/data/test/input/mgrid.in' 

    cmd = ['mgrid00.peak.ev6', '> mgrid.out 2> mgrid.err'] 

    cwd = options.rootdir2 

 

class applu(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/applu00.peak.ev6' 

    input = options.rootdir2 + '/000.input/CFP2000/173.applu/data/test/input/applu.in' 

    cmd = ['applu00.peak.ev6',  '> applu.out 2> applu.err'] 

    cwd = options.rootdir2 

 

class wupwise(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/wupwise00.peak.ev6' 

    input = options.rootdir2 + 

'/000.input/CFP2000/168.wupwise/data/test/input/wupwise.in' 

    cmd = ['wupwise00.peak.ev6', '> wupwise.out 2> wupwise.err'] 

    cwd = options.rootdir2 

 

class twolf(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/twolf00.peak.ev6' 

    input = options.rootdir2 + 

'/000.input/CINT2000/300.twolf/data/test/input/test.pin' 
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    cmd = ['twolf00.peak.ev6'] 

    cwd = options.rootdir2 

  

class gap(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/gap00.peak.ev6' 

    input = options.rootdir2 + '/000.input/CINT2000/254.gap/data/test/input/test.in' 

    cmd = ['gap00.peak.ev6', '-l', './', '-q', '-m', '64M', '> test.stdout 2> 

test.err'] 

    cwd = options.rootdir2 

  

class crafty(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/crafty00.peak.ev6' 

    input = options.rootdir2 + 

'/000.input/CINT2000/186.crafty/data/test/input/crafty.in' 

    cmd = ['crafty00.peak.ev6', '> crafty.out 2> crafty.err'] 

    cwd = options.rootdir2 

  

class perlbmk(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/perlbmk00.peak.ev6' 

    input = options.rootdir2 + 

'/000.input/CINT2000/253.perlbmk/data/test/input/test.in' 

    cmd = ['perlbmk00.peak.ev6', '-I.', '-I./lib test.pl', '> test.out 2> test.err'] 

    cwd = options.rootdir2 

 

class vortex(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/vortex00.peak.ev6' 

    input = options.rootdir2 + 

'/000.input/CINT2000/255.vortex/data/test/input/lendian.raw' 

    cmd = ['vortex00.peak.ev6', '> vortex.out 2> vortex.err'] 

    cwd = options.rootdir2 

  

class lucas(LiveProcess): 



126 

 

    executable = options.rootdir2 + '/spec-alpha/lucas00.peak.ev6' 

    input = options.rootdir2 + 

'/000.input/CFP2000/189.lucas/data/test/input/lucas2.in' 

    cmd = ['lucas00.peak.ev6', '> lucas2.out 2> lucas2.err'] 

    cwd = options.rootdir2 

 

class galgel(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/galgel00.peak.ev6' 

    input = options.rootdir2 + 

'/000.input/CFP2000/178.galgel/data/test/input/galgel.in' 

    cmd = ['galgel00.peak.ev6', '> galgel.out 2> galgel.err'] 

    cwd = options.rootdir2 

 

class facerec(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/facerec00.peak.ev6' 

    input = options.rootdir2 + 

'/000.input/CFP2000/187.facerec/data/test/input/test.in' 

    cmd = ['facerec00.peak.ev6', '> test.out 2> test.err'] 

    cwd = options.rootdir2 

  

class fma3d(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/fma3d00.peak.ev6' 

    input = options.rootdir2 + '/000.input/CFP2000/191.fma3d/data/test/input/fma3d.in' 

    cmd = ['fma3d00.peak.ev6', '> test.out 2> test.err'] 

    cwd = options.rootdir2 

  

class sixtrack(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/sixtrack00.peak.ev6' 

    input = options.rootdir2 + 

'/000.input/CFP2000/200.sixtrack/data/test/input/inp.in' 

    cmd = ['sixtrack00.peak.ev6', '> inp.out 2> inp.err'] 

    cwd = options.rootdir2 
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class ammp(LiveProcess): 

    executable = options.rootdir2 + '/spec-alpha/ammp00.peak.ev6' 

    input = options.rootdir2 + '/000.input/CFP2000/188.ammp/data/test/input/ammp.in' 

    cmd = ['ammp00.peak.ev6', '> ammp.out 2> ammp.err'] 

    cwd = options.rootdir2 

  

#class art(LiveProcess): 

#   executable = options.rootdir2 + '/spec-alpha/art00.peak.ev6' 

#    #input = options.rootdir2 + 

'/000.input/CFP2000/179.art/data/test/input/lucas2.in' 

#    cmd = ['art00.peak.ev6', '[-startx 134]', '[-starty 220]', '-endx 139', '-endy 

225', '-stride 2', '-scanfile /000.input/CFP2000/179.art/data/test/input/c756hel.in', 

'-trainfile1 #/000.input/CFP2000/179.art/data/test/input/a10.img', '-objects 1 > 

test.out 2> test.err'] 

#    cwd = options.rootdir2 

  

#============================================================================# 

np = options.num_cpus 

# -------------------- 

# Pick the correct Splash2 Benchmarks 

# ==================== 

def pick_benchmark(workload): 

  if  workload == 'cholesky': 

    bench = cholesky() 

  elif workload == 'fft': 

    bench = fft() 

  elif workload == 'LUContig': 

    bench = LU_contig() 

  elif workload == 'LUNoncontig': 

    bench = LU_noncontig() 

  elif workload == 'radix': 
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    bench = Radix() 

  elif workload == 'barnes': 

    bench = barnes() 

  elif workload == 'fmm': 

    bench = fmm() 

  elif workload == 'ocean': 

    bench = Ocean_contig() 

  elif workload == 'OceanNoncontig': 

    bench = Ocean_noncontig() 

  elif workload == 'mcf': 

    bench = mcf() 

  elif workload == 'swim': 

    bench = swim() 

  elif workload == 'bzip2': 

    bench = bzip2() 

  elif workload == 'apsi': 

    bench = apsi() 

  elif workload == 'equake': 

    bench = equake() 

  elif workload == 'gcc': 

    bench = gcc() 

  elif workload == 'mgrid': 

    bench = mgrid() 

  elif workload == 'wupwise': 

    bench = wupwise() 

  elif workload == 'applu': 

    bench = applu() 

  elif workload == 'gzip': 

    bench = gzip() 

  elif workload == 'crafty': 

    bench = crafty() 

  elif workload == 'perlbmk': 
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    bench = perlbmk() 

  elif workload == 'gap': 

    bench = gap() 

  elif workload == 'twolf': 

    bench = twolf() 

  elif workload == 'lucas': 

    bench = lucas() 

  elif workload == 'art': 

    bench = art() 

  elif workload == 'vortex': 

    bench = vortex() 

  elif workload == 'galgel': 

    bench = galgel() 

  elif workload == 'facerec': 

    bench = facerec() 

  elif workload == 'fma3d': 

    bench = fma3d() 

  elif workload == 'sixtrack': 

    bench = sixtrack() 

  elif workload == 'ammp': 

    bench = ammp() 

  

  else: 

    print >> sys.stderr, """The --benchmark environment variable was set to something 

improper. 

Use Cholesky, FFT, LUContig, LUNoncontig, Radix, Barnes, FMM, OceanContig, 

OceanNoncontig, Raytrace, WaterNSquared, or WaterSpatial""" 

    sys.exit(1) 

  return bench 

 

multiprocesses = [] 

numThreads = 1 
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if options.benchmark: 

    workloads = options.benchmark.split(';') 

    if len(workloads) >= 1: 

      for workload in workloads: 

          process = pick_benchmark(workload) 

          multiprocesses.append(process)  

          print process 

    #else : 

      #multiprocesses.append(workloads) 

 

if options.bench: 

    apps = options.bench.split("-") 

    if len(apps) != options.num_cpus: 

        print "number of benchmarks not equal to set num_cpus!" 

        sys.exit(1) 

 

    for app in apps: 

        try: 

            if buildEnv['TARGET_ISA'] == 'alpha': 

                exec("workload = %s('alpha', 'tru64', 'ref')" % app) 

            else: 

                exec("workload = %s(buildEnv['TARGET_ISA'], 'linux', 'ref')" % app) 

            multiprocesses.append(workload.makeLiveProcess()) 

        except: 

            print >>sys.stderr, "Unable to find workload for %s: %s" % 

(buildEnv['TARGET_ISA'], app) 

            sys.exit(1) 

elif options.cmd: 

    #multiprocesses, numThreads = get_processes(options) 

    workloads = options.cmd.split(';') 

    if len(workloads) > 1: 



131 

 

        #process = [] 

        inputs = [] 

        outputs = [] 

        errouts = [] 

        #workload = [] 

        wrkld_idx = 0 

         

        if options.input != "": 

            inputs = options.input.split(';') 

        if options.output != "": 

            outputs = options.output.split(';') 

        if options.errout != "": 

            errouts = options.errout.split(';') 

 

        for workload in workloads: 

            process = LiveProcess() 

            process.executable = workload 

            process.cmd = workload + " " + options.options 

            if inputs and inputs[wrkld_idx] : 

                process.input = inputs[wrkld_idx] 

            if outputs and outputs[wrkld_idx]: 

                process.output = outputs[wrkld_idx] 

            if errouts and errouts[wrkld_idx]: 

                process.errout = errouts[wrkld_idx] 

            multiprocesses.append(process) 

            wrkld_idx += 1 

 

#else: 

#   print >> sys.stderr, "No workload specified. Exiting!\n" 

#   sys.exit(1) 
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(CPUClass, test_mem_mode, FutureClass) = Simulation.setCPUClass(options) 

CPUClass.clock = options.clock 

CPUClass.numThreads = numThreads 

 

# Check -- do not allow SMT with multiple CPUs 

if options.smt and options.num_cpus > 1: 

    fatal("You cannot use SMT with multiple CPUs!") 

 

np = options.num_cpus 

system = System(cpu = [CPUClass(cpu_id=i) for i in xrange(np)], 

                physmem =SimpleMemory(range=AddrRange("3072MB")), 

                membus = CoherentBus(), mem_mode = test_mem_mode) 

 

# Sanity check 

if options.fastmem: 

    if CPUClass != AtomicSimpleCPU: 

        fatal("Fastmem can only be used with atomic CPU!") 

    if (options.caches or options.l2cache): 

        fatal("You cannot use fastmem in combination with caches!") 

 

num_processes = len(multiprocesses) 

 

if (num_processes == 1): 

   system.cpu[00].workload = multiprocesses 

   

for i in xrange(np): 

    if options.smt: 

        system.cpu[i].workload = multiprocesses 

    #elif len(multiprocesses) == 1: 

    #    system.cpu[i].workload = multiprocesses[0] 

    elif len(multiprocesses) == np: 

        system.cpu[i].workload = multiprocesses[i] 
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    else: 

        system.cpu[i].workload = multiprocesses[i % (num_processes)] 

 

    if options.fastmem: 

        system.cpu[i].fastmem = True 

 

    if options.checker: 

        system.cpu[i].addCheckerCpu() 

 

    system.cpu[i].createThreads() 

 

if options.ruby: 

    if not (options.cpu_type == "detailed" or options.cpu_type == "timing"): 

        print >> sys.stderr, "Ruby requires TimingSimpleCPU or O3CPU!!" 

        sys.exit(1) 

 

    # Set the option for physmem so that it is not allocated any space 

    system.physmem.null = True 

 

    options.use_map = True 

    Ruby.create_system(options, system) 

    assert(options.num_cpus == len(system.ruby._cpu_ruby_ports)) 

 

    for i in xrange(np): 

        ruby_port = system.ruby._cpu_ruby_ports[i] 

 

        # Create the interrupt controller and connect its ports to Ruby 

        # Note that the interrupt controller is always present but only 

        # in x86 does it have message ports that need to be connected 

        system.cpu[i].createInterruptController() 

 

        # Connect the cpu's cache ports to Ruby 
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        system.cpu[i].icache_port = ruby_port.slave 

        system.cpu[i].dcache_port = ruby_port.slave 

        if buildEnv['TARGET_ISA'] == 'x86': 

            system.cpu[i].interrupts.pio = ruby_port.master 

            system.cpu[i].interrupts.int_master = ruby_port.slave 

            system.cpu[i].interrupts.int_slave = ruby_port.master 

            system.cpu[i].itb.walker.port = ruby_port.slave 

            system.cpu[i].dtb.walker.port = ruby_port.slave 

else: 

    system.system_port = system.membus.slave 

    system.physmem.port = system.membus.master 

    CacheConfig.config_cache(options, system) 

 

root = Root(full_system = False, system = system) 

m5.disableAllListeners() 

Simulation.run(options, root, system, FutureClass) 

 

2. GEM5 Source Code 

For implementing an existing work or new techniques in GEM5, modification of source 

code is required. This section of Appendix B gives a brief overview of GEM5 source code 

structure and modification guidelines. 

Being a full system simulator GEM5 has separate modules for CPU, caches, on-chip 

interconnects, memory controller and main memory. Consider the following path for further 

references: 

 

  $ROOT_PATH = gem5/src 

  $RUBY_PATH  = $ROOT_PATH /mem/ruby  

  $NETWORK_PATH = $RUBY_PATH/network/garnet/fixed-pipeline 
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  $MEMORY_PATH = $RUBY_PATH/system 

 

$ROOT_PATH/cpu: It has the source code for cpu functionality which includes- Timing 

Simple CPU, Inorder CPU and Out-of-Order CPU models.  

 

$RUBY_PATH: It has the most crucial source code to handle all requests which are originated 

at CPU and need to access on-chip caches (private or shared), on-chip interconnects and/or 

memory.   

 

$RUBY_PATH/network: It contains the code for Garnet and Simple network-on-chip. Within 

Garnet, models for fixed pipeline and flexible pipeline are provided. Fixed pipeline has 5-stage 

virtual channel router and flexible pipeline router has flexible stages for router which can be 

configured in GarnetRouter.py.  

 

$NETWORK_PATH: This directory has code for NoC components. The relevant code for NoC 

modules is mentioned in the table.  
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Table B.1: Source code for NoC modules 

NoC Components NoC module code Comments 

Input Port InputUnit_d.* Structure of input buffers and input port for 

routers can be modified. 

Output Port  OutputUnit_d.* Structure of output buffers and output port 

for routers can be modified. 

Virtual Channels  VCallocator_d.*, 

VirtualChannel_d.*, 

OutVcState_d.* 

Number/structure of virtual channels (data 

and command),  VC allocation process can 

be modified.  

Flits  flit_d.*, flitBuffer_d.* Addition/deletion of a field for flits, 

information carried by flits can be changed. 

Network links GarnetLink_d.*, 

CreditLink_d.*, 

NetworkLink_d.* 

Link bandwidth, link scheduling, flow 

control techniques can be modified with 

these files. 

NoC Router (Garnet) GarnetRouter_d.py, 

Router_d.*, RoutingUnit_d.* 

Main router configuration, functionalities of 

a router, storage buffers, etc. can be 

modified. 

Network Interface  NetworkInterface_d.* NI can be altered by adding new 

functionalities or modifying existing ones.  

Switch Allocation SWallocator_d.* Router arbitration code for switch traversal. 

 

$MEMORY_PATH: This directory has code for memory components. The relevant code for 

memory modules is mentioned in the table.  
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Table B.2: Source code for memory modules 

Memory Components Memory module code Comments 

MemoryController MemoryControl.*, 

RubyMemoryControl.* 

MemoryControl is a parent class from 

which RubyMemoryControl is derived. 

RubyMemoryControl is a handle for 

modifying memory controllers only for 

ruby based memory systems. Memory 

configurations can be changed in  

RubyMemoryControl.py.  

Ruby System configuration  RubySystem.py This is a configuration file for ruby 

system setup (system with ruby 

components). 

Ruby Port RubyPort.* This port connects the CPUs to the Ruby 

system consisting of caches, cache 

coherence protocol, NoC and memory 

subsystem. More information can be 

found here. 

Sequencer Sequencer.* This is a entry point for the messages 

coming into the Ruby jurisdiction. 

Details can be found here. 

Cache Cache.py, 

CacheMemory.* 

These files help modify cache structure 

and configuration. 

  

**Note: To add or delete a module to a subsystem- network or memory, the corresponding files 

must be added to Sconscript files belonging to that module. E.g., for addition of a new garnet 

network submodule in $NETWORK_PATH, $NETWORK_PATH/Sconscript must be modified.    

http://www.m5sim.org/Ruby
http://www.m5sim.org/Coherence-Protocol-Independent_Memory_Components

