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ABSTRACT

An exact solution of time varying pipe flow with a fluctuating
velocity superimposed on the mean flow is analyzed. The velocity pro-
files, together with the profile parameters at separation, are computed
from a computer program.

The results are compared with the model for relaxed (steady) and
unrelaxed (unsteady) separation criteria proposed by V. A. Sandborn
and S. J. Kline. For very low frequencies, the correlation curves
appear to have a reasonable agreement with the proposed relaxed separa-
tion criterion. For high frequencies, the correlation curves have been
found to fall approximately on the unrelaxed separation criterion.

This result demonstrates further that adjustument time is an important
factor for separation to be relaxed or unrelaxed, a new concept pro-
posed by Sandborn.

In addition, J. T. Stuart's solution for the flow along an
infinite flat plate with normal suction and periodic external velocity
is further analyzed. The results again prove to agree with the pro-

posed new concept.
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Chapter I
INTRODUCTION

The problem of boundary layer separation has become very important
in recent times, especially, in the field of aeronautics; in actual
applications it is often necessary to prevent separation in order to
reduce drag and to attain high lift.

A model classifying boundary layer separation, either laminar or
turbulent, as relaxed (steady) and unrelaxed (unsteady) was first pro-
posed by Sandborn and Kline (13). The proposed model was further
demonstrated both theoretically and experimentally by Liu (6). The
relaxed boundary layer separation was defined as the point or line
where shear stress at the wall vanishes continuously in both time and
space. For the unrelaxed case, Sandborn (11) recently suggested the
start of the unrelaxed boundary layer separation could be taken as
the forward most point where shear stress at the wall vanishes instan-
taneously.

Sandborn (11) further points out that the time required for the
boundary layer to adjust to the changes at the boundaries appears to
be the most important difference between the relaxed and unrelaxed
separations.

There is increasing evidence that relaxation time for shear flow
development at separation appears to be one of the important aspects
of relaxed separation. Lighthill (5) analyzed the response of the
laminar boundary layer to fluctuations in the oncoming stream, when
the stream fluctuates in magnitude but not in direction. Stuart (19)

derived an exact solution of the Navier-Stokes equations, where the



free stream velocity fluctuates about a constant mean, and velocity
normal to the wall is constant. Both Lighthill's and Stuart's studies
demonstrate that adjustment time is important in determining the veloc-
ity profile of a time varying shear flow. Sandborn (11) explored a
pulsing flow, where a pulsing free stream velocity was produced by a
siren, and found that the profile correlations at separation fall on
the proposed empirical unrelaxed separation criterion. Sandborn's
test thus constitutes an experimental proof of the new concept. But
so far there appears to be no well defined parameters to specify
limits for relaxed and unrelaxed separations.

The present analysis investigates a particular type of time
varying shear flow, to study time adjustment effects on separation.
A pipe flow that has a regular fluctuating velocity superimposed on
the mean flow is analyzed. The velocity distributions and the veloc-
ity profile parameters, displacement thickness, momentum thickness,
and form factor, are computed from a computer program. The results
are compared with the model for relaxed and unrelaxed separation pro-
posed by Sandborn and Kline. For high frequencies the boundary layer
has little time to adjust, so the instantaneous zero wall shear stress
profile correlations fall on the unrelaxed separation curve. For low
frequencies there exists sufficient flow time for the boundary layer
to adjust to the absence of a viscous force at the surface, thus the
separation profile correlations agree with the relaxed separation
curve. Stuart's solution is also analyzed. The results again agree
with the proposed new concept, i.e., adjustment time is important in
determining relaxed or unrelaxed separation. Separation criteria in

2 y2
terms of the non-dimensional pressure gradient parameter (E—-%-%%
VvV



and the velocity profile form factor are also given for both the
unsteady pipe flow and Stuart's solution. The results show the separa-
tion velocity profiles may not be a one parameter family of velocity

profiles as implied by the separation model of Sandborn (11).



Chapter II

REVIEW OF LITERATURE

2.1 Introduction

Sandborn (12) developed an empirical velocity profile that can
be used in laminar as well as turbulent flow. From the analysis of
this empirical velocity profile, two types of separation, relaxed
(steady) and unrelaxed (unsteady), were identified. For the unrelaxed

case the empirical relation among the profile parameters was given as

1

H=l+(—l—_—m)— . (2"1)

For the relaxed separation case the relation between the profile param-

eters can be given parametrically in terms of A

8
o* 2/—%6 +1
== e b (2-2a)
(=%, + DZ
5 (:z»/-x(S + 1) 2(/-A6)2
s (/=xg + 1)2 _ (2/-3 + 1)3
Bl 1
_ - (2-2b)
(2/'*5 + 1)2 (2»/-x<S + 1)
where
_ =62du
§ ~ vdx

Equations 2-1 and 2-2 are replotted in Figure 1. The upper curve
is called the relaxed, ?& = 0 , separation correlation, while the
lower one corresponds to the unrelaxed separation correlation. Both

the relaxed and unrelaxed separation curves shown on Figure 1 have been
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found, by Sandborn and Kline (13), to agree well with experimental
measurements as well as with analytic solutions.

Many solutions of the laminar boundary layer equations for a
steady two-dimensional incompressible flow have been evaluatcd analy-
tically or numerically for various forms of free stream velocity
distributions U(x) , for example, by Schlichting (15), Thwaites (20),
Head and Hagasi (3), and Curle (1). The velocity components, u and
v , as well as the variations with x of the skin friction and the
momentum and displacement thickness, can be calculated to the separa-
tion point. For the solutions of unsteady laminar boundary layer
equations references can be made to Rosenhead (10) and Schlichting (15).

2.2 Lighthill's Theory of the Response of Skin Friction to Fluctuations
in the Stream Velocity

Lighthill (5) first treated the laminar boundary layer about a
cylindrical body when the velocity of the oncoming flow oscillated in
magnitude but not in direction. For high-frequency approximation,
Lighthill obtained a solution identical to the solution for the shear-
wave boundary layer, whose main stream fluctuates about a zero mean.
Physically it means the effect of viscosity can be felt for the oscil-
lation only within the small layer near the wall, with thickness of
order Yv/w . In other words, at high frequencies the fluctuating
part of the velocity responds instantly, except within the very thin
shear-wave boundary layer close to the wall. For low-frequency
approximation, Lighthill used a Karman-Pohlhausen method (9) to solve
the equations and found velocity fluctuation approximately consists
of a part depending on the instantaneous stream velocity and a part

depending on the stream acceleration.



Skin friction for both high-frequency and low-frequency approxi-
mations has a phase lead over the velocity fluctuation of the stream.
The critical frequency separating the ranges of validity of the high-

and low-frequency approximations is suggested by Lighthill as

w = U 6 = W 5 (2-3)

For frequencies w < W, both the amplitude and phase lead increase
with frequency, the latter rises from zero to /4 ; for frequencies
w > W, the phase lead has the constant value w/4 , and the ampli-
tude increases with the square root of the frequency. The theory

thus illustrates the large influence which a fluctuation has upon the

transient velocity distributions and skin friction.

2.3 Fluctuating Flow Past an Infinite Flat Plate with Suction

Based on the classical exact "asymptotic suction'" solution of
steady flows developed by Schlichting (15), Stuart derived an exact
solution of the Navier-Stokes equations, where the free stream veloc-
ity fluctuates about a constant mean and the normal velocity is con-
stant toward the wall. It was found that for low frequencies the
velocity distributions are closely approximated as the sum of parts
proportional to the instantaneous velocity and acceleration of the
main stream. For high frequencies the solution tends to the shear-
wave solution with a periodic boundary layer without a mean flow as
described by Lighthill.

Furthermore, the skin-friction fluctuations show much the same
characteristics as that of Lighthill's. The amplitude of the skin-

friction fluctuations rises with frequency, while the phase lead of



the skin-friction over the main stream velocity fluctuation rises from
zero at zero frequency to w/4 at very high frequencies. The velocity
profiles and skin-friction for Stuart's solution will be further
analyzed in Chapter III. In particular, detailed evaluation of the

boundary layer parameters and the velocity distributions at separation

is made.

2.4 Unsteady Flow Through a Pipe

Several solutions for the flow through a long straight pipe under
the influence of an unsteady pressure gradient have been reported.
Sexl (16) first derived the solution for a pipe flow due to a periodic
pressure gradient. Ito (4) considered the cases: (1) a pressure gra-
dient changes linearly with time, (2) a pressure.gradient that changes
impulsively from one value to another, and (3) a damped oscillatory
pressure gradient. The solutions were obtained by using a Laplace-
transform technique.

For the case of the flow with a periodic pressure gradient the

solution was given by Sexl as

. . J (x/= 1a/v)
ulr,t) = 2k o9t (; . 28 il (2-4)
w JO(RV—im/\))

where Jo denotes the Bessel function of the first kind and of zeroth
order.

The velocity distributions for both low- and high-frequency
approximations were evaluated. For very low frequencies, the velocity

distribution was found to be in phase with the pressure distribution,



the amplitude being a parabolic function of the radius, as was the

case in steady flow. For very high frequencies, the phase shift of
the flow at a large distance from the wall is w/2 with respect to
the exciting force. No specific evaluation of Ty ™ 0 profiles has

been made,
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Chapter III

ANALYSIS OF UNSTEADY PIPE FLOW SEPARATION AND SEPARATION
IN FLUCTUATING FLOW PAST A POROUS FLAT PLATE

3.1 Unsteady Pipe Flow

3.1.1 Solutions of unsteady pipe flow - The time varying pres-

sure gradient flow in a pipe was solved independently of the studies
discussed in Chapter II. Let x denote the coordinate in the direc-
tion of the axis of the pipe, r denote the radial distance from
the axis, and u 1is the velocity component in x-direction. For a
very long pipe, the velocity variations with x are negligible and
the only component of the flow is u . Thus, the laminar boundary
layer equation for the unsteady axially symmetri;al pipe flow with
constant density p and kinematic viscosity v takes the form

32u

2
or

ou

)

P,
aX L

O |+

v du
* ? 5? . (3—1)

The boundary conditions are

]
=

u=0 at r

and (3-2)

u=U at r=20

We assume that the pressure gradient fluctuates about a constant mean
and is given by

1 9P iwt
- Shigh K(1 + ee” ) (3-3)

where K 1is a constant, and Ke is the amplitude of fluctuations.
Now we are seeking a solution of the form

t

w= U e () + cry () e (3-4)
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in which U, is the mean velocity along the axis as obtained for

Poiseuille flow. Substituting Equations 3-3 and 3-4 in Equation 3-1 and

equating non-periodic and periodic terms separately to zero, we have

ren(e) + gl(@) = - ;ﬁ%f (3-5)
gy(r) + %-ci(r) —-%? g, (@) = ;ﬁ% . (3-6)

Equation 3-5 is a second order nonhomogeneous differential equation,
whereas Equation 3-6 is a Bessel equation of order zero with an imaginary

parameter (21). The boundary conditions for Equation 3-5 are

0 at r

2o (r) 0 , ¢ ()=0 at r=R ,

and co(r) 1 at r=0 , (3-7)

and, hence, the solution is

r2
1) = (1 - =5 (3-8)

where use was made of the following relation
U, = KR%/4v .
The boundary conditions for Equation 3-6 are

&, = finite at r =0 |, ¢, = 0 at r =R . (3-9)

Expressing the solution of Equation 3-6 in terms of ber and bei

functions, we obtained

ber\/£r+ibei \/ﬂr
v 4 v v

gylr) m= == 11 = ‘ (3-10)

iUJ R2 W ”
ber \/ — R + ibei \/ — R
v v
The total velocity component in x-direction becomes
w . 3 w
sk 4 ( ber,/ =E 2 ibei \/;-r)
€e — — |1 -
1w R2 5 —
w . . w
ber,/ — R + ibei \/— R
V V

.(3-11a)
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The fluctuating part of Equation 3-1la is equivalent to Equation 2-4

obtained by Sexl (16). The transient velocity in the center reduces to

B=0 |1see™ 22 1y, ! (3-11b)
0 1w RZ % p
ber\/ — R + ibei — R
v V v
The shear stress at the wall is
W or r=R
ber'\/—gR+1be1' %R
_ iwt 2 W v
- qu R 1 TV = (3-12)
ber /;—R + ibei /— R

where primes denote differentiation with respect to r , and

_—
ber x = (_I)J x™)
. 43 :
j=o 2% [(27)112
j 4j+Z
z - (—1}J X
bei x = /X — 3
=0 2%%% [(25+1) 1]
§ . 44-
ber' x = } 1’ 45 xM '
. a5
j=1 2 [2)n?
% N 45+1
bt x s § AL e
j=0 2% 2 (25+1)1)2

Plots of ber x , bei x , ber' x , and bei' x are shown in Figure 2.
The graphs are seen to oscillate with ever-increasing amplitudes.
Table 1 shows the variations with x of ber x , bei x , ber' x ,

and bei' x from x =0 to Xx = 80.
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Figure 2 Plots showing the functions Ber x,Bei x,Ber’' x, and Bei' x
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3.1.2 Velocity distributions and velocity profile parameters at

separation - The real parts of Equation 3-11 and Equation 3-12 reduce to

u .2 [ (bei \/—%_R) (ber \/—%_r)—(ber @R) (bei @r)
u_ coswt
w
B (ber \[‘-\‘)’?R)Z + (bei \/—%—R)-’-
(ber \/—%— R) (ber /§ r) + (bei \/g R) (bei\/g r)

+ sinwt - sinwt J (3-13a)

(ber @R)Z + (bei \/%_R)Z

5 w
u ) 4 bei JSTR
T + € ® 5 coswt
© v R (ber\/gR)z + (bei\/%R)z
berJ@;R
5 Vv "
+ sinwt - sin wt (3-13b)

(berJE;R)z +(beiJE;R)2

2 (berd-— R)(bel',/ R) - (bel\/ R)(ber'\/ R)
T, = - g 1 + -—\/—e{coswt
(ber\/ R)Z + (bel\/ R) 2

(ber@R) (ber! /-‘:—)TR) + (bei\/—%—R) (bei! /%_R)

+ sinwt (3-14)

(ber\/-%-R)z + (bei @R)Z

respectively.

The shear stress, Ty o is zero when the coefficient of ¢ in
Equation 3-14 is equal to -1/e which corresponds to a velocity pro-
file with zero skin friction. Thus the velocity profiles at separa-

tion can be obtained by substituting
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(ber\/g R) (bei' \[i;)—_ ) - (bei\/g R) (ber' \/gR)
(ber \[-E- R)2 + (bei \/gk)Z

(ber /£ R) (ber' /£ R) + (bei [T R)(bei' VSR [ 5 [5
RV
(ber,/(—:))-R)Z + (bei /% R) 2

+ sinwt

(3-15)
in Equation 3-13.

Figure 3 shows the velocity profiles at separation for various
frequencies, where y 1is the vertical distance from the wall. Figure 4
compares the high frequency separation velocity profile with the velocity
profile for steady flow, and the low frequency separation velocity pro-
file with the relaxed separation velocity profile of Equation 2-2. For
high frequencies (large values of\ﬁg R), viscosity does not have time to
adjust the velocity to the changes imposed by the exciting pressure-
gradient fluctuations, except in a 'shear-wave layer' near the wall. The
high frequency separation profile remains the same as the velocity profile
for steady flow, except in a thin layer near the wall where the effect of
viscosity can be felt for the oscillations. Thus the high frequency sepa-
ration belongs to the class of unrelaxed separation profiles as will be
demonstrated later. On the other hand, for very low frequencies the solu-
tion corresponds to the quasi-steady solution. The separation profile
has a good agreement with the relaxed separation profile of Equation 2-2,
with the same form factor, H . This comparison supports the evidence
that adjustment time is an important factor for separation to be relaxed
or unrelaxed, the concept proposed by Sandborn (11).

It has been found that some separation velocity profiles of

Equation 3-13 can only occur in unsteady fiow. These profiles are not
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likely to occur in a boundary layer type flow. Figure 5 gives examples
of such separation profiles including: (1) a velocity profile which
is not monotonic, (2) values u/U > 1 occur in the velocity profile,
and (3) a velocity profile with reverse flow.

The variations of € with respect to Jag-R for several values
of wt , as calculated from Equation 3-15, are plotted in Figure 6.
For high frequencies, the values of ¢ for which separation occurs,
are large. When frequencies decrease, separation is reached in most
cases for smaller values of ¢ . This result is different from the
results obtained by Stuart.

The velocity profile parameters, displacement thickness &*

s

momentum thickness 6 , and form factor H , are defined as:

o= [ [1-F)ay, 0=/ %‘1-%)dy,ﬂ=—e— (3-16)
y:O y=0

respectively.

Profile parameters at separation for various frequencies and
wt's are computed from a computer program. In calculating these
parameters 40 mesh points were taken across each velocity profile.
The relationship between the form factor H and ratio of 6%*/8§ is
compared with the relaxed and unrelaxed separation correlation cri-
teria, proposed by Sandborn and Kline (13), in Section 3.1.3. It is
well known that the laws of flow deduced from the study of flows through

pipe can be applied to the description of the flow in a boundary layer.

3.1.3 Comparison with the relaxed and unrelaxed separation

correlations - Table 2 illustrates the variations of H , §*/§ , and
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Figure 5 Some particular types of separation profiles in time varying pipe flow calculoted from
Eq. (3-13) (A),a velocity profile which is not monotonic; (B) values u/U occur in the
velocity profile; (C) a velocity profile with reverse flow.
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e with respect to \/%TR for various values of wt . Figure 7 is a
comparison of the separation profile parameters as calculated from
Equations 3-13, 3-15, and 3-16, with the empirical relaxed and unre-
laxed separation correlations. In plotting Figure 7, the separation
profiles that have the same characteristics as described in Figure 5
are excluded. Tor very low frequencies, the separation correlations
for all values of wt fall almost on a simple curve, which is slightly
below the empirical relaxed separation curve. As frequencies increase
and reach a specific point where the value of &*/8 approximately
equals 0.395, the correlation curves separate as illustrated in Fig-
ure 7. The values of V/%;R where departure starts to occur are dif-
ferent for different values of wt . For very high frequencies all
the correlation curves appear to end at the same point directly on the
empirical unrelaxed separation curve. The velocity profiles for very
high and very low frequencies, as shown in Figure 4, agree well with
the relaxed separation profile and the velocity profile for steady
flow, respectively. This result suggests the empirical curves may be
a reasonable approximation and confirms that adjustment time is an
important factor in determining if separation is relaxed or unrelaxed.
In Figure 7, it can also be seen that the transitions from the unre-
laxed separation correlation to the relaxed separation correiation

may be quite different. In determining if reverse flow occurs near
the wall, 80 mesh points have been taken across the velocity profiles.
The results are slightly different from that of only 40 mesh points.
Therefore, in Figure 7 the points where the correlation curves are

cut off are only approximate.
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As pointed out by Sandborn (11), these correlations of Figure 7
are not applicable in predicting separation, since it is nearly im-
possible to evaluate all of the three required parameters. In Figure 8

the form factor H is plotted against the pressure gradient parameter

du

~ 1
Ae = u dt

RZ
t v

which is similar to the parameter

62 du
8 v dx
in the steady state flow. It can be seen that the three correlation
curves for wt = m , 7/6m , and 4/3m are consistent only when the
parameter A, is greater than about 40. As shown in Figure 9, similar

results are obtained when the form factor H 1is plotted against the

pressure gradient parameter

These results show velocity profiles at separation may not be a one
parameter family of velocity profiles as implied by the separation

model of Sandborn (11). It is suspected that this discrepancy may indi-
cate the dependency on the time history is not adequately expressed by

the classical pressure gradient parameter.

3.2 Fluctuating Flow Past a Porous Flat Plate

3.2.1 Velocity distributions and velocity profile parameters

at separation - Stuart's solution for fluctuating flow past a flat

plate with suction was reviewed in Chapter II. From Stuart's deriva-

tion we have
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=h n
%—-= 1 -e "+ ccoswt - ee ©  cos(wt-hin) (3-17a)
0
u -1 -h.n 1:
7= [1 - e + gcoswt - ee cos(wt—hln)] Tt (3-17b)
The shear stress at the wall reduces to
Tw
W = 1 + E|h| COS(u)t+0L) (3-18)
o''w
where
g T B T
h = hr + ih, = T+ [1 + (4))“]" cos (E-tan 4))
1 L =
+-% [1 + (40)2]® sin (%—tan 1 4))
&= e h./h , A = wo/v?
i’ r w
Provided €lh| > 1 , the shear stress, Ty is zero when
1
cos (wt+a) = - -E-ﬁ\—]— R (3-19)

which corresponds to a transient separation velocity profile. Figure 10
shows variations of € and U/U0 at separation with respect to A for
different values of wt ; for high frequencies separation occurs at

very small values of € . The separation velocity profiles are plotted
in Figure 11. From Figure 11 we can see that the high-frequency separa-
tion profiles become identical with the velocity profile for steady flow
except in the layer near the wall where the separation profiles adjust
to satisfy 9du/dy = 0 at the wall. From Equations 3-17 and 3-19 the
separation profile parameters, displacement thickness and momentum

thickness, are obtained in the form
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o O 0
& 1 { =N 7 \
" (l+ecoswt) [— N (A=20
~hyn ; ; ) N
.. e [coswt(hi smhin—‘nr coshin)- sinwt(hr 51nhin + hicoshin)]‘
2 2
(h)? + (h)
o
where 68 - |$L4 is the unperturbed displacement thickness
w
) “u u, d
w=l g0-p
o o o
5% -(hr+l)n [his1nhin-(hr+1)coshin]coswt-[(hr+1)51nhin+hicoshin]51nmt
= — -(2¢ce
6*
o

(h+D? + (hy)?

2[e—2hrn (2h151n Zhin-Zhr COSZhin)COSZNt-(Zhr51n2hin+ 2hi cothin)51n2mF

(2h )% + (2h,)2

_Zn
e e 1
- Zh ] R - } g (3-21)

(1+ecoswt) 2

The profile parameters H and 6*/8 again are calculated by using
a computer program. Table 3 contains parts of the computed results.
The results are also plotted in Figure 12 together with the empirical
relaxed and unrelaxed separation correlation curves. Also, in preparing
Figure 12 we have neglected the separation profiles which have the same
properties as described in Figure 5.

3.2.2 Comparison with the relaxed and unrelaxed separation

correlations - From Figure 12, we can see, for very high frequencies

all the correlation curves also appear to terminate at a specific point,
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as in the case of unsteady pipe flow, but now the point is slightly
below the empirical unrelaxed correlation curve. As frequencies
decrease, these correlation curves pass across the empirical unrelaxed
correlation curve and fall in the region between the two separation
curves. For very low frequencies these curves approach the relaxed
separation curve, but there exists a 'hook' at the end of each curve.
Figure 13 shows some separation profiles corresponding to points on the
hooks. The appearance of these hooks is not understood at the present
time. Stuart's solution thus lends theoretical justification to the
unrelaxed separation correlation, and provides more evidence about the
importance of the time factor in separation.

Figures 14 and 15 show the variations of the form factor H
with respect to the pressure gradient parameters A, and )

t 8’

tively. The correlation curves again are diverged at small values of

respec-

At and Ae as in the unsteady pipe flow case. Thus, both results
suggest that this may be an important deviation from the separation

model of Sandborn (1i1).
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Chapter IV

CONCLUDING REMARKS

A time varying pipe flow was analyzed. The velocity distributions
and velocity profile parameters at separation were computed and compared
with the model for relaxed (steady) and unrelaxed (unsteady) separation
criteria proposed by Sandborn and Kline.

For very low frequencies, the velocity profile at separation for
the unsteady pipe flow agree well with the empirical relaxed separation
profile with the same form factor. The separation correlation curves
lie slightly below the empirical relaxed separation correlation cri-
terion. For very high frequencies, viscosity does not have time to
adjust the velocity to the changes imposed by the exciting pressure-
gradient fluctuations across the greater part of the layer. The
solved high-frequency separation profile thus resembles the velocity
profile for steady flow except in a thin layer near the wall where the
effect of viscosity can be felt for the oscillations. The separation
correlation curves appear to end at a point on the empirical unrelaxed
separation correlation criterion. The present studies thus suggest that
the empirical relaxed and unrelaxed correlation curves may be a reason-
able approximation, and confirm adjustment time is an important factor
for separation to be steady or unsteady.

Stuart's solution for fluctuating flow past an infinite porous
flat plate was further analyzed. The solved high-frequency separation
correlation curves appear to terminate at a point below the empirical
unrelaxed separation correlation curve. The low-frequency separation

correlation curves approach the relaxed separation correlation curve,
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but bend down slightly at the end. The results also demonstrate
adjustment time is important in separation.

Separation criteria in terms of the non-dimensional pressure
gradient parameter and the velocity profile form factor are also given
for both the unsteady pipe flow and the Stuart's solution. The results
show velocity profiles at separation may not be a one parameter family
of velocity profiles as implied by the separation model of Sandborn (11).
It is suspected that this discrepancy may indicate the dependency on the

time history is not adequately expressed by the classical pressure

gradient parameter.
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TABLE 1

47

VARTATIONS WITH X OF BER X, BEI X,

BER'X, BEI'X FROM X=0 TO X=80

X Ber x Bei x Ber' x Bei' x

0 1 0 0 0

1 9.84382E-01 2.49566E-01 -6.24458E-02 4.97397E-01
2 7.51734E-01 9.72292E-01 -4.93067E-01 9.71014E-01
3 -2.21380E-01 1.93759E+00 -1.57985E+00 8.80482E-01
4 -2.56342E+00 2.29269E+00 -3.13465E+00 -4.91137E-01
5 -6.23008E+00 1.16034E-01 -3.84534E+00 -4,35414E+00
6 -8.85832E+00 -7.33475E+00 -2.93080E-01 -1.08462E+01
7 -3.63293E+00 -2.12394E+01 1.27645E+01 -1.60415E+01
8 2.09740E+01 -3.50167E+01 3.83113E+01 -7.66032E+00
9 7.39357E+01 -2.47128E+01 6.56008E+01 3.63994E+01
10 1.38840E+02 5.63705E+01 5.12953E+01 1.35309E+02
11 1.33954E+02 2.57205E+02 -9.42119E+01 2.64119E+02
12 -1.28512E+02 5.46949E+02 -4.72569E+02 2.72670E+02
13 -8.82647E+02 6.46636E+02 -1.04734E+03 -1.92606E+02
14 -2.13128E+03 -1.60938E+02 -1.31609E+03 -1.61609E+03
15 -2.96725E+03 -2.95271E+03 9.10553E+01 -4.08776E+03
16 -6.59497E+02 -8.19071E+03 5.34930E+03 -6.00952E+03
17 9.48445E+03 -1.30873E+04 1.56831E+04 -2.15552E+03
18 3.09623E+04 -7.45434E+03 2.63984E+04 1.68409E+04
19 5.60035E+04 2.85273E+04 1.79336E+04 5.90294E+04
20 4,74894E+04 1.14775E+05 -4.88032E+04 1.11855E+05
21 -7.61557E+04 2.33698E+05 -2.71321E+05 9.65772E+04
22 -4.15521E+05 2.53881E+05 -4.63869E+05 -1.20194E+05
23 -9.53546E+05 -1.52737E+05 -5.45342E+05 -7.79084E+05
24 -1.24183E+06 -1.46040E+06 1.80849E+05 -1.88032E+06
25 9.79772E+03 -3.80879E+06 2.70052E+06 -2.61958E+06
26 4.93575E+06 -5.74444E+06 7.45727E+06 -4,59934E+05
27 1.48935E+07 -2.30784E+06 1.18858E+07 8.94431E+06
28 2.55309E+07 1.57762E+07 6.436S4E+06 2.89280E+07
29 1.82477E+07 5.69504E+07 -2.76897E+07 5.21872E+07
30 -4.61176E+07 1.10956E+08 -1.09599E+08 4,32922E+07
31 -2.12456E+08 1.07975E+08 -2.22436E+08 -7.63424E+07
32 -4.61092E+08 -1.13201E+08 -2.38742E+08 ~-4.04349E+08
33 -5.53103E+08 -7.70090E+08 1.61924E+08 -9.24955E+08
34 1.59559E+08 -1.88756E+09 1.44532E+09 -1.19396E+09
35 2.69363E+09 -2.66087E+09 3.74773E+09 6.15699E+07
36 7.55140E+09 -5.45406E+08 5.62995E+09 4.96213E+09
37 1.21922E+10 8.98464E+09 2.10194E+09 1.48531E+10
38 6.86654E+09 2.95191E+10 -1.61104E+10 2.53388E+10
39 -2.79417E+10 5.38524E+10 -5.74805E+10 1.76264E+10
40 -1.12597E+11 4.56281E+10 -1.10471E+11 -4.79332E+10
41 -2.30841E+11 -7.70498E+10 -1.05915E+11 -2.16781E+11
42 -2.51327E+11 -4.17869E+11 1.20789E+11 -4,68210E+11
43 1.61180E+11 -9.64965E+11 7.93763E+11 ~5.56392E+11
44 1.50121E+12 -1.25925E+12 1.93487E+12 1.85531E+11
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TABLE 1 VARIATIONS WITH X OF BER X, BEI X,
BER'X, BEI'X FROM X=0 TO X=80 - Cont'd.

X Ber x Bei x Ber' x Bei' x
45 3.92920E+12 3.60867E+10 2.70902E+12 2.80366E+12
46 5.94457E+12 5.71537E+12 4,78823E+11 7.80677E+12
47 2.32111E+12 1.56422E+13 +9.44489E+12 1.25351E+13
48 -1.68525E+13 2.68901E+13 -3.07555E+13 6.81581E+12
49 -6.07815E+13 1.90564E+13 ~5,.58322E+13 -2.97016E+13
50 -1.17624E+14 -5.01926E+13 -4.65989E+13 -1.18165E+14
51 -1.14082E+14 -2.30071E+14 8.31471E+13 -2.41093E+14
52 1.26012E+14 -5.00145E+14 4,41561E+14 -2.59722E+14
53 8.45158E+14 -5.99346E+14 1.01343E+15 1.79516E+14
54 2.07324E+15 1.87717E+14 1.31400E+15 1.59706E+15
55 2.92222E+15 2.99342E+15 -7.70891E+13 4,15578E+15
56 5.56413E+14 8.38943E+15 -5.54401E+15 6.25054E+15
57 -1.01058E+16 1.35474E+16 -1.66367E+16 2.31409E+15
58 -3.31407E+16 7.50677E+15 -2.84558E+16 -1.81918E+16
59 -6.04675E+16 -3.18174E+16 -1.97438E+16 -6.49864E+16
60 -5.08780E+16 -1.27647E+17 5.49125E+16 -1.25171E+17
61 8.89990E+16 -2.61668E+17 2.47234E+17 -1.19942E+17
62 4.78075E+17 -2.83862E+17 5.34911E+17 1.39637E+17
63 1.10224E+18 1.90697E+17 6.35783E+17 9.12753E+17
64 1.43683E+18 1.73257E+18 -2.20418E+17 2.22756E+18
65 -6.69167E+16 4.52912E+18 -3.24947E+18 3.12032E+18
66 -6.02433E+18 6.84241E+18 -9.05254E+18 5.26377E+17
67 -1.81664E+19 2.59279E+18 -1.45431E+19 -1.10320E+19
68 -3.11933E+19 -1.97903E+19 -7.83285E+18 -3.59056E+19
69 -2.18594E+19 -7.10906E+19 3.49718E+19 -6.52095E+19
70 5.95318E+19 -1.37417E+20 1.38840E+20 -5.40880E+19
71 2.70911E+20 -1.32493E+20 2.83339E+20 9.88166E+19
72 5.88129E+20 1.51595E+20 3.04578E+20 5.22020E+20
73 7.02194E+20 1.00169E+21 -2.16613E+20 1.19796E+21
74 -2.35511E+20 2.45285E+21 -1.89940E+21 1.55128E+21
75 -3.57076E+21 3.44836E+21 -4.93944E+21 -1.09645E+20
76 -9.98254E+21 6.08006E+20 -7.42285E+21 -6.63296E+21
77 -1.60867E+22 -1.21352E+22 -2.68901E+21 -1.98772E+22
78 -8.75774E+21 -3.96497E+22 2.19001E+22 -3.39747E+22
79 3.84893E+22 -7.22095E+22 7.80311E+22 -2.33839E+22
80 1.53509E+23 -6.02449E+22 1.50182E+23

6.63276E+22

In calculating the functions

Ber x, Bei x, Ber' x, and Bei' x, the

number of terms used in each infinitive series depends on the values

of Xx

, but in each case the truncation error is less than 0.000001 %

0.
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TABLE 2 VARIATIONS OF 6&*/R, 6/R, H, AND ¢ WITH
RESPECT TO ch-R FOR TIME VARYING PIPE FLOW

3 7 4 5

Z"ﬂ' m gﬂ 3'11’ 7‘“’

§*/R 0.467 0.477 0.466 0.466 0.467

0.4 6/R 0.127 0.127 0.127 0.127 0.127
H 3.672 3.770 3.664 3.668 3.669

€ 1.444 1.001 1.142 1.934 50.037

§*/R 0.468 0.477 0.455 0.463 0.466

1.2 8/R 0.127 0.127 0.127 0.127 0.127
H 3.684 3.769 3.570 3.642 3.661

€ 1.792 1.042 1.092 1.595 5.885

8§*/R 0.467 0.476 0.516 0.443 0.459

2.0 6/R 0.127 0.127 0.122 0.127 0.127
H 3,672 3.759 4,228 3.490 3.607

€ 5.297 1.292 1.187 1.459 2.899

§*/R 0.452 0.469 0.485 0.556 0.396

32 8/R 0.127 0.127 0.126 0.112 0.121
H 3.556 3.702 3.862 4,970 3.247

€ 12.380 2.169 1.746 1.884 2.883

§*/R 0.392 0.442 0.464 0.499 0.710

4.8 8/R 0.121 0.126 0.126 0.122 0.025
H 3.235 3512 3.696 4.085 27.960

€ 30.872 3.380 2,623 2,743 3.999

§*/R 0.295 0.402 0.431 0.465 0.552

6.4 8/R 0.095 0.122 0.124 0.122- 0.103
H 3.097 3.285 3.480 3.797 5.363

€ 54.424 4,508 3.448 3.565 5.106

§*/R 0.127 0.371 0.401 0.432 0.495

8.0 8/R 0.065 0.120 0.122 0.121 0.111
H 3.328 3.104 3.296 3.568 4.473

€ 86.394 5.644 4.276 4.388 6.218

§*/R 0.179 0.354 0.380 0.404 0.450

10.0 8/R 0.058 0.121 0.122 0.121 0.113
H 3.074 2,923 3.115 3.350 3.966

€ 136.278 7.061 5.311 5.421 7.619




TABLE 2 VARIATIONS OF §*/R, 8/R, H, AND & WITH RESPECT
TO ‘/%-R FOR TIME VARYING PIPE FLOW - Continued

Nt 3 7 4 3

ﬁ\ 7" g L LR
\Y)

§*/R 0.140 0.342 0.359 0.375 0.399
16.0 8/R 0.061 0.128 0.127 0.125 0.121
H 2.279 2.673 2.833 2.991 3.301
€ 353.879 11.308 8.417 8.522 11.843
§*/R 0.115 0.337 0.350 0.360 0.375
24.0 8/R 0.061 0.131 0,129 0.128 0.125
H 1.897 2.578 2.700- 2.809 2.996
€ 802.420 16.967 12.558 12.660 17.490
§*/R 0.096 0.335 0.343 0.349 0.358
40.0 8/R 0.061 0.132 0.131 0.130 0.129
H 1.579 2.527 2.608 2.676 2.781
€ 2242.570 28.282 20.840 20.941 28.796
§*/R 0.081 0.334 0.338 0.341 0.345
80.0 8/R 0.061 0.133 0.133 0.132 0.131
H 1.357 2,504 2.549 2.583 2.633
€ 9073.181 56.566 41.544  41.642 57.070
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TABLE 3 VARIATIONS OF SEPARATION PROFILE PARAMETERS FOR
FLUCTUATING FLOW PAST A POROUS FLAT PLATE

N

\\\mt
4x‘\\\> 75° m/2 120° 165° m

8/8% 5.500 6.000 6.500 7.300 7.700

8*/8% 1.599 1.689 1.834 2.184 2.568

2 6/8% 0.576 0.612 0.664 0.750 0.782
H 2.775 2.758 2.764 2.913 3.284

§%/8 0.291 0.281 0.282 0.299 0.333

8/6% 4.700 5.300 5.900 6.500 6.900

8*/8* 1.364 1.476 1.643 1.970 2.245

4 0/8% 0.485 0.532 0.590 0.662 0.682
H 2.810 2.776 2.786 2.974 3.293

§*/8 0.290 0.279 0.278- 0.303 0.325

8/6% 4.800 5.300 5.700 6.100 6.400

8%/8% 1.173 1.295 1.460 1.737 1.935

8 0/8% 0.428 0.479 0.533 0.588 0.600
H 2.737 2.703 2.737 2.954 3.225

§*%/6 0.244 0.244 0.256 0.285 0.302

8/6% 5.100 5.400 5.600 5.900 6.100

§*/ 8% 1.052 1.170 1.317 1.539 . 1.681

16 0/8% 0.415 0.460 0.503 0.541 0.548
H 2.538 2.544 2.618 2.846 3.068

§*/68 0.206 0.217 0.235 0.261 0.276

8/8% 5.200 5.300 5.500 5.700 5.900

8%/ 8% 0.989 1.092 1.215 1.386 1.488

32 0/8% 0.426 0.460 0.491 0.515 0.520
H 2.322 2.373 2.473 2.690 2.863

§*/8 0.190 0.206 0.221 0.243 0.252




TABLE 3 VARIATIONS OF SEPARATION PROFILE PARAMETERS FOR FLUC-
TUATING FLOW PAST A POROUS FLAT PLATE - Continued

\\\\Qm
4\

75° /2 120° 165° n
N

6/6; 5.200 5.300 5.500 5.600 5.700
6*/6; 0.961 1.047 1.145 1.274 1.346
64 6/5; 0.445 0.469 0.489 0.503 0.506
H 2.161 2.234 2.341 2.531 2.663
5*/8 0.185 0.198 0.208 0.227 0.236
5/63 5.300 5.300 5.400 5.500 5.600
6*/63 0.954 1.023 1.097 1.192 1.244
128 6/6; 0.463 0.478 0.490 0.498 0.499
H 2.061 2.140 2.240 2.394 2.491
8§*/8 0.180 0.193 0.203 0.217 0.222
6/6; 5.300 5.300 5.400 5.500 5.500
6*/6; 0.957 1.009 1.066 1.135 15172
256 6/6; 0.476 0.485 0.492 0.496 0.497
H 2.010 2.082 2.167 2.287 2.358
5*/8 0.181 0.190 0.197 0.206 0.213
6/68 5.300 5.300 5.400 5.400 5.500
5*/53 0.963 1.002 1.044 1.094 1.120
512 6/58 0.484 0.489 0.493 0.495 0.496
H 1.988 2.049 2117 2.208 2.259
§*/8§ 0.182 0.189 0.193 0.203 0.204
5/68 5.300 5.300 5.400 5.400 5.400
5*/63 0.976 0.997 1.019 1.045 1.058
2048 6/6; 0.497 0.493 0.495 0.495 0.495
H 1.983 2,021 2.060 2.109 2..:135
§*/8 0.184 0.188 0.189 0.193 0.196
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TABLE 3 VARIATIONS OF SEPARATION PROFILE PARAMETERS FOR FLUC-

TUATING FLOW PAST A POROUS FLAT PLATE - Continued

o R 75° /2 120° 165°
8/6% 5.300 5.300 5.400  5.400 5.400
6%/ 8% 0.985 0.995 1.007  1.020 1.027
8192 0/8% 0.494 0.495 0.495  0.495 0.495
H 1.992 2.013 2.033  2.059 2.072
5%/ 0.186 1.188 0.186  0.189 0.190
8/6% 5.300 5.300 5.400  5.400 5.400
6%/ 6% 0.990 0.995 1.001  1.008 1.011
32768 6/6% 0.495 0.495 0.495  0.495 0.495
H 2.000 2.011 2.021  2.034 2.041
§%/6 0.187 0.188 0 0.187 0.187

.186
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