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ABSTRACT 

 

 

 

THE 2006 WARM FIRE: EFFECTS ON HABITAT AND PREY SPECIES  

OF THE NORTHERN GOSHAWK 

 

 

 Reductions in the frequency of fire in Southwestern ponderosa pine and mixed-conifer forests 

since initiation of forest management early in 20
th
 century changed the composition and structure of the 

forest habitats of the northern goshawks (Accipiter gentilis), a food-limited species of conservation 

concern, and the birds and mammals it feeds on.  A conservation strategy for the species in the goshawk’s 

food web in these forest types recommends restoring the mix of predator and prey habitats that 

historically characterized these forests—characteristics that were sustained by frequent low-severity 

surface fire.  Thus, the effects of fire severities (high- and low-severity) and lack of fire on today’s 

habitats may influence the abundances of bird and mammal goshawk prey.  .  The 2006 Warm Fire 

burned 235 km
2
 of ponderosa pine and mixed-conifer forest on the North Kaibab Ranger District in 

northern Arizona in late June and early July 2006.  Forest habitat metrics such as live tree and snag 

densities, cone production, canopy and ground cover estimates were collected from 2007-2010 on 60 

0.5km transects to compare the effects of high- and low-severity fire and no fire on a suite of 13 important 

prey species of the goshawk.  I describe habitat changes resulting from the different fire severities in 

ponderosa pine and mixed conifer forests. I estimated abundances for 13 bird and mammal prey species in 

forests burned by different fire severities and tested predictive models designed to gain an understanding 

which habitat characteristics, affected by fire, best predicted individual bird and mammal abundances.  

Red squirrels and golden-mantled ground squirrels showed the most sensitivity to fire, while chipmunks 

were evenly distributed across fire severities.  Hairy woodpeckers and northern flickers, in contrast, 

benefitted from high-severity fire, due to increased snags, cavity nesting opportunities, and foraging.  

American robins and Steller’s jays were also evenly distributed across fire severities.  High-severity fire 

had a significant impact on forest ecosystems.  Changes in forest structure were found to be detrimental to 
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some species while creating short- and possibly intermediate-term benefits for others.  Lowering the risk 

of high-severity fire by restoring composition and structure should also protect the habitats of goshawk 

and the prey species most sensitive to fire.  The effects of low-severity fire were mixed, suggesting that it 

may be possible to return fire to ecosystem without a significant impact to many birds and mammals in 

the short term. Frequent low-severity fire could also help to maintain sub-canopy and understory grass / 

shrub openings by removing excess growth and ground debris.   
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INTRODUCTION 

 

 

 

 Wildfire is a major disturbance in ecosystems across the United States (Agee 1993) and is an 

important driver of landscape change (Fulé et al. 1997).  In the Southwestern United States historic fire 

regimes included frequent low-severity surface fires in ponderosa pine (Pinus Ponderosa) and low 

elevation dry (warm, dry) mixed-conifer forests (White and Vankat 1993, Fulé et al 2000), less frequent 

mixed-severity fires in mid-elevation wet (cool, mesic) mixed-conifer forests, and infrequent, high-

severity fires in higher elevation spruce-fir forests (White and Vankat 1993).  In Arizona and New 

Mexico, pure ponderosa pine and mixed-conifer forests occupy nearly 2.5 and 1 million hectares of forest 

area, respectively (Brown 1994, Korb et al. 2013).  As a dominant species in Southwestern forests, 

ponderosa pine can influence forest ecosystems and fire behavior (Moore et. al. 1999).  As a consequence 

of frequent low-severity surface fire, ponderosa pine forests in northern Arizona have been described as 

low-density, open forests consisting of aggregations of old pine trees interspersed with aggregations of 

younger pine trees in a grass/shrub matrix (White 1985), while mixed-conifer forests have been classified 

into two sub-categories: warm/dry and cool/moist forests (Romme et al. 2009).  Dry mixed-conifer forests 

are typically located at lower elevations and are dominated by ponderosa pine and Douglas-fir, but can 

include white fir (Abies concolor) and aspen (Populus tremuloides) (Korb et al. 2013).  Historically, these 

forests were characterized by large old trees, relatively open with low trees densities, and heterogeneous 

patches of uneven-aged trees (Binkley et al. 2008, Fule et al. 2009).  Snag, log, and woody debris 

abundance was thought to be similar to ponderosa pine forests (Moore et al. 2004).  Cool/moist mixed-

conifer forests, in comparison, are found at higher elevations and include a greater abundance of Douglas-

fir (Pseudotsuga menziesii) and other conifers adapted to these conditions (Romme et al. 2009).  

Cool/moist forests are more spatially heterogeneous regarding patch sizes that differ in tree ages and 

densities than ponderosa pine and dry mixed-conifer forest types due to a mixed-severity fire regime 

(Binkley et al. 2008, Fule et al. 2009). 
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 After more than a century of extensive fire exclusion starting in the early 1900’s, along with other 

management practices, ponderosa pine and mixed-conifer forest have been altered by increases in tree 

densities, a shift to more shade-tolerant tree species, accumulations of small trees, accelerated mortality of 

old trees, and diminished understory (herbs, shrubs) productivity (Covington and Moore 1994, Fule et al. 

2009, Churchill et al. 2013).  The buildup of fuel has made these forests vulnerable to high-severity crown 

fires that not only kill trees but exposes landscapes to erosion, exotic plant invasion, and other negative 

consequences (Covington et al. 1994, Griffis et al. 2001).   

 Historically, the fire return interval in Southwestern ponderosa pine ranged from 2-25 years 

(Swetnam and Baisan 1996, Heyerdahl et al. 2001).  Frequent fires in this ecosystem favored shade 

intolerant, fire resistant tree species, minimal fuel build up, and open forest conditions that promoted 

productive understory growth (Fule and Laughlin 2007).  Pre-settlement mixed-conifer forests (both dry 

and wet mixed-conifer) were shaped by mixed-severity fire regimes consisting of areas of surface and 

areas of stand-replacing fires that could occur in the same event.  These ecosystem types contained trees 

of various ages and species composition resulting from variation in fire intensity, frequency, and area 

burned (Fule et al 2003).  Pre-settlement dry mixed-conifer forests were historically dominated by 

ponderosa pine, Douglas-fir and white fir and had reported fire return intervals of 4-14 and 18-32 years 

(similar to ponderosa pine forests) in two studies (White and Vankat 1993, Brown et al. 2001, Korb et al. 

2013). Historically, wet mixed-conifer forests had sub-decadal to century long fire return intervals 

upwards of 200 years (White and Vankat 1993, Romme et al. 2009).  Wet mixed-conifer forests were 

characterized by cooler mesic conditions, increased tree density and canopy cover, infrequent intense 

fires, and fire intolerant overstory trees (White and Vankat 1993).  Because of long fire return intervals in 

high elevation Engelmann spruce-sub-alpine fir landscapes, fire suppression has had little effect on these 

ecosystems (White and Vankat 1993).  Due to more frequent surface fire, dry mixed-conifer forests were 

more open with groups of small trees similar to ponderosa (Fule et al. 2003, Romme et al. 2009).  Moist 

higher elevation forests experienced less frequent moderate to high severity fires that created large 

patches (cohorts) of similar-aged trees (Fule et al. 2003, Romme et al. 2009).   
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 In many instances alteration of the historic fire regimes, especially in ponderosa pine and dry 

mixed-conifer forests, created conditions that currently favor more frequent and large high severity 

wildfires.  Forest ecosystems that were typically shaped by low-intensity and mixed severity fires have 

been transformed into ones that are susceptible to high-severity, stand-replacing crown fires.   

 The northern goshawk’s (Accipiter gentilis), a U.S. Forest Service sensitive species of special 

conservation concern, response to habitat changes due to forest management and disturbances such as fire 

is of particular interest throughout Western U.S. forests.  The goshawk is a large forest dwelling raptor 

that occupies mature temperate and boreal forests throughout the Holarctic (Squires and Reynolds 1997).  

Goshawk home ranges vary from 15-30 km
2 
and are generally “fixed” in their locations, with minor 

yearly fluctuations due to their nesting and foraging requirements (Reynolds et. al. 1994).  Goshawks 

occupy a variety of forest types that are composed of different vertical and horizontal structures 

throughout their N.A. range.  Typically, goshawks in the Southwest U.S. nest in mature trees with large 

open branches and hunt in the sub-canopy space, along forest edges, and in herbaceous and shrub 

openings (Reynolds et al. 1992, 2006, 2013).  Nest sites are characterized by mature and old trees and 

relatively dense canopies that provide nest protection from predators and environmental extremes.  

Nesting sites comprise < 1% (0.12 km
2
) of the total goshawk home range and have low vegetative 

structural diversity compared to forest conditions in their much larger home ranges, which is used for 

foraging, roosting, and by young hawks post-fledging (Reynolds et. al. 2006).  On the Kaibab Plateau 

mature and old canopy forests with open understories are used more often than any other forest types by 

breeding goshawks (Bright-Smith and Mannan 1994, Reynolds et al. 2006).  Adapted to foraging in the 

lower vegetation column of forests, a goshawk’s hunting ability is thought to be impaired when forest 

understories become filled with small trees or tall dense brush (Reynolds and Meslow 1982) due to a lack 

of fire and other ecological processes.  Loss of nesting and foraging habitat due to high-severity fire may 

also decrease survival and nesting productivity through loss of prey habitats and lowered prey abundance.  

Due to the complexity of forest fire regimes, most of which have been altered throughout the goshawks 
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geographic range, understanding fire effects on its food webs, on its habitats, its reproduction, and its 

population viability is an important conservation concern across the southwestern United States.   

 Goshawks on the Kaibab Plateau have a diverse diet, foraging upon a suite of more than 20 

species of ground and tree squirrels, rabbits and hares, woodpeckers, grouse, turkeys, and passerines 

(Reynolds 1983, Reynolds and Meslow 1984, Reynolds et al. 1994, Squires and Reynolds 1997, Salafsky 

et al. 2005, 2007).  Prey counts conducted from 1999-2002 suggested  that prey species abundance is a 

factor limiting goshawk reproduction on the Kaibab Plateau (Salafsky 2004, Salafsky et al. 2005, 2006).  

Quantifying the effects of fire on bird and mammal prey of goshawks is difficult since there is a high 

degree of species-specific responses to fire and variation in detectability.  Bock and Block (2005) found 

that season, scale, size and severity of fire influenced bird and mammal responses to fire disturbances.  

Saab et al. (2002) noted that fire can create unique nesting and foraging habitats by increasing diversity in 

vegetation type, canopy closure, and climate.  Studying the effects of fire on the birds and mammals in 

the goshawk food web is important because goshawks are both food limited (Salafsky et al. 2005, 2007) 

and a species of special concern in the Southwest forests.  Uniquely suited to preying on a varied suite of 

birds and mammals in Kaibab plateau forests, goshawk productivity has been closely tied to annual 

fluctuations in prey abundance (Salafsky 2004, Salafsky et al. 2005, 2006), and prey abundance depends 

of availabilities and productivities of varied habitats that support the suite of prey.   

 From 8 June 2006 to containment on 4 July 2006, the Warm Fire, which started as a lightning 

strike, burned 235 km
2
 of ponderosa pine and mixed-conifer forest on the North Kaibab Ranger District in 

northern Arizona.  For 18 days post-ignition, the Warm Fire met District and Federal Wildland Fire 

Management criteria to be used as a wildland fire-use fire, during which time approximately 77 km
2
 were 

burned at low to moderate-severity.  On 25 June 2006 weather conditions changed and the fire exceeded 

its maximum manageable area and active suppression was initiated.  An additional 158 km
2
 of forest 

burned between 25 June and 4 July 2006, before full containment.  The majority of the forest that burned 

after 25 June 2006 had moderate-high and high-severity fire damage, while some small patches dispersed 

throughout the fire burned at low and moderate-low severity.  In total, approximately 64% of the Warm 
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Fire (12% of the North Kaibab Ranger District) burned at moderate-high to high-severity and 36% (7% of 

the North Kaibab Ranger District) burned at moderate-low to low-severity, resulting in some level of 

alteration to almost 20% of the forests on the ranger district.   

 Changes in live forest structure caused by the Warm Fire provided an opportunity to explore the 

impact of fire on the composition and structure of habitats and species composition and abundance of bird 

and mammal prey of goshawks.  To evaluate how fire severity affected the flora and fauna of the Kaibab 

Plateau, I conducted surveys of (1) the vegetation composition and structure of post-Warm Fire habitats 

and (2) estimated bird and mammal abundances in ponderosa pine and mixed-conifer forests on transects 

in areas unburned, burned at low-severity, and burned at high-severity fire in the Warm Fire.   

Study Objectives:  

1. Describe and compare the vegetation composition and structure in relation to fire severity (no 

burn, low-severity, and high-severity) in the ponderosa pine and mixed-conifer forest types. 

2. Estimate the composition and abundance of bird and mammal species by forest type (ponderosa 

pine, mixed-conifer) and by fire severity. 

3. Model the effects of selected forest metrics and fire severity on birds and mammals and 

determine the best models for predicting species abundance. 
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METHODS 

 

 

 

Study Area 

 The 1,285 km
2
 study area (Figure 1) includes the North Kaibab Ranger District of the Kaibab 

National Forest above 2,182 m elevation on the Kaibab Plateau in northern Arizona.  The eastern, 

southern, and western edges of the plateau are formed by steep slopes, creating a distinct boundary 

between the forests and surrounding shrub-steppe ecosystems.  The northern edge of the Plateau slopes 

gradually through a broad ecotone from shrub-steppe ecosystems (1,750 m elevation) to spruce-fir forests 

at the highest elevations (maximum 2,800 m).  Mixed-conifer forests occupy about 275 km
2 
(20%) of the 

study area at the highest elevations, ponderosa pine (Pinus ponderosa) forests occupy 714 km
2 
(55%) at 

mid-elevation ranges, and pinyon-juniper (Pinus edulis, Juniperus spp.) woodlands occupy 106 km
2
 

(<10%) at the lower elevations.  Quaking aspen (Populus tremuloides) forests cover about 112 km
2
,  

interspersed among the other forest woodland types (Joy 2002), comprising up to 14% of the tree basal 

area on the Plateau (Binkley et al. 2006).  Ponderosa pine forests of the Kaibab Plateau are characterized 

by relatively low tree diversity (White 1985).  Common ponderosa pine understory grasses included: 

Bromus spp., wild rye (Elymus elymoides), mountain muhly (Mulenbergia montana), and Poa spp; 

understory forbs include: Antennaria spp., Chenopodiaceae spp., Wright’s deervetch (Lotus wrightii), and 

Lupinus spp.; and understory shrubs include: Oregon grape (Berberis repens), Fendler’s ceanothus 

(Ceanothus fendleri), and New Mexican locust (Robinia neomexicana).  Mixed-conifer forests of the 

Kaibab Plateau have higher tree diversity than ponderosa pine (White and Vankat 1993).  Species 

commonly found in mixed-conifer forests include: white fir (Abies concolor), subalpine fir (Abies 

lasiocarpa), Englemann spruce (Picea engelmannii), ponderosa pine, quaking aspen, and Douglas fir 

(Pseudotsuga menziesii).  Common mixed-conifer understory grasses include:  Bromus spp., wild rye, 

Festuca spp., and Poa spp.; understory forbs include: Antennaria spp., Chenopodiaceae spp., wild 

strawberry, Fragaria vesca, and Lupinus spp.; and understory shrubs include: Oregon grape, Fendler’s 

ceanothus, common juniper (Juniperus communis), and Ribes spp.   
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 Almost all of the North Kaibab Ranger District had received tree harvests prior to the Warm Fire.  

Organized tree harvests on the NKRD began in the early 1900s and were primarily limited to cutting dead 

and dying trees (single-tree selection harvest) (Sesnie and Bailey 2003).  In the 1960s, small patch cuts 

began in higher elevation mixed-conifer forests, but were discontinued in the early 1970s.  In the 1980s 

intensive stand management using shelterwood / seed-tree cuts occurred to create even-aged forest 

patches in ponderosa and mixed-conifer forests, but by the early 1990s this protocol was discontinued 

(Sesnie and Bailey 2003).  While pre-1960s selection harvests occurred over much of the NKRD, 

intensive stand management occurred in scattered patches on the Kaibab plateau (Sesnie and Bailey 

2003).   

Sampling Design 

 To evaluate the effects of the 2006 Warm Fire on habitat composition and structure, and 

associated prey species, I measured vegetation composition and structure and conducted bird and 

mammal counts on 60 transects placed in six strata (unburned, low-severity, and high-severity fire in 

ponderosa pine and mixed-conifer forests that had previously been treated with two different silvicultural 

prescription, single-tree harvested and shelter-wood/seed-tree harvest) over 4 post-fire years (2007-10). 

With vegetation burn severity maps (North Kaibab Ranger District, NKRD 2007), I aggregated moderate-

high and high-severity burn categories  into one high-severity strata, and moderate-low and low-severity 

burn categories into one low-severity strata (North Kaibab Ranger District, NKRD 2007).  I sampled a 

total of 60 0.5km transects (Table 1); 40 in unburned forest (23 in ponderosa pine, 17 in mixed-conifer), 8 

burned by low-severity fire (4 in ponderosa pine, 4 in mixed-conifer), and 12 burned by high-severity fire 

(3 in ponderosa pine, 9 in mixed-conifer).   

 I selected 49 of my 60 transects from 60 previously-established transects used in a study of co-

variation between prey abundance and goshawk fecundity (Table 2) (Salafsky 2004).  I randomly chose 

and sampled 40 transects from 51of the original 60 pre-existing transects that had been unburned in the 

Warm Fire.  I sampled all 9 of the original 60 pre-existing transects that were burned by the fire.  Finally, 

during the summer of 2007, I established 11 new transects in forests burned at high (n=6) and low (n=5) 
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severity, bringing the total transects I sampled to 60.  Previously established transects were used in my 

study to (1) minimize transect establishment time and to maximize data collection opportunities and (2) to 

provide for future comparisons of  pre- and post-fire data to model prey abundance and goshawk 

reproduction over time.  By the 1980s nearly the entirety of the North Kaibab Ranger District had 

received single-tree (locally known as “pick and pluck”) selection harvests.  In the 1970s and 80s a more 

intensive stand management was introduced whereby 0.12-0.16 km
2
 areas were harvested with shelter-

wood and seed-tree prescriptions (Sesnie and Bailey. 2003).  By 1990, approximated 30% of the North 

Kaibab Ranger District had been shelter-wood or seed-tree harvested (Sesnie and Bailey 2003).  Thus, in 

the Salafsky (2004) study and in my study, transects were allocated among single-tree and shelter-

wood/seed-tree harvested forests according to the approximate proportional areas of these past treatments.  

However, for the purposes of my study, I did not distinguish between the two harvest treatments and 

assumed that bird and mammal abundances reported here reflected average abundances in the two 

treatments.  Ten of the transects I sampled in unburned ponderosa pine transects had received seed-tree 

harvest treatments before the Warm Fire, five in unburned mixed-conifer forests had also received seed-

tree treatments, and six in high-severity mixed-conifer forest had received seed-tree treatments.   

 The 11 new transects that I established were located and classified using Warm Fire vegetation 

burn severity maps (North Kaibab Ranger District 2007).  The eastern edge of the Warm Fire, 

characterized by narrow ridges and steep drainages, presented a challenge when selecting new transects 

due to the need for uniformly viewable areas on each side of transects.  This requirement was identical to 

that used for establishing and sampling all of the pre-existing transects (Salafsky 2004).  Prior to 

establishment, all potential new transect locations were visited to confirm burn severity as indicated by 

the burn severity maps (North Kaibab Ranger District 2007), forest type, management classification, and 

to address logistical and safety considerations.  All pre-existing transects were also visited to confirm fire 

severity classification, forest type, and management classification.  An equal number of transects were 

located in each forest type (n=30).  Fire size (proportional to each severity category), habitat (unburned, 

burned) continuity, and transect viewable area constrained the number of transects in each strata.  All 
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transects were located completely inside one forest type and fire severity category.  Transect width varied 

by the detectability specific to each bird and mammal species and reflected the criteria used in the 

Salafsky (2004) study.  Each transect consisted of 11 reference stakes  marked at 50 meter intervals, four 

of which were randomly selected along each transect to serve as center points for vegetation plots.   

Vegetation Sampling 

 I determined the mean density of live trees per km
2
 on each transect by averaging the tree 

densities on each of the four plot centers on each transect.  I used the variable-radius plot technique with 

an angle gauge and a basal area factor (BAF) of 20 ft
2
/acre (4.59 m

2
/ha) to determine tree densities.  Live 

tree densities were determined from the center of each plot by collecting the diameter at breast height 

(dbh) of each live tree counted ‘in’ with the angle gauge.  I then calculated the number of trees per km
2
 

from measurements collected and averaged the four plot values to determine a mean density for each 

transect.  This procedure was used to calculate the mean density of all live and dead trees >20cm dbh.  

 Tree canopy cover estimates were estimated at each plot center using a spherical densitometer.  

The unburned plot canopy cover estimates that I used were collected by Susan Salafsky (personal 

communication) prior to the Warm Fire.  Cover estimates for all pre-existing plots burned by the Warm 

Fire and all newly established plots were collected post-fire.  Mean canopy cover estimates for each 

transect were determined by averaging the cover estimates calculated for each plot.   

 Cone counting was conducted to index potential food supplies for birds and mammals (cone 

productivity).  In late July and early August of each year, the closest tree ≥30 cm dbh in each quadrant 

(NE, SE, SW, and NW) from the plot center was selected for cone counting.  A total of four trees were 

sampled on each plot.  If the closest tree ≥30 cm dbh was non-cone producing the count for that tree was 

recorded as zero. Current year cones were counted by placing a 1m
2
 frame on the ground at eight cardinal 

directions (N, NE, E, SE, S, SW, W, NW) under the crown of each Douglas fir, Engelmann spruce, and 

ponderosa pine tree.  To assess cone production of subalpine and white fir trees, which do not accumulate 

cones on the ground, cones were counted in the canopies of each tree using binoculars.  Mean cone count 

estimates for each transect were determined by averaging the counts obtained from each plot.   



10 

 Understory ground cover measurements were collected from 2007-2010 from the four 20m radius 

plots on each transect.  Ocular estimates of live ground cover (grasses, forbs, and shrubs; tree seedlings 

and sapling excluded) were collected annually on all plots and the dominant forbs and shrubs were 

identified each year.  Numbers of sapling (conifer and aspen) ≥1.5m in height and ≤10cm dbh in each plot 

were tallied.  Understory plot measurements were collected by the same trained teams of two technicians 

during the study in order to minimize observer bias.   

Prey Sampling 

 From 2007-2010, I conducted distance sampling to estimate the abundance of bird and mammal 

species commonly found in goshawk diets on the Kaibab Plateau (Reynolds et al. 1994, Salafsky et al. 

2005).  Bird species sampled included American robin (Turdus migratorius), Dusky grouse 

(Dendragapus obscurus), Clark’s nutcracker (Nucifraga columbiana), downy woodpecker (Picoides 

pubescens), hairy woodpecker (Picoides villosus), mourning dove (Zenaida macroura), northern flicker 

(Colaptes auratus), red-naped sapsucker (Sphyrapicus nuchalis), Steller’s jay (Cyanocitta stelleri), three-

toed woodpecker (Picoides dorsalis), and Williamson’s sapsucker (Sphyrapicus thyroideus).  Mammal 

species sampled included black-tailed jackrabbit (Lepus californicus), chipmunk (Tamias spp.), cottontail 

rabbit (Sylvilagus spp.), golden-mantled ground squirrel (Callospermophilus lateralis), Kaibab squirrel 

(Sciurus aberti kaibabensis), red squirrel (Tamiasciurus hudsonicus), and rock squirrel (Spermophilus 

variegatus).  I conducted counts on 0.5km line transects following assumptions and sampling protocols in 

Buckland et al. (2001) and procedures used by Salafsky (2004).  I sampled each transect once in 2007 

(late summer) then twice (early summer and late summer) annually from 2008-2010.  Early summer 

counts occurred between 28 May and 24 June and late summer counts between 23 July and 14 August.  

All surveys were conducted by two observers (2007: J. Lambert and W. Nimitz, 2008 – 2010: J. Lambert 

and C. Lambert).  Each observer was experienced at identifying bird and mammal species both visually 

and aurally and each was trained to the same counting methods.  During each sampling period six 

transects were sampled daily (3 transects per observer).  Sampling was not conducted during rain or 

heavy wind due to reduced animal activity and detectability.  The order of transect surveys was 
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randomized each sample period to minimize observer and time-of-day bias.  Prey sampling began 0.5 

hours after sunrise and was completed within 3.5 hours.  Individuals seen or heard were identified to 

species and the perpendicular distance from the transect line to the individual was determined using a 

laser rangefinder (accuracy + 1 m).  The few individuals that could not be visually or aurally located 

accurately were not tallied.   

Data Analysis  

 Vegetation measurements at the transect level were evaluated using the least square means 

procedure in GLIMMIX  with  α ≤ 0.05 to identify significant differences in vegetation within each forest 

type across fire severity categories (PROC GLIMMIX, SAS Institute version 9.4, 2012).  The Tukey-

Kramer adjustment for multiple comparisons was used to assess the differences in the means of canopy 

cover, live tree density, live large tree density (>20cm dbh), snag density, large snag density (>20cm 

dbh), live ground vegetation, saplings per plot, and cone production by conifer species (Ott and 

Longnecker 2001).  All data were modeled in GLIMMIX using a beta distribution for percentage 

estimates and a negative binomial distribution for count data (PROC GLIMMIX, SAS Institute version 

9.4, 2012).  Common data transformations were applied to the data but none improved analysis so data 

were imported into SAS in an untransformed format.  Data presented in figures and tables are also 

untransformed.   

 I used the gdistsamp (generalized distance sampling) function in the UNMARKED (Fiske and 

Chandler 2011) package of the statistical software R (The R Foundation, Version 3.0.1, 2013) to estimate 

the abundance of all birds and mammals.  The gdistsamp function fits the generalized distance sampling 

model of Royle et al. (2004), which allows abundance and detection parameters to be modeled as 

functions of covariates (Royle et al. 2004).  The UNMARKED package utilizes replicate sampling to 

estimate the abundance (λ) of the sampled population (the number of individuals that could potentially 

use a survey area) and probability that a given bird or mammal species is available (φ) to be counted.  I 

used the negative binomial distribution to model abundance and all observation distances were right 

truncated to conform to Salafsky (2004) protocols.  Distance sampling estimates a detection function that 
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compensates for differences in detection probability among species, habitats, and distances.  Thus, density 

estimates were not confounded by differences in detectability due to the different forest types that were 

sampled (Buckland et al. 1993).   

 The UNMARKED package has several advantages over other estimation programs that 

potentially improve the accuracy of abundance estimates and predictions.  UNMARKED relaxes the 

assumption that all individuals on a survey line are detected [(g (0) =1)], and allows for temporary 

immigration and emigration of mobile species in and out of survey sites (Chandler et al. 2011).  By 

accounting for temporary immigration and emigration of mobile species to and from unknown locations, 

UNMARKED estimates the abundance (λ) of individuals that could potentially use a survey plot, given a 

set of conditions (Chandler et al. 2011), however these estimates do not represent the number of 

individuals per unit of area.  The second element of the model estimates the probability that an individual 

will be available to be counted (φ) on a plot given a set of temporal and spatial conditions (Chandler et al. 

2011).  Abundance (λ) was modeled by fire severity and availability (φ) (both reported in Appendix A) 

was modeled by forest type and year.  Density (D) of each species per km
2
 (reported in Appendix B) can 

be obtained by multiplying the abundance estimate by the availability estimate (λ φ).   

 Buckland et al. (1993, 2001) recommends that approximately 60 observations are needed for 

reliable estimates of abundance.  Thus, I estimated abundance only for species with >60 detections per 

year and tested models of the effects of fire severity differences on these species.  To achieve a minimum 

of 60 observations for some under-counted species, counts were aggregated to estimate abundance at the 

guild (i.e., woodpeckers) level while counts of a few other species were aggregated across within-year 

sample periods.  To evaluate the best models for predicting bird and mammal abundances, I used 

Akaike’s Information Criterion (AIC) and Akaike weights (Burnham and Anderson 2002) generated with 

the R statistical software package UNMARKED.  Models were developed a priori to evaluate how fire 

severity and vegetation characteristics that I hypothesized to be biologically important (e.g. tree and snag 

densities, canopy cover, food resources, ground cover) influenced bird and mammal abundances (Table 3 

for a list of models).  I used a ∆AIC of 2 to identify competitive models (Burnham and Anderson 2002).  



13 

Year was included in each model as a surrogate for unmeasured variables (e.g., precipitation, 

temperature).  Because AIC comparisons require data sets of equal sample size, I was unable to use the 

2007 count data to test models because I only sampled transects once that season.   
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RESULTS 

 

 

 

Tree and Snag Density and Canopy Cover 

 Relative to no-burn and low-severity fire, total live tree density, large (>20cm dbh) live tree 

density, canopy cover, and conifer cone production were, as expected, lower in both ponderosa pine and 

mixed-conifer forests burned at high severity (Figures 2-3, Appendix C).The  total and large (>20cm dbh) 

snag densities in high severity burns were higher in both ponderosa pine and in mixed-conifer forests than 

in low severity and unburned forests; however, these means were significantly different only for total 

snags in mixed-conifer and large snags in ponderosa pine (Figure 4.1, 4.2, Appendix C).  Although there 

were wider ranges of total live trees and canopy cover in unburned versus low-severity burn in both forest 

types, there were no significant differences in mean numbers of total and large live trees, and canopy 

cover from unburned forests. In ponderosa pine forests, densities of total and large snags were 

significantly higher in low severity versus unburned forests, but not in mixed-conifer (Figures 2-4, 

Appendix C). 

 Mixed-conifer.—Mixed-conifer forest transects burned by high-severity fire had an average of 

709 fewer live trees/ha and 63% lower canopy cover compared to low-severity fire and an average of 960 

fewer live trees/ha and 58% less canopy cover compared to unburned transects (Table 4). Transects 

burned by high-severity had an average of 470 fewer large live trees/ha compared to low-severity fire and 

an average of 429 fewer large live trees/ha compared to unburned mixed-conifer forests.  Post-fire there 

were more snags on transects burned by high-severity than low-severity and unburned transects.  There 

were significantly more large snags on mixed-conifer transects burned by high-severity fire than 

unburned transects, but there was no significant difference in large snag densities on high versus low-

severity fire transects.  On average, transects burned by high-severity fire had 411 more snags/ha than 

low-severity and 375 more snags/ha than unburned transects.  Transects that were burned by high-severity 

fire also had an average of 117 more large snags/ha on unburned transects.  No statistical differences in 
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total live tree, total snag densities, and canopy cover were found on mixed-conifer transects burned by 

low-severity fire versus unburned transect due to minimal low-severity ground fire effects in these forests.   

 Ponderosa pine.—Ponderosa pine forest transects burned by high-severity fire had an average of 

495 fewer total live trees/ha and 50% less canopy cover compared to low-severity fire and an average of 

343 fewer live trees/ha and 41% less canopy cover compared to unburned transects (Table 4). Transects 

burned by high-severity had an average of 197 fewer large live trees/ha compared to low-intensity fire 

and an average of 174 fewer large live trees/ha compared to unburned ponderosa pine forests.  Post Warm 

fire I found an average of 804 more snags/ha on transects burned by high-severity fire than unburned 

transects.  However contrary to expectations, there was no statistical difference in total snag density 

between transects burned by high- and low-severity fire.  Large snag density on transects burned by high-

severity fire averaged 191 more snags/ha compared to low-severity fire, and 212 more snags/ha compared 

to unburned transects.  On average there were also 21 more snags/ha on low-severity fire transects 

compared to unburned transects.  No other statistical differences in tree or snag densities and canopy 

cover were found when forests burned by low-severity fire were compared to unburned transects.   

Ground Cover 

 The percentage of live ground cover was greater on mixed-conifer transects burned by high-

severity fire compared to low-severity fire and unburned transects.  In contrast, there was no significant 

difference in the percentage of ground cover when ponderosa pine forests were compared across fire 

severities (Table 4, Figure 5.1, 5.2).  The dominant flora (forbs and shrubs) found on transects were 

identified to species and reported by forest type and fire severity (Appendix D).   

 Mixed-conifer.—Mixed-conifer ground plots burned by high-severity fire averaged 17% more 

ground cover than low-severity fire and 18% more ground cover than unburned transects.  No statistical 

difference in ground cover was found between transects burned by low-severity fire and unburned 

transect.   
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 Ponderosa pine.—No statistical difference in the percent of ground cover was found when 

transects were compared across fire severity types, possibly due to low vegetative growth on pine 

transects in the first year (2007) of observation (Figure5.2, Appendix C).   

Sapling Counts 

 There were more saplings in the 20m radius plots in mixed-conifer and ponderosa pine forest 

burned by high-severity fire than in low-severity.  There were more saplings in mixed-conifer forests 

burned by high-severity fire than in unburned forests, but there were no significant difference between 

pine forests burned by high-severity fire versus unburned.  There were also fewer saplings in mixed-

conifer and ponderosa pine transects burned by low-severity fire compared to unburned forest transects 

(Table 4, Figure 6.1, 6.2).   

 Mixed-conifer.—Mixed-conifer burned by high-severity fire had an average of 47 more saplings 

per transect than low-severity fire and 43 more saplings per transect than unburned transects.  Transects 

burned by low-severity fire had an average of 4 fewer saplings per transect than unburned transects.   

 Ponderosa pine.—Ponderosa pine burned by high-severity fire had an average of 12 more 

saplings per transect than low-severity fire transects.  However no significant difference in the number of 

saplings was found when transects burned by high-severity fire were compared to unburned transects.  

Transects burned by low-severity fire had 10 fewer saplings per transect than unburned transects.   

Cone Productivity 

 Mixed-conifer and ponderosa pine transects burned by high-severity fire had significantly fewer 

cones than low-severity fire and unburned transects.  No significant difference in the number of cones 

were found along transects burned by low-severity fire versus unburned transects (Table 4, Figure 7.1, 

7.2).   

 Mixed-conifer.—Mixed-conifer transects burned by high-severity fire had an average of 122 

fewer cones per transect than low-severity fire and 297 fewer cones per transect than unburned transects.  

There was no significant difference in the number of cones counted on mixed-conifer transects burned by 

low-severity fire compared to unburned transects.   



17 

 Ponderosa pine.—Ponderosa pine transects burned by high-severity fire had an average of 267 

fewer cones per transect than low-severity fire and 239 fewer cones per transect than unburned transects.  

There was no significant difference in the number of cones counted on ponderosa pine transects burned 

by low-severity fire compared to unburned transects.   

Bird and Mammal Abundance 

 A total of 17 bird and mammal species were observed at least once during the four study years 

(Table 5).  Of the birds and mammals reported in the diets of goshawks on the NKRD (Reynolds et al. 

1994, Salafsky et al. 2005), only black-tailed jackrabbits were not observed.  However, cotton-tailed 

rabbits, dusky grouse, rock squirrels, red-naped sapsuckers, and black-tailed jackrabbits were observed 

four or fewer times during transect surveys.  Of the seven species with ≥60 observations per year (Table 

5, those species included in predictive models), the hairy woodpecker (low: p=.46, unburned: p<.01) and 

northern flicker (low: p=.02, unburned: p=.05) were the only species that were more abundant in burned 

(high- or low-severity) than unburned forests.  In contrast, golden-mantled ground squirrels (low: p=.03, 

high: p=<.01) were less abundant in burned (high- and low-severity) than unburned forests.  Similarly, 

red squirrels (low: p<.01, unburned: p<.01) were less abundant in forests burned by high-severity fire 

than low-severity and unburned forests.  American robin, chipmunk, and Steller’s jay abundances were 

similar in burned and unburned forests (Appendix A).   

Predictive Models 

 Models of fire severity differences on vegetation composition and structure show that fire 

severity was an important factor for predicting the abundance of some birds and mammals, but not all 

species (Table 3).  The top model predicting American robin abundances contained year, forest type, and 

live ground cover covariates and had a weight of evidence of 0.98.  American robin abundance was 

highest in mixed-conifer forests sites with greater ground vegetation cover. The top model predicting 

chipmunk abundance also contained year, forest type, and live ground cover and had a weight of evidence 

of 0.56.  A second competing model, (ΔAIC ≤2) contained year and forest type covariates and carried a 

weight of evidence of 0.28.  While the inclusion of ground cover contributed some weight to the top 
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model, the second model with fewer covariates is more parsimonious and therefore may be a better 

predictor of chipmunk abundance.  In the top model, chipmunk species were found to be most abundant 

in ponderosa pine then mixed-conifer forests.  The top model for Steller’s jay’s had a weight of evidence 

of 0.23. Three other competing models, including the null model, carried weight suggesting that we may 

not have had a sufficiently good model to predict jay abundance.  Northern flicker abundance was 

predicted best by the model containing year and canopy cover covariates with a weight of evidence of 

0.44.  Two other competing models also carried weight (year, ground cover, Wt=0.27; and year, forest 

type, ground cover, Wt=0.17).  Either of these models, especially the second which had fewer covariates, 

could be an equal or better predictor of abundance.  In the top model, flickers were most abundant in 

forests with less canopy cover, while in the second and third models they were most abundant in forests 

with more ground vegetation cover.   

 Fire severity was an important factor for predicting the abundance of three species showing the 

most sensitivity to fire effects.  Fire severity was included in the best model for golden-mantled ground 

squirrels, hairy woodpeckers, and red squirrels.  The top models for estimating abundances of golden-

mantled ground squirrel (Wt = 0.64), hairy woodpecker (Wt = 0.51), and red squirrel (Wt = 1.00) contained 

year, fire severity, and forest type.  Golden-mantled ground squirrels had a second competing model 

containing year, forest type, and ground vegetation cover with a weight of evidence of 0.30.  Since these 

competing models contained the same number of covariates, either model may equally predict abundance. 

In the top model, golden-mantled ground squirrels were more abundant in unburned ponderosa pine 

forests.  Red squirrels were equally abundant in mixed-conifer forests unburned or burned by low-severity 

fire.  In contrast, hairy woodpeckers were more abundant in forests burned at high- and low-severity.  

However, a second competing model with year and fire severity (no forest type) had an almost equal 

weight of evidence of 0.49, suggesting that forest type contributed minimal weight to the top model.  This 

second model had fewer covariates and may be an equally acceptable or better predictor of hairy 

woodpecker abundance.  Fire severity was in the top model predicting the total abundance of individuals 

in the woodpecker guild.  This model contained year and fire severity and had a weight of evidence of 
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0.72.  A second competing model included year, fire severity, and forest type with a weight of evidence of 

0.28.  Woodpecker guild abundance was highest in forests burned by high-severity fire with some 

evidence in the second competing model that abundance in this guild was higher in ponderosa pine than 

mixed-conifer forests.   
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DISCUSSION 

 

 

 

 Forests are dynamic ecosystems that undergo change through vegetation growth, senescence, and 

mortality, and natural (i.e., fire, insects, diseases, and wind) and anthropogenic disturbances (i.e., tree 

harvests).  These changes have both short and long term impacts on habitats and the animals that depend 

upon them (Bartels and Thompson 1993).  The 2006 Warm Fire started on 4 June and burned 235 

km
2
 of ponderosa pine and mixed-conifer forest on the North Kaibab Ranger District.  During 

the initial 18 days, the Warm Fire was managed as a wildland-use fire during which 77 km
2
 was 

burned mostly at low- to moderate-severity.  However, on 25 June the weather changed and 

winds pushed the fire south burning approximately 158 km
2
 mostly at high-severity until 

containment on 4 July.  As expected, the high-severity burn portions of the Warm Fire had the 

greatest influence on habitat composition and structure, reducing canopy cover, number of live trees, and 

conifer cone production.  However, these losses were countered by a significant flush of new ground 

cover, especially in mixed-conifer forests, and creation of an abundance of snags, which are important 

habitats to many birds and mammals—especially to species in the woodpecker guild.  Most of the soil’s 

O horizon (organic material), which contains food resources for birds and mammals, was also consumed 

in high-severity fire, exposing the mineral soil in areas (personal observation).  Mixed-conifer forests 

burned at high-severity had a greater percentage of live ground cover post-fire than forests burned by 

either low-severity or unburned areas, a response consistent with the idea that fire can be  a driver of 

understory diversity and structure (Laughlin et al. 2006, McMasters 2010).  Higher levels of herbaceous 

ground vegetation in areas of high-severity fire results from stimulation of fine root production, 

decomposition, nitrogen mineralization, and other micro-environmental processes (Covington et al. 1997, 

Turner et al. 1997).  Grass, forb, and shrub cover can also increase with a reduction in tree competition 

(reduced shading) frequently diversifying the plant community (Moore and Deiter 1992, Covington et al. 

1997).  In low-severity burned areas an insufficient amount of the O horizon may have been consumed by 
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the fire, limiting mineral nutrient returns to the soil, constraining a flush of vegetative growth observed in 

some high-severity burns (Laughlin and Abella 2007).  Sapling density, especially aspen, was high in 

areas burned at high-severity fire in the Warm Fire; a finding similar to other studies of fire effects on 

aspen regeneration (Smith et al. 2011).  Large clumps of small diameter pine saplings were present on 15 

or more unburned ponderosa pine transects.  In the absence of regular surface fire, establishment and 

growth of patches and clumps of dense saplings, both beneath overstory trees and in opening between tree 

groups restrict the detection and access to ground prey (ground squirrels, rabbits, hares, grouse, turkey) by 

winged predators such as the northern goshawk that hunt in the sub-canopy spaces of forests (Reynolds et 

al. 1992, 1996, Moore et al. 1999, Covington 2003, Koprowski et al. 2006).  Loss of the grass, forb, and 

shrub vegetation (which support many different plants, insects, birds, and mammals) due to ingrowth and 

shading by dense regeneration, especially in openings between tree groups, can result in reductions in 

biodiversity, trophic interactions, and biological productivity and efficiency (Moore et al. 2006, Reynolds 

et al. 2006, Kalies et al. 2012, Reynolds et al. 2013).   

 Red squirrel and golden-mantled ground squirrel abundances were lower in areas burned by high-

severity fire, likely because of the loss of cone producing large live trees, nesting and denning sites 

(woody debris, logs, stumps, live tree nests), food resources (e.g., conifer cone middens, herbaceous 

plants), and live tree canopy.  Direct mortality from fire, loss of cover, increased exposure to predators, 

and increased distance from re-colonizing populations are other possible factors affecting their post-burn 

abundances in high-severity fire areas (Converse et al. 2006, Koprowski et al. 2006, Kalies et al. 2012).  

Depending on scale, due to positive post-fire influences on understory productivity, food resources, and 

habitats of high-severity fire can benefit other small mammals such as mice (peromyscus spp.) and voles 

(Microtus spp.) (Kalies et al. 2012), which were not included in my study.   

 Low-severity fire, that consumes ground fuels and reduces tree regeneration, can benefit many 

mammal and bird species by restoring the composition, structure, and fine-scale habitat patchiness, 

including snags, logs, and woody debris, that typified ponderosa pine and mixed-conifer forests before 

fire suppression (Carey and Harrington 2001, Covington and Moore 1994, Kennedy and Fontaine 2009, 
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Kalies et al. 2012, Larson and Churchill 2012, Reynolds et al. 2013).  These and other studies have shown 

that tree squirrels, rabbits, turkeys, and grouse respond favorably to habitat patchiness and diversity (tree, 

shrub, and grass / forb cover) created by low-severity ground fires (Allen et al. 1982, Schroeder 1984, 

Reynolds et al. 1992, Kalies et al. 2012).  Chipmunks in this study were not affected by fire at any 

intensity level; suggesting that they may be capable of utilizing a wide range of habitats.  Because 

chipmunks and red squirrels abundances were unaffected by low-severity fire, and were similar to 

abundances in unburned forests, restoration of vegetation composition and pattern with regular low-

severity ground fire could have both short and long-term benefits for bird and mammal communities in 

mixed-conifer and ponderosa pine forests on the Kaibab Plateau, while causing minimal impact on some 

species.   

 Post-fire increases in large diameter fire-killed snags and canopy cover reduction benefit 

most woodpecker species and other birds that occupy more open forests (Murphy and 

Lehnhausen 1998, Jackson et al. 2002, Bock and Block 2005, Saab et al. 2009).  In this study, 

modeled woodpecker species responded positively to high-severity fire.  The abundance of 

northern flickers, a cavity nester, was associated with decreased canopy cover; a response that 

was not unexpected because this woodpecker forages in openings associated with both burned 

and unburned open canopied forests (Kotliar et al 2007).  Large snags provide suitable nesting 

habitats and an abundant food resources for woodpeckers and other cavity-nesting and bark-

gleaning species (Saab and Vierling 2001, Saab et al. 2005), but at least for bark-gleaning 

species the flush of sub-bark insects can be short-lived.  Indeed, Bock and Block (2005) reported 

that hairy woodpecker home ranges varied by season and fire severity.  Wintering foraging 

ranges were smaller two years post-fire, when food supplies were abundant, than six years post-

fire.  Northern flickers followed a similar pattern.  Over time, as food supplies diminishes, 

woodpeckers traveled longer distances to find food, eventually dispersing away from burned 
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areas.  Thus, the beneficial effects of high-severity fire for species in the woodpecker guild can 

be short-lived, especially relative to the length time required for the forest to regrow and for food 

supplies and cavity-nesting opportunities to replenish.   

 The effects of low-severity fire on bird abundance were mixed. Of the four bird species I 

was able to model; hairy woodpecker and northern flickers were the only species to show a 

distinctly positive relationship to high- (and low-: hairy woodpeckers) severity fire.  American 

robins and Steller’s jay’s abundances were similar in burned and unburned forests in this study.   

 Many of the birds and mammals that I surveyed are habitat generalists, a behavioral 

strategy allowing them to occupy a variety of habitats.  For example, ground cover was an 

important predictor of robin abundance whereas fire severity had no effect.  While other studies 

have shown that robins can respond positively to post-fire vegetative growth and species 

composition (Sackett and Haase 1998, Kotliar et al 2007, George and Zack 2008), robin 

abundance estimates in my study area were similar across burn severities, despite fire severity.  

While vegetative re-growth in newly opened areas following high-severity fire may contribute to 

the abundance of robins, grass, forb, and shrub openings found throughout ponderosa pine and 

mixed-conifer forests in my study also provide foraging opportunities in unburned areas as well.  

The cavity excavating northern flicker that forages in grassy open-canopied forests (Saab and 

Vierling 2001, Saab et al. 2005, Kotliar et al. 2007, Wiebe et al. 2008), was also uniformly 

abundant across the fire strata in my study.  Canopy openings and increased ground vegetation (a 

covariate found in a competing model) were both important predictors of flicker abundance, 

suggesting co-linearity between these two covariates.  The Steller’s jay, a habitat and foraging 

generalists with a diverse omnivorous diet (Greene et al. 1998), was equally abundant across 

burn severities and forest types in my study.  Other studies examining the effects of fire on 
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Steller’s jays and American robins showed both positive and inconclusive responses to post-fire 

habitat changes due to fire severity as well (Bock and Block 2005, Kotliar et al. 2007, Dickson et 

al. 2009).   

 Of the seven birds and mammals I modeled, all but red squirrels and golden mantled 

ground squirrels demonstrated adaptable use of habitat conditions-- including conditions 

resulting from forest type and fire severity.  The high number of species included in this study 

that were habitat generalists contributed to the difficulty of identifying effects of fire severity on 

the bird and mammal communities in ponderosa pine and mixed-conifer forests.  By competing 

models that included habitat covariates specific to each species, I hoped to explore the 

relationship between fire, habitat change, and abundance of each species.  What I did not 

consider in this study was the effects of past forest management on the predictive models.  

During the past century, nearly the entire North Kaibab Ranger District received single tree 

harvests.  In the 1960s through 1990 more intensive management was introduced including small 

< 4ha clearcuts and 12-16 ha shelterwood/seed tree harvests (Sesnie and Bailey 2003).  I 

attempted to establish a sample of transects in the three burn/no burn categories in order to  

equally sample the most ubiquitous past tree harvesting prescriptions, single-tree and seed-tree, 

on the North Kaibab Ranger District.  Unfortunately, due to the specific location of the Warm 

Fire, several burn severity areas did not contain equal areas of these management prescriptions 

suitable for situating transects; achieving a balance of management prescription by forest type 

was not possible.  Given the differences in tree densities in single-tree harvested areas versus 

seed-tree harvested areas, one might expect some corresponding differences in bird and mammal 

abundances in the two treatments. The extent to which treating the two prescriptions as one on 

my final abundance estimates is unknown without further examination.    
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CONCLUSIONS 

 

 

 

 Fire is the most important natural disturbance in southwestern pine and mixed-conifer 

forests (Covington and Moore 1994, Fulé et al. 1997).  Frequent, low-severity surface fire was 

part of the evolutionary history of ponderosa pine and lower elevation dry mixed-conifer forests 

(Savage and Swetnam 1990, Kalies et al. 2012, Larson and Churchill 2012, Reynolds et al. 2013) 

and high-severity crown fires seldom occurred and was confined to small patches (Pyne 1996).  

Frequent low severity surface fire in these forest types maintained an open grass-forb-shrub 

matrix and a spatial pattern of trees aggregated into clumps, groups, and patches, with scattered 

individual trees (White 1985, Cooper 1961, Larson and Chruchill 2012, Reynolds, et al. 2013).  

Both the tree species composition (fire-tolerant and shade-intolerant trees) and spatial pattern 

resulted from a feed-back between fire and vegetation.  Frequent surface fire resulted in a 

characteristic composition and structure that in turn supported a low severity, surface fire regime 

(Larson and Churchill 2012).  This historical composition and structure manifested in a fine-

scale (<4ha), highly interspersed mix of habitats (grass-forb-shrub vegetation), dense groups of 

trees with interlocking crowns, snags, logs, and woody debris; (Reynolds et al. 2013) that 

supported a variety of bird and mammal species (rabbits, ground squirrels, grouse, turkeys, and 

tree squirrels). 

 In my study, each of the seven species (four birds, three mammals) with sufficient 

numbers of detections to model responded to fire or lack of fire in a variety of ways.  Low-

severity fire was significantly detrimental to only golden-mantled ground squirrels while three of 

the seven species (chipmunks, robin, and Steller’s jays) showed no difference in abundance 

across the three burn strata.  Furthermore, two species (red squirrel and golden-mantled ground 

squirrel) showed negative responses to high-severity fire while two other species (hairy 
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woodpeckers, northern flickers) showed a positive response to high-severity fire.  This summary 

of responses suggested that high-severity fire on the North Kaibab Ranger District could be more 

detrimental to the larger suite of important goshawk prey than low-severity burn.  Similar finding 

have been summarized in a literature review of the overall bird community response to high-

severity fire in ponderosa pine forests, where only two species responded positively to high-

severity, four species responded positively to moderate-severity fire, and 9 bird species 

responded negatively to high-severity fire (Bock and Block 2005).  Other studies of low-severity 

fire, including prescribed fire, reported either few changes in cavity-nesting bird abundance 

(Horton and Mannan 1988) or declines in species common in areas with heavy forest cover, 

where birds favored more open forest conditions (Marshall 1963). 

 While knowledge of the effects of low-severity fire on birds and mammals in ponderosa 

pine and mixed-conifer is increasing, more information is needed to provide robust management 

recommendations (Bock and Block 2005).  Nonetheless, during the last century vegetative 

species composition and structure in southwestern forests has changed to fire intolerant and 

shade tolerant tree species where forest openings are overgrown (Cooper 1960, Covington and 

Moore 1994).  Heavy accumulations of ground and ladder fuels, and increased frequencies and 

sizes of stand-replacement fires also characterize these forests (Cooper 1960, Covington and 

Moore 1994).  Grass-forb-shrub vegetation productivity, biodiversity, and bird and mammal 

habitats have also declined due to tree shading and increased habitat homogeneity (Kalies et al. 

2012, Reynolds et al. 2013).  In response, there is a demand for recommendations to restore the 

historical species compositions, structures, and fine-scale spatial patterns, which facilitate the 

return of low-severity fire regimes and habitat heterogeneity that characterized the evolutionary 

environment of native plants and animals in these forests (Larson and Chuchill 2012).  While my 
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ability to estimate abundances was limited by species detectability, to a small sample of the suite 

of species in Kaibab goshawk diets,  low-severity fire was found to benefit or have a neutral 

impact on many of species in this study.  Restoration of a fine-scale mix of habitats (small tree 

groups interspersed within a grass-forb-shrub matrix, snags, and logs) are needed to support 

populations of the majority of bird and mammals important to many food webs.   
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Table 1. Transect classification by forest type and fire severity. 

  

 
Unburned 

Sub-

total 
Burned 

Sub-

total 

Grand 

Total 

n=60 
Forest Type 

Pine 

n=23 

Mixed 

Conifer 

n=17 

n=40 

Pine 

n=7 

Mixed 

Conifer 

n=13 n=20 

Fire Severity 
High 

n=3 

Low 

n=4 

High 

n=9 
Low 

n=4 
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Table 2. Pre- and Post-fire transect classification. 

No. Transects 60 pre-existing 
11 established 

post-fire 

Grand 

Total 

n=60 

Burn Status Unburned Burned Burned 

No. Transects n=51 n=9 n=11 

Selected for sampling n=40 n=9 n=11 

Fire Severity 
 

High 

n=9 

High 

n=3 

Low 

n=8 
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Table 3.  Prey species abundance related to habitat and fire severity. 

 

American Robin 

    Model K AIC   ΔAIC Wt 

Year + Forest Type + Ground Cover 8 1901.71 0.00 0.98 

Year + Ground Cover 7 1910.17 8.46 0.01 

Year + Forest Type 7 1913.30 11.59 0.00 

Year + Severity + Forest Type  9 1915.15 13.44 0.00 

Year + Severity 8 1921.83 20.12 0.00 

Year + Snag Density (>20 cm dbh) 7 1924.73 23.03 0.00 

Year 6 1925.94 24.23 0.00 

Year + Tree Density 7 1927.31 25.60 0.00 

Year + Tree Density (>20 cm dbh) 7 1927.47 25.76 0.00 

Null 4 1936.11 34.41 0.00 

     Chipmunks 

    Model K AIC   ΔAIC Wt 

Year + Forest Type + Ground Cover 8 1774.36 0.00 0.56 

Year + Forest Type 7 1775.71 1.34 0.28 

Year + Severity + Forest Type  9 1779.00 4.63 0.05 

Year + Tree Density (>20 cm dbh) 7 1779.18 4.81 0.05 

Year + Snag Density (>20 cm dbh) 7 1780.23 5.87 0.03 

Year + Canopy Cover 7 1781.53 7.16 0.02 

Year + Ground Cover 7 1784.31 9.95 0.00 

Year 6 1785.37 11.00 0.00 

Year + Severity 8 1785.54 11.18 0.00 

Year + Cones 7 1787.21 12.85 0.00 

Null 4 1788.65 14.29 0.00 

Model rankings were based upon Akaike’s Information Criteria (AIC), AIC difference (ΔAIC), and 

Akaike’s model weight (Wt).  Only 2008 – 2010 data could be included in the predictive models and 

evaluated using AIC.  
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Table 3 (continue).  Prey species abundance related to habitat and fire severity. 

Golden-mantled Ground Squirrel 

    Model K AIC   ΔAIC Wt 

Year + Severity + Forest Type  9 1449.19 0.00 0.64 

Year + Forest Type + Ground Cover 8 1450.72 1.53 0.30 

Year + Forest Type 7 1454.09 4.90 0.06 

Year + Severity 8 1465.20 16.01 0.00 

Year + Tree Density (>20 cm dbh) 7 1468.38 19.19 0.00 

Year + Canopy Cover 7 1469.00 19.82 0.00 

Year + Ground Cover 7 1473.23 24.05 0.00 

Year 6 1476.62 27.43 0.00 

Year + Cones 7 1478.40 29.21 0.00 

Null 4 1485.88 36.69 0.00 

     Hairy Woodpecker 

    Model K AIC   ΔAIC Wt 

Year + Severity + Forest Type  9 1683.01 0.00 0.51 

Year + Severity 8 1683.12 0.11 0.49 

Year + Snag Density (>20 cm dbh) 7 1704.34 21.33 0.00 

Year + Tree Density 7 1711.38 28.37 0.00 

Year + Tree Density (>20 cm dbh) 7 1713.96 30.95 0.00 

Year + Canopy Cover 7 1714.21 31.20 0.00 

Year 6 1715.41 32.40 0.00 

Year + Forest Type 7 1716.92 33.91 0.00 

Null 4 1739.45 56.44 0.00 

Model rankings were based upon Akaike’s Information Criteria (AIC), AIC difference (ΔAIC), Akaike’s 

model weight (Wt).  Only 2008 – 2010 data could be included in the predictive models and evaluated 

using AIC.  
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Table 3 (continue). Prey species abundance related to habitat and fire severity. 

Northern Flicker 

    Model K AIC   ΔAIC Wt 

Year + Canopy Cover 7 3886.02 0.00 0.44 

Year + Ground Cover 7 3886.96 0.94 0.27 

Year + Forest Type + Ground Cover 8 3887.87 1.85 0.17 

Year + Tree Density (>20 cm dbh) 7 3889.46 3.44 0.08 

Year + Severity 8 3892.02 6.00 0.02 

Year + Severity + Forest Type  9 3893.97 7.95 0.01 

Year + Snag Density (>20 cm dbh) 7 3895.66 9.64 0.00 

Year 6 3896.28 10.26 0.00 

Year + Forest Type 7 3897.14 11.12 0.00 

Null 4 3910.16 24.14 0.00 

     Red Squirrel 

    Model K AIC ΔAIC Wt 

Year + Severity + Forest Type  9 1744.94 0.00 1.00 

Year + Tree Density (>20 cm dbh) 7 1757.62 12.69 0.00 

Year + Canopy Cover 7 1767.14 22.20 0.00 

Year + Severity  8 1769.29 24.35 0.00 

Year + Forest Type 7 1770.19 25.25 0.00 

Year + Forest Type + Ground Cover 8 1772.08 27.14 0.00 

Year + Cones 7 1778.40 33.46 0.00 

Year 6 1780.56 35.62 0.00 

Year + Snag Density (>20 cm dbh) 7 1782.07 37.13 0.00 

Year + Ground Cover 7 1782.27 37.33 0.00 

Null 4 1795.42 50.48 0.00 

Model rankings were based upon Akaike’s Information Criteria (AIC), AIC difference (ΔAIC), Akaike’s 

model weight (Wt).  Only 2008 – 2010 data could be included in the predictive models and evaluated 

using AIC.  
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Table 3 (continue).  Prey species abundance related to habitat and fire severity. 

 

Steller’s Jay 

    Model K AIC ΔAIC Wt 

Year + Forest Type 7 1577.72 0.00 0.23 

Null 4 1577.95 0.22 0.20 

Year 6 1578.70 0.98 0.14 

Year + Forest Type + Ground Cover 8 1579.60 1.88 0.09 

Year + Tree Density (>20 cm dbh) 7 1579.80 2.07 0.08 

Year + Cones 7 1580.51 2.79 0.06 

Year + Ground Cover 7 1580.66 2.94 0.05 

Year + Tree Density 7 1580.67 2.94 0.05 

Year + Severity 8 1580.95 3.23 0.05 

Year + Severity + Forest Type  9 1581.14 3.42 0.04 

     Woodpecker Guild 

    Model K AIC ΔAIC Wt 

Year + Severity 8 2028.77 0.00 0.72 

Year + Severity + Forest Type  9 2030.66 1.89 0.28 

Year + Snag Density (>20 cm dbh) 7 2048.31 19.54 0.00 

Year + Tree Density 7 2057.74 28.97 0.00 

Year + Canopy Cover 7 2059.48 30.71 0.00 

Year + Tree Density (>20 cm dbh) 7 2059.92 31.15 0.00 

Year 6 2060.03 31.26 0.00 

Year + Forest Type 7 2061.07 32.30 0.00 

Null 4 2083.04 54.27 0.00 

Model rankings were based upon Akaike’s Information Criteria (AIC), AIC difference (ΔAIC), Akaike’s 

model weight (Wt).  Only 2008 – 2010 data could be included in the predictive models and evaluated 

using AIC.  
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Table 4. Transect metrics by forest type and fire severity. 

 

Mixed Conifer - High Severity (n=9) Ponderosa Pine - High Severity (n=3) 

 
 

Mean   SD Min Max 

 

  Mean  SD Min Max 

Overall Tree Density 9.46 12.15 0 32.6       Overall Tree Density  1.24  2.14 0  3.71 

Tree Density  >20cm dbh  9.46 12.15 0 32.6 Tree Density  >20cm dbh 1.24 2.14 0 3.71 

Overall Snag Density 476.93 283.04 21.32 794.33 Overall Snag Density 810.66 451.48 501.43 1328.76 

Snag Density >20cm dbh 154.82 119.97 21.32 360.25 Snag Density >20cm dbh 215.05 77.86 166.75 304.87 

% Canopy Cover 4.78 3.6 0 10 % Canopy Cover 3.33 3.51 0 7 

% Ground Vegetation 72.1 14.61 35.83 92.83 % Ground Vegetation 63.94 19.46 14 84.78 

Sapling Regeneration 58.75 6.79 0 150 Sapling Regeneration 33.33 33.33 0 100 

Cones Production 41.33 102.82 0 480 Cones Production 20.83 65.72 0 229 

Mixed Conifer  Low Severity (n=4) Ponderosa Pine - Low Severity (n=4) 

 
 

Mean SD Min Max 

 
 

Mean SD Min Max 

Overall Tree Density 718.91 243.47 479.48 1057.48 Overall Tree Density 496.4 340.99 266.02 997.83 

Tree Density  >20cm dbh 479.24 286.77 170.85 840.96 Tree Density  >20cm dbh 198.06 64.28 141.93 279.55 

Overall Snag Density 65.69 49.15 0 103.42 Overall Snag Density 135.69 211.62 0 451.37 

Snag Density >20cm dbh 55.02 42.39 0 103.3 Snag Density >20cm dbh 24 25.71 0 52.44 

% Canopy Cover 67.75 2.87 64 71 % Canopy Cover 53.75 13.07 38 68 

% Ground Vegetation 54.77 17.69 11.3 78.11 % Ground Vegetation 53.61 11.39 33.77 78.75 

Sapling Regeneration 

 

11.31 2.95 2.5 30.75 Sapling Regeneration 

 

21.41 6.11 0 95 

Cones Production 163.75 231.84 14 939 Cones Production 287.38 297.1 18 1132 

Mixed Conifer - Unburned (n=17) Ponderosa Pine - Unburned (n=23) 

 
 

Mean SD Min Max 

 
 

Mean SD Min Max 

Overall Tree Density 969.01 629.42 141.48 2186.67 Overall Tree Density 343.91 467.01 20.4 2009.17 

Tree Density  >20cm dbh 438.41 189.55 119.72 682.83 Tree Density  >20cm dbh 175.22 136.48 20.4 522.63 

Overall Snag Density 101.72 183.16 0 772.59 Overall Snag Density 6.81 18.73 0 90.57 

Snag Density >20cm dbh 37.53 39.26 4.64 129.06 Snag Density >20cm dbh 2.88 4.2 0 16.35 

% Canopy Cover 62.18 24.48 14 84 % Canopy Cover 44.48 24.8 3 88 

% Ground Vegetation 54.46 15.01 23.49 81.75 % Ground Vegetation 56.23 21.84 12.75 95.75 

Sapling Regeneration 15.67 1.43 0 45.45 Sapling Regeneration 31.67 3.32 0 106 

Cone Production 337.87  428.13  0 2663 Cone Production 259.72 298.66 0 1100 

Tree and Snag densities are displayed in trees per hectare.  All other means are averages for 2007-2010.  n is the number of transects in a forest 

type and fire severity
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Table 5. Species Count Data.  

Species Counts by Fire Severity 

Species Common Name High Low Unburned 

 

2007 2008 2009 2010 2007 2008 2009 2010 2007 2008 2009 2010 

American Robin 0 29 79 29 3 0 12 10 27 60 53 92 

Black-tailed Jackrabbit 0 0 0 0 0 0 0 0 0 0 0 0 

Blue Grouse 0 0 0 0 0 0 0 0 1 0 0 1 

Chipmunk spp. 1 1 11 20 13 11 16 19 38 78 76 92 

Clark's Nutcracker 1 23 7 3 4 0 2 2 21 17 7 3 

Cottontail Rabbit 0 0 0 0 0 0 0 0 0 0 1 1 

Downy Woodpecker 6 10 5 0 2 2 2 6 12 4 5 3 

Golden-mantled Ground Sqrl. 0 1 1 5 6 3 7 12 25 56 98 106 

Hairy Woodpecker 37 51 39 21 19 22 33 13 41 38 39 20 

Kaibab Squirrel 0 0 1 0 2 4 1 4 7 20 8 11 

Mourning Dove 5 3 14 0 0 1 4 0 8 14 7 7 

Northern Flicker 51 52 102 54 25 23 26 19 154 141 170 145 

Red-naped Sapsucker 0 0 0 0 0 0 0 0 4 0 0 0 

Red Squirrel 0 1 2 1 6 10 29 32 127 83 123 118 

Rock Squirrel 0 0 0 0 0 0 0 0 0 0 0 2 

Steller's Jay 5 8 18 2 8 6 10 9 46 45 50 45 

Three-toed Woodpecker 0 4 2 1 0 0 1 2 5 0 4 4 

Williamson's Sapsucker 0 0 0 0 0 1 2 0 6 12 7 7 

Count data for 2007 only includes one late summer sample period while 2008-2010 include two sample periods.
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Figure 1.  Kaibab Plateau Study Area  
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Figure 2.1.  Total tree density.  Horizontal bold lines represent the category medians.  Dashed lines 

represent the group means.  Ranges are represented by the whiskers and outliers by ‘o’. 

 

 

 

Figure 2.2.  Tree density >20 cm dbh (Large).  Horizontal bold lines represent the category medians.  

Dashed lines represent the group means.  Ranges are represented by the whiskers and outliers by ‘o’  
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Figure 3.  Canopy cover.  Horizontal bold lines represent the category medians while the dashed lines 

represent the group means.  Category ranges are represented by the whiskers and outliers by ‘o’. 
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Figure 4.1.  Total snag density.  Horizontal bold lines represent the category medians.  Dashed lines 

represent the group means.  Category ranges are represented by the whiskers and outliers by ‘o’. 

 

 

 

Figure 4.2.  Snag density >20 cm dbh (Large). Horizontal bold lines represent the category medians.  

Dashed lines represent the group means.  Ranges are represented by the whiskers and outliers by ‘o’. 
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Figure 5.1.  Ocular estimates of mixed conifer ground cover.  Transects are by year and fire severity. 

 

 

 
Figure 5.2.  Ocular estimates of ponderosa pine ground cover.  Transects are by year and fire severity. 
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Figure 6.1.  Mixed conifer sapling counts.  Transects are by year and fire severity. 

 

 

 
 Figure 6.2.  Ponderosa pine sapling counts.  Transects are by year and fire severity.   

  

0

10

20

30

40

50

60

70

80

90

2007 2008 2009 2010

A
v

er
a

g
e 

N
o

. 
o

f 
 S

a
p

li
n

g
s 

p
er

 T
ra

n
se

c
t 

High

Low

Unburned

0

5

10

15

20

25

30

35

2007 2008 2009 2010

A
v

er
a

g
e 

N
o

. 
o

f 
S

a
p

li
n

g
s 

p
er

 T
ra

n
se

c
ts

  

High

Low

Unburned



42 

 
Figure 7.1.  Mixed conifer cone productivity.  Transects are by year and fire severity. 

 

 

 
Figure 7.2.  Ponderosa pine cone productivity.  Transects are by year and fire severity. 
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APPENDIX A 

 
 

     
Mixed Conifer 

 
 Ponderosa Pine 

 
Severity Abundance SE LCL UCL Year Availability SE LCL UCL Availability SE LCL UCL 

American 

Robin 

High 5.46 1.56 3.12 9.54 2007 0.04 0.01 0.03 0.07 0.02 0.01 0.01 0.03 

Low 2.81 1.16 1.25 6.29 2008 0.06 0.01 0.04 0.09 0.03 0.01 0.02 0.04 

Unburned 4.19 0.90 2.75 6.39 2009 0.10 0.02 0.07 0.14 0.04 0.01 0.03 0.07 

 
    

2010 0.09 0.02 0.07 0.13 0.04 0.01 0.02 0.06 

Chipmunks  

High 9.18 3.40 4.44 18.98 2007 0.02 0.01 0.01 0.04 0.07 0.02 0.04 0.11 

Low 9.25 3.27 4.62 18.51 2008 0.02 0.01 0.01 0.03 0.06 0.01 0.04 0.09 

Unburned 10.88 2.27 7.22 16.39 2009 0.02 0.01 0.01 0.04 0.07 0.02 0.05 0.11 

 
    

2010 0.03 0.01 0.02 0.05 0.09 0.02 0.06 0.13 

Clark's 

Nutcracker 

High 3.99 2.09 1.43 11.15 2007 0.03 0.02 0.01 0.10 0.03 0.02 0.01 0.10 

Low 1.60 1.11 0.41 6.27 2008 0.03 0.01 0.01 0.07 0.02 0.01 0.01 0.08 

Unburned 1.81 1.01 0.61 5.38 2009 0.01 0.01 0.00 0.03 0.01 0.01 0.00 0.03 

 
    

2010 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.02 

Downy 

Woodpecker 

High 4.83 2.76 1.57 14.83 2007 0.03 0.02 0.01 0.11 0.03 0.02 0.01 0.11 

Low 4.44 2.83 1.28 15.46 2008 0.01 0.01 0.00 0.05 0.01 0.01 0.00 0.04 

Unburned 1.75 1.03 0.55 5.52 2009 0.01 0.01 0.00 0.04 0.01 0.01 0.00 0.03 

 
    

2010 0.01 0.01 0.00 0.03 0.01 0.00 0.00 0.03 

Golden-

mantled 

Ground 

Squirrel 

High 1.19 0.82 0.31 4.56 2007 0.01 0.00 0.00 0.02 0.04 0.01 0.02 0.07 

Low 2.91 1.43 1.12 7.60 2008 0.01 0.00 0.00 0.02 0.04 0.01 0.02 0.07 

Unburned 7.96 2.22 4.61 13.75 2009 0.01 0.00 0.01 0.03 0.06 0.02 0.03 0.10 

 
    

2010 0.01 0.00 0.01 0.03 0.07 0.02 0.04 0.11 

Hairy 

Woodpecker 

High 9.52 2.30 5.93 15.29 2007 0.09 0.02 0.05 0.14 0.09 0.03 0.05 0.16 

Low 7.99 2.47 4.35 14.65 2008 0.05 0.01 0.03 0.08 0.06 0.02 0.03 0.10 

Unburned 2.53 0.66 1.52 4.22 2009 0.05 0.01 0.03 0.08 0.06 0.02 0.03 0.10 

 
    

2010 0.02 0.01 0.01 0.04 0.03 0.01 0.01 0.05 

Kaibab 

Squirrel 

High 0.07 0.11 0.00 1.67 2007 0.03 0.05 0.00 0.36 0.16 0.20 0.01 0.78 

Low 0.43 0.60 0.03 6.52 2008 0.05 0.07 0.00 0.50 0.23 0.28 0.01 0.87 

Unburned 0.28 0.34 0.02 3.12 2009 0.02 0.02 0.00 0.21 0.09 0.12 0.01 0.63 

     2010 0.03 0.04 0.00 0.34 0.15 0.19 0.01 0.77 
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       Mixed Conifer Ponderosa Pine 

 Severity Abundance SE LCL UCL Year Availability SE LCL UCL Availability SE LCL UCL 

Mourning 

Dove 

High 3.59 2.14 1.11 11.56 2007 0.02 0.01 0.01 0.07 0.05 0.04 0.01 0.21 

Low 0.75 0.62 0.15 3.81 2008 0.01 0.01 0.00 0.05 0.04 0.03 0.01 0.15 

Unburned 0.96 0.67 0.25 3.80 2009 0.02 0.01 0.01 0.07 0.05 0.04 0.01 0.20 

 
    

2010 0.01 0.00 0.00 0.02 0.01 0.01 0.00 0.07 

Northern 

Flicker 

High 6.86 1.30 4.73 9.96 2007 0.13 0.02 0.09 0.18 0.13 0.03 0.09 0.19 

Low 3.76 0.94 2.30 6.15 2008 0.06 0.01 0.04 0.08 0.06 0.01 0.04 0.09 

Unburned 4.81 0.86 3.39 6.83 2009 0.08 0.01 0.06 0.12 0.08 0.02 0.06 0.12 

 
    

2010 0.06 0.01 0.04 0.09 0.06 0.01 0.04 0.09 

Red Squirrel 

High 0.11 0.07 0.04 0.35 2007 0.28 0.07 0.16 0.42 0.05 0.01 0.03 0.08 

Low 6.30 2.16 3.22 12.33 2008 0.10 0.03 0.06 0.17 0.02 0.00 0.01 0.03 

Unburned 5.02 1.15 3.20 7.86 2009 0.17 0.04 0.10 0.27 0.03 0.01 0.02 0.04 

 
    

2010 0.17 0.04 0.10 0.27 0.03 0.01 0.02 0.04 

Steller's Jay 

High 3.60 1.36 1.72 7.53 2007 0.03 0.01 0.01 0.05 0.04 0.02 0.02 0.09 

Low 3.84 1.52 1.77 8.36 2008 0.01 0.00 0.01 0.03 0.02 0.01 0.01 0.04 

Unburned 4.27 1.32 2.33 7.84 2009 0.02 0.01 0.01 0.03 0.03 0.01 0.01 0.05 

 
    

2010 0.01 0.00 0.01 0.02 0.02 0.01 0.01 0.04 

Three-toed 

Woodpecker 

High 1.61 1.64 0.22 11.80 2007 0.03 0.03 0.00 0.19 0.01 0.01 0.00 0.08 

Low 2.33 2.37 0.32 17.06 2008 0.01 0.01 0.00 0.09 0.00 0.00 0.00 0.03 

Unburned 1.40 1.25 0.24 8.10 2009 0.02 0.02 0.00 0.14 0.01 0.01 0.00 0.05 

 
    

2010 0.02 0.02 0.00 0.14 0.01 0.01 0.00 0.05 

Williamson's 

Sapsucker 

High 0.00 0.00 0.00 0.00 2007 0.03 0.04 0.00 0.29 0.00 0.01 0.00 0.06 

Low 3.86 5.06 0.30 50.25 2008 0.03 0.04 0.00 0.30 0.01 0.01 0.00 0.06 

Unburned 5.55 6.80 0.50 61.28 2009 0.02 0.03 0.00 0.23 0.00 0.00 0.00 0.05 

 
    

2010 0.02 0.02 0.00 0.19 0.00 0.00 0.00 0.04 

Appendix A.  Abundance estimates by fire severity, and probability of availability by year and forest type, for all species.  Birds and mammals 

with ≥60 obs. per year in bold were used to test predictive models.  SE: Standard Error, LCL / UCL: Lower and Upper 95% Confidence Limits. 
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2007 

   

Mixed Conifer 

 

Ponderosa Pine 

Species common name Severity n   D LCL UCL   D LCL UCL 

American Robin 

High 0   0.12 0.04 0.32   0.05 0.01 0.15 

Low 3   0.06 0.02 0.21   0.02 0.01 0.10 

Unburned 27   0.09 0.04 0.22   0.04 0.01 0.10 

Chipmunk spp. 

High 1   0.09 0.02 0.35   0.31 0.09 1.00 

Low 13   0.09 0.03 0.34   0.31 0.10 0.98 

Unburned 38   0.11 0.04 0.30   0.36 0.15 0.86 

Clark's Nutcracker 

High 1 

 

0.14 0.02 1.08 

 

0.13 0.01 1.13 

Low 4 

 

0.05 0.00 0.61 

 

0.05 0.00 0.63 

Unburned 21 

 

0.06 0.01 0.52 

 

0.06 0.01 0.54 

Downy Woodpecker 

High 6   0.17 0.02 1.61   0.15 0.01 1.57 

Low 2   0.16 0.01 1.68   0.14 0.01 1.63 

Unburned 12   0.06 0.01 0.60   0.05 0.00 0.58 

Golden-mantled Ground 

Squirrel 

High 0 

 

0.00 0.00 0.04 

 

0.02 0.00 0.16 

Low 6 

 

0.01 0.00 0.06 

 

0.06 0.01 0.27 

Unburned 25 

 

0.03 0.01 0.12 

 

0.16 0.05 0.50 

Hairy Woodpecker 

High 37   0.42 0.16 1.07   0.45 0.16 1.26 

Low 19   0.35 0.12 1.02   0.38 0.11 1.20 

Unburned 41   0.11 0.04 0.30   0.12 0.04 0.35 

Kaibab Squirrel 

High 0 

 

0.00 0.00 0.60 

 

0.01 0.00 1.31 

Low 2 

 

0.01 0.00 2.35 

 

0.07 0.00 5.12 

Unburned 7 

 

0.01 0.00 1.13 

 

0.04 0.00 2.45 

Mourning Dove 

High 5   0.07 0.01 0.80   0.18 0.01 2.38 

Low 0   0.01 0.00 0.26   0.04 0.00 0.79 

Unburned 16   0.02 0.00 0.26   0.05 0.00 0.78 

Northern Flicker 

High 51 

 

0.44 0.22 0.88 

 

0.44 0.20 0.93 

Low 25 

 

0.24 0.10 0.54 

 

0.24 0.10 0.58 

Unburned 154 

 

0.31 0.15 0.60 

 

0.31 0.15 0.64 

Red Squirrel 

High 0   0.02 0.00 0.07   0.00 0.00 0.01 

Low 6   0.87 0.26 2.61   0.16 0.05 0.51 

Unburned 127   0.69 0.26 1.66   0.13 0.05 0.32 

Steller's Jay 

High 5   0.05 0.01 0.20   0.08 0.02 0.32 

Low 8   0.05 0.01 0.22   0.09 0.02 0.36 

Unburned 46   0.06 0.01 0.20   0.10 0.03 0.34 

Three-toed Woodpecker 

High 0 

 

0.05 0.00 2.29 

 

0.02 0.00 0.91 

Low 0 

 

0.07 0.00 3.31 

 

0.03 0.00 1.31 

Unburned 5 

 

0.04 0.00 1.57 

 

0.02 0.00 0.62 

Williamson's Sapsucker 

High 0   0.00 0.00 0.00   0.00 0.00 0.00 

Low 0   0.11 0.00 14.64   0.02 0.00 3.13 

Unburned 6   0.16 0.00 17.85   0.03 0.00 3.81 

Appendix B. 2007 Density (D) estimates for birds and mammals per hectare with one sample period.     
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2008 

   

Mixed Conifer 

 

Ponderosa Pine 

Species common name Severity n   D LCL UCL   D LCL UCL 

American Robin 

High 29   0.35 0.14 0.87   0.14 0.05 0.43 

Low 0   0.18 0.06 0.58   0.07 0.02 0.28 

Unburned 60   0.27 0.12 0.58   0.11 0.04 0.29 

Chipmunk spp. 

High 1 

 

0.17 0.05 0.63 

 

0.57 0.18 1.79 

Low 11 

 

0.17 0.05 0.62 

 

0.58 0.19 1.75 

Unburned 78 

 

0.21 0.08 0.54 

 

0.68 0.29 1.55 

Clark's Nutcracker 

High 23   0.10 0.01 0.80   0.09 0.01 0.84 

Low 0   0.05 0.00 0.44   0.03 0.02 0.13 

Unburned 11   0.05 0.01 0.39   0.04 0.00 0.40 

Downy Woodpecker 

High 10 

 

0.07 0.01 0.68 

 

0.06 0.01 0.65 

Low 2 

 

0.06 0.01 0.70 

 

0.06 0.00 0.68 

Unburned 4 

 

0.02 0.00 0.25 

 

0.02 0.00 0.24 

Golden-mantled  

Ground Squirrel 

High 1   0.01 0.00 0.07   0.05 0.01 0.30 

Low 3   0.02 0.00 0.12   0.11 0.02 0.50 

Unburned 56   0.06 0.02 0.21   0.30 0.10 0.91 

Hairy Woodpecker 

High 51 

 

0.49 0.19 1.26 

 

0.53 0.19 1.50 

Low 22 

 

0.41 0.14 1.21 

 

0.45 0.14 1.44 

Unburned 38 

 

0.13 0.05 0.35 

 

0.14 0.05 0.41 

Kaibab Squirrel 

High 0   0.00 0.00 0.60   0.01 0.00 1.30 

Low 4   0.02 0.00 3.26   0.10 0.00 5.66 

Unburned 20   0.01 0.00 1.56   0.06 0.00 2.71 

Mourning Dove 

High 3 

 

0.05 0.00 0.57 

 

0.13 0.01 1.78 

Low 3 

 

0.01 0.00 0.19 

 

0.03 0.00 0.58 

Unburned 3 

 

0.01 0.00 0.19 

 

0.04 0.00 0.58 

Northern Flicker 

High 52   0.42 0.21 0.84   0.42 0.20 0.90 

Low 23   0.23 0.10 0.52   0.23 0.09 0.56 

Unburned 141   0.29 0.15 0.58   0.30 0.14 0.62 

Red Squirrel 

High 1 

 

0.01 0.00 0.06 

 

0.00 0.00 0.01 

Low 10 

 

0.66 0.20 2.11 

 

0.10 0.03 0.32 

Unburned 83 

 

0.52 0.20 1.34 

 

0.08 0.03 0.20 

Steller's Jay 

High 8   0.05 0.01 0.19   0.08 0.02 0.33 

Low 6   0.05 0.01 0.22   0.09 0.02 0.36 

Unburned 45   0.05 0.01 0.20   0.10 0.03 0.34 

Three-toed Woodpecker 

High 4 

 

0.02 0.00 1.06 

 

0.00 0.00 0.35 

Low 0 

 

0.02 0.00 1.54 

 

0.00 0.00 0.52 

Unburned 0 

 

0.01 0.00 0.73 

 

0.00 0.00 0.24 

Williamson's Sapsucker 

High 0   0.00 0.00 0.00   0.00 0.00 0.00 

Low 1   0.12 0.00 15.06   0.02 0.00 3.24 

Unburned 12   0.18 0.00 18.37   0.03 0.00 3.96 

Appendix B (continue). 2008 Density (D) of birds and mammals per hectare by forest type and fire 

severity, with sample size (n) and 95% confidence limits (LCL / UCL).  Species (bold) with n≥60 

detections per year were used to develop models to best predict species abundance. 
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2009 
   

Mixed Conifer 
 

Ponderosa Pine 

Species common name Severity n 
 

D LCL UCL 
 

D LCL UCL 

American Robin 

High 79 
 

0.56 0.23 1.36 
 

0.24 0.08 0.69 

Low 12 
 

0.29 0.09 0.90 
 

0.12 0.03 0.45 

Unburned 53 
 

0.43 0.20 0.91 
 

0.18 0.07 0.46 

Chipmunk spp. 

High 11 
 

0.20 0.05 0.72 
 

0.65 0.21 2.03 

Low 16 
 

0.20 0.06 0.70 
 

0.66 0.22 1.98 

Unburned 76 
 

0.24 0.09 0.62 
 

0.77 0.34 1.75 

Clark's Nutcracker 

High 7 
 

0.04 0.00 0.32 
 

0.03 0.00 0.33 

Low 2 
 

0.01 0.00 0.18 
 

0.01 0.00 0.18 

Unburned 7 
 

0.02 0.00 0.15 
 

0.02 0.00 0.16 

Downy Woodpecker 

High 6 
 

0.05 0.00 0.53 
 

0.05 0.00 0.51 

Low 1 
 

0.05 0.00 0.55 
 

0.04 0.00 0.53 

Unburned 5 
 

0.02 0.00 0.20 
 

0.02 0.00 0.19 

Golden-mantled Ground 

Squirrel 

High 1 
 

0.01 0.00 0.11 
 

0.07 0.01 0.47 

Low 7 
 

0.04 0.01 0.19 
 

0.18 0.04 0.78 

Unburned 98 
 

0.10 0.03 0.34 
 

0.48 0.16 1.41 

Hairy Woodpecker 

High 39 
 

0.49 0.19 1.25 
 

0.53 0.18 1.48 

Low 33 
 

0.41 0.14 1.20 
 

0.44 0.14 1.42 

Unburned 39 
 

0.13 0.05 0.34 
 

0.14 0.05 0.41 

Kaibab Squirrel 

High 1 
 

0.00 0.00 0.35 
 

0.01 0.00 1.05 

Low 1 
 

0.01 0.00 1.35 
 

0.04 0.00 4.08 

Unburned 8 
 

0.00 0.00 0.65 
 

0.03 0.00 1.96 

Mourning Dove 

High 14 
 

0.07 0.01 0.76 
 

0.18 0.01 2.32 

Low 4 
 

0.01 0.00 0.25 
 

0.04 0.00 0.76 

Unburned 7 
 

0.02 0.00 0.25 
 

0.05 0.00 0.76 

Northern Flicker 

High 102 
 

0.58 0.29 1.15 
 

0.58 0.27 1.24 

Low 26 
 

0.32 0.14 0.71 
 

0.32 0.13 0.76 

Unburned 170 
 

0.40 0.20 0.79 
 

0.41 0.19 0.85 

Red Squirrel 

High 2 
 

0.02 0.00 0.09 
 

0.00 0.00 0.02 

Low 29 
 

1.06 0.32 3.30 
 

0.17 0.05 0.54 

Unburned 123 
 

0.84 0.32 2.10 
 

0.14 0.05 0.35 

Steller's Jay 

High 18 
 

0.06 0.01 0.25 
 

0.10 0.03 0.41 

Low 10 
 

0.06 0.01 0.27 
 

0.11 0.03 0.46 

Unburned 50 
 

0.07 0.02 0.26 
 

0.12 0.03 0.43 

Three-toed Woodpecker 

High 3 
 

0.03 0.00 1.62 
 

0.01 0.00 0.61 

Low 0 
 

0.05 0.00 2.34 
 

0.02 0.00 0.85 

Unburned 4 
 

0.03 0.00 1.11 
 

0.01 0.00 0.42 

Williamson's Sapsucker 

High 1 
 

0.00 0.00 0.00 
 

0.00 0.00 0.00 

Low 1 
 

0.09 0.00 11.52 
 

0.01 0.00 2.30 

Unburned 7 
 

0.12 0.00 14.05 
 

0.02 0.00 2.81 

Appendix B (continue). 2009 Density (D) of birds and mammals per hectare by forest type and fire 

severity, with sample size (n) and 95% confidence limits (LCL / UCL).  Species (bold) with n≥60 

detections per year were used to develop models to best predict species abundance.   
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APPENDIX B 

2010 

   

Mixed Conifer 

 

Ponderosa Pine  

Species common name Severity n   D LCL UCL   D LCL UCL  

American Robin 

High 29   0.51 0.20 1.23   0.21 0.07 0.62  

Low 10   0.26 0.08 0.81   0.11 0.03 0.41  

Unburned 92   0.39 0.18 0.82   0.16 0.06 0.41  

Chipmunk spp. 

High 20   0.25 0.07 0.91   0.82 0.26 2.51  

Low 19   0.25 0.07 0.89   0.83 0.27 2.45  

Unburned 92   0.30 0.11 0.78   0.97 0.43 2.17  

Clark's Nutcracker 

High 3 

 

0.02 0.00 0.20 

 

0.02 0.00 0.20  

Low 2 

 

0.01 0.00 0.11 

 

0.01 0.00 0.11  

Unburned 3 

 

0.01 0.00 0.10 

 

0.01 0.00 0.10  

Downy Woodpecker 

High 0 

 

0.05 0.00 0.44 

 

0.05 0.00 0.44  

Low 2 

 

0.04 0.00 0.43 

 

0.03 0.00 0.41  

Unburned 7 

 

0.01 0.00 0.15 

 

0.01 0.00 0.15  

Golden-mantled 

Ground Squirrel 

High 5   0.02 0.00 0.12   0.08 0.01 0.50  

Low 12   0.04 0.01 0.21   0.19 0.04 0.84  

Unburned 106   0.10 0.03 0.37   0.52 0.17 1.51  

Hairy Woodpecker 

High 21 

 

0.23 0.08 0.62 

 

0.25 0.08 0.73  

Low 13 

 

0.19 0.06 0.59 

 

0.21 0.06 0.70  

Unburned 20 

 

0.06 0.02 0.17 

 

0.07 0.02 0.20  

Kaibab Squirrel 

High 0   0.00 0.00 0.00   0.01 0.00 0.00  

Low 4   0.01 0.00 2.20   0.07 0.00 5.00  

Unburned 11   0.01 0.00 1.05   0.04 0.00 2.40  

Mourning Dove 

High 0 

 

0.04 0.00 0.23 

 

0.04 0.00 0.81  

Low 0 

 

0.01 0.00 0.08 

 

0.01 0.00 0.27  

Unburned 7 

 

0.01 0.00 0.08 

 

0.01 0.00 0.27  

Northern Flicker 

High 54   0.42 0.21 0.85   0.43 0.20 0.91  

Low 19   0.23 0.10 0.53   0.23 0.10 0.56  

Unburned 145   0.30 0.15 0.58   0.30 0.14 0.63  

Red Squirrel 

High 1 

 

0.02 0.00 0.10 

 

0.00 0.00 0.02  

Low 32 

 

1.05 0.32 3.31 

 

0.17 0.05 0.54  

Unburned 118 

 

0.84 0.32 2.11 

 

0.14 0.05 0.34  

Steller's Jay 

High 2 

 

0.04 0.01 0.19 

 

0.08 0.02 0.31  

Low 9 

 

0.05 0.01 0.21 

 

0.08 0.02 0.35  

Unburned 45 

 

0.05 0.01 0.19 

 

0.09 0.03 0.32  

Three-toed Woodpecker 

High 1   0.03 0.00 1.62   0.01 0.00 0.61  

Low 2   0.05 0.00 2.34   0.02 0.00 0.89  

Unburned 4   0.03 0.00 1.11   0.01 0.00 0.42  

Williamson's Sapsucker 

High 0 

 

0.00 0.00 0.00 

 

0.00 0.00 0.00  

Low 0 

 

0.08 0.00 9.55 

 

0.00 0.00 2.01  

Unburned 7 

 

0.10 0.00 11.41 

 

0.02 0.00 2.19  

Appendix B (continue).  2010 Density (D) of birds and mammals per hectare by forest type and fire 

severity, with sample size (n) and 95% confidence limits (LCL / UCL).  Species (bold) with n≥60 

detections per year were used to develop models to best predict species abundance.
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APPENDIX C 

   
   

Fire Severity Comparison 

 
Forest Type Fire Severity 

 
High - Low High – No Burn Low – No Burn 

Tree Density 
Mixed-Conifer p <.0001 

 
p <.0001 p <.0001 p =.7615 

Ponderosa Pine p <.0001 
 

   p <.0001 p <.0001 p =.7671 

Tree Density  >20 

cm dbh 

Mixed-Conifer p <.0001 
 

p <.0001 p <.0001 p =.9634 

Ponderosa Pine p <.0001 
 

p <.0001 p <.0001 p =.9526 

Snag Density 
Mixed-Conifer p =.0066 

 
p =.0275 p =.0109 p =.7916 

Ponderosa Pine p <.0001 
 

p =.3512 p <.0002 p =.0077 

Snag Density    >20 

cm dbh 

Mixed-Conifer p =.0054 
 

p =.1953 p =.0039 p =.7616 

Ponderosa Pine p <.0001 
 

p =.0382 p <.0001 p <.0003 

Canopy Cover 
Mixed-Conifer p <.0001 

 
p <.0001 p <.0001 p =.9970 

Ponderosa Pine p <.0169 
 

p =.0103 p =.0162 p =.8823 

Ground Cover 
Mixed-Conifer p <.0001 

 
p <.0002 p <.0001 p =.9969 

Ponderosa Pine p =.6672 
 

p =.6544 p =.8787 p =.7749 

Cone Productivity 
Mixed-Conifer p <.0001 

 
p =.0220 p <.0001 p =.2860 

Ponderosa Pine p <.0001 
 

p <.0001 p <.0001 p =.9554 

Sapling Counts 
Mixed-Conifer p <.0001  p <.0001 p <.0001 p =.0012 

Ponderosa Pine p <.0001  p =.0016 p =.8439 p <.0001 

Appendix C. Summary of p-values for a comparison of the means of forest metrics: by fire severity.  Cover, productivity, and count comparisons 

are averaged across 2007-2010.  P-values showing that difference between means were not significant at α ≤ 0.05 are bold.   

 



57 

APPENDIX D 

Mixed Conifer Ponderosa Pine 

Forb Unburned Low High Forb Unburned Low High 

Achillea millefolium 
  

X Ambrosia spp. X 
  

Antennaria spp. X X X Antennaria spp. X X 
 

Chenopoduim fremontii 
 

X X Chenopoduim fremontii X X X 

Cirsium spp. 
  

X Cirsium spp. X X X 

Colubrina Californica 
  

X Compositae X X 
 

Compositae X X X Erigeron formosissimus 
  

X 

Erigeron formosissimus 
  

X Erigeron macranthus X 
  

Erigeron macranthus X X 
 

Eriogonum racemosum X 
 

X 

Fragaria vesca X 
  

Fragaria vesca X 
  

Garryaceae 
  

X Gnaphalium arizonicum X 
  

Goodyera oblongifolia X 
  

Helianthus X 
  

Helianthus 
  

X Lactuca serriola 
  

X 

Leguminosea X 
  

Lotus wrightii X X X 

Lotus wrightii X X 
 

Lupinus spp. X 
  

Lupinus spp. X X X Oenothera spp. X 
  

Portulacaceae X 
  

Rhamnaceae 
  

X 

Ranunculus 
  

X Solidago spp. X 
 

X 

Rubus strigosus X 
  

Verbascum thapsus X 
  

Senecio multilobatus 
  

X 
    

Solidago spp. X X 
     

Shrub 
   

Shrub 
   

Berberis repens X X X Berberis repens X X X 

Ceanothus fendleri X X X Ceanothus fendleri X X X 

Juniperus communis X 
  

Ericameria nauseosa X X X 

Ribes spp. 
  

X Juniperus communis X 
  

Robinia neomexicana 
  

X Ribes spp. X X 
 

Sambucus spp. 
  

X Robinia neomexicana X X X 

    
Rosacea arizonica X 

  

    
Sambucus spp. X 

  
Appendix D.  Dominant Forbs and Shrubs found on transects from 2007 -2010.   


