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ABSTRACT 

 

 

 

S-NITROSYLATION MEDIATES SYNAPTIC PLASTICITY IN THE RETINA 

 

 

 

Over the course of an entire day, our visual system must accommodate intensities of light 

that can change by a factor of 1010. In order to do so, the retina adapts to large, daily changes in 

natural light intensity by shifting its dynamic range of coding. For example, as morning light 

intensity increases, the retina implements multiple strategies that result in decreases in overall 

sensitivity in order to avoid saturation. However, adaptation to bright environments poses the 

inherent risk of losing visual information carried by dim/weak signals in complex natural scenes. 

Here we studied whether the light-evoked increase in retinal nitric oxide (NO) production is 

followed by NO-mediated, direct post-translational modification of proteins called S-

nitrosylation and if it contributes to the modulation of the dynamic range of vision. In the central 

nervous system, including the retina, S-nitrosylation has not been considered to be significant 

under physiological conditions, and instead, has been primarily associated with 

neurodegenerative diseases. 

In this study, we provide immunohistochemical and proteomic evidence for extensive S-

nitrosylation that takes place in the goldfish and mouse retinas under physiologically relevant 

light intensities, in an intensity-dependent manner. Functionally, we report a novel form of 

activity-dependent synaptic plasticity via S-nitrosylation: a “weighted potentiation” that 

selectively increases the output of Mb-type bipolar cells in the goldfish retina in response to 

weak inputs but leaves the input-output ratio for strong stimuli unaffected. Importantly, the NO 
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action resulted in a weighted potentiation of Mb output in response to small (≤-30 mV) 

depolarizations. 

Our data strongly suggest that in the retina, light-evoked NO production leads to 

extensive S-nitrosylation and that this process is a significant post-translational modification 

affecting a wide range of proteins under physiological conditions. S-nitrosylation may function 

to extend the dynamic range of vision by counteracting the decreases in retinal sensitivity during 

light adaptation ultimately preventing the loss of visual information carried by dim scotopic 

signals. Finally, our results may set the framework for exploring the role of S-nitrosylation in 

certain neurodegenerative retinal diseases that are associated with toxic levels of NO. 
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1. Introduction 

 

 

 

Imagine you are standing on the corner of a frantically busy intersection, preparing to 

cross the street. Which of your senses did you engage to realize the scene in your mind? Chances 

are, you imagined seeing the intersection: the contrast of the sidewalk with the blacktop of the 

road, the different vehicles passing by, the color of the traffic lights indicating right of way, all 

together creating a visualization of the imagined situation. A substantial portion of our 

interaction with the world around us relies on our ability to perceive and interpret visual 

information. In the most extreme cases, our visual system prevents us from stepping into harm’s 

way. While many components make up the entire visual system, the retina is the primary sensory 

organ tasked with translating visual information, in the form of light, into neuronal signals and 

propagating these signals to the brain. Therefore, it is critical that the retina is equipped to handle 

the variety of stimuli that are present in a visual environment.   

Over a 24 h day and night cycle, our visual system is subjected to light intensities that 

change by a factor of ~1010 (Dowling, 1987; Sterling, 2003). In order to maintain operational 

vision across this entire range, a series of cellular and synaptic specializations exist to ensure 

efficient and accurate information processing through the retina. For example, specific cells in 

the outer retina are designed to transduce dim light efficiently while a distinct subset respond 

maximally to bright light, thus creating an anatomical cellular designation to accommodate the 

wide range of light intensities within the natural world (the anatomical design of the retina will 

be discussed in greater detail below). On the circuitry level, various fast transmitters (i.e. 

glutamate and GABA) and neuromodulators (i.e. dopamine, nitric oxide) are released in response 

to changing light intensities and serve to modulate local circuits that are critical in mediating 
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information transfer through the retina (Wässle, 2004). One neuromodulator of particular interest 

for this study is nitric oxide (NO) which can exhibit its effects through two distinct mechanisms: 

(1) NO binds to the most sensitive NO target, soluble guanylate cyclase (sGC) which stimulates 

cGMP synthesis (Roy et al., 2008), or (2) NO covalently binds to free thiol side-chains of 

cysteine residues of various proteins in a reaction called S-nitrosylation (for review, see Ahern et 

al., 2002). Extensive work has described NO’s modulatory effects, at many stages of retinal 

processing, via the NOsGCcGMP pathway, yet there is very little evidence indicating how 

S-nitrosylation may influence signaling in the vertebrate retina (for review, see Vielma et al., 

2012). 

This study aimed to describe endogenous protein S-nitrosylation in the vertebrate retina 

and to characterize how this type of post-translational modification may be involved in 

modulating visual information processing. This section reviews: (1) the anatomy of the retina, 

with extra attention given to the cell types and structures pertinent to this study, (2) mechanisms 

of light- and contrast-adaptation, and (3) nitric oxide signaling in the retina. 

 

1.1 The Retina 

 The fundamental role of vision is to detect and relay complex information about the 

outside world, such as contrast, color, and motion, to the brain; a processes which begins in the 

retina. Although substantial differences exist between species, vertebrate retinas share a similar 

organizational framework: as a laminar neural tissue, the retina contains two synaptic layers 

(outer and inner plexiform layers) and three cellular layers (outer and inner nuclear layers and 

ganglion cell layer) comprised of 5 major cell types (Fig. 1.1; Dowling, 1987; Masland, 2001). 

Each cell type has distinct subclasses of neurons that form unique circuits and play specific roles 
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in processing complex visual information (Masland, 2012a). 

Thus the ability to perceive the visual details of our 

environment comes down to the complex interplay between  

distinct retinal neurons and the circuits they create. 

 

Outer Retina   

The outer retina is populated by photoreceptors 

whose cell bodies form the outer nuclear layer (ONL) and 

synapse in the outer plexiform layer (OPL; Fig. 1.1). Rod 

and cone photoreceptors are responsible for transducing 

light into a neuronal signal that is propagated through the 

layers of the retina (Wässle, 2004). Rods are the most 

sensitive of the photoreceptors and allow for scotopic 

vision, which is characterized by dim or low light 

conditions such as those that would be experienced during 

starlight. To this point, the sensitivity of rods is such that 

they will respond to a single photon (Baylor et al., 1979; 

Schneeweis and Schnapf, 1995) while being prone to 

saturation at higher intensities (Bloomfield and Dacheux, 

2001). Cone photoreceptors, on the other hand, are responsible for mediating photopic vision, 

characterized by brighter intensities of light, during daylight for example. Importantly, cones can 

be subdivided into two or three types (depending on species) that express distinct photopigments 

and selectively respond to different wavelengths of light, which forms the basis for color vision 

 
 

Figure 1.1. Schematic of retinal anatomy. 

Light is captured by the photoreceptors (1) 

in the outer nuclear layer (ONL) and the 

information is passed on to bipolar cells 

(2) and horizontal cells (3) through 

synapses in the outer plexiform layer 

(OPL). Along with the somas of bipolar 

cells and horizontal cells, the inner nuclear 

layer (INL) contains the cell bodies of 

amacrine cells (4). Bipolar cells synapse 

on ganglion cells (5) in the inner 

plexiform layer (IPL) which is split into 

two distinct sublaminae (Off and On). 

Visual signals are sent to the brain via the 

optic nerve which is formed by the 

convergence of individual ganglion cell 

axons projecting from cell bodies in the 

ganglion cell layer (GCL). 
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(Wässle, 2004). However, the intensities that activate rods or cones are not as independent as one 

would imagine. In the natural world, a significant range of behaviorally relevant light intensities 

can cause simultaneous activation of both rods and cones (Wu, 1994), and this overlap, between 

the intensities at cone activation threshold and rod saturation, forms the mesopic range (Krizaj, 

2000). 

In general the primary route for information flow in the retina is through vertical 

pathways, beginning with phototransduction in rods and cones. Within the OPL, photoreceptor 

output is sampled by dendritic processes of bipolar cells (BCs) and horizontal cells (HCs). BCs 

serve as an integral component of the vertical pathway linking the outer retina to the innermost 

retinal layers. HCs, on the other hand, filter signaling in the OPL by providing inhibitory 

feedback to photoreceptors and feedforward inhibition to BCs (Fig. 1.1). While the importance 

of HC modulation of the photoreceptorBC synapse cannot be understated, it falls outside the 

scope of this study. Instead, focus will be on the cell types that contribute to the significant signal 

processing that occurs within the inner retina. 

 

Inner Retina  

 The inner retina is composed of two individual cellular layers, the inner nuclear layer 

(INL) and the ganglion cell layer (GCL), which are spatially separated by one synaptic layer, the 

inner plexiform layer (IPL; Fig. 1.1). In the INL, BCs and amacrine cells (ACs) combine to make 

up ~80% of the cell population (Fig. 1.1; Jeon et al., 1998). BCs link the outer retina 

(photoreceptors) to the inner retina by synapsing in the IPL with ACs as well as GCs, which are 

the output neurons of the retina (Fig. 1.1; Masland, 2001; Wässle, 2004) and whose axons 

converge to form the optic nerve. A significant proportion of signal processing occurs in the IPL 
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as a result of AC influence. For example, ACs provide inhibitory feedback to BCs, feedforward 

inhibition to GCs and also modulate other ACs through lateral inhibition (Masland 2012b). A 

substantial point of focus for this study is the subtleties of the information transfer between BCs 

and GCs in the IPL, and in particular, how BC output is influenced by AC feedback. As the sole 

excitatory input to the GCs, BCs are as much a center for signal processing as they are a relay 

from outer retina to inner. Therefore, the sections below will address BCs specifically and the 

ACs that modulate synapses in the IPL. 

Bipolar Cells 

At present, there are more than 10 distinct types of BCs in the vertebrate retina yet all of 

them perform the same basic function: they link the sensory neurons (photoreceptors) to the 

projection neurons (GCs) and release glutamate as the primary neurotransmitter (Euler et al., 

2014). However, while they may be generally similar, the characteristics that make BCs unique 

are central to how they shape and process visual information. In general, BCs synapse with either 

rods or cones, however in the retina of cold-blooded vertebrates, there are BCs that integrate 

signal information from both rods and cones (Lasanksy, 1973; Tachibana, 1999). In the 

conventional view of the mammalian retina, only one type of bipolar cell contacts rods 

exclusively while the rest make connections with cones (Boycott et al., 1969; Boycott and Kolb., 

1973; Euler et al., 2014). However, recent work by several groups has identified a population of 

mammalian BCs that receive mixed input from both rods and cones (Euler et al., 2014), 

indicating the convergence of rod and cone signals on second order neurons is a general feature 

of the vertebrate retina.  

BCs can be subdivided further into either ON or OFF BCs. In general, ON BCs 

depolarize in response to light and project their axon terminals to the ON sublamina of the IPL, 
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while OFF BCs hyperpolarize upon illumination of the retina and stratify in the OFF sublamina 

of the IPL (Fig. 1.1; Euler et al., 1996). This characterization, either ON or OFF, stems from 

variation in the type of glutamate receptor (ionotropic or metabotropic) expressed on the BC 

dendrites (Masu et al., 1995; Euler et al., 1996; DeVries, 2000). Without understating the 

importance of BC modulation in the outer retina, this study will instead focus on mechanisms 

within the inner retina that modulate BC signaling. 

Although some passive filtering occurs as the electrical signal travels down the axon 

(Oltedal et al., 2007), a significant portion of processing occurs at the axon terminal in the IPL. 

The temporal and spatial characteristics of glutamate release from the BC axon terminal have 

profound consequences on activation of GCs (Asari and Meister, 2012), as BCs provide the most 

significant excitatory input to the GCs. The primary source of modulation of the BC synaptic 

terminal arrives in the form of feedback from ACs (Boycott et al., 1969; Masland, 2001). AC 

feedback exerts finely-tuned, local control over the membrane voltage of the BC axon terminal 

and thus, the dynamics of signaling from the BC to GCs (Vigh et al., 2011).  

Amacrine Cells 

Amacrine cells are comprised of ~42 morphologically distinct types, making them the 

most diverse class of retinal interneuron, yet only a few have been studied in substantial detail 

(Masland, 2012b). Generally considered inhibitory, ACs are sub-classified as either GABAergic 

or Glycinergic (Masland, 2012b) although GABAergic ACs have been shown to co-express a 

variety of neuro-active substances such as: dopamine (Wulle and Wagner, 1990), substance P 

(Ayoub and Matthews, 1992), the endogenous opioid β-endorphin (Gallagher et al., 2010), and 

nitric oxide (Vielma et al., 2012). As an entire class of retinal neurons, ACs have unique and 

dedicated functions, making them players in modulating the output of BCs as well as the activity 
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of GCs and other ACs (Masland, 2001). However, without downplaying the significance of other 

ACs, this study focuses on ACs that express and release NO (NOACs).  

While NOACs are not the exclusive source for NO in the retina, they are presumed to be 

the predominant source within the inner retina (Vielma et al., 2012). In the mammalian retina, 

NOACs have been subdivided into 3 main types: I, II, and displaced (Kim et al., 1999). 

Regardless of type, the dendritic arbors of all NOAC ramify in the ON sublamina of the IPL 

(Kim et al., 1999). NOACs form synaptic connections with other ACs, as well as GCs in both the 

ON and OFF sublaminae of the IPL and cone BCs in the ON sublamina (Vielma et al., 2012). 

Although NOACs have not been shown to make contact directly with rod bipolar cells (RBCs) 

(Chun et al., 1999), NO release from NOACs has been detected in response to rod-specific light 

stimulation (Pang et al., 2010b) indicating NOACs are active under scotopic light conditions. 

 

1.2 Mechanisms of Light- and Contrast Adaptation in the Vertebrate Retina 

Traditionally, the retina has been described as a simple spatiotemporal filter responsible 

for sharpening and relaying visual information through the optic nerve to the cortex where the 

“real” processing can occur that underlies image-forming vision. However, if this were the sole 

function of the retina, it could be accomplished with far fewer dedicated cell types and circuits 

than are present in reality (Gollisch and Meister, 2008). Therefore, logic dictates that the wide 

variety of cell types found in the retina must form distinct circuits tasked with selective 

computation of visual signals, essentially extracting specific features from the visual scene and 

relaying them to the cortex. While many mechanisms of signal processing in the retina have been 

described, this study will focus primarily on mechanisms of adaptation to light and contrast 

within a visual scene.  
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 Over the course of a day, the intensity of ambient light varies over ~10 orders of 

magnitude (Dowling, 1987; Sterling, 2003) and the retina is charged with the being able to 

discriminate relatively small changes in light intensity across this range. A simple, linear solution 

to ensure coding for this wide range of inputs would be to use an output neuron that can adjust its 

firing rate 10 fold, reliably matching the range of possible intensity levels. However, the spiking 

rate of GCs, the output neurons of the retina, is limited to a range spanning only ~2 log units 

(Demb, 2002). In order to overcome this 

disparity, the retina adapts to the average 

light intensity (“light adaptation”) as well 

as to the range of intensities around the 

mean (“contrast adaptation”) by shifting 

the dynamic range of coding (Demb, 2002; 

Rieke and Rudd, 2009). Adaptation gives 

the retina the ability to make effective use 

of the relatively limited range of GC 

responsiveness and, yet it creates a 

fundamental challenge: maintain the 

sensitivity that provides the coding capability for weak inputs while preventing saturation from 

high intensity/contrast stimuli (Fig 1.2).  

While adaptation is achieved through various strategies and on multiple time scales, the 

end result is generally the same: saturation is prevented by reducing the overall gain of the 

system (Fig 1.2; Smirnakis et al., 1997; Demb, 2008). Changes in the firing rate of an individual 

GC may reflect intrinsic properties of the GC (i.e. Na+ channel inactivation; Kim and Rieke, 

 
 

Figure 1.2. Inherent challenges of a visual scene. Identical 

images representing the two opposing results of sensitization 

and adaptation. In A, the dim and low contrast details of the 

image are visible, such as the individual trees and hiking path 

within the shadows. This sensitivity results in complete 

saturation of the bright, high contrast region, the clouds and the 

silhouette of the trees against the sky, and detail is lost. If the 

sensitivity is shifted to accommodate the high 

intensity/contrast region of the image as illustrated in B, the 

finer details within the shadows are eliminated, but the sky and 

clouds are now detectable.  



9 

2001; Baccus and Meister, 2002), yet mechanisms that modulate photoreceptor (Thoreson and 

Mangel, 2012) and BC signaling properties (Rieke, 2001; Manookin and Demb, 2006) can also 

play pivotal roles in light/contrast adaptation. In the outer retina, neuromodulators have been 

shown to influence the tuning properties of the circuitry. For example, during light adaptation, 

dopamine mediates the transition from scotopic to photopic vision by diminishing signal flow 

through rod circuits and increasing it through cone circuits (Witkovsky, 2004).  

In the inner retina, glutamate release from BCs is modulated in an activity dependent 

manner by inhibitory feedback from nearby ACs (Vigh et al., 2005; Vigh et al., 2011). In this 

particular instance, light-evoked glutamate release from the BC terminal activated ACs and 

drove inhibitory feedback (via GABA) that ultimately reduced subsequent glutamate release 

from the BC terminal (Vigh et al., 2005; Vigh et al., 2011). In the context of classical adaptation, 

this particular mechanism prevents saturation of the GC by reducing the amount of glutamate 

released from the pre-synaptic terminal in response to a strong stimulus. Along these lines, a 

reduction in GC spiking activity has been directly correlated to reduced glutamate release from 

presynaptic BCs (Manookin and Demb, 2006), which strongly implicates the BC axon terminal 

as an influential target of modulation during periods of adaptation. Thus, mechanisms and 

distinct retinal circuits that target BCs, and directly modulate their output, significantly influence 

retinal adaptation and prevent GC saturation.  

While reducing overall retinal sensitivity is key to preventing saturation under bright light 

conditions, it also introduces the problem of losing the ability to detect weak signals that may 

carry important visual information within a natural scene. Interestingly, a growing body of 

evidence suggests that while most GC responses are depressed during adaptation (Smirnakis et 

al., 1997), others actually become more sensitive to weaker inputs (Kastner and Baccus, 2011; 
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Asari and Meister, 2012; Nikolaev et al., 2013). These reports indicate that adaptation is far more 

complex than was traditionally assumed and involves opposing forms of plasticity in order to 

maintain coding ability across the entire dynamic range of vision. In other words, it appears that 

adaptation does not simply dampen the sensitivity of the entire retina, but instead, 

compartmentalizes the ability to respond to strong and weak inputs simultaneously. Importantly, 

the plasticity implicated in driving sensitization in GCs during light and contrast adaptation was 

suggested to be a result of enhanced efficacy of the BCGC synapse, primarily through 

increased glutamate release from the BC terminal (Asari and Meister, 2012; Nikolaev et al., 

2013). Although a mechanism responsible for enhanced signaling from the BC terminal was not 

explicitly defined, a general consensus was that it was a result of specialized AC input directly to 

the BC terminal (Asari and Meister, 2012, Kastner and Baccus; 2013). Various aspects of 

adaptation have been attributed to particular neuromodulators, such as dopamine (Witkovsky, 

2004; see above), so it is feasible to speculate that the sensitization observed in opposition to 

adaptation may also be driven through release of specific neuro-active compounds from ACs. 

One particularly strong candidate for this role is nitric oxide (NO) and the features of NO 

signaling in the retina are discussed in the section below.  

 

1.3 Nitric Oxide Signaling in the Vertebrate Retina 

 Since discovering that NO functions as a signaling molecule in the central nervous 

system (CNS) nearly 30 years ago, our understanding of NO as a neuromodulator has steadily 

expanded (Garthwaite et al., 1988; Garthwaite, 2008). In the vertebrate central nervous system, 

NO acts as a neurotransmitter and functions in mediating several behaviors, neurogenesis, 

memory formation, neuropathy/neuroprotection, and also by modulating physiological signaling 
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in sensory systems (Garthwaite, 2008; Vielma et al., 2012). Furthermore, NO has garnered 

significant attention as a potent neuromodulator in the vertebrate retina (Vielma et al., 2012). 

This section will review synthesis and transmission of NO in general and its influence on retinal 

function and signal processing. 

 

NO Synthesis and Release 

Throughout the body, nitric oxide synthase (NOS) enzymes convert L-arginine to NO; 

however, the physiological context of NO synthesis is based on the particular isoform of NOS 

that is active (Alderton et al., 2001; Garthwaite, 2008). In vertebrates, three types of  

NOS are expressed: neuronal (nNOS), endothelial (eNOS) and inducible (iNOS) isoforms and 

each have very distinct structural and functional features (Alderton et al., 2001). nNOS and 

eNOS are constitutively expressed and their activity is calcium-dependent (Knowles and 

Moncada, 1994; Alderton et al., 2001; Garthwaite et al., 2008). Expression of iNOS, on the other 

hand, is only elevated in response to inflammation or pathological conditions (Knowles and 

Moncada, 1994). While all three isoforms have been detected in the vertebrate retina, nNOS is 

considered to be the main player in influencing visual response via NO (Vielma et al., 2012) and 

therefore will be given a majority of the attention regarding NO signaling in the retina.  

In neurons, Ca2+ ions, entering the cell through NMDA receptors, bind and interact with 

calmodulin which activates nNOS and initiates the liberation of NO from l-arginine (Fig. 1.3; 

Garthwaite, 1985; Garthwaite et al., 1988). In a simple neuronal circuit, a presynaptic neuron 

releases glutamate onto a post-synaptic nNOS expressing neuron, driving activation of 

postsynaptic NMDA receptors and ultimately synthesis of NO. Unlike other neurotransmitters, 

NO is not packaged into vesicles for release and therefore, as a gaseous, freely diffusible 
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molecule, NO can function as an anterograde and 

retrograde volume transmitter (Fig. 1.3; Wood and 

Garthwaite, 1994; Park et al., 1998, Steinert et al., 2008) 

making it a potent mediator of neuronal excitability. In 

the retina, NO is synthesized in a light-dependent 

manner primarily by nNOS, as made evident by the 

coincidence of light-evoked NO production with the 

retinal expression pattern of nNOS, found 

predominantly in the inner retina (mostly in NOACs; 

see Amacrine Cells section above) of many species 

(Blute et al., 1997; Eldred and Blute, 2005; Blom et al., 

2009; Giove et al., 2009, Pang et al., 2010; Walter et al., 2014; Zhu et al., 2014). Along these 

lines, light stimulation has been shown to significantly increase NO in the retinas of a number of 

vertebrate species including carp (Sekaran et al., 2005), salamander, turtle (Eldred and Blute, 

2005), rabbit (Neal et al., 1998) and miniature pig (Donati et al., 1995).  

 

Neuromodulatory Effects of NO 

Currently, there are two distinct routes by which NO can modulate synaptic transmission: 

(1) the “classical” cGMP-dependent cascade and (2) direct protein modification via S-

nitrosylation (Fig. 1.4; Ahern et al., 2002). In this section, the general overview of each signaling 

pathway is discussed along with evidence (or lack there of) of its role in information processing 

in the vertebrate retina. 

 

 
 
Figure 1.3. Schematic of nitric oxide synthesis 

in neurons. Presynaptic glutamate release 

activates postsynaptic NMDA receptors 

resulting in an influx of Ca2+ ions which bind 

to calmodulin (Calmod), activating the 

neuronal isoform of nitric oxide synthase 

(nNOS). nNOS converts l-arginine into NO, 

and as a gaseous molecule, NO can freely 

diffuse across the cellular membrane. 
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The “classical” pathway 

 In the well-characterized traditional 

view of NO signaling, NO binds to the “NO-

receptor” soluble guanylate cyclase (sGC) 

which stimulates an increase in intracellular 

cGMP (Fig. 1.4; Southam and Garthwaite, 

1993). Elevated levels of cGMP can elicit 

functional changes in cellular processes by 

targeting several downstream proteins, however 

the most widespread effects are attributed to cGMP-dependent activation of protein kinase G 

(PKG) (Fig. 1.4 #1; Garthwaite, 2008). It is important to note that the designation of the 

NOsGCcGMP pathway as “classical” or “traditional” is simply a result of it being identified 

and explored nearly a decade before other routes of action by NO and does not diminish its 

ability to exert changes in cellular processes.  

In the retina, extensive work has described NO’s modulatory effects via the 

NOsGCcGMP pathway at many stages of retinal processing. The most notable effect of NO 

in the retina is cGMP-dependent uncoupling of gap junctions between horizontal cells (DeVries 

and Schwartz, 1989; Lu and McMahon, 1997; Daniels and Baldridge, 2011) and between AII 

ACs and BCs (Mills and Massey, 1995). In the outer retina, NO has been shown to influence 

transmission of glutamate to horizontal cells (Bing et al., 1997; Savchenko et al., 1997) as well 

as decrease the responsiveness of glutamate receptors on horizontal cells (McMahon and 

Ponomareva, 1996). In the inner retina, NO exerts cGMP-dependent effects on BCs, ACs, and 

GCs. In BCs, NO has been shown to modulate the light responsiveness and sensitivity through a 

 
 

Figure 1.4. NO signaling pathways. 1. The “classical 

pathway requires activation of soluble guanylate cyclase 

(sGC) by NO. This stimulates the production and 

elevation of intracellular cyclic GMP (cGMP) which can 

target and activate protein kinase G (PKG).  

2. Additionally, NO can modify proteins directly by 

binding to free thiols (R-SH), forming nitrosothiols (R-

SNO) via S-nitrosylation. 
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cGMP-dependent pathway (Shiells and Falk, 2002; Snellman and Nawy, 2004). In ACs, NO has 

been implicated in converting the response to GABA from inhibitory to excitatory by mediating 

an increase in intracellular [Cl-] (Hoffpauir et al., 2006). At the level of GCs, NO appears to 

modulate spiking frequency as well as increase voltage-gated calcium channel activity (Hirooka 

et al., 2000; Kawai and Sterling, 2002). Altogether, the “classical” NO signaling cascade can 

exert effects on multiple spatial and temporal scales and can play a significant role in the 

processing of visual information during light adaptation. 

S-nitrosylation 

In an alternative mechanism, NO can alter protein function directly by covalently binding 

to free thiol groups of cysteine residues of proteins in a chemical reaction called S-nitrosylation 

(Fig. 1.4; Stamler, 1994; Ahern et al., 2002). This reversible covalent post-translational 

modification has been shown to alter protein function (reviewed by Ahern et al., 2002) much like 

phosphorylation. Thousands of proteins with potential S-nitrosylation sites have been identified 

and many are associated with neural signaling (Seth and Stamler, 2011). For example, NR2 

subunits of NMDA receptors, expressed in heterologous systems, have been shown to undergo 

S-nitrosylation that inhibits NMDA currents (Choi et al., 2000). It is important to note, however, 

that a vast majority of the reports describing S-nitrosylation in the CNS use exogenous NO 

donors to drive robust S-nitrosylation and do not evoke endogenous NO release (Ahern et al., 

2002). Initial reports did not detect S-nitrosylated proteins without the application of NO donors, 

which was assumed to be because endogenous S-nitrosoproteins are present at extremely low 

levels (Jaffrey et al., 2001). Further experiments exposed a handful of proteins (12) that were 

endogenously S-nitrosylated under conditions of tonic NO release in the mouse brain (Jaffrey et 
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al., 2001), however these experiments still lacked information regarding S-nitrosylation 

following specific stimulation-evoked release of NO. 

 Compared to the sensitivity of sGC, which can be activated by levels of NO in the 

nanomolar range (Roy et al., 2008), the S-nitrosylation reaction is thought to require low 

micromolar NO concentrations, minimally (Ahern et al., 2002; Palmer et al., 2008). This 

disparity in required concentrations of NO for effective signaling raises the question of whether 

or not S-nitrosylation can and does occur under physiological conditions in the CNS 

(Hardingham et al., 2013). Very few reports definitively show endogenous S-nitrosylation in the 

healthy nervous system, and in fact, detectable (endogenous) S-nitrosylation in neural tissue has 

been mostly associated with pathophysiological conditions in which nitrosative stress influences 

the progression of the disease (Nakamura et al., 2013). For example, the pathogenesis of 

neurodegenerative diseases such as Parkinson’s and Alzheimer’s is, in part, influenced by S-

nitrosylation from aberrant levels of NO (Chung et al., 2004; Qu et al., 2011).  

While evidence is scarce regarding the presence of endogenous S-nitrosylation in the 

CNS, it is almost entirely absent when considering the vertebrate retina. Upon NMDA 

application, NO-selective electrodes detected ~0.2 μM NO near a single GC in the turtle retina 

(Eldred and Blute, 2005) indicating, at least, that the retina is capable of producing NO levels 

sufficient to drive S-nitrosylation. However, application of NMDA is commonly used to simulate 

excitotoxic conditions associated with retinal diseases and to initiate cell death (Siliprandi et al., 

1992; Li et al., 1999; Akopian et al., 2014). There is very little evidence indicating that the 

concentration of NO in the retina reaches high enough levels to facilitate S-nitrosylation under 

physiological conditions. Although relatively sparse, evidence does exist that carves out a 

functional role for S-nitrosylation in the vertebrate retina. In 1994, Kurenny et al. described an 
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NO-dependent process that modulated rod photoreceptor ion channels independent of 

sGC/cGMP. With these data, the authors imply that the observed effect was due to direct 

nitrosylation of key proteins in the rod photoreceptor transduction machinery. Furthermore, 

intravitreal injection of exogenous NO donors at low, non-pathological concentrations, amplified 

the rat electroretinogram (ERG) independent of cGMP (Vielma et al., 2010), leading to the 

conclusion that NO may have amplified ERG responses via protein nitrosylation. Overall, 

endogenous protein nitrosylation in the retina represents an exciting and unexplored avenue to 

understanding how NO can influence visual information processing at various points in the 

retinal circuitry. 

 

1.4 Overall Hypothesis and Aims 

   The overall hypothesis of this study is that endogenous S-nitrosylation is present in the 

vertebrate retina under physiological conditions and underlies functional aspects of signal 

processing. The basis for this hypothesis is rooted at the crossroads of two key aims regarding 

retinal physiology: 1) under physiological conditions, endogenous NO drives S-nitrosylation in 

the vertebrate retina and 2) during periods of light adaptation, mechanisms exist to extend the 

dynamic range of vision and prevent loss of critical visual information. Aims 1 and 2 will be 

addressed in chapters 2 and 3, respectively. Finally, chapter 4 will provide preliminary evidence 

for expanding upon the conclusions made in chapters 2 and 3 and will discuss the implications of 

S-nitrosylation in the healthy retina and in neurodegenerative diseases.    
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2. Light-Evoked S-nitrosylation in the Retina1 

 

 

2.1 Summary 

Nitric oxide (NO) synthesis in the retina is triggered by light stimulation. NO has been 

shown to modulate visual signal processing at multiple sites in the vertebrate retina, via 

activation of the most sensitive target of NO signaling, soluble guanylate cyclase. NO can also 

alter protein structure and function and exert biological effects directly by binding to free thiol 

groups of cysteine residues in a chemical reaction called S-nitrosylation. However, in the central 

nervous system, including the retina, this reaction has not been considered to be significant under 

physiological conditions. Here we provide immunohistochemical evidence for extensive S-

nitrosylation that takes place in the goldfish and mouse retinas under physiologically relevant 

light intensities, in an intensity-dependent manner, with a strikingly similar pattern in both 

species. Pre-treatment with NEM, which occludes S-nitrosylation, or with TRIM, an inhibitor of 

neuronal NO synthase, eliminated the light-evoked increase in S-nitrosylated protein 

immunofluorescence (SNI) in the retinas of both species. Similarly, light did not increase SNI, 

above basal levels, in retinas of transgenic mice lacking neuronal NO synthase. Qualitative 

analysis of the light-adapted mouse retina with mass spectrometry revealed more than 300 

proteins that were S-nitrosylated upon illumination, many of which are known to participate 

directly in retinal signal processing. Our data strongly suggest that in the retina, light-evoked NO 

production leads to extensive S-nitrosylation and that this process is a significant post-

translational modification affecting a wide range of proteins under physiological conditions.  

                                                 
1 Tooker R, Vigh J (2015) J Comp Neurol Advance online publication. DOI: 10.1002/cne.23780. Reproduced with 

permission: see Appendix I. 
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2.2 Introduction 

As visual signals from photoreceptors are transmitted across the synaptic layers of the 

retina towards the output elements, the ganglion cells (GCs), they are subjected to modulation by 

a great variety of neuro active substances. One of these neuromodulators is nitric oxide (NO). 

Under physiological conditions, NO is synthesized from L-arginine in a light-dependent manner 

primarily by the neuronal-type nitric oxide synthase (nNOS), as made evident by the coincidence 

of light-evoked NO production with the retinal expression pattern of nNOS in many species 

(Blute et al., 1997; Blom et al., 2009; Giove et al., 2009). In vertebrates, the most sensitive target 

of NO is soluble guanylate cyclase (sGC) which is activated by nanomolar NO concentrations 

(Roy et al., 2008). It is also the best known path of NO action in the retina: extensive work has 

described NO’s modulatory effects at many stages of retinal processing via the 

NOsGCcGMP pathway (DeVries and Schwartz, 1989; Mills and Massey, 1995; McMahon 

and Ponomareva, 1996; Savchenko et al., 1997; Bing et al., 1997; Xin and Bloomfield, 1999; 

Hirooka et al., 2000; Kawai and Sterling, 2002; Yu and Eldred, 2005; Hoffpauir et al., 2006; 

Daniels and Baldridge, 2011). However, NO can exert biological effects via another signal 

transduction pathway: NO can react directly with free thiol groups of cysteine residues of 

proteins in a chemical reaction called S-nitrosylation (Stamler, 1994; Ahern et al., 2002). This 

reversible, covalent post-translational modification has been shown to alter protein function 

(reviewed by Ahern et al., 2002) much like phosphorylation. Thousands of proteins with 

potential S-nitrosylation sites have been identified, many associated with neural signaling (Seth 

and Stamler, 2011). For example, NR2 subunits of NMDA receptors, expressed in heterologous 

systems, have been shown to undergo S-nitrosylation that inhibits NMDA currents (Choi et al., 

2000). However, based on NO-donor studies, S-nitrosylation is thought to require at least low 
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micromolar NO concentrations (Ahern et al., 2002; Palmer et al., 2008), raising the question of 

whether it can occur under physiological conditions in the CNS (Hardingham et al., 2013). To 

date, detectable S-nitrosylation in neural tissue has been associated primarily with 

pathophysiological conditions that are characterized by aberrant, high levels of endogenous NO 

production (Nakamura et al., 2013): for example, elevated NO-triggered S-nitrosylation can take 

part in the pathogenesis of Parkinson’s and Alzheimer’s disease (Chung et al., 2004; Qu et al., 

2011).  

NO-selective electrodes detected ~0.2 μM NO near a single GC in the turtle retina upon 

NMDA application (Eldred and Blute, 2005), but little evidence supports the notion that in the 

healthy retina endogenous retinal NO concentrations under physiological conditions might be 

high enough to cause direct S-nitrosylation of proteins. To that end, in the salamander retina, 

Kurenny et al. (1994) described an NO-dependent process that modulated rod photoreceptor ion 

channels independent of sGC/cGMP. Likewise, exogenous application of NO donors at low, 

non-pathological concentrations, via intravitreal injection, amplified the rat electroretinogram 

(ERG) independent of cGMP (Vielma et al., 2010), leading to the conclusion that NO may have 

amplified ERG responses via protein nitrosylation. Recently, we reported evidence of a 

modulatory process in which endogenous retinal NO mediated activity-dependent plasticity of 

Mb-type bipolar cell (Mb) output in the goldfish retina through S-nitrosylation (Tooker et al., 

2013).  

Here we present immunohistochemical evidence describing S-nitrosylation in the adult 

retina under normal physiological conditions, triggered by endogenous NO. Importantly, we 

show that light induces S-nitrosylation with a similar pattern in goldfish and mouse retinas and 

the extent of immunolabeling depends on the intensity of illumination in both species. Our 
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results are consistent with the notion that retinal NO production/release depends on the light 

intensity and we confirm that light-induced NO production that causes S-nitrosylation is 

mediated by the nNOS isoform in both goldfish and mouse. Therefore, we propose that light-

evoked, NO-mediated S-nitrosylation in the vertebrate retina is a ubiquitous, dynamic 

modulatory process that exists across species and may function to modify the transfer of light 

information at multiple sites of actions within specific synaptic locations. Finally, using mass 

spectrometry, we provide the first descriptive account of the identities of retinal proteins that are 

subject to light-dependent S-nitrosylation via endogenous NO. Our findings provide a framework 

for future investigations of NO-mediated modulation of retinal function. 

 

2.3 Materials and Methods 

Animals 

 Adult male and female wild type C57BL/6J (WT; Jackson laboratories, Bar Harbor, ME, 

RRID: IMSR_JAX:000664) mice were used for a majority of the experiments requiring 

mammalian retinas. We also used retinas from adult male and female mice lacking the α isoform 

of neuronal nitric oxide synthase (nNOSα). These animals were generated on a C57BL/6 

background by deletion of exon 6, the heme binding domain, in the nNOS gene (Gyurko et al. 

2002; originally generated by P. Huang, Harvard Mass General Hospital and generously 

provided by S. Tobet, Colorado State University, RRID: IMSR_JAX:008519). Mice containing 

the genetic deletion were backcrossed to C57BL/6 mice for more than 10 generations. All mice 

were housed under a constant 12 h light/dark cycle with lights on at 6:00 am and were fed 

standard rodent chow and water ad libitum. 
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Adult 4- to 5-inch long Goldfish (Carassius auratus) of either sex were kept on a 12 h 

light/dark cycle with lights on at 10:00 am. All animals were handled in compliance with the 

Colorado State University Institutional Animal Care and Use Committee and all experiments and 

procedures met United States Public Health and Service Guidelines. 

 

Eyecup Preparation 

For all experiments, animals were killed between 10:00 and 14:00 hours. Mice were 

anesthetized with isoflurane and decapitated before both eyes were enucleated. Goldfish were 

anesthetized with MS 222 before decapitation and enucleation. MS 222 stock solution (1000x) 

was made fresh in saturated bicarbonate buffer (pH: 7.5) which was mixed into the holding water 

to achieve 100 mg/l final concentration. Eyecups from both mouse and goldfish eyes were made 

by removing the cornea and lens. For all experiments, eyecups were maintained in bicarbonate 

buffered Ames’ medium (US Biological, Salem, MA) supplemented with 1.15 mM CaCl2. The 

pH was set to 7.45 with NaOH. The osmolarity was 290 ± 5 mOsmol for mouse eyecups and 260 

± 2 mOsmol for goldfish eyecups and in both cases the solution was gassed continuously with 

95% O2/5% CO2. 

 

Light Exposure of Eyecup Preparations 

To obtain fully light-adapted retinal tissue, the animal was subjected to ambient light for 

at least 1 h before the eyecups were made under a standard dissection microscope. For all other 

experiments, animals were dark-adapted for at least 3 h before the preparation took place under 

infrared illumination as previously described (Vigh et al., 2011). Quantified light exposure of the 

fully dark-adapted eyecups was accomplished using full-field illumination by green (λ=505 nm) 
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LEDs (American Bright Optoelectronics, Chino, CA) with various intensities and durations. The 

light intensity was calibrated with an optical meter (model 1918-C, sensor 918D-SL-OD3; 

Newport, Irvine, CA). Dark-adapted eyecups were illuminated with 1010 photons/cm2/s for 10 s 

to mimic mesopic light stimulation and for 500 ms with 2.4x108 photons/cm2/s as scotopic light 

stimulation (Busskamp et al., 2010; Joselevitch and Kamermans; 2009). For experiments 

requiring incubation in specific pharmacological agents, the drug was added to the Ames’ media. 

One eyecup was incubated in the drug solution while the other eyecup was kept in un-altered 

control Ames’ medium for the same length of time as the drug-incubated eyecup in complete 

darkness, prior to light stimulation. Mouse and goldfish eyecups were incubated in Ames’ 

medium containing 1 mM N-Ethylmaleimide (NEM; Tocris Bioscience Bristol, UK) for 20 min 

or 50 µM 1-(2-Trifluromethylphenyl)imidazole (TRIM; Tocris Bioscience Bristol, UK) for 30 

min prior to 10 s of mesopic light stimulation. 

 

Immunohistochemistry 

Light-adapted, dark-adapted and light stimulated eyecups were fixed at room temperature 

in freshly prepared 4% paraformaldehyde in 0.1 M phosphate-buffered saline (PBS; pH 7.45) for 

20 min while protected from further light exposure. Cryostat-sectioned retinas were used for 

standard immunohistochemistry as previously described (Gallagher et al., 2010) with one minor 

adjustment: extreme care was taken to protect the retinal tissue from direct light exposure during 

every experimental step, beginning with fixation, as direct light can reverse and eliminate the S-

nitrosylation moiety (Forrester et al., 2007). Retinal sections were permeabilized for 20 min in 

0.5% Triton X-100 in 0.1 M PBS and then immediately blocked for 1 h in 5% bovine serum 

albumin (BSA) containing 0.5% Triton X-100 in 0.1 M PBS. The sections were incubated in 
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blocking solution containing rabbit anti-S-nitrosocysteine (Abcam, Cat# ab50185, RRID: 

AB_881716) and mouse anti-PKCα primary antibodies (Enzo Life Sciences, Cat# KAM-

PK020D, RRID: AB_2168539) (Table 2.1) overnight at room temperature. Sections were 

washed 3 X 15 min in 0.1 M PBS and then incubated for 2 h at room temperature in secondary 

antibodies donkey anti-rabbit Cy3 (Millipore, Cat# ap182C, RRID: AB_92588) and chicken 

anti-mouse fluorescein (Rockland, Cat# 610-9202, RRID: AB_218559), diluted 1:400 in 

blocking solution. Slides were washed 3 X 15 min with 0.1 M PBS and mounted in Vectashield 

(Vector labs, Burlingame, CA). For all immunohistochemical preparations, treated and control 

tissue were run in parallel, including a treated and a control retinal section on a single slide, to 

account and control for any inter- and intra-experimental differences.  

 

Antibody Characterization 

 The primary antibodies used in this study are listed in Table 2.1. 

Table 2.1. Primary antibodies used 

 

S-nitrosocysteine 

The polyclonal S-nitrosocysteine antiserum was raised in rabbit against S-nitrosylated 

cysteine conjugated to keyhole limpet hemocyanin (KLH) followed by purification via ion-

exchange chromatography. The antibody specifically recognizes S-nitrosocysteine-BSA in 

Antigen Immunogen 
Manufacturer, Cat. #, host species, 

mono- vs. polyclonal, RRID Dilution used 

S-nitrosocysteine 
S-nitrosylated 
cysteine-KLH 

Abcam, cat. #ab50185, rabbit polyclonal, 
RRID: AB_881716 

1:100 

Protein Kinase Cα 
(PKCα) 

Bovine Brain PKCα 
Enzo Life Sciences, cat. #KAM-PK020D,  
mouse monoclonal, RRID: AB_2168539 

1:200 
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immunoblotting and ELISA but does not recognize unconjugated BSA (Abcam; Cat#: ab50185, 

RRID: AB_881716; Table 2.1). The specificity of the antibody was demonstrated by Chakrabarti 

et al. (2010) who reported a ~70-80% loss in specific staining when S-nitrosylated human 

umbilical vein endothelial cells were incubated for 10 min with 100 µM DTT, a strong reducing 

agent capable of eliminating the nitrosothiol moiety from the cysteine. Further characterization 

was reported by Rossi-George and Gow (2013) who asserted that the detection of S-

nitrosocysteine immunofluorescence from LPS treated BV2 cells remained present after antigen 

competition by pre-incubation of the primary antibody with S-nitrosoglutathione (GSNO), 

indicating that the antibody was specifically recognizing S-nitrosocysteine and not other nitroso 

compounds. Additionally, Rossi-George and Gow (2013) showed a reduction in S-

nitrosocysteine immunofluorescence in BV2 cells that were treated with LPS and then subjected 

to strong reducing conditions using organic mercury as the reducing agent. In our hands, we saw 

a dramatic reduction in S-nitrosocysteine immunolabeling when we incubated the retinal tissue 

in 1 mM NEM for 20 min prior to light stimulation, when compared to control retinas which 

received the exact same light stimulation (Compare Figs. 2.3 and 2.4 with Fig. 2.5). This is 

consistent with the notion that NEM covalently binds to sulfhydryl groups with high affinity 

(Smyth et al., 1960) thereby preventing consecutive S-nitrosylation by NO (Hu et al., 2012).  

Protein Kinase Cα 

 Bovine brain protein kinase Cα (PKCα; UniProt ID: P04409) was used as the immunogen 

for production of the monoclonal antiserum in mouse. The affinity purified antibody specifically 

recognizes a band of ~80 kDA by Western blot in mouse and fish (Enzo Life Sciences, Cat# 

KAM-PK020D, RRID: AB_2168539; Table 2.1). This primary antibody labels the appropriate 

pattern in the mouse that corresponds to mouse rod bipolar cells (RBCs; Greferath et al., 1990; 
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Haverkamp and Wässle, 2000) as well as the appropriate pattern in the goldfish retina which 

corresponds to Mbs (Negishi et al., 1988; Suzuki and Kaneko, 1990; Yazulla and Studholme, 

1992).  

 

Confocal Laser Microscopy and Analysis 

Fluorescent images were taken using a Zeiss LSM 510 confocal microscope (Carl Zeiss, 

Oberkochen, Germany). Digital images were acquired separately from each laser channel and 

then merged to avoid crosstalk between channels. Images were acquired at 40X; for Z-stacks, 2 

µm increments were used. Laser power and acquisition settings were kept identical across all 

retinal sections imaged. Images were compiled using Zeiss LSM Images Examiner software 

(Carl Zeiss, Oberkochen, Germany). For representative images, brightness and contrast were 

adjusted in Photoshop CS4 (version 11.0; Adobe, San Jose, CA) and all adjustments were made 

uniformly to the entire digital image. Quantification of immunofluorescence was performed on 

raw, unadjusted images of retinal sections using the Plot Profile tool in Image J (version 1.49c; 

NIH, Bethesda, MD, RRID: nif-0000-30467). For this analysis, we made selections of uniform 

size (1290 X 575 pixels) from the raw images (i.e. one selection each from the channels 

corresponding to S-nitrosocysteine and PKCα immunolabeling), ensuring all retinal layers were 

present in the vertical orientation of the selection. The intensity profile of the fluorescent signal 

associated with S-nitrosocysteine or PKCα immunolabel was obtained by applying the Plot 

Profile tool which horizontally integrated the intensity across the entire digital image selection 

(gray line in Fig. 2.1B and E and in Fig. 2.2B and E). The average intensity of fluorescence was 

calculated for each individual retinal layer from each unique plot profile after background 

fluorescence was subtracted, similar to the method reported by Vielma et al. (2010). In this 
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manner, we were able to systematically quantify the intensity and pattern of S-nitrosocysteine 

immunofluorescence across the retinal layers (Figs. 2.1G and 2.2G). For retinal sections from 

eyecups stimulated with mesopic or scotopic light, we compared the extent to which the S-

nitrosylation immunolabeling was distributed within the IPL, specifically, what percentage was 

located within the Mb/RBC terminal region. During this analysis, we divided the integral of the 

intensity profile curve for the region defined only by the terminals of Mbs/RBCs by the integral 

of the curve associated with the entire IPL. To determine the boundaries of the terminal region in 

the profile of the S-nitrosocysteine plot, we used the intensity profile from the PKCα 

fluorescence and correlated the exact pixels corresponding to the beginning and end of the 

terminal region. Integrals from individual images were averaged to obtain a final overall average 

for the integral of the intensity within the entire IPL and the intensity specific to the terminal 

region. Colocalization of the S-nitrosocysteine immunolabeling and the terminal region of the 

Mbs/RBCs was determined for individual goldfish Mb terminals or terminal clusters for mouse 

RBCs using images taken from a single optical plane to avoid exaggeration of the coincidence of 

colocalization. The JACoP plugin in the Image J software (version 1.49c; NIH, Bethesda, MD, 

RRID: nif-0000-30467) was used to calculate the Manders’ coefficient for 100 X 100 pixel 

square selections of Mb terminals or RBC terminal clusters were cut out from single-plane 

confocal images. Note that the Manders’ coefficient, M1, returns a value between 0 and 1, 

corresponding to the ratio of “summed intensities of pixels from the green image for which the 

intensity in the red channel is above zero to the total intensity in the green channel” and vice 

versa for M2 (Bolte and Cordeliѐres, 2006). As the Manders’ coefficient is sensitive to noise and 

might provide a false positive correlation (Bolte and Cordeliѐres, 2006), we used the Costes’ 

approach to ensure accurate measures of coincidence: the Costes’ approach, sets an automatic 
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value for intensity threshold, thereby eliminating noise and setting the background value to zero. 

Statistical analysis was completed using Prism (version 6.01; GraphPad, San Diego, CA, RRID: 

rid_000081). Unpaired Student’s t tests were used for comparison between individual groups and 

one-way ANOVA with Tukey’s multiple comparison tests were performed across multiple 

groups. Comparisons across experiments were justified by performing the 

immunohistochemistry and imaging of the retinal tissue from the experimental group (i.e. drug 

treated) in parallel with at least one tissue slide from each group involved in the comparison (i.e. 

dark-adapted or control incubation without drug). All data are presented as mean +/- SEM, with 

p<0.05 considered significant. 

  

Identification of S-nitrosylated Proteins 

Biotin-Switch Assay 

Retinal lysates were made by homogenizing the 2 retinas, obtained from individual light- 

or dark-adapted mice, in ice-cold lysis buffer (S-nitrosylation Buffer A, Cayman Chemical, Ann 

Arbor, MI, Item #10006520), supplemented with 1 mM Phenylmethanesulfonyl fluoride (PMSF, 

Sigma, St. Louis, MO). Retinal lysates were obtained in triplicate (i.e. from 3 animals) in either a 

dark- or light-adapted state, providing 6 total lysates to be used. The homogenized lysates were 

centrifuged at 1,000xg for 10 min at 4oC to remove debris. The supernatant was collected and 

used as the starting material for the biotin-switch assay using the S-nitrosylated Protein 

Detection kit (Cayman Chemical, Ann Arbor, MI, Item #10006518). The S-nitrosylated Protein 

Detection Kit is a modified version of the biotin-switch assay described by Jaffrey et al. (2001) 

in which only proteins containing the S-nitrosylation moiety are covalently labeled with a biotin 

in place of the nitrosothiol group. The steps in the S-nitrosylated protein detection kit were 
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followed exactly and extreme care was taken to prevent exposure of the sample to light 

(fluorescent and/or sunlight) as this can cause inappropriate biotinylation and ultimately false 

positive protein identification (Forrester et al., 2007). Following completion of the assay per the 

kit, the protein samples were suspended in 200 µL of wash buffer (S-nitrosylation wash buffer, 

Cayman Chemical, Ann Arbor, MI, Item # 10006519) with 1 mM PMSF and stored at -20oC 

overnight.  

NeutrAvidin Resin-Assisted Capture of Biotinylated Proteins 

Prior to incubation with protein sample, 100 µL of settled NeutrAvidin agarose resin 

(Pierce Biotechnology, Rockford, IL) was blocked by incubation with 2.5% biotin-free BSA 

(Sigma, St. Louis, MO) in 0.1 M PBS for 1 h at room temperature. The blocking solution was 

removed and the protein samples (200 µL) were incubated with the NeutrAvidin agarose resin 

for 2 h at room temperature. The resin was washed 5 X 20 min in 0.1 M PBS. After washing all 

of the unbound protein, the biotinylated proteins were removed from the resin by 4 X 20 min 

incubations in 150 µL of the elution buffer: 8 M guanidine-HCL (ThermoFisher Scientific), pH 

1.5. All of the elution buffer fractions were collected and combined to ensure maximum protein 

recovery from the resin. The entire 500 µL volume of elution buffer containing the biotinylated 

proteins was immediately dialyzed against 0.1 M PBS for 24 h at 4oC. The eluates were 

precipitated from the PBS via trichloroacetic acid (TCA) protein precipitation using 

deoxycholate. The precipitated protein pellets were resuspended in 50 µL 0.1 M PBS and stored 

at -20oC. Protein concentration was determined by BCA analysis (Thermo Scientific, Rockford, 

IL).  
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Sample Preparation for LC-MS/MS Analysis 

Protein samples from light-adapted (n=3) and dark-adapted (n=3) were submitted to the 

Proteomics and Metabolomics Facility at Colorado State University. Samples were processed for 

in-solution trypsin digestion as previously described (Schauer et al., 2013). Briefly, protein was 

precipitated out of solution in the presence of 4 volumes of 100% -20o C acetone and then 

resolubilized in 8 M urea, 0.2% ProteaseMAX surfactant trypsin enhancer (Promega, Madison, 

WI). Samples were reduced and alkylated with 5 mM dithiothreitol and 5 mM iodoacetamide. 

Trypsin (MS Grade, Thermo Pierce, San Jose, CA) was added at an enzyme to substrate ratio of 

1:50 and incubated at 37o C for 3 h. Trypsin was deactivated with the addition of 5% 

trifluoroacetic acid and desalted using C18 OMIX tips (Agilent Technologies, Santa Clara, CA) 

using manufacturer’s instructions. Peptide eluate was dried in a vacuum evaporator and 

resuspended in 3% acetonitrile/0.1% formic acid at a concentration of approximately 1 µg/µL.  

LC-MS/MS Analysis 

Approximately 2 µg of tryptic digest for each sample was injected using an EASY 

nanoLC-II system (Thermo Scientific, San Jose, CA). Peptides were purified and concentrated 

using an on-line enrichment column (EASY-Column, 100 µm ID x 2 cm ReproSil-Pur 

C18). Subsequent chromatographic separation was performed on a reverse phase nanospray 

column (EASY-Column, 3µm, 75 µm ID x 100 mm ReproSil-Pur C18) using a 90 min linear 

gradient from 10%-35% buffer B (100% ACN, 0.1% formic acid) at a flow rate of 400 nL/min. 

Peptides were eluted directly into the mass spectrometer (Thermo Scientific Orbitrap Velos). The 

instrument was operated in Orbitrap-LTQ mode where precursor measurements were acquired in 

the Orbitrap (60,000 resolution) and MS/MS spectra (top 20) were acquired in the LTQ ion trap 

with a normalized collision energy of 35%. Mass spectra were collected over a m/z range of 400-
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2000 Da using a dynamic exclusion limit of 2 MS/MS spectra of a given peptide mass for 30 s 

(exclusion duration of 90 s). Compound lists of the resulting spectra were generated using 

Xcalibur 2.2 software (Thermo Scientific) with a S/N threshold of 1.5 and 1 scan/group.  

Database Search and Protein Identification Criteria 

Tandem mass spectra were extracted, charge state deconvoluted and deisotoped by 

ProteoWizard (version 3.0; MSConvert, RRID:OMICS_03354). All MS/MS samples were 

analyzed using Mascot (version 2.3.02; Matrix Science, London, UK). Mascot was set up to 

search the UniProt-KB Mus Musculus reverse-concatenated database (102,390 entries, 

downloaded January, 2013, RRID:nlx_53981) assuming the digestion enzyme was trypsin with a 

missed cleavage tolerance set to 2. Mascot was searched with a fragment ion mass tolerance of 

0.80 Da and a parent ion tolerance of 20 PPM. Oxidation of methionine and carbamidomethyl of 

cysteine were specified in Mascot as variable modifications. Search results were compiled and 

validated using Scaffold (version 4.4.0; Proteome Software, Portland, OR). Peptide 

identifications were accepted if they could be established at greater than 90.0% probability by 

the Scaffold Local False Discovery Rate (FDR) algorithm. Protein identifications were accepted 

if they could be established at greater than 99.0% probability to achieve an FDR less than 1.0% 

and contained at least 2 identified peptides. The number of accepted peptide identifications for 

each identified protein was reported as the peptide score in Table 2.2 (Appendix II). Protein 

probabilities were assigned by the Protein Prophet algorithm (Nesvizhskii et al., 2003). Proteins 

that contained similar peptides and could not be differentiated based on MS/MS analysis alone 

were grouped to satisfy the principles of parsimony. 
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2.4 Results 

Light Adaptation Induces S-nitrosylation in All Retinal Layers 

In the dark-adapted retina, the concentration of NO is present at a minimal, tonic level, 

however as the retina becomes light-adapted, NO synthesis is initiated and NO levels are 

substantially elevated (Neal et al., 1998; Walter et al., 2014). As NO levels tend to increase 

during light adaptation, it stands to reason that levels of S-nitrosylated proteins become elevated 

as well. To evaluate this possibility, we compared the levels of S-nitrosylation, by assessing S-

nitrosocysteine immunofluorescence (SNI), over entire retinal sections from light-adapted and 

dark-adapted goldfish. For these, and all other images obtained from goldfish retinas, Mbs were 

identified by PKCα immunoreactivity and served to provide orientation and identification of the 

synaptic layers within the retina (Fig. 2.1A and D). In the light-adapted goldfish retina, we 

observed a robust SNI; the pattern of intense immunolabeling extended to all layers of the retina 

(Fig. 2.1B and C). In contrast, the overall intensity of SNI in the dark-adapted goldfish retina was 

drastically less than that of the light-adapted one and the pattern of labeling was also different 

(Fig. 2.1E and F). Specifically, in the dark-adapted goldfish retina, SNI was limited to the 

ganglion cell layer (GCL) and photoreceptor layer (PL) with greatest intensity within the GCL. 

Quantitative analysis of the fluorescence intensity of the S-nitrosylation signal (see Materials and 

Methods) revealed that, on average, the light-adapted goldfish retina (n=8 sections from 4 

retinas) displayed significantly more S-nitrosylated proteins than the dark-adapted goldfish retina 

(Fig. 2.1G; n=7 sections from 2 retinas). This was consistent with previous reports describing 

levels of NO as being lowest when the retina is dark-adapted (Neal et al., 1998; Sekaran et al., 

2005; Walter et al., 2014). These results also suggest that basal NO release in the dark-adapted 
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retina reaches sufficient levels to cause S-nitrosylation that is detectable by 

immunohistochemical methods. 

Considering that light-evoked NO synthesis and release has been described in a number 

of species, including retinas of cold blooded vertebrates and mammalian retinas (Vielma et al., 

2012), we then shifted our attention to a mammalian preparation to determine whether light 

 

Figure 2.1. S-nitrosocysteine immunofluorescence in 

confocal images of vertical cryostat sections from light- and 

dark-adapted goldfish retinas. A, D: PKCα positive Mbs 

(green) in the light- and dark-adapted goldfish retina. B: 

Confocal image of the same region presented in A showing 

that in the light-adapted goldfish retina, SNI (magenta) was 

present in all retinal layers. Fluorescence intensity was 

integrated horizontally across the image (the gray 

superimposed trace) and indicated the relative amount and 

location of S-nitrosylated proteins in the light-adapted 

retina. C: Merged image of A and B showing colocalization 

of SNI and PKCα + cells as a component of the robust S-

nitrosocysteine labeling pattern across all retinal layers. E: 

Confocal image of the same region represented in D 

showing SNI in the dark-adapted goldfish retina. The 

superimposed gray trace illustrates the fluorescence 

intensity plot of the SNI and indicates a significant lack of 

S-nitrosocysteine + label in the dark-adapted goldfish 

retina. Of note: confocal images in B and E were obtained 

using the exact same laser power settings and the intensity 

plot profiles in B and E are plotted on the same scale. F: 

Merged image of D and E illustrating the weak S-

nitrosocysteine labeling pattern in select retinal layers. G: 

Summary graph illustrating S-nitrosylation, as determined 

by the fluorescence intensity of SNI, is significantly greater 

in every retinal layer of the light-adapted goldfish retina as 

compared to the dark-adapted goldfish retina. Unpaired 

Student’s t test, ***: p≤0.0005, **: p≤0.005, light-adapted: 

n=4 retinas, dark-adapted: n=2 retinas. Data is presented as 

mean ± SEM. PL: Photoreceptor Layer; ONL: Outer 

Nuclear Layer; OPL: Outer Plexiform Layer; INL: Inner 

Nuclear Layer; IPL: Inner Plexiform Layer; GCL: Ganglion 

Cell Layer. SNI: S-nitrosocysteine immunofluorescence. 

Scale bars=20 µm. 



33 

induces S-nitrosylation, detectable by immunohistochemical methods, in the mouse retina. For 

all mouse retinal sections, PKCα immunoreactivity was used to identify rod bipolar cells (RBCs) 

and orient the observer within the various retinal layers (Fig. 2.2A and D).The light-adapted 

mouse retina showed a robust labeling pattern of SNI, spanning all layers of the retinal section 

(Fig. 2.2B and C). This robust labeling was in stark contrast to the near absence of SNI labeling 

 

Figure 2.2. S-nitrosocysteine immunofluorescence in 

confocal images of vertical cryostat sections from light- 

and dark-adapted wild-type mouse retinas. A, D: PKCα 

positive rod bipolar cells (RBCs, green) in the light- and 

dark-adapted wild-type mouse retina. B: Confocal image 

of the same region presented in A showing SNI (magenta) 

was present in all retinal layers of the light-adapted wild-

type mouse retina. The relative amount and location of S-

nitrosylated proteins in the light-adapted retina was 

illustrated by the fluorescence intensity (the gray 

superimposed trace) which was integrated horizontally 

across the image. C: Merged image of A and B showing 

the robust S-nitrosocysteine labeling pattern across all 

retinal layers. Note the colocalization of SNI and PKCα 

+ RBCs. E: Confocal image of the same region 

represented in D showing SNI in the dark-adapted wild-

type mouse retina. The superimposed gray trace 

illustrates the fluorescence intensity plot of the SNI and 

indicates a substantial reduction of S-nitrosocysteine + 

label in the dark-adapted wild-type mouse retina as 

compared to the light-adapted retina. Of note: confocal 

images in B and E were obtained using the exact same 

laser power settings and the intensity plot profiles in B 

and E are plotted on the same scale. F: Merged image of 

D and E illustrating the faint and nearly absent S-

nitrosocysteine labeling pattern in in the dark-adapted 

wild-type mouse retina. G: Summary graph illustrating S-

nitrosylation, as determined by the fluorescence intensity 

of SNI, is significantly greater in every retinal layer of the 

light-adapted wild-type mouse retina as compared to the 

dark-adapted wild-type mouse retina. Unpaired Student’s 

t test, ***: p≤0.0005, **: p≤0.005, light-adapted: n=8 

retinas, dark-adapted: n=6 retinas. Data is presented as 

mean ± SEM. Scale bars=20 µm. 
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in the dark-adapted mouse retina (Fig. 2.2E and F). By comparison, the average intensity of SNI 

in individual retinal layers was significantly increased across all layers in the light-adapted retina 

(n=8 sections from 8 retinas) compared to dark-adapted (n=7 sections from 6 retinas) (Fig. 

2.2G). When taken all together, these data indicate strongly that retinal S-nitrosylation is light-

dependent and becomes increasingly more prevalent at higher, stronger light intensities in both 

goldfish and mouse retinas. 

 

The Pattern of Light Driven SNI Across Retinal Layers is Intensity Dependent 

In the natural world, a significant range of behaviorally relevant light intensities can 

cause simultaneous activation of both rods and cones (Wu, 1994). The overlap between the 

intensities at cone activation threshold and rod saturation forms the mesopic range (Krizaj, 

2000). Indeed, in the goldfish retina, a rod saturating green light (1x1010 photons/cm2/s, 505 nm) 

will also activate cones (Joselevitch and Kamermans, 2007). Compared to baseline levels of SNI 

in the dark-adapted goldfish retina (Fig. 2.1E), SNI evoked by a 10 s exposure to mesopic light 

stimulus was significantly higher in the PL (Fig. 2.3B and C; n=9 sections from 4 retinas) 

(p=0.03, unpaired Student’s t test), in the OPL (p=0.01, unpaired Student’s t test), in the INL 

(p=0.003, unpaired Student’s t test), in the IPL (p<0.0001, unpaired Student’s t test) and in the 

GCL (p=0.003, unpaired Student’s t test). Although every layer, except the ONL, showed an 

increase in SNI intensity above basal levels, the most dramatic increase occurred within the IPL 

(8 fold increase from dark-adapted levels). Furthermore, mesopic green light stimulation induced 

an SNI labeling pattern in the IPL that clearly labeled cellular structures, particularly the large, 

bulbous terminals of Mbs (Fig. 2.3D, E and F), consistent with our previous results indicating 

physiologically relevant S-nitrosylation within the Mb terminal (Tooker et al., 2013). Note that 
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SNI appears to localize to the plasma membrane of the Mb terminals. Intensity profiles of both 

the PKCα and the SNI revealed that 67.8 ± 3.5 % of the SNI within the IPL was located within 

the region associated with the Mb terminals (n=9 sections from 4 retinas). Furthermore, 

colocalization analysis of PKCα and S-nitrosocysteine immunolabeling within individual Mb 

terminals revealed that 67.2 ± 11.9 % of green pixels (PKCα) overlapped with magenta pixels 

(SNI) and that 75.0 ± 9.9 % of magenta pixels overlapped with green pixels (data not shown, 

n=10 terminals).  

structures within the same terminal region presented in J. L: Merged image of J and K showing precise 

colocalization of a PKCα + Mb terminal with an S-nitrosocysteine + cellular structure in the same optical plane. 

Scale bars: C, I=20 µm; F, L=10 µm. 

 

Figure 2.3. S-nitrosocysteine immunofluorescence labeling 

pattern in the goldfish retina is shaped by light intensity. For 

panels A-F, a dark-adapted goldfish retina was stimulated 

with rod saturating mesopic light (1x1010 photons/cm2/s, 505 

nm, 10 sec). A: 40X single-plane confocal image showing 

PKCα positive Mbs (green) in a vertical cryostat section. B: 

S-nitrosocysteine immunolabel (magenta) in the same region 

as in A. At this light intensity, S-nitrosocysteine 

immunolabeling pattern is restricted to the inner retina, 

primarily the IPL and GCL. C: Merged images of A and B 

showing colocalization of S-nitrosocysteine + and PKCα + 

cellular structures within the IPL. D: Enlargement of the Mb 

terminal region located within the dashed box in A. E: 

Enlargement of the outlined selection in B that corresponds to 

the same region as the terminal outlined in A and enlarged in 

D. F: Enlargement of the merged image of the exact same 

regions as presented in D and E. Note the colocalization of 

the PKCα + Mb terminal with the S-nitrosocysteine 

immunolabel as a result of rod saturating mesopic light 

stimulation. For panels G-I, a dark-adapted goldfish retina 

was stimulated with bright scotopic light (2.4x108 

photons/cm2/s, 505 nm, 500 msec). G: 40X single-plane 

confocal image showing PKCα positive Mbs (green) in a 

vertical cryostat section. H: The same region as presented in 

G, immunolabeled for S-nitrosocysteine (magenta). Although 

limited and nearly absent in most of the retinal layers, the SNI 

appears to be restricted to the innermost region of the IPL and 

some within the GCL. I: Merged image of G and H showing 

colocalization of PKCα + Mb terminal structures with S-

nitrosocysteine immunolabel. J: Enlarged image of the area 

outlined by the dashed line box in G focused on the PKCα+ 

Mb terminal. K: Enlargement of the S-nitrosocysteine+  
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Recently, we reported a functional aspect of retinal S-nitrosylation responsible for 

mediating the modulation of bipolar cell light responses in the goldfish retina; Mb light 

responses to dim, rod mediated input were enhanced via S-nitrosylation upon exposure to 

illumination with intensity of at least 2.4x108 photons/cm2/s for 500 ms (Tooker et al., 2013). 

Accordingly, we reduced the intensity of the stimulus to a bright scotopic light step (2.4x108 

photons/cm2/s, 505 nm, 500 ms). In the goldfish this bright scotopic light nearly fully activates 

rods, and the subsequent elements of the rod pathways, without reaching the threshold of cone 

activation (Joselevitch and Kamermans, 2009). After a 500 ms exposure to 2.4x108 

photons/cm2/s , SNI was nearly fully confined to the inner retina (Fig. 2.3H and I) and the IPL 

was the only layer to show a significant increase in SNI compared to basal levels in the dark-

adapted retina (p=0.01, unpaired Student’s t test, n=10 sections from 4 retinas). Importantly, 80.0 

± 2.7% of the SNI found within the IPL was restricted to the portion containing the Mb 

terminals. SNI was found to colocalize with structures defined by PKCα immunofluorescence 

(Fig. 2.3G, H and I, boxed area). Analysis of individual Mb terminals revealed that 61.5 ± 17.4% 

of green pixels overlapped magenta pixels and 82.1 ± 14.4% of magenta pixels overlapped with 

green pixels (n=10 terminals). Within the IPL, analysis by one-way ANOVA revealed a 

significant difference between fully light-adapted retinas, retinas stimulated with rod saturating 

mesopic light and bright scotopic light (p<0.0001, one-way ANOVA). Post hoc comparisons 

using Tukey’s multiple comparison test indicated that the mean intensity of SNI in the IPL was 

significantly higher in light-adapted retinas (50.2 ± 5.3) than in retinas stimulated with 1x1010 

photons/cm2/s (23.5 ± 1.8) and both were significantly elevated over the SNI in retinas 

stimulated with 2.4x108 photons/cm2/s (9 ± 1.3). Furthermore, the average percentage of SNI that 

was associated with Mb terminals was significantly greater in retinas stimulated with 2.4x108 
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photons/cm2/s than in those stimulated with 1x1010 photons/cm2/s (p=0.01, unpaired Student’s t 

test). In the GCL, analysis by one-way ANOVA indicated a significant difference between light 

stimulation paradigms. Tukey’s multiple comparison test revealed a significant reduction in the 

mean SNI when the retina was stimulated with 2.4x108 photons/cm2/s (9.9 ± 1.4) as compared to 

light-adapted (33.7 ± 4.8) and 1x1010 photons/cm2/s stimulated retinas (30.8 ± 3.8). No 

significant difference was detected between the mean SNI in the GCL of light-adapted or 1x1010 

photons/cm2/s stimulated retinas. Importantly, when we increased the stimulus duration of the 

bright scotopic flash to 10 s, matching the duration of the mesopic flash, we did not observe any 

significant difference in the SNI labeling pattern when compared to the 500 ms flash (data not 

shown).  

Next, we addressed the question of whether the extent of S-nitrosylation is regulated in a 

light intensity dependent manner in the mammalian retina. To this end, we subjected wild-type 

mouse retinas to the exact same light stimulation paradigm as was applied to the goldfish retinas 

and then assessed overall retinal S-nitrosylation through S-nitrosocysteine immunofluorescence. 

Wild-type mouse retinas stimulated with 1x1010 photons/cm2/s (505 nm, 10 s), a mesopic light 

stimulus which surpasses the activation threshold for cones (~1010 photons/cm2/s) and 

approaches rod saturation (~1011 photons/cm2/s, Busskamp et al., 2010), displayed an SNI 

labeling pattern that was primarily restricted to the inner retina (Fig. 2.4B and C). This labeling 

pattern in the mammalian retina was strikingly similar to the pattern of SNI in goldfish that was 

evoked by the exact same flash. Compared to baseline levels of SNI in the dark-adapted mouse 

retina (Fig. 2.2E), the 1x1010 photons/cm2/s flash evoked significantly more SNI in the inner 

retina: INL p=0.003, IPL p=0.001 and GCL p<0.0001( unpaired Student’s t test, n=11 sections 

from 6 retinas). Additionally, SNI appeared to colocalize with the RBC terminal clusters 
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(marked by PKCα immunofluorescence) in the IPL (Fig. 2.4D, E and F). Intensity analysis 

within the IPL revealed that 68.0 ± 3.7% of the SNI was restricted to the region of the IPL that 

contained the terminals of RBCs. Systematic analysis of RBC terminal clusters indicated that 

48.3 ± 12.6% of green pixels overlapped with magenta and 78.8 ± 6.3% of magenta pixels 

overlapped with green (n=10 terminal regions), indicating a majority of colocalization between 

the two individual patterns of immunofluorescence.  

 

Figure 2.4. Light intensity determines the S-nitrosocysteine 

immunofluorescence labeling pattern in the wild-type mouse 

retina. For panels A-F, a dark-adapted wild-type mouse retina 

was stimulated with mesopic light (1x1010 photons/cm2/s, 505 

nm, 10 sec). A: 40X single-plane confocal image showing 

PKCα positive RBCs (green) in a vertical cryostat retinal 

section. B: Confocal image of the S-nitrosocysteine 

immunolabel (magenta) in the same retinal region as 

illustrated in A. Stimulation with mesopic light restricted the 

S-nitrosocysteine immunolabeling pattern to the inner retina. 

C: Merged images of A and B showing colocalization of S-

nitrosocysteine + and PKCα + cellular structures within the 

IPL. D: Enlargement of the RBC terminal region located 

within the dashed box in A. E: Enlargement of the outlined 

selection in B that corresponds to the SNI in the same region 

as the terminal outlined in A and enlarged in D. F: 

Enlargement of the merged image of the exact same regions 

as presented in D and E. Note the colocalization of the PKCα 

+ RBC terminal structures with the S-nitrosocysteine 

immunolabel as a result of mesopic light stimulation. For 

panels G-I, a dark-adapted wild-type mouse retina was 

stimulated with bright scotopic light (2.4x108 photons/cm2/s, 

505 nm, 500 msec). G: 40X single-plane confocal image 

showing PKCα positive RBCs (green) in a vertical cryostat 

section. H: The same region as presented in G, 

immunolabeled for S-nitrosocysteine. Scotopic light 

stimulation of the wild-type mouse retina appears to restrict 

the SNI to the innermost region of the IPL and some within 

the GCL. I: Merged image of G and H showing 

colocalization of PKCα + RBC terminal structures with S-

nitrosocysteine immunolabel. J: Enlarged image of the area 

outlined by the dashed line box in G focused on the PKCα+ 

RBC terminals. K: Enlargement of the S-nitrosocysteine + 

structures within the same terminal region presented in J. L: 

Merged image of J and K showing colocalization of PKCα + 

RBC terminal cluster with a S-nitrosocysteine + immunolabel 

in the same optical plane. Scale bars: C, I=20 µm; F, L=10 

µm. 
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When the intensity of light stimulation was reduced to a bright scotopic flash (2.4x108 

photons/cm2/s, 505 nm, 500ms), the pattern of S-nitrosocysteine immunofluorescence was 

localized primarily in the inner retina (Fig. 2.4H and I). Interestingly, the bright scotopic flash 

significantly elevated SNI intensity, above baseline dark-adapted levels, in the IPL and in the 

GCL (p<0.0001, p=0.003 respectively, unpaired Student’s t test, n=7 sections from 3 retinas). 

Within the IPL, 81.8 ± 2.7% of the SNI label was associated with the RBC terminal region of the 

IPL which was significantly more than the average percentage of SNI label within the terminal 

region of retinas stimulated with mesopic light stimulation (p=0.03, unpaired Student’s t test). 

Both light flashes evoked SNI label that was restricted to the inner retina. However, by 

comparison, the brighter intensity light stimulation (1x1010 photons/cm2/s) induced a greater 

distribution of SNI in the inner retina as there was significantly more SNI label in the INL as 

compared to the dim light intensity (2.4x108 photons/cm2/s; p=0.009 unpaired Student’s t test). In 

line with these results, analysis of individual terminal regions (n=10) from retinas stimulated 

with bright scotopic light revealed a colocalization pattern similar to retinas stimulated with 

mesopic light: 38.2 ± 13.6% of green pixels overlapped with red, while 80.5 ± 16.3% of magenta 

pixels overlapped with green (Fig. 2.4J, K and L). 

We compared the fluorescent intensity within the IPL and GCL across the three various 

light stimulated states (i.e. photopic, mesopic, bright scotopic). One-way ANOVA revealed a 

significant difference in the SNI intensity within the IPL between light-adapted retinas, mesopic 

light stimulated retinas, and scotopic light stimulated retinas (p<0.0001). Interestingly, the 

difference was a result of a significant increase in the mean SNI of the light-adapted retina (51.5 

± 4.8) as compared to both the mesopic (21.7 ± 3.1) and the bright scotopic light stimulated 

retinas (16.0 ± 2.1, Tukey’s multiple comparison test). Although the mean SNI intensity within 



40 

the IPL evoked by 1x1010 photons/cm2/s was greater than the mean intensity evoked by 2.4x108 

photons/cm2/s, the difference was not significant (Tukey’s multiple comparison test). Within the 

GCL, a significant difference was detected in SNI intensity across light-adapted retinas, retinas 

stimulated with a single mesopic step and retinas stimulated with a single scotopic step of light 

(p<0.0001, one-way ANOVA). Similar to our observation in the IPL of the mouse retinas, 

Tukey’s multiple comparison test indicated that the difference was due to the significant increase 

of SNI intensity within the GCL of the light-adapted retina (47.3 ± 4.1) as compared to retinas 

stimulated with either 1x1010 photons/cm2/s (24.3 ± 2.4) or 2.4x108 photons/cm2/s (17.0 ± 4.1). 

Again, although there was a greater level of SNI intensity measured in the GCL of retinas 

stimulated with mesopic light flash, it was not significantly larger than the SNI intensity 

measured in retinas stimulated with scotopic light stimuli.  

Together, these data strongly support the notion that the overall intensity of SNI is 

positively correlated with the illumination levels in both the goldfish and mouse retina. 

Furthermore, the reported pattern of SNI is consistent with observations that NO levels in the 

retina increase in a manner dependent upon intensity of a light stimulus (Sekaran et al., 2005). 

This increase of NO is primarily mediated by nNOS, which, in general, is localized primarily to 

the inner retina in a variety of vertebrates, including goldfish and mouse (Eldred and Blute, 

2005; Giove et al., 2009, Pang et al., 2010b; Walter et al., 2014; Zhu et al., 2014).  

 

Light-Evoked S-nitrosocysteine Immunofluorescence is Occluded by Pre-treatment with NEM 

 To further test our finding that light stimulation evoked increased S-nitrosylation within 

the fish and mouse retina, we inhibited the formation of nitrosocysteine prior to the evoked 

release of NO. Dark-adapted eyecups were incubated in NEM (1 mM) which irreversibly binds 
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to free sulfhydryl groups (Smyth et al., 1960), blocking them from interacting with NO and 

thereby preventing the formation of S-nitrosothiols (Hu et al., 2012). In this regard, the pre-

incubation with NEM prevents the formation of new S-nitrosocysteines which would be created 

by the light-evoked release of NO. After the incubation in NEM, goldfish and mouse retinas 

were stimulated for 10 s with mesopic green light (1x1010 photons/cm2/s) as this light intensity 

evoked a significant increase in SNI (compared to dark-adapted retinas) across multiple retinal 

layers in both animal models. 

 In the goldfish retina, the amount of SNI induced by a mesopic light flash was drastically 

reduced as compared to control conditions (Fig. 2.5B and C). By comparison, every retinal layer 

showed significantly less intense light-evoked SNI labeling in the NEM treated retina compared 

to the control: PL: p=0.01, ONL: p=0.03, OPL: p=0.008, INL: p=0.002, IPL: p<0.0001, GCL: 

p=0.0002 (unpaired Student’s t test, control: n=9 sections from 4 retinas, NEM: n=7 sections 

from 2 retinas). Furthermore, compared to the baseline level of SNI in the dark-adapted goldfish 

retina, NEM prevented a significant light-evoked increase in all retinal layers and, in fact, 

induced a significant decrease in the amount of SNI within the GCL (p=0.04, unpaired Student’s 

t test). The SNI labeling that is observed in the NEM-treated goldfish retina is most likely due to 

S-nitrosylation that was present prior to the application and incubation in NEM.  

In the mouse retina, under control conditions, a 10 s exposure to mesopic green light at 

1x1010 photons/cm2/s induced significantly increased levels of SNI in the INL, IPL and GCL. 

However, after incubation in NEM, the same illumination failed to induce elevated SNI (Fig. 

2.5E and F). In other words, when compared to the levels of SNI evoked in the INL, IPL and 

GCL by mesopic stimulation under control conditions, incubation in NEM resulted in a 

significant reduction (INL: p=0.005 IPL: p=0.0004, GCL: p<0.0001, unpaired Student’s t test, 
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control: n=11 sections from 6 retinas, NEM: n=7 sections from 3 retinas). Furthermore, mesopic 

light stimulation evoked SNI in the presence of NEM was not measurably different from that in 

the dark-adapted mouse retina.  

 

Activation of nNOS is Required for Light Dependent S-nitrosylation in the Retina 

In the vertebrate retina, the pattern of light-evoked NO release is intimately connected to 

the expression of nNOS (Eldred and Blute, 2005; Giove et al., 2009; Walter et al., 2014), and 

although all three NOS isoforms have been discovered in the retina, nNOS is thought to be the 

major source for light-evoked NO during visual responses (Vielma et al., 2012). Therefore, the 

light driven S-nitrosylation we observed is most likely a result of light-evoked synthesis and 

release of NO via nNOS positive neurons that are mostly localized to the inner retina (Eldred and 

 

Figure 2.5. Light-evoked S-nitrosylation in the goldfish 

and wild-type mouse retina is prevented by pre-incubation 

with N-Ethylmaleimide (NEM). A: Single plane 40X 

confocal image showing PKCα + (green) Mbs in a vertical 

cryosection from a goldfish retina incubated in 1 mM 

NEM for 20 min prior to mesopic light stimulation (1x1010 

photons/cm2/s, 505 nm, 10 sec). B: Same region as in A 

showing S-nitrosocysteine immunolabeling (magenta) in 

response to mesopic light stimulation. Note absence of 

immunolabel signal when compared to the untreated 

goldfish retina seen in Fig. 2.3A, B, and C. C: Merged 

image of confocal images from A and B showing very 

little colocalization between PKCα + Mbs and S-

nitrosocysteine immunofluoresence. D: Single plane 40X 

confocal image showing PKCα + (green) RBCs in a 

vertical cryosection from a wild-type mouse retina 

incubated in 1 mM NEM for 20 min prior to mesopic light 

stimulation (1x1010 photons/cm2/s, 505 nm, 10 sec). E: 

Confocal image of the same region as presented in A 

illustrating that the mesopic light-evoked SNI (magenta) is 

dramatically reduced as compared to the untreated wild-

type mouse retina (Fig. 2.4A, B, and C). F: Merged 40X 

confocal imaged of a wild-type mouse retina co-

immunolabeled for PKCα and S-nitrosocysteine. Scale 

bars=20 µm. 
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Blute, 2005; Giove et al., 2009, Pang et al., 2010b; Walter et al., 2014). To assess the relative 

contribution of nNOS to the light-evoked increase in SNI that we observed after a mesopic light 

flash, we incubated goldfish and mouse retinas in TRIM (50 µM), a potent inhibitor of nNOS 

(Handy et al., 1996). 

 After pre-incubation with TRIM, a 10 s light flash at intensity of 1x1010 photons/cm2/s 

failed to induce SNI at levels that were greater than baseline dark-adapted conditions in the 

goldfish retina (Fig. 2.6B and C; n=6 sections from 2 retinas). In fact, we obtained a similar 

result after incubating the goldfish retina in TRIM as when the retina was incubated in NEM 

prior to light stimulation: there was no significant difference in SNI intensity across all layers 

except for the GCL which showed a 4 fold decrease in SNI intensity, which proved to be 

significant compared to SNI intensity levels in the dark-adapted control (p=0.02, unpaired 

Student’s t test). Compared to the goldfish retina which was stimulated with the same rod 

saturating light flash under control conditions (Fig. 2.3, top panel), the TRIM treatment 

significantly reduced SNI intensity in all retinal layers: PL: p=0.01, ONL: p=0.03, OPL: 

p=0.009, INL: p=0.002, IPL: p<0.0001, GCL: p=0.0002 (unpaired Student’s t test, control: n=9 

sections from 4 retinas, TRIM: n=6 sections from 2 retinas). These results were consistent with 

the finding that, in the goldfish retina, nNOS immunoreactivity is found in nearly all retinal 

layers (Liepe et al., 1994). Note that TRIM also inhibits inducible NOS (iNOS) (Handy et al., 

1996). Unlike its constitutively active counterparts, iNOS expression is only elevated in the 

retina under pathological conditions (Knowles and Moncada, 1994) or after intense, prolonged 

illumination (i.e. 8 hrs, 1,200-1,400 Lux, 490-580 nm, Palamalai et al., 2006). It is highly 

unlikely that our 10 s light flash at intensity 1x1010 photons/cm2/s would stimulate iNOS 

expression and subsequent NO release. However, note the weak SNI present in both the 
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photoreceptors as well as in GCL in the 

presence of TRIM that might be resulted by the 

endothelial NOS (eNOS) activity that has been 

shown to localize to the outer and inner retina 

(Haverkamp et al., 1999). 

In the mouse retina, TRIM significantly 

disrupted the pattern of SNI observed under 

control conditions after the mesopic light 

exposure (1x1010 photons/cm2/s; Fig. 2.6E and 

F; n=9 sections from 3 retinas). In the presence 

of TRIM the light stimulation did not 

significantly elevate the intensity of SNI above 

dark-adapted baseline levels in any retinal 

layer except for the GCL (p=0.03; unpaired 

Student’s t test, dark-adapted: n=7 sections 

from 6 retinas, TRIM: n=9 sections from 3 

retinas). When compared side-by-side with 

retinas that were incubated in Ames’ media 

only, the TRIM incubation significantly 

reduced the amount of SNI that was evoked 

by mesopic light flash. Under control 

conditions, a robust SNI labeling pattern was 

observed in the INL, IPL and GCL (Compare 

 
Figure 2.6. Light-evoked S-nitrosylation in the adult 

retina requires nNOS activation. A: Single plane 40X 

confocal image showing PKCα + (green) Mbs in a 

vertical cryosection from a goldfish retina incubated in 

50 µM TRIM for 30 min prior to mesopic light 

stimulation (1x1010 photons/cm2/s, 505 nm, 10 sec). B: 

Immunolabeling, of the same region as in A, for S-

nitrosocysteine (magenta). Compared to the S-

nitrosocysteine immunolabeling pattern in the untreated 

goldfish retina (Fig. 2.3A, B, and C), pre-incubation with 

TRIM resulted in dramatically less light-driven SNI. The 

SNI below the GCL appears to label a structure with 

morphology that is consistent with a blood vessel (star). 

C: Merged confocal image depicting co-immunolabeling 

of PKCα and S-nitrosocysteine with minimal 

colocalization. D: Single plane 40X confocal image 

showing PKCα + (green) RBCs in a vertical cryosection 

from a wild-type mouse retina incubated in 50 µM TRIM 

for 30 min prior to mesopic light stimulation (1x1010 

photons/cm2/s, 505 nm, 10 sec). E: S-nitrosocysteine 

immunolabeling (magenta) in the same region as 

presented in D. Notice the drastic reduction in SNI 

compared to that in the untreated mouse retina in Fig. 

2.4A, B, and C. F: Merged image of the PKCα 

immunolabel from D and the S-nitrosocysteine 

immunolabel from E. Scale bars=20 µm. 
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Fig. 2.6E and F with Fig. 2.4B and C). After incubation in TRIM, SNI was significantly reduced 

in the INL, IPL and GCL (p=0.005, p<0.0001, p<0.0001, respectively; unpaired Student’s t test, 

control: n=11 sections from 6 retinas, TRIM: n=9 sections from 3 retinas). These data are 

consistent with the notion that the light stimulation is evoking nNOS dependent-NO release 

which drives SNI in the INL, IPL and GCL as was observed under the control conditions and 

further prevented with the incubation in TRIM.  

 While it was not significantly greater as compared to the dark control, there is still 

obvious SNI labeling after incubation with TRIM, particularly in the PL and the GCL in both the 

goldfish and mouse retinas. These results are consistent with the previous reports that some S-

nitrosylation is observed in the presence of NOS inhibitors, indicating a basal, stable level of 

nitrosylation (Hess et al., 2005). Additionally, it is highly probable that this S-nitrosylation 

labeling pattern is due to NO release from endothelial NOS (eNOS), independent of the light 

stimulation. Note the S-nitrosocysteine labeling pattern beneath the GCL resembling the 

morphology of a blood vessel (Fig. 2.6B and C, star), an observation consistent with the general 

consensus that eNOS is considered to be expressed in high levels within the vascular 

endothelium (Knowles and Moncada, 1994).  

In order to dissect the role of nNOS in contributing to light dependent S-nitrosylation in 

the mammalian retina, we examined the S-nitrosocysteine immunoreactivity in light- and dark-

adapted retinas from mice lacking the nNOS isoform (nNOS KO). In the light-adapted nNOS 

KO animal, we observed a dramatic reduction in SNI across all layers of the retina (Fig. 2.7B 

and C), when compared to light-adapted WT littermates (Fig. 2.7E and F), with the most striking 

difference being the near lack of labeling in the outer retina. SNI labeling in dark-adapted nNOS 

KO retinas (Fig. 2.7H and I) was similar to dark-adapted WT littermates (Fig. 2.7K and L). 
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Figure 2.7. nNOS is necessary for robust S-nitrosylation in the mouse retina. 40X vertical cryostat sections of retinas 

from a light-adapted nNOS KO animal (top left), a light-adapted WT littermate (top right), a dark-adapted nNOS KO 

animal (bottom left) and a dark-adapted WT littermate (bottom right). A, D: RBCs indicated by PKCα + 

immunolabeling (green) in a light-adapted nNOS KO animal (A) and WT littermate (D). B, E: light-evoked S-

nitrosocysteine immunofluorescence (magenta) is reduced and confined to the inner layers of the nNOS KO retina 

(B) as compared to the light-adapted wild-type mouse retina (E). C: Merged confocal image showing the co-

immunolabeling of PKCα and S-nitrosocysteine from A and B. F: Merged image from panels D and E illustrating 

robust SNI in the light-adapted WT control retina. G, J: PKCα + immunofluorescence of RBCs from dark-adapted 

nNOS KO (G) and WT-littermate (J) retinas. SNI is nearly absent across all retinal layers in both the dark-adapted 

nNOS KO (H) and the dark-adapted WT (K) animals. I: Merged confocal image of panels G and H showing very 

little co-immunolabeling of RBCs and SNI in the dark-adapted KO animal. L: Merged confocal image of the dark-

adapted WT control retina showing very little SNI. M: Summary histogram of SNI intensity across all retinal layers 

in light- and dark-adapted WT and nNOS KO animals. The SNI intensity is significantly reduced in all layers of the 

light- and dark-adapted nNOS KO retinas as compared to light-adapted WT. The intensity of SNI in the GCL of light-

adapted KO animals was significantly higher than the SNI intensity quantified in both the dark-adapted KO and WT. 

One-way ANOVA with Tukey’s multiple comparison test, ***: p≤0.0005, *: p=0.01, light-adapted KO: n=6 retinas, 

dark-adapted KO: n=2 retinas, light-adapted WT: n=8 retinas, dark-adapted WT: n=6 retinas. Data is presented as 

mean ± SEM. Scale bars=20 µm. 
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 In the absence of nNOS, it is readily apparent that light-evoked S-nitrosylation is 

reduced, but is it, however, entirely absent? In order to address this question we performed a 

one-way ANOVA comparing the intensity of the fluorescence associated with S-nitrosocysteine 

in the retinas of light-adapted WT animals, light-adapted nNOS KO animals and dark-adapted 

nNOS KO animals. The comparison between light- and dark-adapted WT animals was omitted 

as it had been described and analyzed above (Fig. 2.2G). Analysis via one-way ANOVA 

revealed a significant difference in SNI in all layers of the retina across the three experimental 

groups (PL: p<0.0001, ONL: p=0.0002, OPL, INL, IPL and GCL: p<0.0001, Fig. 2.7M). 

Tukey’s multiple comparison test revealed that in every retinal layer, the intensity of the SNI was 

significantly reduced for both light- and dark-adapted nNOS KO animals as compared to the 

light-adapted WT retina. Interestingly, in the GCL, the mean intensity of SNI was significantly 

higher in the light-adapted nNOS KO (10.4 ± 2.8, n=9 sections from 6 retinas) than in the dark-

adapted nNOS KO retina (2.02 ± 0.6, n=6 sections from 2 retinas).  

Maintaining the assumption that the SNI label that is present in the dark-adapted wild-

type retina is a representation of the basal levels of S-nitrosylation, we examined whether the 

SNI intensity observed in the light-adapted and dark-adapted retinas of nNOS KO animals was 

different than the SNI intensity in the dark-adapted WT retina. A one-way ANOVA comparison 

of the individual intensity profiles from light-adapted nNOS KO retinas, dark-adapted nNOS KO 

retinas, and dark-adapted WT retinas revealed there was a significant difference in the SNI 

labeling pattern only in the GCL (p=0.02, Fig. 2.7M). Tukey’s multiple comparison test revealed 

that in the GCL, the mean SNI intensity was significantly higher in the light-adapted nNOS KO 

retina (10.4 ± 2.8) compared to both the dark-adapted WT (2.4 ± 1.2) and nNOS KO (2.02 ± 0.6) 

retinas. In summary, it appears that the lack of nNOS significantly reduces light-evoked S-
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nitrosylation in the mammalian retina. However, light-adaptation evoked a small amount of S-

nitrosylation (above dark-adapted baseline levels) within the GCL (Fig. 2.7M), which may be a 

result of light-evoked NO release from other sources. Furthermore, while two alternative forms 

of nNOS, α and γ, have been shown to be present in the mammalian retina (Giove et al., 2009), 

the KO animals used in these studies only eliminated expression of nNOSα (Gyurko et al. 2002). 

Thus even though the nNOSα isoform is considered to be the predominant source of NO release 

in the retina (Giove et al., 2009), the small, albeit significant, increase in SNI above baseline 

levels in the GCL of light-adapted nNOS KO animals may be a result of light-evoked NO release 

from neurons expressing the nNOSγ isoform. 

 

Qualitative Assay of S-nitrosylated Retinal Proteins 

Although our immunohistochemical methods provide a qualitative account as to the 

functional nature of light-dependent S-nitrosylation in the adult retina, they fall short in 

providing critical information as to the identity of individual proteins being nitrosylated. One of 

the inherent challenges associated with attempting to identify S-nitrosylated proteins is the 

fragile, labile nature of the nitrosothiols moiety which can be lost when subjected to reducing 

conditions (Paige et al., 2008), reduced metal ions such as Cu+ (Dicks and Williams, 1996), and 

even to prolonged light exposure (Forrester et al., 2007). For example, using mass spectrometry 

(MS) an S-nitrosylated protein could be detected by a mass increase of 29 DA on an otherwise 

unmodified peptide (Lee et al., 2007). Nonetheless, due to the labile nature of the nitrosothiol 

moiety, S-nitrosylated proteins are rarely detected in MS spectra (Wang et al., 2008). Therefore, 

with these limitations in mind, we chose to employ a modified version (see Materials and 

Methods) of the biotin-switch method, originally developed by Jaffrey et al. ( 2001), as its 
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reliability and specificity in identification of S-nitrosylated proteins have been well established 

(Jaffrey et al., 2001; Forrester et al., 2007; Seth and Stamler, 2011). The biotin-switch assay 

overcomes the issue of S-nitrosocysteine instability by covalently labeling only proteins 

containing the S-nitrosylation moiety with a biotin in place of the nitrosothiol group. The 

biotinylated proteins, within the retinal lysates, were enriched by resin-assisted capture before 

trypsin digestion and MS. Protein sequences are identified by comparison to existing protein 

databases (see Materials and Methods for details). Due to the limited proteomic databases that 

are specific to the goldfish proteome, these experiments were performed using only mouse 

retinas. 

 Our MS approach revealed 154 proteins that were S-nitrosylated only under dark-adapted 

conditions and 351 S-nitrosylated proteins unique to the light-adapted retina. In general, these 

results corroborate our immunohistochemical data suggesting that S-nitrosylation is increased in 

the light-adapted mammalian retina. In order to remain consistent and systematic with our 

approach used for interpreting our immunohistochemical results, we treated the dark-adapted MS 

data as providing insight into baseline S-nitrosylated proteins. In other words, we assumed that 

the constitutive, baseline SNI observed in the dark-adapted mouse retina (Fig. 2.2E and F) was 

(at least partly) originating from proteins which were determined by MS to be S-nitrosylated 

only in the dark-adapted retina. Consequently, we focused our attention on the 351 proteins that 

were identified as unique to the light-adapted retina. A comprehensive list of all the identified 

proteins can be found in Table 2.2 (Appendix II).  

Importantly, we detected several nitrosylated proteins in the mammalian retina that have 

also been detected and confirmed to be subject of S-nitrosylation, in other systems. For example, 

we detected channels and transporters such as: Na+/K+-ATPase, Ca2+-ATPase, and cGMP-gated 
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cation channel (α1); enzymes such as: creatine kinase, protein kinase C, low mw phosphatase, 

and aldehyde dehydrogenase; redox enzymes such as: thioredoxin and glutathione peroxidase 

(Stamler et al., 2001; Hess et al., 2005). Due to the importance of information transfer across 

layers of the retina, proteins that are involved in the mechanism and regulation of exocytosis are 

particularly noteworthy. Based on our list of putative S-nitrosylated proteins from the light-

adapted retina, we identified several proteins which play unique roles in modulating exocytosis. 

For example, synaptic vesicle glycoprotein, syntaxin-1B, Ras-related protein Rab-3C, excitatory 

amino acid transporter 1, and protein lin-7 homolog A are all involved in specific aspects of 

synaptic transmission and are subjected to light evoked S-nitrosylation in the mammalian retina. 

Syntaxin-1A and B share a conserved primary nitrosylation site at Cys (145) which, upon 

nitrosylation, alters the quantal size of neurotransmitter release (Palmer et al., 2008). In our 

experimental design and sample preparation, we did not attempt to isolate proteins with specific 

subcellular localization as we were not concerned with identifying any particular S-nitrosylated 

protein. Therefore, this approach may have hindered the identification of particular membrane 

bound proteins that would require a specific sample preparation for complete extraction. 

Nonetheless, we were able to identify several proteins known to localize to the membrane (e.g., 

Na+- and Cl--dependent GABA transporter 1&3, excitatory amino acid transporter 1, E3 

ubiquitin ligase, and CaM kinase-like vesicle-associated protein). Additionally, our proteomics 

approach identified the voltage-gated potassium channel subunit Kv 2.1, which is a significant 

component of the delayed rectifier K+ current in neurons (Murakoshi and Trimmer, 1999). In the 

mouse retina, Kv2.1 has been localized to rod-photoreceptors and horizontal cells (Klumpp et al., 

1995; Pinto and Klumpp, 1998), cholinergic and dopaminergic ACs (Tian et al., 2005) in the 

INL and GCs in the GCL (Pinto and Klumpp, 1998). In the goldfish retina, Kv2.1 was observed 
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from the ONL to the GCL with confirmed localization to cone inner segments, horizontal cells, 

Mbs, ACs and GCs (Yazulla and Studholme, 1998). Functionally, reduction of cysteine 

sulfhydryl groups on the N-terminal domain of Kv2.1, in vitro, resulted in sluggish channel 

gating and prolonged latency to channel opening (Pascual et al., 1997). However, it remains to 

be determined whether or not S-nitrosylation of retinal Kv2.1 results in a functionally relevant 

modulation of retinal information processing.  

 

2.5 Discussion 

Despite of the large number of proteins that have been identified as potential targets of S-

nitrosylation by NO, there is little evidence of S-nitrosylation taking place in neural tissue under 

physiological conditions. The present immunohistochemical investigation was undertaken to 

determine if S-nitrosylation, mediated by endogenous NO, takes place under normal, 

physiologically relevant illumination conditions in the adult goldfish and mouse retina. The use 

of various light stimulation intensities, pharmacological tools and a transgenic mouse line 

allowed us to describe the light-dependent nature of S-nitrosylation in vertebrate retinas for the 

first time. Additionally, our global proteomics approach provided qualitative identification of 

retinal proteins that are subject to light-dependent S-nitrosylation.  

 

Focal S-nitrosylation Occurs Under Dim, Scotopic Light Conditions in the Retina 

Over the past several decades, NO has garnered more and more attention as an important 

neurochemical signaling molecule responsible for modulating light responses at multiple levels 

of the retinal circuit. In the vertebrate retina, the synthesis and release of NO is highly 

coordinated with light stimulation: light stimulation has been shown to significantly increase NO 
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in the retinas of a number of species including carp (Sekaran et al., 2005), salamander and turtle 

(Eldred and Blute, 2005), rabbit (Neal et al., 1998) and miniature pig (Donati et al., 1995). 

Synthesis and release of NO occurs at basal levels in the dark-adapted retina and is elevated in 

light-adapted retinas (Sekaran et al., 2005; Walter et al., 2014). Of the three NOS isoforms in the 

retina, the role of the endothelial type (eNOS), in mediating visual responses is unknown 

(Haverkamp et al., 1999; Tekmen-Clark and Gleason, 2013). The inducible (iNOS) isoform 

contributes to increased NO synthesis under extremely bright illumination (Palamalai et al., 

2006; Piehl et al., 2007) and mediates pathological conditions, possibly through light-dependent 

protein nitration (Miyagi et al., 2002). Strong evidence suggests that light-evoked NO release 

under physiological intensities is primarily mediated by the constitutive, calcium-dependent 

isoform, nNOS (Blute et al., 1997; Blom et al., 2009; Giove et al., 2009). There are some 

differences in the expression pattern of nNOS across vertebrate species, however, nNOS 

expressing neurons are mostly localized to the inner retina, sending processes across the IPL in 

both mouse (Haverkamp and Wassle, 2000; Pang et al., 2010b; Zhu et al., 2014) and goldfish 

(Villani and Guarnieri, 1996). This is consistent with the fact that in this study, the dimmest 

illumination (2.4x108 photons/cm2/s, 505 nm, for 500 ms) to trigger a detectable increase of SNI, 

only did so in the IPL and in the GCL in both species (Figs. 2.3 and 2.4). In our hands, lower 

intensities of illumination produced SNI that was indistinguishable from that seen in fully dark-

adapted retinas (data not shown) suggesting that the intensity threshold for producing S-

nitrosylation, detectable via immunohistochemistry, is ~2.4x108 photons/cm2/s. This intensity is 

the same that reliably caused S-nitrosylation dependent modulation of voltage-gated calcium 

currents (ICas) in goldfish Mb terminals (Tooker et al., 2013). Although the molecular target of 

S-nitrosylation that is responsible for ICa modulation in Mbs has not been identified, it is 
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noteworthy that in the current study, we found light-evoked SNI clearly outlining the membranes 

of Mb terminals, among other structures.  

As a gaseous, freely diffusible neuromodulator, the instantaneous concentration of NO in 

retinal tissue is inversely proportional to the distance from the source: when measured ~10 μm 

away from an NO producing GC with an intracellular NO concentration of ~0.2 μM, the NO 

concentration dropped to 10 nM (Eldred and Blute, 2005). S-nitrosylation of protein cysteine 

groups is thought to require more NO than is necessary for the activation of sGC (Ahern et al., 

2002), thus, SNI is also expected to be restricted to regions that are in close proximity to NO 

production at threshold light intensities. Furthermore, some cysteine thiol side-chains have a very 

high affinity for reacting with NO, based on their surface availability and flanking amino acid 

sequence (Stamler et al., 1997), adding a level of specificity to S-nitrosylation mediated 

signaling.  

In the mouse retina, the light sensitivity of nNOS expressing (amacrine) cells (ACs) was 

determined to be ~105 photons/cm2/s (Pang et al., 2010b). These data indicate that nNOS 

expressing ACs receive rod input. In our hands, light simulation below the intensity of ~108 

photons/cm2/s did not generate SNI in either mouse or goldfish retina. Furthermore, ~108 

photons/cm2/s was found to produce NO-mediated functional changes via S-nitrosylation in Mb 

signaling based on electrophysiological evidence obtained in retinal slice preparation (Tooker et 

al., 2013). However, on one hand, it is important to point out that both slice electrophysiology 

and immunohistochemistry may overestimate the light threshold for endogenous S-

nitrosocysteine formation: (1) in slice, some NO might quickly diffuse to the bath solution 

without exerting a measurable effect on the recorded cell; (2) our ability to detect subtle light-

evoked increases in S-nitrosocysteine might be limited by the sensitivity of our antibody. On the 
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other hand, it is also possible that NO production by nNOS+ amacrine cells in the mouse at 

threshold intensities (~105 photons/cm2/s) is sufficient to activate the most sensitive NO target, 

sGC, (activated by nanomoles of NO; Roy et al., 2008), but still be less than the levels required 

for S-nitrosylation (Ahern et al., 2002). Therefore, the discrepancy between the activation 

threshold of nNOS+ amacrine cells (~105 photons/cm2/s) and our observed threshold for SNI 

(~108 photons/cm2/s) may be a combinatorial effect of the light intensity-dependent nature of NO 

synthesis and release (Sekaran et al., 2005) and the relatively high levels of NO needed to form 

nitrosothiols (as compared to activating sGC, Ahern et al., 2002). To date, neither NO release, 

nor NO-mediated effects via the sGC pathway have been reported to be triggered in the retina by 

~105 photons/cm2/s. 

Due to the asymmetric excitatory input resulting in larger OFF excitation of nNOS 

expressing ACs, maximal NO production is expected to be most profoundly activated by bright, 

flickering light with frequency of 1-2 Hz (Pang et al., 2010b). We have not tested the effect 

flickering light stimulation on retinal S-nitrosocysteine formation. Nonetheless, we could not 

increase SNI further than what was detected in light-adapted retinas (Figs. 2.1 and 2.2) via 

illumination with 1013 photons/cm2/s (λ=505 nm or 660 nm, for various durations up to 10 min) 

or by application of the NO donor DETA/NO (1 mM for 1 hour) in either light-adapted or dark-

adapted retinas (data not shown). Taking it together, it seems difficult to determine how accurate 

the threshold value of 108 photons/cm2/s might be for endogenous, light-evoked S-

nitrosocysteine formation. 
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NO Modulation of Visual Information Under Physiological and Pathological Conditions 

In general, much of the fundamental work describing the effects of NO in the retina 

focused on the traditional sGCcGMP-dependent signaling cascade. NO has been shown to 

influence transmission from cones (Savchenko et al., 1997), as well as the signaling of bipolar 

cells (BCs; Shiells and Falk, 2002; Snellman and Nawy, 2004). The most notable effect of NO in 

the retina is the uncoupling of gap junctions between horizontal cells (DeVries and Schwartz, 

1989; Lu and McMahon, 1997; Daniels and Baldridge, 2011) and between AII ACs and BCs 

(Mills and Massey, 1995). 

However, evidence has shown that the classical cGMP-dependent pathway is not the 

exclusive route of action for NO and that modulation of cellular function can occur alternatively 

through S-nitrosylation reactions in the retina. For instance, exogenous NO amplified the a- and 

b-wave amplitude in rat electroretinograms through a cGMP-independent mechanism (Vielma et 

al., 2010), and recently, we reported a mechanism in which endogenous NO enhanced the 

sensitivity of BCs via S-nitrosylation (Tooker et al., 2013). In line with these results is the 

observation that GCs in nNOS KO mice show a significant deficit in their sensitivity to light 

stimulation compared to wild-type animals (Wang et al., 2007); however, a mechanism 

underlying the NO-mediated GC sensitivity was not determined. 

Based on the results presented in this study, it appears that S-nitrosylation is a large scale, 

post-translational modification underlying retinal processes under physiologically relevant light 

conditions, affecting hundreds of proteins (Table 2.2; Appendix II). However, a global approach 

such as this most likely underestimates the actual number of retinal proteins undergoing light-

dependent S-nitrosylation as it focused on the most abundant S-nitrosylated proteins in the 

retinal homogenates and used the most conservative proteomics approach to identify them. This 
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might explain why certain proteins that have been implicated to undergo S-nitrosylation, such as 

the NR2 subunits of NMDA receptors (Choi et al., 2000) or BK calcium-dependent potassium 

channels (Bolotina et al., 1994 ) did not show up in our list of nitrosylated proteins, although 

they are expressed in the mouse retina (Tanimoto et al., 2012).  

It is important to point out, however, that while our immunohisthochemical method and 

global proteomic analysis appears appropriate to detect the presence of S-nitrosylated cysteine 

groups on certain proteins, the resulted SNI pattern and protein identification has to be treated 

with caution: it cannot be interpreted as a clear indicator of S-nitrosylation evoked modulation in 

protein function as S-nitrosylation of any protein might not be associated with 

structural/functional changes. In fact, only a few examples exist where the S-nitrosylation 

triggered molecular mechanisms were fully elucidated (Palmer et al., 2008; Choi et al., 2000). 

Even if S-nitrosylation of a cysteine group does not result in a change in synaptic processing of 

visual function in every instance, it could serve to buffer the retinal NO and restrict its free 

diffusion (Wood and Garthwaite, 1994; Eldred and Blute, 2005).  

 Although we did not specifically direct our proteomics approach to identify a selected set 

of S-nitrosylated proteins, we observed an interesting set of data that corroborates a previous 

supposition by Kurenny et al. (1994) regarding the modulation of rod photoreceptors via NO 

through a cGMP-independent manner. In their report, Kurenny et al. (1994) described an 

increase in a non-voltage-dependent current in rod photoreceptor cells after application of NO 

donors, and it was proposed that NO may be modulating cGMP channels through S-nitrosylation 

(Kurenny et al., 1994). Along these lines, we identified the rod specific cGMP-gated cation 

channel α1 subunit and β1 subunit in our proteomic analysis of proteins that are S-nitrosylated in 

a light dependent manner (Table 2.2; Appendix II). 



57 

 S-nitrosylation remains a hallmark characteristic of neurodegenerative diseases in the 

nervous system (Nakamura et al., 2013) as well as in the retina. When rats were given an 

intravitreal injection of NMDA and glycine, mimicking excitotoxic conditions often 

accompanying neurodegenerative diseases, retinal S-nitrosylation dramatically increased and 

was correlated with GC death (Manabe et al., 2005). In neurodegenerative disease, iNOS can be 

induced and contribute to the production of toxic levels of NO (Nakamura et al., 2013). Retinal 

neuronal cell death has been correlated directly to the elevated levels of NO after iNOS 

activation in Müller cells, under pathological conditions, and apoptosis was significantly reduced 

in iNOS KO animals (Goureau et al., 1999; Sennlaub et al., 2002). Interestingly, NO induced 

apoptosis of retinal neurons in a cGMP-independent manner, and was instead, attributed to 

protein nitration (Sennlaub et al., 2002), which is strong evidence implicating aberrant S-

nitrosylation as the underlying mechanism.  

The results presented here indicate that although aberrant S-nitrosylation may be 

contributing to neuronal death in certain retinopathies, in the healthy eye, S-nitrosylation can be 

regulated by physiologically relevant stimuli and may be important in normal visual function, for 

example, in regulating the sensitivity of GCs via BC output. Importantly, we provided insight 

into the identification of protein targets susceptible to light-dependent S-nitrosylation. These 

results provide the framework for further exploration into the functional implications of 

endogenous S-nitrosylation in modulating visual information processing in the healthy and 

diseased retina. 
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3. Nitric Oxide Mediates Activity-Dependent Plasticity of Retinal Bipolar Cell 

 

Output via S-nitrosylation2 

 

 

 

3.1 Summary 

Coding a wide range of light intensities in natural scenes poses a challenge for the retina: 

adaptation to bright light should not compromise sensitivity to dim light. Here we report a novel 

form of activity-dependent synaptic plasticity; specifically, a “weighted potentiation” that 

selectively increases output of Mb-type bipolar cells in the goldfish retina in response to weak 

inputs but leaves the input-output ratio for strong stimuli unaffected. In retinal slice preparation, 

strong depolarization of bipolar terminals significantly lowered the threshold for calcium spike 

initiation, which originated from a shift in activation of voltage-gated calcium currents (ICa) to 

more negative potentials. The process depended upon glutamate-evoked retrograde nitric oxide 

(NO) signaling as it was eliminated by pretreatment with an NO synthase blocker, TRIM. The 

NO-dependent ICa modulation was cGMP independent but could be blocked by N-

Ethylmaleimide (NEM), indicating that NO acted via an S-nitrosylation mechanism. Importantly, 

the NO action resulted in a weighted potentiation of Mb output in response to small (≤-30 mV) 

depolarizations. Coincidentally, light flashes with intensity ≥2.4x108 photons/cm2/s lowered the 

latency of scotopic (≤2.4x108 photons/cm2/s) light-evoked calcium spikes in Mb axon terminals 

in a NEM-sensitive manner, but light responses above cone threshold (≥3.5x109 photons/cm2/s) 

were unaltered. Under bright scotopic/mesopic conditions, this novel form of Mb output 

potentiation selectively amplifies dim retinal inputs at Mb → ganglion cell synapses. We propose 

                                                 
2 Tooker RE, Lipin MY, Leuranguer V, Rozsa E, Bramley JR, Harding JL, Reynolds MM, Vigh J (2013) J Neurosci 

33:19176-19193. Reprinted with permission: See Appendix IV. 
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that this process might counteract decreases in retinal sensitivity during light adaptation by 

preventing the loss of visual information carried by dim scotopic signals.  

 

3.2 Introduction 

The retina codes for contrast, color and motion information of an image projected to the 

photoreceptor mosaic (Wässle, 2004) under light intensities changing across 10 orders of 

magnitude (Dowling, 1987; Sterling, 2003). To fit this wide range of inputs to the output limited 

by the maximal spiking rate of ganglion cells (GCs) (~102), the retina adapts to the average light 

intensity (“light adaptation”) as well as to the range of intensities around the mean (“contrast 

adaptation”) by shifting the dynamic range of coding (Demb, 2002; Rieke and Rudd, 2009). Both 

light and contrast adaptation are accomplished by implementing various strategies at different 

stages of retinal processing and on multiple time scales. However, the fundamental challenge for 

all retinal adaptation processes is similar: prevent saturation of retinal output at high stimulus 

intensity/contrast while maintaining coding capability for weak inputs.  

Contrast adaptation of GC responses is resolved by employing two opposing forms of plasticity 

in parallel: following high-contrast stimulation, some GC responses were depressed in response 

to consecutive low-contrast stimuli whereas others were sensitized (Smirnakis et al., 1997; Kim 

and Rieke, 2001; Baccus and Meister, 2002; Kastner and Baccus, 2011). Besides adaptation 

processes intrinsic to GCs (Kim and Rieke, 2001; Baccus and Meister, 2002), short-term 

synaptic plasticity mechanisms that affect bipolar cell (BC) output onto GCs also play a critical 

role in both adaptation and sensitization during contrast adaptation of GCs (Rieke, 2001; Kastner 

and Baccus, 2011; Nikolaev et al., 2013). To adapt to changing light intensity and sustain vision 

across all light conditions, the retina employs a highly sensitive rod pathway for night vision and 
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a less sensitive cone pathway for daylight vision (Walraven et al., 1990). The light sensitivities 

of rods and cones overlap, forming a substantial mesopic range that covers behaviorally relevant 

environmental light intensities for many vertebrates (Krizaj, 2000; Wu, 1994). The dynamic 

interaction between the rod and cone pathways is influenced by neuromodulators. For example, 

during light adaptation, dopamine increases signal flow through cone circuits, diminishes that 

through rod circuits (Witkovsky, 2004) and reduces GC responses to prevent saturation 

(Hayashida et al., 2009), which ultimately reduces overall retinal sensitivity. 

Here we report a novel form of activity-dependent synaptic plasticity in the retina, 

mediated by retrograde NO signaling. Mbs in the goldfish retina receive and process both rod 

and cone input (Wong et al., 2005, Joselevitch and Kamermans, 2009). The synaptic plasticity 

described here results in selective, weighted potentiation of Mb output in response to weak rod- 

but not cone-mediated inputs. We propose that this new form of NO-mediated, activity-

dependent synaptic plasticity plays an important role under bright scotopic and mesopic 

conditions. Selective enhancement of weak, rod-mediated inputs at the Mb→GC synapses may 

counteract sensitivity loss during light adaptation, ultimately preventing the loss of visual 

information carried by low intensity signals. Our results suggest that, similar to contrast 

adaptation (Kastner and Baccus, 2011), adaptation to increasing luminance also employs 

opposing forms of plasticity in parallel to extend the dynamic range of retinal signaling. 

 

3.3 Materials and Methods 

Retinal Preparations 

Retinal slices and isolated bipolar cells were prepared from retinal tissue dissected from 

adult 4-5” long Goldfish (Carassius auratus) of either sex that had been dark-adapted for at least 
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1 h. Goldfish were kept on a 12 h light/dark schedule. All experimental procedures conformed to 

the guidelines of the Colorado State University Institutional Animal Care and Use Committee. 

Retinal Slice Preparation  

Retinal slices (200-250 µm) were prepared as described previously (Palmer et al., 2003). 

In experiments requiring light stimulation, slice preparation and dissection procedures were 

performed under infrared illumination as previously described (Vigh et al., 2011). Following the 

slicing procedure, slices in the recording chamber were moved to an upright microscope 

(Axioskop 2, Zeiss) and superfused at 2-5 ml/min with Ringer’s solution containing (in mM): 

100 NaCl, 2.5 KCl, 1.0 MgCl2, 2.5 CaCl2, 25 NaHCO3, 0-0.2 ascorbic acid, and 12 glucose or 

with bicarbonate buffered Ames’ medium (US Biological) supplemented with 1.15 mM CaCl2. 

The pH was set to 7.45 with NaOH. The osmolarity was 260 ± 2 mOsmol for both Ringer’s 

solution and Ames’ medium, and both were gassed continuously with 95% O2/5% CO2. To block 

inhibitory feedback to Mb terminals, picrotoxin (PTX, 100 µM) was present (Vigh et al., 2005, 

2011) in all retinal slice experiments unless otherwise noted. Slices were viewed using a 40× 

water-immersion objective and infrared differential contrast (IR-DIC) and through an IR CCD 

camera with 2.5 pre-magnification (XC-75, Sony). The camera was connected to a Camera 

Controller C2741-62 (Hamamatsu) which directed the output to a 19” monitor (Westinghouse). 

Identification of Mb terminals within the inner plexiform layer was based on the large, bulbous 

terminal morphology and Cm increase following depolarization (Palmer et al., 2003). 

Dissociated Mb Preparation 

 Solitary bipolar cells were isolated by conventional methods (Tachibana and Kaneko, 

1987). Briefly, retinal pieces were dissociated by mechanical trituration with a Pasteur pipette 

after papain digestion (10 units/ml, Worthington Biochemical). Dissociated cells were plated on 
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clean glass bottom dishes (MatTek, Ashland, MA) coated with poly-D-lysine and stored at room 

temperature in low Ca2+ (0.2 mM CaCl2) Ringer’s solution containing (in mM): 117 NaCl, 2.6 

KCl, 1.0 MgCl2, 0.2 CaCl2, 10 glucose, 5 HEPES and supplemented with 0.5 mg/ml BSA. The 

pH 7.45 was set with NaOH; osmolarity was 260 ± 2 mOsmol. Plated cells were viewed using 

DIC optics through a 40× air objective coupled to a 2.5× Optovar cube (Axio Observer Z1; 

Zeiss) and AxioCam HRm CCD camera (Zeiss) and were superfused at 2-5 ml/min with 

Ringer’s solution (see above). 

 

Electrophysiology and Light Stimulation  

Whole-cell voltage- and current-clamp recordings were made directly from Mb terminals 

in both slice and dissociated preparations using a EPC-10 USB patch-clamp amplifier and 

Patchmaster software (V 2.3; both HEKA) at room temperature during daytime (10 A.M to 6 

P.M.). Membrane current and voltage data were filtered at 3 kHz, sampling rates were set at 5 

kHz for voltage ramp protocols, 20 kHz for voltage step protocols and 25 kHz for recording 

spiking membrane potential responses in either current-clamp ramp protocol or using light 

stimulation. The current-clamp ramp protocol used in these studies stretched from -20 pA to +65 

pA over 2 s and was applied relative to the holding current that kept the resting membrane 

potential at -60 mV. The holding current was determined in voltage-clamp mode when 

establishing whole-cell mode (“patch break”) and was maintained when switching to current-

clamp mode using the “Gentle CC-switch” option of Patchmaster. The threshold of current ramp-

evoked spikes was determined as follows: The leak was estimated based on the slope of the 

membrane voltage trace between -100 mV and -60 mV. The leak-subtracted data were 

normalized to the first (initial) spike amplitude. A current ramp-evoked membrane potential 
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change was considered a spike if its peak voltage exceeded 2 SD of the baseline noise between -

100 mV and -60 mV. The threshold was defined as 5% of the peak membrane voltage for the 

first spike. Current-voltage relationships were determined by whole-cell voltage-clamp ramps 

and conventional stepwise reconstructions. The whole-cell voltage-clamp ramp protocol used in 

these studies was a linear 2 s ramp from -100 to +50 mV. The stepwise I-V protocol consisted of 

3 ms steps to potentials (from -80 mV to +60 mV, 10 mV increments) with 5 s between each 

step. For real-time measurement of membrane capacitance, the Sine+DC technique was used 

(Gillis, 2000). The capacitive current was measured by the lock-in amplifier following a 1 kHz 

sinusoidal voltage command (20 mV peak to peak) applied to the holding potential of -60 mV. 

Patch pipettes of 8-12 MΩ were pulled using a horizontal puller (model p-97, Sutter) from 1.5 

mm-diameter thick-walled borosilicate glass (World Precision Instruments) and were coated with 

dental wax (Cavex) to reduce stray pipette capacitance. For isolation of ICa in whole-cell voltage-

clamp experiments, a Cs-gluconate based internal solution was used (in mM) as follows: 85 Cs-

gluconate, 10 phosphocreatine-di(tris) salt, 10 L-ascorbic acid, 10 TEA-Cl, 10 methylamine HCl, 

2 EGTA, 3 Mg-ATP, 0.5 Na-GTP, pH of 7.2 (adjusted with CsOH), and osmolarity of 260 ± 2 

mOsmol. For current-clamp (including light-evoked response) recordings, a K-gluconate based 

internal was used (in mM): 106 K-gluconate, 10 phosphocreatine-di(tris), 3 L-ascorbic acid, 10 

KCl, 3 Mg-ATP, 2 EGTA, 0.5 Na-GTP, with pH of 7.2 (adjusted with NaOH), and osmolarity of 

260 ± 2 mOsmol. During experiments using BAPTA, Exo 1, KT5823, or N-Ethylmaleimide 

(NEM) in the pipette solution, at least 1 min was allowed for intracellular perfusion with the 

pipette solution before any recording and at least 45 s with standard pipette solution. To keep the 

osmolarity constant, when 10 mM BAPTA was included in the pipette solution, the amount of 

Cs-gluconate was reduced accordingly.    
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In voltage-clamp experiments voltage commands were not corrected for liquid junction potential. 

Series resistance (Rs) was tightly monitored during recording and was not compensated 

electronically. Data obtained from Mb terminals were excluded if the uncompensated Rs 

exceeded 30 MΩ, as in such recordings we found the slope of ICa activation curve to exceed 1/Rs 

indicating the lack of voltage-clamp (Marty and Neher, 1995).  Rs change by 20% any time 

during the recording also resulted in exclusion of the recording from further evaluation. 

Recordings with greater than ±1 mV drift of electrode potential, measured at the beginning and 

conclusion of the recording, were also excluded. Light stimulation was performed as previously 

described (Vigh et al., 2011). Briefly, 500-ms-long green (λ=505 nm), or red (λ=660 nm) LEDs 

(American Bright Optoelectronics) were used for full-field illumination of retinal slices. The 

LED voltage was controlled by the EPC-10 through D/A output. The light intensity was 

calibrated with an optical meter (model 1918-C, sensor 918D-SL-OD3; Newport).  

 

Drugs and Chemicals  

Kainic acid (KA), NBQX, D-(-)-2-amino-5-phosphonopentanoic acid (D-AP5), 1-(2-

trifluromethylphenyl)imidazole (TRIM), 8-bromoguanosine cyclic 3',5'-monophosphate sodium 

salt (8-Br-cGMP), Exo 1, KT5823 and picrotoxin were obtained from Tocris Bioscience. All 

other chemicals and salts were obtained from Sigma. 

Diethyltriamine-NO/NO (DETA/NO) was synthesized and validated as an NO donor as 

previously described (Maragos et al., 1991; Hrabie et al., 1993; Damodaran et al., 2012). Briefly, 

500 mg of diethyltriamine was added to a thick walled glass reaction vessel equipped with a stir 

bar. The vessel contained 40 ml of dehydrated acetonitrile dried over 40 nm molecular sieves. 

The reaction vessel was capped with a gas tight lid and was attached to a custom made NO 
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reactor. Oxygen was flushed from the reaction vessel using argon purges. Nitric oxide was 

introduced to the vessel and kept at a pressure of 80 psi for 24 h under stirring conditions. The 

resulting white DETA/NO precipitate was collected by filtration, washed with acetonitrile and 

dried under vacuum. The DETA/NO was then validated by a characteristic UV absorbance 

feature at 252 nm in 0.01 M NaOH with a molar extinction coefficient of 7600 M-1 cm-1. Direct 

and real-time NO measurements were performed using GE Analytical Nitric Oxide Analyzer 

(NOA) equipped with a custom sample cell. A 3 ml aliquot of the media containing DETA/NO 

was added to the sample cell. The temperature of the sample cell was maintained at 21 °C. 

Measurements were collected at 5 s intervals at the following instrument operating parameters: 

cell pressure (1.37 kPa), supply pressure (38.6 kPa) and cooler temperature (-12 °C). The DETA 

solution was prepared 20 min prior to evaluation. Upon injection into the NOA sample cell, NO 

release with a steady rate was observed for the duration of the measurement. An average NO 

release rate of 2.00 ± 0.19 nM s-1 was measured (n=4). This value corresponds to an average 

instantaneous concentration of NO of 9.99 ± 0.93 nM, which matches retinal NO concentrations 

measured extracellularly 10–

(Eldred and Blute, 2005). In all of our experiments, the DETA/NO solution (1 mM) was made 

fresh every day at least 1 h before the experiment began and used for a maximum of 12 h. 

 

Data Analysis 

All data was analyzed off-line using IgorPro software (version 5.03; Wavemetrics). 

Voltage-clamp ramp and stepwise I-V curves were leak-subtracted and normalized to the peak in 

order to analyze the Ca2+ or K+ currents. Estimation of the leak current was accomplished using a 

procedure similar to that reported by Hirasawa and Kaneko (2003). The leak subtraction 
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procedure consisted of extrapolating the slope of the line between -100 mV and -60 mV. The 

estimated leak current was subtracted from the raw value providing the “pure” ICa or IK. 

Normalized, leak subtracted ramp-evoked IK I-V curves were fit using the following Boltzmann 

equation: 

I = 1 ⁄ {1 + exp[(V – V1/2) ⁄ S]}, 

where V1/2 is the half activation potential and S is the slope of the voltage dependency (Griguer 

and Fuchs, 1996). For the step-wise ICa I-V curve, the first 3 points (-80, -70, -60 mV) were used 

to estimate the leak current for extrapolation. Leak subtracted step-wise and ramp-evoked ICa I-V 

curves were fit using the following modified Boltzmann equation: 

I = Gmax×(V – Vrev) ⁄ {1 + exp[–(V – V1/2) ⁄ kG]}, 

where Vrev is the reversal potential, Gmax is the maximum Ca2+ conductance, V1/2 is the half-

activation potential, and kG is the slope factor (Leuranguer et al., 2003). Curve fits were done 

using SigmaPlot (version 11; Systat Software). For ramp evoked ICa I-V data, analysis of I-V 

kinetics was also determined directly by using MiniAnalysis software (version 6.0.3; 

Synaptosoft). “Activation” (V(5%)) was defined as the voltage at which the resulting current was 

5% of the peak current, “half activation” (V(50%)) was defined as the voltage at which the 

resulting current was halfway between “activation” and the peak current, and “maximum” 

(V(Max)) was defined as the voltage which resulted in the peak current.  

Threshold of calcium spikes, in current-clamp ramp protocols, was determined using 

baseline-subtracted and normalized recordings. A baseline subtraction procedure similar to that 

used for voltage-clamp was implemented for the current-clamp recordings. Then, the data was 

normalized to first (initial) spike amplitude. For light-evoked spikes, the latency to first spike 

was determined by the time point corresponding to the peak of the first evoked spike relative to 



67 

the onset of the light stimulus. Where appropriate, depolarization triggered transmitter release 

was calculated based on the increase in membrane capacitance (Cm jump or ΔCm) by the 

equation ΔCm= CmResponse – CmBaseline (Vigh and von Gersdorff, 2005). Statistics were 

calculated using SigmaPlot (version 11; Systat Software), GraphPad Prism (version 6.01), 

IgorPro software (version 5.03; Wavemetrics) and Excel (Microsoft). Paired or unpaired 

Student’s t tests were used for comparisons between groups; data are presented as mean ± SEM, 

with p<0.05 considered a significant difference. For I-V curves and current-clamp ramps, paired 

Student’s t tests were performed on parameters obtained from normalized, leak subtracted pairs 

of traces unless otherwise noted. For light-evoked spiking responses, paired Student’s t tests 

were performed on latencies determined from original recordings of membrane potentials. One-

way ANOVA with Tukey’s multiple-comparison test was used for analyzing light-evoked 

spiking response latencies obtained after sensitizing light stimulations with different intensities. 

 

3.4 Results 

Strong Depolarization Shifted Calcium Spike Threshold in Mb-type Bipolar Cells 

The classical view by which visual signals are coded by slow, graded potentials in BCs 

(Werblin and Dowling, 1969) has been challenged by observations in many species: some BCs 

signal with light evoked sodium spike in ground squirrel (Saszik and De Vries, 2012) and with 

calcium (Ca2+) spikes in goldfish (Saito et al., 1979), zebrafish (Dreosti et al., 2011; Baden et al., 

2011) and mouse (Baden et al., 2013a). However, the role of Ca2+spike-coded, digital signaling 

by BCs in visual information processing is not fully understood (for review, see Baden et al., 

2013b). Voltage-gated Ca2+ channels, expressed at the axon terminal region, play a critical role 

in the spiking light responses of Mb-type BCs in the goldfish retina (Zenisek and Matthews, 



68 

1998; Protti et al., 2000); therefore, Ca2+ 

spikes have been proposed to play a role in 

transmitter release (Zenisek and Matthews, 

1998). We made whole-cell current-clamp 

recordings directly from the large axon 

terminals of intact Mbs in goldfish retinal 

slice preparation. With a K+-based internal 

solution in the recording pipette, a current-

ramp protocol from -20 pA to +65 pA over 2 

s induced membrane potential spikes in Mbs 

(Fig. 3.1Ai, Aii). The depolarizing current 

threshold of calcium spike initiation was 

determined by using baseline-subtracted and 

normalized recordings (for details, see 

Materials and Methods) from which the 

current value, in turn, was used to determine 

the membrane potential threshold on the 

original traces. We found that in intact Mbs, 

the depolarizing current needed to reach the 

spike threshold was between 25.5 pA and 59.3 pA, averaging 46.76 ± 5.76 pA, giving the 

average membrane potential threshold for Ca2+ spikes a value of -38.66 ± 5.13 mV (n=5) at the 

axon terminal. These values fell into the range of Ca2+ spike threshold for BCs in the zebrafish 

retina (Baden et al., 2011). Interestingly, when we applied a second current-clamp ramp at least 

 
Figure 3.1. Strong depolarization shifted calcium spike 

threshold in Mb-type bipolar cells. Ai, Consecutive current 

ramp recordings made directly from the large axon terminals 

of intact Mbs in goldfish retinal slice preparation. Less 

depolarizing current was needed to evoke spikes when a 

second current ramp was applied 8 minutes (red) after the 

first (black). Aii, Enlargement of Ai focusing on the region 

of spike initiation. Notice the initiation of spikes is shifted 

leftward for the 8 min trace. Aiii, Summary showing less 

current required for the initiation of Ca2+ spikes in terminals 

of whole Mbs in response to current ramp when preceded by 

strong depolarization. Data are taken from leak-subtracted 

and normalized traces (*: p=0.03, paired Student’s t test, 

n=5). Bi, Current ramp evoked Ca2+ spikes recorded from an 

axotomized Mb terminal in slice preparation. The second 

current ramp (red: 5.5 min after break-in) triggered spikes 

with less depolarizing current than the first current ramp 

(black: 1.5 min after break-in). Bii, Enlargement of the 

regions of spike initiation from Bi. Note the leftward shift in 

the red trace. Biii, Summary showing less current is required 

for the initiation of Ca2+ spikes in axotomized Mb terminals 

in response to current ramp when preceded by strong 

depolarization. Data are taken from leak-subtracted and 

normalized traces (*: p=0.02, paired Student’s t test, n=5). 

Data are presented as mean ± SEM. 
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2.5 min after the completion of the first, we found that less depolarizing current (between 13.1 

pA and 51.7 pA, averaging 40.24 ± 6.91 pA) was necessary to induce a Ca2+ spike (Fig. 3.1Aii). 

In other words, the membrane potential threshold for Ca2+ spike initiation was lower during the 

second current-ramp (-42.95 ± 5.92 mV) than that during the first (control). Concurrently, the 

decrease in membrane potential threshold (-4.30 ± 1.46 mV) was significant (p=0.02, paired 

Student’s t test). Importantly, the holding current (Ihold) needed to keep Mbs at -60 mV did not 

change during the recordings (Ihold first ramp): -99.25 ± 31.16 pA vs. Ihold second ramp: -99.75 ± 

32.98 pA, ΔIhold: -0.5 ± 1.81 pA) indicating that the input resistance was unaltered between 

consecutive ramps.  

Next, we tested if the shift in Ca2+ spike threshold was related to the perfusion, over time, 

of intact cells with complex morphology. In the next set of experiments, we targeted terminals of 

Mbs whose axon was severed. In concert with their simple morphology, axotomized Mb 

terminals exhibit a single-exponential membrane time constant and have high input resistance 

(i.e., “less leaky”) in the absence of dendritic and somatic inputs (Palmer et al., 2003). The data 

included for processing were obtained from axotomized Mb terminals with Ihold recorded at 

patch-break between -3 pA and -38.5 pA, averaging -24.35 ± 6.16 pA (n=5). Consistent with the 

high input resistance, the depolarizing current threshold during the first ramp for Ca2+ spike 

initiation was much lower (8.06 ± 2.65 pA) than that for intact Mbs. Importantly, during a 

second ramp, which was delivered with at least 2.5 min delay, Ca2+ spikes were triggered earlier 

in axotomized Mb terminals (Fig. 3.1Bi, Bii) in a similar fashion to that observed in intact Mbs. 

In other words, a significant reduction in depolarizing current threshold for initiation of Ca2+ 

spikes was seen (4.84 ± 2.07 pA, p=0.02, paired Student’s t test) (Fig. 3.1Biii) without a change 

in Ihold (23.7 ± 6.03 pA) compared to that recorded at patch break (ΔIhold: 0.60 ± 0.15 pA). 
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Converting the depolarizing current threshold values into membrane potentials, the data showed 

that in axotomized Mb terminals, the initial Ca2+ spike threshold of -44.81 ± 2.37 mV measured 

during the first ramp dropped to -50.84 ± 3.33 mV during the second ramp and this reduction 

was statistically significant (p=0.004, paired Student’s t test). The spike threshold values 

obtained in axotomized Mb terminals were lower than those obtained from intact Mbs for both 

the first and second ramps (-44.81 ± 2.37 mV vs. -38.66 ± 5.13 mV, and -50.84 ± 3.33 mV vs. -

42.95 ± 5.92 mV, respectively) demonstrating that depolarizing current injections triggered Ca2+ 

spikes more efficiently in axotomized Mb terminals with more compact structure than in intact 

cells possessing complex morphology. However, when the corresponding spike thresholds were 

compared (i.e. spike threshold during first ramp in intact cells vs. spike threshold during first 

ramp in axotomized terminals and thresholds during the second ramps in a similar manner), we 

found no statistical difference between them (p=0.3 and p=0.2 for first and second ramp 

thresholds, respectively, unpaired Student’s t test). These results also indicated that the observed 

reduction of Ca2+ spike threshold was independent of any process in the somatodendritic 

compartment of Mbs and/or the outer retinal circuitry.  

 

Strong Depolarization Induced Modulation of Voltage-Gated Calcium (ICa) but not Voltage-

Gated Potassium (IK) Currents in Mb Terminals  

In the next set of experiments, we tested whether the Ca2+ spike threshold shift we 

described above might have been caused by changes in the membrane currents mediating Ca2+ 

spikes. The ionic currents responsible for the spiking response of Mb terminals consist of rapidly 

activating (Mennerick and Matthews, 1998) voltage-gated influx of Ca2+ (ICa) through L-type 

voltage-gated Ca2+ channels (Heidelberger and Matthews, 1992; von Gersdorff and Matthews, 
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1996; Tachibana, 1999) that appear to be CaV1.3 type (Logiudice et al., 2006) and subsequent 

efflux of K+, made up by voltage-gated K+ (IK) and big conductance (BK) Ca2+-dependent K+ 

(IK(Ca)) currents (Kaneko and Tachibana, 1985; Sakaba et al., 1997; Palmer, 2006). 

To study which one of these ionic currents might be responsible for the shift in spike 

initiation, we performed whole-cell voltage-clamp recordings on axotomized Mb terminals using 

pairs of consecutive voltage-clamp ramp protocols (from -100 mV to +50 mV, in 2 s) at least 3 

min apart. First we isolated IK using a K+ based internal solution (see Materials and Methods) 

and by complete blockade of ICa with 100 µM CdCl2 in the external solution (Fig. 3.2Ai). 

Blockers of ICa have been shown to eliminate IK(Ca) in Mbs as well (Kaneko and Tachibana, 

1985; Palmer, 2006). Figure 3.2Ai shows a representative recording of IK traces evoked by 

consecutive voltage ramps, applied 3 min apart. Holding potentials below -60 mV were excluded 

from the figure for expansion of the physiologically relevant membrane potential region, 

although the entire current trace was included in the analysis. Analysis was performed on leak 

subtracted IK recordings fit with a Boltzmann function (see Materials and Methods). Once fit, 

kinetics of the control ramp I-V and second ramp I-V were reflected by the slope factor (S) of the 

IK activation and the membrane potential resulting in 50% activation of IK (V(1/2)) (Griguer and 

Fuchs, 1996). No significant difference was found in the slope factors of control ramp I-Vs when 

compared to those of the second ramp I-Vs (0.66 ± 0.08 mV vs. 0.63 ± 0.09 mV, respectively, 

Fig. 3.2Aii; paired Student’s t test, p=0.4, n=5) or between V(1/2) values (control: -11.42 ± 1.13 

mV vs. second ramp I-V: -11.01 ± 1.66 mV; Fig. 3.2Aiii; paired Student’s t test, p=0.7, n=5).  

ICa, in axotomized Mb terminals, was evoked by applying the same linear ramp protocol 

used for triggering IK in voltage-clamp mode, but in the presence of Cs+-based internal solution 

containing TEA-Cl to block IK and IK(Ca) (Kaneko and Tachibana, 1985). When kinetics of ICa I-
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V traces recorded under these conditions (Fig. 3.2Bi) were evaluated by obtaining measurements 

of the membrane potential relating to 5%, 50%, and peak ICa (V(5%), V(50%), and V(Max), 

respectively; see Materials and Methods), we found that on average, V(5%) was -40.5 ± 0.86 mV, 

V(50%) was -27.6 ± 0.80 mV and V(max) was -14.7 ± 1.00 mV for the ICa I-V curves evoked by the 

first (control) voltage ramp. These values, obtained in slice preparation, were in perfect 

agreement with earlier reports studying parameters of ICa in dissociated, solitary Mbs (Kaneko 

 

Figure 3.2. Strong depolarization induced 

modulation of ICa activation but not IK 

kinetics. Ai, Potassium current (IK) in 

axotomized Mb terminal evoked by a 

voltage ramp from –100 mV to +50 mV for 

2 s. Points below –60 mV have been 

removed for illustration purposes. Black 

trace is 1 min after break-in and red trace is 

4 min after break-in. IK was isolated by 

blocking ICa with 100 µM CdCl2. The 

second trace (red) coincides with the 

control (black). Aii, No significant 

differences were observed between the 

slope factor (S) of control and second 

traces. Black circles: control; red squares: 

second; n=5. Aiii, The membrane potential 

at 50% of the maximal current (V(50%)) did 

not differ in the first and second recordings. 

Black circles: control; red squares: second; 

n=6. Bi, Consecutive ICa I-Vs generated 

from an axotomized terminal in slice 

preparation, in response to a 2 second 

voltage- ramp. Notice the shift in the trace 

recorded at 5 minutes after break-in (red) 

compared to the control trace recorded 1.5 

minutes after break-in (black). Bii, 

Summary graph showing ICa activation 

(V(5%)), half-activation (V(50%)), and peak 

(V(max)). Black: control; red: second;*: 

p=0.00003, ***: p=0.000001, **: 

p=0.00001, paired Student’s t test, n=10. 

Biii, Summary graph showing half 

activation (V1/2) parameter from Boltzmann 

fits is significantly less for the second 

voltage-ramps when compared to control. Black circles: control; red squares: second; **: p=0.000002, paired 

Student’s t test, n=10. Biv, Summary graph showing significant shift in peak parameter obtained from Boltzmann fits. 

Black circles: control; red squares: second; **: p=0.00004, paired Student’s t test, n=10. Bv, Summary graph of pair-

wise comparisons displaying no difference in the reversal potential (Vrev) parameter obtained from Boltzmann fits. 

Black circles: control; red squares: second; p=0.31, paired Student’s t test, n=10. Bvi, Summary graph showing no 

significant difference in the slope factor (kG) parameter obtained from Boltzmann fits for control and second voltage 

ramps. Black circles: control; red squares: second; p=0.052, paired Student’s t test, n=10. Data are mean ± SEM. 



73 

and Tachibana, 1985; Heidelberger and Matthews, 1992). However, when we applied an 

identical second voltage-clamp ramp stimulus with at least 2.5 min delay, a portion of the 

resulted ICa did not overlap with that evoked by the first ramp protocol (Fig. 3.2Bi): ICa triggered 

by the second ramp activated at more negative membrane potentials.  On average, for the second 

ramp evoked ICa I-V, V(5%) was -43.5 ± 0.79 mV, V(50%) was -30.35 ± 0.75 mV and V(max) was -

17.2 ± 0.95 mV (Fig. 3.2Bii). The difference between the first and second ramp I-V parameters 

was -3.0 ± 0.39 mV for V(5%), -2.75 ± 0.25 mV for V(50%), and -2.5 ± 0.31 mV for V(Max), all 

proven to be statistically significant (V(5%): p=0.00003; V(50%):p=0.000001; V(Max):p=0.00001; 

paired Student’s t test, n=10) (Fig. 3.2Bii). It is important to note that, once shifted, we found 

that (1) subsequent ramp I-Vs were insufficient to shift ICa activation kinetics further to the left 

and (2) shifted ICa I-Vs did not return to their initial control values within the timeframe of a 

recording (up to 20 min), set by >10% rundown of peak ICa (data not shown).  

ICa I-V traces evoked by consecutive depolarizing voltage ramps were also analyzed by 

comparing the parameters of their modified Boltzmann function fits (Leuranguer et al., 2003). 

We found a difference in half-activation (V(1/2)first: -26.34 ± 0.80 mV vs. V(1/2)second : -29.24 ± 

0.84 mV; Fig. 3.2Biii) and in the peak ICa (VPeak1st: -16.03 ± 0.95 mV vs. VPeak2nd: -18.55 ± 1.0 

mV; Fig. 3.2Biv); the differences in both parameters were statistically significant (V(1/2): 

p=0.000002; VPeak: p=0.00004; paired Student’s t test, n=10). These results were entirely 

consistent with the results of analysis based on I-V characteristics obtained directly from the I-V 

curves. Although the half-activation (V(50%) vs. V(1/2)) and peak ICa membrane potential (V(Max) 

vs. VPeak) values for the same ICa I-V curves obtained by the two methods were not identical, the 

differences between the corresponding values were not statistically significant (V(50%) vs. V(1/2) 

first: p=0.14, second: p=0.16; V(Max) vs. VPeak first: p=0.35, second: p=0.34; paired Student’s t 
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test, n=10). There was no significant difference in the reversal potential (Vrev) of ICa between the 

first (control) and second ramp I-Vs (Vrev1st: 37.70 ± 1.84 mV vs. Vrev2nd: 36.65 ± 1.78 mV; 

p=0.31; paired Student’s t test, n=10; Fig. 3.2Bv), which supported the view that the leftward 

shift in ICa activation did not originate from an artifact caused by a drift in electrode potential 

over the course of our experiments. Although the average slope factor (kG) slightly increased 

between the corresponding first (control) and second ICa I-Vs (kGfirst: 4.18 ± 0.23 mV vs. kGsecond: 

4.44 ± 0.23 mV), this increase was not statistically significant (p=0.052, paired Student’s t test, 

n=10). This was consistent with the fact that the slope increased in only 6 of 10 recordings, 

whereas in the rest of the cases it decreased (3 of 10) or remained the same (1 of 10; Fig. 

3.2Bvi). These results suggested that a change in voltage dependence of Ca2+ channel gating 

charges (Hille, 2001) was not a critical mediator of the leftward shift observed in ICa activation.  

The threshold values for Ca2+ spikes in axotomized Mb terminals measured with current 

ramps and ICa activation (V(5%)) measured with voltage-clamp ramps were in great agreement 

suggesting that the leftward shift in ICa activation threshold was responsible for the reduction in 

Ca2+ spike threshold.  

 Although it was not tested, we considered direct contribution of (BK) IK(Ca) to the shift of 

Ca2+ spike threshold to be highly unlikely: to open (BK) IK(Ca) channels require large membrane 

depolarization (Vergara et al. 1998; Sah and Davies, 2000) and 10-20 μM [Ca2+]i in Mb 

terminals (Sakaba et al., 1997). Thus, (BK) IK(Ca) channels are not active at membrane potentials 

below ICa activation. 
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The Depolarization Induced Shift in ICa Activation at Mb Terminals was Calcium-Dependent 

and Required Glutamate-Mediated Synaptic Signaling 

 Subjecting Mb terminals to 2-s-long depolarizing ramp protocols in retinal slice 

preparation changed the activation kinetics of ICa. To explore whether this change was related to 

the massive influx of Ca2+ triggered by these protocols, we generated consecutive I-V curves for 

ICa at least 2.5 min apart in a stepwise manner using 3-ms-long square pulse voltage steps 

between -80 and +60 mV (see Materials and Methods). This stepwise protocol dramatically 

reduced the total Ca2+ influx at the Mb terminal over the course of experiment: between -80 and 

40 mV the cumulative step induced Ca2+ charge transfer (Q) was only ~0.02% of that triggered 

by a 2 s ramp (data not shown). In addition, the delay between consecutive short depolarizing 

steps presumably allowed mobile and fixed Ca2+ buffering systems of the Mb terminals (Burrone 

et al., 2002) to control the spatial and temporal parameters of intracellular Ca2+ microdomains 

(Neher, 1998), formed during each short depolarizing step, at higher efficacy than during a long 

ramp depolarization. It is important to emphasize that in our whole-cell recordings the standard 

internal solutions contained 2 mM EGTA (see Materials and Methods), which slightly 

overestimated the Ca2+ buffering capacity of mobile endogenous buffers of Mb terminals 

(Burrone et al., 2002).  

Analysis of parameters obtained from a modified Boltzmann function fit of the data 

points was used to determine potential differences between the characteristics of consecutive 

stepwise I-V curves (Fig. 3.3A). On average, the slope factor (kG) was 5.27 ± 0.29 mV for first 

(control) and 5.27± 0.31 mV for the second stepwise I-V, V(1/2) was -27.80± 1.00 mV for first 

(control) and -28.36 ± 0.95 mV for the second stepwise I-V, and VPeak was -12.27 ± 0.93 mV for 

control and -12.87 ± 1.11 mV for the second stepwise I-V. No significant difference between the 
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parameters of control and second stepwise I-V was found (kG: p=0.96; V(1/2): p=0.27 and VPeak: 

p=0.11, paired Student’s t test, n=13). The lack of 

change in ICa activation kinetics under these 

conditions indicated that the negative shift in ICa 

activation observed in Mbs in experiments using 

consecutive depolarizing linear ramp protocols was 

dependent upon (large) Ca2+ influx-mediated 

intracellular processes, specifically, those processes 

that could be triggered by ramp protocols but not by 

short depolarizing steps. 

 Supporting this notion, when the pipette 

solution was supplemented with 10 mM BAPTA in 

place of the regularly used 2 mM EGTA, ICa I-Vs 

generated by consecutive voltage-clamp ramp 

protocols (-100 mV to +50 mV, over 2 s, at least 2.5 

min apart) overlapped (Fig. 3.3B). On average, V(5%) 

was -39.0 ± 1.75 mV for control and -39.30 ± 1.95 

mV for the second ramp I-V, V(50%) was -23.95 ± 

1.09 mV for control and -23.71 ± 2.11 mV for the 

second ramp I-V, and V(max) was -12.59 ± 1.17 mV 

for control and -12.18 ± 2.22 mV for the second 

ramp I-V. Statistical analysis revealed there was no 

difference between control and second ramp I-V for 

 

Figure 3.3. Modulation of ICa at the Mb terminal is 

Ca2+ dependent and required synaptic signaling. A, 

Average (leak subtracted and normalized) stepwise 

I-V curve from axotomized terminals in slice 

preparation (n=13 for steps to ≤-10 mV, n=9 for 

steps to 0 mV and +20 mV). Consecutive I-V 

curves were generated 3 min apart by using 3 ms 

voltage steps. Data were fit with a modified 

Boltzmann equation, smooth line (black: first, 

control I-V; red: second I-V). B, Chelation of ramp 

evoked Ca2+ influx using BAPTA (10 mM) 

inhibited strong depolarization-induced 

modulation of ICa kinetics of axotomized terminals 

in retinal slice preparation. C, Consecutive ICa I-Vs 

recorded from the axon terminal of an 

enzymatically dissociated, solitary Mb. The 

voltage ramp protocol was the same used in slice 

preparation. No shift was observed between the 

control (black) and the second (red) ICa I-Vs. 
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V(5%), V(50%), and V(Max) (p=0.8, p=0.9, p=0.8 respectively, paired Student’s t test, n=5). Taken 

together, these results suggested that modulation of ICa kinetics at the Mb axon terminal required 

a strong depolarization, resulting in a large influx of Ca2+ which initiated a Ca2+-dependent 

presynaptic process that ultimately lead to modulation of ICa activation kinetics.  

To test whether the ICa activation shift was indeed solely mediated by intracellular 

process triggered by the enormous Ca2+ influx during long ramp depolarizations, ICa I-Vs were 

generated by applying the previously used voltage-clamp ramp protocols (-100 mV to +50 mV, 

over 2 s, at least 2.5 min apart) to the axon terminals of enzymatically dissociated, solitary Mbs 

using our standard pipette solution containing 2 mM EGTA. We observed no shift in the I-V 

curves resulted by consecutive ramps (Fig. 3.3C): we found V(5%) of -37.7 ± 2.04 mV for control 

and -37.14 ± 2.26 mV for the second ramp I-V, V(50%) of -21.93 ± 1.84 mV for control and -22.71 

± 1.95 mV for the second ramp I-V, and V(Max) of -6.14 ± 1.75 mV for control and -8.29 ± 1.78 

mV for the second ramp I-V, with no significant difference between control and second ramp I-

Vs for V(5%), V(50%), and V(Max) (p=0.6, p=0.4, p=0.4 respectively, paired Student’s t test, n=7). 

This was in concert with the fact that previous studies of ICa of cultured solitary Mbs using 

voltage ramps did not report apparent changes in the ICa activation (Kaneko and Tachibana, 

1985; Heidelberger and Matthews, 1992). Taken together, these results suggested that the 

pathway that mediated large Ca2+ influx-evoked modulation of ICa kinetics at Mb terminals is 

likely to have synaptic components driven by the glutamate released from Mb terminals.  

To investigate the role of glutamate release from the Mb terminal in ICa modulation 

further, we inhibited exocytosis pharmacologically by adding 50 µM Exo1 (Feng et al., 2003) to 

the internal solution of the recording pipette. In the presence of Exo1 (50 µM), the control and 

second whole-cell voltage-clamp ramp generated ICa I-Vs overlapped (Fig. 3.4A). With 
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depolarizing voltage ramps in the presence 50 µM 

Exo1, for ICa we recorded an average V(5%) of -41.3 ± 

1.56 mV for control and -40.94 ± 1.70 mV for the 

second ramp I-V, V(50%) of -28.73 ± 1.30 mV for 

control and -28.10 ± 1.36 mV for the second ramp I-

V, and V(Max) of -16.68 ± 1.40 mV for control and -

16.57 ± 1.33 mV for the second ramp I-V. Statistical 

analysis revealed no difference between control and 

second ramp I-Vs (V(5%): p=0.4 ; V(50%): p=0.4 and 

V(Max): p=0.9, paired Student’s t test, n=10). The lack 

of leftward shift of ICa activation was consistent with 

the notion that inhibiting the ramp-evoked 

glutamate release from Mb terminals prevented the 

activation of processes responsible for the ICa 

modulation. We could not obtain direct evidence for 

the reduction of glutamate release in these 

experiments as membrane capacitance 

measurements triggered by our standard 2 s voltage-

clamp ramp were unreliable due to the slowly 

decaying tail currents (Gillis, 2000) that often lasted for >10 s following the ramps. Nonetheless, 

in our hands, intracellular perfusion of axotomized Mb terminals with Exo1 (50 µM) for at least 

4 min in slice preparation reduced the control membrane capacitance increase in response to 250 

 

Figure 3.4. Exocytosis of glutamate and activation 

of neurons postsynaptic to the Mb terminal are 

required for modulation of ICa. A, Consecutive ICa 

traces recorded from an axotomized Mb terminal in 

slice preparation in response to voltage ramps 4 min 

apart in the presence of intracellular Exo1 (50 µM). 

The exocytosis inhibitor Exo1 prevented the 

leftward shift of the second ramp I-V (red) as 

compared to the control ramp I-V (black). B, 

Consecutive ICa traces recorded from an axotomized 

Mb terminal in slice preparation, in response to 

voltage ramps 3 min apart in presence of iGluR 

antagonists NBQX (25 µM) and D-AP5 (50 µM). 

The antagonists prevented the leftward shift of the 

second trace (red) from control (black). Note the 

spontaneous outward GABAergic IPSCs at 

depolarized potentials in the absence of PTX. 
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ms depolarizing steps from -60 to -30 mV by 57.89 ± 10.09% (n=11) without altering the 

depolarization-evoked ICa charge transfer (103.10 ± 12.80%, data not shown). 

These results collectively suggested that inhibition of glutamate release from Mb 

terminals by Exo 1 prevented the large depolarization-evoked modulation of their own ICa. This 

notion was also supported by two sets of results presented earlier showing lack of ICa modulation 

(1) when ICa I-Vs were generated by a series of short, stepwise depolarizations in an attempt to 

reduce Ca2+ influx into Mb terminals, but that protocol coincidentally also reduced overall 

glutamate release; and (2) in the presence of 10 mM intracellular BAPTA that was used to 

prevent Ca2+ triggered intracellular processes; BAPTA at this concentration was shown to 

effectively eliminate depolarization evoked exocytosis of glutamate from BC terminals (Singer 

and Diamond, 2003) including Mbs (Vigh and von Gersdorff, 2005).  

Addition of the selective AMPA/kainate receptor antagonist NBQX (25 µM) and NMDA 

receptor antagonist D-AP5 (50 µM) to the external solution also prevented the characteristic 

leftward shift in ICa kinetics seen in response to the second voltage-clamp ramp (Fig. 3.4B). In 

these experiments, PTX was not present in the recording medium. Thus, spontaneous IPSCs,  

triggered by GABA release from amacrine cells (ACs), are superimposed on the ICa I-V although 

the reciprocal GABAergic feedback IPSCs, triggered by the depolarization-evoked glutamate 

release from Mb terminals, was blocked by ionotropic glutamate receptor (iGluR) antagonists 

NBQX and D-AP5 (Vigh et al., 2005). In the presence of NBQX (25 μM) an D-AP5 (50 μM) we 

found V(5%) of -40.64 ± 0.67 mV for control and -40.53 ± 0.96 mV for the second ramp I-V, 

V(50%) of -27.05 ± 0.49 mV for control and -27.09 ± 0.75 mV for the second ramp I-V, and V(Max) 

of -13.46 ± 0.76 mV for control and -13.66 ± 0.65 mV for the second ramp I-V. Statistical 



80 

analysis indicated no significant difference between control and second ramp I-V (V(5%): p=0.5; 

V(50%): p=0.9; V(Max): p=0.4, paired Student’s t test, n=9).  

As these recordings were obtained exclusively from axotomized Mb terminals that do not 

express either presynaptic AMPA/kainate- or NMDA receptors, the site of action of iGluR 

antagonists by which they prevented a shift in ICa I-V, can be attributed to neurons postsynaptic 

to the Mb terminals. Together, these data suggested that modulation of ICa kinetics at the Mb 

terminal required large depolarization of Mb terminals, followed by exocytosis of a large amount 

of glutamate to activate postsynaptic neurons, thereby initiating a feedback signal that positively 

modulated ICa in Mb terminals. 

We tested further whether iGluR activation can trigger modulation of ICa in axotomized 

Mb terminals. Specifically, we recorded ICa from axotomized Mb terminals in response to a 10 

ms depolarizing step from the holding potential of -60 mV to -40 mV, the membrane potential 

associated with threshold of L-type ICa in Mbs (Tachibana, 1999) (also see control V(5%) Fig. 

3.2Bi, Bii). As expected, upon depolarization, a tiny inward ICa was seen (Fig. 3.5A, black ICa 

trace) which was associated with a barely detectable (if any) increase in the membrane 

capacitance (4.09 ± 1.72 fF, n=8) of the Mb terminals (Fig. 3.5A, black Cm trace), indicating 

negligible glutamate release at this membrane potential (Tachibana, 1999). We then mimicked a 

large glutamate release from the Mb terminal by superfusing the retinal slices with the iGluR 

agonist KA (10 µM) for 3 min. The repeated 10 ms depolarizing step to -40 mV after KA 

application triggered a substantially larger ICa (Fig. 3.5A, red ICa trace): the peak ICa increased 

from an average value of -20.66 ± 5.38 pA under control conditions to -46.95 ± 12.19 pA after 

KA application (Fig. 3.5B), which was statistically significant (p=0.04, paired Student’s t test, 

n=8). Importantly, the elevated ICa triggered a clear increase in the membrane capacitance (Fig. 
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3.5A, red Cm trace) indicating glutamate release. For the tested Mb terminals, ΔCm after KA 

increased to 12.49 ± 4.08 fF (p=0.02, paired Student’s t test, n=8; Fig. 3.5A, C).  

KA did not trigger any membrane currents in axotomized Mb terminals in the presence of 

PTX; therefore, these results suggested that KA depolarized neurons postsynaptic to the Mb 

terminal and initiated a feedback pathway. The increase in the depolarizing step evoked ICa, 

associated with a significant increase in the glutamate release from Mb terminals at a 

physiologically relevant membrane potential in the presence of KA was consistent with the 

notion that KA might have triggered some endogenous feedback signal generation in the inner 

retina which then shifted ICa activation to more negative potentials.  

 

 

Figure 3.5. Activation of postsynaptic neurons potentiated ICa and exocytosis from Mb terminals. A, 

Depolarization of an axotomized Mb terminal from the holding potential (HP) of -60 to -40 mV for 10 ms activated 

tiny calcium influx through voltage-gated calcium channels (ICa), which triggered no glutamate release, as 

evidenced by the absence of increase in Cm. The protocol used is shown in the bottom trace. The fast voltage sine 

wave used to measure Cm was not delivered during the depolarization. Bath application of 10 μM Kainic Acid 

(KA) facilitated ICa and enhanced exocytosis (Cm) from the axotomized Mb terminals in response to a depolarizing 

step from -60 mV to -40 mV. Black: control; red: KA treatment. B, Summary figure displaying KA (10 μM) effect 

on peak ICa in response to 10 ms step from -60 mV to -40 mV. Black circles: control; red squares: KA; *: p=0.04 

paired Student’s t test, n=8. C, Summary figure displaying KA (10 μM) effect on ΔCm in response to 10 ms step 

from -60 mV to -40 mV. Black circles: control; red squares: KA; *: p=0.02, paired Student’s t test, n=8. Data are 

presented as mean ± SEM. 

 



82 

NO, as a Retrograde Messenger, Modulated ICa at Mb Terminals 

 Our data presented so far implicated the presence of a retrograde signal that plays critical 

role in (strong) stimulation evoked modulation of ICa at Mb axon terminals. A prime candidate 

for such a retrograde signaling molecule is NO as it has been shown to shift ICa activation to 

more negative potentials in both rod photoreceptors (Kurenny et al., 1994) and cultured GCs 

(Hirooka et al., 2000) and is known to be released from inner retinal neurons by light (Eldred and 

Blute, 2005; Giove et al., 2009) or by glutamate (Tsumamoto et al., 2002).  

First we tested whether the NO donor DETA/NO could alter ICa activation in dissociated 

Mbs. We found that bath application of DETA/NO (1 mM) resulted in a leftward shift in ramp-

evoked ICa I-V (Fig. 3.6A) similar to that seen under control conditions for the second ramp-

evoked ICa I-V of axotomized Mb terminals in slice preparation (Fig. 3.2Bi, Bii). On average, 

V(5%) was -41.2 ± 1.01 mV for control and -47.5 ± 2.16 mV for the second ramp I-V, V(50%) was -

23.6 ± 0.74 mV for control and -28.9 ± 1.36 mV for the second ramp I-V, and V(Max) was -6.1 ± 

0.99 mV for control and -10.4 ± 1.55 mV for the second ramp I-V. On average, the second ramp 

I-V exhibited an average difference of -6.3 ± 1.49 mV for V(5%), -5.3 ± 0.84 mV for V(50%), and -

4.3 ± 0.73 mV for V(Max). Statistical analysis determined a significant difference in V(5%), V(50%) 

and V(Max) for the ramp I-V obtained in DETA/NO as compared to the control (p=0.002, 

p=0.0001 and p=0.0002 , respectively, paired Student’s t test, n=10).  

Next, we examined whether endogenous NO generation and release, triggered by 

synaptic activity, contributes to the modulation of ICa at Mb terminals in retinal slice preparation. 

Specifically, we tested whether pharmacological inhibition of NO production by a nonselective 

inhibitor of both inducible and neuronal nitric oxide synthase (iNOS and nNOS, respectively), 
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TRIM, can reduce the negative shift in ICa activation following depolarizing ramps applied to the 

Mb terminals.  

We found that continuous bath application of TRIM (50 µM) eliminated the leftward 

shift in ICa activation kinetics following ramp depolarization of axotomized Mb terminals (Fig. 

3.6B). On average, V(5%) was -42.1 ± 1.63 mV for control and -42.5 ± 2.01 mV for the second 

ramp I-V, V(50%) was -27.9 ± 1.57 mV for control and -28.63 ± 1.92 mV for the second ramp I-V, 

 

Figure 3.6. The NO donor-mediated shift 

of ICa caused weighted potentiation of Mb 

output selectively in response to weak 

stimuli. A, Application of NO donor 

DETA/NO (1 mM) for 1.5 min shifted the 

ramp-evoked ICa activation to more 

negative potentials in enzymatically 

dissociated Mbs (black: control; red: 

DETA/NO). B, Inhibition of endogenous 

nitric oxide synthases by TRIM (50 µM) 

prevented the leftward shift of ICa 

activation in axotomized Mb terminals in 

slice preparation during consecutive 

ramp stimulations (black: control; red: 

second ramp I-V). C, Bath application of 

DETA/NO (1 mM) facilitated ICa and 

enhanced exocytosis (Cm) from the 

axotomized Mb terminals in response to 

a depolarizing step from -60 mV to -30 

mV (HP: holding potential, bottom trace). 

Black: control; red: DETA/NO treatment. 

D, Bath application of DETA/NO (1 mM) 

slightly increased ICa, but this increase 

was not associated with increased 

exocytosis from axotomized Mb 

terminals in response to a depolarizing 

step from -60 mV to -20 mV (bottom 

trace). Black: control, red: DETA/NO 

treatment. E, Summary figure displaying 

DETA/NO (1 mM) effect on peak ICa in 

response to 10 ms step from -60 mV to -

30, -20, or 0 mV. Black circles: control; 

red squares: DETA/NO; **: p=0.004, 

n=7; *: p=0.008, n=3; paired Student’s t 

test. F, Summary figure displaying 

DETA/NO (1 mM) effect on ΔCm evoked  

 by 10 ms step from -60 mV to -30, -20, or 0 mV. Black circles: control; red squares: DETA/NO; **: p=0.003, 

paired Student’s t test, n=7, n=3 for -20 mV, n=4 for 0 mV. Every terminal was tested at one depolarization level 

in control then in the presence of DETA/NO, thus each pair of measurements shown originated from different 

cells. Data are presented as mean ± SEM. 
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and V(Max) was -13.75 ± 1.58 mV for control and -14.8 ± 1.90 mV for the second ramp I-V. In 

the presence of TRIM, there was no significant difference in V(5%), V(50%) and V(Max) between 

control and second ramp evoked ICa I-Vs (p=0.6, p=0.3 and p=0.07, respectively, paired 

Student’s t test, n=8). 

Together, these data suggested that the endogenous retinal retrograde messenger 

responsible for modulation of ICa at Mb terminals could be NO. The NO donor-evoked shift of 

ICa activation predicted an increase of ICa amplitude in the membrane potential range between -50 

mV and -20 mV, which is physiologically relevant for Mb function (Saito et al., 1979; Wong et 

al., 2005). To test this notion directly we measured depolarization evoked ICa in response to a 10 

ms depolarizing step from -60 mV to -30 mV, -20 mV or 0 mV along with the depolarization-

evoked increase in the membrane capacitance (ΔCm) of axotomized Mb terminals under control 

conditions and after at least 3 min of continuous bath application of DETA/NO (1 mM). We 

found that bath application of DETA/NO increased the peak ICa in response to a depolarizing 

step to -30 mV (Fig. 3.6C) from -56.61 ± 11.47 pA to -96.81 ± 20.62 pA (Fig. 3.6E, p=0.004; 

paired Student’s t test, n=7 ). The NO-mediated increase of ICa at -30 mV was associated with 

enhanced exocytosis (Fig. 3.6C; Cm traces) from an average ΔCm of 26.80 ± 8.31 fF under 

control conditions to 32.73 ± 7.79 fF after application of DETA/NO (Fig. 3.6F; p=0.003, paired 

Student’s t test, n=7). Treatment with the NO donor also increased the peak ICa in response to 

steps to -20 mV (Fig. 3.6D) from -165.33 ± 13.27 pA to -192.59 ± 15.62 pA (Fig. 3.5E, p=0.008; 

paired Student’s t test, n=3). However in these terminals, the ICa increase was not associated with 

an increase in exocytosis (ΔCm: 63.27 ± 6.45 fF vs. 53.46 ± 3.37 fF in control and in DETA/NO, 

respectively, Fig. 3.6F, p=0.09; paired Student’s t test, n=3). Neither the control ICa amplitude (-

117.69 ± 17.15 pA) nor the corresponding membrane capacitance increase (ΔCm: 67.99 ± 1.67 
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fF) was increased by DETA/NO (ICa: -116.69 ± 31.56 pA; ΔCm: 59.31 ± 10.54 fF) significantly 

(ICa: p=0.5; ΔCm: p=0.2, paired Student’s t test, n=4) in response to depolarizing steps from -60 

mV to 0 mV (Fig. 3.6E, F). These results were in perfect agreement with the NO donor evoked 

leftward shift in ICa activation (Fig. 3.6A) in that the weaker depolarization evoked voltage-gated 

ICa amplitude was enhanced more. Importantly, these results demonstrated that the NO-induced 

ICa modulation was reflected in weighted potentiation of glutamate output from Mb terminals. 

   

NO Modulated ICa Activation Threshold Through S-nitrosylation in Mb Terminals 

Within recent years, NO’s role as a retinal signaling molecule has been expanding rapidly 

(Vielma et al., 2012). The classical intracellular signaling cascade that underlies the effects of 

NO involves NO detection by soluble guanylate cyclase (sGC) which stimulates the production 

of cGMP. The increased levels of cGMP, in turn, stimulate protein kinase G (PKG), resulting in 

increased transmitter release in cones (Savchenko et al., 1997) and increased sensitivity of cone 

BCs (Snellman and Nawy, 2004). 

 In order to parse out the intracellular pathway associated with modulation of ICa in Mb 

terminals by NO, first we attempted to simulate the NO effect in enzymatically dissociated Mbs 

using the membrane permeable form of cGMP, 8-Br-cGMP. Application of an external solution 

containing 8-Br-cGMP (100-500 µM) induced a large (“leak”) current in 2 of 5 intact Mbs at -60 

mV holding potential, making voltage-ramp evoked ICa I-Vs unreliable and inconsistent in the 

presence of 8-Br-cGMP (data not shown). These results were consistent with the expression of 

cyclic nucleotide-gated channels (CNGCs) in Mbs (Henry et al., 2003) that mediate a cation 

current when activated by focal application of 8-Br-cGMP onto the dendrites of Mbs in retinal 

slice (Ping et al., 2008). In the rest of the dissociated Mbs (3 of 5), the leak was not increased 
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during 8-Br-cGMP application, which we interpreted as a consequence of potentially damaged 

dendritic CNGCs. Nonetheless, in those Mbs 8-Br-cGMP did not alter ICa activation (V(5%): 

p=0.9; V(50%): p=0.6; V(Max): p=0.7, paired Student’s t test, n=3). In our hands 8-Br-cGMP (500 

µM) did not induce a current in axotomized Mb terminals in slice preparation either (Ihold control: 

-26.45 ± 9.67 pA vs. cGMP: -36.92 ± 16.11 pA, p=0.4, paired Student’s t test, n=4) further 

suggesting that functional CNGCs in Mbs might be restricted to the somatodendritic 

compartment. More importantly, in the presence of NBQX (25 µM) and D-AP5 (50 µM) or, in 

other words, under conditions when the reciprocal endogenous retinal pathway mediating the 

 

Figure 3.7. Nitric oxide (NO) modulated ICa 

in Mb terminals through a cGMP-

independent pathway that involved S-

nitrosylation reactions. A, In the presence of 

NBQX and D-AP5, bath application of the 

membrane permeable cGMP analog 8-Br-

cGMP (500 µM) for 3 minutes failed to shift 

ICa activation of axotomized Mb terminals in 

slice preparation. B, KT5823 (1 µM), a 

selective inhibitor of PKG, was unable to 

prevent the shift in ICa activation seen during 

consecutive ramp stimulations of Mb 

terminals in slice preparation. C, The 

leftward shift of the Ica I-V seen during 

consecutive ramp stimulations of Mb 

terminals in slice preparation was occluded 

by intracellular application of NEM (1 mM). 

D, In the presence of NEM (1 mM) in the 

intracellular solution, the NO donor, 

DETA/NO (1 mM), did not induce a leftward 

shift in the ICa activation threshold of 

dissociated, solitary Mbs. Ei, In the slice 

preparation, with NEM (1 mM) in the 

intracellular solution, no reduction in Ca2+ 

spike threshold was noticed during 

consecutive current ramp protocols applied to 

the axon terminal of Mbs. Eii, enlargement of 

boxed area in Ei illustrating that initiation 

threshold for Ca2+ spikes remained similar to 

that of control when S-nitrosylation reactions 

were prevented by NEM. Eiii, Summary 

diagram showing that, in the presence of 

NEM, no significant change was observed in 

the depolarizing current threshold of Ca2+ 

spikes between control and second current ramp-evoked responses. Black circles: control; red squares: second; n=6; 4 intact cells, 2 axotomized pooled. 
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shift in ICa activation was blocked (Fig. 3.4B), 8-Br-cGMP (500 µM) did not alter the kinetics of 

voltage ramp-evoked ICa I-Vs (Fig. 3.7A). Statistical analysis revealed no significant difference 

between the control and subsequent ramp I-Vs recorded in the presence of 8-Br-cGMP (V(5%): 

p=0.9, V(50%): p=0.7 and V(Max): p=0.4, paired Student’s t test, n=4).  

KT5823 was shown to block the NO signaling cascade in retinal neurons by inhibiting 

PKG (Hirooka et al., 2000; Snellman and Nawy, 2004). Nonetheless, in the presence of 1 µM 

KT5823 in the pipette solution, consecutive depolarizing ramps shifted the ICa activation to the 

left in axotomized Mb terminals in slice preparation (Fig. 3.7B) similar to what was found under 

control conditions (Fig. 3.2Bi, 2Bii). On average, V(5%) was -44.0 ± 1.58 mV for control and -

47.2 ± 1.77 mV for the second ramp I-V, V(50%) was -29.5 ± 1.71 mV for control and -32.6 ± 

1.73 mV for the second ramp I-V, and V(Max) was -15.0 ± 1.95 mV for control and -18.0 ± 1.84 

mV for the second ramp I-V. The difference in ICa I-V curve parameters (V(5%): -3.2 ± 0.37 mV; 

V(50%): -3.1 ± 0.19 mV and V(Max): -3.0 ± 0.32 mV) was statistically significant (V(5%): p=0.001; 

V(50%): p=0.00007; V(Max): p=0.0006, paired Student’s t test, n=5).  

These findings discounted the role of an NO-stimulated cGMP-dependent pathway in 

altering ICa activation at Mb terminals and are in concert with the report showing that NO donor 

(SNAP) application failed to trigger cGMP elevation in Mbs in the goldfish retina (Baldridge and 

Fischer, 2001). An alternative mechanism of action by which NO can influence cellular function 

is through direct nitrosylation; in which NO covalently binds to the thiol side-chains of cysteine 

residues of various proteins to form S-nitrosothiols (S-nitrosylation) (for review, see Ahern et al., 

2002). To assess whether NO-mediated S-nitrosylation played a role in the observed leftward 

shift of ICa activation in response to ramp I-Vs of axotomized Mb terminals, we introduced N-

ethylmaleimide (NEM, 1 mM) into the intracellular solution. NEM is a potent inhibitor of S-



88 

nitrosylation as it irreversibly reacts with and binds to sulfhydryl groups thereby preventing NO 

from engaging in an S-nitrosylation reaction. NEM prevented the leftward shift of ICa during 

consecutive voltage ramps in axotomized Mb terminals in retinal slice (Fig. 3.7C). On average, 

V(5%) was -43.2 ± 0.92 mV for control and -44.0± 1.14 mV for the second ramp I-V, V(50%) was -

28.5 ± 0.71 mV for control and -27.6 ± 0.54 mV for the second ramp I-V, and V(Max) was -12.6 ± 

0.68 mV for control and -11.6 ± 1.12 mV for the second ramp I-V. Statistical analysis 

determined no significant difference in V(5%), V(50%), and V(Max) between the control and second 

ramp evoked ICa I-Vs ( p=0.7, p=0.9, and p=0.4, respectively, paired Student’s t test, n=5). 

Similarly, in the presence of NEM (1 mM) in the pipette solution, bath application of 1 mM 

DETA/NO (Fig. 3.7D) failed to alter the parameters of voltage ramp evoked ICa I-V in 

enzymatically dissociated Mbs. On average, V(5%) was -41.5 ± 1.26 mV for control and -41.8 ± 

0.87 mV for the second ramp I-V, V(50%) was -25.3 ± 1.45 mV for control and -25.7 ± 1.41 mV 

for the second ramp I-V, and V(Max) was -9.2 ± 2.32 mV for control and -9.7 ± 2.54 mV for the 

second ramp I-V. Statistical analysis revealed no difference between control and second ramp I-

V parameters (V(5%): p=0.8 ; V(50%): p=0.7 and V(Max): p=0.6, paired Student’s t test, n=6) 

Last, we assessed whether preventing S-nitrosylation in Mb terminals also prevents the 

shift in Ca2+ spike threshold observed during stimulation of Mb terminals with consecutive 

depolarizing current ramps (Fig. 3.1). We found that blocking S-nitrosylation of proteins within 

the Mb terminal with NEM prevented a change in the threshold for Ca2+ spike initiation (Fig. 

3.7Ei). An enlargement of the region of the trace where the spikes begin to originate shows no 

obvious difference in the threshold for initiation (Fig. 3.7Eii). On average, initiation of spikes 

during the first (control) ramp required 25.92 ± 9.98 pA, almost identical to that required during 

the second ramp applied 3 min later (26.47 ± 10.03 pA), and no significant difference between 
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the thresholds of calcium spikes were detected (p=0.1, paired Student’s t test, n=6; 4 intact cells, 

2 axotomized terminals, Fig. 3.7Eiii). Further, there was no shift in the membrane potential 

associated with the spike threshold. With 1 mM NEM in the internal solution, on average, spikes 

initiated at -45.35 ± 2.46 mV for control and at -44.82 ± 2.73 mV for the second trace (p=0.4, 

paired Student’s t test, n=6; 4 intact cells, 2 axotomized terminals).  

 

Light Induced NEM-sensitive Modulation of Mbs Response to Scotopic, Rod-Mediated Inputs 

in an Intensity Dependent Manner 

Although direct nitrosylation of thiol side-chains of cysteine residues by NO plays an 

important role in numerous physiological processes (Ahern et al., 2002), it is a particularly 

important process in neurodegenerative diseases (Nakamura et al., 2013). Our results presented 

until this point show that this pathway can be triggered by endogenous, synaptically released 

glutamate which initiates retrograde modulation of ICa at the same presynaptic BC axon 

terminals. Nonetheless, the depolarizing ramp protocols that were shown to trigger this pathway 

consistently in our experiments were far from physiologically relevant depolarizations for Mbs. 

To study if our findings have functional consequences for normal visual processing or if this 

NO-mediated process can only exists under experimental conditions in retina, we designed a set 

of experiments where depolarizations of Mbs were evoked by light stimulations, based on (1) the 

observation that NO release in the retina is triggered by increasing light intensity (Eldred and 

Blute, 2005; Giove et al., 2009), (2) our preceding experiments suggesting that small 

depolarizations of Mb terminals might be preferentially potentiated by endogenous NO which 

appeared to be released in our prep by large synaptic depolarizations of inner retinal neurons 

(Figures 3.2Bi, 3.5) and that (3) magnitude of depolarization in ON BCs is related to strength 
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and wavelength of illumination (Joselevitch and Kamermans, 2007; Jarsky et al, 2011). Although 

we did not intend to simulate Mb responses to natural underwater visual scenes, the wavelength 

and intensity of light stimulations were selected to match those behaviorally relevant in shallow 

water (Munz and McFarland, 1973; McFarland and Munz, 1975; Loew and McFarland, 1990). 

Additionally, the light stimulations were chosen in accordance with the observations that Mbs in 

the fish retina receive direct inputs from both rods and cones (Wong et al., 2005; Joselevitch and 

Kamermans, 2007) similar to many BCs in cold blooded vertebrate retinas (Wu, 1994) and 

certain mammalian BCs (Protti et al., 2005; Haverkamp et al., 2008; Pang et al., 2010a).  

In these experiments, light-evoked responses of intact Mbs were recorded directly from 

their axon terminals in current-clamp mode from dark-adapted retinal slices. Mbs were slightly 

hyperpolarized to keep their membrane potential at about -51 mV, which prevented spontaneous 

Ca2+ spike firing in the dark. Figure 3.8Ai shows representative control responses recorded form 

the axon terminal of an intact Mb, evoked by two sets of 3 consecutive dim (1.6x107 

photons/cm2/s) green flashes (λ=505 nm, 500 ms) applied 5 s apart and with 4 minutes between 

the two sets of light stimuli. The responses to the same light stimulation showed great variability 

in the number and amplitude of the Ca2+ spikes (Fig. 3.8Ai) but they were rather consistent in 

terms of the latency within sets as well as across consecutive sets (Fig. 3.8Aii): for the Mb 

shown, the latency of first light-evoked spikes varied between 245 ms and 258 ms, averaging at 

251.33 ± 3.76 ms for the first set and varied between 249 ms and 250 ms averaging at 249.67 ± 

0.3 ms for the second set of stimulations (Fig. 3.8Aiii). When latencies of these dim green light 

(1.6x107 photons/cm2/s, λ=505 nm, 500 ms) evoked spikes between the first and second sets 

(248.6 ± 14.6 ms vs. 247.02 ± 13.8 ms, respectively) were compared across multiple cells (n=6), 

we found no significant statistical difference (p= 0.6, paired Student’s t test).  
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In the next set of experiments, we devised a protocol with the intent to determine whether 

the Mb spiking response could be sensitized by light. The general framework of the light 

stimulation consisted of an initial light flash, followed by a brighter, “sensitizing” light flash, and 

then a repeat presentation of the initial flash. This paradigm allowed us to compare the light 

evoked spiking response of the Mb terminal before and after a sensitizing light stimulus and use 

the observed differences as a metric for whether or not the terminal had been “sensitized.” 

Specifically, the retina was exposed to a series of full field green (λ=505 nm) light flashes (500 

ms) with increasing intensities ranging from scotopic (7x106 photons/cm2/s) to dim photopic 

(1.2x1011 photons/cm2/s) intensities (Busskamp et al., 2010). Then a 500 ms bright red light 

(sensitizing) stimulus (λ=660 nm, 5x1013 photons/cm2/s) was delivered. With a minimum delay 

of 5 min after the red light flash, the series of (initial) green light flashes were repeated. Figure 

3.8Bi shows a representative recording where we found that the second dim green flash (1.6x107 

photons/cm2/s), applied after sensitizing red stimulation, triggered a spiking response from the 

Mb axon terminal with shorter delay compared to that evoked by the same intensity before the 

red flash (Fig. 3.8Bi, 3.8Bii) as if the terminal was “sensitized” by the bright red light 

stimulation. Similar shortening of first spike delay was seen in every cell tested (9/9, Fig. 

3.8Biii) at this green light intensity and was found to be statistically significant (p=0.006, paired 

Student’s t test). Interestingly, the delay of light responses to bright (1.2x1011 photons/cm2/s) 

green light of the same Mb were not different before and after the bright red simulation (Fig. 

3.8Ci, 3.8Cii). Across cells, the latency to first spike increased in 7/17 Mbs, decreased in 6/17 

and remained virtually unaltered in 4/17 cells (Fig. 3.8Ciii), and when summed, no statistically 

significant difference was detected (p=0.1, paired Student’s t test, n=17). Of the six different 

intensities of green light presented in this set of experiments, a significant decrease in latency  
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**p=0.006 (paired Student’s t test) n=9. Ci, Responses of Mb terminal to mesopic green (500 ms, 505 nm, 1.2x1011 

photons/cm2/s) light, before (black) and 5 min after (red) the bright red flash. Membrane potential at the beginning 

of traces was –52 mV. Cii, Enlargement of boxed area in Ci. Membrane potentials at the beginning of traces are      

-50.25 mV (red) and -50.1 mV (black). Ciii, Summary graph of paired comparison of mesopic green light response 

latency before and after red light; n=17. D, Average latency to first spike from green light responses triggered by 6 

intensities before (black) and 5 min after (red) bright red stimulation. A significant decrease in latency was observed 

in response to dim, scotopic intensities known to stimulate rods, but not cones (≤3.5×109 ph/cm2/s): 7×106 ph/cm2/s; 

n=3, *p=0.04. 1.6×107 ph/cm2/s; n=9, **p=0.006. 4.2×107 ph/cm2/s; n=17 ***p=0.0001. 2.4×108 ph/cm2/s; n=17, 

**p=0.02; 3.5×109 ph/cm2/s: n=17; 1.2×1011 ph/cm2/s: n=17. (Paired Student’s t test). Data are mean ± SEM. 

Figure 3.8. Photopic light stimulation 

modulated scotopic light responses of Mb 

axon terminals. 

Ai, Repeated scotopic green light flashes 

(500ms, λ=505 nm, 1.6x107 photons/cm2/s) 

did not significantly alter the latency of 

evoked Ca2+ spikes from the axon terminal of 

an intact Mb. The first set of responses (black, 

blue, and green traces) were evoked by three 

distinct flashes of dim green light with a 5 s 

delay between flashes. After a 4 min delay, a 

second set of responses (purple, red, and 

orange traces) was evoked by three distinct 

flashes of dim green light. Membrane 

potentials at the beginning of the traces: -51.8 

mV (black), -48.9 mV (blue), -52.4 mV 

(green), -47.9 mV (purple), -50.8 mV (red), 

and -52.1 mV (orange). Aii, Enlargement of 

boxed area in Ai. Membrane potentials at the 

beginning of the traces are -44.6 mV (black), 

-44.7 mV (blue), -43.3 mV (green), -41.9 mV 

(purple), -44.6 mV (red), and -46.6 mV 

(orange). Aiii, Summary graph comparison of 

latency to first spikes of responses triggered 

by the first and second set of dim green (505 

nm, 1.6x107 photons/cm2/s) light flashes. 

Black circles: first set; red squares: second 

set. Bi, Rod-mediated scotopic green (505 

nm, 1.6x107 photons/cm2/s, 500 ms) evoked 

responses from the axon terminal of an intact 

Mb, in dark-adapted retina slice preparation, 

(black) were modulated by bright red light 

stimulation (500 ms, 660 nm, 5x1013 

photons/cm2/s) 5 min after bright red flash, 

the repeated dim green stimulus evoked 

spiking response with decreased latency (red 

trace). Membrane potential at the beginning 

of both traces was –51 mV. Bii, Enlargement 

of boxed area in Bi. Membrane potentials at 

the beginning of traces are -50.5 mV (red) and 

-52.8 mV (black). Biii, Summary graph 

showing paired comparison of latency to first 

spike triggered by dim green flash before and 

after bright red. The latency to first spike was 

significantly reduced for the second stimulus, 

on average by 55.18 ± 14.98 ms. Black 

circles: control; red squares: second, 
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was observed in those under intensities known to stimulate only rods (≤108 photons/cm2/s) and 

was not observed in intensities above cone threshold (~109 photons/cm2/s in the goldfish retina, 

Joselevitch and Kamermans, 2009). The dimmest green light stimulus used in our experiments 

(7x106 photons/cm2/s) produced a spiking response with an average latency of 553.50 ± 25.74 

ms in control (first) and with 369.37 ± 63.80 ms after the red flash (second); in response to a 

1.6x107 photons/cm2/s flash, the average latency was 288.71 ± 33.36 ms in control (first) and 

233.54 ± 24.44 after the red flash (second); in response to a 4.2x107 photons/cm2/s flash the 

average latency was 156.92 ± 5.12 ms in control (first) and 142.55 ± 4.69 after the red flash 

(second); in response to a 2.4x108 photons/cm2/s flash, the average latency was 112.99 ± 7.19 ms 

in control (first) and 105.93 ± 5.97 after the red flash (second); in response to a 3.5x109 

photons/cm2/s flash the average latency was 101.57 ± 8.59 ms in control (first) and 98.85 ± 7.99 

after the red flash (second); in response to a 1.2x1011 photons/cm2/s flash the latency was 51.89 ± 

2.24 ms in control (first) and 52.93 ± 1.97 after the red flash (second) (Fig. 3.8D). Note that the 

latency, as well as the variability in latency across cells, decays as light intensity increases. These 

results are consistent with the observation that temporal precision of spikes produced by BCs, 

evoked by high contrast light stimulation, is in the millisecond range, which correlates with that 

of AC and GC spikes in the fish retina (Baden et al., 2011).  

The intensity of sensitizing light stimulus used in the previous experiment was sufficient 

to activate both rod and cone inputs to Mbs (Joselevicht and Kamermans, 2007). In the next set 

of experiments, we sought to parse out the contribution of rod- and cone-mediated signaling in 

triggering the light-induced sensitization of dim scotopic light (λ=505 nm, 500 ms, 1.6x107 

photons/cm2/s) responses. This particular scotopic intensity was selected as it reliably evoked 

spiking responses in Mbs with relatively high temporal precision (Fig. 3.8Ai, 8Aii) and exhibited 
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a latency that did not change over the time course (~5 min) of these experiments (Fig. 3.8Aiii). 

However, the latency of responses to this scotopic intensity showed significant reduction, after 

bright red sensitizing light stimulation, consistently across cells (Fig. 3.8Biii). We found that a 

full field green flash (λ=505 nm, 500 ms) with an intensity of 2.4x108 photons/cm2/s, which is 

just below cone threshold in the fish retina (Joselevitch and Kamermans, 2009), could also 

reduce the latency of consecutive light responses evoked by the dim scotopic green flash. On 

average, the latencies of the spiking response were reduced from 281.12 ± 11.28 ms to 249.86 ± 

10.75 ms (Fig. 3.9Ai, 3.9Aii) reliably (in 11/11 experiments, Fig. 3.9Aiii) and the reduction was 

proven statistically significant (p=0.0001, paired Student’s t test, n=11). In the next experiments, 

we increased the sensitizing green flash (λ=505 nm, 500 ms) stimulus intensity to 1010 

photons/cm2/s. This mesopic intensity saturates rods (Sterling, 2003; Busskamp et al., 2010) and 

starts to activate cones (Joselevitch and Kamermans, 2009). As expected, flashes at this intensity 

also reduced the latency of consecutive dim green, flash-evoked responses in every cell tested 

(Fig. 3.9Bi, 3.9Bii) (control: 275.29 ± 9.41 ms vs. second: 230.84 ± 10.17 ms) in a statistically 

significant manner (p=0.00008, paired Student’s t test, n=7, Fig. 3.9Biii). When compared across 

experiments, we found that the reduction of dim scotopic green (λ=505 nm, 500 ms, 1.6x107 

photons/cm2/s) response latencies triggered by the sensitizing light was intensity dependent: it 

was the largest (55.18 ± 14.98 ms, n=9) for bright photopic red (λ=660 nm, 500 ms, 5x1013 

photons/cm2/s), followed by the reduction of (44.44 ± 4.71 ms, n=7) caused by rod-saturating 

mesopic green (λ=505 nm, 500 ms, 1010 photons/cm2/s) flashes and was the smallest (31.25 ± 

3.12 ms, n=11) for bright scotopic green (λ=505 nm, 500 ms, 2.4x108 photons/cm2/s) stimuli. 

However, when the latency changes caused by these three sensitizing light stimulations were 

statistically analyzed, no significant difference was detected among them (One-way ANOVA, 
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with Tukey’s multiple comparison test). These results indicated that bright scotopic signals, 

which are processed and conveyed to the inner retina by Mbs, were sufficient to potentiate 

processing of consecutive weak rod inputs by Mbs. Light stimuli bright enough to  activate cones 

might trigger further activity-dependent weighted potentiation of Mb signaling. Together, the 

data demonstrated that the strength of Mb depolarization drove the retrograde, NO-mediated 

modulation of Mb terminal signaling. 

Next we tested whether similar modulatory mechanism affects photopic signals processed 

by Mbs; specifically, we tested whether weak photopic responses of Mb terminals evoked by red 

flashes (λ=660 nm, 500 ms, 1.2x1011 photons/cm2/s) can be also sensitized by bright photopic 

stimulation (λ=660 nm, 500 ms, 5x1013 photons/cm2/s) in a similar manner. When delivered on a 

dark background, the weak photopic red (λ=660 nm, 500 ms, 1.2x1011 photons/cm2/s and the 

rod-saturating green (λ=505 nm, 1010 photons/cm2/s) stimulation evoked identical responses in 

Mb terminals (Fig. 3.9Ci and 3.9Cii, respectively): the spikes merged into a transient initial 

depolarization that was followed by a depolarized plateau with superimposed small 

spikes/membrane potential oscillations, which exceeded the length of the illumination. The 

membrane potential of the plateau varied between -33.25 mV and -40.05 mV and averaged at -

37.22 ± 2. 41 mV (n=7). To isolate cone responses, red flashes were delivered on a rod-

saturating green background (λ=505 nm, 1010 photons/cm2/s) which was turned on 4 s before the 

first red stimulations. Neither weak (1.2x1011 photons/cm2/s) nor strong (5x1013 photons/cm2/s) 

photopic red stimulation (λ=660 nm, 500 ms), when superimposed on the rod-saturating green 

background, evoked detectable responses (Fig. 3.9Ciii). These results remain consistent with the 

observation that Mbs process rod-dominant visual signals and nearly saturate at intensities of 

1010 photons/cm2/s (Joselevitch and Kamermans, 2009).  
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Figure 3.9. Scotopic light responses of Mb 

axon terminals can be modulated by light 

through rod specific pathways. Ai, Rod-

mediated responses recorded from the axon 

terminal of an intact Mb to a full-field light 

flash (500 ms) of scotopic green (λ=505 nm, 

1.6x107 photons/cm2/s) before (black) and 4 

min after (red) a bright scotopic green (λ=505 

nm, 2.4x108 photons/cm2/s) full-field light 

flash (500 ms). Following stimulation with 

the bright scotopic green light, the repeated 

dim green stimulus evoked a spiking 

response with decreased latency when 

compared to control. Membrane potentials at 

the beginning of the traces are -51.9 mV (red) 

and -49.2 mV (black). Aii, Enlargement of 

boxed area in Ai illustrating the decreased 

latency of rod-mediated light induced Ca2+ 

spikes when the green scotopic stimulus is 

increased by one order of magnitude. 

Membrane potentials at the beginning of the 

traces are -49.5 mV (red) and -48.9 mV 

(black). Aiii, Summary graph showing paired 

comparison of latency to first spike triggered 

by dim green (505 nm, 1.6x107 

photons/cm2/s) flash before and after 

presentation of sensitizing green light (505 

nm, 2.4x108 photons/cm2/s) recorded from 

different Mb terminals. The latency to first 

spike was significantly reduced for the 

second stimulus, on average by 31.25 ± 3.12 

ms. Black circles: control; red squares: 

second; **: p=0.0001, paired Student's t test, 

n=11. Bi, Responses of an Mb terminal 
evoked by a scotopic green (505 nm, 1.6x107 photons/cm2/s) light flash (500 ms) of a dark-adapted retina (black) were 

modulated by a rod-saturating bright green (500 ms, 505 nm, 1.0x1010 photons/cm2/s) light flash. 4 minutes after the 

bright green flash, a repeated dim green stimulus evoked a spiking response with decreased latency (red) as compared 

to control. Membrane potential at the beginning of the trace was -47.14 mV (red) and -49.47 mV (black). Bii, 

Enlargement of boxed area in Bi illustrating the decrease in latency observed in scotopic green light-evoked Ca2+ 

spikes following rod saturating green light stimulation. Membrane potentials at the beginning of the traces are -48.79 

mV (red) and -48.92 mV (black). Biii, Summary graph showing paired comparison of latency to first spike triggered 

by dim green (505 nm, 1.6x107 photons/cm2/s) flash before and after presentation of bright green light (505 nm, 

1.0x1010 photons/cm2/s). The latency to first spike was significantly reduced for the second stimulus, on average by 

44.44 ± 4.71 ms. Black circles: control; red squares: second; **: p=0.00008, paired Student's t test, n=7. Ci, Responses 

recorded from an Mb terminal evoked by a weak photopic red flash (500 ms, λ=660 nm, 1.2x1011 photons/cm2/s). 

Membrane potential at the beginning of the trace is -50.5 mV. Cii, Response from the same Mb axon terminal evoked 

by a sustained presentation of rod saturating green light (λ=505 nm, 1.0x1010 photons/cm2/s). Membrane potential at 

the beginning of the trace is -50.9 mV. Ciii, Neither weak photopic (1.2x1011 photons/cm2/s) nor brighter (5x1013 

photons/cm2/s, applied 9 min later) red flash (500 ms, λ=660 nm) evoked measurable responses in Mb terminals (black 

and red traces, respectively) when applied on top of sustained rod-saturating green background illumination (λ=505 

nm, 1.0x1010 photons/cm2/s). Membrane potentials at the beginning of traces: -40.3 mV (black), and -43.9 mV (red). 
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Collectively, these data suggested that the latency of light evoked Ca2+ spikes in Mb 

terminals is subject to plasticity; in our experimental protocol a flash of light with intensity 

≥2.4x108 photons/cm2/s shortened the latency, especially for Ca2+ spikes evoked by scotopic 

light intensities. This pattern closely resembled what was reported for NO-mediated changes in 

cone BC sensitivity in mammalian retinas: NO increased BC sensitivity to weak inputs but did 

not alter strong ones (Snellman and Nawy, 2004). However, our results could also be explained 

by an NO-mediated effect localized to the Mb terminals, in which NO via S-nitrosylation 

reaction caused a shift in ICa activation that resulted in reduction of Ca2+ spike threshold, leading 

to shortened first spike delay in response to weak inputs.  

To test this notion directly, we repeated previous experiments where we observed light 

induced changes in the Mb terminal’s scotopic responses under conditions that prevented S-

nitrosylation by including NEM (1 mM) in the recording pipette. We found that in the presence 

of NEM, the latency of dim scotopic green responses (1.6x107 photons/cm2/s) was slightly 

increased in 3 out of 4 experiments (Fig. 3.10Ai, 3.10Aii), and was reduced in 1 out of 4 

experiment following a bright scotopic (2.4x108 photons/cm2/s) green flash (Fig. 3.10Aiii). On 

average, no significant change was detected (control: 243.04 ± 19.09 ms vs. second: 246.06 ± 

16.05 ms, n=4, Fig. 3.10Aiii; p=0.6, paired Student’s t test). To test whether a photopic 

sensitizing stimulus also alters the scotopic response latency in Mb terminals in a NEM-sensitive 

manner, we performed a similar experiment using 500 ms long flashes of bright red (λ=660 nm) 

light with intensity of 5x1013 photons/cm2/s to sensitize scotopic green flash (4.2x107 

photons/cm2/s) responses. In the presence of intracellular NEM (1 mM), no reduction of spike 

latency was observed in response to scotopic green stimulations (Fig. 3.10Bi, 3.10Bii) in any 

tested cell (n=3, Fig. 3.10Biii; p=0.1, paired Student’s t test).  
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Note however, the reduction of light-evoked Ca2+ spikes in the presence of intracellular 

NEM in both sets of experiment (Fig. 3.10Ai, 3.10Bi) indicating a possible inhibitory NEM 

effect on dendritic signaling besides preventing S-nitrosylation in intact Mbs (Shapiro et al., 

1994). It is important to note that light-induced modulation of rod-mediated dim light responses 

 
Figure 3.10. Both bright scotopic and photopic light induced modulation of scotopic light responses in Mb terminals 

in a NEM sensitive manner. Ai, Including NEM (1 mM) in the pipette solution prevented bright scotopic light 

stimulation (500 ms, λ=505 nm, 2.4x108 photons/cm2/s) from reducing the latency of dim scotopic green light (500 

ms, λ=505 nm, 1.6x107 photons/cm2/s) responses of Mb terminals. Membrane potentials at the beginning of traces 

shown in Ai are -48.7 mV (black) and -48.4 mV (red). Aii, Enlargement of boxed area in Ai illustrating that the delay 

of dim scotopic green light-induced Ca2+ spikes, following the bright scotopic green stimulation, remained similar to 

that of control in the presence of NEM. Membrane potentials at the beginning of traces are -49.5 mV (black) and -

47.6 mV (red). Aiii, Pairwise comparison showing no significant difference in latency of scotopic light responses (500 

ms, λ=505 nm, 1.6x107 photons/cm2/s) compared before and 5 min after bright scotopic green flash (500 ms, λ=505 

nm, 2.4x108 photons/cm2/s) in the presence of NEM. Black circles: control; red squares: second; n=4. Bi, When NEM 

(1 mM) was included in the pipette solution the bright red flash (500 ms, 660 nm, 5x1013 photons/cm2/s) did not 

induce a leftward shift in the latency to first spike triggered by scotopic green stimulation (505 nm, 4.2x107 

photons/cm2/s). Membrane potential at the beginning of both traces shown in Bi is -52 mV. Bii, Enlargement of boxed 

area in Bi illustrating that the delay of scotopic green light-induced Ca2+ spikes, following the bright red stimulation, 

remained similar to that of control in the presence of NEM. Membrane potentials at the beginning of traces are -48 

mV (red) and -50 mV (black). Biii, Pairwise comparison showing no significant difference in latency of scotopic light 

responses (505 nm, 4.2x107 photons/cm2/s) compared before and 5 min after bright red flash in the presence of NEM. 

Black circles: control; red squares: second; n=3. Data are Mean ± SEM. 
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recorded at the Mb terminals could be influenced by multiple upstream NO-mediated processes 

acting on (1) rods (Kurenny et al., 1994), (2) cones (Savchenko et al., 1997) and/or (3) horizontal 

cells (Baldridge and Fischer, 2001) making the use of NOS inhibitor TRIM in these experiments 

inappropriate. Nonetheless, it is unlikely that the NO-mediated, cGMP dependent increase in Mb 

sensitivity for weak inputs (Snellman and Nawy, 2004) played a role in modulation of dim light 

responses, because unlike in horizontal cells, NO donor failed to visibly increase cGMP levels in 

Mb terminals in the goldfish retina, even in the presence of PDE blocker (Baldridge and Fischer, 

2001).  

 

3.5 Discussion 

The present study describes a novel NO-dependent modulatory mechanism that alters the 

output of Mb-type BCs. The major findings of this investigation were: (1) Ca2+ spike threshold in 

Mb terminals is subject to activity-dependent plasticity, (2) glutamate released by strong 

depolarization of a single Mb terminal is sufficient to trigger generation and delivery of NO, (3) 

NO can act in a retrograde manner to lower ICa threshold in strongly stimulated Mb terminals via 

a NEM-sensitive S-nitrosylation mechanism, (4) Mb terminals subjected to endogenous or 

exogenous NO show weighted potentiation: they respond to weak depolarizing inputs with 

enhanced glutamate output, while maintaining input-output ratio (gain) for strong stimuli and (5) 

exposure to light with intensity ≥2.4x108 photons/cm2/s induced weighted potentiation of 

scotopic responses in Mb terminals (expressed as reduced Ca2+ spike delay) in a NEM-sensitive 

manner.  

 

 



100 

Nitric Oxide Modulation of Retinal Signaling 

In vertebrate retinas NO is synthetized mainly by the neuronal type NO synthase 

(Dawson et al., 1991; Tsumamoto et al., 2002), although endothelial (Haverkamp et al., 1999) as 

well as the inducible (Palamalai et al., 2006) types are also present. Extensive investigations 

using immunohistochemistry and in situ hybridization detected these enzymes in subtypes of all 

retinal cell classes with species-dependent patterns (Vielma et al., 2012). The best known retinal 

effect of NO is the uncoupling of gap junctions between horizontal cells in a variety of species 

(Daniels and Baldridge, 2011; De Vries and Schwartz, 1989; Lu and McMahon, 1997) that is 

mediated by increased intracellular cGMP via soluble guanylate cyclase (sGC). Similarly, gap 

junctions between AII ACs and BCs are regulated by NO in a cGMP-dependent manner (Mills 

and Massey, 1995). Indeed, a number of reports demonstrated increased retinal cGMP synthesis 

in response to NO donor application (Blute et al., 1998; Gotzes et al., 1998; Baldridge and 

Fischer, 2001; Saenz et al., 2002). In addition, NO triggered increases in cGMP can open 

CNGCs and in turn, trigger transmitter release from cones in salamander (Rieke and Schwartz, 

1994) and lizard (Savchenko et al., 1997) retinas. 

Not all actions of NO are mediated through cGMP-dependent pathways in the retina: NO 

was shown to modulate ICa of rods in salamander independent of cGMP (Kurenny et al., 1994). 

Most interestingly, the activation threshold of ICa in salamander rods was shifted to the left, 

resulting in a decrease of V1/2 by -4.3 ± 0.6 mV (Kurenny et al., 1994). Those results are 

strikingly similar to our data (Fig. 3.6A, V50%: ~-5.5 mV), thus our findings and conclusions 

support the speculation of Kurenny et al (1994) suggesting S-nitrosylation as a possible 

mechanism by which NO could alter ICa threshold in salamander rods. The similarities between 
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the results of the two studies suggest that ICa modulation through NO-triggered S-nitrosylation 

reactions could be a ubiquitous regulatory process in the vertebrate retina.  

 

Can NO-Mediated S-nitrosylation in Mbs Occur Under Physiological Conditions?  

Direct nitrosylation of thiol side-chains of cysteine residues by NO plays an important 

role in numerous physiological processes by triggering dynamic conformational changes which 

affect protein-protein interactions or influence protein location (Ahern et al., 2002). Yet, S-

nitrosylation in the nervous system is particularly characteristic during periods of oxidative stress 

and in neurodegenerative diseases in which NO levels are elevated (Nakamura et al., 2013). We 

were able to trigger this NO pathway by endogenous synaptic glutamate, released from a single 

presynaptic terminal, which resulted in the retrograde modulation of ICa through S-nitrosylation 

reactions at the same presynaptic Mb terminals. However, the depolarizing ramp protocols that 

were proven to trigger this pathway, and in turn consistently shifted ICa threshold in a NEM-

sensitive manner (Fig. 3.1, Fig. 3.2Bi, 3.2Bii) were robust and Mb terminals were depolarized far 

above their physiologically relevant maximal membrane potential (~-20 mV, Saito and 

Kujiraoka, 1982; Protti et al., 2000). Importantly, we were able to trigger changes in dim (~ 107 

photons/cm2/s) light-evoked Ca2+ spike responses of Mb terminals by brighter (≥2.4x108 

photons/cm2/s) light: the sensitizing bright light decreased the latency of the first light-evoked 

Ca2+ spike in a NEM-sensitive manner (Fig. 3.10), consistent with a light-evoked decrease in ICa 

activation threshold through S-nitrosylation reactions.  

Precise measurement of increases in membrane capacitance associated with our standard 

voltage ramp protocol was problematic because of the long tail currents (Gillis, 2000), but based 

on our best measurements (n=3) it was around ~350 fF. Direct measurement of light-evoked 



102 

membrane capacitance increase of intact Mbs is also complicated because of their complex 

morphology (Mennerick et al., 1997) and the slowly decaying light-evoked synaptic 

conductances (Saito and Kujiraoka, 1982). However, when membrane potential waveforms 

triggered by 500 ms bright red light flash (similar to the ones used to “sensitize” the Mb 

terminals, Fig. 3.8Bi, 3.8Bii, 3.8D) recorded from the axon terminal of intact Mbs were used as 

command potentials of voltage-clamp protocols in separate experiments, they triggered 

membrane capacitance increase of 275 ± 48 fF (n=10) in axotomized Mb terminals (Lipin and 

Vigh, 2013). Therefore, the magnitude of depolarizing ramp evoked glutamate release appears to 

be comparable to that triggered by bright light stimuli from Mbs. 

 

Consequences of NO-Mediated Weighted Potentiation for Glutamate Release From Mb 

Terminals 

Numerous neurotransmitters inhibit presynaptic ICa via G-protein coupled receptors by 

inducing changes in the voltage-dependence of ICa, resulting in channel activation at more 

depolarized potentials (Bean, 1989). Shifting the activation threshold of ICa to more depolarized 

potentials is an extremely potent way of reducing transmitter release (Catterall and Few, 2008), 

because of the power law of synaptic transmission (Katz and Miledi, 1970). Less is known about 

positive modulation of ICa by transmitters; to this end only the neurosteroid pregnenolone sulfate 

was shown to potentiate presynaptic release at the Calyx of Held by a mechanism which 

involved shifting ICa activation to the left (Hige et al., 2006). Despite of the extensive literature 

published on activity-dependent short- and long term synaptic plasticity in the CNS, to date only 

one reference described activity dependent positive modulation of presynaptic ICa activation: at 

the Calyx of Held synapse, tetanic stimulation shifted the half-activation voltage (V1/2) of the 
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presynaptic ICa by -4.1 mV (Cuttle et al., 1998), analogous to our results. Although the 

underlying mechanism was not identified beyond establishing that it was independent of G-

proteins, Cuttle et al. (1998) showed that a small shift in ICa activation to more negative 

potentials can significantly increase transmitter output from the presynaptic Calyx, which is 

entirely consistent with our data (Fig. 3.6A, 3.6C, 3.6F). 

Although Mb terminals release glutamate at ribbon synapses, which are specialized to 

release transmitters continuously over long period and capable to code changes in illumination 

rather quickly (Sterling and Matthews, 2005; Thoreson, 2007), they are subject to short term 

synaptic plasticity known as paired pulse depression of glutamate release (von Gersdorff and 

Matthews, 1997). Activity-dependent long term potentiation of the BC →GC synapse has also 

been shown in the developing zebrafish retina (Wei et al., 2012), although this phenomenon 

disappears with maturation. Activity-dependent short term potentiation of release seen at central 

synapses (Habets and Borst, 2006) from Mb or other BCs has not been reported so far. 

Importantly, the effect of the left-shifted ICa activation on the input-output ratio of Mbs is very 

unique: this weighted potentiation not only enhanced ICa triggered by weak inputs, but the 

enhancement gradually decreased as the input strength increased, limiting the potentiation to the 

physiologically relevant membrane potentiation range. The power law of synaptic transmission 

(Katz and Miledi, 1970) and the particularly high level of Ca2+ cooperativity in mediating release 

from Mb terminals (Heidelberger et al., 1994) further magnifies this phenomenon at the level of 

glutamate output from Mb terminals: NO-mediated increase of ICa resulted in increased 

exocytosis at -30 mV; however, the small (yet significant) increase in ICa amplitude at -20 mV 

did not cause consequent ΔCm increase (Fig. 3.6D, 3.6F).  
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Intrinsic adaptation to luminance is mediated through synaptic depression of glutamate 

release from rod BCs (Oesch and Diamond, 2011), resulted by Ca2+ channel inactivation and 

vesicle depletion (Jarsky et al., 2011). It is unclear if the rod driven circuitry in the mammalian 

retina is subject to NO-mediated or other types of synaptic potentiation. Nonetheless, 

mammalian ON cone BCs show NO-dependent, cGMP-mediated weighted sensitization: upon 

NO donor exposure, their response to weak stimuli increased whereas responses to strong inputs 

remained unaltered (Snellman and Nawy, 2004). We discovered a novel form of activity 

dependent, NO-mediated synaptic plasticity expressed at the axon terminal of the rod-dominated 

Mb-type bipolar cell: it is triggered by large depolarization and through synaptic communication 

it causes positive modulation of voltage-gated Ca2+ channels, particularly in response to 

consecutive weak inputs. Because Mbs in the fish retina make direct synaptic contacts with GCs 

(Witkovsky and Dowling, 1969; Marc and Liu, 2000; Palmer, 2010), we propose that this novel 

mechanism enhances the representation of weak rod signals at Mb→GC synapses under bright 

scotopic and mesopic light conditions. The selective potentiation of weak signals may counter 

use-dependent depression of glutamate release from BCs during light adaptation and prevent the 

loss of critical visual information carried by dim scotopic signals.  
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4. Conclusion 

 

 

 

The visual world is a dynamic environment full of variation as drastic as the difference 

between night and day or as subtle as the outline of individual blades of grass in a field. As the 

main sensory organ designed to process and translate visual information into neuronal signals, 

our retina must have the ability to adjust to this variation and do so on a spatial and temporal 

scale appropriate for the visual input. However, because the range of possible inputs significantly 

exceeds the output capabilities, the retina must adjust how it handles and processes certain 

signals. For example, as morning light intensity increases, the retina accommodates for the more 

intense stimuli by decreasing overall sensitivity, ultimately avoiding saturation (“adaptation”; 

Smirnakis et al., 1997; Kim and Rieke, 2001). Although beneficial in preventing saturation, this 

modulation of retinal circuitry introduces a new problem: if the dynamic range of vision is 

shifted to accommodate brighter, more intense light, then the retina may lose the ability to detect 

visual information carried by dim, weak light. Thus, it stands to reason that certain mechanisms 

exist within the retina with purpose of combatting the potential information loss during 

adaptation.  

Intuitively, if a neuromodulator is responsible for modulating the retinal circuitry in 

opposition to adaptation, its release must be highly dependent upon light stimulation. Along 

these lines, in the retina, dopamine and nitric oxide (NO) are released in a light-dependent 

manner (Witkovsky, 2004; Sekaran et al., 2005). However, it is abundantly clear that dopamine 

functions to promote classical adaptation and desensitization of the retina (Witkovsky, 2004), 

leading us to consider the role of NO in combatting information loss during adaptation. 

Importantly, while NO signaling in the retina has been studied for decades (Vielma et al., 2012), 
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only the effects mediated by cGMP have been explored in great detail. Whether endogenous NO 

results in S-nitrosylation of retinal proteins is entirely unknown. Therefore, the purpose of this 

study was twofold: 1) provide an initial, comprehensive description of retinal S-nitrosylation, via 

endogenous NO, and determine if it exhibits a light-dependent nature; and 2) explore whether S-

nitrosylation functionally alters visual information processing in the retina. In this concluding 

chapter, we broaden our discussion of the key findings from each study and attempt to place 

them in the context of neurodegenerative diseases affecting the CNS and retina. 

 

4.1 S-nitrosylation Occurs Under Physiological Conditions in the Retina 

By using a physiologically relevant stimulus (light) to evoke endogenous NO release, we 

were able to show strong evidence for the presence of S-nitrosylation in the healthy adult retina 

(Chapter 2). Using quantitative mass spectrometry, we provided the first descriptive account of 

retinal proteins that are subjected to light-evoked S-nitrosylation in the mammalian retina. 

Several proteins that we identified to be nitrosylated via light-evoked NO were also identified in 

other studies using NO donors (compare Table 2 from Chapter 2 to Stamler et al., 2001; Chen et 

al., 2010; Seth and Stamler, 2011). This agreement in data sets suggests that certain proteins 

theoretically determined to be nitrosylated (using exogenous donors) are, in fact, S-nitrosylated 

by endogenous NO under physiological conditions. Again, it must be reiterated that, although 

implied, protein nitrosylation does not necessarily result in a change in function. Nonetheless, for 

retinal neurobiologists, this descriptive account may open the door for new, functional studies 

that explore the role of S-nitrosylation on signal processing in the retina. 

A foundational observation of this study was that there is significantly more S-

nitrosylation in light-adapted retinas than in dark-adapted retinas. This observation was 
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supported by two strong lines of evidence: 1) in both mouse and goldfish retinas, SNI levels 

were dramatically increased in the light-adapted state when compared to the dark-adapted 

retinas; 2) the number of identified S-nitrosylated proteins was over 2 times greater in light-

adapted retinas than in dark-adapted retinas (light: 351 proteins vs. dark: 154 proteins, via MS). 

This drastic difference in SNI between light-adapted states was completely in line with the fact 

that NO synthesis and release is highly coordinated with light stimulation (Donati et al., 1995; 

Neal et al., 1998; Sekaran et al., 2005; Eldred and Blute, 2005; Walter et al., 2014).  

While we focused the majority of our attention on characterizing the light-evoked 

increases of S-nitrosylation as a function of light stimulation, it is important to note these 

increases were relative to the amount of S-nitrosylation that was present in the dark-adapted 

retina. The dark-adapted retina is not entirely void of activity and, in fact, NO production does 

not completely cease in the absence of light stimulation. Instead, NO synthesis remains at a 

constant, albeit minimal, rate that maintains a low, tonic level of NO in the retina (Sekaran et al., 

2005; Walter et al., 2014). This sustained activity in the dark is most likely a result of 

glutamatergic input from OFF BCs (which depolarize and release glutamate in the absence of 

light) onto nNOS+ ACs (Pang et al., 2010). Even at minimal rates of NO production in the dark, 

we observed low levels of S-nitrosocysteine immunofluorescence in the dark-adapted retina. In 

the classical sense, dark-adaptation is viewed as a process that allows for recovery of retinal 

sensitivity in the absence of light stimulation (Hecht et al., 1937). Our results indicate that S-

nitrosylation of select proteins in the dark-adapted retina may contribute to the process of dark 

adaptation and may influence overall retinal sensitivity. However, whether S-nitrosylation in the 

dark-adapted retina serves a significant cellular function is unknown and should be the focus of 

future studies.  



108 

Regulation of S-nitrosylation by Denitrosylation 

As a reversible post-translational modification, the extent and duration that a protein is S-

nitrosylated depends upon the interplay between nitrosylation and denitrosylation. Once a protein 

is nitrosylated, the nitrosothiol bond may be cleaved via enzymatic and/or non-enzymatic means. 

Very little is known about the physiological mechanisms of denitrosylation, but the effectiveness 

of denitrosylation appears to be determined by the accessibility of the nitrosothiol (Paige et al., 

2008). Non-enzymatic means for the decomposition of nitrosothiols include exposure to UV 

light (Forrester et al., 2007), reducing agents (Jaffrey et al., 2001; Paige et al., 2008), or 

transition metal ions such as copper (Dicks and Williams, 1996). Additionally, two enzyme 

systems have emerged as the key players in enzymatic denitrosylation: the S-nitrosoglutathione 

reductase (GSNOR) system (which includes GSNOR and glutathione, GSH) and the thioredoxin 

(TRX) system (comprised of thioredoxin, Trx and thioredoxin reductase, TrxR) (Benhar et al., 

2009). There is a noticeable lack of information regarding enzymatic denitrosylation in the 

retina, and our study (Chapter 2) focused on the formation of S-nitrosylation but not its removal. 

However, preliminary evidence indicates that in the mammalian retina, enzymatic 

denitrosylation is regulated by light stimulation (i.e. when the need for denitrosylation is at its 

peak).  

Retinal homogenates from light- and dark-adapted mice (n=2 samples from 2 animals, 

each condition), containing equal amounts of protein, were analyzed using a global proteomics 

approach as described in the Methods section of Chapter 2, with the only difference being that 

we did not enrich the samples for S-nitrosylated proteins using the biotin-switch assay. 

Interestingly, we observed detectable levels of thioredoxin-1 (Trx1) protein only in the light-

adapted mouse retina (peptide score for Trx1: light-adapted=5 vs. dark-adapted=0), providing the 
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initial observation of the light-dependent nature 

of denitrosylase expression. Furthermore, when 

dark-adapted eyecups were incubated in 200 nM 

auranofin (Tocris Biosciences) for 3 h to inhibit 

TrxR and prevent denitrosylation (Choi et al., 

2011), we did not observe increased SNI above 

dark-adapted, baseline conditions (Fig. 4.1, 

compare with Fig. 2.2 from Chapter 2). These 

data indicate that the TRX system is not 

regulating S-nitrosylation in the absence of 

light. Interestingly, expression of Trx has been shown to be upregulated in response to NO 

(Andoh et al., 2003; Hromatka et al., 2005) and activity of the TRX system has been correlated 

with NMDA receptor activity (Papadia et al., 2008) that triggers NOS-dependent S-nitrosylation 

(Fang et al., 2000). Considering the inducible nature of the TRX system, these preliminary data 

suggest that mechanisms of denitrosylation, in the mammalian retina, are activated following 

light stimulation when the levels of S-nitrosylated proteins are elevated. Further studies 

exploring the role and mechanism of denitrosylation in the vertebrate retina could add 

significantly to our understanding of how S-nitrosylation is modulating visual information 

processing.  

 

4.2 S-nitrosylation Mediates Weighted Potentiation of Mb Output in the Goldfish Retina 

In Chapter 3, we described a novel NO-dependent modulatory mechanism that alters 

glutamate release from the Mb terminal in the goldfish retina. We show that activity-dependent 

 
 

Figure 4.1. Inhibition of denitrosylation does not alter 

dark-adapted levels of SNI. 40X vertical cryostat section 

of a dark-adapted mouse retina animal treated with 200 

nM auranofin for 3 hrs. A: PKCα + (green) RBCs. B: S-

nitrosocysteine (magenta), B. C: Merged confocal image 

showing minimal S-nitrosocysteine 

immunofluorescence, similar to the control dark-adapted 

mouse retina (Fig. 2.2, bottom panel). Scale bar=20 µm. 
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retrograde transmission of NO enhances the output of Mbs in a selective manner so that only 

weak or dim responses are potentiated. However, the lingering question remains: what is the 

target of S-nitrosylation in the Mb terminal that results in the observed effects of NO? Here we 

present preliminary evidence suggesting a putative target of S-nitrosylation in the Mb terminal 

and discuss the potential implications. 

 

GAPDH: Potential Target of S-nitrosylation in the Mb Terminal 

Although nearly a thousand proteins with potential S-nitrosylation sites have been 

identified (Seth and Stamler, 2011), one particular protein that is known to alter cellular function 

upon S-nitrosylation is the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH; Jaffery et al., 2001; Hara and Snyder, 2006). In the CNS, GAPDH is nitrosylated via 

NO from NMDA-dependent activation of nNOS (Hara and Snyder, 2006). Interestingly, S-

nitrosylated GAPDH (SNO-GAPDH) can engage in transnitrosylation, a process characterized 

by direct thiol to thiol transfer of the NO molecule to other proteins (Kornberg et al., 2010), and 

can alter protein function in the cytosol (Nakamura et al., 2013). Based on these reports and the 

wide array of functions that continue to be attributed to S-nitrosylation of GAPDH, we were 

curious to determine if SNO-GAPDH was playing a role in modulating Mb terminal ICa 

dynamics. 

Using similar methods as described in Chapter 3, we recorded ramp-evoked ICa I-Vs from 

axotomized Mb terminals in goldfish retinal slice preparation. To address whether S-

nitrosylation of GAPDH was involved in mediating the leftward shift in the activation threshold 

of ICa (See Fig. 3.2), we included CGP3466B (10 nM, Tocris Bioscience), a potent inhibitor of 

GAPDH nitrosylation (Xu et al., 2013), in the recording solution. CGP3466B prevented the 
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leftward shift of ICa during consecutive voltage 

ramps in axotomized Mb terminals in retinal slice 

(Fig. 4.2). On average, V(5%) was -37.5 ± 1.44 mV 

for control and -38.0± 2.04 mV for the second 

ramp I-V, V(50%) was -21.3 ± 1.38 mV for control 

and -21.4 ± 0.83 mV for the second ramp I-V, and 

V(Max) was -6.0 ± 2.68 mV for control and -4.8 ± 

2.32 mV for the second ramp I-V. Statistical 

analysis determined no significant difference in 

V(5%), V(50%), and V(Max) between the control and 

second ramp evoked ICa I-Vs ( p=0.3, p=0.3, and p=0.4, respectively, paired Student’s t test, 

n=4). 

Recently, GAPDH has been included in a classification of proteins called nitrosylases 

that appear to facilitate the S-nitrosylation of other proteins, primarily through transnitrosylation 

(Anand and Stamler, 2012). Nitrosylases play an important role in modulating protein and 

cellular function by transporting and delivering NO in a directed manner to specific proteins. In 

this way, it appears that there is some sort of regulation over the S-nitrosylation of proteins. With 

this in mind, our preliminary data may indicate that GAPDH is playing a role as a nitrosylase 

within the Mb terminal and directing S-nitrosylation of a specific protein (or proteins) that in 

turn, modulates the function of the L-type calcium channel. If GAPDH is acting as a nitrosylase, 

this may account for why the observed results, on ICa, happen on a time scale of minutes. The 

exact route by which GAPDH is modulating ICa is still unknown, however, it may be 

transnitrosylating the L-type calcium channel itself. Importantly, evidence has implicated direct 

Figure 4.2. S-nitrosylation of GAPDH appears to be 

required for modulation of ICa. Consecutive ICa traces 

recorded from an axotomized Mb terminal in slice 

preparation in response to voltage ramps 4 min apart 

in the presence of intracellular CGP3466B (10 nM). 

CGP prevents GAPDH S-nitrosylation and 

subsequently prevented the leftward shift of the 

second ramp I-V (red) as compared to the control 

ramp I-V (black). 
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S-nitrosylation of L-type calcium channels, independent of any influence by cGMP, kinases, 

and/or phosphatases, resulting in modulation if ICa similar to our results (Campbell et al., 1996; 

Jian et al., 2007). However, these conclusions of “direct nitrosylation” are based on process of 

elimination of other contributing factors and, to date, no study has definitively shown direct S-

nitrosylation of L-type calcium channels along with associated functional changes. To that point, 

in our MS data, we did not identify any calcium channel subunits among the S-nitrosylated 

proteins from light-adapted retinas.  

 

4.3 S-nitrosylation in Neurodegenerative Diseases 

 Under physiological conditions, clear and precise detection of endogenously S-

nitrosylated proteins has been relatively difficult, until recently, due to their low abundance and 

the sensitivity of the detection methods (Jaffrey et al., 2001; Chapter 2). However, S-nitrosylated 

proteins are abundant in several neurodegenerative disorders and therefore were easily detectable 

(Nakamura et al., 2013), which inevitably led to S-nitrosylation being primarily associated with 

pathological conditions within the CNS. Accumulating evidence in recent years suggests that 

aberrant S-nitrosylation is playing a role in the progression of neurodegenerative diseases, such 

as Parkinson’s and Alzheimer’s (Forrester et al., 2006; Foster et al., 2009; Anand and Stamler, 

2012). Furthermore, aberrant S-nitrosylation may influence the progression of both the sporadic 

and genetic forms of certain neurodegenerative disorders (Nakamura et al., 2013). While we 

have presented strong evidence for a physiological role for S-nitrosylation in “healthy” nervous 

tissue, this final concluding section will focus on the contribution of S-nitrosylation to the 

pathogenesis of neurodegenerative diseases in the CNS and in the retina. 
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 Whether NO exhibits neuroprotective or neurodegenerative effects is relatively 

controversial, although it appears to be entirely dependent on the immediate NO concentration. 

For instance, at low or moderate levels NO is neuroprotective, but it becomes toxic at higher 

concentrations (Nakamura et al., 2013). For example, NO can mediate neuroprotective effects 

via S-nitrosylation of the NR2 subunit of NMDA receptors (NMDARs, Choi et al., 2000). Here, 

S-nitrosylation inhibits current flow through NMDARs, which can protect the cell from 

excessive activity and the system from further NMDA-dependent NO production (Choi et al., 

2000). However, the concentration of NO that facilitates neuroprotective S-nitrosylation is still 

unclear. Importantly in our MS data, we did not detect the NR2 NMDAR subunit (or any other 

NMDAR subunit, for that matter) in our identified S-nitrosylated proteins (Table 2.2; Appendix 

II), indicating that physiological levels of NO are not sufficient to induce neuroprotective S-

nitrosylation.  

Neurodegenerative effects, on the other hand, are associated with persistent activation of 

NOS, which leads to aberrantly high levels of NO and S-nitrosylation of proteins involved in 

neuronal cell death (Forrester et al., 2006; Anand and Stamler, 2012). For example, excessive 

NO production and the subsequent S-nitrosylation of GAPDH, Parkin, peroxiredoxin 2 and 

protein disulfide isomerase have all been implicated in the etiology of Parkinson’s disease 

(Forrester et al., 2006; Foster et al., 2009; Nakamura et al., 2013). Furthermore, disruption of the 

denitrosylation system may accompany neurodegenerative diseases, which in combination with 

excessive NO production, would lead to extensive, unregulated protein S-nitrosylation (Benhar 

et al., 2009; Anand and Stamler et al., 2012). Thus, at low or even moderate levels, NO may be 

neuroprotective, but when the concentration of NO surpasses an unknown threshold, unregulated 

S-nitrosylation can induce neuronal cell death and contribute to neurodegenerative diseases. 
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The Role of NO in Retinal Degeneration 

In the retina, aberrantly high levels of NO are associated with devastating, sight-

threatening diseases, such as glaucoma and diabetic retinopathy (Toda and Toda, 2007; Cavet et 

al., 2014), as well as general conditions of retinal excitotoxicity (Vorwerk et al., 1997). 

Glaucoma, diabetic retinopathy and retinal excitotoxicity are associated with GC death and optic 

nerve damage which ultimately leads to the loss of vision (Kern and Barber, 2008; Cavet et al., 

2014). While the mechanism is not yet known, high levels of NO appear to correlate directly 

with GC death: in mammalian models of glaucoma, inhibition of iNOS, which is upregulated 

under pathological conditions and contributes to the elevated levels of NO (Neufeld, 1999), and 

nNOS significantly reduced GC death (Neufeld et al., 1999; Chen et al., 2013). Furthermore, 

intravitreal injection of an NO donor induced retinal neurotoxicity and GC death in rats 

(Takahata et al., 2003). The connection between elevated levels of NO and GC death is 

unknown, recently however, S-nitrosylation has been shown to mediate GC death following 

NMDA induced excitotoxity (Manabe et al., 2005). 

 In the diseased retina, aberrant levels of NO could contribute to GC death by 

nitrosylating a number of proteins that ultimately lead to neurodegeneration. In addition to 

functioning as a nitrosylase under normal, physiological conditions, GAPDH can also participate 

in neuronal degeneration when aberrantly nitrosylated, as mentioned above. GAPDH, upon S-

nitrosylation, binds with an E3 ubiquitin ligase siah-1 and the two proteins translocate into the 

nucleus and initiate apoptosis (Hara and Snyder, 2006; Xu et al., 2013). While in the nucleus, 

GAPDH can act as a transnitrosylase and elicit nitrosylation of nuclear proteins such as 

deacetylating enzyme sirtuin-1 (SIRT1), histone deacetylase-2 (HDAC2) and DNA-activated 

protein kinase (DNA-PK) (Kornberg et al., 2010), which may lead to neurodegeneration 
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(Nakamura et al., 2013). In the retina, nuclear translocation of GAPDH has been observed as a 

result of streptozotocin-induced diabetic retinopathy (Kanwar and Kowluru, 2009) and 

furthermore, hyperglycemic conditions have induced retinal cell death due to translocation of the 

GAPDH/siah-1 complex to the nucleus of mouse and human Müller (glial) cells (Yego and 

Mohr, 2010). However, these studies did not explicitly show S-nitrosylation of GAPDH, the 

required step prior to GAPDH interacting with siah-1 and nuclear translocation (Hara and 

Snyder, 2006). Thus, a key link between elevated levels of NO and retinal cell degeneration may 

be S-nitrosylation of GAPDH, or similar proteins, which ultimately results in apoptosis of 

ganglion cells. An important area for future research is determining if GC death associated with 

elevated levels of NO in retinal diseases, like glaucoma, is a result of S-nitrosylated GAPDH. 

 

4.4 Final Remarks 

In this study, we have provided the first, comprehensive account of S-nitrosylation under 

physiological conditions in the retina and described a mechanism by which it alters visual 

information processing. We propose that these findings will not only lead to a greater 

understanding as to the complexity of retinal circuit modulation but will also provide the 

framework for future studies to explore the role of S-nitrosylation in retinal degenerative 

diseases. Finally, exploring the therapeutic potential of agents that affect S-nitrosylation could 

lead to innovative treatments for retinal diseases like glaucoma and diabetic retinopathy as well 

as other neurodegenerative diseases associated with aberrant S-nitrosylation. 
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Appendix II: 

Table 2.2. List of S-nitrosylated proteins identified only under light-adapted conditions. 

 
Protein Name Gene 

Accession 

Number 

Peptide 

Score 

Apoptosis/Cell Death    

 Bcl-2-like protein 13  Bcl2l13 B2L13_MOUSE 2 

 Isoform 2 of Band 4.1-like protein 3  Epb41l3 E41L3_MOUSE 10 

 Isoform 2 of Peptidyl-prolyl cis-trans isomerase FKBP8 Fkbp8 FKBP8_MOUSE 2 

 Isoform 8 of Band 4.1-like protein 3  Epb41l3 E41L3_MOUSE 2 

 MAP kinase-activating death domain protein Madd A2AGQ6_MOUSE 3 

 Mitochondrial fission 1 protein  Fis1 FIS1_MOUSE 2 

 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 Ndufa13 NDUAD_MOUSE 3 

Calcium Ion Regulation    

 Calbindin  Calb1 CALB1_MOUSE 4 

 Isoform 3 of Disks large homolog 4  Dlg4 DLG4_MOUSE 6 

 Secretagogin  Scgn SEGN_MOUSE 7 

Cardiovascular    

 Alpha actinin 1a  Actn1 A1BN54_MOUSE 2 

 Carbonic anhydrase 14 Ca14 CAH14_MOUSE 2 

Cell Adhesion    

 Cadherin-2  Cdh2 CADH2_MOUSE 2 

 Cell adhesion molecule 1 Cadm1 CADM1_MOUSE 8 

 Cell adhesion molecule 2 (Fragment)  Cadm2 CADM2_MOUSE 10 

 Cell adhesion molecule 3  Cadm3 CADM3_MOUSE 2 

 Contactin-1  Cntn1 CNTN1_MOUSE 7 

 Isoform 2 of Neuronal cell adhesion molecule  Nrcam NRCAM_MOUSE 4 
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 Limbic system-associated membrane protein  Lsamp LSAMP_MOUSE 4 

 Neural cell adhesion molecule 1  Ncam1 E9QB01_MOUSE 2 

 Neuroplastin  Nptn NPTN_MOUSE 3 

 Peripherin-2  Prph2 PRPH2_MOUSE 9 

 Rod outer segment membrane protein 1  Rom1 ROM1_MOUSE 6 

 Signal-regulatory protein alpha  Sirpa Q6P6I8_MOUSE 3 

 Transforming protein RhoA  Rhoa RHOA_MOUSE 3 

Cell Cycle/Cell Division    

 Casein kinase II subunit beta  Csnk2b CSK2B_MOUSE 2 

 Cell cycle exit and neuronal differentiation protein 1  Cend1 CEND_MOUSE 3 

 Cell division control protein 42 homolog  Cdc42 CDC42_MOUSE 2 

 Cyclin-dependent kinase 5 OS=Mus musculus   Cdk5 CDK5_MOUSE 2 

 Histone H2AX  H2afx  H2AX_MOUSE 2 

 Isoform 2 of Septin-11   Sep11 SEP11_MOUSE  2 

 Isoform Gamma-2 of Serine/threonine-protein phosphatase PP1-

gamma catalytic subunit  

Ppp1cc PP1G_MOUSE 3 

 Nuclear migration protein nudC  Nudc NUDC_MOUSE 2 

 Platelet-activating factor acetylhydrolase IB subunit alpha  Pafah1b1 LIS1_MOUSE 4 

 Putative adenosylhomocysteinase 2  Ahcyl1 SAHH2_MOUSE 2 

 Serine/threonine-protein phosphatase Ppp3cb E0CZ78_MOUSE  2 

 Serine-protein kinase ATM  Atm ATM_MOUSE 2 

Cell Growth/Proliferation    

 Catenin beta-1  Ctnnb1 CTNB1_MOUSE 4 

 Isoform C1 of Heterogeneous nuclear ribonucleoproteins C1/C2 Hnrnpc HNRPC_MOUSE  2 

 Membrane-associated progesterone receptor component 1  Pgrmc1 PGRC1_MOUSE 2 

 Membrane-associated progesterone receptor component 2  Pgrmc2 PGRC2_MOUSE 2 

 Myotrophin  Mtpn MTPN_MOUSE 2 

 Neuromodulin  Gap43 NEUM_MOUSE 2 

 Neuronal growth regulator 1  Negr1 NEGR1_MOUSE  3 
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 Neuronal membrane glycoprotein M6-a  Gpm6a GPM6A_MOUSE 5 

 Prominin 1, isoform CRA_g  Prom1 PROM1_MOUSE 2 

Chaperone    

 10 kDa heat shock protein, mitochondrial  Hspe1 CH10_MOUSE 3 

 26S proteasome non-ATPase regulatory subunit 5  Psmd5 PSMD5_MOUSE 2 

 Coactosin-like protein Cotl1 COTL1_MOUSE 2 

 DnaJ homolog subfamily A member 2  Dnaja2 DNJA2_MOUSE 2 

 DnaJ homolog subfamily C member 5  Dnajc5 DNJC5_MOUSE 2 

 Isoform 3 of Putative tyrosine-protein phosphatase auxilin  Dnajc6 AUXI_MOUSE 4 

 Large proline-rich protein BAG6  Bag6 BAG6_MOUSE 3 

 Peptidyl-prolyl cis-trans isomerase B  Ppib PPIB_MOUSE 3 

 Phosducin-like protein  Pdcl  PHLP_MOUSE 2 

Cytoskeleton    

 Actin-related protein 2/3 complex subunit 3  Arpc3 ARPC3_MOUSE 3 

 Alpha-adducin  Add1 ADDA_MOUSE 8 

 Alpha-centractin  Actr1a ACTZ_MOUSE 2 

 Destrin  Dstn DEST_MOUSE 4 

 Gephyrin  Gphn GEPH_MOUSE 2 

 Glycoprotein m6b, isoform CRA_g  Gpm6b GPM6B_MOUSE 3 

 IQ motif and SEC7 domain-containing protein 3  Iqsec3 IQEC3_MOUSE 2 

 Isoform 2 of Rootletin  Crocc CROCC_MOUSE 2 

 Isoform 4 of Nesprin-1  Syne1 SYNE1_MOUSE 2 

 Myristoylated alanine-rich C-kinase substrate  Marcks MARCS_MOUSE 3 

 Protein 4.1  Epb4.1 A2A841_MOUSE 12 

 Protein kinase C and casein kinase substrate in neurons protein 2  Pacsin2 PACN2_MOUSE 2 

DNA Metabolism/Regulation    

 Prohibitin  Phb PHB_MOUSE 8 

 Prohibitin-2  Phb2 PHB2_MOUSE 7 
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Endocytosis 

 Adaptin ear-binding coat-associated protein 1  Necap1 NECP1_MOUSE 2 

 Dynamin-3  Dnm3 DYN3_MOUSE 5 

 Dynamin-like 120 kDa protein, mitochondrial  Opa1 OPA1_MOUSE  2 

 Isoform 3 of SH3-containing GRB2-like protein 3-interacting protein 1 Sgip1 SGIP1_MOUSE 3 

 Secretory carrier-associated membrane protein 1  Scamp1 SCAM1_MOUSE 2 

 Synaptophysin  Syp SYPH_MOUSE 2 

Energy Metabolism    

 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 2 variant 4  Pfkfb2 B2Z892_MOUSE 2 

 6-phosphofructokinase  Pfkp Q8C605_MOUSE 8 

 6-phosphofructokinase, muscle type  Pfkm K6PF_MOUSE 2 

 Adenine phosphoribosyltransferase  Aprt APT_MOUSE 2 

 ADP/ATP translocase 2  Slc25a5 ADT2_MOUSE 3 

 ATP synthase F(0) complex subunit B1, mitochondrial  Atp5f1 AT5F1_MOUSE 6 

 ATP synthase subunit epsilon, mitochondrial  Atp5e ATP5E_MOUSE 2 

 ATP synthase subunit f, mitochondrial  Atp5j2 ATPK_MOUSE  2 

 ATP synthase subunit g, mitochondrial  Atp5l ATP5L_MOUSE 2 

 CDGSH iron-sulfur domain-containing protein 1  Cisd1 CISD1_MOUSE 3 

 Citrate synthase, mitochondrial  Cs CISY_MOUSE 8 

 Creatine kinase M-type  Ckm KCRM_MOUSE 2 

 Cytochrome b-c1 complex subunit 7  Uqcrb Q9CQB4_MOUSE 4 

 Cytochrome b-c1 complex subunit 9  Uqcr10 QCR9_MOUSE 2 

 Cytochrome b-c1 complex subunit Rieske, mitochondrial  Uqcrfs1 UCRI_MOUSE 7 

 Cytochrome c oxidase subunit 4 isoform 1, mitochondrial  Cox4i1 COX41_MOUSE 4 

 Cytochrome c oxidase subunit 5A, mitochondrial  Cox5a COX5A_MOUSE 7 

 Cytochrome c oxidase subunit 7A2, mitochondrial  Cox7a2 CX7A2_MOUSE 2 

 Dihydrolipoyllysine-residue acetyltransferase component of pyruvate 

dehydrogenase complex, mitochondrial  

Dlat ODP2_MOUSE 6 

 Electron transfer flavoprotein subunit alpha, mitochondrial  Etfa ETFA_MOUSE 4 
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 Electron transfer flavoprotein subunit beta  Etfb ETFB_MOUSE 3 

 GTP:AMP phosphotransferase AK3, mitochondrial  Ak3 KAD3_MOUSE 2 

 Hexokinase-2  Hk2 HXK2_MOUSE 11 

 Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial  Idh3a IDH3A_MOUSE 8 

 Isocitrate dehydrogenase [NAD] subunit gamma 1, mitochondrial Idh3g IDHG1_MOUSE 3 

 Isocitrate dehydrogenase [NADP], mitochondrial Idh2 IDHP_MOUSE 4 

 Isocitrate dehydrogenase 3 (NAD+) beta Idh3b Q91VA7_MOUSE 6 

 Isoform 2 of Cytochrome c1, heme protein, mitochondrial  Cyc1 CY1_MOUSE 6 

 Isoform Short of Adenosine kinase  Adk ADK_MOUSE  2 

 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, 

mitochondrial  

Ndufa10 NDUAA_MOUSE 5 

 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12  Ndufa12 NDUAC_MOUSE 2 

 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4  Ndufa4 NDUA4_MOUSE 4 

 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6  Ndufa6 NDUA6_MOUSE 2 

 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8  Ndufa8 NDUA8_MOUSE 4 

 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, 

mitochondrial  

Ndufa9 NDUA9_MOUSE 3 

 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 11, 

mitochondrial  

Ndufb11 NDUBB_MOUSE 3 

 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3 Ndufb3 NDUB3_MOUSE 2 

 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4  Ndufb4 NDUB4_MOUSE 3 

 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, 

mitochondrial  

Ndufb8 NDUB8_MOUSE 2 

 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9  Ndufb9 NDUB9_MOUSE 2 

 NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial  Ndufv1 NDUV1_MOUSE  5 

 NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial  Ndufv2 NDUV2_MOUSE 2 

 NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial  Ndufs2 NDUS2_MOUSE 2 

 NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial Ndufs3 NDUS3_MOUSE 6 

 NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial  Ndufs7 NDUS7_MOUSE 2 

 NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial  Ndufs8 NDUS8_MOUSE 5 
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 NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial  Ndufs1 NDUS1_MOUSE 14 

 Phosphoglucomutase-2  Pgm2 PGM2_MOUSE 2 

 Protein Ogdhl  Ogdhl E9Q7L0_MOUSE 4 

 Pyruvate carboxylase  Pcx PYC_MOUSE 2 

 Pyruvate dehydrogenase E1 component subunit alpha, somatic form, 

mitochondrial 

Pdha1 ODPA_MOUSE 5 

 Pyruvate dehydrogenase E1 component subunit beta, mitochondrial  Pdhb ODPB_MOUSE 7 

 Stomatin-like protein 2, mitochondrial  Stoml2 STML2_MOUSE 5 

 Succinate dehydrogenase [ubiquinone] flavoprotein subunit, 

mitochondrial  

Sdha DHSA_MOUSE 8 

 Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, 

mitochondrial 

Sdhb DHSB_MOUSE 4 

 Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial  Suclg1 SUCA_MOUSE 2 

 Succinyl-CoA ligase [ADP-forming] subunit beta, mitochondrial  Sucla2 SUCB1_MOUSE 4 

Glycosylation    

 Alpha-1,3/1,6-mannosyltransferase ALG2  Alg2 ALG2_MOUSE 3 

 UDP-glucose:glycoprotein glucosyltransferase 1  Uggt1 UGGG1_MOUSE 5 

Immune Response    

 Neurotrimin Ntm NTRI_MOUSE 3 

 Parathymosin Ptms PTMS_MOUSE 2 

 Toll-interacting protein Tollip TOLIP_MOUSE 2 

Ion Channel/Transporter    

 Calcium-binding mitochondrial carrier protein Aralar1 Slc25a12 CMC1_MOUSE 15 

 cGMP-gated cation channel alpha-1  Cnga1 CNGA1_MOUSE 7 

 Excitatory amino acid transporter 1 Slc1a3 EAA1_MOUSE 5 

 Excitatory amino acid transporter 2  Slc1a2 EAA2_MOUSE 5 

 Isoform 2 of Protein tweety homolog 1  Ttyh1 TTYH1_MOUSE  2 

 Isoform 2 of Vesicular inhibitory amino acid transporter  Slc32a1 VIAAT_MOUSE 7 

 Mitochondrial 2-oxoglutarate/malate carrier protein  Slc25a11 M2OM_MOUSE 2 
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 Mitochondrial carrier homolog 2  Mtch2 MTCH2_MOUSE 2 

 Mitochondrial glutamate carrier 1  Slc25a22 GHC1_MOUSE 4 

 Monocarboxylate transporter 1 Slc16a1 MOT1_MOUSE 3 

 Plasma membrane calcium-transporting ATPase 2  Atp2b2 AT2B2_MOUSE 3 

 Potassium voltage-gated channel subfamily B member 1  Kcnb1 KCNB1_MOUSE 2 

 Protein Cngb1  Cngb1 Q91WA8_MOUSE 3 

 Protein Cngb1  Cngb1 E9PXX0_MOUSE 2 

 Protein Slc24a1  Slc24a1 Q91WD8_MOUSE 2 

 Retinal-specific ATP-binding cassette transporter  Abca4 ABCA4_MOUSE 19 

 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 Atp2a2 AT2A2_MOUSE 6 

 Sideroflexin-1  Sfxn1 SFXN1_MOUSE 3 

 Sideroflexin-3  Sfxn3 SFXN3_MOUSE 4 

 Sideroflexin-5  Sfxn5 SFXN5_MOUSE 3 

 Sodium- and chloride-dependent GABA transporter 1  Slc6a1 SC6A1_MOUSE 3 

 Sodium- and chloride-dependent GABA transporter 3  Slc6a11 S6A11_MOUSE 4 

 Sodium/potassium-transporting ATPase subunit beta-1  Atp1b1 AT1B1_MOUSE 8 

 Sodium/potassium-transporting ATPase subunit beta-2  Atp1b2 AT1B2_MOUSE 9 

 Sodium/potassium-transporting ATPase subunit beta-3 Atp1b3 AT1B3_MOUSE 4 

 Sodium-coupled neutral amino acid transporter 3  Slc38a3 S38A3_MOUSE 2 

 Vesicular glutamate transporter 1  Slc17a7 VGLU1_MOUSE 2 

 Voltage-dependent anion-selective channel protein 3  Vdac3 VDAC3_MOUSE  7 

Lipid Transport/Synthesis/Metabolism    

 1-acyl-sn-glycerol-3-phosphate acyltransferase gamma  Agpat3 PLCC_MOUSE 2 

 3-hydroxyacyl-CoA dehydrogenase type-2  Hsd17b10 HCD2_MOUSE 2 

 3-ketoacyl-CoA thiolase A, peroxisomal  Acaa1a THIKA_MOUSE 4 

 Acyl-CoA dehydrogenase family member 9, mitochondrial Acad9 ACAD9_MOUSE 3 

 Enoyl-CoA delta isomerase 1, mitochondrial Eci1 ECI1_MOUSE 4 

 Estradiol 17-beta-dehydrogenase 12 Hsd17b12 DHB12_MOUSE 2 

 Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial  Hadh HCDH_MOUSE 3 
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 Inorganic pyrophosphatase 2, mitochondrial Ppa2 D3Z636_MOUSE 2 

 Isoform 2 of Long-chain-fatty-acid--CoA ligase 6 Acsl6 ACSL6_MOUSE  6 

 Long-chain fatty acid transport protein 1 Slc27a1 S27A1_MOUSE 2 

 Long-chain specific acyl-CoA dehydrogenase, mitochondrial Acadl ACADL_MOUSE 2 

 Medium-chain specific acyl-CoA dehydrogenase, mitochondrial  Acadm ACADM_MOUSE 4 

 Neutral cholesterol ester hydrolase 1 Nceh1 NCEH1_MOUSE 2 

 Trifunctional enzyme subunit alpha, mitochondrial Hadha ECHA_MOUSE 5 

 Trifunctional enzyme subunit beta, mitochondrial  Hadhb ECHB_MOUSE 3 

 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial Acadvl ACADV_MOUSE 2 

 Very-long-chain (3R)-3-hydroxyacyl-[acyl-carrier protein] dehydratase 3  ptplad1 HACD3_MOUSE 2 

Neurotransmitter Regulation and Synthesis    

 4-trimethylaminobutyraldehyde dehydrogenase  Aldh9a1 AL9A1_MOUSE 2 

 Glutamate decarboxylase 1  Gad1 DCE1_MOUSE 2 

 Glutaminase kidney isoform, mitochondrial  Gls GLSK_MOUSE 10 

 Isoform 2 of 4-aminobutyrate aminotransferase, mitochondrial  Abat GABT_MOUSE 7 

 Succinate-semialdehyde dehydrogenase, mitochondrial  Aldh5a1 SSDH_MOUSE 5 

Oxidation/Reduction    

 Alcohol dehydrogenase class-3 Adh5 ADHX_MOUSE 2 

 Aldehyde dehydrogenase, mitochondrial  Aldh2 ALDH2_MOUSE 4 

 Biliverdin reductase A  Blvra BIEA_MOUSE 2 

 Carbonyl reductase [NADPH] 3 Cbr3 CBR3_MOUSE 2 

 D-beta-hydroxybutyrate dehydrogenase, mitochondrial  Bdh1 BDH_MOUSE 2 

 Glutathione peroxidase Gpx4 GPX41_MOUSE 2 

 Isoform 2 of Alpha-aminoadipic semialdehyde dehydrogenase  Aldh7a1 AL7A1_MOUSE  2 

 Isoform 4 of Oxidation resistance protein 1  Oxr1 OXR1_MOUSE 5 

 NAD-dependent malic enzyme, mitochondrial  Me2 MAOM_MOUSE 4 

 NADPH--cytochrome P450 reductase  Por NCPR_MOUSE 3 

 Retinol dehydrogenase 12 Rdh12 RDH12_MOUSE 9 

 Saccharopine dehydrogenase-like oxidoreductase  Sccpdh SCPDL_MOUSE 2 
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 Serum paraoxonase/arylesterase 1  Pon1 PON1_MOUSE 2 

 Superoxide dismutase [Mn], mitochondrial  Sod2 SODM_MOUSE 7 

 Thioredoxin-dependent peroxide reductase, mitochondrial  Prdx3 PRDX3_MOUSE 2 

 Thioredoxin-related transmembrane protein 1  Tmx1 TMX1_MOUSE 2 

 Trans-1,2-dihydrobenzene-1,2-diol dehydrogenase  Dhdh DHDH_MOUSE 2 

Phospholipid Transport    

 Phosphatidylinositol transfer protein alpha isoform  Pitpna PIPNA_MOUSE 2 

Protein Synthesis    

 40S ribosomal protein S10  Rps10 RS10_MOUSE 3 

 40S ribosomal protein S20  Rps20 RS20_MOUSE 2 

 40S ribosomal protein S26  Rps26 RS26_MOUSE 2 

 60S acidic ribosomal protein P2  Rplp2 RLA2_MOUSE 4 

 60S ribosomal protein L31  Rpl31 RL31_MOUSE 2 

 ATP-dependent RNA helicase A  Dhx9 E9QNN1_MOUSE 6 

 ATP-dependent RNA helicase DDX19A  Ddx19a DD19A_MOUSE 2 

 Elongation factor Tu, mitochondrial  Tufm EFTU_MOUSE 5 

 Eukaryotic initiation factor 4A-III Eif4a3 IF4A3_MOUSE 2 

 Eukaryotic translation initiation factor 2 subunit 1 Eif2s1 IF2A_MOUSE 3 

 ProteinTransport    

 AP-1 complex subunit beta-1 Ap1b1 AP1B1_MOUSE 9 

 AP-3 complex subunit beta-2  Ap3b2 AP3B2_MOUSE 3 

 Coatomer subunit beta'  Copb2 COPB2_MOUSE 3 

 Conserved oligomeric Golgi complex subunit 3  Cog3 COG3_MOUSE  2 

 Cytoplasmic dynein 1 intermediate chain 2  Dync1i2 A2BFF5_MOUSE 4 

 Disks large homolog 1 Dlg1 E9Q9H0_MOUSE 3 

 Endoplasmic reticulum-Golgi intermediate compartment protein 1  Ergic1 ERGI1_MOUSE 2 

 Erlin-2  Erlin2 ERLN2_MOUSE 2 

 Exportin-1  Xpo1 XPO1_MOUSE 4 
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 Importin-5  Ipo5 IPO5_MOUSE 3 

 Isoform 2 of MAGUK p55 subfamily member 2 Mpp2 MPP2_MOUSE 7 

 Isoform 2 of TOM1-like protein 2  Tom1l2 TM1L2_MOUSE 2 

 Isoform B of AP-2 complex subunit alpha-1  Ap2a1 AP2A1_MOUSE 2 

 Kinectin  Ktn1 F8VQC7_MOUSE 2 

 Mitochondrial import inner membrane translocase subunit TIM50  Timm50 TIM50_MOUSE 2 

 Mitochondrial import receptor subunit TOM70  Tomm70a TOM70_MOUSE 3 

 Nuclear transport factor 2  Nutf2 NTF2_MOUSE 2 

 PRA1 family protein 2  Praf2 PRAF2_MOUSE 2 

 PRA1 family protein 3  Arl6ip5 PRAF3_MOUSE 2 

 Protein ERGIC-53  Lman1 LMAN1_MOUSE 5 

 Protein MGARP (Fragment)  Mgarp D3Z134_MOUSE 2 

 Protein transport protein Sec23A  Sec23a E9Q1S3_MOUSE 2 

 Transmembrane emp24 domain-containing protein 10  Tmed10 TMEDA_MOUSE 2 

 Transportin-1 (Fragment)  Tnpo1 Q3TKD0_MOUSE  4 

Proteosome Degradation/Protease    

 26S proteasome non-ATPase regulatory subunit 11 Psmd11 PSD11_MOUSE 2 

 26S proteasome non-ATPase regulatory subunit 2 Psmd2 PSMD2_MOUSE 5 

 Cathepsin B Ctsb  CATB_MOUSE 2 

 Cathepsin D (Fragment)  Ctsd F6Y6L6_MOUSE 4 

 Dipeptidyl peptidase 3  Dpp3 DPP3_MOUSE 4 

 E3 ubiquitin-protein ligase NEDD4  Nedd4 NEDD4_MOUSE 4 

 Isoform 2 of Protein phosphatase 1H  Ppm1h PPM1H_MOUSE 2 

 Proteasome subunit alpha type-4  Psma4 PSA4_MOUSE 2 

 Proteasome subunit beta type-2 Psmb2 PSB2_MOUSE 3 

 Proteasome subunit beta type-3  Psmb3 PSB3_MOUSE 2 

 Protein DDI1 homolog 2  Ddi2 DDI2_MOUSE 2 

 Ubiquilin-2  Ubqln2 UBQL2_MOUSE 3 

 Ubiquitin carboxyl-terminal hydrolase  Usp7 UBP7_MOUSE 4 
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 Ubiquitin thioesterase OTUB1  Otub1 OTUB1_MOUSE 6 

RNA Metabolism    

 60 kDa SS-A/Ro ribonucleoprotein  Trove2 RO60_MOUSE 2 

 Aspartate--tRNA ligase, cytoplasmic  Dars SYDC_MOUSE 3 

 CCA tRNA nucleotidyltransferase 1, mitochondrial Trnt1 TRNT1_MOUSE 3 

 Glycine--tRNA ligase  Gars SYG_MOUSE 3 

 Heterogeneous nuclear ribonucleoprotein H2 Hnrnph2 HNRH2_MOUSE 2 

 Heterogeneous nuclear ribonucleoprotein U-like protein 2  Hnrnpul2 HNRL2_MOUSE 2 

 Isoleucine--tRNA ligase, mitochondrial  Iars2 SYIM_MOUSE 2 

 Poly(rC)-binding protein 4  Pcbp4 PCBP4_MOUSE 2 

 Pre-mRNA-processing-splicing factor 8 Prpf8 PRP8_MOUSE 2 

 Probable ATP-dependent RNA helicase DDX6  Ddx6 DDX6_MOUSE 3 

 Probable C->U-editing enzyme APOBEC-2  Apobec2 ABEC2_MOUSE 2 

 Ribonuclease inhibitor  Rnh1 RINI_MOUSE 3 

 RNA-binding protein 14 Rbm14 RBM14_MOUSE 2 

 Small nuclear ribonucleoprotein-associated protein B  Snrpb RSMB_MOUSE 2 

 Splicing factor U2AF 35 kDa subunit  U2af1 U2AF1_MOUSE 2 

Signal Transduction    

 Diacylglycerol kinase epsilon  Dgke DGKE_MOUSE  2 

 G protein-coupled receptor kinase 1  Grk1 RK_MOUSE 14 

 GTP-binding protein Di-Ras2 Diras2 DIRA2_MOUSE 2 

 Guanine nucleotide-binding protein G(i) subunit alpha-2  Gnai2 GNAI2_MOUSE 4 

 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3  Gnb3 GBB3_MOUSE 2 

 Guanine nucleotide-binding protein G(q) subunit alpha  Gnaq GNAQ_MOUSE 7 

 Guanine nucleotide-binding protein G(s) subunit alpha isoforms short  Gnas GNAS2_MOUSE 3 

 Guanine nucleotide-binding protein G(t) subunit alpha-2  Gnat2 GNAT2_MOUSE 4 

 Guanine nucleotide-binding protein G(z) subunit alpha Gnaz GNAZ_MOUSE 4 

 Guanine nucleotide-binding protein subunit alpha-14  Gna14 GNA14_MOUSE 3 

 Guanine nucleotide-binding protein subunit beta-2-like 1  Gnb2l1 GBLP_MOUSE 3 
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 Guanylyl cyclase GC-E  Gucy2e GUC2E_MOUSE 15 

 Isoform 1 of Regulator of G-protein signaling 9  Rgs9 RGS9_MOUSE 11 

 Isoform 2 of Guanine nucleotide-binding protein subunit beta-5  Gnb5 GBB5_MOUSE 3 

 Isoform 2 of Neurochondrin  Ncdn NCDN_MOUSE 2 

 Phosphodiesterase 6A, cGMP-specific, rod, alpha  Pde6a Q8K0A8_MOUSE 26 

 Protein Rap1gap  Rap1gap A2ALS5_MOUSE 2 

 Ras-related protein Rab-10  Rab10 RAB10_MOUSE 2 

 Ras-related protein Rab-11B  Rab11b RB11B_MOUSE 4 

 Ras-related protein Rab-18  Rab18 RAB18_MOUSE 2 

 Ras-related protein Rab-1B  Rab1b RAB1B_MOUSE 3 

 Ras-related protein Rab-3C  Rab3c RAB3C_MOUSE 3 

 Ras-related protein Rab-5A  Rab5a RAB5A_MOUSE 3 

 Ras-related protein Rab-5B  Rab5b RAB5B_MOUSE 3 

 Ras-related protein Rab-5C  Rab5c RAB5C_MOUSE 2 

 Ras-related protein Rab-6B  Rab6b RAB6B_MOUSE 3 

 Ras-related protein Rap-1A  Rap1a RAP1A_MOUSE 3 

 Regulator of G-protein signaling 9-binding protein  Rgs9bp R9BP_MOUSE 3 

 Rho GTPase-activating protein 1  Arhgap1 A2AH25_MOUSE 6 

 Rod cGMP-specific 3',5'-cyclic phosphodiesterase subunit beta  Pde6b PDE6B_MOUSE 10 

 Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B 

alpha isoform  

Ppp2r2a 2ABA_MOUSE 3 

 Short-wave-sensitive opsin 1  Opn1sw OPSB_MOUSE 2 

Stress Response    

 Constitutive coactivator of PPAR-gamma-like protein 1 FAM120A F120A_MOUSE 2 

 Heat shock 70 kDa protein 12A  Hspa12a HS12A_MOUSE 6 

 Hypoxia up-regulated protein 1  Hyou1 HYOU1_MOUSE 6 

 

Synaptic Transmission 

   

 Isoform 2 of Solute carrier family 12 member 5  Slc12a5 S12A5_MOUSE 16 
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 Protein lin-7 homolog A  Lin7a LIN7A_MOUSE 4 

 Synaptic vesicle glycoprotein 2B  Sv2b SV2B_MOUSE 4 

 Synaptic vesicle membrane protein VAT-1 homolog-like  Vat1l VAT1L_MOUSE 2 

 Synaptoporin  Synpr SYNPR_MOUSE 4 

 Syntaxin-1B  Stx1b STX1B_MOUSE 10 

 Vesicle-associated membrane protein-associated protein A  Vapa VAPA_MOUSE 5 

Transcription Regulation    

 Alpha/beta hydrolase domain-containing protein 14B Abhd14b E9QN99_MOUSE 2 

 Coiled-coil-helix-coiled-coil-helix domain-containing protein 3, 

mitochondrial  

Chchd3 CHCH3_MOUSE 3 

 Isoform 2 of Mitochondrial inner membrane protein  Immt IMMT_MOUSE  19 

 Isoform Epsilon of Lamina-associated polypeptide 2, isoforms 

beta/delta/epsilon/gamma  

Tmpo LAP2B_MOUSE 7 

 Protein arginine N-methyltransferase 1 Prmt1 ANM1_MOUSE 2 

 Transcription elongation factor B polypeptide 2  Tceb2 ELOB_MOUSE 2 

Transferase    

 Dihydrolipoyllysine-residue succinyltransferase component of 2-

oxoglutarate dehydrogenase complex, mitochondrial  

Dlst ODO2_MOUSE 4 

 Farnesyl pyrophosphate synthase  Fdps FPPS_MOUSE 4 

 Isoform 2 of NAD kinase 2, mitochondrial  Nadk2 NAKD2_MOUSE 2 

 Ornithine aminotransferase, mitochondrial Oat OAT_MOUSE 5 

 Phosphoserine aminotransferase  Psat1 SERC_MOUSE 4 

 Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial  Oxct1 SCOT1_MOUSE 12 

Vesicle Transport    

 Protein NipSnap homolog 2  Gbas NIPS2_MOUSE 3 

 Protein Sptbn2 Sptbn2 Q68FG2_MOUSE 3 

Others     

 Adipocyte plasma membrane-associated protein  Apmap APMAP_MOUSE 2 

 C2 domain-containing protein 2-like C2cd2l C2C2L_MOUSE 4 
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 Ceruloplasmin  Cp CERU_MOUSE 2 

 COP9 signalosome complex subunit 1 Gps1 G3UXW9_MOUSE 4 

 Delta-aminolevulinic acid dehydratase  Alad HEM2_MOUSE 2 

 DmX-like protein 2 Dmxl2 DMXL2_MOUSE 4 

 Endophilin-B2  Sh3glb2 SHLB2_MOUSE 2 

 EPM2A-interacting protein 1 Epm2aip1 EPMIP_MOUSE 3 

 ES1 protein homolog, mitochondrial  D10Jhu81e ES1_MOUSE 3 

 Galectin-related protein Lgalsl LEGL_MOUSE 4 

 Gamma-crystallin A  Cryga CRGA_MOUSE 2 

 Golgi apparatus protein 1 (Fragment)  Glg1 GSLG1_MOUSE 2 

 Golgi reassembly stacking protein 2, isoform CRA_d  Gorasp2 GORS2_MOUSE 3 

 Isochorismatase domain-containing protein 2A, mitochondrial  Isoc2a ISC2A_MOUSE 2 

 LanC-like protein 2  Lancl2 LANC2_MOUSE 2 

 Leucine-rich repeat-containing protein 59 Lrrc59 LRC59_MOUSE 3 

 Low molecular weight phosphotyrosine protein phosphatase  Acp1 PPAC_MOUSE 2 

 MCG140784  Try10 Q792Z1_MOUSE 2 

 NAD(P)H-hydrate epimerase Apoa1bp NNRE_MOUSE 2 

 PEX5-related protein Pex5l D3YYH0_MOUSE 2 

 Phosphoribosyl pyrophosphate synthase-associated protein 2  Prpsap2 KPRB_MOUSE 2 

 Protein Ahnak2 (Fragment)  Ahnak2 F7DBB3_MOUSE 3 

 Protein NDRG3 Ndrg3 NDRG3_MOUSE 2 

 Protein SET (Fragment)  Set SET_MOUSE 2 

 Tumor protein D52 (Fragment) Tpd52 D3Z125_MOUSE 2 

 Uncharacterized protein  Tubb4b-ps1 J3QNR5_MOUSE 2 

 Up-regulated during skeletal muscle growth protein 5 Usmg5 USMG5_MOUSE 2 
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Appendix III: 

 
Western blots of biotinylated proteins from retinal homogenates following biotin switch 

assay. Retinal homogenates from three light-adapted (LA) or dark-adapted (DA) mice were 

subjected to the biotin switch assay (BSA, See Chapter 2 Materials and Methods) and the 

presence of biotin was confirmed by western blot. Biotin was detected using the S-nitrosylation 

Detection Reagent I (conjugated to Horseradish Peroxidase) (Cayman Chemical, Item 

#10006524) followed by detection using enhanced chemiluminescence. A: Immunoblot of retinal 

lysates collected after biotin switch assay (BSA), prior to enrichment with neutravidin agarose 

(Pierce), so the sample contained proteins with and without biotin. Total protein concentration 

was ~10 µg/µL for all samples. 7.5 µL of lysate was mixed with 2.5 µL 4X sample buffer for a 

total volume of 10 µL loaded per lane. Lanes 1-6 contain lysates that were collected following 

the BSA. Lane 7 contained retinal lysates that were not subjected to BSA as a control for 

endogenously biotinylated proteins (arrow). B: Western blot showing biotinylated proteins after 

purification with neutravidin. Protein concentrations were lower following purification: LA 1~ 1 

µg/µL, LA 2 &LA 3 ~2 µg/µL, DA 1, 2 &3 ~0.5 µg/µL. Each lane was loaded with 5 µL of 

lysate mixed with 2 µL 4X sample buffer for a total volume of 7 µL. Instead of normalizing each 

sample to a determined protein concentration, a single volume of protein sample was used for all 

lanes to allow for gross comparison of S-nitrosylation as measured by the detection of biotin. 

Second, a minimal volume of sample was used for western blot experiments in order to 

maximize the amount of enriched protein sample that was used for qualitative MS analysis. The 

low protein concentration of the LA1 and DA 1, 2, &3 samples made detection of biotin 

difficult, however the 5 µL used was 10% of the entire sample volume on hand. Had we used 

more for the western blot, we may have hindered our ability to determine protein identities 

through MS analysis. Lane 7 contained retinal lysates that were not subjected to BSA as a 

control for endogenously biotinylated proteins (arrow).  

The results we present here, particularly the banding patters that can be seen in A and B, 

are consistent with Jaffrey et al. (2001) who developed the BSA and used it to describe S-

nitrosylation of brain proteins following incubation with an NO donor.  
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