
DISSERTATION

SEARCHING OVER ENCRYPTED DATA

Submitted by

Tarik Moataz

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2017

Doctoral Committee:

Advisor: Indrajit Ray

Co-advisor: Indrakshi Ray

Frédéric Cuppens

Nora Boulahia Cuppens

Wang Haonan

Ross McConnell

Copyright by Tarik Moataz 2017

All Rights Reserved

ABSTRACT

SEARCHING OVER ENCRYPTED DATA

Cloud services offer reduced costs, elasticity and a promised unlimited managed storage space

that attract many end-users. File sharing, collaborative platforms, email platforms, back-up servers

and file storage are some of the services that set the cloud as an essential tool for every day use.

Currently, most operating systems offer built-in outsourced cloud storage applications, by design,

such as One Drive and iCloud, as natural substitutes succeeding to the local storage. However,

many users, even those willing to use the aforementioned cloud services, remain reluctant towards

fully adopting cloud outsourced storage and services. Concerns related to data confidentiality rise

uncertainty for users maintaining sensitive information. There are many, recurrent, worldwide

data breaches that led to the disclosure of users sensitive information. To name a few: a breach of

Yahoo [47] late 2014 and publicly announced on September 2016, known as the largest data breach

of Internet history, led to the disclosure of more than 500 millions user accounts; a breach of health

insurers, Anthem [4] in February 2015 and Premera BlueCross BlueShield [13] in March 2015, that

led to the disclosure of credit card information, bank account information, social security numbers,

data income and more information for more than millions of customers and users. A traditional

countermeasure for such devastating attacks consists of encrypting users data so that even if a

security breach occurs, the attackers cannot get any information from the data. Unfortunately, this

solution impedes most of cloud services, and in particular, searching on outsourced data.

Researchers therefore got interested in the following question: how to search on outsourced en-

crypted data while preserving efficient communication, computation and storage overhead? This

question had several solutions, mostly based on cryptographic primitives, offering numerous secu-

rity and efficiency guarantees. While this problem has been explicitly identified for more than a

decade, many research dimensions remain unsolved.

ii

The main goal of this thesis is to come up with practical constructions that are (1) suitable

for real life deployments verifying necessary efficiency requirements, but also, (2) providing good

security insurances. Throughout our research investigation, we identified symmetric searchable

encryption (SSE) and oblivious RAM (ORAM) as the two potential and main cryptographic prim-

itives candidate for real life settings. We have recognized several challenges and issues inherent to

these constructions and provided a number of contributions that improve upon the state of the art.

First, we contributed to make SSE schemes more expressive by enabling boolean, semantic,

and substring queries. Practitioners, however, need to be very careful about the provided bal-

ance between the security leakage and the degree of desired expressiveness. Second, we improve

ORAM’s bandwidth by introducing a novel recursive data structure and a new eviction procedure

for the tree-based class of ORAM constructions, but also, we introduce the concept of resizability

in ORAM which is a required feature for cloud storage elasticity.

iii

ACKNOWLEDGEMENTS

First and foremost, this thesis is dedicated to my beloved family. My dear parents Hinda and

Mustafa, unconditionally supporting me through these years, gave me the strength to go forward

with their unselfish love and affection. This thesis is for the best brother in the world, Amine, who

taught me not only how to solve my first equations, but also the importance of rigorousness in our

scientific world. This dissertation is the result of many sacrifices made by my love Safâa, bearing

with me all the research inconveniences, sharing my sorrow and happiness whenever a paper’s

acceptance notification pops up, always supporting me and encouraging me, this thesis is for her.

I am extremely grateful to my advisors Frédéric Cuppens, Indrajit Ray, Nora Cuppens-Boulahia

and Indrakshi Ray for these wonderful years that we have spent together. Words alone cannot ex-

press my deep gratitude towards my advisors, for introducing me to the field of computer security,

their insightfulness, trust, unconditional help and time spent working with me. I had the chance

to be a part of this amazing joint PhD program between Telecom Bretagne, France and Colorado

State University, USA that my advisors have carefully set up for me. This program gave me the

opportunity to experience two different yet complementary research philosophies that I am sure is

going to have an important impact on my research’s vision. In addition to their flawless research

guidance and valuable advices, my advisors grant me an enjoyable research freedom which had a

considerable impact on my research’s maturity. I want also to thank the members of my PhD com-

mittee, Ross McConnell and Wang Haonan, for all their valuable feedback, for their time and for

being critical towards my research. I want to also thank the French PhD committee Seny Kamara

and Joaquin Garcia-Alfaro for all their valuable comments.

Throughout the years I have spent for my PhD, I had the chance to work with amazing re-

searchers who played an important role in my research orientation. I want to especially thank

Erik-Oliver Blass for introducing me to the ORAM’s field while at Northeastern University. Erik

is one of the rare researchers with whom collaboration is not only fruitful but exiting, fun and

enjoyable. I want also to thank Guevara Noubir, one of the smartest and humblest researchers I

iv

have ever worked with. I want also to thank Travis Mayberry for all his advices and for walking

me through the ORAM primitives.

My thoughts also go to my internship supervisor at Bell Labs, Abdullatif Shikfa. I am grateful

to Abdullatif for introducing me to the applied cryptographic field and to the encrypted search area

in particular.

I want to particularly thank Seny Kamara for playing a key role in greatly expanding my knowl-

edge in the encrypted search and applied cryptography in general while interning at Microsoft Re-

search but also during my current visit to Brown University. I am extremely indebted and words

alone cannot express my deep gratitude.

Finally, I want to thank all my friends at both institutions and collaborators who supported me,

encouraged me and trusted on me. My special thanks go to Ibrahim, Farid, Anis, Reda, Louis,

Yaoqi and Shruti.

v

DEDICATION

To my parents

To my brother

To my love

vi

TABLE OF CONTENTS

Abstract . ii

Acknowledgements . iv

Dedication . vi

List of Tables . x

List of Figures . xi

1 Introduction . 1

1.1 Research contributions . 4

1.1.1 SSE contributions . 4

1.1.2 ORAM contributions . 7

1.2 Ongoing Work . 9

1.3 Dissertation Outline. 11

2 Research Challenges and Background . 12

2.1 Research dimensions . 12

2.1.1 Searchable Encryption . 13

2.1.2 Oblivious RAM . 18

2.2 Scheme Definitions . 21

2.2.1 Setting definition . 21

2.2.2 Structured Encryption (STE) . 21

2.2.3 Tree-based Oblivious RAM . 24

2.3 Security Definitions . 26

2.3.1 STE security definition . 29

2.3.2 ORAM security definition . 30

2.4 Cryptographic Primitives . 31

vii

3 Related Works . 33

3.1 Searchable Encryption . 38

3.2 Oblivious RAM . 40

4 Expressiveness in Symmetric Searchable Encryption 43

4.1 BSSE: Boolean SSE . 44

4.1.1 Contribution Summary . 44

4.1.2 BSSE construction . 45

4.1.3 Security Analysis . 51

4.1.4 BSSE Performance . 52

4.2 3SE: Semantic SSE . 54

4.2.1 Contribution Summary . 54

4.2.2 Stemming Algorithms . 55

4.2.3 Semantic SSE: Construction Overview 58

4.3 SED: Substring SSE . 63

4.3.1 Contribution Summary . 63

4.3.2 Substring search over Encrypted Data - Pre-construction 66

4.3.3 Substring Search Over Encrypted Data #1 – SED-1 66

4.3.4 Substring Search Over Encrypted Data #2 – SED-2 74

4.3.5 Security analysis for SED-2 . 77

4.3.6 SED-2 Generalization . 82

4.3.7 Performance Analysis . 84

5 Oblivious RAM . 89

5.1 Resizable ORAM . 89

5.1.1 Motivation and Findings . 90

5.1.2 Resizable ORAM . 91

5.1.3 Adding . 92

5.1.4 Pruning . 102

viii

5.2 Recursive ORAM . 107

5.2.1 Contribution Summary . 108

5.2.2 Recursive Binary Trees . 109

5.2.3 κ-ary Trees . 119

5.2.4 Security Analysis . 120

5.2.5 Performance Analysis . 133

5.3 Constant bandwidth ORAM . 138

5.3.1 Contribution Summary . 139

5.3.2 Background: Onion ORAM . 140

5.3.3 Constant Communication ORAM . 143

5.3.4 C-ORAM analysis . 153

5.3.5 Evaluation . 164

6 Conclusion . 172

References . 173

ix

LIST OF TABLES

4.1 Encrypted documents along with encrypted indexes in the outsourced server 47

5.1 Tree height comparison . 134

5.2 Tree-based ORAM gain . 134

5.3 Comparison of Onion ORAM and C-ORAM, containing block size, worst-case band-

width, and number of homomorphic additions and multiplications. The simpli-

fied block value is a looser bound for easier comparison using λ = ω(logN) and

γ = O(λ3). 140

5.4 Bucket creation pattern in function of the eviction step. 171

x

LIST OF FIGURES

2.1 Setup phase: the user outsources all files in an encrypted form along with the secure

searchable index. 21

2.2 Query phase: (1) user sends an encrypted query that the server processes, (2) the server

outputs the encrypted files without any knowledge of the query or files plaintext,

and (3) the user decrypts the files. 22

4.1 Search phase . 52

4.2 Orthogonal keywords construction . 52

4.3 Labels creation . 53

4.4 Semantic encrypted search 3SE. 60

4.5 Stemming process . 61

4.6 Letter Frequency . 73

4.7 Length Frequency . 74

4.8 Substring search over encrypted data SED− 2 for the wildcard search case 76

4.9 Time of inverted index encryption . 86

4.10 Number of unique keywords . 86

4.11 Searchable part construction . 87

4.12 Size of the encrypted data structure . 87

4.13 Search phase time . 87

5.1 Communication, blocks per access . 101

5.2 Storage cost, blocks . 101

5.3 Illustration of permute-and-merge process. Bucket (2) is permuted and then merged

with bucket (1) to create a new, combined bucket (3). 106

5.4 Structure of an r-ORAM . 110

5.5 r-ORAM path length distribution . 116

5.6 r-ORAM Map addressing . 118

xi

5.7 Structure of an r-ORAM . 123

5.8 Communication per access . 136

5.9 Communication cost per 100 accesses . 136

5.10 Average height comparison . 136

5.11 Communication per access . 136

5.12 Stash size, z = 6, number of operations in log2 . 138

5.13 Average stash size, operations in log2 . 138

5.14 C-ORAM bucket structure . 146

5.15 Buckets on evicted path are with horizontal hatching. Bucket 3 is a copy of the root.

Bucket 4 results from merging buckets 1 and 2. Bucket 6 results from merging 1,

2, and 5. 154

5.16 Illustration of nine evictions. Numbers below leaves represent the order of reverse

deterministic lexicographic eviction. Buckets with same shapes were full and then

evicted at the same step. Example: buckets with triangular shape are evicted in

step 9. 155

5.17 Minimum efficient block size for C-ORAM and Onion ORAM 164

5.18 Required bucket size in relation to security parameter 164

5.19 Required ciphertext operations for one access . 165

5.20 Comparison of computation time for one access . 165

xii

Chapter 1

Introduction

Truth is ever to be found in simplicity, and

not in the multiplicity and confusion of

things.

Isaac Newton

We are in an era where outsourcing data to cloud servers becomes a must for most end users.

The amount of data generated by nowadays services grows sharply in a daily basis. Managing lo-

cal infrastructures in this case becomes a concrete burden for end users and companies. Moreover,

local infrastructures can be even considered as a usability hindrance for many services such as

email servers [15], file sharing systems [5], and collaborative platforms [7]. Fortunately, the recent

widely adoption of outsourced infrastructures, data centers and externalized computing services

such as Amazon Web Serivce [3], Microsoft Azure [12], Google Drive [8], IBM cloud [10], HP

public cloud [9], Dropbox [6] and so on, makes cloud services and infrastructures more appealing

than ever. In particular, cloud computing brings several novel opportunities to the end users with a

promised unlimited amount of managed storage space, and an ubiquitous access to the infrastruc-

tures. With very competitive prices, companies are tending to outsource many of their services and

locally stored data to the outsourced servers. However, while outsourced infrastructures come with

several advantages, an extremely important issue remains unsolved. Cloud infrastructures have a

serious issue when dealing with users’ sensitive data, in particular, preserving cloud services while

users’ data must be kept private. In an outsourced setting, end users and companies do not neces-

sarily trust the servers and even often consider cloud servers as untrusted and dishonest. In such

a setting, the server is a potential adversary that can maliciously look after users’ files, documents

and pictures and therefore gather information that are a-priori private. In the meantime, one of the

major cloud services consists of performing search operations over outsourced data. In this case,

an entity, either an end user or a company, outsources its local data to an external server to perform

search operations when required. Search can be considered as one of the most fundamental oper-

1

ations and can be used as a building block to simulate more complex operations and algorithms.

One straightforward and naive solution that preserves user’s confidentiality would be to encrypt

all of the data before outsourcing it to the cloud. However, current encryption schemes randomize

data such that a search operation becomes almost impossible over the encrypted data. That is, to

search for a keyword or a picture with a specific feature, the client needs to download the entire

data stored on the outsourced servers, decrypt it before performing a local search. This is clearly

unfeasible and will not scale to real life dataset sizes as it needs a large local client memory, a high-

speed bandwidth, and an extremely efficient end user’s commodity machine to run cryptographic

decryption operations. These assumptions are clearly contradictory to the motivation behind a prior

migration to cloud infrastructures. Researcher therefore got interested in the following question:

How can we search on encrypted data while preserving realistic communication, com-

putation and storage overhead?

This question has been explicitly answered for the first time by Song, Wagner and Perrig [130]

who have presented the first construction that can enable searching over encrypted data. This

construction is known as symmetric searchable encryption primitive (SSE). Concretely, searchable

encryption is a cryptographic primitive that allows the user to search for any textual keyword

in an encrypted dataset using encrypted queries. The cloud server, using the SSE protocol, can

search on the encrypted dataset without decrypting the dataset or the query, and while being able to

provide correct encrypted results. Researchers have then worked towards enhancing SSE protocols

along many dimensions such as decreasing the search overhead by reducing the communication

and search complexities, as well as reducing the storage overhead, and strengthening the security

guarantees.

SSE was the first dedicated primitive to explicitly solve the encrypted search problem. Nev-

ertheless, the same problem can be solved by leveraging many previously existing cryptographic

primitives such as oblivious RAM (ORAM) and private information retrieval (PIR). ORAM [70]

was introduced late 80s by Goldreich and Ostrovsky, while PIR [45] was introduced mid 90s

by Chor, Goldreich, Kushilevitz and Sudan. ORAM, when first introduced, was designed as a

prevention tool against retro-engineering. An entity that has an access to the memory can infer

2

incredible amount of information by just observing the access pattern made by the CPU into the

memory. Also, ORAM, when first introduced, was extremely inefficient, theoretically minded and

was therefore dismissed from most practical settings. Recently in 2011, Shi et al. [129] introduced

a new way to design ORAM schemes in such a way that the asymptotics become sub-linear in the

worst-case, instead of linear, with a smaller hidden constant in the big-O notation. Shi et al. intro-

duced the first practically feasible ORAM, and since, ORAM has been considered as a potential

solution for the the encrypted search problem. Conceptually, ORAM is very different from SSE

in many aspects that will become clearer later on in Chapter 2. A high level difference to keep in

mind between SSE and ORAM consists of their security guarantees and efficiency. ORAM offers

much better security insurances when compared to SSE, at the cost of being less efficient.

Private information retrieval is another candidate to the encrypted problem. A user can hide

her search pattern even if the outsourced data is not encrypted. PIR somehow offers better security

guarantees and can be considered more powerful than SSE and ORAM as there is no need to en-

crypt the data. However this setting is different from our encrypted search problem where keeping

data private is as (if not more) important as (than) hiding the search pattern. Fortunately, PIR can

be easily adapted to a client / server setting and data can be also encrypted. PIR comes with two

different instantiations: (1) a first instantiation that only works in multiple server setting, dubbed

IT-PIR for information-theoretic PIR. In this case, data needs to be replicated over non-colluding

multiple servers, (2) a second instantiation, more adapted to our client / server setting, is a single

server computational PIR, dubbed C-PIR. At a higher level, PIR offers similar security insurance

if compared to ORAM, however, with its linear computational time, PIR is definitely not suitable

for search purposes.

Throughout our research, it becomes clear to us that SSE and ORAM are two potential candi-

dates to search over encrypted data. Our choice to focus on these two primitives is twofold: first,

both of the primitives offer at least sub-linear search complexities either in terms of communica-

tion or computation on the server side. This features makes ORAM and (especially) SSE suitable

for very large data sets. Second, both of these primitives offer interesting security insurance with

a very well understood leakage profile. SSE and ORAM, as solutions for the encrypted search

3

problem, can be suitable for two different settings: first, users who are lenient with some leakage

related to their private data, but require very efficient and scalable protocol, and second, users who

look after better security insurances, while potentially willing to give away somehow the scheme

efficiency. Note however, that both of these protocols can perform search operations in a sub-linear

time with different complexities that we are going to detail later on in Chapters 2 and 3.

1.1 Research contributions

For this thesis, we have been interested in solving the efficient and expressive encrypted search

problem. For this purpose, we have focused on improving both SSE and ORAM primitives along

several dimensions. Our ultimate goal was to build schemes that are practical, efficient and suit-

able for a real-life deployment, while preserving constructions security insurances. On a first

hand, we proposed several SSE constructions that have enhanced the search expressiveness such

as proposing one of the first instantiations of semantic, boolean and substring SSE schemes, as

well as improving the leakage of conjunctive search. We have been also interested in applying

some of the SSE techniques on some of the real worlds settings. On the other hand, we have

also presented different improvements over the ORAM literature, especially, presented one of the

most efficient constructions in terms of communication overhead and introducing the concept of

resizability in ORAM literature. In the following, I will briefly present our thesis’s contributions

and defer greater details to the upcoming chapters, namely, Chapters 4 and 5. Please note that

part of our contributions’ descriptions in the following might sound technical and require some

preliminaries and technical background that will be later introduced in Chapter 2.

1.1.1 SSE contributions

Boolean SSE1. BSSE was among the first candidates to introduce boolean SSE in literature. De-

parting from many previous works that focused on queries consisting of a single keyword [37, 42,

50, 66, 130], we consider in this work the case of queries consisting of arbitrary boolean expres-

sions on keywords, that is to say conjunctions and disjunctions of keywords and their complement.

1This work has been published as a full paper in ACM ASIACCS 2013, as a poster in Financial Cryptography

2013, and has been a subject to an European and US patent [110].

4

Our construction of boolean symmetric searchable encryption BSSE is mainly based on the orthog-

onalization of the keyword field according to the Gram-Schmidt process. Each document stored

in an outsourced server is associated with a label which contains all the keywords corresponding

to the document, and searches are performed by way of a simple inner product. BSSE’s search

complexity is in O(n) where n is the number of documents stored in the outsourced server. We

will detail this construction in Chapter 4, Section 4.1.

Semantic SSE2. Current SSE constructions lack searching capabilities beyond exact search on

single keywords and are thus less expressive than plaintext algorithms that take into account the

meaning of the query and return results corresponding to semantically close keywords. We thus

advocate for the need of semantic search over encrypted data. We study the state of the art in

stemming algorithms and in searchable encryption and propose, 3SE, the first semantic symmetric

searchable encryption construction. This improvement over searchable encryption has similar se-

curity as the prior work of Curtmola et al. [50] on symmetric searchable encryption as well as being

optimal in terms of computational overhead. This construction can be further enhanced with better

stemming algorithms. Furthermore, it can be easily plugged in more expressive construction such

as the one by BSSE, OXT [38, 110] or more recently IEX [82]. We will detail 3SE in Chapter 4,

Section 4.2.

Privacy-preserving conjunctive SSE3. Passive cloud servers can perform inference attacks to

recover data or queries based on the query leakage. In this work, we propose two gradually im-

proved privacy-preserving conjunctive symmetric searchable encryption (PCSSE) schemes which

allow cloud servers to perform conjunctive keyword searches on encrypted documents with differ-

ent privacy assurances. Our scheme generates randomized search queries to randomize the search

pattern. PCSSE is also able to hide the number of keywords in a query and also the number of

keywords contained in an encrypted document to a publicly known upper bound. However, the

main downside of this work is its linear search time which makes it very complicated to scale for

2This work has been published in IEEE ICT 2013 and has been a subject to an European patent [111].
3This work has been published as a full paper in IFIP DBSec 2014 [107].

5

large data set. This work targets small to medium data sets. Moreover, hiding the search pattern

while leaking the access pattern, for some cases, might be meaningless.

SSE in Real World4. Aside from focusing on enhancing SSE constructions, we have also been

interested in incorporating these techniques in different realistic settings, in particular, in secure

biometric storage settings, as well as in medical health databases. Here are two brief descriptions

of our two settings:

• Modern day biometric systems, such as those used by governments to issue biometric-based

identity cards, maintain a deterministic link between the identity of the user and her biomet-

ric information. However, such a link brings in serious privacy concerns for the individual.

Sensitive information about the individual can be retrieved from the database by using her

biometric information. Individuals, for reasons of privacy therefore, may not want such a

link to be maintained. Deleting the link, on the other hand, is not feasible because the in-

formation is used for purposes of identification or issuing of identity cards. In this work, we

address this dilemma by hiding the biometrics information, and keeping the association be-

tween biometric information and identity probabilistic. We extend traditional Bloom filters

to store actual information and propose a new SOBER data structure for this purpose. Simul-

taneously, we address the challenge of verifying an individual under the multitude of traits

assumption, so as to guarantee that impersonation is always detected. We discuss real-world

impersonation use cases, analyze the privacy limits, and compare our scheme to existing

solutions.

• In this work, we present a novel scheme that allows multiple data publishers that continu-

ously generate new data and periodically update existing data, to share sensitive individual

records with multiple data subscribers while protecting the privacy of their clients. An ex-

ample of such sharing is that of health care providers sharing patients’ records with clinical

researchers. Traditionally, such sharing is performed by sanitizing personally identifying in-

formation from individual records. However, removing identifying information prevents any

4Two research works published as full papers in IFIP DBSec 2014 and 2015 [92, 106].

6

updates to the source information to be easily propagated to the sanitized records, or sani-

tized records belonging to the same client to be linked together. We solve this problem by

utilizing the services of a third party. The scheme is based on single keyword SSE primitives

and elliptic curve El-Gamal that do not require shared encryption keys between the parties.

1.1.2 ORAM contributions

Resizable ORAM5 Although newly proposed, tree-based Oblivious RAM schemes are drasti-

cally more efficient than older techniques, they come with a significant drawback: an inherent

dependence on a fixed-size database. Yet, a flexible storage is vital for real-world use of Oblivious

RAM since one of its most promising deployment scenarios is for cloud storage, where scalability

and elasticity are crucial. We revisit the original construction by Shi et al. [129] and propose several

ways to support both increasing and decreasing the ORAMs size with sub-linear communication.

We show that increasing the capacity can be accomplished by adding leaf nodes to the tree, but that

it must be done carefully in order to preserve the probabilistic integrity of data structures. We also

provide new, tighter bounds for the size of interior and leaf nodes in the scheme, saving bandwidth

and storage over previous constructions. We will detail our solution in Chapter 5, Section 5.1.

Recursive ORAM6 We present a new, general data structure that reduces the communication

cost of recent tree-based ORAMs. Contrary to ORAM trees with constant height and path lengths,

our new construction r-ORAM allows for trees with varying shorter path length. Accessing an

element in the ORAM tree results in different communication costs depending on the location of

the element. The main idea behind r-ORAM is a recursive ORAM tree structure, where nodes

in the tree are roots of other trees. While this approach results in a worst-case access cost (tree

height) at most as any recent tree-based ORAM, we show that the average cost saving is around

35 % for recent binary tree ORAMs. Besides reducing communication cost, r-ORAM also reduces

storage overhead on the server by 4% to 20% depending on the ORAMs client memory type. To

5This paper has been published in Financial Cryptography and Data Security 2015 [109]. This works was done as

a research visiting student to Northeastern University.
6This paper has been published as a full paper in the journal of PoPETS 2015 [105]. This works was done partially

as a research visiting student to Northeastern University.

7

prove r-ORAMs soundness, we conduct a detailed overflow analysis. r-ORAMs recursive approach

is general in that it can be applied to all recent tree ORAMs, both constant and poly-log client

memory ORAMs. Finally, we implement and benchmark r-ORAM in a practical setting to back

up our theoretical claims. We present r-ORAM in Chapter 5, Section 5.2.

Constant communication ORAM7. There have been several attempts recently at using homo-

morphic encryption to increase the efficiency of Oblivious RAM protocols. One of the most suc-

cessful has been Onion ORAM [56], which achieves O(1) communication overhead with poly-

logarithmic server computation. However, it has two drawbacks. It requires a large block size of

B = Ω(log6 N) with large constants. Moreover, while it only needs polylogarithmic computation

complexity, that computation consists mostly of expensive homomorphic multiplications. In this

work, we address these problems and reduce the required block size to B = Ω(log4 N). We re-

move most of the homomorphic multiplications while maintaining O(1) communication complex-

ity. Our idea is to replace their homomorphic eviction routine with a new, much cheaper permute-

and-merge eviction which eliminates homomorphic multiplications and maintains the same level

of security. In turn, this removes the need for layered encryption that Onion ORAM relies on and

reduces both the minimum block size and server computation. We detail C-ORAM in Chapter 5,

Section 5.3.

OblivP2P: a distributed ORAM for Peer-to-Peer networks8. Peer-to-peer (P2P) systems are

predominantly used to distribute trust, increase availability and improve performance. A number

of content-sharing P2P systems, for file-sharing applications (e.g., BitTorrent and Storj) and more

recent peer-assisted CDNs (e.g., Akamai Netsession), are finding wide deployment. A major secu-

rity concern with content-sharing P2P systems is the risk of long-term traffic analysis — a widely

accepted challenge with few known solutions.

7This paper has been published as a full paper in ACM CCS 2015 [108]. This works was done partially while

visiting Airbus Group of Innovation.
8This paper has been published as a full paper in USENIX 2016 [80]. This works was done partially while visiting

National University of Singapore.

8

As our result, we present a new approach to protecting against persistent, global traffic analysis

in P2P content-sharing systems. Our approach advocates for hiding data access patterns, making

P2P systems oblivious. We propose OblivP2P — a construction for a scalable distributed Oblivi-

ous RAM protocol, usable in a real P2P setting. OblivP2P leverages recent advances in tree-based

ORAM and PIR to better distribute bandwidth and computation on the entire network. Our ex-

perimental results show that OblivP2P linearly scale with the number of peers in the network with

seven 512 KB requests per seconds.

1.2 Ongoing Work

In this section, we present some of our works that are currently investigated. These works

fall within the same line of research and present factual improvements over the state of art of

both SSE and ORAM. In particular, we present further enhancements of SSE constructions by

proposing the first non-interactive worst-case sub-linear dynamic boolean SSE [82], a substring

SSE and we propose the first formal study to encrypted databases [84]9. In addition, we further

reduce ORAM communication overhead by introducing constant communication ORAM under

the multiple-server setting. In the following, we briefly introduce the ongoing works:

Optimal Boolean SSE. Previous works on boolean SSE offer either a linear worst case compu-

tation with optimal communication [38, 110], or sub-linear computation with non-optimal com-

munication overhead while being interactive [60, 117]. In this work, we propose, IEX, the first

work that meets both requirements by providing optimal computation time with optimal commu-

nication. IEX can be extended to handle dynamic scenarios while providing forward security. This

work starts by showing that disjunctive queries can be efficiently solved based on the inclusion-

exclusion paradigm that transforms any disjunction to a set of conjunctions. Intuitively, as con-

junctions have been efficiently solved in literature [38], disjunctions can also be solved efficiently

given such a transformation. Moreover, we show how to extend disjunctive SSE to a boolean SSE.

As a building block, we also introduce a new highly compact SSE construction. Finally, we imple-

9Work done while at Microsoft Research and Brown University.

9

ment a new encrypted search framework, Clusion [83] that implements all our IEX instantiations

and therefore backs up our theoretical findings.

Substring SSE. We propose SED a general solution to the problem of efficient substring search

over encrypted data. The solution enhances existing single keyword SSE constructions by allowing

searching for any part of encrypted keywords without requiring one to store all possible combina-

tions of substrings from a given dictionary. The proposed technique is based on the idea of letter

orthogonalization that allows testing of string membership by performing efficient inner products.

SED is adaptively secure and we provide details about our leakage profile. The protocol is also

efficient in that the search complexity is linear in the size of the keyword’s universe. We finally run

several experiments on a sizeable real world dataset to evaluate the performance of our protocol.

Oblivious Substring Search Expressiveness in SEE constructions often comes at the cost of

more leakage. Every query will leak more information to the server. Recent SSE cryptanalysis

works [36, 113, 142] show that leakage in SSE can lead to the disclosure of users’ queries. In light

of these works, we propose an oblivious substring search protocol. While any data structure can

be stored as an ORAM, we demonstrate that a dedicated construction based on suffix arrays and

suffix trees can reduce the ORAM overhead significantly. Our scheme, OSS, leaks only the length

of the query which is much lesser if compared to SED or to recently introduced substring SSE

constructions such as [44, 59].

Constant Communication ORAM with no encryption. Recent techniques reduce ORAM com-

munication complexity down to constant in the number of blocks N [56, 108]. However, they

induce expensive additively homomorphic encryption on both the server and the client. As an al-

ternative, we present an information-theoretically secure ORAM which, at the expense of requiring

multiple servers, allows for substantially reduced client and server computation being constant in

N. In essence, our idea is to combine ORAM with Private Information Storage. By assuming a

small number of non-colluding servers, we show how homomorphic encryption can be replaced

with much simpler XOR operations. Besides O(1) communication complexity, our construction

10

also features O(1) client memory complexity and a reasonable block size of Ω(log4 N). This

leads to an ORAM which is extremely lightweight and suitable for deployment even on resource-

constrained devices.

Encrypted Relational Database In this work, we show how to encrypt a relational database in

such a way that it can efficiently support a large class of SQL queries. Our construction is based

solely on structured encryption [42] and does not make use of any property-preserving encryption

(PPE) schemes such as deterministic and order-preserving encryption. As such, our approach

leaks considerably less than PPE-based solutions which have recently been shown to reveal a lot

of information in certain settings [113]. Our construction achieves asymptotically optimal query

complexity under very natural conditions on the database and queries.

1.3 Dissertation Outline.

In Chapter 2, we detail the main research challenges in the encrypted search problem, we then

introduce some necessary technical background. In particular, we formalize the search scenario,

detail SSE primitive, its generalization to structured encryption (STE), and tree-based ORAM con-

struction. Moreover, we introduce some security definitions for both STE and ORAM protocols.

In Chapter 3, we provide a detailed state of the art of STE and ORAM. In the same chapter, we

also recall some cryptographic primitives that can be also used for the encrypted search problem.

In Chapter 4, we present boolean, semantic and substring SSE constructions as our major findings

in SSE. Similarly, in Chapter 5, we detail recursive, constant and resizable ORAM as our major

findings in ORAM. In Chapter 6, we conclude.

11

Chapter 2

Research Challenges and Background

Learning never exhausts the mind.

Leonardo da Vinci

In this chapter, we start by presenting a global overview of the encrypted search realm. We will

particularly be interested in listing the main challenges in this field and the key research questions

that the community is still being interested to. In particular, we will focus on symmetric searchable

encryption and oblivious RAM, and we list several research dimensions that we have identified

as important to the community and that we have investigated in part. Then, we present some

necessary preliminaries for a better understanding of our technical contributions. We first detail

the setting of searching over encrypted data. Second, we introduce a formal definition of structured

encryption (a generalization of symmetric searchable encryption) and oblivious RAM along with

a general framework for existing tree-based ORAM instantiations. Third, we detail the security

definition for searching over encrypted data with an emphasis on STE and ORAM cases. Finally,

we recall some necessary preliminary cryptographic primitives such as private key cryptosystems,

pseudo-random function (PRF) and generators (PRG). We want to point out that this section is not

exhaustive and more detailed preliminaries are going to be introduced when required throughout

the paper.

2.1 Research dimensions

Searching over encrypted data is an end-to-end process between a client(s) and a server(s).

The aim of such protocol is to outsource data to an untrusted server while preserving both client’s

confidentiality and search functionality. The process of searching over encrypted data starts with

an off-line phase of data processing, called setup phase, conceptually very similar to plaintext data

pre-processing. Pre-processing the entire user’s data is required to create a searchable form of

the data, called secure searchable index or encrypted data structure. The resulting pre-processed

12

encrypted data structure helps to greatly speed-up the search to reach optimal search times. En-

crypted data structures can have different forms and structures based on the client needs. As an

instance, a data structure can be further optimized to handle faster conjunctive or boolean searches

at the cost of further pre-processing time. Finally, the client encrypts the documents that are going

to be outsourced along with the encrypted data structure. The second phase, that we refer to as

search phase, starts when a client desires to query the server. For this, she constructs an encrypted

query that the server processes without any knowledge of its content, runs the query on the en-

crypted data structure that will output the necessary pointers to retrieve the files. The server will

finally send the corresponding encrypted files to the client who is going to decrypt to retrieve the

corresponding plaintext files.

In our research work, our research scope focuses on two cryptographic primitives that solve

the encrypted search problem. First, symmetric searchable encryption (SSE), later generalized to

structured encryption [42], and second Oblivious RAM (ORAM). Each of these two primitives

has its proper challenges occurring either during the setup or the search phase. In the following,

we give more details about these challenges that were identified throughout our technical research

studies.

2.1.1 Searchable Encryption

Symmetric searchable encryption (SSE), or its generalization to structured encryption (STE)1,

is a tuple of three probabilistic algorithms running in a polynomial time: Setup, Lookup and Search.

At a higher level, Setup is an algorithm that takes the plaintext data set as input, and outputs the

encrypted data structure along with the encrypted files. Lookup (called also Token) is an algorithm

that takes as input a boolean function of keywords and outputs a secure token. Search (called also

Query) is an algorithm that takes as input both the secure token and the encrypted data structure,

and outputs the desired encrypted files. We give a more formal definition of SSE in Section 2.2.2.

From a research perspective, there are many challenges and balances inherent to each of these

algorithms. The setup overhead, expressiveness of the query, computation and communication

1In the remaining sections of the dissertation we use STE and SSE interchangeably.

13

overhead, I/O efficiency and leakage (security) are fundamental challenges for SSE constructions.

In the following, we give more details about each of these challenges.

2.1.1.1 Expressiveness of the Query

Expressiveness in SSE englobes the different types of queries that an encrypted structure can

be queried on (or support). Query expressiveness includes, but not limited, to conjunction, dis-

junction, and boolean queries. Recently, many researchers got interested in building encrypted

structures for different types of queries such as range [59], similarity [22, 136], shortest distance

in graphs [42, 104], and semantic queries [111]. From a theoretical perspective, all queries can

be represented as a boolean expression. As an instance, an integer range query to find all files

containing a value within the interval [a, b] is equivalent to a conjunctive query composed of all

integers within the interval such that {a, a + 1, · · · , b − 1, b}. Enhancing query expressiveness

has significant impact on security and efficiency. Naively, any complex query can be constructed

while leveraging single keyword SSE. In general, boolean queries can be represented in a CNF

or DNF formulas 2, and therefore multiple keywords within the boolean query can be searched

for in an atomic manner i.e., by invoking single keyword SSE over every term within the boolean

query. For instance, if the query equals w1 AND w2, then one can separate the query into three

sub-queries such that the client runs as a sub-routine a single keyword SSE protocol on w1, then

redoes the same process on w2. The client gets two sets containing all encrypted files matching

respectively keywords w1 and w2, separately. The client finally outputs the intersection of both

of these sets. While this simple solution provides correctness, it has some non-trivial efficiency

downsides. First, if we consider a worst-case scenario where w1 and w2 match more or less the en-

tire encrypted data set, then the client might have to download the entire encrypted data set where

the intersection only consists of a couple of encrypted files. Clearly, this can have a devastating

impact on communication bandwidth between the client and the server. One however, can work

with an SSE that reveals the answer, and therefore the server will perform the intersection instead

of the client, but this would have an important implication on the security of the construction as it

2CNF stands for conjunctive normal form, while DNF for disjunctive normal form.

14

leaks more than needed. As the server being traditionally considered as the main adversarial entity

in data externalization, one needs to reduce as much as possible the amount of information that can

be leaked to the server during the search phase. In particular, fetching documents for every query

can lead to disclosing unnecessary information to the server3. The server can infer, for instance,

the number of documents that an intersection of any two disjoint keywords in the query contains.

An adversary with some auxiliary information can infer more information. Reducing leakage is

extremely important as it has recently been shown that it can be used to recover plaintext queries

or the outsourced data itself by [36, 78, 113]. Ideally, a conjunctive query in an SSE construction

only consists of one encrypted query that the server processes without disclosing which keyword

in the conjunction matches which encrypted file. That is, an ideal leakage in a conjunctive SSE

only equals the final result of the query.

To sum up, expressiveness comes up with many security and efficiency challenges. The ulti-

mate goal is to reduce leakage while not impacting efficiency. Finding out the right balance greatly

depends on the underlying application.

2.1.1.2 Setup overhead

To securely outsource a data set, the user needs to generate an encrypted data structure (or

encrypted searchable indexes). The Setup algorithm is an off-line step that is performed once in

the lifetime of the system. It takes as input the plaintext data set, and involves different operations

depending on the degree of expressiveness desired for the STE construction. These operations gen-

erally include data parsing, stemming operations, evaluating cryptographic primitive operations. In

the case of single keyword search, these operations are at least linear in the size of the data set.

However for more expressiveness, the setup can be polynomial in the size of the data set. This can

take a considerable amount of time especially for large data set. Researchers [38] reported that

it can take days of processing time using powerful servers to generate the encrypted data struc-

ture. Moreover, the size of the encrypted data structure often equals the size of the entire data

3This is only true when considering a response-revealing STE construction. That is, the query algorithm outputs the

answers in plaintexts. Response-hiding STE constructions leak much less and will be considered as optimal solutions

for boolean queries with respect to leakage. We will details these two types of STE in Section 2.2.2

15

set which represents also an additional storage cost. For average users with a normal commodity

machine, the setup represents a considerable one-time cost and can take much more time than the

one reported so far by the aforementioned research papers.

Some STE constructions can enable the client to perform the setup operation in an on-line

manner, i.e, generate the encrypted data structure in a step-by-step manner. This setup is possible

if the STE is a forward-secure dynamic scheme, or only dynamic but under the constraint that the

client must not perform any search operation as long as the setup did not terminate yet. Forward

secrecy is a property that allows the client to unlink updates from previous search queries. That is,

an adversary cannot infer any information from the updates knowing the search tokens.

Another research challenge in the setup phase is the creation of the encrypted data structure

that preserves the same search efficiency whether the structure is stored in the main memory or

in the hard disk. This research challenge is known in literature as the locality challenge. The

security of the encrypted data structure consists in part of scrambling data such that it will be uni-

formly distributed. That is, when the encrypted data structure is stored in the hard drive, accessing

non-contiguous memory blocks results in considerable delays. Consequently, the search becomes

extremely slow when compared to the same search if the structure is kept in the main memory. Re-

cent results show that the most efficient schemes in theory are not necessarily the best in practice

in case of large data sets [40].

2.1.1.3 Computation overhead

Computation overhead is one of the main comparison metric in SSE constructions. When SSE

was first proposed in literature [130], the search complexity was linear in the size of the entire data

set. In particular, if we consider that all n files are textual, and each has size m, then the search

can be performed in O(m · n) for single keyword search. Four years later, Goh [66]4 succeeded

to reduce the search overhead to be only linear in the number of stored documents. Moreover, the

report introduced the first index based SSE and proposed further improvements that were in the

appendices that can further reduce the computation to be only logarithmic in n. In 2006, Curtmola

4The report titled Secure Indexes surprisingly has never been published

16

et al. [50] presented optimal search complexity construction, i.e., the computation performed by

the server is only linear in the result set. While computation overhead has been more or less solved

for single keyword search, for more expressive constructions it is not. Boolean SSE schemes

are still not achieving optimal search efficiency and represents an on-going challenge in the SSE

community. The difficulty behind this challenge consists of finding the right balance between

storage, security and search efficiency.

2.1.1.4 Storage overhead

Storage overhead varies depending on the expressiveness of the construction as well as the de-

sired level of security. It is very challenging to assert that an STE scheme has the best storage over-

head while neglecting the level of security it offers. Reducing storage overhead of the encrypted

data structure is also another research dimension of SSE constructions. As an instance, there are

many expressive SSE constructions that can require exponential storage for optimal search com-

putation, but clearly such solutions are not realistic. In general, for single keyword SSE, a widely

acceptable storage complexity is in O(n), which translates to be the total size of the entire data set.

If a user has, for example, 10 GByte of files to store, then the encrypted data structure will have a

size of 1 GByte, as an instance. The storage overhead of single keyword SSEs has been recently

reduced by Cash et al. [37]. To sum up, it is very challenging to find the right balance between

computational overhead and storage overhead.

2.1.1.5 Security

Security in SSE, when first proposed, was similar to the security of secret key encryption

scheme, i.e., the SSE scheme is secure if data stored in the server is indistinguishable from ran-

domly generated data. This security definition is very limited and not really adapted to SSE

schemes where the protocol is interactive. In SSE, the knowledge of the server (adversary) in-

creases with the search queries that the client evaluates. For example, the server can infer how

many files are retrieved for every query, can know whether a query is repeated and so on. These

kind of information were not captured by the first SSE security model. Curtmola et al. [50] pro-

posed the first security definition that captures these information in the form of stateful leakage

17

functions. The authors show the first construction that results in a semantic secure5 construction

that will leak two types of leakage: a setup leakage and a query leakage6. At a higher level, this

underlines that the proposed construction will not leak anything else other than these two leak-

ages. The former leakage often captures information disclosed to the server by just looking at the

encrypted data structure. It is usually the case for secure SSE constructions that the setup leak-

age only consists of the maximum size of data set [42]. The query leakage consists of the search

pattern and access pattern that capture the information leaked during the search phase. These two

leakages record, for example, all file identifiers, pointers, and queries that have been accessed or is-

sued during a search phase. These two leakages can contain more information depending on many

parameters such as the expressiveness, storage and computation overhead of the SSE construction.

While providing a formal leakage description is very important for every SSE construction,

reducing this leakage is also very valuable. There were recently many attempts to show that an

adversary can recover the plaintext of queries [36, 78, 113, 142] if some auxiliary information is

obtained. These works will help the community to better understand the impact of leakage of STE

constructions.

2.1.2 Oblivious RAM

Oblivious RAM (ORAM) [70] is a cryptographic primitive that hides the access pattern of a

trusted CPU to an untrusted memory. From an untrusted memory perspective, any two accesses to

the memory are indistinguishable even if the trusted CPU is accessing the same data. ORAM has

many applications but we will only focus on secure data externalization. In this context, the trusted

CPU can be pictured as the client and the untrusted memory as the untrusted server. In this par-

ticular setting, ORAM can be considered as a structured encryption scheme. The client can run a

search program on the server to retrieve the desired data so that the server does not know what type

of data or what file has been retrieved. When compared to traditional SSE, ORAM offers better

security guarantees if employed correctly. For sake of clarity, let us take the following example.

First, imagine that a client generates a single keyword SSE construction, outsources the encrypted

5We will give further details about STE security definition and leakage functions in Section 2.2.2
6Dynamic constructions also leak the update leakage. This leakage is out of scope of this dissertation.

18

data structure, then generates several number of queries for the same keyword. The server then

directly infers that the client is looking for the same keyword even if the entire data is encrypted.

In ORAM, this is not the case, the server cannot determine whether the client is looking for similar

queries. We say that ORAM hides the search pattern. This is a very desirable property, especially

in cases where reducing information disclosure is highly appreciated in the community. There are

many other hindrances of applying ORAM to a search context that we will detail later in Sec-

tion 2.2.3. Leaking less comes at a considerable cost. ORAM main metric is the communication

overhead. In general ORAM schemes are based on memory shuffling techniques. These operations

are expensive. In the following, for sake of clarity, we focus on three main challenges: communi-

cation overhead, storage overhead and security. There are many other challenges to overcome but

they are inherent to the instantiation itself rather than the ORAM conceptual design.

2.1.2.1 Communication overhead

The number of bits transferred per every access is the main and most important metric for

ORAM schemes comparison. In most ORAM constructions, the data is stored in the form of data

blocks. The block is the smallest communication unit employed to compare between ORAM con-

structions. For instance, the work by Goldreich and Ostrovsky [70] shows that in order to retrieve a

block of data, then there is a need to communicate a polylogarithmic number of blocks between the

server and the client (we refer here to the hierarchical solution). Authors have also shown that there

exists a lower bound on ORAM constructions which is exactly logarithmic in the number of blocks,

i.e., the best ORAM construction can at most achieve a logarithmic multiplicative overhead. On

the other hand, the communication overhead falls within two types: an amortized and a worst case

communication overhead. At a higher level, the amortized setting denotes the average number of

blocks that the client communicates to the server after a polynomial number of requests. Most of

prior ORAM works have a heavy shuffling step, i.e., after a specific period of time the client has to

perform a heavy computational/communication work that consists of downloading the entire data

from the server and refreshing it. This represents the worst case communication overhead of an

ORAM. Clearly, this is an overwhelming step for the client and represents the main reason that

19

separated ORAM from a real life deployment for many years. Recently, researchers [129] have

shown how to get the shuffling costs down to be polylogarithmic instead of linear in the number

of blocks. This can be further decreased when relaxing ORAM model from a storage server to

a computational one, as we are going to see in my PhD contribution where the eviction becomes

for free [108]. Another dimension to look at was also to relax the single server setting to multiple

servers. In this case, we show that ORAM can decrease the communication lower bound while

inducing a very small computation overhead mainly based on XOR operations.

2.1.2.2 Storage overhead

Storage overhead represents the second main metric of comparison for ORAM constructions.

For all ORAM constructions, the storage consists of two types of blocks: real and dummy blocks.

A real block is the meaningful data to be stored in the server, while a dummy block is a fake block

used to mislead the server. The storage overhead challenge therefore consists of decreasing the

number of dummy blocks in the construction.

2.1.2.3 Security

While ORAM is a primitive that was introduced to prevent software reverse-engineering, re-

purposing this primitive comes at the cost of misunderstanding its security when applied to other

settings, and to search scenarios in particular. Obliviousness does not hold in search application

due to many reasons: in traditional ORAM security definitions, we require that an access stands

for retrieving one block. Whereas in search setting, it is very unlikely to fetch the same number of

blocks throughout the entire search process unless enforced by a padding mechanism. Second, one

can use ORAM as the underlying STE construction so the client can interact with this structure to

look up documents’ identifiers matching a particular query. However, the final goal of the client

is eventually to download the matching documents. That is, the client will send (in the second

round) pointers to fetch the files from the main memory/hard drive. The server can easily correlate

these two accesses and find out which documents have been fetched. In this case, ORAM does

not hide the access pattern. To sum up, the main point is that ORAM does not grant automatically

20

Client Untrusted Server

Secure inverted index

Encrypted documents

Figure 2.1: Setup phase: the user outsources all files in an encrypted form along with the secure

searchable index.

obliviousness except if the entire data is stored in an ORAM, padded to a particular length and

every query is upper bounded by a publicly known threshold set at the setup phase7.

2.2 Scheme Definitions

2.2.1 Setting definition

We start first by describing the common setting for searching over encrypted data. We consider

a user U who wants to store a set of n documentsD = (D1, · · · , Dn) to an untrusted server S . Ev-

ery document consists of a set of keywords subsets of the universal dictionary W = (w1, · · · , wl).

The goal of the user U is to outsource documents D to the untrusted server S while preserving

her confidentiality as well as search capabilities. The process of data outsourcing is divided in two

phases: a setup phase and a query phase. We picture the process in Figure 2.1 and 2.2. We give

more concrete details in the following section.

2.2.2 Structured Encryption (STE)

Symmetric searchable encryption can be generalized to a broader primitive class, referred to

as structured encryption [42] (STE). A STE scheme encrypts data structures in such a way that

they can be privately queried. There are several natural forms of structured encryption. The

7These patches discussed so far to use ORAM as a sub-component for searching over encrypted data apply only to

exact keyword search. It is not clear that using ORAM to handle more expressive queries such as boolean queries can

provide obliviousness even when applying the above countermeasures.

21

Client Untrusted Server

Secure inverted

index

Encrypted

documents

Encrypted query

Encrypted result

Decrypted result

Figure 2.2: Query phase: (1) user sends an encrypted query that the server processes, (2) the server

outputs the encrypted files without any knowledge of the query or files plaintext, and (3) the user

decrypts the files.

original definition of [42] considered schemes that encrypt both a structure and a set of associ-

ated data items (e.g., documents, emails, user profiles etc.). In [43], the authors also describe

structure-only schemes which only encrypt structures. Another distinction can be made between

interactive and non-interactive schemes. Interactive schemes produce encrypted structures that

are queried through an interactive two-party protocol, whereas non-interactive schemes produce

structures that can be queried by sending a single message, i.e, the token. One can also distinguish

between response-hiding and response-revealing schemes: the former reveal the query response

to the server whereas the latter do not. Response-revealing denotes the fact that the server can

retrieve the matching pointers from the encrypted structure and directly fetch the encrypted files

from memory without any interaction with the user.

At a high-level, non-interactive STE works as follows. During a setup phase, the client con-

structs an encrypted structure EDS under a key K from a plaintext structure DS. The client then

sends EDS to the server. During the query phase, the client constructs and sends a token tk gener-

ated from its query q and secret key K. The server then uses the token tk to query EDS and recover

either a response r or an encryption ct of r depending on whether the scheme is response-revealing

or response-hiding.

22

Definition 2.2.1 (Response-revealing structured encryption [42]). A response-revealing structured

encryption scheme Σ = (Setup,Token,Query) consists of three polynomial-time algorithms that

work as follows:

• (K,EDS) ← Setup(1k,DS): is a probabilistic algorithm that takes as input a security pa-

rameter 1k and a structure DS and outputs a secret key K and an encrypted structure EDS.

• tk ← Token(K, q): is a (possibly) probabilistic algorithm that takes as input a secret key k

and a query q and returns a token tk.

•
{
⊥, r

}
← Query(EDS, tk): is a deterministic algorithm that takes as input an encrypted

structure EDS and a token tk and outputs either ⊥ or a response.

We say that a response-revealing structured encryption scheme Σ is correct if for all k ∈ N, for all

poly(k)-size structures DS : Q→ R8, for all (K,EDS) output by Setup(1k,DS) and all sequences

of m = poly(k) queries q1, . . . , qm, for all tokens tki output by Token(k, qi), Query(EDS, tki)

returns DS(qi) with all but negligible probability.

Definition 2.2.2 (Response-hiding structured encryption [42]). A response-hiding structured en-

cryption scheme Σ = (Setup,Token,Query,Dec) consists of four polynomial-time algorithms such

that Setup and Token are as in Definition 2.2.1 and Query and Dec are defined as follows:

• {⊥, ct} ← Query(EDS, tk): is a deterministic algorithm that takes as input an encrypted

structured EDS and a token tk and outputs either ⊥ or a ciphertext ct.

• r ← Dec(K, ct): is a deterministic algorithm that takes as input a secret key k and a cipher-

text ct and outputs a response r.

We say that a response-hiding structured encryption scheme Σ is correct if for all K ∈ N,

for all poly(k)-size structures DS : Q → R, for all (K,EDS) output by Setup(1k,DS) and

all sequences of m = poly(k) queries q1, . . . , qm, for all tokens tki output by Token(K, qi),

DecK(Query(EDS, tki)) returns DS(qi) with all but negligible probability.

8For some data structure DS, we write DS : Q → R to mean that DS has query and response spaces Q and R,

respectively.

23

2.2.3 Tree-based Oblivious RAM

ORAM allows for an access pattern to an adversarially controlled RAM to be effectively ob-

fuscated. Conceptually, a client’s data is stored in an encrypted and shuffled form in the ORAM,

such that accessing pieces of data will not produce any recognizable pattern to an adversary which

observes these accesses. Similar to RAM accesses, the client performs Read and Write operations

in an oblivious manner such that the server cannot distinguish between both of these operations. At

a high-level, the server’s memory is shuffled after every access made by the client. The shuffling

is often based on a client / server interaction that refreshes some memory blocks, re-encrypts and

changes the blocks’ order.

In the following, we particularly focus on tree-based ORAM being the most efficient ORAM

schemes with poly-logarithmic worst case in the number of blocks. In particular, we will be inter-

ested in describing tree-based ORAM’s semantics [61, 65, 129, 135]: Add, ReadAndRemove, and

Evict operations. We refer readers interested in formal definitions of RAM (being an interactive

Turing machine between the CPU and memory) to [70].

At a higher level, tree-based ORAM organizes the outsourced memory in the form of a κ-ary

tree (often κ set to 2). Every node in the tree is composed of memory blocks. These buckets are

composed of real and dummy blocks. We will see later that the size of the buckets is a security (or

statistical) parameter. For a given address a and a data block d, to simulate ORAM Read(a) and

Write(a, d), the client performs a ReadAndRemove(a) followed by Add(a, d). For the correctness

of tree ORAM schemes, the client has to invoke an Evict operation after every Add operation. Let

us assume that every leaf has a unique identifier called tag. Every block stored is uniquely defined

by its address a. We denote by P(t) the path (the sequence of nodes) containing the set of buckets

starting from the root to a leaf identified by its tag t. If P(t) and P(t′) represent two paths in the

ORAM tree, the least common ancestor, LCA(t, t′), is uniquely defined as the deepest bucket in

the intersection P(t)⋂P(t′). Moreover, to keep track of real blocks’ distribution in the ORAM

tree, the client stores a lookup table that associates the block identifier to its tag in a recursive map

(called also position map). In this dissertation, we use the terms node and bucket interchangeably.

24

Each bucket comprises a set of z entries. We explain Add, ReadAndRemove, and Evict operations

in the following.

• Add(a, d): To add data d at address a, the client first downloads and decrypts the bucket

ORAM of the root of the tree from the server. The client then chooses a uniformly random

tag t for a. The tag t uniquely identifies a leaf where d will percolate to. The client writes d

and t in an empty entry of the bucket, encrypts the whole bucket, and uploads the result to

the root bucket. Finally, the recursive map is updated, i.e., the address a is mapped to t.

• ReadAndRemove(a): To read an element at address a, the client fetches its tag t from the

recursive map which identify a unique leaf in the tree. The client then downloads and de-

crypts the path P(t). This algorithm outputs d, the data associated to a, or ⊥ if the element

is not found.

There are two different ORAM categories. The first one is a “memoryless setting”, where the

client has constant size (in N) memory available. The second one, “with memory”, assumes that

the client has a local memory storage that is poly-log in N . For each category, we use different

eviction techniques that we present in the following two paragraphs.

Constant Client Memory: The eviction operation is directly performed after an Add operation.

Let us denote by t the leaf tag and by χ the eviction rate.

Evict(χ, t): For each level of the tree, the client chooses from all nodes that are on the same

level, respectively, random subsets of χ ∈ N nodes. For every chosen node, the client randomly

selects a single block and evicts it to one of its children. The client write dummy elements to all

other children to stay oblivious.

Poly-Log Client Memory: For the case of poly-log client memory, the eviction operation follows

that of [65, 135]:

Evict(t): Let P(t) denote the path from the root R to the leaf with tag t. Every element of a

node in P(t) is defined by its data and unique tag t′. For eviction, the client pushes every element

in the nodes in the path P(t), which are tagged with leaf t′, to the bucket LCA(t, t′).

25

The eviction operation is performed at the same time as an Add operation. Instead of storing

the element in the root bucket during the Add operation, the client performs an Evict. Thus, they

store, and at the same time evict, all elements as far as possible “down” on the path. Eviction can

be deterministic [65] or randomized [135].

Deterministic vs Randomized eviction. Eviction is the most important ceonceptual step in tree-

based ORAM as it is the one responsible of shuffling the memory. There are many parameters to

take into account during an eviction step such that: (1) making sure that buckets (nodes of the tree)

will not overflow, i.e., the buckets will not contain more real elements than their fixed size, (2) the

eviction should be as cheap as possible otherwise it annihilates any communication saving won in

Read and Write operations. Deterministic eviction refers to a deterministic reverse lexicographic

eviction where the paths of the tree are evicted in an a-priori fixed order. Researchers [65] have

shown that deterministic eviction is much simpler with a much clearer overflow proof. Randomized

eviction refers to the fact that the evicted path is chosen randomly based on the block being read.

Since the blocks’ tags are randomly assigned, the evicted paths are then also randomly chosen.

While this eviction insures ORAM correctness, the overflow analysis is much complicated when

compared to the deterministic one.

2.3 Security Definitions

Security definition, at a higher level, can be seen as a global framework that defines what an

adversary cannot break in a given construction based on some a-priori assumptions.

Every security definition takes into consideration two primordial aspects: the break and the

adversarial power. The break describes information that should not be leaked to the adversary

(attacker). For example, for private encryption schemes such as AES (Advanced Encryption Stan-

dard), we aim to hide the content of any message encrypted by a given key, and even stronger,

we aim to prevent the adversary from being able to compute any function based on the ciphertext

(encrypted text). The second aspect deals with the computational power of the adversary as well

as the conditions under which the attack was performed. The computational power of any adver-

26

sary is assumed to be within a polynomial-time framework, while the conditions of the attack can

be different from one scheme to another depending on the level of security we aim to provide.

There are some constructions that are secure even under the assumptions of unbounded adversarial

power. This is the case of information-theoretic constructions. Well established security definitions

already exist for classical cryptographic primitives such as pseudo-random permutation, pseudo-

random function, secret key cryptosystems. The protocols we describe such as STE and ORAM

are based on such primitives that we detail later in Section 2.4.

Searching over encrypted data brought some new threats to the user’s confidentiality that were

not included in the adversary model before. It has been shown that even encrypting the data is not

enough to protect its contents from a determined adversary who can still learn some information

just based on the search interaction. This situation can get worse since these extra-information

along with some auxiliary knowledge can allow the attacker to recover the plaintext data [36,

78, 113, 142]. Researchers [50] in this field noticed this problem and introduced the so-called

leakage functions in SSE that capture extra-information learned by the adversary (eventually the

server) during the protocol execution. We assume in our studies a honest-but-curious server, i.e,

the server will perform correctly the protocol but can gather any extra information outputted during

the internal states of the protocol execution.

Leakage can be divided into two types: a setup leakage LS and a query leakage LQ. Note

that the leakage description is different from a scheme to another. Here, we will be interested to

giving a high level description of information leaked in a single keyword SSE [50]. In the case

of conjunctive, substring, boolean SSEs, the leakage often increases (to preserve efficiency). On

the other hand, ORAM construction hides some part of the query leakage as will be explained in

Section 2.3.2. Below, we go over the details of setup and query leakage.

Setup Leakage LS Setup leakage is the information inferred by the server from the encrypted

structures. That is, the server can infer some information related to the outsourced data before

performing any search operations. The setup leakage (also called static leakage) consists of the

size of stored data, the number of unique keywords in the entire data or the maximum number of

27

files associated to a specific keyword. While these information seem harmless, in some settings,

it might be sensitive. As an instance, a client who wants to hide the number of transactions per

month can be obliged to pad the data-structure.

Query Leakage LQ With respect to the encrypted search problem, search pattern and access

pattern represent the main query leakage. Informally, the search pattern leakage denotes the knowl-

edge captured by the adversary about the queries’ occurrence. If the queries are deterministically

encrypted, then the same queries have exactly the same ciphertext. Thus, the server infers that these

encrypted queries were generated for the same keyword (query). Access pattern leakage embodies

a transcript of all the associations between the query and the matching data. In other words, the

access pattern leakage captures the accessed memory for every search operation. If a user accesses

twice the same memory blocks to retrieve the encrypted documents during two different search

operations, the server will find out that the issued query was exactly the same even if the queries

were randomized. It is clear that search and access patterns are both correlated, dismissing any of

them seems totally useless and can be very misleading, see [112].

The query leakage aims to characterize an adversary who can learn more information during

the execution of the protocol. While it is really highly desirable (more secure) to hide any defined

leakage function, achieving it will be more complicated and challenging in terms of scheme’s

design, in particular, in terms of the introduced search/storage overheads. Consequently, many

techniques, including STE and even ORAM, do not hide totally or partially from the server these

leakage functions. The setup and query leakage can lead, especially in the case of PPE based

constructions, to content / query disclosures [36, 78, 113, 142]. In the following, we formally

present search and access pattern leakages’ definitions for the case of single SSE scheme:

Definition 2.3.1. Search pattern leakage: Given a set of queries Q = (q1, · · · , qs), the search

pattern over Q is a binary symmetric square matrix Q of size s2 where Qi,j = 1 iff qi = qj and 0

otherwise.

28

Definition 2.3.2. Access pattern leakage: Given a set of queries Q = (q1, · · · , qs), the access

pattern over Q is the one-to-one association set defined as D(Q) = ((q1,D(q1)) · · · (qs,D(qs)))
where D(qi) is the set of documents’ identifiers matching the query qi.

Note that there are some information that cannot be efficiently hidden from the server such as

the size of communication interaction with the server, the time and period of protocol execution.

These meta-information can be critical in some scenarios but will not be taken into account in our

paper and are therefore out of scope.

2.3.1 STE security definition

The standard notion of security for structured encryption guarantees that an encrypted struc-

ture reveals no information about its underlying structure beyond the setup leakage LS and that the

query algorithm reveals no information about the structure and the queries beyond the query leak-

age LQ. If this holds for non-adaptively chosen operations then this is referred to as non-adaptive

semantic security. If, on the other hand, the operations are chosen adaptively, this leads to the

stronger notion of adaptive semantic security. This notion of security was introduced by Curtmola

et al. in the context of SSE [50] and later generalized to structured encryption in [42].

Definition 2.3.3 (Adaptive semantic security [42, 50]). Let Σ = (Setup,Token,Query) be a

response-revealing structured encryption scheme and consider the following probabilistic experi-

ments where A is a stateful adversary, S is a stateful simulator, LS and LQ are leakage profiles

and z ∈ {0, 1}∗:

• RealΣ,A(k): given z the adversary A outputs a structure DS. It receives EDS from the

challenger, where (K,EDS) ← Setup(1k,DS). The adversary then adaptively chooses a

polynomial number of queries q1, . . . , qm. For all i ∈ [m], the adversary receives tk ←
Token(K, qi). Finally, A outputs a bit b that is output by the experiment.

• IdealΣ,A,S(k): given z the adversary A generates a structure DS which it sends to the

challenger. Given z and leakage LS(DS) from the challenger, the simulator S returns

29

an encrypted data structure EDS to A. The adversary then adaptively chooses a poly-

nomial number of operations q1, . . . , qm. For all i ∈ [m], the simulator receives a tuple

(
DS(qi),LQ(DS, qi)

)
and returns a token tki to A. Finally, A outputs a bit b that is output

by the experiment.

We say that Σ is adaptively (LS,LQ)-semantically secure if for all PPT adversaries A, there exists

a PPT simulator S such that for all z ∈ {0, 1}∗, the following expression is negligible in k:

|Pr [RealΣ,A(k) = 1]− Pr [IdealΣ,A,S(k) = 1]|

The security definition for response-hiding schemes can be derived from Definition 2.3.3 by

giving the simulator
(
⊥,LQ(DS, qi)

)
instead of

(
DS(qi),LQ(DS, qi)

)
.

2.3.2 ORAM security definition

Any ORAM construction should meet the typical obliviousness requirement, stated below.

Definition 2.3.4. Let −→a = {(op1, d1, a1), (op2, d2, a2), . . . , (opM , dM , aM)} be a sequence of M

accesses (opi, di, ai), where opi denotes a ReadAndRemove or an Add operation, ai the address

of the block, and di the data to be written if opi = Add and di = ⊥ if opi = ReadAndRemove.

Let A(−→a) be the access pattern induced by sequence−→a , k is a security parameter, and negl(k)

a negligible function in k. We say that an ORAM construction is secure iff, for any PPT ad-

versary D and any two same-length sequences −→a and
−→
b , access patterns A(−→a) and A(

−→
b),

|Pr[D(A(−→a)) = 1]− Pr[D(A(−→b)) = 1]| ≤ negl(k).

Important remark. As pointed out earlier, ORAM primitive can be considered as an STE prim-

itive when applied as a solution to searching over encrypted data problem. It is sometime called

leakage-free STE construction, refer to [81]. In this case, ORAM primitive can hide the search pat-

tern but not the access pattern in general. In the case of tree-based ORAM construction, the block

size needs to be equal to the maximum number of documents associated to every keyword in order

to hide the query leakage. Moreover, the documents have to be stored as well in an ORAM to hide

the access pattern as the search pattern can be recovered by the length and frequency of documents’

30

lengths. This composition’s fallacy has been discussed by Naveed in his paper, see [112]. Hiding

both the search and access pattern can be extremely inefficient and has been dismissed from real

life deployments. While ORAM is considered as the holly grail for some problems, it has some

leakage when applied to searching over encrypted data.

2.4 Cryptographic Primitives

In this section, we recall some useful and classical definitions in cryptography, we refer the

reader to Katz and Lindel book for more details [87].

Definition 2.4.1. Negligible function: We say that a function f is negligible in k if ∀ǫ > 0, there

exists nǫ such for all k ≥ nǫ,

f(k) ≤ 1

poly(k)
,

where poly(k) = kc, for c > 0. We denote a negligible function in k by negl(k)

Definition 2.4.2. Advantage: Let A : {0, 1}n → {0, 1} be an efficient probabilistic polynomial

time algorithm, and R1, R2 two random variables. We define the distinguishing probability of

A, or the advantage of A, for R1 and R2 as the ability to distinguish between these two random

variables:

Adv(A) = |Pr[A(R1) = 1]− Pr[A(R2) = 1]|

Definition 2.4.3. Symmetric encryption: a symmetric encryption scheme SKE consists of three

algorithms (Gen,Enc,Dec). The key generation Gen takes a security parameter k as input and

returns the secret key K, we write K ← Gen(1k). The encryption algorithm Enc takes the secret

key, the plain text m ∈ {0, 1}∗ and a random string r as inputs and returns a ciphertext ct∈ {0, 1}∗,
we write ct ← EncK(m, r), sometimes we omit the random string such that ct ← EncK(m). The

decryption algorithm Dec is deterministic and takes the secret key and the ciphertext as inputs and

returns the plaintext m or ⊥ (in case of error) and we write respectively : {m,⊥} := DecK(ct),

the symmetric encryption in the subsequent chapters is chosen to be semantically secure.

Definition 2.4.4. Semantic security[68]: a symmetric encryption scheme SKE = (Gen,Enc,Dec))

is semantically secure if for every probabilistic polynomial time algorithm A there exists a prob-

31

abilistic polynomial time algorithm A′ such that for every probability ensemble {Xk}k∈N with

|Xk| ≤ poly(k) where k is the security parameter; every pair of polynomial bounded functions

f, h : {0, 1}∗ → {0, 1}∗ we have:

Pr[A(1k,EncK(Xk), h(1
k, Xk) = f(1k, Xk)] < Pr[A′(1k, 1|Xk|, h(1k, Xk) = f(1k, Xk)]+negl(k),

where K ← Gen(1k)

The probability in these terms is taken over Xk as well as over the internal coin tosses of either

algorithms Gen,Enc and A or A′. {Xk}k∈N represents the distribution of plaintexts, f represents

the information that the adversary tries to obtain and h represents a priori partial information about

the plaintext. A semantic secure scheme SKE is also indistinguishable against chosen plaintext

attack experiments, and we say in this case that SKE is IND-CPA secure, or CPA secure.

Definition 2.4.5. Pseudo-random functions: Let us consider a function f : {0, 1}k × {0, 1}n →
{0, 1}l and the family F of all maps {0, 1}n → {0, 1}l. We say that f is a pseudo-random function

if:

• f is efficiently computable in polynomial time in k.

• For any probabilistic polynomial algorithm A:

Adv(A) = |Pr[Af(K,.) = 1]− Pr[Ar(.) = 1]| < negl(k) ,

with K
$←− {0, 1}k and r

$←− F .

When f is bijective (in this case n = l) then it is a pseudo-random permutation.

Definition 2.4.6. Pseudo-random generators: Let us consider a function G : {0, 1}k → {0, 1}l

where l ≥ k, we say that G is a pseudo random generator if:

• G is efficiently computable in polynomial time in k,

• For any probabilistic polynomial algorithm A we have :

Adv(A) = |Pr[A(G(u)) = 1]− Pr[A(r) = 1]| < negl(k)

where u
$←− {0, 1}k and r

$←− {0, 1}l.

32

Chapter 3

Related Works

Knowledge is a process of piling up facts;

wisdom lies in their simplification.

Martin Luther King, Jr.

Encrypted search can be solved using different cryptographic primitives offering different lev-

els of security, functionality and efficiency. Based on the requirements of the setting along with the

client’s needs, different choices can be made. Encrypted search can be solved using the following

cryptographic primitives:

• symmetric searchable encryption (SSE)

• oblivious RAM (ORAM)

• secure multi-party computation (MPC)

• private information retrieval (PIR) (single or multiple servers)

• full homomorphic encryption (FHE)

• property-preserving encryption (PPE)

In this chapter, we will mainly focus on detailing the state of the art of oblivious RAM (ORAM)

and symmetric searchable encryption (SSE). There are two reasons behind our choice: first, SSE

and ORAM are the two primitives that provide a reasonable balance between security, efficiency

and functionality, second and more importantly, SSE is a cryptographic primitive designed partic-

ularly for search contrary to all other listed primitives that were rather introduced for more general

reasons.

At a conceptual level, one can consider that both SSE and ORAM can be considered a pos-

sible instantiation of structured encryption. Structured encryption (STE), introduced by Chase

and Kamara [42], shows how to encrypt any data structure and privately query on it later on. If

33

ORAM is employed as a component to search on data, it can be considered as a leakage-free STE

construction1.

Before detailing the state of the art of both SSE and ORAM, we give in the following a brief

overview of PPE, PIR, MPC and FHE.

Property preserving encryption Property-preserving encryption is an encryption technique that

preserves a specific property between plaintexts. As an instance, if two plaintext messages are

equal, then their ciphertexts will be equal as well. Examples of these properties are: equality, or-

der and orthogonality. Deterministic encryption [28] is an equality-preserving encryption scheme

while order preserving encryption schemes [26, 27] preserve the order of the plaintexts.

Formally, given two messages m1 and m2 from a message space M, an encryption scheme

DTE = (Gen,Enc,Dec) is an equality-preserving if for all K ← Gen(1k), we have EncK(m1) =

EncK(m2) if m1 = m2.

Similarly, given two messages m1 and m2 from a message space M, then an encryption

scheme OPE = (Gen,Enc,Dec) is order-preserving if for all K ← Gen(1k), we have EncK(m1)⊙
EncK(m2) if m1 ⊙m2, where ⊙ ∈ {<,>,=}.

PPE has gained an increasing interest from the database community due to its high efficiency.

Particularly, PPE constructions make encrypted search easier to incorporate over existing systems

such as in relational database management systems. PPE constructions are legacy-friendly and can

be incorporated in a plug-and-play manner without any major change of the underlying system

design and architecture. This is an extremely appealing feature and it was first explicitly introduced

by the work of Popa et al. [122]. This work was influential in that many products were built on the

same design such as Cipherbase, SEEED, Microsoft Always Encrypted SQL Servers and Google

Big Queries [1, 2, 14, 20].

However, from a security perspective, both deterministic and order preserving encryption schemes

fail to provide the needed security insurance for the encrypted search problem. These two prim-

1In this statement, we have made several assumptions in order to claim that ORAM is a leakage-free construction

that implies a non-trivial padding. Depending on the way the data structure is stored in the ORAM, the leakage

can consist at least of the maximum response length. While the search pattern is always randomized in ORAM

constructions, the access pattern is not totally hidden as the length of the response can be correlated to the query itself.

34

itives are considered to be extremely leaky and even deprecated from being used in practice for

some scenarios. For a deterministic encryption to be secure, the theoretical security definition re-

quires having a minimum amount of entropy (min-entropy) in the data to be encrypted, but this

requirement does not hold in a real-life scenario. The data encrypted by the users are not sampled

randomly from a uniform distribution. Recently, Naveed et al. [113] showed that CryptDB-like

systems and all property-preserving encryption based encrypted database systems (EDB) in gen-

eral can leak tremendous amount of information when applied to store electronic medical records

(EMR). Recently, a new line of research started to investigate the security guarantees of PPE- based

EDBs and the security of all cryptographic primitive when applied to encrypted search in general.

Cash et al. [36] show that using PPE techniques as a building block for some SSE constructions can

also be disastrous as it is the case for ShadowCrypt system [75]. There are also many follow-up

papers that attack PPE constructions (order preserving encryption and order-revealing encryption)

such as [39, 58] when applied to the EDB systems.

Private information retrieval Private Information Retrieval (PIR) is a cryptographic primitive

that enables the user to issue randomized queries to fetch a data block obliviously. If we consider

that the data is organized in an array A such that each cell consists of a block of data, PIR offers

the client the possibility to issue a query qi to fetch the ith position such that the server’s guess

about the position that has been fetched is equal to 1
#A

. Similarly to ORAM, we say that PIR

hides the access pattern. PIR is a more powerful primitive in the sense that it can also be applied

to plaintext data, i.e., even if the data A does not belong to the user, the client can still fetch the

desired data block while the server does not learn the position that has been fetched. PIR was

presented for the first time by the work of Chor et al. [45]. This construction sets out the first

family of PIR, called multiple-servers PIR or information-theoretic PIR, where the same data is

replicated into several non-colluding servers. This category of PIR offers an information-theoretic

security, i.e., even if an adversary is computationally unbounded, it cannot break the construction’s

obliviousness. However, the server holding the replicated data must not collude at any time. There

are different constructions [23, 57] that can handle k-out-of-n of corrupted servers that can share

35

their queries and states. Moreover, researchers also got interested to improve multiple-servers

robustness against Byzantine attacks where some of the servers can fail or behave inconsistently.

There is also an interesting research result that shows that IT-PIR is equivalent to locally decodable

codes [88]. Kushilivitz et al. [91] introduced a single server PIR, dubbed CPIR for computational

PIR. This class of PIR considers only a single server in which data (clear or encrypted) is stored.

In CPIR, the user makes use of some cryptographic primitives, such as additive homomorphic en-

cryption, in order to retrieve data. While there have been many interesting results that improve the

communication complexity of PIR constructions, the main downside of PIR construction (either

computational or information-theoretic) is that the computational cost for one search is linear in

the entire size of the dataset, i.e., in O(#A). This is clearly inefficient for search purposes where

the search can be performed in optimal time.

Multi-Party computation Multi-party computation (MPC) [25, 52, 53, 54, 69, 93, 94, 100] is

one of the most powerful and general cryptographic primitives that can compute a function f

securely. In MPC, there are n entities where each has its private input (set of inputs) hidden

from other entities. These entities aim to compute a public function f over the set of their inputs.

As an instance, f can be a function that computes the average value of the inputs. At the end

of the protocol execution, the result of the MPC will be the output of the function f , while no

party discloses its own input. Applied to the encrypted search, the MPC parties play the roles

of server(s) and/or user(s) with the private inputs respectively equal to the keywords (documents)

and the query (range, fuzzy, approximate, distance...). The public function f can be modeled as a

boolean or arithmetic circuit. The arithmetic circuit is based on additive and multiplicative gates

while the boolean one is based on and, or, and negation gates. MPC can be considered as the most

secure cryptographic primitives. In fact, while the server in most SSE and ORAM constructions

is considered as an honest-but-curious entity, MPC provides a general framework where an entity

may actually cheat and falsify the result of the protocol. For example, the server will not send

or even tamper with the correct matching values. MPC, under some assumptions, can enable the

parties to detect such behavior. From a security perspective, MPC hides the search and access

36

pattern, i.e. the server will not discern which document matches which query (hidden access

pattern), and the query will always be randomized (hidden search pattern). In term of efficiency,

MPC is extremely inefficient as it has to take the entire database as input. This is inherent to the

circuit representation of the search function f as the parties have to feed the entire data to the

circuit to evaluate the function. Recently, Gordon et al. [74] show how to combine ORAM and

secure MPC to reduce the computation overhead to be sub-linear instead of being linear.

Full homomorphic encryption Full homomorphic encryption (FHE) [64] is a public-key en-

cryption scheme that can support arbitrary computation. Given a set of encrypted message ct1 =

Enc(Kp,m1), · · · , ctm = Enc(kp,mn), the evaluator (eventually the server) evaluates any arbi-

trary function f such that Eval(ct1, · · · , ctm) = Enc(kp, f(m1, · · · ,mn)). FHE can be also used to

search on encrypted data as follows: the client encrypts its dataset DB = (m1, · · · ,mn) and sends

it to the server. The client wants to verify whether a keyword m exists in the dataset DB. The

client sends Enc(Kp,m) along with a multi-variate public function f that outputs one if m ∈ DB

and zero otherwise. The server will then evaluate the function and sends back the encrypted results

that the client decrypts locally. FHE is very expressive but also very expensive as its search time is

linear with an expensive evaluation cost.

To sum up, we briefly detailed PPE, PIR, MPC and FHE as tools that can be used to search

over encrypted data, however, they have different limitations when it comes to solve the encrypted

search problem. We have shown above that PPE has serious leakages issues, while MPC, FHE,

and PIR are too inefficient to be employed to search over encrypted data. Nevertheless, we want

to emphasize that our assumptions do not dismiss the fact that some of these solutions can be

eventually used as sub-components for more efficient constructions as it is the case of using CPIR

in our C-ORAM [108] construction detailed in Chapter 5. We also employ multi-servers PIR in our

Oblivious P2P construction along with a seed homomorphic pseudo-random generator, we refer

the reader to our paper [80] for more details.

37

3.1 Searchable Encryption

The area of searchable encryption has been an active research area for over a decade. Many

original constructions for searchable encryption can be found in the literature both in the symmet-

ric search setting [38, 41, 50, 66, 130] as well as the asymmetric one [16, 24, 29, 49]. Symmetric

searchable encryption was first explicitly solved by Song et al. [130]. Symmetric schemes, in gen-

eral, are more geared towards cloud storage and archival for a single user. Asymmetric schemes

were first introduced by the work of Boneh et al. [29]. Asymmetric schemes are more suitable

for multiple users in a collaborative environment. Early schemes focused only on exact keyword

searches. In the asymmetric setting, several schemes have been proposed with support for conjunc-

tion, range or subset searches [30, 77, 119, 127, 128, 137] that exploit the mathematical properties

(in particular, homomorphism or pairing) inherent in this setting. However, asymmetric schemes

remain orders of magnitudes less efficient than symmetric ones and are not suitable for practical

deployments. Moreover, asymmetric SSE constructions have some security limitations as well that

make them not suitable for data outsourcing. For example, the work by Boneh et al. [29] demon-

strates how a client can search on emails encrypted by other users using the client’s public key. The

client issues a trapdoor to search for a particular keyword. This trapdoor will be later evaluated

against all encrypted keywords and will output either true or false depending on whether the email

contains the keyword or not. This same trapdoor can be stored by the server for future use. As the

server has the client’s public key, it can then encrypt many keywords against which it can evaluate

all recorded trapdoors. This brute force attack can determine exactly the plaintext that the client

searched for.

Extending single keyword SSE Symmetric searchable encryption has been generalized to struc-

tured encryption (STE) by Chase and Kamara [42]. In [42], the authors show how to encrypt differ-

ent data structures such as graphs, matrices and multi-maps. Since then, SSE has been enhanced to

handle dynamic settings where the user can add, delete and update files on the encrypted structure

stored on the server side [37, 85, 86, 114, 131]. In the symmetric setting, Curtmola et al. showed

that it was possible to support multiple users [50]. Recent works have also studied several exten-

38

sions of symmetric searchable encryption schemes to support conjunctions in sub-linear time, such

as, [38] (with an extension in the multi-user setting as well presented in [79]). Faber et al. [59] ex-

tend the work by Cash et al.[38] and demonstrate how to handle range search, substring, wildcard

and phrase search. Cash et al. [37] also provided several constructions that are I/O efficient that

can be made dynamic. Cash and Tessaro introduce lower bounds on SSE for a better locality [40].

Recently, Asharov et al. [21] provide SSE constructions that have optimal locality, space overhead

with a nearly-optimal search efficiency. Meng et al. [104] show how to encrypt graphs and how to

perform approximate shortest distance queries.

Security in SSE Reducing the leakage is extremely important in structured encryption. Zhang

et al [142] showed that for some particular scenarios where an adversary can inject forged files in

the encrypted data structure, the adversary can learn the encrypted queries generated by the client.

They showed that forward-secrecy is an important security property that helps avoiding file injec-

tion attacks. Forward-secrecy, at a higher level, is a feature that helps the client to disassociate

the update queries from the search queries. That is, if the client performs multiple search queries

and then runs an update, the server (adversary) will not associate the update to any previous search

query. Most of the dynamic SSE constructions are not forward-secure and are vulnerable to injec-

tion attacks. On the other hand, file injection attacks have some strong assumptions such that the

adversary has to inject a large number of files composed of different keywords. While injection can

occur more or less smoothly in an email system with poorly designed spam filtering, these assump-

tions are far from being realistic in normal outsourcing scenarios where a client outsources only

data belonging to him. Recently, Bost [31] presented a forward-secure construction that is much

more efficient than the one presented by Shi et al. [131]. We want to emphasize, however, that

forward-secrecy only protects (or to be more rigorous delays) the file-injection attacks. That is, for

a scenario in which file injection attacks can occur, a forward-secure STE (SSE) is not sufficient to

stop the attack.

There have been many attacks recently that analyze the security of SSE constructions. Islam et

al. [78] demonstrate that under some knowledge of the user’s data set, the adversary can recover

39

the plaintext queries performed by the client. Cash et al. [36] improve the IKK attacks and show

that only leveraging some setup leakage can lead to recover the plaintext data in some PPE-based

SSE schemes. Recently, Pouliot and Wright [123] present a new attack on efficiently deployable

PPE-based-SSE construction that also lead to recover the content plaintext.

SSE and database community The database community has also looked into this problem with

solutions that focus on the performance and practicality at the cost of lower security guarantees.

For instance, the SADS system presented by Raykova et al. in [124] and then extended in several

aspects in [118], involve two semi-trusted parties that facilitates the search. Leveraging on these

semi-trusted entities, the authors propose a document retrieval protocol that supports disjunctive

and conjunctive queries (which implies also range queries) and runs in time proportional to the size

of the returned set of documents. However, the main weakness with respect to other protocols is the

requirement of having two semi-trusted parties that fulfill the index server and query router roles.

The project BlindSeer [117] proposes a system that combines rich functionality (including support

for arbitrary Boolean formula in a sub-linear time), practical scalability and provable security

(leakages are clearly identified and controlled). However, this work has a setting different from the

traditional user /server setting with new involved trusted entities non-existing in traditional SSE

settings. An SSE scheme, however, can be extracted though from [117] and can be compared to

the OXT scheme as well. Finally, Kamara and Moataz [84] present the first encrypted relational

database, SPX, based solely on structured encryption. They show that SPX leaks much lesser than

previous constructions based on property-preserving encryption.

3.2 Oblivious RAM

Oblivious RAM goes back to the seminal paper by [70]. There have been several attempts to

improve different aspects of ORAM, such as its communication complexity, number of interac-

tions between the server and the client, memory complexity on the client side, and storage and

computation overhead on the server [46, 55, 65, 67, 70, 71, 72, 73, 90, 101, 105, 108, 109, 116,

121, 125, 129, 135, 138, 139]. We briefly review three ORAM categorizations. The first discusses

40

recent advances of schemes with constant client memory complexity, the second targets schemes

with sublinear client memory, and the third presents recent works in multiple-servers ORAM.

Constant client memory. Constant client memory is very appealing for resource-constrained

devices with limited memory, e.g., embedded devices, small sensors, and devices in the Internet

of Things. [71] and [121] introduced amortize communication complexity in O(log2 N), but with

linear worst-case communication complexity. [129] introduce tree-based structures providing a

worst-case poly-logarithmic communication complexity in O(log 3N) blocks. Many subsequent

papers build on top of this one to further decrease communication or storage complexity stor-

age [65, 101, 105, 109]. Recently, there have been many attempts to decrease the communication

overhead to be constant in the number of blocks. That is, obliviously reading or writing a block

with only a constant number of transferred blocks as overhead. Using servers with computational

capabilities instead of storage-only servers, Devadas et al. [56] showed how to construct a constant

communication ORAM for blocks in Ω(log 5N). Fetcher et al. [62] show how to decrease the

number of interactions of Onion ORAM from logN to 1. Moataz et al. [108] demonstrate how to

preserve constant communication for smaller block size in Ω(log 4N), while performing eviction

with fewer number of homomorphic multiplications. Although low asymptotic bounds have been

reached for communication complexity, high computational latency on server side makes constant

client memory not yet ready for deployment [108].

Poly-log client memory. Earlier schemes have memory complexity on the client side in O(
√
N),

yet inducing a linear worst-case communication complexity [138, 139]. Stefanov et al. [134] show

how to get a worst-case memory complexity in O(
√
N) with a a communication complexity in

O(log 2N). Stefanov et al. [135] present how to provide a O(logN) communication complexity

with only a logarithmic memory complexity on the client size. This scheme has been improved by

multiplicative constant in [105, 125]. Recently, [63] improves the number of interactions of Path

ORAM to be constant while inducing a multiplicative security overhead factor.

41

Distributed setting. Many ORAMs leverage multiple servers to decrease overhead. For exam-

ple, ObliviStore [133] decreases overhead using an oblivious load balancing technique relying on

trusted internal nodes to distribute accesses. Stefanov and Shi [132] constructions accesses blocks

in O(1) in a two-servers setting (extendable to k servers) with O(logN) communication complex-

ity between servers and O(
√
N) client storage complexity. Lu and Ostrovsky [98] show how to

achieve Goldreich and Ostrovsky’s lower bound O(logN) with two non-communicating servers

and with O(1) client storage complexity. Dachman-Soled et al. [51] introduce the notion of obliv-

ious network RAM that can be also fit to a distributed setting and decreases access complexity

to O(1). However this comes at the cost of a weaker security model where the adversary is only

allowed to observe communication between servers and client. Servers themselves are trusted to

not reveal details about queries.

42

Chapter 4

Expressiveness in Symmetric Searchable

Encryption

You never fail until you stop trying.

Albert Einstein

Chapter Outline. In this chapter, we present our SSE contributions:

1. BSSE, a boolean symmetric searchable encryption in Section 4.1. We present one of the first

boolean symmetric searchable encryption schemes in literature1. Based on an original idea

that transforms keywords to an orthonormal family, we enable secure boolean queries by

means of simple and efficient inner product. Our scheme can handle any CNF/DNF formula

and has a linear search complexity.

2. 3SE, semantic SSE in Section 4.2. We present the first semantic SSE construction. We start

by showing that existing stemming techniques used in plaintext search constructions can

be easily employed to partially solve the semantic search over encrypted data. We demon-

strate that by leveraging standard optimal time SSE constructions such as [37, 42, 50], we

can build a semantic SSE that has the same efficiency and security insurance with better

expressiveness.

3. SED, a substring SSE in Section 4.3 (on-going work). In this work, we initiate the study of

substring search over encrypted data. We show that by leveraging the same orthogonalization

technique employed in the BSSE construction, we can make substring search sub-linear over

encrypted data — as long as the size of keywords dictionary is negligible in the number

of keywords. We proceed by introducing two gradually enhanced constructions. We have

implemented our final construction and show that it demonstrates of its readiness for a real

life deployment.

1Cash et al. [38] show the same year, 2013, how to handle sub-linear conjunctive queries over encrypted data.

43

4.1 BSSE: Boolean SSE

4.1.1 Contribution Summary

BSSE was the first structured encryption scheme to support arbitrary boolean queries over en-

crypted data. It is based on an original idea of considering keywords as vectors and using the

Gram-Schmidt process to orthogonalize and then orthonormalize them. It further makes use of a

very efficient operation, the inner product, to perform searches at the server side. The inner prod-

uct indeed leverages the orthonormalized keywords to efficiently test if a boolean expression query

matches the label corresponding to an encrypted document or not. It is an application of math-

ematical and computing principles to practical security, especially in the searchable encryption

scope.

In addition to that, our BSSE tries to introduce a new conceptual approach, proper to oblivious

RAM and PIR to the SSE setting. BSSE’s query sent for retrieving encrypted documents is ran-

domized, which means that the server sees different queries even if the same boolean query is sent

several times. On the other hand, the label that we associate with each encrypted document can be

seen as the secure index defined by Goh [66] or the encrypted data structure defined by Curtmola

et al. [50]. However, the secure index leaks some meta-information about the number of keywords

stored in the Bloom filter, while our secure labels do not apriori leak such information about its

content or about the number of keywords that are encrypted before being sent to the server. Our

contribution is based on an adversarial model similar to the one defined by Curtmola et al. [50], the

difference only arises in the nature of the query sent to the server. However, one can find out that

the BSSE encrypted data structure can leak more than the size of the dataset. One can show that,

without performing any queries, the server can recover the number of common keywords between

two documents while leveraging the orthogonality feature. The same attack can be leveraged to

find some relations between the queries. Nevertheless, this boils down to consider the orthogonal-

ization only as a process to speed up the search at the expense of larger storage while improving

the scheme expressiveness. We will give more details about the security of orthogonalization in

Section 4.3.

44

4.1.2 BSSE construction

Our overall approach is to consider the keywords as vectors and to pad them so that they

form a family of independent vectors. From such a family we construct an orthonormal basis of

the resulting vector space, which means that each keyword is associated with one vector of this

orthonormal base. Then, to each document we associate the vector resulting of the addition of

all vectors. The queries are then also expressed as a vector in the same vector space using the

same basis and we roughly use scalar product between the vector of the query and the vector of

a document to decide whether a document satisfies a query or not. We thus first present how to

construct the orthonormal basis and then present the full detail of our construction.

4.1.2.1 BSSE pre-construction

The BSSE algorithm is based on a pre-construction over the unique keywords set W = {w1, ..., wl}.
The aim of this construction is to create from W an orthonormal keyword family. This last is ob-

tained by applying the Gram-Schmidt algorithm to a free family derived from W.

To be more precise, we consider all keywords to be of equal length m (this can be achieved by

padding all keywords so that they have the same length).

Let consider a pseudo-random permutation π : {0, 1}k × {0, 1}m → {0, 1}m and a key K1

generated from the Gen(1k) where k is a security parameter, for each keyword wi in W, we apply

πK1 in order to create a permuted set of keywords such that the new set of keywords Wπ =

{πK1(w1), ..., πK1(wl)}.
Let us consider the canonical base of size l, {e1, ..., el} such that ∀i ∈ {1, l} |ei| = l, and

ei = (δi,1, . . . , δi,j, . . . , δi,l).
2 In order to create a free family (fi)i∈[l] from Wπ, we concatenate

every permuted keyword πK1(wi) with ei such that fi = πK1(wi)‖ei and |fi| = m+ l.

We consider the inner scalar product φ :

φ : {0, 1}m+l × {0, 1}m+l → [m+ l]

x, y 7→ ∑m+l

k=1 xkyk

Theorem 4.1.1. If (fi)i∈[l] is a free family of a pre-Hilbert space, there exists an orthogonal family

(oi)i∈[l] such that:

2δi,j is called the Dirac function such that δi,j= 1 if i = j and 0 otherwise.

45

• φ(oi, oj) = φ(oi, oi)δi,j ,

• Vect(f1, ..., fl) = Vect(o1, ..., ol), where Vect represents the space generator.

• The scalar product φ(fi, oi) is strictly positive,

Definition 4.1.1. The orthogonal projection p on a vector line led by u is defined as:

pu(v) =
φ(v, u)

φ(u, u)
u.

Orthogonal Keyword Construction: Let us consider (fi)i∈[l] a free family. Then, there is an

orthogonal family (oi)i∈[l]. We can construct this family following the Gram-Schmidt process:

oi = fi −
i−1∑

s=1

pos(fi), for i ∈ [l].

(oi)i∈[l] forms the new keyword orthogonal family that verifies:

∀i, j ∈ [l], φ(oi, oj) = φ(oi, oi) · δi,j. (1)

In addition, we can normalize the vectors to obtain an orthonormal family:

∀i ∈ [l], ui =
1

√

φ(oi, oi)
· oi.

At the end of this phase, we should point out that each orthonormal keyword ui corresponds to

a keyword wi ∈ Wo. In addition, if we take into account the order of the free family (fi)i∈[l], then

the construction according to the Gram Schmidt algorithm produces a unique orthonormal family.

If we change the order of keywords, the algorithm outputs a different orthonormal family. Note

that the number of possible families generated by this construction is l!.

We should also emphasize that the keyword set W will be stored on the client side in a table T ,

and that optionally this table could also contain the orthonormal keywords corresponding to them

Wo . Here ends the preliminary setup phase, in the following, we will detail BSSE algorithms,

namely, the setup and search steps.

In the following, we capture the entire pre-construction process in a map functionality Ortho

that takes a set of strings W and a key K and outputs an orthonormal set of strings Wo. We denote

by Ortho(K,w) the orthonormal keyword corresponding to w.

46

4.1.2.2 Construction of BSSE algorithms

BSSE is a tuple of three polynomial time algorithms such that BSSE = (Setup,Token,Query).

In the following, we provide details of each of the algorithms of BSSE.

Setup(1k,D). Considering a semantically secure encryption SKE = (Gen,Enc,Dec), the Setup

algorithm takes as inputs the security parameter k, a collection of documents D, and the set of

unique keywords W an it works as follows:

• generate two secret keys K = (K1, K2) such that K1
$←− {0, 1}k and K2 ← Gen(1k).

• based on the entire set of unique keywords W = {w1, · · · , wl}, produce the orthonormal

keyword family Wo = {u1, · · · , ul} ← Ortho(K1,W). These orthonormal keywords can

either be retrieved or recomputed depending on whether they were stored in table T or not.

• for every document Di ∈ D that corresponds to a set Mi of unique orthonormal key-

words (uj)j∈Mi
, output the encrypted document EncK2(Di), and the associated label Xi =

∑

j∈Mi
uj for each i ∈ [n]. We denote by EDB = ((Xi,EncK2(Di))i∈[n]).

Once all documents are encrypted, they will be stored in the outsourced server with their asso-

ciated labels, see table 4.1.

EncK2(D1) X1

... ...

EncK2(Di) Xi

... ...

EncK2(Dn) Xn

Table 4.1: Encrypted documents along with encrypted indexes in the outsourced server

For both Token and Query algorithms, for clarity, we consider presenting three incremental

constructions. We first show how to proceed with conjunctive queries, then how to take into ac-

count disjunctions, and finally show to deal with negations and hence any boolean expression in

disjunctive normal form (DNF).

47

Conjunctive Case. Let us consider the conjunctive query w = w1 AND wi2 ...AND wr. The

generation of the token works as follows:

Token(K,w).

• convert the keywords in w to the corresponding orthonormal keywords either by re-generating

this base by re-performing the pre-construction, or by retrieving the corresponding vectors

from table T such that w = Ortho(K1, w1) AND · · ·AND Ortho(K1, wr).

• pick uniformly at random r strictly positive integers {ai}i∈[r] such that ai
$←− {0, 1}k. Output

tk =
1

∑

i∈Iq ai
·
∑

i∈Iq
ai · Ortho(K1, w1),

where Iq denotes the indices of keywords in W.

Query(tk,EDB). Parse EDB = ((Xi,EncK2(Di))i∈[n]), for all i ∈ [n], the server will perform the

following verification:

φ(tk,Xi) = tk · X⊤i
=

1
∑

j∈Iq aj

∑

j∈Iq

∑

l∈Mi

aj · φ(uj, ul)

=
1

∑

j∈Iq aj

∑

j∈Iq
⋂

Mi

aj,

where Iq represents the set of keywords’ indices that are being searched for.

• If all keywords exist in the ith document, i.e., Iq
⋂

Mi = Iq then: φ(tk,Xi) = 1. Send

EncK2(Di) to the user.

• Else, the ith document does not contain all keywords, i.e., Iq
⋂
Mi 6= Iq and then : φ(tk,Xi) 6=

1.

Conjunctive and disjunctive search: In this paragraph, we consider a more general case where

the user wants to search for the following query composed of t disjunctions: w =
∨t

z=1

∧

j∈Iqz wj,

where Iqz represents the set of all keywords’ indicies in the query w.

48

Token(K,w). The user translates the keywords to the corresponding orthonormal keywords. For

each z ∈ [t], the user picks at random |Iqz | integers {az,i}i∈|Iqz | such that az,i
$←− {0, 1}k. We then

define:

Sz =
1

∑

j∈Iqz az,j

∑

j∈Iqz

az,juj

Output the token tk such that:

tk =






S1
...

St






Query(tk,EDB). Parse EDB = ((Xi,EncK2(Di))i∈[n]), for all i ∈ [n], the server will perform the

following verification:

φ(tk,Xi) = tk · X⊤i =






φ(S1,Xi)
...

φ(St,Xi)






=







1
∑

j∈Iq1
a1,j

∑

j∈Iq1
⋂

Mi
a1,j

...
1

∑

j∈Iqt
at,j

∑

j∈Iqt
⋂

Mi
at,j







The result of this operation is interpreted as follows:

• If ∃z ∈ [t] such that (φ(tk,Xi))z = 1 then the ith document matches the query, as it means

that at least one conjunction was satisfied, hence the disjunction of these conjunctions is

satisfied.

• Else if ∀z ∈ [t], (φ(tk,Xi))z 6= 1 then the ith document does not match the query, because

no conjunction was satisfied so the whole disjunction is not satisfied either.

So far, we have seen general queries dealing with any number of conjunctions or disjunctions

in the same query. However, to complete our scheme, we need to take into account the negation as

well. The negation refers to the fact that the client does not desire fetching documents containing

a particular keyword. In the following paragraph, we detail our full solution which was the first

solution that supports general boolean searches over encrypted data.

49

Boolean search: We now consider the case of a general boolean expression search taken in the

disjunctive normal form as follows: w =
∨t

z=1

∧

j∈Iqz ⋄wj, where ⋄ ∈ {⊥,¬}.
For this case, we need to introduce a new nosiy keyword ξ which we assume that it belongs

to all documents D. To this extent, we apply the pre-construction Ortho to W ∪ {ξ}, to output all

orthonormal keywords. After the Gram-Schmidt process, we thus have one orthonormal keyword

Ortho(K1, ξ) that has been added up to all Xi, for all i ∈ [n].

Token(K,w). Let us now consider every conjunction Lz =
∧

j∈Iqz ⋄wj separately. Iqz repre-

sents the indexes of keywords in each disjunction Lz. We split Iqz into two partitions such that:

Iqz = {Pqz , Nqz} where Pqz and Nqz represent respectively the indexes of affirmative and neg-

ative keywords in the boolean expression. For each z ∈ [t], we pick at random |Pqz | integers

{az,i}i∈|Pqz |, |Nqz | integers {cz,i}i∈|Nqz | and one random integer bz such that az,i, cz,i, bz
$←− {0, 1}k.

We then define for all z ∈ [t]:

Sz =
1

bz +
∑

j∈Pqz
az,j

(
∑

j∈Nqz

−cz,juj +
∑

j∈Pqz

az,juj + bzJ)

The user sends to the server the following token:

tk =






S1
...

St






Query(tk,EDB). Parse EDB = ((Xi,EncK2(Di))i∈[n]), for all i ∈ [n], the server will perform the

following verification:

φ(tk,Xi) = tk · X⊤i =






φ(S1,Xi)
...

φ(St,Xi)






=







1
b1+

∑

j∈Pq1
a1,j

(
∑

j∈Nq1

⋂

Mi
c1,j +

∑

j∈Pq1

⋂

Mi
a1,j + b1)

...
1

bt+
∑

j∈Pqt
at,j

(
∑

j∈Nqt

⋂

Mi
ct,j +

∑

j∈Pqt

⋂

Mi
at,j + bt)







The result of this operation is interpreted as follows:

50

• If ∃z ∈ [t] such that (φ(tk,Xi))z = 1 then the ith document exactly matches the query.

That is, it means that in the corresponding disjunctions all affirmative keywords are in the

document while none of the non negative keywords is present (otherwise the result would be

smaller than one).

• Otherwise if ∀z ∈ [t], (φ(tk,Xi))k 6= 1 then the ith document doesn’t match the query.

The server sends back to the user the set of all encrypted documents that match the query.

Note: The reason why we have included a noisy keyword ξ in all documents is for the scheme’s

correctness. For instance, consider the case where we have only negative keywords in the disjunc-

tion Lz. Then |Pqz | = 0. Without a joker, the query Sz would have to be divided by 0, for z ∈ [t].

By adding the noisy keyword, we prevent this case from occurring and the division is defined.

4.1.3 Security Analysis

As discussed in Section 2.3, we need to capture the setup leakage and query leakage of our

BSSE construction that we detail below:

Lbsse
S (D) =

(
n, {Mi

⋂

Mj, ∀i, j ∈ [n]}
)
,

where Mi is a set containing the evaluation of a random function f : {0, 1}log l → {0, 1}k on

the keywords in D.

Lbsse
Q (D,w) =

(
(
SP(D, wi)

)

i∈Iqz
z∈[t]

, AP(D,w)

)

,

where w =
∨t

z=1

∧

j∈Iqz ⋄wj , SP and AP denotes the search pattern and access pattern as

defined in Section 2.3 respectively.

Theorem 4.1.2. If SKE is semantically secure encryption scheme, π a secure pseudo-random per-

mutation, then BSSE is (Lbsse
S ,Lbsse

Q)-semantically secure.

The proof of this theorem is similar to the one that we will be giving for the SED protocol in

Section 4.3.

51

Figure 4.1: Search phase Figure 4.2: Orthogonal keywords construc-

tion

Note that contrary to optimal single SSE construction in which we normally only leak the

size of the dataset D, in BSSE we also leak the number of common keywords between any two

documents in the corpus. This is a consequence of using orthogonality feature to handle better ex-

pressiveness. Cash et al. [38] intruduce OXT, a construction that leaks much lesser while achieving

better asymptotic. BSSE only advantage is that it can handle arbitrary boolean queries in a linear

time. Kamara and Moataz showed later that one can handle arbitrary boolean query with much

lesser leakage in a worst-case sub-linear time [82].

4.1.4 BSSE Performance

From a performance perspective, the most important feature to benchmark of any structured

encryption is its search phase as it is performed by the server for potentially many users. The

search complexity of our construction is O(n) inner products where n is the number of documents

stored in the server. This is as good as the solution provided by Goh in [66], except that our

scheme can handle much more complex queries. The search phase is illustrated in figure 4.1, in

this example, we show that the search is linear in the number of documents, we take also three

different cases where documents stored in the server are associated to labels containing 1000,

2000 or 4000 keywords (for all searches we have taken the same boolean query, we did not take

into account the network transmission delay or the query construction time). We emphasize that

the increase of labels size implies a longer computation phase for every document.

52

Figure 4.3: Labels creation

The main novelty in our scheme is the pre-computation phase with the Gram-Schmidt process.

As we mentioned there are two options: either performing this computation once and storing

the result in a table resulting in O(l) storage complexity or trading storage for computation and

performing the Gram-Schmidt process for each query. Intuitively, since storage is cheap the first

solution would be more advantageous. However we implemented the keyword orthonormalization

construction which include the Gram-Schmidt and the permutation processes and found out that

this computation phase is still reasonable although quadratic in the number of keywords as can be

seen in Figure 4.2.

In this figure, the number of keywords denotes the size of the free family that we have con-

structed in the first section. As can be seen on the graph, the construction of one thousand or-

thogonal keywords takes less 0.5 second which is acceptable given that these computations are

performed on a client side. The algorithm used was not optimized in any way, and it simply proves

that the solution of recomputing the base at each time is feasible (although we believe that the

storage alternative is more efficient). In addition to this implementation, we have tested the perfor-

mance of the off-line construction of labels in the client side, see Figure 4.3 (we do not take into

account the extraction of keywords from documents).

53

Section Conclusion. We introduced in this section a boolean structured encryption scheme. The

search overhead is linear which makes BSSE interesting only for small data sets as has been shown

in the evaluation section. Whereas we have described the leakage profile of BSSE, we believe that

this leakage can be harmful in many scenarios and practitioners need to be aware of it.

On the other hand, we want to point out that BSSE was introduced concurrently to many other

boolean constructions [38, 117]. The scheme by Pappas et al. [117] outperforms BSSE in all

dimensions while the Cash et al. [38]’s construction does better in the conjunctive case. We have

recently introduced the first STE construction that can perform arbitrary boolean search operations

in a sub-linear time with optimal communication while being non-interactive. Our solution can be

extended to be dynamic and forward-secure. We do not detail it but we refer the reader to [82] for

more details about our construction.

4.2 3SE: Semantic SSE

4.2.1 Contribution Summary

In this section, we present 3SE an original construction that enables semantic search over en-

crypted data. To achieve this goal, we first studied the state of the art techniques to perform

semantic search over plaintext data, as such techniques enhance the performance and more gener-

ally the efficiency of information retrieval mechanisms. Most of these techniques are based on a

variety of stemming algorithms. This technique has shown its efficiency for plaintext data, thus we

aim to use it in an encrypted context.

From this point, our contribution is to combine an efficient searchable encryption technique

with a stemming algorithm in order to perform semantic search over encrypted data. In the basic

searchable encryption scheme, one keyword is associated to all of its corresponding documents.

In order to allow semantic search, we have to associate all related keywords to the same set of

documents. Related keywords have the same root and consequently we can only store the root of

related keywords in the encrypted data structure. This will greatly reduce the storage overhead as

we are going to detail later on. Throughout the search phase, the user selects the keyword that he

wants to search for, then automatically, the stemming algorithm extracts the root of this keyword

54

and finally the root is sent instead of the keyword in the query. As a result, the user retrieves all

encrypted documents which contain all related keywords. By mixing one of the most efficient

searchable encryption schemes [37, 42, 50, 82] and a stemming algorithm we can thus achieve

semantic searches over encrypted data. The stemming process, however, needs to be fixed during

the setup phase and the client cannot change it as it will miss with the scheme’s correctness. In the

following, we briefly give a high level overview of the existing stemming algorithms that can be

used as a component of 3SE.

4.2.2 Stemming Algorithms

In this section, we present stemming algorithms which are fundamental building blocks of

most semantic search mechanisms. For this purpose we present on the one hand an overview of

stemming algorithms and depict features that they achieve, and on the other hand we give a brief

but exhaustive classification of these algorithms.

4.2.2.1 Stemming Algorithms Overview

Stemming is a general morphological process analyzer which aims first at identifying words

having roughly the same meaning, in particular words which have the same root, and associates

this set of words with the root (called also stem if no prefixes were removed from this set of

words during the process). We should point out that despite the fact that all stemming algorithms

rely on morphological language aspects, the purpose of stemming algorithm is not to find the

correct meaningful root of words. Indeed, the root might very well have an incorrect form with

respect to the lexical rules, for example the word “ease” can have “eas” as a root result. On the

contrary, the process aiming at normalizing words and finding the correct morphological stem is

called the lemmatization: the latter proceeds with algorithms which find the canonical form of

lexemes (lexemes represent keywords which have the same root). In semantic search algorithms,

the query stemming is performed obliviously for the user, thus the morphological incorrectness of

word’s stems is not a problem, and having “ease” or “eas” will not change anything for the query

results. Another point to emphasize is that basic stemming algorithms do not take into account

55

the grammatical or lexical relationship, instead they assume that words having the same root are

semantically close.

4.2.2.2 Stemming Algorithms Classification

The literature is abundant of stemming algorithms, which take advantage of different tech-

niques such as suffix-stripping algorithms, n-gram algorithms, stochastic algorithms and so on.

These algorithms can be classified in three main types: affix stripping, statistical stemming and

mixed stemming.

Affix Stripping. Affix stripping algorithms apply procedurally several rules in order to remove

known suffixes and prefixes from words in order to identify the “root” . As leading stripping

stemmer examples we can quote the first removing stemmer algorithm introduced by J.B. Lovins

[97] in 1968 and the well known and most used Porter suffix stemmer algorithm introduced in

1980 [126] and developed into a widespread framework called “Snowball”. However this type of

algorithm has the disadvantage of imperatively requiring an a priori knowledge of the language to

build rules of affixes removing. In the following we enter into more details of the Porter algorithm

for a better understanding of the affix stripping algorithms.

Porter algorithm. Porter algorithm aims at removing suffixes from words in order to find the

root. We can imagine the following set of terms : CONNECT, CONNECTED, CONNECTING,

CONNECTION, CONNECTIONS (example taken from [126]); these words are lexemes which

have similar meaning, and the stem of these lexemes is CONNECT. The operation of finding the

stem is done by automatic means: the algorithm defines a set of rules (about 60 but they can be

extended further) and words are then confronted to all these rules sequentially before outputting

the stem. The rules have the following form: (condition)(old suffix)⇒(new suffix). Here are for

instance two examples of rules:

if the word length > 0 and ends in ’ing’, remove the ’ing’.

if the word has at least one consonant and one vowel and ends in ’eed’, replace the ’eed’ by ’ee’.

56

The latter means for example that “agreed” becomes “agree” while “feed” remains unchanged.

In summary Porter’s algorithm is quite simple and its wide spread implementation “Snowball”

reflects its popularity. The algorithm is not generic in that one needs to define different rules for

different languages, but once these rules are defined for a language the algorithm performs well

and can have many applications.

Statistical Stemming. As explained in the previous subsection, the knowledge of the language

used is the major disadvantage in stemmer algorithms. To overcome this limitation, Mayfield and

McNamee introduced the n-gram stemming algorithm [102] which does not require the definition

of the language as input. Indeed their idea consists of doing statistical tests on n-grams (recall that

an n-gram is a group of n consecutive letters in a word) existing in the document (whatever the

document language): the n-grams which have the bigger frequency are considered as affixes; on

the contrary the n-grams which have the lowest frequency are classified as roots. This algorithm

has good results for stemming without having the knowledge of the language and the authors

demonstrated its efficiency by testing it for eight languages. There exists other interesting statistical

stemmers besides Mayfield and McNamee’s n-gram method such as the one introduced by Melucci

and Orio based on the Hidden Markov Models [103] and the one introduced by Majumder et al.

[99] based on clustering words and defining stems as the centroids of each cluster. As the name

of this category indicates it, all these stemmers have in common to be based solely on statistics

on words or subwords in a text, their performance is good when the language is unknown, but

comparatively their performance is lower than affix stripping algorithms if the language is know.

Mixed Stemming. Mixed algorithms aim at overcoming the limitations of the previous ap-

proaches namely the context sensitivity and the corpus related features. Indeed, affix stemmers

tend to conflate words with similar syntaxes but different semantics. This difference between

words having the same root is due to the corpus based issue. On the other hand, we can find

several inflected words used in different documents which deal with different contexts and have

the same syntactic root, however their semantic meaning is different, an issue that we can tackle

by using statistical stemming. Consequently the user ends up retrieving documents which are not

57

semantically related to its query. Few advanced schemes were proposed to deal with this issue by

taking into account the context of words in documents, and we can in particular cite the corpus-

based approach [141] by Xu and Bruce and the more recent development described by Peng et al.

in [120].

This concludes the overview and classification of stemming algorithms which are used in par-

ticular to perform semantic searches over plaintext data. In the next section we shift our focus to

one of the most efficient searchable encryption mechanism [50]3.

4.2.3 Semantic SSE: Construction Overview

As stated in the introduction, our aim is to enable semantic search over encrypted data. Our

approach is to combine stemming algorithms with searchable encryption ones.

4.2.3.1 Constructions

Naive Approach. The first idea is to simply combine stemming and searchable encryption se-

quentially without modifying any of them. Given an STE construction such that STE = (Setup,

Token, Query), we can construct a naive 3SE construction by a simple modification of the Token

algorithm. That is, in order to retrieve documents containing keywords having the same meaning

as a given keyword, the user could generate from this original keyword the set all the keywords

within proximity in a semantic sense. For example, from the keyword “search”, the user generates

“searching”, “searches”, “research”, etc. Then the user has to send as many queries as the number

of semantically close keywords to the server, which answers with the documents corresponding

to each keyword. Overall, given a stemming algorithm Stem and a standard single keyword SSE

construction STE = (Setup,Token,Query), the only modification can be depicted as follows:

Token(K,w) :

• compute the stems (s1, · · · , sl)← Stem(w);

• for all i ∈ [l], compute tki ← STE.Token(K, si);

3There are other constructions [37, 38, 42] that have better storage overhead, or slightly better leakage functions.

However, all these constructions have the same search efficiency.

58

• output tk = (tk1, · · · , tkl).

This basic solution satisfies basic requirements of semantic searchable encryption however it

has several shortcomings: it requires higher communication overhead and several search computa-

tion in the server side (the increase is proportional to the number of semantically close keywords).

Furthermore, several semantically close keywords could belong to the same document which will

then be sent several times (in the case of a response hiding STE construction, otherwise if the

STE is response revealing, then the server performs the union of all documents identifiers before

sending them back to the user), which is not optimal. Finally this approach might also be less

secure as the server learns that several semantically close keywords are being searched, which is

an additional information leakage which impact is not well understood yet. All these drawbacks

lead us to consider the following other approach.

Improved Construction. Our main construction is based on a modification of standard single

keyword SSE integrating a stemming algorithm Stem throughout the entire process of the protocol

3SE. First of all, we stress that our construction works with any stemming algorithm, however,

the choice of the stemming algorithm will implicitly impact the strategy of information retrieval.

As shown before, there are several types of stemming algorithms, each one has some features

which make it more suited for semantic or syntactic retrieval, and the user has to chose the one

which is more appropriate for his strategy. In our first implementations we have decided to use

Porter’s algorithm [126]. Our construction aims at associating documents with the root of all the

related lexemes. This association extends the scope of the encrypted documents retrieval to all

keywords sharing the same stem and consequently with nearly the same meaning. We detail our

3SE algorithm in Figure 4.4.

Settings. We give in the following some properties that capture the relation between the key-

words and the stems. Given a stemming algorithm Stem which takes as input keywords within

W and outputs the stems of all these keywords that we store in the set St = {s1, ..., sr} such that

|St| < |W|. As shown in Figure 4.5, each stem si in St is associated to a unique subset of keywords

59

Let consider STE = (Setup,Token,Query) be a single keyword SSE construction. Let Stem

be a deterministic stemming algorithm. We define 3SE = (Setup,Token,Query), the semantic

search over encrypted data algorithm, as follows:

Setup(1k,D):

• initialize an empty set St;

• for all w ∈W, generate s← Stem(w), add s to St;

• for every stem s ∈ St, associate all documents identifiers in D in DBs;

• compute (K,EDB)← STE.Setup(1k,DBs).

Token(K,w):

• compute s← Stem(w);

• generate tk← STE.Token(K, s);

• output tk.

Query(tk,EDB): output r ← STE.Query(tk,EDB).

Figure 4.4: Semantic encrypted search 3SE.

60

Figure 4.5: Stemming process

denoted by W(si) ⊂W. Moreover, since each keyword has one and only one stem, we then have

∀i, j ∈ [m] s.t. i 6= j, W(si) ∩W(sj) = ∅.

We denote by DBs(si) the set of all documents’ identifiers containing at least one element

within the set W(si):

DBs(si) =
⋃

wj∈W(si)

DBs(wj).

4.2.3.2 Analysis

The improved construction enables the user to search for all documents containing the key-

word wi and also all the lexemes that are similar to wi. Similarity is underlined by the fact that

the lexemes and the keyword wi have the same stem. As mentioned previously, retrieving all these

documents will enhance the efficiency of the information retrieval for the user as it returns docu-

ments which are relevant even though they do not contain the exact keyword. From a functionality

perspective, the construction is consistent and achieves the basic features of semantic symmetric

searchable encryption.

Security Analysis. From a security perspective, semantic symmetric searchable encryption 3SE

is secure in the same sense as the adaptive security by Curtmola et al.’s in [50]. The additional

stemming phase is indeed performed locally at client side and does not affect the security of our

construction. However the access pattern defined by the association between the query and the

61

resulting documents is modified and queries return more documents on average in our construction

compared to [50]. However, conceptually, the query leakage of 3SE is similar to the one by [50].

We can formally define the leakage as follows:

Lse
S (DB) = Lste

S (DBs),

and

Lse
Q(DB, w) = Lste

Q (DBs, s),

where s← Stem(w).

This leakage helps an attacker learning more relations between the documents, but on the

other hand, retrieving more identifiers constitutes a noise to any adversary who wants to extract

information from the access/search pattern.

Theorem 4.2.1. If STE is (Lste
S ,Lste

Q)-semantically secure., then 3SE is (Lse
S ,Lse

Q)-semantically

secure.

The proof is straightforward and similar to the one in [50].

Computation Complexity. From a computation perspective, the search phase is also optimal

as 3SE uses standard optimal single keyword SSE constructions. Since the stem’s set is smaller

than the keyword set such that |St| ≤ |W|, this implies that in practice the encrypted structure

has a lower storage overhead. In terms of communication overhead, the server has to send more

documents than for the single keyword SSE constructions. While the stem set is smaller than the

keyword set, one stem is often associated to more documents’ identifiers, which therefore makes

the communication overhead for a semantic SSE higher than single keyword SSE. However, this

is an inherent property of semantic SSEs as the user wishes to retrieve more documents when

compared to the single SSE case.

Section Conclusion. In this section, we propose 3SE the first semantic SSE construction we

are aware of. We show that such construction preserves the optimality of single SSE schemes

while providing better security expressiveness. We want, however, to point out that 3SE is far

62

from achieving full-scale semantic expressiveness such as answering queries of the form: the most

significant documents or natural language queries. For this, one needs to perform non-trivial

changes to our construction. We believe that incorporating natural language search capabilities

over encrypted data sets will be an interesting research direction that we leave as an open problem

for future works.

4.3 SED: Substring SSE

4.3.1 Contribution Summary

In this section, we investigate the problem of efficient substring search over encrypted data.

The user stores a set of documents D = (D1, · · · , Dn) in the server. Later, the user submits a

query involving a substring of one or more keywords in the dictionary W. The server responds by

retrieving the set of documents from the corpus that contain the keywords of which the given string

is a substring. We develop a simple protocol that implements such substring search over encrypted

data with search complexity linear in the size of the dictionary where |W| ≪ n, without inducing

any significant storage overhead.

To solve this problem efficiently we re-formulate the problem to ask the following question:

Is there a bivariate function f that takes as input an encrypted substring s and a set of encrypted

keywords in W, and outputs a deterministic boolean result that defines the success or failure of

the search? Orthogonalization of vectors appears to provide some solution to the problem. Two

vectors of the same subspace x1 and x2 are orthogonal if their inner product is equal to 0; x1 and x2

are orthonormal if they are orthogonal and they are unit vectors. Orthogonalization is the process

of determining a set of such orthogonal vectors spanning a specific subspace. We have employed

a similar orthogonalization technique to construct a boolean SSE as detailed in Section 4.1.

We provide an intuition behind our approach. Imagine that two vectors x1 and x2 represent

two letters say from the English alphabet. If x1 and x2 represent the same letter then they are

not orthogonal and their inner product will not be equal to zero; if x1 and x2 represent different

letters then the inner product will be equal to zero. We extend this idea to search for substrings in

keywords. Assume that the letters in an alphabet are represented as column vectors such that these

63

vectors are pairwise orthonormal. A keyword in a dictionary can be considered as a concatenation

of letters. The keyword then is a matrix where each column corresponds to a letter of the keyword

and two columns are adjacent if the corresponding two letters are adjacent in the keyword. Given

the fact that a substring is also a concatenation of letters and can similarly be represented by a

matrix, a matrix product between the substring and the keyword can provide an “answer” matrix

for the substring membership. (Recall that the matrix product is composed of a number of inner

products between rows of the first matrix and columns of the second one in a specific order.) To be

precise, the result will be a matrix with ones in all the diagonal components in case of a substring

match. Thus, our bivariate function f can be intuitively viewed as a matrix product operation that

takes as an input an orthogonal representation of the substring and orthogonal representation of the

keyword. For the actual protocol implementation, the function f takes as the second input a matrix

representing all keywords in the dictionary in the transformed format. We call this second input

the searchable part in our protocols. Note that our actual construction is a little bit more complex

and we will discuss this in details later.

Briefly, the basic protocol works as follows. The user generates the set of all keywords W

from the documents’ collection D. The user then generates the searchable part corresponding

to these keywords in a manner discussed above. The user also creates an inverted index that

associates keywords with their respective documents. Finally, the user encrypts the documents and

uploads the searchable part, the inverted index and the encrypted documents to the server. Note

that the inverted index is encrypted using single-keyword SSE technique. A user query generation

is similar to the generation of any column of the searchable part. During the search phase, the

server will first output all indexes (keywords) that contain the given substring (query), then uses

the inverted index to retrieve the set of matching encrypted documents with a single interaction

with the client.

Note that this technique, although appealing, induces many challenges in term of efficiency,

correctness and security. First, characters, in ASCII for instance, are not orthogonal to each other

in their binary representation. This is because normal ASCII representation uses 8 bits. In order

to be orthogonal they should be linearly independent first, which implies that their binary repre-

64

sentations should be at least equal to 128 bits. Consequently, a transformation is needed to impart

the orthogonality feature. This, in turn, brings up certain challenges in terms of the size of the

transformed letter, and a decimal representation that involves computational precision. Second,

a matrix product for identifying substring membership tends to be computationally inefficient for

large dictionaries; inner product computation improves efficiency. To facilitate inner product com-

putation, a compaction of the query (substring searched for) and the searchable part is mandatory

which brings up more challenges for protocol correctness. Third, every keyword has its own or-

dering between letters that should be taken into consideration. In fact, this adjacency is critical

for the correctness of the scheme especially if we want to reduce the size of the query as well as

the searchable part. Fourth, the search scheme should ideally allow wildcard search similar to one

enabled on plaintext search. Last but not least, substring search tends to leak more information

than exact keyword search. To understand why, note that in order to perform encrypted search,

a user sends (often) a deterministic token for a given substring. As a result, the server acquires

the knowledge of all matching substrings, that is, the server learns that the token corresponds to a

given set of substrings. Over time the server can build a knowledge of the substring frequencies.

Assuming an exact knowledge of the dictionary, the server can thereafter associate any token to

their exact plaintext values. SED protocol employs orthogonalization process for the sole purpose

of fast inner product and leveraging both orthonormal and additive properties, the security of SED

nevertheless consists of other cryptographic primitives involved in the construction process of the

searchable part.

In the following, we present two progressively refined Substring search over Encrypted Data

SED schemes. The first scheme, SED-1, is the initial attempt at using orthogonalization tech-

niques for encrypted substring search. SED-1 helps us to understand the basic principles behind

the searching scheme. We discuss that SED-1 is vulnerable to some forms of inference attacks as

well as attacks based on the search history. The SED-2 scheme improves upon SED-1 by reducing

information leakage based on characters’ positions and pattern’s construction. The SED-2 scheme

is efficient in that the communication complexity is linear in the size of the substring in the search

65

query sent to the server, and the search complexity is in O(|W|+ opt), where opt is the number of

matching documents.

4.3.2 Substring search over Encrypted Data - Pre-construction

4.3.2.1 Pre-construction

Let us consider the set of letters l = {l1, . . . , lt}. The first step in the pre-construction is to

create an independent family from these letters and then generate the associated orthogonalized

vectors. The orthogonalization, then orthonormalisation, are similar to the one introduced for

BSSE in Section 4.1. We refer the reader to that section for details about the pre-construction. One

difference between SED and BSSE is that instead of creating a free family for the entire dictionary

of keywords, for SED, the free family is generated only for the set of letters composing a specific

keywords dictionary. It is clear that the size of this family, in the case of SED, is much smaller

when compared to the BSSE one.

We now discuss our first scheme – SED-1.

4.3.3 Substring Search Over Encrypted Data #1 – SED-1

4.3.3.1 Setup phase

Let D = {D1, ..., Dn} be the set of documents, and W = {w1, ..., w|W|} be a set of keywords.

We assume that this dictionary is ordered, e.g. pseudo-random evaluation on the lexicographic

order. For each keyword wi in the dictionary W, we denote by DB(wi) the set that contains the

entire list of document identifiers that contain the keyword wi.

Next, the user creates an encrypted inverted index T for the inverted index DB using any of the

optimal single keyword SSE constructions such as [37, 38, 42, 50]. The plaintext inverted index DB

can be seen as a dictionary data structure and it consists of a number of 〈label, value〉 pairs, one for

each keyword in the dictionary. The entity label is a nonnegative integer equal to the position of the

keyword in the dictionary. In other words, the ith label in the inverted index is associated with the

keyword wi in W. We would like to emphasize that we do not store any information related to the

actual keyword. The value is the concatenation of all elements in the set of document identifiers,

66

DB(wi), containing the keyword wi. The client finally outputs the encryption of the inverted index

T . This encrypted structure can be queried similarly to the existing single keyword SSE, i.e.,

by constructing tokens, in our case, based on the index position to retrieve documents identifiers.

Given the row number, this encrypted inverted index will help the server during the retrieve phase

to find the relevant document identifiers in an optimal search time leveraging the search optimality

of the existing constructions [37, 38, 42, 50]. Based on the most efficient construction so far by

Cash et al. [37], the size of this inverted index is in O(N), where N =
∑

wi∈W DB(wi).

The third step consists of constructing the searchable part V of the encrypted data structure

using which the server identifies which keywords contain the given substring. To begin with, we

construct V as V = {v1, . . . , vm}. The value m represents the size of the longest keyword in the

dictionary W. Each vector4 vi is a row vector of a size equal to |W|. Each vector vi contains

some value corresponding to the ith letter of each keyword in the dictionary. If the jth entry of

the inverted index corresponds to a given keyword wj , the jth component of the vector vi will

correspond to the ith letter of the same keyword. The vector vi is generated as follows.

Consider the set of all possible letters l = {l1, ..., lt} and a special symbol ξ that will be used

to denote a ‘noisy’ position for keywords with a size lower than m. We apply the pre-construction

Ortho on l
⋃{ξ} phase in order to generate the orthonormal set of letters. In the position j of the

vector vi, we insert the orthonormal letter that exists in the ith position of the jth keyword. The

vector vi is then equal to:

vi = (ui,1, ui,2, . . . , ui,|W|),

where ui,j is a column vector of the orthonormal ith letter of the keyword wj such that ui,j =

Ortho(χ,wj[i]). If the size of the keyword wj is smaller than m, we put the orthonormal value

Ortho(χ, ξ) in all the corresponding positions of vi where |wj|+ 1 ≤ i ≤ m.

We reiterate the same process for all m vectors. At the end, we obtain the following vector

set V = {v1, . . . , vm} that represents the searchable part associated with all possible positions

of letters in keywords. At the end of the setup phase, the user sends to the server the collection

(EncK(D), T ,V), where EncK(D) represents the encryption of the document collection where

4The vector vi is a (t× |W|) matrix, but for sake of clarity we will call it a vector.

67

K ← Gen(1k), T the encryption of the inverted index based on [37] construction, and V the

searchable part described above.

Storage Overhead. The storage complexity of the SED-1 scheme is O(|T |+ |V|+ |EncK(D)|),
where |EncK(D)| is the size of the entire encrypted document corpus, |T | is the size of the inverted

index and |V| is the size of searchable part. The size of the encrypted inverted index is in O(N),

where N =
∑

wi∈ W DB(wi), refer to Cash et al. [37] construction. Moreover, since m and t can

be considered to be a fixed in our scenario (m ∼ 40), the size of the searchable part is in O(|W|).
Consequently, the total storage complexity, excluding the files, is in O(N), as N ≫ |W|.

4.3.3.2 Search phase

SED-1 offers two different types of queries: wildcard query and general query. We first con-

sider the wildcard query setting. This construction takes into account that wildcard characters

(represented by “*” symbol) can be at the beginning of a string or between two strings. Since we

are dealing with substring matching, wildcards at the end of the query string are meaningless.

The query is constructed as follows. Let s ∈ l
⋃{∗} be the string being searched for that

includes letters and “*”. The string s is associated with the set of letter indexes Ms. For instance,

if the user searches for all documents containing the following sequence “∗ ∗ ∗l1 ∗ ∗ ∗ l2 ∗ ∗l3∗∗”,

the string s is simplified to l1∗∗∗ l2∗∗l3 where li ∈ l and p = 3, where p is the number of wildcard

symbols at the front of the substring. The string s can have a size at most equal to m. The string is

then written as sequence of letters and “*”s such that: s = (s1, s2, . . . , s|Ms|) where:

sj =

{
lMs[j] if sj ∈ l

∗ otherwise.

The first step consists of computing the orthornormal value for each letter. We can pre-compute

and store all the orthonormal letters in a client side inverted index to avoid computing the orthonor-

mal value each time the user wants to search for a string. The storage or the computation of all

possible letters is a small task since the size of all possible letters is mostly small, as in the case of

ASCII code for example. At the end of this stage, the string will be s = (u1, . . . , u|Ms|), where uj

68

is equal to:

uj =

{
Ortho(χ, lMs[j]) if sj = lMs[j]∑t

i=1 Ortho(χ, li) otherwise,

where Ortho(χ, li) is the orthonormal letter corresponding to the letter li ∈ l as generated by the

pre-construction (see Section 4.3.2.1).

The last step is to adjust the orthonormal string s by making the location of first wildcard

characters meaningful for the server. Indeed, we will see in the next section that the search phase

on the server side is based on an inner product computation between each orthonormal letter in the

query and the corresponding searchable part position.

In the wildcard query setting, the main idea is to specify the number, p, of wildcards in the

beginning of the query. We can then send to the server the position of the first letter of the string s in

the keyword as (s, p), p defining the position at which the server will start the search. In the general

query setting the user wants to search for a string pattern regardless of its position. This case is a

generalization of the wildcard query where p can have any value in the range (1, . . . ,m− |s|). In

this case, the user has only to send the string s to search for and the server will perform a loop to

search for all matching keywords.

4.3.3.3 Query phase

The query phase is based on an inner product computation between each element of s and the

corresponding searchable part. A keyword wj matches the substring in the query iff in all positions

of the resulting inner products, the values are different from zero. In the following, we detail step

by step how the document retrieval is performed in the server side for both kind of queries.

If the server receives the query (s, p), the server assumes that the user has posed a wildcard

query. Given that the position of the first relevant letter is p+ 1, the server first computes an inner

product between the first component of s and the corresponding vector vp+1 that represents the

searchable part stored in the server associated with the position p + 1 such that α1 = s1
⊤ · vp+1

with α1 being a vector of size equal to |W|. If α1,j = 0, where 1 ≤ j ≤ |W|, the keyword wj does

not match the query; otherwise, if αi,j 6= 0 it implies that the keyword wj contains the letter s1 at

position p + 1. Indeed, due to the orthogonality of the vectors associated with the letters, when

69

there is a zero value in a given position in α1, it means that the letter searched for and the letter

existing at this position are different.

A naı̈ve approach to test for this is to compute αi for 1 ≤ i ≤ |Ms| and verify at the end if there

are positions for all these vectors where the values are all different from zero. This method induces

many unnecessary inner products since we are computing the inner product even for keywords

that we know will not be matching the query. Indeed, if there is a position in α1 which is equal

to zero, we know that from the first verification we can filter out keywords that do not match the

query. Instead, we instantiate a set P0 equal to (1, . . . , |W|). While computing the inner product

α1, we delete from P0 all positions where α1 is equal to zero and output the new value of positions

P1. Restricted only to the positions P1, we compute the inner product between s2 and vp+2 so the

output of the second search will be a set of positions P2 which is included in P1. For α3 we use P2

and so on and so forth. We reiterate the same |Ms| operations and the final output will be a set of

positions P|Ms|.

This resulting set contains the positions of keywords matching the query. The server sends

back this set to the client. The client generates a token for every position in the set using the

encrypted structure T . For every token, the server queries the structure T and sends the results

to the client. We should underline the fact that the client can find in the final result redundant

documents’ identifiers. This holds as different keywords can be associated to the same document’s

identifier in T . To avoid this repetition, a disjunctive SSE construction has to be used instead of

the one by Cash et al. [37], we can instantiate a disjunctive SSE using the scheme [82].

Our second case consists of receiving the string s from the user and the server performing a

general substring matching. In order to perform this task, the server executes the same operation

as if it receives a string with a position information, (s, i), where 1 ≤ i ≤ m− |s|. The complexity

of our scheme will increase with a multiplicative coefficient equal to m − |s| where m is the size

of the longest keyword.

The search computation is not dependent on the size of the database (number of files stored).

Rather the search is based on the inner product operations that are in O(|W|) i.e. linear in the

70

number of the keywords. Note that since |W| ≪ n, we consider the search complexity of SED-1

sub-linear in the size of dataset.

In the next section, we discuss some attacks on our first scheme that will lead us to construct a

more secure scheme – SED-2.

4.3.3.4 Problems with SED-1

SED-1 has some vulnerabilities that make it unsuitable for a real-world deployment and which

is why we progressively refine SED-1 into SED-2. SED-1 is based on the searchable part V =

(v1, . . . , vm) where the vector vi contains all letters in the ith position; this searchable part can

disclose many information about the distribution of letters in these vectors due to the orthogonal

feature of their components. These attacks are analogous to attacks on substitution ciphers using

the frequency analysis technique. We discuss two off-line attacks, where the attacks rely only on

the knowledge of the searchable part.

Letter frequency attack with known dictionary. We assume that the adversary knows the dic-

tionary W, and the adversary has access to the searchable part V . The goal of the adversary is

to find the keywords based on the distribution of letters in the given dictionary. For illustration

purposes, we assume that we work with the British Oxford English dictionary. The adversary will

launch the attack shown in Algorithm 1 on V .

The algorithm first computes the number of characters stored in the searchable part (lines 3 –

10). The set G1 contains the occurrence of the first character, G2 the second, etc. Then line 11

determines the set Gz containing the don’t care component; this can be determined by computing

the set that contains the maximum number of tuples (i, j) for a given position, where i is the

position of the keyword and j is the character in that position. Lines 12 – 14 compute the frequency

of resulting characters by calculating first the total number of characters (excluding those in Gz)

and then by dividing every set size |Gi| by the total size. Lines 15 – 23 replace the initial values of

the searchable part by the corresponding characters based on comparing a known frequency as the

one from British Oxford English and the computed ones. Finally, the algorithm outputs V .

71

Algorithm 1: Letter frequency attack with known dictionary

Data: Searchable part V , dictionary W and characters c1, . . . , cp−1
of the dictionary language.

Result: disclosed V
Creates p sets of tuples G1, . . . , Gp such that

Gi ← {(1, 1), (1, 2), . . . , (1, |W|), . . . , (m, 1), . . . , (m, |W|)};
for i← 1 to p− 1 do

for j ← 1 to initial size of Gi do

if vGi[1] 6= vGi[j] then

Gi ← Gi \ {Gi[j]};
end

end

Gi+1 ← Gi+1 \Gi;

end

Determine z such that Gz contains the max of (m, i) where i in the range 1 to |W|,;
Compute totalSize the size of all elements within G1, . . . , Gp except Gz;

foreach i ∈ (1, . . . , p) do Fi ← |Gi|
totalSize

;

Compute characters’ frequency of c1, . . . , cp−1 in W, output F ′1, . . . , F
′
p−1;

for i← 1 to p and i 6= z do

Find k such that F ′k = Fi;

for j ← 1 to |Gi| do
vGi[j]←ck

end

end

for j ← 1 to |Gz| do
vGi[j]← blank

end

Output V;

72

The attack is a direct consequence of the detailed searchable part construction that gives away

different information about the frequency of keyword letters. Based on V , the attack first deter-

mines positions that contain the same letter. Next, the adversary determines the set Gz that contains

the ς value that we have used as padding in case of short keywords. This can be done by taking into

account the distribution of the keywords’ lengths in the dictionary (see figure 4.7) . Thus, based

on the frequency of the characters in the dictionary W (see figure 4.6), the adversary can associate

the character ci with its corresponding position.

Figure 4.6: Letter Frequency

Figure 4.7: Length Frequency

73

Note that, in this attack, we have made a strong assumption that the adversary has an accurate

prior knowledge of the dictionary used by the user. In the next attack, we will assume that the

adversary proceeds with the attack without any prior information about the dictionary.

Letter frequency attack with unknown dictionary. The adversary may not know the exact dic-

tionary but can easily know the distribution of characters in the searchable part V by performing

multiple inner products between the different components of these vectors. The adversary can then

have a finite size of possible characters, which we denote by q. By looking for all possible com-

binations of letters, the adversary performs q! combinations to determine if for each combination

all keywords belong to some language. The brute force can be expensive. For example, if the

number of characters q = 26 (which is the size of the English alphabet), the possible solutions are

approximately equal to 288 (26!). However, the adversary can make the search cheaper without the

dictionary.

The attacker can try to use certain types of information to refine the data distribution model.

These can be, for example, the geographic localization of the user, the field of interest, etc. How-

ever, we assume these to be well hidden from the adversary. Moreover, knowing the exact distri-

bution of characters for each keyword in V , the adversary can generate therefore the frequency of

letters in the whole dataset. In the state of the art, there are many frequency studies about the dis-

tribution of letters that differs depending on the field such as Scientific, Religious, Financial field

etc. Moreover, the adversary can go further by computing the frequency of letters at the beginning

of the word, the end of the word, length distribution, frequency of bigrams, trigrams etc., that give

more accurate idea of the language used and consequently approach the adversary from the exact

letters.

4.3.4 Substring Search Over Encrypted Data #2 – SED-2

We have seen that the first scheme SED-1 is insecure and can leak the keywords in the case of a

known dictionary. We should point out that it is a real challenge to perform substring matching and

at the same time hide the distribution of letters within the dictionary from the server. In this section,

74

we present the second and main construction, SED-2, that partially5 hides the letter-distribution of

keywords.

The main challenge for SED-2 is to maintain the order of letters within a given keyword. In-

deed, only summing up normalized letters does not save any pattern with a size bigger than that

of the keyword. SED-2 addresses this issue by creating a sort of chain of letters, intelligible to the

user with an a-prior stored state, that allows one to search for any pattern. Add to that, this new

feature SED-2 also consists of linking every character to its position. That is, two equal characters

at different positions will be treated in the setup phase as two totally different characters. This

feature enables to hide a great part of the information leakage in SED-1. We will also see that

this position based construction can be further generalized with a pattern construction to even hide

more about characters’ frequency, refer to Section 4.3.6. SED-2 is more efficient and induces less

storage complexity than SED-1. We present the detail of SED-2 in Algorithm 4.8.

4.3.4.1 Correctness of SED-2

The correctness of the scheme is shown quite easily. The query will contain orthonormal letters

depending on the position in the string searched for. These orthonormal letters are multiplied by

random elements and divided by the sum of elements of the chain ai depending on the position

as well. While the server receives the query, the inner product of the query and the component

Vi will be equal to one if and only if all letters of the query exist in the same position in the

coded component Vi. If this is the case the inner product of each equal orthonormal letters will be

∑|Ms|
i=1 aMs[i] where s is the substring searched for, which is equal to the denominator of the query.

If this product is equal to one, the server will send the exact corresponding documents that match

the substring from the inverted index.

4.3.5 Security analysis for SED-2

4.3.5.1 Leakage description of SED-2

SED-2 construction, as any structured encryption construction, has some leakage. This leakage

is divided in two types. A setup leakage that the server (adversary) can undercover by just looking

5Refer to Section 4.3.5.1 for exact description of SED-2 leakage.

75

Let consider that STE = (Setup,Query,Token) be an inverted index structured encryption

scheme. Let SKE = (Gen,Enc,Dec) a semantically secure symmetric encryption scheme. We

define SED = (Setup,Token,Query), the substring search over encrypted data as follows:

Setup(1k,D):

1. consider the set of characters l = {l1, · · · , lt} and compute L = (l1, · · · , lm), where

li = {li1, · · · , lit} and lij = lj‖i, for all i ∈ [m] and j ∈ [t];

2. compute (K, T)← STE.Setup(1k,DB), where DB is the inverted index indexing D;

3. set key K = (K1, K2, χ) such that χ← {0, 1}k and K2 ← Gen(1k);

4. compute (u1
1, · · · , u1

t , u
2
1, · · · , u2

t , · · · , um
1 , · · · , um

t)← Ortho(χ, L);

5. compute κ = (a1, . . . , am)
$←− {0, 1}k·m, where ∀i, j ai 6= aj . Compute then

Vj =
∑|wj |

i=1 ai · ui
Mj [i]

, for all j ∈ [|W|] such that:

V = (

|w1|∑

i=1

ai · ui
M1[i]

, . . . ,

|w|W||
∑

i=1

ai · ui
M|W|[i]

);

6. compute the encryption of all documents EncK2(D) = (EncK2(D1), · · · ,EncK2(Dn));

7. output (K, κ,EDB), where EDB = (EncK2(D), T ,V).

Token(K, κ, s):

1. compute Ms, the index positions of substring s and parse κ = (a1, · · · , am);

2. compute (u1
1, · · · , u1

t , u
2
1, · · · , u2

t , · · · , um
1 , · · · , um

t)← Ortho(χ, L);

3. output tk = 1
∑|Ms|

i=1 aMs[i]

∑|Ms|
i=1 ui

Ms[i]
.

Query(tk,EDB):

1. initialize an empty set Result and parse EDB = (EncK2(D), T ,V);

2. for all j ∈ [|W|], if tk · Vj = 1, then add j to Result. Send Result to the client;

3. for all j ∈ Result, compute tkj ← STE.Query(K1, j). Send (tkj)j∈Result to the server

4. compute for each token tk ∈ (tkj)j∈Result, r ← STE.Query(T , tk). Send all results r to

the client.

Figure 4.8: Substring search over encrypted data SED− 2 for the wildcard search case

76

to the encrypted data structures, and, a query leakage that the adversary can learn during the search

phase. SED-2, if compared to single keyword SSE constructions, leaks more at the price of offering

better expressiveness. In the following, we details both of these leakages.

Setup Leakage LS. SED-2 setup phase outputs an encrypted inverted index T , along with the

searchable part V . The first encrypted data structure leaks Lste
S (D). Based on the specific in-

stantiation chosen for our algorithm, this leakage might be slightly different from a construction

to another. If we choose the construction by Cash et al. [37], then the encrypted inverted index

only leaks N , the number of keyword-identifiers pairs such that N =
∑

w∈W DB(w). Contrary, to

previous SSE, V can leak more than W, it leaks the number of characters and therefore the size of

the alphabet used for the construction t. Moreover, the server can learn whether two keywords wi

and wj have the same character at the same position by performing simple inner product between

the coordinates of V . We formalize this leakage in the following:

Lsed
S (D) = {L1

S(D),L2
S(D)},

where L1
S(D,W) = (Lste

S (D),m, |W|, t) and L2
S(D) = {i | ∀i ∈ [m], vi = wi}v,w∈W.

Query Leakage LQ. During search operations, SED-2 like most of SSE constructions, leak the

search pattern and access pattern, given τ queries (qi)i∈[τ]. However, as previously illustrated, due

to the additional expressiveness, SED-2 can leak much more than traditional exact keyword SSEs,

Lste
Q (D, (qi)i∈[τ]). In SED-2, for the wildcard search, the server learns whether two queries have

the same character at the same position. This leakage, dubbed as query composition leakage, can

give the adversary an additional knowledge about the searched for queries. It is clear that the query

composition leakage implicitly encapsulates the query occurrences which is the traditional search

pattern leakage of SSE constructions. The second component of the adaptive leakage is the one

capturing the association between the query and the keywords in V . Every searched for keyword

will be associated to some specific keywords in V , we refer to this leakage as keywords pattern

leakage. Finally, the server has to retrieve the identifiers of documents that match a specific query.

That is, the server will learn the association between every query and the documents’ identifiers,

77

which is known in SSE’s literature as the access pattern. We formalize the adaptive leakage in the

following:

Lsed
Q (D, (qi)i∈[τ]) = {Lste

Q (D, (qi)i∈[τ]),QC(D, (qi)i∈[τ]),KP(D, (qi)i∈[τ]),AP(D, (qi)i∈[τ])},

where

QC(D, (qi)i∈[τ]) = {A | ∀i, j ∈ [τ], ∀l ∈ [m], A[i, j, l] = 1 if qi,l = qj,l},

and,

KP(D, (qi)i∈[τ]) = {A | ∀i ∈ [τ], A[i] = (i1, · · · , ih), where ∀j ∈ [h], ∀l ∈ [|qi|], qi,l = wij ,l},

and,

AP(D, (qi)i∈[τ]) = {A | ∀i ∈ [τ], A[i] = (D(wi1), · · · , D(wih)), where (i1, · · · , ih) = KP(D, qi)}

This setup and query leakage described above is the only leakage that SED-2 leaks to the

adversary when a search is performed. We will show in the next section that SED-2 is (Lsed
S ,Lsed

Q)-

semantically secure as in Definition 2.3.3, i.e., that SED-2 does not leak any information to the

server besides the stateful captured leakage Lsed
S and Lsed

Q . Note that the leakage in some scenar-

ios might help the adversary to infer additional information about the encrypted data structure,

especially when the adversary holds adequate auxiliary information.

4.3.5.2 Security proof of SED-2

The SED-2 protocol is (Lsed
S ,Lsed

Q)-semantically secure in the honest but curious model. We

now provide a simulation based proof in support of our security claim. We restrict our proof to the

wildcard search model.

Theorem 4.3.1. If SKE is a semantically-secure encryption scheme, G is a pseudo-random gener-

ator, STE a (Lste
S ,Lste

Q)-semantically secure inverted index encryption, then SED-2 is (Lsed
S ,Lsed

Q)-

semantically secure.

Proof. Let Sste be the simulator guaranteed to exist by the semantic security of STE. Let us

consider the simulator S of SED that works as follows.

Given Lste
S (D), S simulates the output of the Setup as follows:

78

1. set T ← Sste(Lste
S (D))

2. based on Lsed
S , the simulator S extracts |W|, t and m. S generates χ

$←− {0, 1}k. The

simulator computes (g1, · · · , gt·m) ← G(χ), where |gi| = t ·m + k, where k is the security

parameter. For every i ∈ [|W|], the simulator, based on L2
S(D), computes Vi = (gj)j∈Ai

,

where Ai = L2
S(D)[i].

3. the simulator S generates a key at random K2
$←− {0, 1}k and sets

EncK2(D) = (EncK2(0
|D1|), · · · ,EncK2(0

|Dn|))

4. The simulator outputs EDB = (EncK2(D),V , T).

The simulator now simulates the token tk for the wildcard search as follows. S has as input

Lsed
Q . Given the queries (si)i∈[τ], the simulator generates for every i ∈ [τ], tki such that for all

j ∈ [|si|], if ∃z < i such that QC[z, i, j] = 1, then tki,j = g, where g is the previously generated

value, otherwise if QC[z, i, j] = 0, the simulator sets tki,j = g, where g is sub-vector of G(χ) that

verifies g ∈ Vj1 ∩ · · · ∩ Vjh , where (j1, · · · , jh) ∈ L2
S(D)

The simulator S generates the tokens for T such that for each i ∈ [τ], for all j ∈ KP[i], set

tki,j ← Sste(Lste
Q (D, i))).

It remains to show that for all probabilistic polynomial-time adversariesA, the probability that

RealSED,A(k) and the probability that IdealSED,A,S(k) output 1 is negligibly close. We show this

by the sequence of these hybrid games:

• Game0 is the same as RealSED,A(k) experiment. Create an empty dictionary T.

• Game1 is the same as Game0 except that every component of V is replaced with the original

(non-orthogonal vectors) PRG evaluations. Every component Vi in V is replaced with a

vector of the corresponding PRG evaluations of characters composing Vi, for all i ∈ [|W|].
Also, for all i ∈ [τ], tki is replaced with the vector of PRG evaluation of the characters

searched for.

79

• Game2 is the same as Game1 except that the values of PRG evaluation are replaced with

random values as follows: for all i ∈ [|W|], for all v ∈ Vi, if T[v] is not empty, then set v

to T[v], otherwise, set T[v]
$←− {0, 1}k, then set v to T[v], and update Vi accordingly. The

queries tki, for all i ∈ [τ], are replaced with random values as follows: for all i ∈ [τ], for

all v ∈ tki, T[v] is not empty, then set v to T[v], otherwise, set T[v]
$←− {0, 1}k, then set v to

T[v], and update tki accordingly.

• Game3 is the same as Game2 except that the encryption of documents is replaced with

EncK2(0
|D|), for all D ∈ D.

• Game4 is the same as Game3 except that T is replaced with Sste(Lste
S (D)) and for all i ∈ τ ,

for all j ∈ KP[i], replace all tokens by tki,j ← Sste(LQ(D, i))).

Note that Game4 equals the ideal experiment.

Claim. For all PPT A,

Pr[Game1 = 1] = Pr[Game0 = 1],

This transition just replaces the orthogonal values in every Vi in V and tkj , for j ∈ [τ], by

the non-orthogonal values, and represents them as a vector of a PRG evaluation. Recall that this

trivially stems from the fact that we assume that the orthogonalization is just a tool to speed-up the

verification and there exists a polynomial time algorithm that can perform this basis’ transforma-

tion6.

That is the view of an PPT adversary A in Game0 and Game1 is the same.

Claim. For all PPT A,

Pr[Game2 = 1]− Pr[Game1 = 1] ≤ negl(k),

We show that if there exists an adversaryA that breaks the claim, then there exists an adversary

B that can distinguish between the output of pseudo-random generator and a random value with

6This game shows that our SED security is not based on the linear transformation but on the prior PRG evaluation.

80

respect to a simulator S ′. B emulates A. When receiving, D from A, B, generates all characters

in D, (l1, · · · , lt), computes as in Step 1 in the Setup phase in Algorithm 4.8, L. B generates an

inverted index that associates every keyword w to its documents identifiers. B outputs L. Upon

receiving L∗, from either ReadPRG,B(k), or IdealPRG,B,S′ , B outputs to A: (EncK2(D),V , T),
such that:

K2
$←− {0, 1}k, (K1, T) ← STE.Setup(1k,D) and for all i ∈ |W|, for all v ∈ Vi, if T[v] is not

empty, then set v to T[v], otherwise, set T[v] to the next k bits in L∗, then set v to T[v], and update

Vi accordingly.

If A outputs a substring si for all i ∈ [τ], B outputs tk∗i such that: for all v ∈ tki, if T[v] is not

empty, then set v to T[v], otherwise, set T[v] to the next k bits in L∗, then set v to T[v], and update

tki accordingly.

B sends the following to A: (tki, tki,1, · · · , tki,|Result|), where Result is a set containing all

indices j of V where characters of tki ⊆ Vj .
After answering all A’s queries, A outputs a bit that B returns as its own output. We want to

emphasize that if B has been executed in a RealPRG,B(k), than the view of A is exactly the one

in Game1, otherwise then the view of A is the one of Game2. It follows by our assumption of A
contradicts the claim that:

Pr[RealPRG,B]− Pr[IdealPRG,B,S′]

is non-negligible in k which is a contradiction.

Claim. For all PPT adversary A,

Pr[Game3 = 1]− Pr[Game2 = 1] ≤ negl(k),

This claim clearly holds under the semantic security assumption.

Claim. For all PPT adversary A,

Pr[Game4 = 1]− Pr[Game3 = 1] ≤ negl(k),

81

We show that if there exists an adversaryA that breaks the claim, then there exists an adversary

B that can can break the semantic security of the inverted index encryption STE with respect to

an arbitrary PPT simulator S ′. B start running A. When receiving, D from A, B, generates all

characters in D, (l1, · · · , lt), computes L. B generates an inverted index DB = (wi, D(wi))i∈|W|

that associates every keyword w to its documents identifiers D(wi). B outputs DB. Upon receiving

T ∗, from either ReadSTE,B(k), or IdealSTE,B,S′ , B outputs to A: (EncK2(D),V , T ∗), such that:

K2
$←− {0, 1}k, for all i ∈ |W|, for all v ∈ Vi, set v to T[v]. If A outputs a substring si for

all i ∈ [τ], B outputs tki such that for all v ∈ tki, v to T[v] and outputs Result as its own answer

to T ∗ and receives (tk∗i,1, · · · , tk∗i,|Result|), where Result are all indices j of V where characters of

tki ⊆ Vj .
B sends the following to A: (tki, tk

∗
i,1, · · · , tk∗i,|Result|).

After answering all A’s queries, A outputs a bit that B returns as its own output. We want to

emphasize that if B has been executed in a RealSTE,B(k), than the view of A is exactly the one

in Game3, otherwise if B has been executed in IdealSTE,B,S′(k), then the view of A is the one of

Game4. It follows by our assumption that:

Pr[RealSTE,B]− Pr[IdealSTE,B,S′]

is non-negligible in k which is a contradiction. This ends our proof.

4.3.6 SED-2 Generalization

SED-2 hides information related to characters that exist at different positions while not im-

pacting the scheme’s correctness. However, we have described in Section 4.3.5.1 SED-2 leakage,

and we have shown that an adversary can recover non-trivial information about the encrypted data

structure even in the setup phase. With adequate auxiliary information, an adversary can run many

attacks based on characters frequency. This unfortunately can lead to the disclosure of all part

of keywords dictionary. However, we can generalize SED-2 construction that leaks much lesser

with a new pattern’s construction. The ultimate goal of the generalized SED-2 construction is to

decrease the setup leakage to be as insignificant as possible.

82

4.3.6.1 Overview

The setup phase is based on a new parameter, pattern length γ, that determines the length of

the pattern that is going to be orthogonalized. Every pattern is now determined by its position but

also by its length. For every character in l = {l1, · · · , lt}, for all i ∈ [m], add

c1‖(i− γ), · · · , cγ‖(i− 1)
︸ ︷︷ ︸

γ characters

, l‖i, cγ+1‖(i+ 1), · · · , c2γ‖(i+ γ)
︸ ︷︷ ︸

γ characters

to L, for all c1, · · · , c2γ ∈ l and γ ∈ [m]. Note that SED-2 is a special case of our generalization

when γ = 0.

The next step is to apply the orthogonalization process Ortho that outputs orthonormal vectors.

The way we construct the searchable part V is similar to the one in SED-2. For all w ∈W, we

first determine all patterns in w, and sums up all the corresponding orthonormal characters while

using the chaining between patterns as in SED-2. This pattern enables to search for all substrings

that have a γ-length pattern at least. The search is very similar to SED-2.

This generalization introduces a new balance between search expressiveness and leakage. In

SED-2, the leakage can be greatly reduced when increasing γ. We notice that starting from γ = 1,

the setup leakage dramatically reduces. However, note that this comes also at the expense of a

slightly larger components of the searchable part V .

The setup leakage as well as the adaptive leakage is now limited to the following. The en-

crypted searchable part now leaks only the information that two keywords have the same pattern

if they are also at the same position. For example, the keywords arbitrary and binary both contain

the pattern ary, but at two different positions. This will translate in two different orthonormal

values that are not going to be disclosed in the setup phase. Another example reduced leakage is

the following. Consider the keywords art and arc, they both contain two characters at the same

positions. SED-2 would have disclosed this information in the setup phase while in the generaliza-

tion this information is hidden. Recall that SED-2 is a special case where the length of the pattern

equals 0. In the following, we formalize the leakage of the generalized construction of SED-2.

83

4.3.6.2 Leakage

As illustrated in the previous section, the generalization offers better security guarantees at the

cost of slightly reduced expressiveness. We provide in the following a formal description of setup

leakage. The adaptive leakage is similar to the one described for SED-2.

Setup Leakage Lsed
S .

LS(D) = {L1
S(D),L2

S(D)},

where L1
S(D) = (Lste

S (D),m, |W|, q, (|Di|)i∈[n]),
and

L2
S(D) = {j | ∀j ∈ [m], ∀i ∈ [γ], vj+i = wj+i and vj−i = wj−i}v,w∈W.

Note that L2
S(D) is a subset of the one of the first version of SED-2. This underlines the fact

that the generalized version of SED-2 leaks much lesser when compared to SED-2. Note that the

security proof of our proposed construction is very similar to the one detailed for SED-2.

4.3.7 Performance Analysis

We have evaluated the performance of SED-2. For this purpose, we developed a proof-of-

concept using Java. We use the Enron document corpus that has over 500,000 emails and is about

1.5 Gbytes in size. Our experiments clearly demonstrate the efficiency of the SED-2 protocol. We

discuss the experiments and results in more details below.

4.3.7.1 Experiment setup

We executed a number of experiments to validate not only the correctness of the theoretical

complexities, but also study the deployability of SED-2 in a realistic setting. Our analyses include

a quantification in terms of execution time and storage for the complete SED-2 protocol. In addition

to the construction of the inverted index and the searchable part, we study the overhead related to

the initial stages of the protocol, namely, determining unique keywords for every document as well

as creating a dictionary that is associated with this set of documents. Any encrypted search scheme

will involve these steps and execution time for this phase is far from negligible.

84

We chose the Enron corpus [34] for our performance studies. The corpus contains more than

500,000 emails from about 150 users of the erstwhile Enron Corporation. The total size of the

document corpus is nearly equal to 1.5 Gbytes. The high number of unique keywords in the corpus

was the main reason behind our choice of the Enron corpus since the search complexity of SED-2

is dependent on the size of the dictionary and not on the number of the outsourced files. We do not

consider the overhead due to the encryption of files in our performance analysis.

The SED-2 scheme is implemented in Java using the JSci library [11] for keywords orthog-

onalization. Since the components of the searchable part are decimal numbers, we use Java’s

BigDecimal class for accurate precision. (For example, if the output is equal to one plus or minus

10−10 we assume that there is a match.) We also use Java’s SecureRandom class to generate ran-

dom numbers in the query and searchable part construction. The experiments have been executed

on a 8-core Intel Core i7-3630QM CPU 2.40GHz with 8 Gbytes of RAM. For execution time, the

values displayed in the graph are the sample mean values over several independent executions.

4.3.7.2 Results

We first show in figure 4.9 the execution time needed to determine for every file, the number

of unique keywords and then constructing the entire dictionary of all these files (graph labeled as

“keywords indexation”). Based on unique keywords associated with each file, we construct the

inverted index that links each keyword to all documents that contain the keyword. These phases

can be merged to gain time, however they are still linear in the number of files (multiplied by the

number of keywords in the case of textual files, which was our case in the Enron emails).

SED-2 complexity is dependent on the size of the dictionary, we show in figure 4.10 that the

number of unique keywords associated with a number of Enron emails. We notice that for 90,000

emails, the number of unique keywords is greater than the size of the Enable (172,820 keywords)

or the British Oxford (127,238 keywords) dictionaries. This is due to the additional scientific or

organizational notations, proper names etc., in the ENRON corpus and also due to the fact that the

other dictionaries contains only the base words and not their variants like the plurals or so.

85

Figure 4.9: Time of inverted index encryption Figure 4.10: Number of unique keywords

The setup phase of SED-2 pre-construction is based on the creation of a set of letters with a size

equal to the initial set of letters, times the number of possible positions. The number of possible

positions is equal to the size of longest keyword. We have assumed a maximum size equal to 40,

and the set of initial letters equal to the ASCII representation. The final size of the normalized

letters is equal to 9.2 MBytes constructed in 2.4 seconds. Once the normalized letters are created,

they are stored in the client side for more efficiency during the search phase.

Figure 4.11 shows the time to construct the searchable part as a function of the number of

unique keywords based on the dictionary. The study clearly demonstrates the linearity of the

searchable part of the construction. As indicated earlier, the searchable part construction is inde-

pendent of the number of files in the corpus. In figure 4.12 we show the size of the inverted index

and the searchable part that the server should store dependent on the number of unique keywords

indexed.

During the search phase, the user a-priori loads the normalized letters in memory to avoid I/O

overhead. The time to generate the search query construction is equal to 78 micro seconds. The

test phase takes as an input the searchable part, the inverted index and outputs the corresponding

set of documents, Figure 4.13 shows the time of search in one thread by process and parallelized

multiple threads in one process.

The server does not have to wait until the end of the search phase to send the matching en-

crypted documents, since the searchable part is linear. Once the server finds a matching it sends

86

Figure 4.11: Searchable part construction

Figure 4.12: Size of the encrypted data structure Figure 4.13: Search phase time

directly the encrypted document to the user. Based on the graph, the mean search time per keyword

is equal to 0.85 micro seconds for parallel search and 1.3 micro seconds for one thread process.

To enhance the search phase and reduce communication overhead, the server can first send the

matching documents’ identifiers to the user so that the user can chose the documents that he is

interested in. The server can then send these documents. We can enhance this by giving the user

an overview of the documents with the document identifiers. However, this will require the user to

encrypt a small part of each file during the Setup phase, that it will later be sent to the user with

the document identifiers.

87

Section Conclusion. We presented in this section SED a substring STE construction that has

an overhead sub-linear in the size of the data set when considering that |W| ≪ n. We have

proposed two incremental constructions with a very well described leakage. We believe that the

generalized version of SED-2 is the most suitable for substring search scenarios as it has a better

balance between security, expressiveness and efficiency. We want, however, to point out that the

recent work by Chase and Shen [44] has better leakage with logarithmic search efficiency. The

work by Faber et al. [59] is similar to our SED-2 generalization but with a better leakage profile.

Moataz and Blass proposed recently an oblivious substring search that provides the best security

guarantees for substring search but at the cost of poly-logarithmic blowup for the search overhead.

Nevertheless, we want to point out that it would be very interesting to investigate the leakage of

substring STE constructions for a better understanding. At this point, we are unaware of the right

balance between leakage disclosure, efficiency and expressiveness. We believe that an interesting

open problem in SSE would be to investigate this balance and its impact on SSE constructions.7

7Seny Kamara is working on a theoretical framework of leakage in general, I am also aware that he is studying the

importance of decreasing the leakage in SSE construction.

88

Chapter 5

Oblivious RAM

The only way of finding the limits of the

possible is by going beyond them into the

impossible.

Arthur C. Clarke

Chapter Outline. In this chapter, we provide all technical details of our ORAM contributions:

1. resizable ORAM in Section 5.1. We are the first to introduce the concept of resizability in

ORAM, especially, in the case of tree-based ORAM. We particularly show that increasing

arbitrary the size of the tree might be harmful for security reasons. We therefore introduce

provable techniques that show how to securely increase/decrease the size of an ORAM.

2. r-ORAM, a recursive ORAM in Section 5.2, we show that traditional binary (or κ-ary) tree

structure in tree-based ORAM does not represent the optimal structure to use in an ORAM.

We introduce new recursive structure that further reduces the ORAM asymptotics.

3. C-ORAM, a constant communication ORAM in Section 5.3. This work represents, one of

the most optimal ORAM in a single-server setting in terms of communication overhead.

This work leverages a simple but efficient oblivious merge solution that makes the eviction

(memory shuffling) cheaper.

5.1 Resizable ORAM

In this section, we introduce resizability a new notion that makes recent tree-based ORAM con-

structions dynamic, and therefore suitable for Cloud scenarios. We introduce different strategies to

increase the size of the ORAM while maintaining the same level of security. The main challenge

in tree-based ORAM resizability consists of finding the right buckets’ size to preserve a similar se-

curity level as for static constructions. Some of the proposed strategies inherently depends on the

89

user’s usages habits while some of them clearly outperform naive solution independently. We also

present different pruning techniques to also reduce the size of the ORAM tree. We demonstrate in

this work that careful analysis is mandatory to understand the relation between the ORAM buck-

ets’ size and and the resulting security. Ad-hoc solutions can either lead to an unecessary storage

waste or to totally break the ORAM obliviousness.

5.1.1 Motivation and Findings

New tree-based approaches have exposed another barrier to the real-world adoption of ORAMs:

the maximum size of the data structure must be determined during initialization, and it cannot be

changed. This is not an issue in previous linear schemes, because the client always had the option

of picking a new size during the “reshuffling”, being effectively a “reinitialization” of the ORAM.

In tree-based ORAMs, though, a reinitialization ruins the sub-linear worst-case communication

complexity.

Resizability is a vital property of any ORAM to be used for cloud storage. One of the selling

points of cloud services is elasticity, the ability to start with a particular footprint and seamlessly

scale resources up or down to match demand. Imagine a start-up company that wants to securely

store their information in the cloud using ORAM. At launch, they might have only a handful of

users, but they expect sometime in the long-term to increase to 10,000. With current solutions, they

would have to either pay for the 10,000 users worth of storage starting on day one, even though

most of it would be empty, or pay for the communication to repeatedly reinitialize their database

with new sizes as they become more popular. Re-initializing the ORAM would negate any benefit

from the new worst-case constructions. Additionally, one can imagine a company that is seasonal

in nature (e.g., a tax accounting service) and would like the ability to downsize their storage during

off-peak times of the year to save costs.

Consequently, the problem of resizing these new tree-based ORAMs is important for practical

adoption in real-world settings. In light of that, we present several techniques for both increasing

and decreasing the size of recent tree-based ORAMs to reduce both communication and storage

complexity. We focus on constant client memory ORAM (the [129] ORAM) since it is an interest-

90

ing setting, especially for hardware-constrained devices and large block sizes or situations where

multiple parties want to share the same ORAM so need to exchange the state. We are able to show

that, although the resizing techniques themselves are intuitive, careful analysis is required to en-

sure security and integrity of ORAMs. In addition, we show that it is nontrivial to both allow for

sub-linear resizing and maintain the constant client memory property of [129] ORAM.

The technical highlights of this work are as follows:

1. Three provably secure strategies for increasing the size of tree-based ORAMs, along with a

rigorous analysis showing the impact on communication and storage complexity and secu-

rity.

2. A provably secure method for pruning the trees to decrease the size of a tree-based ORAM,

again including rigorous analysis showing that security and integrity of the data structures is

preserved.

3. A new, tighter analysis for the [129] ORAM which allows for smaller storage requirements

and less communication per query than previous work.

Readers might be interested in the following question: can we similarly resize poly-logarithmic

ORAM constructions? The answer is not trivial and depends on the underlying construction. For

example, for Path ORAM, Ring ORAM [125, 135], a possible solution might be to expand the

stash size during the resizing process, however, a careful analysis is required to accurately bound

the stash size.

5.1.2 Resizable ORAM

5.1.2.1 Technical Challenges

The challenge behind resizing tree-based ORAMs is threefold:

1. Increasing the size of the tree will have an impact on the bucket size. A leaf node may be-

come an interior node while increasing the ORAM, and vice versa in the decreasing case.

The original analysis by [129] differentiates between interior and leaf nodes, while for resiz-

ing we will have to generalize the analysis to consider both cases at once.

91

2. For n > N elements, we must determine the most effective strategy of increasing the number

of nodes to optimize storage and communication costs for the client.

3. Reducing the size of the tree is non-trivial, especially when targeting low communication

complexity and constant client memory. A mechanism is required for moving elements from

pruned nodes into other buckets in an oblivious, yet efficient way while still maintaining

overflow probabilities.

5.1.2.2 Resizing Operations

To allow for resizing, we introduce two new basic operations by which a client can resize an

ORAM, namely Alloc and Free:

• Alloc: Increase the size of the ORAM so that it can hold one additional element of size ℓ.

• Free: Decrease the size of the ORAM so that it can hold one element fewer.

5.1.3 Adding

We begin by describing a naive solution that will add a new level of leaves when n > N ,

where n denotes the number of real blocks in the ORAM tree and N represents the number of

leaves. However, this already leads to a problem: when n is only slightly larger than N , we are

using twice as much storage as we should need. The second strategy, lazy expansion, will postpone

creation of an entire new level until we have enough elements to really need it. In both the naive

and second solution, there are thresholds causing large “jumps” in storage space. As this can be

expensive, we present a third solution dubbed dynamic expansion. This strategy progressively

adds leaf nodes to the tree, thereby gradually increasing the tree’s capacity. This last strategy is

particularly interesting, because it results in an unbalanced tree, requiring careful analysis to ensure

low overall failure probability of the ORAM.

5.1.3.1 Tightening the bounds

Communication and storage complexities represent the core comparative factor between strate-

gies, and both are dependent primarily on bucket sizes. Consequently, it is important to get a tight

92

analysis for both interior and leaf bucket sizes. The original bounds for bucket sizes given by [129]

are substantially larger than necessary. Therefore, as a first contribution, we give new, tighter

bounds for interior and leaf node sizes.

Interior Nodes We first address the size of interior nodes by using standard queuing theory. Let

Ii denote the random variable for the size of interior nodes of the ith level in the tree. For eviction

rate ν, we compute the probability of a bucket on levels i > log ν having a load of at least k (i.e.,

a size k bucket overflows) to:

Pr(Ii ≥ k) = ν−k. (5.1)

In [129], the eviction rate was chosen to be equal to 2 with an overflow probability equal to

2−k, where k here stands for the bucket size. However, if we adjust the bucket size to be k
log(ν)

, the

overflow probability is still 2−k, namely Pr(Ii ≥ k
log(ν)

) = 2−k.

This follows from Eq. 5.21 by replacing k by k
log(ν)

. Also, we can investigate the optimal value

for the eviction rate ν in terms of communication cost. For ν = 4, we obtain the same overflow

probability as with ν = 2 with buckets of half the size. The communication complexity does not

change, as we are evicting twice as much, but with buckets of half the size. For larger eviction rates

ν > 4 the communication complexity becomes larger. Note that this also reduces the storage by a

factor of 2. For N elements stored in the ORAM, the probability that an interior node overflows

during eviction computes to

Pr(∃i ∈ [ν · logN] : Ii ≥
k

log(ν)
) = 1− Pr(∀i ∈ [ν · logN] : Ii <

k

log(ν)
) (5.2)

= 1−
ν·logN
∏

i=1

(1− Pr(Ii ≥
k

log(ν)
)) (5.3)

= 1− (1− 2−k)ν·logN .

In particular for ν = 4, the optimal choice of the eviction rate,

Pr(∃i ∈ [4 · logN] : Ii ≥
k

2
) = 1− (1− 2−k)4·logN .

The buckets that can overflow during an access are limited to those in the paths accessed during

the eviction, i.e., ν · logN buckets accessed. Also, the number of buckets taken into account is

93

actually ν · logN instead of 2ν · logN . This follows from the fact that for every parent, we write

only one real element to one child. Consequently, per eviction and per level, only one child can

overflow. For Eq. 5.3, an equality still holds since the buckets can be considered independent in

steady state [76].

Given security parameter λ, to compute the size of interior buckets, we solve the equation

2−λ = 1− (1− 2−k)ν·logN to k = − log (1− (1− 2−λ)
1

ν·logN).

For example, to have an overflow probability equal to 2−64, λ = 64, N = 230, ν = 4, the

bucket size needs to be only 36 while [129] determined the bucket size be equal 72 for the same

overflow probability. Moreover, since N , the number of elements in the ORAM, has a logarithmic

effect on the overflow probability, the size of interior nodes will not change for large fluctuations

of the number of elements N . For example, for N = 280, the interior node still has size 36 with

overflow probability 2−64.

Leaf Nodes Let Bi denote the random variable describing the size of the ith leaf node. Thinking

of a leaf node as a bin, a standard balls and bins game argument provides us the following upper

bound

Pr(Bi ≥ k) ≤
(
N

k

)

· 1

Nk
≤ ek

kk
.

The second inequality follows from an upper bound of the binomial coefficient using Stirling’s

approximation. For N leaves, we have

Pr(∃i ∈ [N] : Bi ≥ k) = Pr(
N⋃

i=1

Bi ≥ k)

≤
N∑

i=1

Pr(Bi ≥ k) (5.4)

≤ N

ek·(ln(k)−1)
.

Note that in Eq. 5.4, we have used the union bound. Based on the same parameters as in the

previous example, the size of a leaf node has to be set only to 28 to have an overflow probability

equal to 2−64. To compute this result, one solves the equation k = eW (log 2λ·N
e

)+1, where W (.) is

the product log function. While the size of the interior node can be considered constant for large

94

fluctuations of N , the size of a leaf node should be carefully chosen depending on N . Every time

the number of elements increases by a multiplicative factor of 32, we have to increase the size of

the leaf node by 1 to keep the same overflow probability.

Note that for both interior and leaf node size computations, we do not take into account the

number of operations (accesses) performed by the client. As with related work, the number of

ORAM operations is typically considered part of security parameter λ. The larger the number of

operations performed, the larger the security parameter has to be.

5.1.3.2 1st Strategy: naive expansion

Let N and n respectively denote the number of leaf nodes and elements in the ORAM. The

naive solution is simply adding a new leaf level, as soon as the condition n > N occurs. The

main drawback of this first naive solution is the waste of storage which can be explained from two

different perspectives. The first storage waste consists of creating, in average, more leaf nodes than

elements in the ORAM. The second storage waste in the under-usage of the leaf nodes while they

can hold more elements with a slight size increase. Our second strategy will try to get rid of this

drawback.

5.1.3.3 2nd Strategy: lazy expansion

This technique consists of creating a new tree level when the number of elements added is equal

to α times the number of leaf nodes in the tree. For a N leaves tree, the client is allowed to store

up to α ·N elements in the ORAM without increasing the size of the tree. As soon as n > α ·N ,

the client asks the server to create a new level of leaves with 2 ·N leaf nodes.

This lazy increase strategy is performed recursively. For example, if the size of the ORAM tree

is now equal to 2·N , then the client will work with the same structure as long as α·N < n ≤ α·2·N .

Once n > α · 2 ·N , a new level of leaves with now 4N leaf buckets is created.

To be able to store more elements, our idea is to slightly increase the leaf bucket size. There-

with, we can keep the same overflow probability. Note the tradeoff between increasing the size of

leaf nodes and the communication complexity of the ORAM. To read or write an element in the

ORAM, the client downloads the path starting from the root to the leaf node. If the size of this path

95

(when increasing the size of the bucket) is larger than a regular ORAM tree with the same number

of elements, then this technique would not be worth applying.

[65] have shown that by increasing the leaf node size from k to α + k, we can reduce the

storage overhead while handling more elements than leaf nodes. For N leaf nodes, we can have up

to α ·N elements. While [65] chose α to optimize the storage cost for a given overflow probability,

we instead target the computation of the value α for the optimal communication complexity. In

our subsequent analysis, the previous bounds for interior and leaf node sizes as computed in the

previous section are used.

First, we determine a relation between the size x of a leaf bucket and factor α for our 2nd

strategy. Then, we compute the optimal value of α as a function of the security parameter λ, the

size of the interior nodes, and the current number of leaves. To calculate the overflow probability,

we focus on the worst case occurring when there are α ·N elements in an ORAM with N leaves.

Lemma 5.1.1. Let x denote the optimal leaf bucket size for the 2nd strategy. Then,

α =
x

e
· (2

−λ

N
)

1
x (5.5)

holds, where λ is the security parameter and N the number of leaf nodes.

Proof. By a balls-and-bins argument, we are in a scenario where we insert uniformly at random

α · N balls into N bins. The ith bin overflows if there are x balls from α · N that went to the

same ith bin. The possible number of combinations equals
(
α·N
x

)
. By applying the upper bound

inequality to the probability of the union of events (possible combinations), we obtain

Pr(Bi ≥ x) ≤
(
α ·N
x

)

· 1

Nx

≤ (
e · α ·N

x
)x · 1

Nx

= (
e · α
x

)x.

Computing the union bound over all leaf nodes results in

Pr(∃i ∈ [N] : Bi ≥ x) ≤ N · (e · α
x

)x.

In order to have overflow probability equal 2−λ as previous work, we must verify that N · (e·α
x
)x =

2−λ which is equivalent to α = x
e
· (2−λ

N
)

1
x .

96

Corollary 5.1.1. Let k denote the size of the interior node. The best communication complexity

for the 2nd strategy is achieved iff the leaf bucket size x equals

x =

k
ln 2

+
√

k − 4 · k · log 2−λ

N

2

Proof. First, note that if N leaf nodes can handle α ·N elements, the tree is flatter compared to the

naive solution where the tree will have height logN instead of logα ·N . However, the downside

of the 2nd strategy is the leaf bucket size increase. In order to take the maximal advantage of

this height reduction, we define the optimal leaf buck size x that can have the best communication

complexity compared to the naive solution. Let C1 and C2 denote, respectively, the communication

complexity needed to download one path for the first and second strategy. For an interior node with

size k and a leaf bucket for the naive strategy with size y, the communication complexities C1 and

C2 compute to

C1 = (logα ·N − 1) · k + y and C2 = (logN − 1) · k + x.

The best value of x for a fixed value of y, k and λ is the maximum value of the function f defined

as

f(x) = C1 − C2 = y − x+ k · logα.

The first derivative of f is df

dx
(x) = x2− k

ln(2)
·x+ k · log 2−λ

N
. This quadratic equation has only

one valid solution for a non-negative leaf buckets size and 2λ >> N . The only valid root for the

first derivative is x =
k

ln 2
+

√

k−4·k·log 2−λ

N

2
.

Once we have computed the optimal leaf node size, we can plug the result into Eq. 5.5 to

compute the optimal value α. For example, for N = 230 leaves, the size of the leaf bucket in the

naive strategy is y = 28, the size of the interior node k = 36. Applying the result of Corollary 5.1.1

outputs the size of the leaf bucket for an optimal communication complexity which is equal to

97

x ≈ 85. Applying the result of Lemma 5.1.1, we obtain α ≈ 15. The communication complexity

saving compared to the naive strategy is around 7% while the storage savings is a significant 87%.

One disadvantage of the 2nd strategy is the possibility of storage underutilization. Imagine

the client stores α · N elements in the ORAM tree. When adding a new element, it will trigger

the creation of a new leaf level, which is a waste of storage. For example, the client can have

α · N + 1 elements in his ORAM tree, then performs a loop which respectively adds and deletes

two elements. This loop will imply the allocation of an unused large amount of storage (in O(N)).

Also, this loop implies leaf node pruning which is more expensive (in term of communication

complexity) compared to leaf increasing as we will see in Section 5.1.4.

5.1.3.4 3rd strategy: dynamic expansion

Our dynamic solution tackles the underutilization of storage described in the previous section.

Instead of adding entire new levels to the tree, we will progressively add pairs of leaf nodes to

gradually increase the capacity of the tree. This has the advantage of matching a user’s storage

cost expectation: every time the ORAM capacity is increased, storage requirements increase pro-

portionally. However, unlike our previous techniques, we are now no longer guaranteed to have

a full binary tree. This implies a overflow probability recalculation of two different levels of leaf

nodes.

Let us assume that we start with a full binary tree containing N = 2l leaf nodes. Dynamic

insertion results in the creation of two different levels of leaves. The first one is on the lth level

while the other one in on the (l+ 1)th level. In general, after adding η · α elements, the number of

leaves in the lth level is equal to N − η while the number of leaves in the (l+1)th level is equal to

2η.

At this point, we must carefully consider how to tag new elements that are added to the tree. If

we choose tags following a uniform distribution over all the N − η+2 · η = N + η leaves, we will

violate ORAM security. An adversary will be able to distinguish with non-negligible advantage

between two elements added before and after increasing the number of leaf nodes in the ORAM, as

the assignment probabilities to (leaf) nodes will be different at varying points in the tree’s lifecycle.

98

An efficient solution to this problem is to keep the probability assignment of leaf nodes equally

likely for all subtrees with a common root. We implement this approach by setting a leaf’s assign-

ment probability in the lth level to 1
2l

and to 1
2l+1 in the (l + 1)th level. We now analyze the size

of leaf buckets with an overflow probability of 2−λ. We consider the general case where we add

η < N leaf nodes to the ORAM.

Lemma 5.1.2. Let Bi denote the random variable describing the size of the ith leaf node, 1 ≤ i ≤
N + η. For the 3rd strategy and a bucket of size Bi, the overflow probability computes to

Pr(∃i ∈ [N + η] : Bi ≥ k) ≤ 2 ·N
k + 1

· (2 · e · α
k

)k.

Proof. After adding η leaf nodes to the structure, the ORAM contains N+η leaves. The probability

that at least one leaf node has size larger than k is

Pr(∃i ∈ [N + η] : Bi ≥ k) = Pr(

N+η
⋃

i=1

Bi ≥ k)

≤
2·η
∑

i=1

Pr(Bi ≥ k) +

N+η
∑

i=2·η+1

Pr(Bi ≥ k) (5.6)

Note that the leaf nodes ranging from 1 to 2 · η are in the (l + 1)th level with an assignment

probability equal to 1
2·N while leaves ranging from 2 · η + 1 to N + η belongs to the upper level

and have an assignment probability equal to 1
N

. We obtain

for 1 ≤ i ≤ 2 · η : Pr(Bi ≥ k) ≤
(
α · (N + η)

k

)

· (1

2 ·N)k

for 2 · η + 1 ≤ i ≤ N + η : Pr(Bi ≥ k) ≤
(
α · (N + η)

k

)

· (1
N
)k.

Note that α ·(N+η) is the current number of elements in the ORAM. We plug both inequalities

in to Eq. 5.6 and get

Pr(∃i ∈ [N + η] : Bi ≥ k) ≤ 2 · η ·
(
α · (N + η)

k

)

· (1

2 ·N)k + (N − η) ·
(
α · (N + η)

k

)

· (1
N
)k

≤ (
2 · η
2k

+N − η) · (1 + η

N
)k · (e · α

k
)k.

The bound above is depending on η. Thus, we now compute the value of η < N maximizing

the bound. This leads us to the function g(η) = (2·η
2k

+ N − η) · (1 + η

N
)k. Function g has a local

99

maximum value for any η, 1 ≤ η ≤ N such that ηmax = N
A
· k−A
A(k+1)

where A = 1 − 1
2k−1 . We

replace ηmax in g to get an upper bound for any any η and k ≥ 2,

Pr(∃i ∈ [N + n] : Bi ≥ k) ≤ g(nmax) · (
e · α
k

)k

≤ N · A+ 1

k + 1
· (k(A+ 1)

A(k + 1)
)k · (e · α

k
)k

≤ 2 ·N
k + 1

· (2 · e · α
k

)k.

As k ≥ 2, we conclude with (k(A+1)
A(k+1)

)k ≤ 2k and A+1
k+1
≤ 2

k+1
.

So, the overflow probability decreases exponentially when increasing bucket size k. Note that,

in the proof, we have maximized the overflow probability independently of the number of nodes

added (which is a function of η). In practice, k could be smaller for some intervals of insertions,

but we have chosen a maximal value to avoid issues related to changing the leaves’ size during

insertions.

5.1.3.5 Comparison of Strategies

We present a comparison between our three strategies in terms of storage complexity (Fig-

ure 5.2) and communication complexity per access (Figure 5.8). We perform our comparison on a

block level, thereby remaining independent of the actual block size.

Communication complexity: the 2nd strategy offers best communication complexity. This is due

to shorter paths, a result of flatter trees – compared to the naive 1st solution. Also, compared to

the 3rd strategy, the leaf buckets have smaller size. For a number of elements N = 230 and 2−64

overflow probability, the interior node size equals 36 which is appropriate for all three strategies.

The difference consists of the size of the leaf buckets as well as the height of the resulting tree.

The bucket size for the naive (1st), lazy (2nd) and dynamic (3rd) strategy respectively equals 28, 85

and 130 blocks. The tree’s height for the naive solution equals 30 while for the lazy and dynamic

solution the tree height is 26 since α ≈ 24. In Figure 5.8, for an eviction rate used equals 4,

the entire communication complexity (upload/download) on the main ORAM respectively equals

26928, 24210 and 25020 blocks for the naive, lazy and dynamic solution. Note that per access,

100

 5000

 10000

 15000

 20000

 25000

 30000

2
10

2
15

2
20

2
25

2
30

N
u
m

b
e
r

o
f
b
lo

c
k
s

Number of elements

Naive
Lazy increase

Dynamic

Figure 5.1: Communication, blocks per ac-

cess

0

1

3

5

7

2
10

2
27

2
28

2
29

2
30

N
u
m

b
e
r

o
f
b
lo

c
k
s
 (

in
 1

0
1
0
)

Number of elements

Naive
Lazy increase

Dynamic

Figure 5.2: Storage cost, blocks

we save around 7% in communication cost. Recall that our main purpose is to reduce the storage

overhead while maintaining the same communication complexity. However, our results show that

storage optimization has a direct consequence on reducing the communication complexity as well.

Storage complexity: there is no “clear winner”. Depending on the client’s usage strategy, the

dynamic (3rd) strategy can be considered best, as it provides more intuitive and fine grained control

over storage size. However, if the insertion of elements follows a well defined pattern where the

client is always expanding their capacity by a factor of α, the 2nd strategy will result in cheaper

cost. The cost reduction is significant, around 87% fewer blocks compared to the naive solutions.

Independently of the blocks size, this represents 87% of storage cost savings. Consider the

following example: we fix the block size to 4096 Byte and the number of elements to N = 230,

resulting in a dataset size equal to 4 TByte. Based on Amazon S3 pricing [17] where the price

is equal to 0.029 USD per GByte per month, the client has to store, for the naive solution, ∼
2.8.1014 ≈ 262 TByte, implying ∼ 7600 (USD) per month. With the lazy solution, the client has

to store only ∼ 31 TBytes, which is only 900 (USD) per month (almost 10 times cheaper than the

naive solution).

In general, both the 2nd and 3rd strategies outperform the naive one in terms of communication

and storage complexities.

101

5.1.3.6 Position Map

To maintain constant client memory, it is important to recursively store the mapping between

tags and elements in a position map on the server. This position map is stored in a logarithm

number of ORAMs with a number of leaves increasing exponentially from one ORAM to the

other. With a position map factor τ , N = τ l, the position map is composed of l− 1 small ORAMs

where ORAMi has a number of leaves equal to τ i, 1 ≤ i ≤ l − 1.

Surprisingly, resizing the position map is trivial, e.g., following one of the two subsequent

strategies: (1) use the same strategy of resizing (adding/pruning) that we apply on ORAMl−1, or

(2) create a new level of recursion in the case of adding, or deleting the last level of recursion in the

case of pruning. Assume N elements; each element is associated to a leaf tag that has size logN

bits. We describe each solution for the case of the naive adding strategy.

(1) When we add a new line to the main ORAM (ORAMl), we have 2 · N leaves instead of N

leaves. Similarly, we increase the size of the last ORAM of the position map (ORAMl−1) to have

a new level of leaves. The only issue with this solution is that we should increase the block size.

Instead of having O(τ · logN) bits, it will have now O(τ 2 · logN) bits. Every time an element

is accessed, the corresponding block is modified to have the new size. Note that when we add a

new level of leaves, we can always access all elements of the ORAM using the previous mapping.

For this, we just append at the end of the tag fetched an additional bit 0 or 1 to access a random

child (to stay oblivious and access the entire path). After accessing any “old” elements (old denotes

elements with a previous mapping), the mapping is updated to have logN+1 bits instead of logN .

(2) The second solution is straightforward and based on creating a new level of recursion when a

new level of leaves is created. Note that blocks in this level will have O(τ · logN + 1) bits instead

O(τ · logN). To access an “old” element, we use the same method described above.

5.1.4 Pruning

Assume an ORAM storing N elements. Now, the client deletes η elements from the ORAM.

Consequently, the naive ORAM construction now contains N − η elements, but still has N leaves.

102

Consequently, the client tries saving unnecessary storage costs and frees a number of nodes from

the ORAM. Similar to adding element to the ORAM tree, we tackle pruning by presenting two

different strategies. The first one, a lazy pruning, prunes the entire set of leaves of the lowest level

l and merges content with level l − 1. Our second strategy consists of a dynamic pruning that

deletes two leaf nodes for a specific number of elements removed from the ORAM. Again, we will

analyze overflow probabilities induced by such pruning as well as complexities.

5.1.4.1 Lazy pruning

In Section 5.1.3.3, we have demonstrated that leaves can store significantly more elements

while only slightly increasing their size. We will use this observation to construct a new algorithm

for lazy pruning. Assume that the leaf level contains N leaves for α · N elements stored. Let

η denote the number of elements deleted by the client. For sake of simplicity, assume that, at

the beginning, we have η = 0 and N leaf nodes. Our pruning technique is similar to the “lazy”

insertion described previously. Whenever α · N
2

< η ≤ α · N , we keep the same number of

leaves. Within this interval, the client can add or delete elements without applying any change to

the structure, as long as the number of elements remains within the defined interval. If the number

of deletion equals α · N
2

, the client proceeds to remove an entire level of leaf nodes. The client

proceeds to read every leaf node, along with its sibling, and merges them with their parent node.

While this appears to be straightforward, an oblivious merging of siblings into their parent is more

complex under our constant-client memory constraint. We will discuss this in great detail below.

Besides, the major problem of this technique is its unfortunate behavior in case of a pattern

oscillating around the pruning value. For example, the if the client deletes α · N
2

elements, prunes

the entire level, then adds a new element back. Now the ORAM structure has more than α · N
2

elements in N
2

leaves, so the client has to again double the number of leaves. This pattern will

result in high communication costs.

5.1.4.2 Dynamic pruning

Given that pruning an entire level at once is very inefficient, we now investigate how pruning

can be done in a more gradual way. For every α elements we delete, we will prune two children

103

and merge their contents into their parent node. The pruning will fail if the number of elements

in both children and parent is more than k. This can only occur if there are more than k elements

associated (tagged) to these children. The following lemma states the upper bound of the overflow

probability for the parent node after a merging. Recall that we begin with a full binary tree of N

leaves and α ·N elements. Assume that we have already deleted α(η − 1) elements, and we want

to delete an additional α elements.

Lemma 5.1.3. Let Pη denote the random variable of the size of the ηth parent node. For dynamic

pruning, the probability that pruning will fail equals

Pr(Pη > k) ≤ (
2e · α
k

)k

Proof. The pruning will fail iff there are more than a total of k elements in the parent and the

children. Any element in these three buckets must be tagged for either the left or the right child.

In order to compute the overflow probability of the parent, we compute the probability that more

than k elements are tagged to both children.

Pr(Pη > k) =

(
α · (N − η)

k

)

· (2
N
)k

≤ (
e · α · (N − η)

k
)k · (2

N
)k

≤ (1− η

N
)k · (2e · α

k
)k

≤ (
2e · α
k

)k

In conclusion, the probability decreases exponentially with bucket size k. The upper bound is

independent of the number of pruned nodes η. In practice, the bounds are tighter, especially for

larger values of η.

Complexity of oblivious merging The cost of dynamic pruning boils down to the cost of oblivi-

ously merging three buckets of size k. We can achieve this with O(k) communication and constant

memory complexity. First, note that we do not have to merge all three buckets at once. All that

104

Algorithm 2: GeneratePermutation(A,B)

Input: Configuration of buckets A and B

Output: A permutation which randomly “lines up” bucket B to bucket A

// Slots in A and B start either empty or full; mark slots in A as

‘‘assigned’’ if block from B is assigned in π

x← number of empty slots in A ;

y ← number of full slots in B ;

d← x− y ;

for i from 1 to k do

if B[i] is full then

z
$← all empty slots in A;

else

if d > 0 then

z
$← all non-assigned slots in A;

d← d− 1;

else

z
$← all full slots in A;

end

end

π[i]← z ;

A[z]← assigned ;

end

return π ;

is required is an algorithm which obliviously merges two buckets. We can then apply it to succes-

sively merge three buckets into one. Since the adversary already knows that the two buckets being

merged have no more than k elements in them (as shown above), the idea will be to retrieve the

elements from each bucket in a more efficient way that takes advantage of this property.

In Algorithm 2, the client randomly permutes the order of the elements in one bucket, subject

to the constraint that, for all indices, at most one of the elements between both buckets is real.

That is, the permutation “lines up” the two buckets so that they can be merged efficiently. Special

care must be given to generate this permutation using only constant memory. The client makes

use of “configuration maps” which simply indicate, for every slot in a bucket, whether that slot is

currently full or empty. These maps can be stored encrypted on the server and take up O(1) space

each in terms of blocks (because the buckets contain O(logN) elements and a single block is at

least logN bits [129, 135]). Then, the client iterates through the slots in one bucket, randomly

105

5

3

2

1

4

5

1

3

2

4

Permute Merge

(1) (2) (3)

Figure 5.3: Illustration of permute-and-merge process. Bucket (2) is permuted and then merged

with bucket (1) to create a new, combined bucket (3).

pairing them with compatible slots in the other (i.e., a full slot cannot be lined up with another full

slot). An additional twist is that an empty slot can be lined up with either a full or empty slot in the

other bucket, but not at the expense of “using up” an empty slot that might be needed later since we

cannot match full with full. Therefore, we have to also keep a counter of the difference between

empty slots in the target bucket and full slots in the source bucket.

As seen in Figure 5.3, once the client generates the permutation, they can retrieves the elements

pairwise from both buckets (i.e., slot i from one bucket and the slot which is mapped to i via the

permutation from the other bucket), writing back the single real one to the merged bucket.

It remains to show that this permutation does not reveal any information to the adversary. If it

was a completely random permutation, it would certainly contain no information. However, we are

choosing from a reduced set: all permutations which cause the bucket to “line up” with its sibling.

Fortunately, we can formally prove that our permutation does not reveal any information be-

yond what the adversary already knows. This is because there are no permutations which are

inherently “special” and are more likely to occur, over all possible initial configurations of the

bucket. For every permutation and load of a bucket, there are an equal number of bucket config-

urations (i.e., which slots contain real elements and which do not) for which that permutation is

valid.

To make this approach work, we need to slightly modify the behavior of the bucket ORAMs.

Previously, when a new element was added to a bucket, it did not matter which slot it went into

in that bucket. It was possible, for instance, that all the real elements would be kept at the top of

106

the bucket and, when adding a new one, the client would simply insert that element into the first

empty slot that it could find. However, to use this permutation method we require that the buckets

be in a random “configuration” in terms of which slots are empty and which are filled. Therefore,

when inserting an element, the client should choose randomly amongst the free slots. Again, this is

possible with constant client memory using our configuration maps. With this behavior, applying

the above logic leads to the conclusion that the adversary learns nothing about the load of the

bucket from seeing the permutation.

Note. Following the result by Nayak et al. [115], for security reasons, two buckets cannot be

obliviously merged if one bucket at least hasn’t been shuffled after a previous merge. In order to

avoid this constraint, the client can reshuffle any bucket using PIR write vectors, similar to Onion

ORAM. This maintains a constant client memory overhead while eliminating the above constraint.

Section Conclusion. We have shown in this section how to resize constant client memory tree-

based ORAM [129] to fit users’ storage needs. We have demonstrated that resizability can decrease

in some settings the monetary cost by an order of magnitude. We also showed that storage and

communication are dependent, and saving on one dimension can impact the other. However, it

remains an open problem to carefully study the resizability of poly-logarithmic client memory

construction.

5.2 Recursive ORAM

There are two major methods for building ORAM schemes: hierarchical or tree-based. Through-

out these recent years, many constructions were mainly improving the ORAM eviction techniques

to lower the communication overhead while, in most cases, employing one of the two data struc-

tures 1. In this section, we investigate whether there is a better data structure that can achieve

better asymptotics while preserving ORAM obliviousness. We demonstrate that binary trees can

be generalized to a new recursive tree data structure that greatly reduces the communication and

1Recently Fletcher et al. [62] propose a construction that merge both Goldreich and Ostrovsky construction [70]

and tree-based ORAMs [135] to get better asymptotics while reducing round complexity.

107

storage overhead. We also show that most of the tree-based ORAM schemes can be easily plugged

in this new data structure with no impact on the scheme’s functionalities. We theoretically and

empirically show that our constructions perform better than all previous known constructions. We

selected recent tree-based constructions such as Path ORAM [135], Shi et al. [129] and Gentry et

al. [65] an we replace their data structures by our recursive trees. We provide our technical findings

in the subsequent section.

5.2.1 Contribution Summary

We introduce a novel recursive tree-based ORAM. We show that traditional binary (or κ-ary)

tree structure in tree-based ORAM does not represent the optimal structure to use in an ORAM.

We introduce a new recursive structure that further reduces the ORAM asymptotics. Our new

data structure reduces the average or expected path length, therefore reducing the cost to access

blocks. Our goal is to support both constant and poly-log client memory ORAMs. Straightforward

techniques to reduce the tree height, e.g., by using κ-ary trees [65], require poly-logarithmic client

memory due to the more complex eviction mechanism. The idea behind our technique called

r-ORAM is to store blocks in a recursive tree structure. The proposed recursive data structure

substitutes traditional κ-ary (κ ≥ 2) trees with better communication. Starting from an outer tree,

each node in a tree is a root of another tree. After r trees, the recursion stops in a leaf tree. The

worst-case path length of r-ORAM is equal to c · logN , with c = 0.78, yet this worst-case situation

occurs only rarely. Instead in practice, the expected path length for the majority of operations is

c · logN , with c = 0.65 for binary trees. The shortest paths in binary trees have length 0.4 · logN .

In addition to saving on communication, the r-ORAM approach also saves up to 0.8 on storage due

to fewer nodes in the recursive trees. To support our theoretical claims, we have also implemented

r-ORAM and evaluated its performance. The source code is available for download [18].

r-ORAM is a general technique that can be used as a building block to improve any recent

tree-based ORAM, both with O(1) client memory such as [129], O(logN) client memory such as

[135], and O(log2 N) client memory such as [65] – and variations of these ORAMs. In addition

to binary tree ORAM, r-ORAM can also be applied to κ-ary trees. Targeting practicality, we abide

108

from non-tree based poly-log ORAMs, such as [90]. While they achieve O(log2 N
log logN

) worst-cast

communication cost, their approach induces a large constant ∼ 30.

5.2.2 Recursive Binary Trees

A Naive Approach: To motivate the rationale behind r-ORAM, we start by describing a straight-

forward attempt to reduce the path length and therewith communication cost. Currently, data ele-

ments added to an ORAM are inserted to a tree’s root and then percolate down towards a randomly

chosen leaf. As a consequence, whenever a client needs to read an element, the whole path from

the tree’s root to a specific leaf needs to be downloaded. This results in path lengths of logN .

A naive idea to reduce path lengths would be to percolate elements to any node in the tree, not

only leaves, but also interior nodes. To cope with added elements destined to interior nodes, the

size of nodes, i.e., the number of elements that can be stored in such buckets, would need to be

increased. At first glance, this reduces the path length. For example, the minimum path length now

becomes 1. However, the distribution of path lengths with this approach is biased to its maximum

length of logN : for a tree of N nodes, roughly N
2

are at the leaf level. Thus, the expected path

length would be ≈ log(N)− 1, resulting in negligible savings. This raises the question whether a

better technique exists, where the distribution of path lengths can be “adjusted”.

r-ORAM Overview: We first give an overview about the structure of our new recursive ORAM

constructions. In r-ORAM, parameter r denotes the recursion factor. Informally, an r-ORAM

comprises a single outer binary tree, where each node (besides the root) is the root of an inner

binary tree. Recursively, a node in an inner tree is the root of another inner tree, cf. Figure 5.4.

After the outer tree and r − 1 inner trees, the recursion ends in a binary leaf tree. That is, each

node (besides the root) in an (r − 1)th inner tree is the root of a leaf tree. The fact that a root of a

tree is never a (recursive) root of another tree simply avoids infinite duplicate trees.

Let the outer tree have y leaves and height log y, where y is a power of two and log the logarithm

base 2. Also, inner trees have y leaves and height log y. Leaf trees have x leaves, respectively, and

height log x. The number of elements N that can be stored in an r-ORAM equals the total number

of leaves in all leaf trees, similarly to related work on tree-based ORAM [129].

109

Figure 5.4: Structure of an r-ORAM

5.2.2.1 Storage Cost

For a total number of N elements, we have N corresponding leaves in r-ORAM. To compute

the total number of nodes ν, we start by counting the number of leaf trees in r-ORAM. For the

outer tree, we have 2y − 2 possible nodes which are the root for another recursive inner tree. Each

inner tree has also 2y − 2 nodes, and since we have r − 1 levels of recursion aside from the outer

tree, the following equality holds:

N = (2y − 2) · (2y − 2)r−1 · x = (2y − 2)r · x (5.7)

= 2r · x · (y − 1)r. (5.8)

Each of the nodes in an r-ORAM is a bucket ORAM of size z, where z is a security parameter,

e.g., z = O(logN) [129]. The total number of nodes ν, with N leaves, in an r-ORAM (main tree)

is the sum of all nodes of all leaf trees plus the nodes of all inner trees, the outer tree, and its root,

i.e.,

ν(N) = (2y − 2)r · (2x− 2) +
r∑

i=0

(2y − 2)i

(5.7)
= (2N − 2 · N

x
) +

(2y − 2)r+1 − 1

(2y − 2)− 1

= 2N + (
2y − 2

2y − 3
− 2) · N

x
− 1

2y − 3
.

Thus, the total storage cost for r-ORAM is ν(N) ·z · l with blocks (bucket entries) of size l bits.

This storage does not take into account the position map. The total storage of the entire r-ORAM

110

structure equals ν(N) · z · l + ∑⌈ logN
log β

⌉−1
i=1 z · ν(N

βi) · log N
βi−1 , where β is the position map factor.

For l = ω(log2 N) the sum in the storage complexity is negligible. The total storage then equals

ν(N) · z · l.
For appropriate choices of x and y, discussed in the next section, r-ORAM reduces the storage

cost in comparison with the (2N − 1) · z · l bits of storage of related work. So for example, with

x = 2 and y = 4, the storage is equal to 8N
5

resulting in a reduction by 20% of the number of

nodes compared to existing tree-based ORAMs. However, this does not mean the same reduction

for storage overhead. In fact, Section 5.2.4 will show that the size of the bucket can be reduced for

[129]’s ORAM and increased for Path ORAM. Consequently, our storage saving varies between

4% to 20% depending on the ORAM.

As of Eq. (5.8), for a given number of elements N , r-ORAM depends on three parameters:

recursion factor r, the number of leaves of an inner/outer tree y, and the number of leaves of a

leaf tree x. We will now describe how these parameters must be chosen to achieve maximum

communication savings.

5.2.2.2 Communication Cost

In ORAM, the “communication cost” is the number of bits transferred between client and

server. We now determine the communication cost of reading an element in r-ORAM, e.g., during

a ReadAndRemove operation. Reading an element implies reading the entire path of nodes, each

comprising of z entries, and each entry of size l bits. In related work, any element requires the

client to read a fixed number of logN · l · z bits. For the sake of clarity in the text below, we only

compute the number of nodes read by the client, i.e., without multiplying by the number of entries

z and the size of each entry l. Since the main data tree and the position map have different block

sizes, computing the height of r-ORAM independently of the block size enable us to tackle both

cases at the same time. At the end, to compute the exact communication complexity of any access

we can just multiply the height with the appropriate block sizes, see Section 5.2.2.5.

A path going over a node on the ith level in the outer tree requires reading one bucket ORAM

less than a path going over a node on the (i + 1)th level in the outer tree. Consequently with

111

r-ORAM, we need to analyze its best-case communication cost (shortest path), worst-case cost

(longest path), and most importantly the average-case cost (average length).

The worst-case cost to read an element in r-ORAM occurs when the path comprises nodes of

the full height of every inner tree until its leaf level, before finally reading the corresponding leaf

tree. The worst-case cost C equals

C(r, x, y) = r · log y + log x. (5.9)

The best-case occurs when the path comprises one node of every inner tree before reading the

leaf tree. The best-case cost B equals

B = r + log x. (5.10)

The worst-case cost in this setting is a function of three parameters that must be carefully

chosen to minimize worst- and best-case cost. Theorem 5.2.1 summarizes how the recursion factor

r, the number of leaves y in inner trees, and the number of leaves in leaf trees x have to be selected.

Minimizing the worst-case path length is crucially important, as it also determines the average

path-length. We will see later that the distribution of paths’ lengths (and therewith the cost) follows

a normal distribution. That is, minimizing the worst case also leads to a minimal expected case

and therewith the best configuration for r-ORAM. Similarly, as the paths’ lengths follow a normal

distribution, average and median cost are equivalent.

A client can use the minimal worst-case parameters to achieve the “cheapest configuration” for

a r-ORAM structure storing a given number of elements N .

Theorem 5.2.1. If r = log((N
2
)

1
2.7), x = 2, and y = 1

2
·(N

2
)
1
r +1, the worst-case cost C is minimized

and equals

C = 1 + 2.08 · log((N
2
)

1
2.7) ≈ 0.78 · logN.

The best-case cost B is B = 1 + log((N
2
)

1
2.7) ≈ 0.4 · logN.

Proof. Function C depends on three variables that we can reduce to two by substituting Eq. (5.21)

into Eq. (5.22). From Eq. (5.21), we have log x = log(N)− r− r · log(y− 1). The worst-case cost

112

then computes to

C(r, y) = log(N)− r + r · log(y

y − 1
). (5.11)

By fixing r > 0, the worst-case cost is a non-increasing function in y, since y 7→ log(y

y−1) is a

non-increasing function for y > 1. Thus, for any non-negative r, the minimum value of the worst

cost is smaller for larger values of y. Also, with x ≥ 2, the number of the leaves of inner trees y

is upper bounded: N ≥ 2 · (2y − 2)r ⇒ y ≤ 1
2
· (N

2
)
1
r + 1. For small x, we therewith get a larger

upper bound for y. Therefore, we have to fix x to its minimum value which equals 2. This could

not be inferred from Eq. 5.22 while not decreasing the number of variables of the linear system.

The optimum number of leaves for the inner trees then equals y = 1
2
· (N

2
)
1
r + 1. Putting these

values back in Eq. (5.23), results in C depending on only one variable r, the recursion factor:

C(r) = 1 + r · log(1
2
.(
N

2
)
1
r + 1) (5.12)

Finally, we derive the minimum of the worst-case cost by computing the first derivative of the

convex function C(r). The derivative is dC
dr
(r) = log(1

2
· (N

2
)
1
r + 1)− ln(N

2
)·(N

2
)
1
r

2r·(1
2
·(N

2
)
1
r +1)

.

We achieve dC
dr
(r) ≈ 0 for r′ ≈ log((N

2
)

1
2.7). Since C(r) is convex, the value of r′ is the

minimum for any r ≤ log(N)−1. Replacing r′ in equations (5.10) and (5.12) gives the worst-case

and best-case costs of the theorem, therefore completing the proof.

Careful readers will notice that we have bounded x to be at least equal to 2 in our theorem’s

proof. If we consider that x = 1, we do not therefore have any leaf tree at the end. Thus, there

are some nodes in the last recursion that will behave as leaves and interior buckets at the same

time. This will have some critical issues in term of security proofs. Considering a node as interior

and leaf node at the same time will basically double the size (because in the analysis we have to

consider the disjunction of both events). Fixing x = 1, seems a good idea that simplifies greatly the

analysis, however it will not help in optimizing the communication overhead. In fact, the size, in

bits, to download a path will be equal to the same path with x = 2 with two times more elements.

113

5.2.2.3 Average-Case Cost

While the parameters for a minimal worst-case cost also lead to a minimal average-case cost,

we still have to compute the average-case cost. The cost of reading an element ranges from B, the

best-case cost, to C, the worst-case cost. Also, due to the recursive structure of the r-ORAM, the

average-case cost of accessing a path is not uniformly distributed.

In order to determine the average-case cost, we count, for each path length i, the number

of leaves that can be reached. That is, we compute the distribution of leaves in an r-ORAM

with respect to their path length starting from the root of the outer tree. Let non-negative integer

i ∈ (B,B + 1, . . . , C) be the path length and therewith communication cost. We compute N (i),

the number of leaves in a leaf tree that can be reached by a path of length i. Thus, the average cost,

Av can be written as Av =

C
∑

i=B
i·N (i)

N
, where N is the total number of elements and therefore leaves

in the r-ORAM.

Theorem 5.2.2. For:

N (i) = 2i ·
r∑

j=0

(−1)j
(
r

j

)(
i− log(x)− j · log(y)− 1

r − 1

)

,

the average cost of a r-ORAM access is Av =

C
∑

i=B
i·N (i)

N
.

Proof. Counting the number of leaves for a path of length i is equivalent to counting the number

of different paths of length i. The intuition behind our proof below is that the number of different

paths of length i can be computed by the number of different paths in the r recursive trees R(i)
times the number of different paths in the leaf tree, N (i) = R(i) · W(i).

As stated earlier, the leaf tree has x leaves,W(i) = 2log x = x.

To compute R(i), we introduce an array Ar of r elements. For a path P of length i, element

Ar[j], 1 ≤ j ≤ r, stores the number of nodes in the jth inner tree that have to be read, i.e., the

maximum level in the jth tree that P covers. For a path P of length i, we have i =
∑r

j=1 Ar[j] +

log(x). For all j, 1 ≤ Ar[j] ≤ log (y). For any path P of length i, we can generate 2i−log(x) other

possible paths covering exactly the same number of nodes in every recursive inner tree, but taking

114

different routes on each of them. For illustration, let path P go through two levels in the second

inner tree – this means that there are actually 22 other paths that go through the same number of

nodes. Therefore, if we denote the possible number of original paths of length i by K(i), the total

number of paths equalsR(i) = 2i−log(x) · K(i), for any integer i ∈ {B, . . . , C}. We compute K(i),
by computing the number of solutions of equation

Ar[1] + Ar[2] + · · ·+ Ar[r] = i− log x

⇔

(Ar[1]− 1) + · · ·+ (Ar[r]− 1) = i− r − log x. (5.13)

Computing the number of solutions of Eq. (5.13) is equivalent to counting the number of so-

lutions of packing i − r − log x (indistinguishable) balls in r (distinguishable) bins, where each

bin has a finite capacity equal to log(y)− 1. Here, Ar[j]− 1 denotes the size of the bin. This can

be counted using the stars-and-bars method leading to K(i) = ∑r

j=0(−1)j
(
r

j

)(
i−log(x)−j·log(y)−1

r−1
)
.

With N (i) = 2i · K(i), we conclude our proof.

The average as formalized in the previous theorem does not give any intuition about the behav-

ior of the average cost. For illustration, we plot the exact combinatorial behavior of the distribution

of the leaf nodes. We present two cases that show the behavior of the leaf density, i.e., the probabil-

ity to access a leaf in a given level in r-ORAM. We compute as well the average cost of accessing

r-ORAM in two different cases, for N = 232 and N = 242, see Figure 5.5.

We can simplify our average-case equation. The number of possibilities K of indistinguishable

balls packing in distinguishable bins can be approximated by a normal distribution [33, 35]. For a

given level i ∈ {B, · · · , C} we have

K(i) ≈ A

s
√
2π
· e−

(i−r−log(x)− c
2)2

2s2 , (5.14)

where c = r · (log(y) − 1), s =
c
2
+1

̟
, A = r · log(y), and ̟ being the solution of the equation

̟ · e−̟2

2 =
√
2π·(c

2
+1)

A
.

115

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10 15 20 25 30 35

A
c
c
e
s
s
 P

ro
b
a
b
ili

ty

Path Length

N=2
32

Average

N=2
42

Average

Figure 5.5: r-ORAM path length distribution

Since the number of leaves in the ith level of r-ORAM (over 2i) follows a normal distribution

with a mean c
2
, which roughly equals the worst case over 2. The average case is the mean of the

Gaussian distribution, therefore minimizing the worst case is equivalent to minimizing the average

case. Thus, we can use the same parameters obtained in Th. 5.2.1 to compute the minimal value of

the average case.

As both best- and worst-case path lengths are in O(logN), the average-case length is in

Θ(log(N)). Further simplification of the average cost will result in very loose bounds. Targeting

practical settings, we calculate the average page lengths for various configurations and compare

it to related work in Table 5.1. While this table is based on our theoretical results, the actual

experimental results of r-ORAM height are presented in Figure 5.10.

Notice that our structure is a generalization of a binary tree for x = 1 and y = 2. Throughout

this paper, the values x, y, and r equal the resulting optimal values given by Theorem 5.2.1.

5.2.2.4 r-ORAM Map addressing

In order to access a leaf in the r-ORAM structure, we have to create an encoding which uniquely

maps to every leaf. This will enable us to retrieve the path from the root to the corresponding leaf

116

node. The encoding is similar to the existing ones in [65, 129, 135]. The main difference is the

introduction of the new recursion, which we have to take into account. Every node in the outer

or inner trees can have either two children in the same inner tree or/and two other children as a

consequence of the recursion. Consequently, we need two bits to encode every possible choice

for each node from the root of the outer tree to a leaf. For the non-recursive leaf trees, one bit is

sufficient to encode each choice.

For tree-based ORAM constructions with full binary-trees, to map N addresses, a logN bit

size encoding is sufficient for this purpose. This encoding defines the leaf tag to which the real

element is associated.

In r-ORAM, we define a vector v composed of two parts, a variable-size part vv and a constant-

size part vc, such that v = (vv, vc). For the encoding, we will associate to every node in the

outer and inner trees two bits. For every node in the leaf tree only one bit. Above, we have

shown that the shortest path to a leaf node has length r + log(x) while the longest path has length

r · log(y) + log(x). Consequently, for the variable-size vector vv, we need to reserve at least 2 · r
bits and up to 2 · r · log(y) bits for the worst case.

The total size of the mapping vector v, |v| = |vv| + |vc|, is bound by 2r + log(x) ≤ |v| ≤
2r · log(y) + log(x), which is in Θ(log(N)). Figure 5.6 shows an address mapping example for

two leaf nodes. The size of the block in the r-ORAM position map is upper bounded by 2 · logN
bits. Finally, the mapping is stored in a position map structure following the recursive construction

in [135]. To access the position map, the communication cost has, as in r-ORAM, a best-case cost

of O(B · log2(n) · z) bits and worst-case cost of O(C · log2(n) · z) bits, where z is the number

of entries. This complexity is in term of bits, not blocks. For larger blocks, we can neglect the

position map. In Path ORAM or Shi et al. constructions, the size to access the position map is in

O(z · log3 N) which is the result of accessing a path containing logN buckets a logN number of

time. Each bucket has z blocks where each has size equal to O(logN).

117

Figure 5.6: r-ORAM Map addressing

5.2.2.5 Communication complexity

First, we briefly formalize that the height can be seen as a multiplicative factor over all the

recursion steps taking into consideration the eviction. Let N be the number of elements in the

ORAM, denote by z the size of a bucket, β the position map factor, h the tree-structure height, l

the block size and χ ≥ 1 the number of eviction, then for all tree-based ORAM the communication

complexity CT can be formulated as follows:

CT = O(χ · z · h · l
︸ ︷︷ ︸

Data access

+ β · z · h · χ · logN
︸ ︷︷ ︸

Recursion

)

Reducing the height h decreases the entire communication overhead.

In this section, we are interested on computing the exact communication complexity (down-

loading/uploading) to access one block of size l. We will use for our computation the average

height which is equal to≈ 0.65 · logN , see Table 5.1. In the following, we compute the communi-

cation complexities C1,r of r-ORAM over Path ORAM [135] and C2,r for r-ORAM over [129]. We

denote the communication complexity for one access of Path ORAM and [129] by Cp and Cs. For

an access, we download the entire path and upload it again. For Path ORAM, the eviction occurs at

the same time when writing back the path. There is no additional overhead in the eviction. In the

following equations, we take into consideration the variation of the bucket size. We later show in

Section 5.2.4 that the size of r-ORAM applied to Path ORAM buckets increases by a factor of 1.2,

118

while it expectedly decreases by 30% if applied to [129]. The variation of the bucket size impacts

the height reduction in both cases as follows:

C1,r ≈ 2·0.65· logN ·l·z1,r+
∑⌈ logN

log β
⌉−1

i=1 2·0.65·z1,r · log N
βi · log N

βi−1 ≈ 0.65· z1,r
zp
·Cp = 0.78·Cp.

For [129]’s ORAM, for an eviction rate equal to 2, we are downloading 6 paths, plus the first

one from which we have accessed the information. Thus, for each access, one has to download a

total of 7 paths.

C2,r ≈ 2 ·0.65 ·7 · logN · l ·z2,r+
∑⌈ logN

log β
⌉−1

i=1 2 ·0.65 ·7 ·z2,r · log N
βi · log N

βi−1 ≈ 0.65 · z2,r
zs
·Cs ≈

0.5 · Cs.

In this result, we make use of an approximation due to the size of the position map. In Sec-

tion 5.2.2.4, we have shown that that to map an element, approximately 2 · logN bits is needed

instead of logN . We will show that these results match the experimental results in Section 5.2.5.

5.2.3 κ-ary Trees

So far, we have used a binary tree for the recursion in r-ORAM, i.e., leaf and inner trees are full

binary trees. In this section, we extend r-ORAM to κ-ary trees, cf. [65]. Generally, the usage of

κ-ary trees reduces the height by a multiplicative factor equal to 1
log(κ)

. For example, if we choose

a branching factor κ = logN , the communication complexity decreases by a multiplicative factor

equal to log (logN). We will now show that applying r-ORAM to a κ-ary tree will further decrease

the communication complexity compared to the original κ-ary construction.

For parameters x and y defined above, the number of elements N can be computed by calcu-

lating the number of nodes in the outer and inner κ-ary tree for a recursion factor r:

N = (

logκ y
∑

i=0

κi − 1)r · x = (
1− κ1+logκ y

1− κ
− 1)r · x

= (
κ

κ− 1
· (y − 1))r · x (5.15)

Th. 5.2.3 shows how one should choose the recursion factor r, the height of the inner trees

log y and leaf trees log x to minimize the cost of reading a path of κ-ary r-ORAM structure. In

section 5.2.2.5, we have shown that the height factors over the total communication overhead

reduction. Thus, any reduction applies for the the entire communication overhead computation.

119

Also, we show in Section 5.2.4 based on our security analysis that r-ORAM’s bucket size over

[65]’s ORAM decreases, thereby decreasing communication cost even more.

Theorem 5.2.3. Let f be a decreasing function in κ with a range in R
+. If r = logκ((

N
κ
)

1
f(κ)),

x = 2, and y = κ−1
κ
· (N

κ
)
1
r + 1, the optimum values for the best and worst-case cost equal

C = 1 + logκ((
N

κ
)

1
f(κ)) · logκ((κ− 1) · κf(κ)−1 + 1), and

B = 1 +
1

f(κ)
· logκ(

N

κ
).

The decreasing function f depends on the choice of κ, the branching factor. For κ = 4,

f(4) ≈ 2, while for κ = 16, f(16) ≈ 1.6. The proof of the Theorem 5.2.3 is similar to the proof

of Theorem 5.2.1, so we will only provide a sketch, highlighting the differences.

(Sketch). The first step in the proof is to represent the number of leaves x as a function of N , y, r,

and κ the branching factor. That is, we reduce the number of variables in our optimization problem

by one. Taking the logarithm of Eq. (5.15) leads to logκ(x) = logκ(
κ−1
κ
N)− r · logκ(y− 1). Since

our first goal is the minimization of the worst-case cost, we substitute logκ(x) in the worst-case

cost Eq. (5.22) by the value computed in the above equation and minimize the new expression.

Note that the logarithm is base κ instead of 2 in the worst-case cost formula.

For simplicity, we consider the branching factor as a (given) constant, as it has an impact on

the overflow probability. So, we assume a fixed branching factor matching a given bucket size.

Finally, we follow the same steps as the proof of Theorem 5.2.1 to find the optimal recursive factor

r, the number of leaf tree leaves x, and the number of inner/outer tree leaves y.

Example: For κ = 4, the optimal values for the best and worst-case cost respectively equal

B ≈ 0.55 · logκ N and C ≈ 0.95 · logκ N .

5.2.4 Security Analysis

5.2.4.1 Privacy Analysis

Theorem 5.2.4. r-ORAM is a secure ORAM following Definition 2.3.4, if every node (bucket) is a

secure ORAM.

120

Proof (Sketch). If the ORAM buckets are secure ORAMs, we only need to show that two access

patterns induced by two same-length sequences −→a and
−→
b are indistinguishable. To prove this, we

borrow the idea from [135] and show that the sequence of tags t in an access pattern is indistin-

guishable from a sequence of random strings of the same lengTheorem

To store a set of N elements, r-ORAM will comprise N leaves and N different paths. During

Add and ReadAndRemove ORAM operations, tags are chosen uniformly and independently from

each other. Since the access pattern A(−→a) induced by sequence −→a consists of the sequence of

tags (leaves) “touched” during each access, an adversary observes only a sequence of strings of

size logN , chosen uniformly from random. The nodes in r-ORAM are bucket ORAMs, i.e., for an

ORAM operations they are downloaded as a whole, IND-CPA re-encrypted, and uploaded exactly

as in related work, they are secure ORAMs.

5.2.4.2 Overflow probability

To show that our optimization is a general technique for tree-based ORAMs, we compute the

overflow probabilities of buckets and stash for both constant and poly-logarithmic client memory

schemes. Specifically, we analyze r-ORAM for the constructions by [129], [65], and [135]. Sur-

prisingly, for the first scheme, we are able to show in Theorem 5.2.5 that r-ORAM will reduce

the bucket size while maintaining the exact same overflow probability. This is significant from a

storage and communication perspective: it shows that r-ORAM can improve storage and commu-

nication overhead not only due to a reduction of the number of nodes (as shown in Section 5.2.2.1

and 5.2.2.5), but also by reducing the number of entries in every bucket.

For the second scheme which uses a “temporary” poly-log stash during eviction (needed to

compute the least common ancestor), we show in Theorem 5.2.6 that r-ORAM offers improved

communication complexities and a slightly better bucket size.

Finally for Path ORAM, we prove that the stash size increases only minimally and remains

small. In Theorem 5.2.7, we show that this small increase is outweighed by smaller tree height.

121

We now determine the ORAM overflow probability for two cases, (1) r-ORAM applied to the

constant client memory approach, and (2) to the poly-log client memory approach. For the first

case, we consider an eviction similar to the one used by [129]. That is, for every level, we will evict

χ buckets towards the leaves, where χ is called the eviction rate. For the second case, we consider

a deterministic reverse-lexicographic eviction similar to [65] and [61]. In particular, for the poly-

logarithmic setting, we investigate the application of r-ORAM over two different schemes. The

first case consists of the application of r-ORAM over the scheme by [65]. For this, we study the

overflow probability of the buckets and we show that the recursive structure offers better bucket

size bounds. The second case represents the application of r-ORAM over Path ORAM. We deter-

mine the overflow probability of the memory, dubbed stash, where each bucket in r-ORAM has a

constant number of entries z. Using deterministic reverse-lexicographic eviction greatly simplifies

the proof while insuring the same bounds as the ones in randomized eviction [135].

To sum up, we are studying three different cases. (1) r-ORAM over [129] construction, (2) r-

ORAM over [65] construction and (3) r-ORAM over Path ORAM [135]. For the first two, we have

to quantify the bucket size while for the third one we have to quantify the stash size and the size

of the bucket as well. For each setting, an asymptotic value of the number of entries z is provided.

The main difference between the computation of the overflow probability in r-ORAM and related

work is the irregularity of path lengths of our recursive trees. To better understand the differences,

we start by presenting a different model of our construction in 2-dimensions.

Description: A 2-dimensional representation of r-ORAM consists of putting all the recursive inner

trees as well as the leaf trees in the same dimension as the outer tree. Consequently, the outer tree,

the recursive inner trees, as well as the leaf trees will together constitute only one single tree we

call the general tree. The main difficulty of this representation is to determine to which level a

given recursive inner tree is mapped to in the general tree.

The general tree, by definition, will have leaves in different levels. This can be understood as a

direct consequence of the recursion, i.e., some leaves will be accessed with shorter paths compared

to others. Moreover, the nodes of the recursive trees will be considered as interior nodes of the

general tree with either 4 children or 2 children. Any interior node of an inner or outer tree is a

122

Figure 5.7: Structure of an r-ORAM

root for a recursive inner tree which means that any given interior node of an inner/outer tree has 2

children related to the recursion as well as another 2 children related to its inner/outer tree. These

4 children belong to the same level in our general tree.

Also, leaf nodes of inner or outer trees have only 2 children. Ultimately, we will have different

distributions of interior nodes as well as leave nodes throughout the general tree. In the following,

we will use the term of interior node as well as a leaf node in the proofs of our theorems to denote

an interior or leaf node of the general tree. Figure 5.7 illustrates the topology of the general tree

model of r-ORAM.

In the ith level, we may have leaf nodes as well as interior nodes. Also, the leaf/interior

nodes reside in different levels with different non-uniform probabilities. Therefore, we will first

approximate the distribution of the nodes in a given level of the r-ORAM structure by finding a

relation between the leaf nodes and interior nodes of any level of r-ORAM. Then, we compute the

relation between the number of nodes in the ith and (i + 1)th level. This last step will help us to

compute the expected value of number of nodes in any interior nodes in poly-log client memory

scenarios. Finally we will conclude with the overflow theorems and their proofs for each scenario.

We present a relation between I(i), the number of interior nodes, and N (i), the number of

leaf nodes, for a level i > r, where r is the recursion factor. Notice that, for other levels i ≤ r,

there cannot be leaf nodes. Also, the leaves of the general tree are the leaves of the leaf trees. The

maximum value of i equals the worst case C.

123

Lemma 5.2.1. Let f(r, x, y) = 1+r log(y)−r−2 log(x)
2s2

and s > 0. For any i > r, e−f(r,x,y) ≤ I(i)
N (i)
≤

2− log(x) · r.

Proof. First, we determine the number of interior nodes for i > r. In the same spirit as the proof

of Theorem 5.2.2, we denote by Aj an array of j ∈ [r] positions that has all positions initialized to

zero. Aj represents the number of possible paths to a given level. The difference between counting

the number of leaves and the number of interior nodes consists of the fact that an interior node may

exist in any level without going through all recursions, i.e., it may happen that we reach a level

without going through the last level of recursions. This means that elements of the array are equal

to zero.

Counting of interior nodes boils down to divide Eq. (5.13) of Theorem 5.2.2 in r sub-equations,

where each will count the number of ways to reach a specific level while all the positions of the

array are still equal to 1. Therefore, the set of solutions of the following sub-equations has an

empty set intersection.

A1[1]− 1 = i− 1− log(x),

(A2[1]− 1) + (A2[2]− 1) = i− 2− log(x),

· · ·

(Ar[1]− 1) + · · ·+ (Ar[r]− 1) = i− r − log(x),

where, for each j ∈ [r], we have 1 ≤ Aj[i] ≤ log(y).

Discussion: To have an intuition about these partitions, consider an example where r = 4 and

y = 16. We have 4 sub-equations, where each represents the possible ways to reach an interior

node in, e.g., the 4th level. The first array has only one position that can take values from 1 to 4.

The first sub-equation will count the number of ways to get to an interior node at level 4 under the

constraint that we have to stay in one recursion. In this case, the array can have only one value

which is 4. For the second equation, we can have different combinations such as (2, 2), (3, 1), etc.,

but we do not have (4, 0), because it is already accounted for in the first sub-equation. We follow

the same reasoning for the other sub-equations.

124

So, I(i) = S1 + · · · + Sr, the total number of solutions of the sub-equations. Also, we have

Sr ≥ Sj for any j ∈ [r−1], that is, I(i) ≤ r ·Sr. From Theorem 5.2.2, we know that the number of

solutions for the last equation Sr equals 2i−log x ·K(i). Therefore, with the result of Theorem 5.2.2,

we can conclude that I(i) ≤ 2i−log(x) · r · K(i).
Also from Theorem 5.2.2, the number of leaves N (i) = 2i · K(i). This leads to our first

inequality
I(i)
N (i)
≤ 2− log(x) · r.

For our second inequality, notice that for any interior node of any level i > r, I(i) ≥ N (i+1)
2

.

This follows from the property that the ancestors of leaves in the (i+ 1)th level are interior nodes

in the upper level. Using equality N (i) = 2i · K(i),

I(i)

N (i)
≥ N (i+ 1)

2N (i)

=
K(i+ 1)

K(i) .

We have previously shown thatK can be approximated by a normal distribution, cf. Eq. (5.14).

Using this approximation, we obtain
I(i)
N (i)
≥ e−

1+2i−2r−2 log(x)−c

2s2 .

Finally, since c = r(log(y)− 1), we have for s > 0 I(i)
N (i)
≥ e−

1+r log(y)−r−2 log(x)

2s2 . This concludes

our proof.

We will now show that, once we have a relation between leaves and interior nodes of the same

level, finding the relation between any nodes of two different levels will be straightforward. We

write the number of nodes as a sum of leaf nodes and interior nodes, such that L(i) = N (i)+ I(i).

Recall that for i ≤ r, we have N (i) = 0. We write µ = L(i+1)
L(i)

(this will represent the expected

value of the number of real elements in any interior nodes in Theorem 5.2.6). We present our result

in the following lemma.

Lemma 5.2.2. Let µ = L(i+1)
L(i)

and X(i) = 1 − N (i)
L(i)

. For 1 ≤ i ≤ C, µ is bounded by 2 ·X(i) ≤
µ ≤ 4 ·X(i).

Proof. This result follows from two observations. First, the total number of interior nodes for the

ith level is always larger than the total number of nodes in the (i + 1)th level divided by 4. The

125

second observation is that the total number of interior nodes for the ith level is always smaller than

the total number of nodes in (i+ 1)th divided by 2. Consequently,
L(i+1)

4
≤ I(i) ≤ L(i+1)

2
.

The second inequality follows from r-ORAM’s structure where every interior node v has at

least 2 children and at most 4 children. The recursion as previously represented in a 2-dimensional

plane where an interior node in the outer or inner tree has 4 children, and every leaf node has

exactly 2 children. So, every level has at least twice the number of interior nodes of the previous

level.

We bound µ by algebraic transformations:

L(i+ 1)

4
+N (i) ≤ L(i) ≤ L(i+ 1)

2
+N (i)

µ

4
+
N (i)

L(i)
≤ 1 ≤ µ

2
+
N (i)

L(i)
.

Finally, 2 · (1− N (i)
L(i)

) ≤ µ ≤ 4 · (1− N (i)
L(i)

).

From this result, for i ≤ r, we have 2 ≤ µ ≤ 4, as N (i) = 0.

We are now ready to present our three main theorems: the first one will tackle the constant

client memory setting, and we compute the overflow probability of interior nodes. The overflow

probability computation for leaf nodes, either for constant client memory or with poly-log client

memory, is similar to the one presented by [129], based on a standard balls-into-bins argument. We

omit details for this specific case. The last two theorems tackle tree Based ORAM constructions

with memory.

Constant client memory: First, we compute the overflow probability of interior nodes. Then, a

corollary underscoring the number of entries z will be presented.

Theorem 5.2.5. For eviction rate χ, if the number of entries in an interior node is equal to z,

the overflow probability of an interior node in the ith level is at most θzi , where, for i ≤ r and

s = ⌈log4(χ)⌉, θi = 2s

2χ
, and for i > r : θi =

2s

2χ
· (1

1+x
r

)i−r.

Proof. The buckets of r-ORAM can be considered as queues [76]. Every bucket at the ith level has

its service rate ηi and its arrival rate λi. The probability that the bucket contains z elements is given

126

by: p(z) = (1 − ρi) · ρzi , where ρi =
λi

ηi
. This is a result of M/M/1 queues [89]. The probability

that the bucket will have strictly less than z elements equals
∑k−1

i=0 p(i) = 1− ρzi . The probability

to overflow (to have more than z elements) equals ρzi . In the following, it suffices to compute ρi

for every level in our r-ORAM structure.

Consider eviction rates that are powers of 2. Then, for i ≤ ⌈log4(χ)⌉, we have ηi = 1 and

λi ≤ 1
2i

(because for level 1 and deeper, buckets may have up to 4 children).

For i > ⌈log4(χ)⌉, the chance that a given bucket will be evicted is equal to ηi =
χ

I(i)
, where

I(i) is the number of interior nodes in the ith level.

λi =
I(i)

L(i+1)
·Pr(parent gets selected)·Pr(parent is not empty), such that Pr(parent gets selected) =

ηi−1 and Pr(parent is not empty) = 1 − pi−1(0) = ρi−1. The ratio
I(i)

L(i+1)
denotes the probability

for a real element to be evicted, in the case of a binary tree the ratio is equal to 1
2
. Then, we have

λi =
I(i)

L(i+1)
· λi−1. By induction, the arrival rate equals λi =

1
L(i+1

· I(i)·I(i−1)···I(s+1)
L(i)·L(i−1)···L(s+1)

· I(s) · λs,

where s = ⌈log4(χ)⌉. With λs ≤ 1
2s

and I(s) ≤ 4s (because we can have at most 4 children for

every interior node), this equation can be upper-bounded such that:

λi ≤
2s

L(i+ 1)
· 1

1 + N (i)
I(i)

· · · 1

1 + N (s+1)
I(s+1)

. (5.16)

We need to simplify the above inequality. First, notice that for every s < i ≤ r

1

1 + N (i)
I(i)

= 1, (5.17)

becauseN (i) = 0 (there is no leaf node for i ≤ r). For i > r, using the result of Lemma 5.2.1.

1

1 + N (i)
I(i)

≤ 1

1 + x
r

, (5.18)

where x is the number of leaves. For buckets at level i > r, we plug the result of equations

5.17 and 5.18 in 5.16 and we divide by the service rate ηi such that ρi ≤ I(i)
L(i+1)

· (1
1+x

r

)i−r · 2s
χ
.

From Lemma 5.2.2, we have shown that
I(i)

L(i+1)
< 1

2
, because there are at least twice more

nodes than interior nodes in the upper level (they may be leaves or interior nodes). Then ρi ≤
(1
1+x

r

)i−r · 2s
2χ
. In this case ρi is upper-bounded by θi = (1

1+x
r

)i−r · 2s
2χ
, and the overflow probability

is then equal to θzi .

127

For i ≤ r, there are no leaves (i.e. N (i) = 0), and the arrival rate is always bounded from

Eq. 5.16 such that λi ≤ 2s

L(i+1)
.

Consequently, dividing by ηi and using the result of Lemma 5.2.2
I(i)

L(i+1)
< 1

2
we get ρi ≤ 2s

2χ
.

Considering θi =
2s

2χ
for i ≤ r concludes our proof.

In practice, the eviction rate χ equals 2. So, s is then equal to 1. In this case, the number of

entries z in each bucket has the following size.

Corollary 5.2.1. r-ORAM with N elements overflows with a probability at most ω ≪ 1 if the size

of each interior bucket z in the ith level equals log N
ω

for i ≤ r and z ≈ 1
i−r+1

· log N
ω

for i > r.

Sketch. By applying the union bound over the entire r-ORAM interior buckets, the probability of

overflow is at most N · θzi . Setting this value to the target overflow ω gives us the results for both

underlined cases in Theorem 5.2.5. For the second equality, the approximation follows from the

remark log (1 + x
r
) < 1, since x ≤ r in our optimal setting of Theorem 5.2.1.

The size of the internal buckets in r-ORAM are smaller compared to those of [129] by a multi-

plicative factor of approximately 1
i−r+1

for i > r.

For ω = 2−64, N = 220, and r = 7, the size of the bucket equals 84 blocks for i ≤ 7 while for,

e.g., i = 11, the bucket size equals ≈ 17 blocks. For i ≤ r, the bucket size is equal to the constant

client memory construction, i.e., in O(log N
ω
).

Poly-logarithmic client memory: Let us now tackle the case where r-ORAM is applied over tree

ORAMs with poly-logarithmic client memory. For this, we consider two scenarios. The first deals

with r-ORAM applied over [65]’s ORAM. The second one deals with r-ORAM over Path ORAM.

In both cases, our overflow analysis is based on a deterministic reverse lexicographic eviction.

Theorem 5.2.6 determines the overflow probability of buckets in r-ORAM over [65] scheme.

For each access, the eviction is done deterministically independently of the accessed paTheorem

We show that the overflow probability varies for buckets in different levels due to the interior/leaf

128

node distribution. The parameter δ represents the unknown that should be determined for a given

(negligible) overflow probability.

Theorem 5.2.6. Let f(r, x, y) = 1+r log(y)−r−2 log(x)
c

, and c > 0. For any δ > 0, for any interior

node v, the probability that a bucket has size at least equal to (1 + δ) · µ is at most e−
δ2·µ
2+δ , where

F1 ≤ µ ≤ F2.

For i ≤ r: F1 = 2 and F2 = 4,

for i > r:

F1 = 4 · (1− 1

1 + 2− log(x) · r) and F2 = 2 · (1− 1

1 + e−f(x,y,r)
),

Proof. Let us fix an interior node v in r-ORAM belonging to the ith level. We are interested in the

behavior of the node’s load after a number of operations including eviction and adding operations.

Let L(i) denote the number of nodes residing in the ith level of the r-ORAM tree (these include

the interior and the leaf nodes). Since the eviction is reverse-lexicographic and deterministic, we

are sure that any element inserted before the time interval T = [t− L(i+ 1) + 1, · · · , t] has been

evicted from the ith level. Therefore, if we denote the number of elements residing in the node v,

St(v), we are sure that St(v) = 0 just a step before the interval T . Consequently, it remains to

determine the load of the interior node v for all the steps of the interval T , i.e., the load of the node

v in the (possible) presence of at most L(i+ 1) elements in the ith level or above. Let us associate

for every element j in T a random indicator variable χj which is equal to 1 if the element was

assigned a path going through the interior node v. All elements in T are i.i.d. and their assignment

probability is Pr(χj = 1) = 1
L(i)

. We have also St(v) ≤
∑

j∈[I(i+1)] χj , which follows from the

fact that all elements inserted in the interval T may at most all of them be assigned paths that go

through v. In order to apply Chernoff’s bound, we calculate the expected value of the sum of the

indicator variables

E(
∑

j∈[L(i+1)]

χj) = µ =
L(i+ 1)

L(i)
.

The exact value cannot be determined without computing the number of nodes existing in the

ith level. What we can do is computing a tight bound of the expected value and then apply the

Chernoff bound. Note that this expected value will be different from one level to the other.

129

Lemma 5.2.2 gives a bound on the expected value. This bound involves a relation between the

leaf node and the interior nodes of the given level that we have computed in Lemma 5.2.1. For

i ≤ r, from Lemma 5.2.2, we know that 2 ≤ µ ≤ 4. For i > r, plug the first lemma in the second:

2 · (1− 1

1 + e−f(x,y,r)
)

︸ ︷︷ ︸

F1

≤ µ ≤ 4 · (1− 1

1 + 2− log(x) · r)
︸ ︷︷ ︸

F2

Now, wrapping up with Chernoff’s bound, for any δ > 0 and for both cases Pr(St(v) ≥ (1 + δ) ·
µ) ≤ Pr(

∑

j∈[L(i+1)] χj ≥ (1 + δ) · µ) ≤ e−
δ2·µ
2+δ . This concludes our proof.

To get an idea about the values of F1 and F2, we calculate them for N = 232: F1 = 2
5

and

F2 = 3.42. The theorem above represents a general bound to understand the overflow probability

behavior. Since the expected value µ varies depending on the level, buckets sizes vary on every

level. Consequently, fixing the expected value for every level results in much better bounds. For

example, if for level i, µ = 1, then the the probability of overflow with a bucket size equal to

64 = 1 + δ is at most 2−88, while for µ = 4, the probability of overflow with the same bucket size

is equal to 2−82.

Corollary 5.2.2. Le µi be the expected size of buckets in the ith level. r-ORAM with N elements

overflows with a probability at most ω, if the size of each interior bucket z in the ith level equals

µi + ln N
ω

for F1 ≤ µi ≤ F2.

Proof (Sketch). By using the union bound, the probability that the system overflows equals ω =

N · e− δ2·µ
2+δ . This is a quadratic equation in δ that has one valid root (non-negative) approximately

equal to 1
µi
· ln N

w
, where µi is the expected value of ith level. The size of the bucket in this case

equals z = (1 + δ) · µi = µi + ln N
ω

.

For r-ORAM over Path ORAM [135] with a deterministic reverse-lexicographic eviction [61],

Theorem 5.2.7 calculates the probability of stash overflow for a fixed bucket size. The goal of this

theorem is to determine the optimal bucket size and therefore the stash size for a fixed overflow

probability.

130

Theorem 5.2.7. For buckets of size z = 6 and tree height L = ⌈logN⌉, the stash overflow

probability computes to

Pr(st(r-ORAM6
L) > R) ≤ 1.17 · 0.88R · (1− 0.54N).

Proof. To prove this theorem, we borrow two lemmas from [135], namely their lemmas 1 and 2.

We begin by giving a short overview over these two lemmas. For details and proofs, we refer to

[135]. The first lemma underlines that the state of r-ORAMz
L is equal to the state of r-ORAM∞L

after post-processing with a greedy algorithm G. r-ORAM∞L is r-ORAMz
L with an infinite number

of entries in each block. For r-ORAM∞L , we do not need a stash, since buckets can hold an infinite

number of blocks. Algorithm G process r-ORAM∞L to have the same bucket construction as in

regular r-ORAMz
L with deterministic reverse lexicographic eviction. Let X(T) be the number of

real blocks in some subtree T and η(T) the number of nodes in subtree T . Now, Lemma 2 by

[135] states that st(r-ORAMz
L) > R, iff there exists a subtree T such that X(T) > η(T) · z + R.

Combining the two lemmas results in

Pr(st(r-ORAMz
L) > R) = Pr(st(G(r-ORAM∞L)) > R) (5.19)

≤
∑

T∈r-ORAM∞
L

Pr(X(T) > η(T) · z +R)

<

N∑

i=1

4i max
{T |η(T)=i}

Pr(X(T) > i · z +R).

The second inequality follows from the fact that the number of subtrees in a full binary tree of N

elements is upper bounder by the Catalan number Ci < 4i. The upper bound in Theorem 5.2.7

might be tighter if we consider that r-ORAM contains fewer subtrees than the ones in a full binary

tree.

We now bound max{T |η(T)=i} Pr(X(T) > i · z +R).

First, to find an upper bound for Eq. 5.19, we compute the expected value of X(T) for subtree

T of r-ORAM∞z . Note that E(X(T)) =
∑η(T)

i=1 E(|Bi|), where |Bi| is the size of a bucket Bi in

T . In r-ORAM∞L , the expected value of buckets changes between levels, following a well-defined

131

distribution of interior nodes. For ease of exposition, we now assume that all buckets have the

worst bucket load. To show this, we have to take into account two cases.

(1) If a bucket is a leaf bucket, the load is binomially distributed, such that E(|Bi|) = N · 2L =

1.

(2) For an interior bucket on level i, we have shown in Theorem 5.2.6 that E(|Bi|) = µ and

F1 ≤ µ ≤ F2 (F2 is equal to its maximal value 4).

For both cases, we can bound the expected value of the bucket’s load: max{1, F1} ≤ E(Bi) ≤
4. That is, for any bucket in T , we obtain η(T) ·max{1, F1} ≤ E(X(T)) ≤ 4 · η(T).

Let Ψ = E((X(T)), η(T) = n, and ξ = n·z+R−Ψ
Ψ

. Applying Chernoff’s bound to X(T), we

get

Pr(X(T) > n · z +R) = Pr(X(T) > (1 + ξ)Ψ) ≤ e
−ξ2

2+ξ
·Ψ
.

With some algebraic computations, it is easy to see that

(n · (z − 4) +R)2

Ψ
≤ ξ2 ·Ψ

and

(
n · (z − 4 + 8) +R

Ψ
)−1 ≤ (

n · (z − 4) +R + 2Ψ

Ψ
)−1 ≤ (2 + ξ)−1.

For z > 5, we have

1

8
(n · (z − 4) +R) ≤ξ2 ·Ψ

2 + ξ
(5.20)

e
−ξ2

2+ξ
·Ψ ≤0.88R · e−n·(z−4).

Combining Eq. 5.20 with Eq. 5.19 results in

Pr(st(r-ORAM6
L) > R) <0.88R ·

N∑

i=1

e−i(6−4−ln 4)

≈1.17 · 0.88R · (1− 0.54N)

Discussion: The probability is negligible in R (since 0.88 ¡1 and 1 − 0.54N
∞−→ 1). So, for a

fixed overflow probability ω ≪ 1, we have to define the corresponding value of R by solving

132

the equation ω = 1.17 · 0.88R · (1 − 0.54N). An r-ORAM stash with N elements overflows

with probability at most ω ≪ 1, if the size of each bucket is 6, and the stash has size R =

1
ln 0.88

· ln ω
1.17·(1−0.54N)

. For large values of N , R ∈ Ω(ln(ω−1)).

We have made a number of approximations in our proof that slightly bias the choice of the

bucket size and round the upper bound. We could improve our upper bound by a more accurate

approximation of the number of subtrees in r-ORAM. Also, we assume the worst expected value

for each bucket on all levels which is 4. Theorem 5.2.7 is valid for any bucket size z ≥ 6.

5.2.5 Performance Analysis

We now analyze the behavior of r-ORAM when applied to different tree-based ORAMs. As a

start, we compute the communication complexity of r-ORAM access, based on the average height,

and estimate the monetary cost of access with r-ORAM on Amazon EC2 cloud storage infrastruc-

ture. This first part is based on our r-ORAM theoretical results above. For all previous binary

tree-based ORAMs, the communication complexity for a number of elements is always constant

for fixed N . With previous ORAMs, you must always download an entire path. Following our

theoretical estimates, we go on to present our r-ORAM implementation results and compare with

Path ORAM [135]. We compare both the average height and the resulting communication im-

provements, and, finally, also evaluate the behavior of the stash.

5.2.5.1 Theoretical Results

Even if the worst-case complexity is in O(logN), the underlying constants gained with r-

ORAM are significant. Table 5.1 compares between the height of a binary tree as with [61, 101,

129, 135] and the height of r-ORAM. Also, we compare r-ORAM on κ-ary trees, instead of binary

ones, and we show that the recursive κ-ary tree r-ORAM gives better performances in terms of

height access and communication cost.

Table 5.1 has been generated using parameters from Theorems 5.2.1 and 5.2.3. This table

compares only the complexity of accessing an element in the tree, i.e., going from the root to the

leaf. It does not take the communication overhead of accessing the position map into account

which we will deal with later. Moreover, Table 5.1 computes only the number and not the size of

133

Table 5.1: Tree height comparison

Number of elements

210 220 240 260

Binary

10 20 40 60ORAM trees

[61, 101, 129, 135]

Binary

r-ORAM

tree

Best case 5 8 16 23

Average case 6 14 26 40

Worst case 8 16 31 47

4-ary

5 10 20 30ORAM tree

[61, 65, 135]

4-ary

r-ORAM

tree

Best case 3 6 11 16

Average case 5 8 16 24

Worst case 5 10 19 28

Table 5.2: Tree-based ORAM gain

Gain in %

Best-case Average-case Worst-case

Binary

ORAM trees

[61, 101,

129, 135]

60 35 22.5

4-ary

ORAM trees

[61, 65, 135]

45 20 5

nodes accessed. The overall communication complexities will vary from one scheme to the other,

and we detail costs below, too. Table 5.2 shows the gain (in %) of r-ORAM applied to binary trees

ORAM, not distinguishing whether a scheme has constant or poly-log memory complexity.

As shown in Table 5.2, we improve on average 35% when r-ORAM is applied to any binary

tree ORAM and 20% when applied to 4-ary ORAM trees. Compared to binary trees, the gain for

κ-ary trees is smaller due to the reduction of the height of the tree. Trees are already “flat”, so the

benefit of recursion diminishes.

We present the total communication overhead comparison and a monetary comparison of com-

munication overhead between tree-based ORAM constructions (with constant and poly-log client

memory). For this, we use blocks with size 1 KByte. The number of entries (blocks) in every node

varies depeding on the scheme. We apply the result of Theorem 5.2.5 and Theorem 5.2.6 to vary

134

the size of the buckets accordingly. For the poly-logarythmic client memory, the size of the buckets

of r-ORAM over Path ORAM are set to z = 6 based on Theorem 5.2.7. We take communication

and storage overhead of the position map into account as well as the overhead induced by eviction

(eviction rate equal to 2 for the constant client memory case).

Figure 5.8 depicts the communication cost per access, i.e., the number of bits transmitted be-

tween the client and the server for any read or write operation. The graph shows that r-ORAM

applied to Path ORAM (z = 6) gives the smallest communication overhead. For example, with

a dataset of 1 GByte, an access will cost 100 KByte in total. Moreover, if we set the number of

entries z to 3 instead of 6, see [61], communication costs are divided by 2.

The storage overhead of tree-based ORAMs is still significant. Poly-log client memory ORAMs

perform better, but still induce roughly a factor of 10. r-ORAM reduces this overhead down to a

factor of 9.6, i.e., a reduction by 4%. For r-ORAM over [129] scheme, the saving is greater than

50% since we are reducing not only the height but also the size of the bucket.

Finally, we calculate the cost in US Dollar (USD) associated with every access, cf. Figure 5.9.

As we obtain smallest communication overhead by using r-ORAM on top of Path ORAM, one

would naı̈vely expect this to be the cheapest construction. However, Amazon S3 pricing is based

not only on communication in terms of transferred bits (Up to 10 TB/month, 0.090 USD per

GBytes), but also on the number of HTTP operations performed (GETs and PUTs), 0.005 USD

per 1,000 requests for PUT and 0.004 USD per 10,000 requests per month for GET. Surprisingly,

the construction by [65] with branching factor κ = log(N) is cheaper as it involves fewer HTTP

operations compared to Path ORAM (however, in practice, the branching factor cannot be large

since it will increase the size of the bucket).

5.2.5.2 Experimental Results

For a real-world comparison, we have implemented Path ORAM and r-ORAM including the

position map in Python. Our source code is available for download [18]. Experiments were per-

formed on a 64 bit laptop with 2.8 GHz CPU and 16 GByte RAM running Fedora Linux. For

each graph, we have simulated 1015 random access operations. The standard deviation of the r-

135

10
4

10
5

10
6

10
7

10
8

10 10
2

10
3

10
4

10
5

10
6

10
7

C
o
m

m
u
n
ic

a
ti
o
n
 i
n
 B

y
te

s

Number of elements N

Shi et al.
Shi-r-ORAM
Gentry et al.

Gentry-r-ORAM
Path ORAM

Path-r-ORAM

Figure 5.8: Communication per access

0.001

0.01

0.1

1

10 10
2

10
3

10
4

10
5

10
6

10
7

C
o
s
t
in

 (
U

S
D

)

Number of elements N

Shi et al.
Shi-r-ORAM
Gentry et al.

Gentry-r-ORAM
Path ORAM

Path-r-ORAM

Figure 5.9: Communication cost per 100 ac-

cesses

ORAM height (communication complexity) was low at 0.015. The relative standard deviation for

the average height (communication complexity) for 93312≈ 216.5 elements equals to 0.125.

The experiments begin with an empty ORAM. We randomly insert the corresponding number

of elements. This step represents the initialization phase. Afterwards, we run multiple random

accesses to analyze the height behavior and the stash size for r-ORAM over Path ORAM.

Figure 5.10 shows three curves: the height of binary tree ORAM (Path ORAM) from one hand

and r-ORAM average and worst case height from the other hand. The height curves for r-ORAM

are the result of 1015 accesses with a standard deviation of 0.015.

 2

 4

 8

 16

 32

1 10 10
2

10
3

10
4

10
5

10
6

10
7

10
8

H
e

ig
h

t

Number of elements N

Binary trees ORAM
r-ORAM average

r-ORAM worst case

Figure 5.10: Average height comparison

2
14

2
15

2
16

2
17

2
18

1 10 10
2

10
3

10
4

10
5

10
6

10
7

10
8

C
o

m
m

u
n

ic
a

ti
o

n
 i
n

 B
y
te

s

Number of elements N

Path ORAM Z=4
Path ORAM Z=5

r-ORAM Z=5
r-ORAM Z=6

Figure 5.11: Communication per access

Our second comparison tackles communication including the recursion induced by the position

map as well as the eviction per single access for different bucket sizes, see Figure 5.11. The

eviction in r-ORAM is performed at the same time the path is written back. Also, we consider both

136

the upload/download phases. For example, with N = 214 and 4096 Bytes block size, the client

has to download/upload 438 KByte with r-ORAM, instead of 640 KByte with Path ORAM, a ratio

corresponding to the ratio of average heights, i.e., 31% of cost saving. Moreover, if we compare

the curves associated to the minimum theoretical bounds for r-ORAM and Path ORAM, i.e., z = 6

and z = 5, the saving in terms of communication complexity is 20%. These curves represent the

average of 1015 random accesses.

Finally, we measure r-ORAM’s stash size for a number of random accesses between 210 and

220. The number of operations represent a security parameter for our scenario, the more operations

we perform the more likely the stash size increases. The upper bound of Th. 5.2.7 depends of

the number of elements N , however for N > 2 the stash will have the same size independently

of N because 1 − 0.54N ≈ 1 for larger N . Thus, the stash in r-ORAM over Path ORAM has a

logarithmic behavior in function of the security parameter, see Theorem 5.2.7.

Our experimental results confirm the upper bound given by Theorem 5.2.7, namely R = 1
ln 0.88

·
ln ω

1.17·(1−0.54N)
≈ 1

ln 0.88
· ln ω

1.17
. For example, for a probability of overflow equal to ω = 2−20,the

security parameter here equals 20, the theoretical stash size R equals∼110 blocks for any N > 10.

In Figure 5.12, you can see that, for bucket size z = 6, we have exactly a logarithmic behavior as

shown in the theorem. This figure shows the stash behavior based on the maximum, minimum, and

median values. For a confidence level of 95%, the margin error is around 1.25. For 220 operations,

the maximum stash value equals 40 which is smaller than 110, the theoretical value, which is not

surprising since some loose bounds have been used in the proof. The stash seems to increase

logarithmically with the number of operations. However, theoretically the stash size behavior is

not bounded. The graphs are logarithmic in the number of operations. In Figure 5.13, we show the

average behavior of the stash size, to also indicate its logarithmic behavior.

Compared to Path ORAM with a similar bucket size, r-ORAM’s stash requires up to 10 blocks

more. This will not have any repercussion on the communication complexity. One might argue

that the overall client memory sizeM has to be larger. However, the client memory size is defined

as the stash plus the downloaded path during the operation such that M = R + P where R is

the stash size and P the number of blocks downloaded for a given path p. We have P = z · |p|

137

blocks where |p| = logN for Path ORAM and |p| ≈ 0.78 · logN for r-ORAM (worst-case). For

a number of elements N = 220 and a bucket size z = 5, Path ORAM has to have 20 more blocks

than r-ORAM and this will increase for greater number of elements.

 0

 10

 20

 30

 40

 50

 10 12 14 16 18 20

N
u
m

b
e
r

o
f

b
lo

c
k
s

Number of operations

Z=6

Figure 5.12: Stash size, z = 6, number of

operations in log2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 12 14 16 18 20

N
u
m

b
e
r

o
f

b
lo

c
k
s

Number of operations

Z=5
Z=6
Z=7
Z=8

Figure 5.13: Average stash size, operations

in log2

Section Conclusion. In this section, we have introduced a new recursive data structure that con-

siderably improves upon previous works. The interesting aspect of this new data structure is in

that it can be applied to future tree-based ORAM schemes. We show that r-ORAM can achieve

40% communication cost saving and 20% storage cost saving. One downside of r-ORAM is that

it can be hard to implement. Moreover, an interesting problem to look at in future would be to add

resizability to r-ORAM constructions as well. Finally, we are wondering whether this recursive

data structure is the ideal one. Goldreich and Ostrovsky [70] showed that in the balls and bins

model, at least a logarithmic blowup is required. None of the known constructions so far achieve

this lower bound for any block size. It remains an open problem to find out the right data structure

and memory shuffling procedure that can reach this lower bound with no additional assumptions

about the client memory, block size or storage overhead.

5.3 Constant bandwidth ORAM

In this section, we present a new ORAM construction that achieves constant blow-up, i.e., to

download a block, the client will download a constant number of blocks from the server. That is,

138

the cost of obliviousness becomes nearly for free contrary to previous constructions that at least

introduce a poly-logarithmic blow-up. While previous constructions work in storage-only servers

constant blowup ORAM constructions require the server to perform some additional computation

on the data. Referring to ORAM schemes as constant ORAM constructions, however, is sometimes

misleading, and one tends to think that this property is achievable with no assumptions which is

not correct. To download a block using a constant ORAM scheme, the client exactly needs to

spend c · B + poly(N), where c > 1 is a constant and N is the number of blocks. An ORAM

induces a constant blowup if (1) c is a constant independent of the choice of N and (2) the block

size B needs to dominate the meta-information poly(N) such that B ∈ Ω(poly(N)). That is, if

B ∈ O(poly(N)), then it will perform similarly or even worse than known tree-based schemes.

C-ORAM builds on the top of Onion ORAM [56] by introducing a new oblivious merge technique

that reduces the communication complexity due to the meta-information but also the computation

on the server side, which makes C-ORAM very appealing offering smaller block sizes.

5.3.1 Contribution Summary

Along with work on pure Oblivious RAM, Mayberry et al. [101] introduced the idea that com-

munication overhead can be greatly reduced if the storage device is also considered to have some

computational ability, which it generally does in a cloud setting. Using recent advances in ho-

momorphic encryption, a small amount of computation on the server can be leveraged to cut a

significant amount of communication to the client, see also [19].

Furthering this research, Devadas et al. [56] have recently proposed a hybrid ORAM-with-

computation scheme that achieves O(1) communication overhead. They achieve this by consec-

utively wrapping blocks in further layers of encryption as they proceed down the tree, effectively

forming an “onion” out of the blocks. Unfortunately, it still has some major drawbacks:

1. Their scheme requires that the block has a very large size of Ω(log6 N). In practice, it can

be up to 30 MB for reasonably sized databases.

139

2. The onion part of their scheme requires a large number of homomorphic multiplications,

which are computationally very expensive. Depending on the encryption scheme used, over-

head on the server may outweigh any communication saved.

In this work we tackle these problems. We start by showing that the homomorphic multipli-

cations, and in fact the nesting “onion” nature of their solution, is not necessary. With careful ap-

plication of an oblivious merging algorithm, all movement of blocks through the tree can be done

with only homomorphic addition, resulting in a more computationally efficient algorithm. This

also reduced the required block size by a O(log2 N) factor and, as we will show, allows for O(1)

communication complexity in the worst case. Finally, we demonstrate via experimental evaluation

that our scheme requires only a small storage overhead compared to Onion ORAM. For practical

parameter values, we achieve significant improvement in block size and number of homomorphic

operations. Table 5.3 summarizes our improvements when compared to Onion ORAM.

Table 5.3: Comparison of Onion ORAM and C-ORAM, containing block size, worst-case band-

width, and number of homomorphic additions and multiplications. The simplified block value is a

looser bound for easier comparison using λ = ω(logN) and γ = O(λ3).

Scheme Block size B Simplified block size Worst-case bandwidth # multiplications

Onion ORAM Ω(γλ log2 N) Ω(log6 N) O(1) Θ(Bλ logN)

C-ORAM Ω(λ[log λ logN + γ]) Ω(log4 N) O(1) Θ(Bλ)

5.3.2 Background: Onion ORAM

We start by briefly introducing the main idea of Onion ORAM [56] and then analyze its com-

plexity to motivate our improvements.

5.3.2.1 Overview

An Oblivious RAM is a block-based storage protocol whereby a user can outsource some data

to an untrusted server, and that server does not learn anything about the pattern of accesses that the

user performs on that data. For instance, whether the user accesses the same block many times in

a row, or each block individually in sequence, the server will not be able to distinguish between

these two access patterns. In fact, a secure ORAM guarantees that any two access patterns will be

140

indistinguishable from the perspective of the server. This is accomplished by periodically moving,

shuffling and reencrypting the data so that correlations between accesses are lost. A twist on that

model introduced by [101], and used in Onion ORAM, is that instead of the traditional ORAM

server definition where it only stores the data passively, Onion ORAM assumes that the server can

also perform computations.

Onion ORAM is a tree-based ORAM, and shares many qualities with existing schemes [125,

129, 135]. Most importantly, data blocks are stored in a tree where each node of the tree is a

“bucket” which contains some number of blocks. When blocks are added to the ORAM, they start

at the root of the tree and are tagged as belonging to one of the leaf nodes. As the lifecycle of

the ORAM continues, blocks percolate from the root to their assigned leaf node through a process

called eviction. This way, a block can be located at any time by reading the path from its target

leaf back to the root, since it is guaranteed to always reside on this path. The eviction process

maintains a proper flow of blocks from the root to the leaves so that no buckets overflow with too

many blocks. This is usually accomplished by picking a path in the tree, from root to a particular

leaf node, and pushing all the blocks on that path as far as possible down the path toward the leaf

node.

The contribution of Onion ORAM is then that it achieves constant communication complexity

in the number of ORAM elements N , while only requiring polylogarithmic computation on the

server. Although the client exchanges many pieces of data back and forth with the server, the

key to having O(1) communication complexity is that the size of one data block B dominates the

communication. All other messages, ciphertexts etc. are collectively small compared to the actual

data being retrieved. Therefore, it might be more intuitive to say that communication is O(B).

However, it is customary in ORAM literature to refer to the communication complexity in terms

of multiplicative overhead, i.e., the cost compared to retrieving the same data without security.

Everything is then divided by B, and we get to O(1) communication complexity. Note that O(1)

communication complexity is not difficult if you allow unrestricted computation (FHE for instance

achieves this trivially), so the limit to polylogarithmic computation is important.

141

The main idea behind Onion ORAM is an oblivious shuffling based on (computational) Pri-

vate Information Retrieval (PIR). Therewith, ORAM read, write, and eviction operations can be

performed without the client actually downloading data blocks and doing the merging themselves.

This saves a huge amount of communication when compared to existing schemes like Path ORAM.

Compared to existing tree-based ORAM schemes, Onion ORAM introduces a triple eviction that

empties all buckets along the path instead of only pushing some elements down and leaving others

at intermediate points in the tree. Elements in any evicted bucket will be pushed towards both

children, thereby ensuring that after an eviction the entire evicted path is empty aside from the

leaves. The authors take advantage of the fact that if you choose which path to evict by reverse

lexicographic ordering, then you are always guaranteed during an eviction that the sibling of ev-

ery node on your path will already be empty from a previous eviction. This allows for the entire

process to be done efficiently and smoothly, because the entire contents of a parent can be copied

into the empty bucket.

This triple eviction is accomplished by sending a logarithmic number of oblivious shuffling

vectors to the server. These vectors, encrypted with an additively homomorphic encryption, obliv-

iously map an old block of the parent bucket to a new position in the child. This operation is made

by a matrix multiplication between the vector sent to the server and the bucket. Considering the

size of the bucket as logarithmic, this algebraic computation should be performed a polylogarith-

mic number of times. This results that each block is encrypted, without transitional decryption, a

logarithmic number of times, hence, the attributed name “onion”.

The above results in an ORAM with constant communication complexity and constant client-

memory in the number of elements N stored in the ORAM, see Table 5.3.

5.3.2.2 Analysis

As noted above, O(1) communication complexity does not imply that blocks are the only

information exchanged between client and server. In Onion ORAM, the client still needs to retrieve

meta-information and send PIR vectors for PIR reads and PIR writes. Thus, Onion ORAM chooses

the block size such that all communication between server and client is asymptotically dominated

142

by block size B. That is, if B ∈ O(|meta− information| + |PIRvectors|), then Onion ORAM has

constant communication complexity.

Large Block Size: Consequently, to achieve constant communication complexity, Onion ORAM

requires a large block size B. For a security parameter γ in the order of 2048 Bytes, bucket size

z = Θ(λ), and number of elements N , the block size B in Onion ORAM is in Ω(γλ log2 N). This

is a significant increase over B ∈ Ω(logN) as required by related work [129, 135]. Generally,

large block sizes render ORAMs impractical for many real world scenarios where the block size

is fixed and simply predetermined by an application. To mitigate the problem, Onion ORAM uses

Lipmaa’s PIR [95] instead of straightforward additively homomorphic PIR [91]. This decreases

block size to B ∈ Ω(γ log2 λ log2 N). Factor λ is replaced by log2 λ. On a side note, observe that

using Lipmaa’s PIR might not result in much (or any) gain in practice. Parameter λ is a security pa-

rameter with λ ∈ ω(logN). So, it is typically small and therefore “close” to log2 λ. For example,

for λ = 80, log2 λ = 40 is in the same order of magnitude. Since Lipmaa’s method requires sub-

stantially more computation than the straightforward approach, the small gain in communication

is likely to be outweighed by additional computation time.

Onion ORAM block size example: For security parameter γ = 2048, number of elements N =

220, and security parameter λ = 80, the block size must be at least B = 2048 · log2 (80) · 202 ≈ 33

MBits. Thus, the dataset size equals 220 · 33 · 106 ≈ 35 TBits. This computation is very rough

and does not take into account additional, hidden constants such as the constant for the additively

homomorphic cipher chunk in Ω(γ logN), or smaller, yet still significant constants, like the fact

that downloads have corresponding uploads which multiplies everything by 2. Requiring blocks of

size at least 4 MBytes to store N = 220 elements is impractical for many real world applications.

In conclusion, Onion ORAM can only be applied to very special data sets with very large block

sizes.

5.3.3 Constant Communication ORAM

Overview: To achieve our increased efficiency and lower block size, we present a novel, efficient,

oblivious bucket merging technique for Onion ORAM that replaces its expensive layered encryp-

143

tion. We apply our bucket merging during ORAM eviction. The content of a parent node/bucket

and its child node/bucket can be merged obliviously, i.e., the server does not learn any information

about the load of each bucket. The idea is that the client sends a permutation Π to the server. Using

this permutation, the server aligns the individual encrypted blocks of the two buckets and merges

them into a destination bucket. The client chooses the permutation such that blocks containing

real data in one bucket are always aligned to empty blocks in the other bucket. As each block is

encrypted with additively homomorphic encryption, merging two blocks is a simple addition of

ciphertexts. For the server, merging is oblivious, because, informally, any permutation Π from the

client is indistinguishable from a randomly chosen permutation.

For buckets of size O(z), our oblivious merging evicts elements from a parent bucket to its

child with O(z log z) bits of communication instead of O(γz2) of Onion ORAM. As a result of

applying our merging technique, we only need a constant number of PIR reads and writes for

ORAM operations.

Based on our merging technique, we now present increasingly sophisticated modifications to

Onion ORAM to reduce its costs. We call the resulting ORAM, i.e., Onion ORAM with our

modification, C-ORAM. As a warm up, we present a technique allowing amortized constant com-

munication complexity with a smaller block size B in Ω(z log z logN + γz logN). Our second

and main technique achieves constant worst case communication complexity with smaller block

size in Ω(z log z logN + γz).

5.3.3.1 Oblivious Merging

Oblivious merging is a technique that obliviously lines up two buckets in a specific order and

merges them into one bucket. Using this technique, we can evict real data elements from a bucket

to another by permuting the order of blocks of one of them and then adding additively homomor-

phically encrypted blocks. Oblivious merging is based on an oblivious permutation generation that

takes as input the configurations of two buckets and outputs a permutation Π. A configuration of

a bucket specifies which of the blocks in the bucket are real blocks and which are empty. Permu-

144

tation Π arranges blocks in such a way that there are no real data elements at the same position in

the two blocks.

5.3.3.2 C-ORAM Construction

C-ORAM keeps Onion ORAM’s main construction. That is, C-ORAM is a tree-based ORAM

composed of a main tree ORAM storing the actual data and a recursive ORAM storing the posi-

tion map. The position map consists of a number of ORAM trees with linearly increasing height

mapping a given address to a tag. For n elements stored in the ORAM, the communication needed

to access the position map is in O(log2 N). As with all recent tree-based ORAMS, the recursive

position map’s communication complexity is dominated by the block size. For the remainder of

this paper, we therefore restrict our description to C-ORAM’s main data tree.

Let N be a power of 2. C-ORAM is a binary tree with L levels and 2L leave nodes. Each

node/bucket contains µ · z blocks. Here, z is the number of slots needed to hold blocks as in

Onion ORAM and µ is a multiplicative constant that gives extra room in the buckets for noisy

blocks, a detail we will cover below which is important for our construction. We maintain the

same relation between N , L and z as in Onion ORAM, namely N ≤ z · 2L−1. Each block

in a C-ORAM bucket is encrypted using an additively homomorphic encryption, e.g., Pailler’s or

Damgard-Jurik’s cryptosystem. Also, each bucket contains IND-CPA encrypted meta-information,

headers, containing additional information about a bucket’s contents.

Headers Bucket headers are an important component in C-ORAM as they determine how obliv-

ious permutations are generated. A bucket header is comprised of two parts: the first part stores

for each block whether it is noisy, contains real data or is empty. The second part stores the block

tags. More formally, the header is composed of two vectors header1 and header2. Vector header1

has length µ · z, and each element is either noisy, empty or real. Thus, each element has a size of

two bits. The total size of this vector is in O(µz). header2 is a (µ · z × logN) binary matrix. The

rows represent the address of the blocks. Finally, as with all tree based ORAMS, each block in a

bucket also contains the encryption of its address. That is, the address of each block is encrypted

separately from the block itself. We show a high level view of a C-ORAM bucket in Figure 5.14.

145

Figure 5.14: C-ORAM bucket structure

5.3.3.3 C-ORAM: First Construction

To prepare for our main contribution, we start by presenting a new technique allowing amor-

tized constant communication complexity with a smaller block size.

Overview To access an element in C-ORAM, i.e., read or write, the client first fetches the cor-

responding tag from the position map. This tag defines a unique path starting from the root of the

ORAM tree and going to a specific leaf given by the tag. The element might reside in any bucket on

this path. To find this element, we make use of a PIR read [91] that will be applied to each bucket.

To verify whether the block exists in a bucket, the client downloads the encrypted headers of each

bucket. Therewith, the client can generate a PIR read vector retrieving the block from a bucket. To

preserve the scheme’s obliviousness, the client sends PIR read vectors for each bucket on the path.

Once the block has been retrieved, the client can modify the block’s content if required, then insert

it back into the root of the C-ORAM tree using PIR write. This is the standard Path-PIR behavior

to read from or write into blocks [101].

Eviction in our first construction takes place after every χ = O(z) access operations. As

in Onion ORAM, a path in C-ORAM is selected following deterministic reverse lexicographic

146

order. Then, the entire root of the ORAM tree is downloaded, randomly shuffled and written

back (additively homomorphically) encrypted. Finally, the eviction is performed by repeatedly

applying an oblivious merge on buckets along the selected path. Any bucket belonging to this path

is obliviously merged with its parent while the other child of the parent will be overwritten by a

copy of the parent bucket. We call the former bucket on the path the destination bucket and the

latter one its sibling bucket.

Before starting the eviction of a specific path, an invariant of the eviction process is that siblings

of buckets of this path are empty, except the leaves. After the eviction, all buckets belonging to the

evicted path will be empty except the leaf [56]. Note that siblings of this path, after the eviction,

will not be empty anymore. See Figure 5.15 for a sample eviction with N = 8.

Sibling buckets, since they are simply copies of their parents, will contain blocks with tags

outside the subtree of this bucket. These blocks are called noisy blocks as they do not belong into

this subtree and are essentially leftover “junk”. Now for correctness, in our construction, we will

guarantee that the number of noisy blocks in any bucket is upper bounded. So, there will always

be space for real elements in a bucket and will not overflow.

Elements in each bucket are encrypted using additively homomorphic encryption, respectively.

Given two buckets B1 and B2, oblivious merging will permute the position of blocks in B1 such

that there are no real or noisy element at the same positions in B1 and B2. Consequently, if there

is a real element in the ith position in B1, then for the scheme to be correct, the ith position in

B2 should be empty. The following addition of elements at the same position in B1 and B2 will

preserve the value of the real element. After χ operations, we also download the leaf bucket to

delete its noisy blocks.

Details and Analysis Let P(tag) denote the path starting from the root and going to the leaf

identified by tag. The path is composed of L + 1 buckets including the root. P(tag, i) refers to

the bucket at the ith level of P(tag). For example, P(tag, 0) is the root bucket. Ps(tag, i) is the

sibling of bucket P(tag, i). Let χ the period of eviction which is in O(z). Identity is an empty

147

bucket containing only encryptions of zero. We also consider an additive homomorphic encryption

scheme SKEh = (Gen,Enc,Dec)

Algorithm 3 presents details of the access operation. An access can be either an ORAM Read

or a Write operation. The only difference between the two is that a write changes the value of the

block before putting it back in the root. The access operation invokes a PIR read algorithm, see

Algorithm 4 that obliviously retrieves a block. Algorithm 5 shows the eviction where elements

percolate towards their leaves using oblivious permutations, see Algorithm 6.

Block size The following asymptotic analysis will be in function of z, N , and γ. z is the size

of the bucket, N the number of elements, and γ the length of the ciphertext of the additively

homomorphic encryption. The communication complexity induced by an ORAM access operation

comprises a PIR read operation and the eviction process (happening every χ ∈ O(z) accesses).

The size of the bucket is µ · z, but we will show in our security analysis section later that µ is a

constant. Therefore, we ignore it in our analysis.

First, the client performs PIR reads L + 1 times. For this, the client has to download all

addresses in the path, i.e., O(z · L · logN) bits. Also, the client should send a logarithmic number

of PIR read vectors V with size O(γ · z · L) bits. Note that the computation of PIR read vectors

outputs, for all but one buckets’ block, encryption of zeros. Instead of sending back a logarithmic

number of blocks to the client, the server only sends a single block, the summation of all the blocks

output, cf. Algorithm 3. Thus, the client only retrieves a single block B. A PIR read applied to all

buckets of the path induces an overhead in O(z · L · logN + γ · z · L+B).

For the eviction, the client downloads header1 and the ith column of header2 and sends

permutations for all buckets in the path. Thus, the overhead induced by the permutations is O(L ·
z · log z) bits. Also, after every χ = O(z) operations, the client downloads the root and one

leaf, which has O(zB) communication complexity. Amortized, for each operation we have Oz(B)

communication complexity (amortized over z).

148

Algorithm 3: Access(op, adr, data, ctr, st): C-ORAM access operation, 1st construction

Input: Operation op, address adr, data data, counter ctr, state st

Output: Block B associated to address addr

// Fetch tag value from position map

tag = posMap(adr);

posMap(adr)
$← [N];

if ctr = 0 mod (χ) then

Download root bucket, refresh encryptions, randomize order of real elements;

Evict(st);

else

for i from 0 to L do B = B+PIR-Read(adr,P(tag, i)) ;

end

if op = write then set B = data ;

ctr = ctr + 1;

Upload the encrypted block to root P(tag, 0);

In conclusion, each access has Oz(z ·L · logN + γ · z ·L+ z · log(z) ·L+B) communication

complexity. To have constant communication complexity in B, the block size should be B ∈
Ω(z · L · logN + γ · z · L+ L · z · log z) ∈ Ω(λ · log2 N + γ · λ · logN).

The above is a consequence of z = Θ(λ), λ ∈ ω(log n), and L ∈ Θ(logN). Based on current

attacks [95], γ = O(λ3). Therefore, λ·log2 N is dominated by γ ·λ·logN , and B ∈ Ω(γ ·λ·logN).

The block size of our first modification is already a logN multiplicative factor improvement

over the block size of Onion ORAM. However, in practice, this value is still large. The main idea

of our second construction is based on the following observation. The block size has exactly the

same asymptotic as transmitted vectors V . So to improve the block size, we change the way we are

accessing the ORAM. Note that we can de-amortize C-ORAM first construction using techniques

from [140].

5.3.3.4 C-ORAM: Second Construction

We start by further reducing the block size – again by a multiplicative factor of logN compared

to our first construction. Recall that in our first construction, the worst case involves a blow-up of

O(z), because during eviction the client needs to download O(z · B) bits. In our second and main

construction, the eviction remains exactly the same, and our focus will only be on ORAM access.

149

Algorithm 4: PIR-Read(adr,P(tag, level))
Input: Bucket P(tag, level)), address adr

Output: Block B

Retrieve and decrypt addresses Addr of bucket P(tag, level));
// Compute the PIR-Read vector V in client side

if adr ∈ Addr then

// Retrieve the index α

α = Addr[addr];
for i from 1 to µ · z do

if i 6= α then Vi ← SKEh.Enc(0) else

Vi ← SKEh.Enc(1) ;

end

else

for i from 1 to µ · z do Vi ← SKEh.Enc(0) ;

end

// Retrieve block in server side

Parse bucket P(tag, level) as (µ · z × |B|) binary matrixM;

B = (
∑µ·z

i=1 Vi · M1,i, · · · ,
∑µ·z

i=1 Vi · M|B|,i);
Update headerlevel1 of bucket P(tag, level);

Overview In our first modification, we perform a PIR read per bucket during an access. Contrary,

we now perform an oblivious merge to find out the block to retrieve. For an ORAM access to tag,

our idea is to perform a special evict of path P(tag). We push all real elements in P(tag) towards

the leaf and then simply access the leaf bucket. So, we preserve access obliviousness and make

sure that the element we want is pushed into leaf bucket tag.

This approach comes with several challenges. We must preserve the bucket distribution. That

is, we have to maintain the empty sibling property, as guaranteed by the reverse lexicographic

eviction, before evicting any path. Instead of deterministically selecting a path for eviction, we

select randomly. However, with randomized eviction, we still have to guarantee empty siblings on

the evicted path. By randomly evicting a path, we might copy a bucket in its sibling resulting in a

correctness flaw.

Our approach will be to temporarily clone the path P(tag). The clone of P(tag) serves to

simulate the eviction towards the leaf bucket, and we remove the clone after the access operation.

We apply the oblivious merging on the bucket of this cloned path, and at the end we will have all

150

Algorithm 5: Evict(st), eviction process

Input: State st

Output: Evicted path and updated state st

for i from 0 to L− 1 do

Retrieve headeri1 and headeri+1
1 ;

Retrieve Ci and Ci+1 respectively the ith and the (i+ 1)th column of headeri2 and headeri+1
2 of

the bucket P(st, i) and P(st, i+ 1);

π ← GenPerm((headeri1,Ci), (header
i+1
1 ,Ci+1)), generate the oblivious permutation π;

// Merge the parent and destination bucket

P(st, i+ 1) = π(P(st, i)) + P(st, i+ 1);
if i < L− 1 then

// Copy the parent bucket into its sibling

Ps(st, i) = P(st, i);
else

// Merge the last bucket with the sibling leaf

Retrieve headeri+1
1 and Ci+1 from the sibling leaf;

π ← GenPerm((headeri1,Ci), (header1
i+1,Ci+1));

P(st, i+ 1) = π(P(st, i)) + P(st, i+ 1);

end

Update(headeri1) and store it with bucket Ps(st, i);
Update(headeri+1

1) and store it with bucket P(st, i+ 1);
P(st, i) = Identity;

end

real elements in the leaf bucket of the cloned path. Finally, we apply a PIR read to retrieve the

block.

Besides, to get rid of the amortized cost and have a scheme that only requires a constant band-

width in the worst case, we make use of a PIR write operation that will be performed during every

access. In the first construction, we have to shuffle the root bucket since oblivious merging has

to be performed on random buckets for security purposes. Moreover, we need to eliminate noisy

blocks from the leaf buckets and therefore after each χ operations, the client downloads the evicted

leaf to eliminate all noisy blocks. In our second C-ORAM construction, we are evicting after every

access. Consequently, we can be certain that the root bucket is always empty after an eviction. The

first PIR write operation that we perform will randomly insert the block in an empty root bucket

after any access obliviously. The second use of PIR write is to delete the retrieved element from

the leaf. In fact, we can also delete noisy blocks by the same tool but a PIR read is needed to

151

retrieve first the noisy block that we will overwrite with a PIR write. We dedicate Section 5.3.4.2

to analyze security and correctness of our modification.

Details and Analysis Algorithm 7 presents the core of our second C-ORAM construction. Now,

instead of performing a logarithmic number of PIR reads, we only invoke an Evict-Clone to read

a block, cf. Algorithm 8. Evict-Clone uses our oblivious merging together with one PIR read to

retrieve a block. We evict after every access. To eliminate noisy blocks that have been percolated

to the leaf bucket, we use a PIR write to delete the noisy block, cf. Algorithm 9.

Block size The access operation in C-ORAM is composed of scheduled path eviction, eviction in

the cloned path, a PIR read, and two PIR writes. The size of the headers are negligible compared

to the PIR read and write vectors. For sake of clarity, we therefore avoid including them in our

asymptotic analysis.

First, the eviction always involves an overhead of O(zL log z). Evict-Clone performs one

PIR read in addition to the regular evict. Finally, we retrieve the block of size B. Therefore, the

overhead induced by these steps is O(zL log z+z logN+γz+B). Adding the two PIR writes and

single PIR read operation will not change asymptotic behavior since the number of these operations

is constant in N . In conclusion, to have a bandwidth that is constant in block size B, the block size

should be B ∈ Ω(z · L · log z + z · γ).
With z ∈ Θ(λ), λ ∈ ω(logN) and L ∈ Θ(logN), we achieve B ∈ Ω(λ · [logN · log λ + γ]).

In practice, γ ∈ O(λ3), so γ dominates logN · log λ. Therefore, block size B is B ∈ Ω(γλ).

Our second C-ORAM construction achieves worst-case constant blow-up and omits inefficient

PIR reads performed for ORAM access. This second construction improves the block size by a

multiplicative factor of log2 N compared to Onion ORAM.

As you can see, the main overhead of C-ORAM’s block size comes from the size of ciphertext

γ. Recall that γ ∈ O(λ3). Therefore, the smaller the additively homomorphic ciphertext will get,

the smaller the block size of C-ORAM will be.

152

5.3.4 C-ORAM analysis

5.3.4.1 C-ORAM correctness analysis

The goal of the correctness analysis section is to show that, during any eviction (algorithms

Evict and Evict-Clone), the probability that a failure occurs is small. The failure in C-ORAM is

defined as the lack of encryption of zeros in the evicted path. In this section, we only consider

the proof of correctness of C-ORAM’s first construction. The proof of correctness of C-ORAM’s

second construction is a straightforward extension from the first one. Before presenting details of

our correctness analysis, we introduce some notations and assumptions.

Let Bi,j refer to the bucket at the ithlevel of the path evicted at the jth step. Each bucket

contains µ · z blocks, with integer µ > 1. In C-ORAM’s first construction, the root bucket contains

z real elements and (µ − 1) · z empty blocks. We set φ = µ − 1. An empty block represents an

additively homomorphic encryption of zero. Each bucket cannot have more than z real elements at

any time with high probability, as we will prove in Theorem 5.3.3. Let Zi,j be the discrete random

variable of the number of blocks containing an encryption of zero in bucket Bi,j . Similarly, Ri,j

represents the number of real blocks. Recall that if a real block is pushed to a path leading to a leaf

different from its own tag, this block is called a noisy block. Ñi,j represents the random variable

that counts the number of noisy blocks in bucket Bi,j . Finally, the jth eviction step is the eviction

of the jth path following a deterministic reverse lexicographic order.

Formally, the eviction in Evict algorithm fails if ∃i ∈ {0, . . . , L} and k ∈ N such that Zi+1,k <

Ri,k or Zi,k < Ri+1,k. Thus, the proof’s goal will be to show that there is no such integer i ∈
{0, . . . , L} that verifies both inequalities with high probability.

First, we need to introduce two properties that will help us to understand the proof and the

eviction mechanism more thoroughly. The first property is called the path composition history

while the second one is the bucket composition history. Given a path P(j), the path composition

history captures the eviction step in which each bucket has been created. Given a bucket Bi,j ,

the bucket composition history is a sequence that captures all buckets that have contributed to the

construction of the bucket Bi,j .

153

Figure 5.15: Buckets on evicted path are with horizontal hatching. Bucket 3 is a copy of the root.

Bucket 4 results from merging buckets 1 and 2. Bucket 6 results from merging 1, 2, and 5.

Path composition history In C-ORAM, the eviction follows a deterministic reverse lexico-

graphic order. In the jthstep of eviction, every bucket of the path P(j) has been created on a

previous eviction. Thus, we associate to a bucket its eviction step during which it has been cre-

ated. In particular, every bucket in this path has been created from a different eviction step. We

are interested on defining the relation between the eviction steps of buckets belonging to the same

evicted path. This relation follows a pattern which is common to all evicted paths. For instance,

in Figure 5.16, the path P(9) of the 9th eviction is composed of buckets B1,8, B2,7, B3,5. These are

buckets that were created, respectively, in the 8th, 7th, and 5th eviction step. We do not count the

root bucket and the leaf, because the pattern of their eviction is clear. That is, the root is evicted

every time while the leaf is evicted following reverse lexicographic order.

Formally, for N elements stored in the ORAM and L ∈ Θ(logN), one can easily show by in-

duction that the jthevicted path, for all j ≥ 1, is composed of {B1,j−20 , B2,j−21 , . . . , BL−1,j−2L−2}.
After L evictions, buckets belonging to an evicted path, except the leaves, are copies of a

bucket from previous evictions. In our proof, we will later assume that the ORAM has performed

a number of evictions larger than L. We will also consider the worst case where all buckets might

eventually contain real or noisy blocks.

Bucket composition history This property follows from the previous one. Given a path P(j),
the eviction will empty all buckets in this path except the leaf. The eviction works as follows:

the root B0,j will be merged with its destination child B1,j−20 in the path while the sibling B′1,j ,

154

Figure 5.16: Illustration of nine evictions. Numbers below leaves represent the order of reverse

deterministic lexicographic eviction. Buckets with same shapes were full and then evicted at the

same step. Example: buckets with triangular shape are evicted in step 9.

originally empty, will be overwritten by a copy of the root. The root is finally overwritten by an

empty bucket. The bucket B1,j−20 will be merged with its destination child B2,j−21 then emptied.

The sibling of the bucket B1,j−20 will be overwritten by the content of B1,j−20 . We reiterate the

process until the end of the path (this was a recapitulation of Evict).

Given a bucket Bi,j , we are interested in enumerating the eviction’s steps of creation of all

buckets that have contributed to bucket Bi,j . The bucket composition also follows a pattern that is

unique to any bucket in the construction. Given the eviction algorithm, every bucket in the ithlevel

is created by merging all buckets in the path from the root to the (i − 1)th level, see Table 5.4

for an example of this pattern for N = 16. As an example, the bucket in path 9 at the 3rd level

was created during the 5th eviction step. To determine the buckets that contributed to this bucket’s

creation, we check the column that has an evicted path equal to 5. Then, we consider all buckets

that are in upper levels: buckets 4 and 3 which are in levels 2 and 1. In general, a bucket Bi,j is the

result of merging the following buckets: {B0,j, B1,j−20 , B2,j−21 , . . . , Bi−1,j−2i−2}.

Noisy blocks It is important to understand the source of provenance of noisy blocks. From a

one hand, a noisy block can be created whenever an access has been performed on C-ORAM.

155

Therefore, the accessed block is not valid anymore and should be turned to a noisy block by

updating the headers. On the other hand, a noisy block can be also created from the eviction

process. During an eviction, and in particular, when a parent is copied to its sibling, many real

elements are no longer valid and become noisy. The main goal of this section is to upper bound the

number of noisy blocks in all buckets with high probability. Our quantification has then to take into

account both sources, however, one can show that the first source of noisy blocks can be included

as a worst case of the second source. Recall that a bucket cannot hold more than z real elements

which means that we can have up to z real elements turning to noise –if we access the same bucket

z times before eviction–. One can only add z additional blocks to each bucket to handle reads,

so whatever computed bound on φ, one can increase it by one. However, one can show that it is

not necessary. In fact, this situation is equivalent to having all z real elements in a given bucket

as noise for its sibling (which is the worst case). Thus, one can consider the first source of noisy

blocks as a sub-case of the second one. We are now ready to state our main theorem.

Theorem 5.3.1. If φ ∈ Θ(1), the probability that Zi+1,j ≥ Ri,j and Zi,j ≥ Ri+1,j is in O(z−z), for

all i ∈ [L] and j ∈ N.

Proof. Based on our assumption, we know that a path cannot handle more than z real elements

with high probability. This implies that ∀i ∈ {0, . . . , L}, we have Ri+1 +Ri ≤ z.

Here, for sake of clarity and without loss of any generality, we omit the eviction step j from

notation just to minimize the burden of additional indexes. To show that ∀i ∈ [L], Zi+1 ≥ Ri and

Zi ≥ Ri+1, it is equivalent to show that Ñi ≤ φ · z:

Ri+1 +Ri ≤ z

Ri+1 +Ri + Ñi + Zi ≤ z + Ñi + Zi

Ri+1 + µ · z ≤ z + Ñi + Zi

Ri+1 ≤ (Ñi − φ · z) + Zi

Therefore, it is sufficient to show that Ñi− φ · z ≤ 0 in order to proof that ∀i ∈ [L], Zi+1 ≥ Ri

and Zi ≥ Ri+1. It is clear that these inequalities hold for any eviction step j ∈ [N].

156

Consequently, the proof boils down to show that the probability that Ñi,j > φ · z is negligible

with very high probability.

Based on the bucket composition history, notice that the noisy elements in the bucket Bi,j are

exactly those that exist already in the bucket Bi−1,j−2i−2 , plus, all the real elements that will be

evicted to the other child and therefore they are considered noisy elements for the bucket Bi,j .

Thus, we have Pr(Ñi,j > φ · z) = Pr(Ñi−1,j−2i−2 +R′i−1,j > φ · z).
We have shown in the bucket composition history that Bi,j is created by summing all the buck-

ets {B0,j, B1,j−20 , B2,j−21 , . . . , Bi−1,j−2i−2}. The above equation can be then formulated more ac-

curately such that Pr(Ñi,j > φ · z) = Pr(maxi(Ñ1,j−20 , . . . , Ñi−1,j−2i−2) +R′i−1,j > φ · z).
The equation can be understood as follows: the noise in bucket Bi,j is the maximal amount of

noise in any bucket in its history. Each bucket is created independently of the other ones in the

evicted path. Therefore the quantity of noise in every bucket in the evicted path is independent of

the other ones. We give more details below about the independence assumption. Since the noise

is cumulative during the eviction, the bucket that has the maximum noise will represent the noise

of the last bucket. Recall that based on Algorithm 2, the noisy blocks are added up. Also, to this

quantity of noise, we add the sum of all real elements in the path that are no longer considered real

elements in Bi,j and therefore represent a new noise denoted by R′i−1,j .

All buckets in an evicted path are independent of each others, i.e., the number of real elements,

the number of noisy elements are independent of the the other buckets in the path. This holds

since the real elements, the noise in any bucket is generated from distinct evictions. First, note

that a bucket is created by merging all its ancestors. We have defined in the previous section the

notion of bucket composition history that keeps track of each bucket’s ancestor that contributed

to its creation. As have been shown, the bucket ancestors emanate from different evictions’ steps

which is a consequence of the reverse deterministic lexicographic eviction. More importantly, each

bucket in the evicted path has a different bucket composition history such that the intersection of all

of them is empty. Formally, an evicted path, based on the path composition history, of the jthstep

equals {B1,j−20 , B2,j−21 , . . . , BL−1,j−2L−2}.

157

Consider a bucket and its parent in the evicted path for i ∈ {1, . . . , L − 1}, Bi,j−2i−1 and

Bi+1,j−2i . The bucket composition is {B0,j−2i−1 , B1,j−2i−1−20 , B2,j−2i−1−21 , . . . , Bi−1,j−2i−1−2i−2}
and {B0,j−2i , B1,j−2i−20 , B2,j−2i−21 , . . . , Bi,j−2i−2i−1}.

By replacing each bucket in the above sequence by its own bucket composition history and by

iterating the process, we will converge to a state where each bucket is composed of root buckets

that were instantiated at different evictions’ steps. That is, no distinct buckets in the evicted path

have a root in common. Thus, the number of real and noisy elements are independent from each

other. Therefore,

Pr(Ñi,j > φ · z) = 1− Pr(max
i

(Ñ1,j−20 , . . . , Ñi−1,j−2i−2)

+R′i−1,j ≤ φ · z)

= 1−
i−1∏

k=1

Pr(Ñk,j−2k−1 +R′i−1,j ≤ φ · z)

We can reiterate the process of counting the noise until arriving to the root. The quantity of

noise in the root is null. Then

Pr(Ñi,j > φ · z) = 1−
i−1∏

k=1

k−1∏

l=1

· · ·
s−1∏

t=1

Pr(Ñ0,t +R′0,t +

R′1,s + . . .+R′i−1,j ≤ φ · z)

= 1−
i−1∏

k=1

k−1∏

l=1

· · ·
s−1∏

t=1

Pr(R′0,t +R′1,s +

· · ·+R′i−1,j ≤ φ · z)

Recall that R′i−1,j represents the number of real elements in the bucket Bi−1,j that will be

considered as noise in the bucket Bi,j . Any bucket cannot have more than z elements with hight

probability, denotingR = R′0,t +R′1,s + . . .+R′i−1,j , we then have

Pr(R ≤ φ · z) = 1− Pr(i · z ≥ R ≥ φ · z)

= 1−
i·z∑

k=φ·z
Pr(R = k) (5.21)

Now, we have to compute an upper bound of Pr(R = k). One can proceed by: (1) counting

all possible solutions of R = k, then (2) multiply this value by the probability of the most likely

158

solution. All the possible combinations of the equation x1 + . . . + xk = N equal
(
k+N−1

N

)
possi-

bilities. The non-trivial part is to find an upper bound of the most likely solution that, in its general

form, equals Pr(R′0,t = x1 AND . . . ANDR′i−1,j = xi−1). We have that R′i−1,xi
follows a binomial

distribution such that Pr(R′i−1,t = xi) ≤
(
2i−1

xi

)
· 1
(2i)xi

. Using the independence between buckets,

see above for the independence argument, we obtain:

Pr(
i−1∧

j=0

Pr(R′j = xj)) =
i−1∏

j=0

Pr(R′j = xj) ≤
i−1∏

j=0

(
2j−1

xj

)

· 1

(2j)xj

≤
i−1∏

j=0

(
e

2xj

)xj = (
e

2
)k

i−1∏

j=0

(
1

xj

)xj

We want to find a readable upper bound only in function of k. Also, remark that the above

inequality is true iff, ∀j ∈ {1, . . . , i− 1}, the following statement holds xj ≤ 2j−1. One can verify

with induction that with xj’s reaching their upper bounds 2j−1 minimizes
∏i−1

j=1 x
xj

j and therefore

maximizes the inverse of the function. Also, there exists by construction a nonnegative integer γ

such that
∑γ−1

i=1 2i ≤ k ≤∑γ

i=1 2
i, which implies that γ − 1 ≤ log k ≤ γ + 1. Putting everything

together we obtain:

Pr(
i−1∧

j=0

Pr(R′j = xj) = (
e

2
)k

i−1∏

j=0

(
1

xj

)xj

≤ (
e

2
)k · 1

22 · (22)22 · · · (2γ−1)2γ−1

= (
e

2
)k · 1

2
∑γ−1

j=1 j2j
= (

e

2
)k · 1

21+(γ−2)2γ

≤ (
e

2
)k · 1

21+(log k−3)k ≤ (
4e

k
)k

Now, we plug the above results in (5.21)

Pr(R ≤ φ · z) ≥ 1−
i·z∑

k=φ·z

(
k + i− 1

k

)

(
4e

k
)k

≥ 1−
i·z∑

k=φ·z
(
4e2 · (k + i− 1)

k2
)k

≥ 1− (i− φ) · z · (8e
2 · (φ · z + i− 1)

2(φ · z)2)φ·z (5.22)

≥ 1− i · z · (8e
2

φ · z)
φ·z (5.23)

159

Inequalities (5.22) and (5.23) are bounds that are reached first by replacing k = φ · z since it

will result on the larger value (k is in the denominator) and by summing over the final probability

by i · z. Combining all results together, we have

Pr(Ñj,k > φ · z) ≤ 1−
i−1∏

k=1

k−1∏

l=1

· · ·
s−1∏

t=1

(1− Pr(j · z ≥ R ≥ φ · z))

≤ 1− (1− Pr(j · z ≥ R ≥ φ · z))O(i
i

i!
)

≤ 1− (1− i · z · (8e
2

φ · z)
φ·z)O(i

i

i!
)

= O(
ii

i!
iz(

e2

φ · z)
φ·z) = O(eiiz(

e2

φ · z)
φ·z)

The last transitions are obtained by the binomial inequality and Stirling approximation. Now,

we define the value of φ for which this probability is negligible. The probability above can be

simplified to Pr(Ñi,j > φ · z) = O(ei+ln(i·z)+2φ·z−ln(φ·z)·φ·z).

This probability computation is independent of the step of eviction j ∈ N. Therefore, choosing

φ ∈ Θ(1) (and assuming that L ∈ O(z ln z)), the probability equals: Pr(Ñi,j > φ ·z) ∈ O(e−z ln z),

which is negligible in z.

Corollary 5.3.1. If bucket size z ∈ ω(logN), L ∈ Θ(logN), and φ ∈ Θ(1), the probability that

Zi+1,j ≥ Ri,j and Zi,j ≥ Ri+1,j is in O(N− log logN), for all i ∈ [L] and j ∈ N.

The Corollary can be derived from the main theorem by taking z ∈ ω(logN).

5.3.4.2 Security Analysis

Oblivious merging We prove that permutations generated by Algorithm 2 are indistinguishable

from random permutations. Informally, we show that the adversary cannot gain any knowledge

about the load of a particular bucket. Applying a permutation from Algorithm 2 is equal to applying

any randomly chosen permutation. We formalize our intuition in the security definition below.

First, we introduce our adversarial permutation indistinguishability experiment that we denote

PermG. LetM denote a probabilistic algorithm that generates permutations based on the configu-

rations of two buckets, andA a PPT adversary. Let k be the bucket size and s the security parame-

160

ter. By Perm we denote the set of all possible permutations of size k. Let SKE = (Gen,Enc,Dec)

and SKEh = (Gen,Enc,Dec) respectively denote an IND$-CPA encryption2 and an IND-CPA ad-

ditively homomorphic encryption schemes. PermGAM,SKE,SKEh(s) refers to the instantiation of the

experiments by algorithmM, SKE, SKEh and adversary A.

The experiment PermGAM,SKE,SKEh(s) consists of:

• Generate two keys K1 and K2 such that K1
$←− SKEhGen(1s) and K2

$←− SKE.Gen(1s) and

send n buckets additively homomorphic encrypted with SKEh.Enc(K1, .) associated to their

headers encrypted with SKE.Enc(K2, .) to the adversary A

• The adversary A picks two buckets A and B, then sends the encrypted headers header(A)

and header(B)

• A random bit b
$←− {0, 1} is chosen. If b = 1, π1

$←− M(header(A), header(B)), otherwise

π0
$←− Perm. Send πb to A

• A has access to the oracle OM that issues permutation for any couple of headers different

from those in the challenge

• A outputs a bit b′

• The output of the experiment is 1, if b′ = b, and 0 otherwise. If PermGAM,SKE,SKEh(s, b′) = 1,

we say that A succeeded.

Definition 5.3.1 (Indistinguishable permutation). Algorithm M generates indistinguishable per-

mutations iff for all PPT adversaries A and all possible configurations of buckets A and B, there

exists a negligible function negl, such that

|Pr[PermGAM,SKE,SKEh(s, 1) = 1]− Pr[PermGAM,SKE,SKEh(s, 0) = 1]| ≤ negl(s).

Theorem 5.3.2. If SKE is IND$-CPA secure, SKEh IND-CPA secure, then Algorithm 2 generates

indistinguishable permutations.

2The adversary cannot distinguish between an encryption and a randomly generated bit string

161

Proof. We consider a sequence of games (Game0, Game1, Game2) defined as follows:

Game0 is exactly the experiment PermGAM,SKE,SKEh(s, 1)

Game1 is similar to Game0, except that encrypted headers are replaced with random strings

Game2 is similar to Game1, except that encrypted buckets are replaced with buckets with new

randomly generated blocks which are additively encrypted

From the definition above, we have

Pr[Game0] = Pr[PermGAM,SKE,SKEh(s, 1) = 1]. (5.24)

For Game1, we can construct an efficient distinguisher B1 that reduces SKE to IND$-CPA security

such that

|Pr[Game0]− Pr[Game1]| ≤ Adv
IND$|CPA
B1,SKE

(s). (5.25)

Similarly for Game1, we can build an efficient distinguisher B2 that reduces the security of

SKEh to IND-CPA security such that

|Pr[Game1]− Pr[Game2]| ≤ Adv
IND|CPA
B2,SKE

h(s). (5.26)

We will no show that Pr[Game2] = Pr[PermGAM,SKE,SKEh(s, 0) = 1]. That is, we need to show

that the distribution of the output of algorithmM has a uniform distribution over the set Perm.

For sake of clarity, we assume that the number of noisy slots is zero in both buckets. Therefore,

slots in A and B are either full or empty. We can easily extend the proof for the case where we

have full, empty and noisy blocks.

For clarity, let X denote the discrete random variable that represents the permutation selected

by the adversary and by Loadi,j the event of load(A) = i and load(B) = j. By load(A), we denote

the number of real elements in bucket A. If b = 0, the adversary receives a permutation π0 selected

uniformly at random. It is clear that A cannot distinguish it from another uniformly generated

random permutation. Note that in this case, for buckets with k slots, the probability that adversary

selects a permutation from Perm uniformly at random equals 1
|Perm| =

1
k!

. Thus, Pr[X = π0] =
1
k!

.

162

If b = 1, the adversary receives π1. We need to show that the permutations output byM are

uniformly distributed.

Pr(X = π1) =
∑

i,j∈[n]
Pr(X = π1 and Loadi,j)

=
∑

i,j∈[n]
Pr(X = π1 | Loadi,j) · Pr(Loadi,j)

We compute the probability of selecting a permutation while the loads of buckets A and B

are fixed to i and j. The number of possible configurations of valid permutations equals Valid =
(
k

i

)
·
(
k−i
j

)
. This represents the number of possible permutation from which the client can choose to

generate a valid permutation. From the adversary view, it should take into consideration all possible

configurations of blocks in both buckets A and B. The total number of permutations computes to

Total =
(
k

i

)
·
(
k

j

)
·
(
k−i
j

)
· j! · (k − j)!. The first two terms count the possible configurations of

the loads in both buckets while the three last terms are for valid permutations for a fixed setting of

load distribution in the buckets. The cardinality of possible configurations equals the number of

possible combinations from which we can select j empty blocks from k − i, i.e.,
(
k−i
j

)
. We then

multiply this last value by the possible permutations of the k− i full blocks and the j empty blocks

that are respectively equal to (k − j)! and j!. That is,

Pr(X = π1 | Loadi,j) =
Valid

Total

=

(
k

i

)
·
(
k−i
j

)

(
k

i

)
·
(
k

j

)
·
(
k−i
j

)
· j! · (k − j)!

=
1

k!
j!·(k−j)! · j! · (k − j)!

=
1

k!

We insert the result of this equation in the previous one and obtain Pr(X = π1) =
∑

i,j∈[n]
1
k!
·

Pr(Loadi,j) =
1
k!
.

Thus for the adversary, permutations output byM are uniformly distributed, i.e.

Pr[X = π1] = Pr[X = π0] = Pr[PermGAM,E1,E2(s, 0) = 1] (5.27)

Combining Equations 5.24, 5.25, 5.26, and 5.27, we obtain

Pr[PermGAM,SKE,SKEh(s, 1)] = Pr[Game0]

≤ Pr[Game1] + Adv
IND$|CPA
B1,SKE

(s)

≤ Pr[Game2] + Adv
IND|CPA
B2,SKE

h(s) + Adv
IND$|CPA
B1,SKE

(s)

≤ Pr[PermGAM,SKE,SKEh(s, 0)] + Adv
IND|CPA
B2,SKE

h(s) + Adv
IND$|CPA
B1,SKE

(s).

163

 1

 10

 100

 1000

 10000

 100000

16 17 18 19 20 21 22 23

O
p
ti
m

a
l
b
lo

c
k
 s

iz
e
 (

K
B

)

log N

CORAM
Onion ORAM

Figure 5.17: Minimum efficient block size

for C-ORAM and Onion ORAM

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000

S
ec

ur
ity

 p
ar

am
et

er

Bucket size

Figure 5.18: Required bucket size in relation

to security parameter

Overflow probability of C-ORAM buckets C-ORAM eviction is similar to Onion ORAM [56].

The distribution of real elements for both constructions is exactly the same. We have a bucket size

of µ · z where z elements are allocated for real elements and (µ − 1)z is allocated for noisy

elements to preserve the correctness of C-ORAM construction. The overflow probability denotes

the fact that any bucket in C-ORAM will contain more than z elements. We want to show that this

probability is negligible in n. For this, we borrow the results of [56] and [125] that have introduced

the eviction factor χ. Throughout the paper, we have been stating that χ = O(z), which is a result

of the following theorem, without explicitly stating it before to avoid confusion.

Theorem 5.3.3. For the eviction factor χ and height L such that z ≥ χ and N ≤ χ · 2L−1, the

overflow probability after every eviction equals e
−(2z−χ)2

6χ .

Choosing z ∈ Θ(λ), L ∈ Θ(logN), χ ∈ Θ(λ) and λ ∈ ω(logN) makes the the result of

Th 5.3.3 negligible in N .

5.3.5 Evaluation

We have shown analytically that it suffices to set µ = Θ(1) and have buckets of size Θ(z) =

Θ(λ). However, we have not derived precisely what bucket size is necessary for concrete security

parameters. In order to get an idea of how bucket size in our scheme scales with λ, we performed

a series of experiments simulating our ORAM and measuring the maximum number of used slots

164

 10

 100

 1000

 10000

 100000

 2 3 4 5 6 7 8 9 10

Χ

Eviction frequency

Bucket=30
Bucket=40
Bucket=50

Figure 5.19: Required ciphertext operations

for one access

 0

 20

 40

 60

 80

 100

 120

 140

16 17 18 19 20 21 22 23

T
im

e
 (

m
in

u
te

s
)

log N

CORAM Read
CORAM Total

Onion Read
Onion Total

Figure 5.20: Comparison of computation

time for one access

(real data blocks plus junk blocks) after x number of operations, for various values of x. We

performed 20 sets of runs for each value of the security parameter where we executed 2λ operations

to test security parameter λ. For each of these runs, we measured the largest bucket load in the tree

and then averaged this value across all runs to determine a bucket size which matches the selected

security parameter. Figure 5.18 shows the results of this test, compared with equivalent tests run

using the original Onion ORAM algorithm. Our results show that, because of the lower value of A

in C-ORAM, our bucket size is actually slightly smaller than Onion ORAM.

Additionally, we compare the efficiency of our scheme in terms of server computation to that

of Onion ORAM. We aim to quantify the number of homomorphic addition and multiplication op-

erations in each scheme, to show that we have significant improvement. Throughout this analysis,

we will consider a single multiplication or addition to be over an entire block, although in practice

it may be divided into chunks of smaller ciphertext. Any changes in chunk size will apply equally

to both schemes so discussion of its impact will be ignored. Note however that we do not have

layered encryptions and so, in fact, ciphertext operations in our scheme will be cheaper simply

because they are smaller.

During eviction Onion ORAM performs z select operations on each bucket, which each require

a PIR query over z slots. This results in a total of z2 multiplications for each bucket, over L buckets.

165

Amortized over z gives O(z · L) multiplications. Each multiplication also implies an addition in

the select procedure, so the number of ciphertext additions is the same.

C-ORAM contains one major modification that is pertinent when comparing ciphertext opera-

tions: PIR queries are only done on the root bucket, to add new blocks, and on leaf buckets to read

and remove blocks. C-ORAM then requires only O(z · µ) multiplications and z · µ · L additions.

Since we have shown that µ is a small constant, we effective gain a factor of O(L) in multiplica-

tions. Crucially, this means the number of multiplications for C-ORAM is independent of logN ,

as can be seen in Figure 5.19.

Figure 5.20 shows the results of tests we have run to determine the computational speedup

of C-ORAM compared to Onion ORAM. We considered Pailler encryption as the homomorphic

cipher for our tests, using a 2048-bit semiprime, which results in ciphertexts of size 4096 bits. Tests

were done on a 2013 Macbook Pro with a 2.5 GHz Intel Core i7 processor, which we found could

perform 62 ciphertext multiplications per second. We then calculated how much time it would

take to perform the necessary ciphertext operations for one ORAM access, setting B = 100kb and

varying N from 216 to 223. Figure 5.20 also shows the computation necessary for the online (read)

portion of the access.

Although C-ORAM improves significantly over Onion ORAM, computation is the main bot-

tleneck in both schemes. C-ORAM requires less than one MB of communication for one of the

queries we tested. Using modern Internet connections, communication would take only a matter

of seconds compared to a minute for the ciphertext computations. C-ORAM takes about 7 minutes

for this query, while Onion ORAM takes over an hour and a half.

We stress that these evaluation results are largely to show the relative improvement of C-ORAM

over Onion ORAM. We chose Paillier, because it is an established additively homomorphic en-

cryption scheme, with well-understood levels of security. There are new homomorphic encryption

schemes which perform much better than Paillier [32, 48, 96]. But stable, optimized implementa-

tions of them do not yet exist, and concrete parameters choices are still up for debate. Preliminary

tests indicate that use of, for instance, the modern NTRU encryption scheme of [96] could allow

for accesses with as little as 5 to 10 seconds of computation. However, a significant drawback that

166

must be balanced for NTRU is that the ciphertexts are much larger, resulting in a tradeoff between

increased computational efficiency and higher communication for the PIR portions of C-ORAM.

We leave full exploration of optimized homomorphic encryption schemes to future work.

Finally, we compare the optimal block size for C-ORAM in relation to Onion ORAM, cf. Fig-

ure 5.17. For each eviction, Onion ORAM requires λ2L ciphertexts of size γ to be sent by the

client, while we require only permutation vectors of total size µλL log λ. Since γ = O(λ3), this

is a huge savings. For reads, Onion ORAM requires λLγ bits of ciphertext while we require only

4µλγ.

Comparison results: C-ORAM is able to achieve constant communication overhead in the worst-

case, with significantly less server computation required in addition to smaller minimum block

sizes. Figure 5.19 shows that we lower both the required number of ciphertext additions and

multiplications by several orders of magnitude when compared to Onion ORAM, and Figure 5.20

shows that in practice this leads to a substantial improvement in efficiency. Figure 5.18 shows that,

due to our lower value of A, the bucket size for C-ORAM is actually smaller in practice than Onion

ORAM as well. Additionally, Figure 5.17 shows that C-ORAM requires much smaller blocks than

Onion ORAM in practice.

Section Conclusion In this section, we presented C-ORAM, a solution to improve ORAM band-

width. Constant ORAMs represent a first step towards making communication much cheaper at

the cost of introducing computation overhead in the server side. Further works are required to

carry this research direction forwards especially that many assumptions are still required.

Recently, Nayak et al. [115] demonstrate that our oblivious merge technique leak information

when an adversary has an entire view of the tree structure. This will enables the adversary to

correlate between permutations and track real blocks in the tree, therefore breaking the scheme’s

obliviousness. As a possible solution to fix this problem, one can think of finding out the correct

blocks’ parameters in the root in order to make this distinguisher fail with high probability. This

will lead to re-define the correct number of noisy, real and empty blocks to put in the root be-

fore starting any eviction procedure. One needs then to prove that an adversary who had to see

167

all permutations in the tree cannot distinguish between these permutations, that is, the proof will

not be based anymore on distinguishing between an oblivious merge permutation and a random

permutation. As a consequence, this will increase the number of blocks in every bucket and there-

fore increase the number of bits in the headers. Another possible solution is to generate multiple

PIR-Write vectors during the setup phase that will shuffle the buckets in such a way that any per-

mutation outputted by the oblivious merge protocol will always operate on two freshly randomized

buckets, but this has the disadvantage of requiring a costly setup phase, plus, inducing encrypted

onions which will increase the block size and make the scheme much more inefficient and very

similar to Onion ORAM [56].

168

Algorithm 6: GenPerm(A,B), oblivious permutation generation

Input: Configuration of buckets A and B

Output: A permutation randomly lining up bucket B to bucket A

// Slots in A and B start either empty, full or noisy; mark slots

in A as assigned if block from B is assigned in π

Let x1, x2 be the number of empty and noisy slots in A;

Let y1, y2 be the number of full and noisy slots in B;

d1 = x1 − y1;

d2 = x2 − y2;

for i from 1 to µ · z do

case B[i] is full do z
$← all empty slots in A ;

case B[i] is noisy do

if d2 > 0 then

z
$← all noisy slots in A;

d2 = d2 − 1;

else

z
$← all empty slots in A;

end

end

case B[i] is empty do

if d1 > 0 then

z
$← all non-assigned slots in A;

d1 = d1 − 1;

else

z
$← all full slots in A;

end

end

π[i] = z;

A[z] = assigned;

end

return π;

169

Algorithm 7: Access(op, adr, data, st): C-ORAM access operation, 2th construction

Input: Operation op, address adr, data data, state st

Output: Block B associated to address adr

// Fetch tag value from position map

tag = posMap(adr);

posMap(adr)
$← [N];

// Retrieve desired block

B =Evict-Clone(adr, tag);
if op = write then set B = data ;

// Select a random position in the root bucket

pos1
$← [µ · z];

// Write back the block to the empty root

PIR-Write(pos1, B,P(st, 0));
Evict(st);
// Select a random noisy block position from the header of the leaf

P(st, L)
pos2

$← headerL;

N =PIR-Read(pos2,P(st, L));
// Write back the negation of the noisy block

PIR-Write(pos2,−N,P(st, L));

Algorithm 8: Evict-Clone(adr, tag)

Input: Leaf tag and address adr

Output: Block B

Create a copy of the C-ORAM path P(tag);
for i from 0 to L− 1 do

Retrieve headeri1 and headeri+1
1 ;

Retrieve Ci and Ci+1 respectively the ith and the (i+ 1)th column of headeri2 and headeri+1
2 of

the bucket P(tag, i) and P(tag, i+ 1);
// Generate the oblivious permutation π

π ← GenPerm((headeri1,Ci), (header
i+1
1 ,Ci+1));

// Merge the parent and destination bucket

P(tag, i+ 1) = π(P(tag, i)) + P(tag, i+ 1);

end

B =PIR-Read(adr,P(tag, L));
for i from 0 to L do

Update headeri1 in P(tag, i);
end

170

Algorithm 9: PIR-Write(pos, block, P(tag, level)), PIR-write process

Input: Position pos, bucket P(tag, level), block B

Output: Updated bucket P(tag, level)
// Compute the PIR-Write vector V in client side

for i from 1 to µ · z do

if i 6= pos then Vi ← SKEh.Enc(0) else

Vi ← SKEh.Enc(1) ;

end

// Write block in server side

Parse bucket P(tag, level) as (µ · z × |B|) binary matrixM;

Mi,j =Wi ·Bj ;

P(tag, level) =M+ P(tag, level);

Table 5.4: Bucket creation pattern in function of the eviction step.

Level1 8 7 6 5 4 3 2 1 -

Level2 7 6 5 4 3 2 1 - -

Level3 5 4 3 2 1 - - - -

Evicted path 9 8 7 6 5 4 3 2 1

171

Chapter 6

Conclusion

Work spares us from three evils: boredom,

vice, and need.

Voltaire

In this dissertation, we study the encrypted search problem and underline its considerable im-

portance for end-users. We have introduced existing solutions, identified many challenges in the

field, and proposed some possible solutions. Throughout this dissertation, we have been focusing

on two main cryptographic primitives, symmetric searchable encryption (SSE) and its generaliza-

tion to structured encryption (STE) and oblivious RAM (RAM) that both fulfill all of our main

security and efficiency requirements. We have demonstrated that, nevertheless, there exist several

inherent challenges to both STE and ORAM and proposed several contributions that enhance the

state of the art with respect to: expressiveness and efficiency. First, we improved STE expressive-

ness by proposing boolean, semantic and substring STE constructions. Second, we have improved

ORAM communication overhead by introducing a new recursive data structure that can replace tra-

ditional binary tree-based ORAM, we introduced the concept of resizability, and finally presented

a shuffle-free solution that can eventually enable better communication saving.

Encrypted search is a hot topic and there are still many dimensions to investigate. As our future

works, we continue along the same line of research and plan to propose: (1) the most optimal

boolean STE, (2) a secure solution for relational database encryption, (3) a substring search over

encrypted data with an obliviousness property, and (4) new efficient ORAM constructions.

Searching over encrypted data is a field that was introduced sixteen years ago. Researchers

have made amazing advances towards creating efficient, more secure constructions. We believe

that SSE constructions, by now, have reached some degree of maturity that will drive for real life

deployments. Many start-ups and companies started already using different versions of SSE and/or

PPE and other techniques to enable (somehow) searching over encrypted data.

172

Finally, with a long-term vision aiming to make SSE constructions available for developpers

and pratitioners, we have also started a new open source project, Clusion [83], that provides a new

encrypted search framework implementing most recent efficient SSE constructions. We hope that

this open source library will have a considerable impact on both academia and industry, with a

hope that it will be, in the near future, a reference for the encrypted search field.

173

Bibliography

[1] Always encrypted. https://msdn.microsoft.com/en-us/library/

mt163865.aspx.

[2] Always encrypted. https://cloud.google.com/bigquery/.

[3] Amazon web serivces. https://aws.amazon.com.

[4] Anthem data breach. https://en.wikipedia.org/wiki/Anthem_medical_

data_breach.

[5] Box. https://www.box.com.

[6] Dropbox. http://www.dropbox.com.

[7] Glass cubes. http://www.glasscubes.com/Collaborative.

[8] Google drive. https://www.google.com/drive.

[9] Hp public cloud. http://www.hpcloud.com/console.

[10] Ibm cloud. http://www.ibm.com/cloud-computing.

[11] JSci - A Science API for Java. Available at http://jsci.sourceforge.net/, Last

accessed 03/03/2016.

[12] Microsoft azure. http://azure.microsoft.com.

[13] Premera bluecross blueshield data breach. http://

www.forbes.com/sites/katevinton/2015/03/17/

11-million-customers-medical-and-financial-data-may-have-

been-exposed-in-premera-blue-cross-breach.

[14] Seeed. https://www.sics.se/sites/default/files/pub/

andreasschaad.pdf.

174

https://msdn.microsoft.com/en-us/library/mt163865.aspx
https://msdn.microsoft.com/en-us/library/mt163865.aspx
https://cloud.google.com/bigquery/
https://aws.amazon.com
https://en.wikipedia.org/wiki/Anthem_medical_data_breach
https://en.wikipedia.org/wiki/Anthem_medical_data_breach
https://www.box.com
http://www.dropbox.com
http://www.glasscubes.com/Collaborative
https://www.google.com/drive
http://www.hpcloud.com/console
http://www.ibm.com/cloud-computing
http://jsci.sourceforge.net/
http://azure.microsoft.com
http://www.forbes.com/sites/katevinton/2015/03/17/11-million-customers-medical-and-financial-data-may-have-
http://www.forbes.com/sites/katevinton/2015/03/17/11-million-customers-medical-and-financial-data-may-have-
http://www.forbes.com/sites/katevinton/2015/03/17/11-million-customers-medical-and-financial-data-may-have-
been-exposed-in-premera-blue-cross-breach
https://www.sics.se/sites/default/files/pub/andreasschaad.pdf
https://www.sics.se/sites/default/files/pub/andreasschaad.pdf

[15] Zimbra. https://www.zimbra.com.

[16] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. M. Lee, G. Neven,

P. Paillier, and H. Shi. Searchable encryption revisited: Consistency properties, relation to

anonymous IBE, and extensions. In V. Shoup, editor, Advances in Cryptology – CRYPTO

’05, volume 3621 of Lecture Notes in Computer Science, pages 205–222. Springer, 2005.

[17] Amazon. Amazon s3 pricing, 2014. http://aws.amazon.com/s3/pricing/.

[18] Anonymous. r-ORAM implementation, 2015. https://www.dropbox.com/s/

1tv04fgdxqgnoys/ORAM%20implementations.zip?dl=0.

[19] D. Apon, J. Katz, E. Shi, and A. Thiruvengadam. Verifiable Oblivious Storage. In Proceed-

ings of Public-Key Cryptography, pages 131–148, Buenos Aires, Argentina, 2014.

[20] A. Arasu, S. Blanas, K. Eguro, M. Joglekar, R. Kaushik, D. Kossmann, R. Ramamurthy,

P. Upadhyaya, and R. Venkatesan. Engineering security and performance with cipherbase.

IEEE Data Eng. Bull., 35(4):65–72, 2012.

[21] G. Asharov, M. Naor, G. Segev, and I. Shahaf. Searchable symmetric encryption: optimal

locality in linear space via two-dimensional balanced allocations. In Proceedings of the 48th

Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA,

USA, June 18-21, 2016, pages 1101–1114, 2016.

[22] F. Baldimtsi and O. Ohrimenko. Sorting and searching behind the curtain. In Financial

Cryptography and Data Security - 19th International Conference, FC 2015, San Juan,

Puerto Rico, January 26-30, 2015, Revised Selected Papers, pages 127–146, 2015.

[23] A. Beimel, Y. Ishai, E. Kushilevitz, and J.-F. Raymond. Breaking the o(n1/(2k-1)) barrier

for information-theoretic private information retrieval. In IEEE Symposium on Foundations

of Computer Science (FOCS ’02), pages 261–270, 2002.

175

https://www.zimbra.com
 http://aws.amazon.com/s3/pricing/
https://www.dropbox.com/s/1tv04fgdxqgnoys/ORAM%20implementations.zip?dl=0
https://www.dropbox.com/s/1tv04fgdxqgnoys/ORAM%20implementations.zip?dl=0

[24] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryp-

tion. In A. Menezes, editor, Advances in Cryptology – CRYPTO ’07, Lecture Notes in

Computer Science, pages 535–552. Springer, 2007.

[25] A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: a system for secure multi-party com-

putation. In ACM Conference on Computer and Communications Security (CCS 2008),

pages 257–266. ACM, 2008.

[26] A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill. Order-preserving symmetric encryption.

In Advances in Cryptology - EUROCRYPT 2009, pages 224–241, 2009.

[27] A. Boldyreva, N. Chenette, and A. O’Neill. Order-preserving encryption revisited: im-

proved security analysis and alternative solutions. In Advances in Cryptology - CRYPTO

’11, pages 578–595, 2011.

[28] A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption,

and efficient constructions without random oracles. In Advances in Cryptology - CRYPTO

’08, pages 335–359. 2008.

[29] D. Boneh, G. di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with

keyword search. In Advances in Cryptology – EUROCRYPT ’04, volume 3027 of Lecture

Notes in Computer Science, pages 506–522. Springer, 2004.

[30] D. Boneh and B. Waters. Conjunctive, Subset, and Range Queries on Encrypted Data. In

Proceedings of the 4th Theory of Cryptography Conference, Amsterdam, The Netherlands,

February 2007.

[31] R. Bost. Sophos - forward secure searchable encryption. IACR Cryptology ePrint Archive,

2016:728, 2016.

[32] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption

without bootstrapping. In Proceedings of the 3rd Innovations in Theoretical Computer Sci-

ence Conference, pages 309–325. ACM, 2012.

176

[33] K. Brown. Balls in bins with limited capacity, 2014. http://www.mathpages.com/

home/kmath337.htm.

[34] CALO Project. Enron Email Dataset. Available at http://www.cs.cmu.edu/

˜enron/, Last accessed 03/03/2016.

[35] G. Casella and R. Berger. Statistical inference. Duxbury advanced series in statistics and

decision sciences. Thomson Learning, 2002.

[36] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks against searchable

encryption. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-

munications Security, Denver, CO, USA, October 12-6, 2015, pages 668–679, 2015.

[37] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Dynamic

searchable encryption in very-large databases: Data structures and implementation. In Net-

work and Distributed System Security Symposium (NDSS ’14), 2014.

[38] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-scalable

searchable symmetric encryption with support for boolean queries. In Advances in Cryptol-

ogy - CRYPTO ’13. Springer, 2013.

[39] D. Cash, F. Liu, A. O’Neill, and C. Zhang. Reducing the leakage in practical order-revealing

encryption. IACR Cryptology ePrint Archive, 2016:661, 2016.

[40] D. Cash and S. Tessaro. The locality of searchable symmetric encryption. In Advances in

Cryptology - EUROCRYPT 2014, 2014.

[41] Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote encrypted

data. In Applied Cryptography and Network Security (ACNS ’05), volume 3531 of Lecture

Notes in Computer Science, pages 442–455. Springer, 2005.

[42] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In Advances in

Cryptology - ASIACRYPT ’10, volume 6477 of Lecture Notes in Computer Science, pages

577–594. Springer, 2010.

177

 http://www.mathpages.com/home/kmath337.htm
 http://www.mathpages.com/home/kmath337.htm
http://www.cs.cmu.edu/~enron/
http://www.cs.cmu.edu/~enron/

[43] M. Chase and S. Kamara. Structured encryption and controlled disclosure. IACR Cryptology

ePrint Archive, 2011:10, 2011.

[44] M. Chase and E. Shen. Substring-searchable symmetric encryption. PoPETs, 2015(2):263–

281, 2015.

[45] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval. Journal

of the ACM, 45(6):965–981, Nov. 1998.

[46] K.-M. Chung and R. Pass. A Simple ORAM. IACR Cryptology ePrint Archive, 2013:243,

2013.

[47] CNN. The Interview revenge hack cost Sony just $15m , 2016. http://money.cnn.

com/2016/09/22/technology/yahoo-data-breach/.

[48] J.-S. Coron, T. Lepoint, and M. Tibouchi. Scale-invariant fully homomorphic encryption

over the integers. In Public-Key Cryptography–PKC 2014, pages 311–328. Springer, 2014.

[49] G. D. Crescenzo and V. Saraswat. Public Key Encryption with Searchable Keywords Based

on Jacobi Symbols. In Proceedings of the 8th International Conference on Cryptology in

India, Chennai, India, December 2007.

[50] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption:

Improved definitions and efficient constructions. In ACM Conference on Computer and

Communications Security (CCS ’06), pages 79–88. ACM, 2006.

[51] D. Dachman-Soled, C. Liu, C. Papamanthou, E. Shi, and U. Vishkin. Oblivious network

RAM and leveraging parallelism to achieve obliviousness. In Advances in Cryptology -

ASIACRYPT 2015 - 21st International Conference on the Theory and Application of Cryp-

tology and Information Security, Auckland, New Zealand, November 29 - December 3, 2015,

Proceedings, Part I, pages 337–359, 2015.

178

http://money.cnn.com/2016/09/22/technology/yahoo-data-breach/
http://money.cnn.com/2016/09/22/technology/yahoo-data-breach/

[52] I. Damgard, S. Faust, and C. Hazay. Secure two-party computation with low communica-

tion. In Theory of Cryptography (TCC ’12), volume 7194 of Lecture Notes in Computer

Science, pages 54–74. Springer, 2012.

[53] I. Damgard, M. Geisler, M. Krøigaard, and J.-B. Nielsen. Asynchronous multiparty com-

putation: Theory and implementation. In Conference on Practice and Theory in Public Key

Cryptography (PKC ’09), pages 160–179. Springer, 2009.

[54] I. Damgard, Y. Ishai, M. Krøigaard, J.-B. Nielsen, and A. Smith. Scalable multiparty com-

putation with nearly optimal work and resilience. In Advances in Cryptology - CRYPTO

2008, pages 241–261, 2008.

[55] I. Damgard, S. Meldgaard, and J.-B. Nielsen. Perfectly secure oblivious RAM without

random oracles. In Theory of Cryptography Conference (TCC ’08), volume 6597, page 144,

2011.

[56] S. Devadas, M. van Dijk, C. Fletcher, L. Ren, E. Shi, and D. Wichs. Onion ORAM: A

Constant Bandwidth Blowup Oblivious RAM. IACR Cryptology ePrint Archive, 2015:5,

2015.

[57] C. Devet, I. Goldberg, and N. Heninger. Optimally robust private information retrieval. In

Proceedings of the 21th USENIX Security Symposium, Bellevue, WA, USA, August 8-10,

2012, pages 269–283, 2012.

[58] F. B. Durak, T. M. DuBuisson, and D. Cash. What else is revealed by order-revealing

encryption? IACR Cryptology ePrint Archive, 2016:786, 2016.

[59] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner. Rich queries

on encrypted data: Beyond exact matches. In Computer Security - ESORICS 2015 - 20th

European Symposium on Research in Computer Security, Vienna, Austria, September 21-25,

2015, Proceedings, Part II, pages 123–145, 2015.

179

[60] B. A. Fisch, B. Vo, F. Krell, A. Kumarasubramanian, V. Kolesnikov, T. Malkin, and S. M.

Bellovin. Malicious-client security in blind seer: A scalable private DBMS. In 2015 IEEE

Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages

395–410.

[61] C. Fletcher, L. Ren, A. Kwon, M. van Dijk, E. Stefanov, and S. Devadas. RAW Path ORAM:

A Low-Latency, Low-Area Hardware ORAM Controller with Integrity Verification. IACR

Cryptology ePrint Archive, 2014:431, 2014.

[62] C. W. Fletcher, M. Naveed, L. Ren, E. Shi, and E. Stefanov. Bucket ORAM: single

online roundtrip, constant bandwidth oblivious RAM. IACR Cryptology ePrint Archive,

2015:1065, 2015.

[63] S. Garg, P. Mohassel, and C. Papamanthou. TWORAM: round-optimal oblivious RAM with

applications to searchable encryption. IACR Cryptology ePrint Archive, 2015:1010, 2015.

[64] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.

[65] C. Gentry, K. Goldman, S. Halevi, C. Jutla, M. Raykova, and D. Wichs. Optimizing ORAM

and Using It Efficiently for Secure Computation. In Proceedings of Privacy Enhancing

Technologies, pages 1–18, 2013.

[66] E.-J. Goh. Secure indexes. Technical Report 2003/216, IACR ePrint Cryptography Archive,

2003. See http://eprint.iacr.org/2003/216.

[67] O. Goldreich. Towards a Theory of Software Protection and Simulation by Oblivious RAMs.

In Proceedings of the 19th Annual ACM Symposium on Theory of Computing –STOC, pages

182–194, New York, USA, 1987.

[68] O. Goldreich. The Foundations of Cryptography – Volume 2. Cambridge University Press,

2004.

[69] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In ACM

Symposium on the Theory of Computation (STOC ’87), pages 218–229. ACM, 1987.

180

http://eprint.iacr.org/2003/216

[70] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs.

Journal of the ACM, 43(3):431–473, 1996.

[71] M. Goodrich and M. Mitzenmacher. Privacy-preserving access of outsourced data via obliv-

ious RAM simulation. In International Colloquium on Automata, Languages and Program-

ming (ICALP ’11), pages 576–587, 2011.

[72] M. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Oblivious RAM simu-

lation with efficient worst-case access overhead. In ACM Workshop on Cloud Computing

Security Workshop (CCSW ’11), pages 95–100, 2011.

[73] M. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Privacy-preserving group

data access via stateless oblivious RAM simulation. In Proceedings of the Symposium on

Discrete Algorithms –SODA, pages 157–167, Kyoto, Japan, 2012.

[74] D. Gordon, J. Katz, V. Kolesnikov, T. Malkin, M. Raykova, and Y. Vahlis. Secure computa-

tion with sublinear amortized work. Technical Report 2011/482, IACR ePrint Cryptography

Archive, 2011. http://eprint.iacr.org/2011/482.

[75] W. He, D. Akhawe, S. Jain, E. Shi, and D. X. Song. Shadowcrypt: Encrypted web applica-

tions for everyone. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security, Scottsdale, AZ, USA, November 3-7, 2014, pages 1028–1039,

2014.

[76] J. Hsu and P. Burke. Behavior of tandem buffers with geometric input and markovian output.

Communications, IEEE Transactions on, 24(3):358–361, 1976.

[77] Y. H. Hwang and P. J. Lee. Public Key Encryption with Conjunctive Keyword Search and

Its Extension to a Multi-user System. In Proceedings of the 1st International Conference in

Pairing-Based Cryptography, Tokyo, Japan, July 2007.

181

http://eprint.iacr.org/2011/482

[78] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on searchable en-

cryption: Ramification, attack and mitigation. In Network and Distributed System Security

Symposium (NDSS ’12), 2012.

[79] S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Outsourced symmetric private

information retrieval. In ACM Conference on Computer and Communications Security (CCS

’13), pages 875–888, 2013.

[80] Y. Jia, T. Moataz, S. Tople, and P. Saxena. Oblivp2p: An oblivious peer-to-peer content

sharing system. In 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,

USA, August 10-12, 2016., pages 945–962, 2016.

[81] S. Kamara. Course 2950-v, 2016.

[82] S. Kamara and T. Moataz. Boolean searchable symmetric encryption with worst-case sub-

linear complexity, 2016.

[83] S. Kamara and T. Moataz. Clusion, 2016.

[84] S. Kamara and T. Moataz. SQL on structurally-encrypted databases. IACR Cryptology

ePrint Archive, 2016:453, 2016.

[85] S. Kamara and C. Papamanthou. Parallel and dynamic searchable symmetric encryption. In

Financial Cryptography and Data Security (FC ’13), 2013.

[86] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric encryption. In

ACM Conference on Computer and Communications Security (CCS ’12). ACM Press, 2012.

[87] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman & Hall/CRC, 2008.

[88] J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting

codes. In ACM Symposium on Theory of Computing (STOC ’00), pages 80–86, 2000.

[89] L. Kleinrock. Theory, Volume 1, Queueing Systems. Wiley-Interscience, 1975.

182

[90] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in) security of hash-based oblivious ram

and a new balancing scheme. In ACM-SIAM Symposium on Discrete Algorithms (SODA

’12), pages 143–156, 2012.

[91] E. Kushilevitz and R. Ostrovsky. Replication is NOT needed: SINGLE database,

computationally-private information retrieval. In IEEE Symposium on Foundations of Com-

puter Science (FOCS ’97), pages 364–373. IEEE Computer Society, 1997.

[92] I. Lazrig, T. Moataz, I. Ray, I. Ray, T. Ong, M. G. Kahn, F. Cuppens, and N. Cuppens-

Boulahia. Privacy preserving record matching using automated semi-trusted broker. In

Data and Applications Security and Privacy XXIX - 29th Annual IFIP WG 11.3 Working

Conference, DBSec 2015, Fairfax, VA, USA, July 13-15, 2015, Proceedings, pages 103–

118, 2015.

[93] Y. Lindell and B. Pinkas. A proof of security of yao’s protocol for two-party computation.

Journal of Cryptology, 22(2):161–188, 2009.

[94] Y. Lindell, B. Pinkas, and N. Smart. Implementing two-party computation efficiently with

security against malicious adversaries. In Proceedings of the 6th international conference

on Security and Cryptography for Networks (SCN ’08), pages 2–20, Berlin, Heidelberg,

2008. Springer-Verlag.

[95] H. Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communication. In Pro-

ceedings of Information Security Conference, pages 314–328, Singapore, 2005.

[96] A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computation on

the cloud via multikey fully homomorphic encryption. In Proceedings of the forty-fourth

annual ACM symposium on Theory of computing, pages 1219–1234. ACM, 2012.

[97] J. B. Lovins. Development of a stemming algorithm. Mechanical Translation and Compu-

tational Linguistics, 11:22–31, 1968.

183

[98] S. Lu and R. Ostrovsky. Distributed Oblivious RAM for Secure Two-Party Computation. In

TCC, pages 377–396, 2013.

[99] P. Majumder, M. Mitra, S. K. Parui, G. Kole, P. Mitra, and K. Datta. Yass: Yet another suffix

stripper. ACM Trans. Inf. Syst., 25(4), 2007.

[100] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay—a secure two-party computation

system. In USENIX Security Symposium, pages 20–20. USENIX Association, 2004.

[101] T. Mayberry, E.-O. Blass, and A. Chan. Efficient Private File Retrieval by Combining

ORAM and PIR. In Proceedings of the Network and Distributed System Security Sym-

posium, San Diego, USA, 2014.

[102] J. Mayfield and P. McNamee. Single n-gram stemming. pages 415–416, 2003.

[103] M. Melucci and N. Orio. A novel method for stemmer generation based on hidden markov

models. pages 131–138, 2003.

[104] X. Meng, S. Kamara, K. Nissim, and G. Kollios. GRECS: graph encryption for approximate

shortest distance queries. In Proceedings of the 22nd ACM SIGSAC Conference on Com-

puter and Communications Security, Denver, CO, USA, October 12-6, 2015, pages 504–517,

2015.

[105] T. Moataz, E.-O. Blass, and G. Noubir. Recursive Trees for Practical ORAM. In Proceedings

of Privacy Enhancing Technologies Symposium, pages 115–134, Philadelphia, USA, 2015.

[106] T. Moataz, N. Cuppens-Boulahia, F. Cuppens, I. Ray, and I. Ray. ELITE: zero links identity

management system. In Data and Applications Security and Privacy XXVIII - 28th An-

nual IFIP WG 11.3 Working Conference, DBSec 2014, Vienna, Austria, July 14-16, 2014.

Proceedings, pages 195–210, 2014.

[107] T. Moataz, B. Justus, I. Ray, N. Cuppens-Boulahia, F. Cuppens, and I. Ray. Privacy-

preserving multiple keyword search on outsourced data in the clouds. In Data and Ap-

184

plications Security and Privacy XXVIII - 28th Annual IFIP WG 11.3 Working Conference,

DBSec 2014, Vienna, Austria, July 14-16, 2014. Proceedings, pages 66–81, 2014.

[108] T. Moataz, T. Mayberry, and E.-O. Blass. Constant Communication ORAM with Small

Blocksize. In Proceedings of Conference on Computer and Communications Security, pages

862–873, 2015.

[109] T. Moataz, T. Mayberry, E.-O. Blass, and A. Chan. Resizable Tree-Based Oblivious RAM.

In Proceedings of Financial Cryptography and Data Security, pages 147–167, San Juan,

Puerto Rico, 2015. ISBN 978-3-662-47853-0.

[110] T. Moataz and A. Shikfa. Boolean symmetric searchable encryption. In 8th ACM Symposium

on Information, Computer and Communications Security, ASIA CCS ’13, Hangzhou, China

- May 08 - 10, 2013, pages 265–276, 2013.

[111] T. Moataz, A. Shikfa, N. Cuppens-Boulahia, and F. Cuppens. Semantic search over

encrypted data. In 20st International Conference on Telecommunications, ICT 2013,

Casablanca, Morocco, May 6-8, 2013, pages 1–5, 2013.

[112] M. Naveed. The fallacy of composition of oblivious RAM and searchable encryption. IACR

Cryptology ePrint Archive, 2015:668, 2015.

[113] M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on property-preserving en-

crypted databases. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, Denver, CO, USA, October 12-6, 2015, pages 644–655, 2015.

[114] M. Naveed, M. Prabhakaran, and C. Gunter. Dynamic searchable encryption via blind stor-

age. In IEEE Symposium on Security and Privacy (S&P ’14), 2014.

[115] K. Nayak, L. Ren, I. Abraham, and B. Pinkas. An Oblivious RAM with Sub-logarithmic

Bandwidth Blowup , 2016. IACR Cryptology ePrint Archive 849.

[116] R. Ostrovsky and V. Shoup. Private information storage. In ACM Symposium on Theory of

Computing (STOC ’97), pages 294–303, 1997.

185

[117] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G. Choi, W. George, A. D.

Keromytis, and S. Bellovin. Blind seer: A scalable private DBMS. In 2014 IEEE Sym-

posium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages

359–374, 2014.

[118] V. Pappas, M. Raykova, B. Vo, S. M. Bellovin, and T. Malkin. Private Search in the Real

World. In Proceedings of the 27th Annual Computer Security Applications Conference.

ACM, 2011.

[119] D. J. Park, K. Kim, and P. J. Lee. Public Key Encryption with Conjunctive Field Keyword

Search. In Proceedings of the 5th International Workshop in Information Security Applica-

tions, Jeju Island, Korea, August 2004.

[120] F. Peng, N. Ahmed, X. Li, and Y. Lu. Context sensitive stemming for web search. pages

639–646, 2007.

[121] B. Pinkas and T. Reinman. Oblivious ram revisited. In Advances in Cryptology – CRYPTO,

pages 502–519, Santa Barbara, USA, 2010.

[122] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. Cryptdb: protecting

confidentiality with encrypted query processing. In Proceedings of the 23rd ACM Sympo-

sium on Operating Systems Principles 2011, SOSP 2011, Cascais, Portugal, October 23-26,

2011, pages 85–100, 2011.

[123] D. Pouliot and C. V. Wright. The shadow nemesis: Inference attacks on efficiently deploy-

able, efficiently searchable encryption. In To appear in the 23rd ACM SIGSAC Conference

on Computer and Communications Security, 2016.

[124] M. Raykova, B. Vo, T. Malkin, and S. M. Bellovin. Secure Anonymous Database Search. In

Proceedings of the first ACM Cloud Computing Security Workshop, Chicago, Illinois, USA,

November 2009.

186

[125] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, and S. Devadas. Constants

Count: Practical Improvements to Oblivious RAM , 2014. IACR Cryptology ePrint Archive

997.

[126] S. E. Robertson, C. J. van Rijsbergen, and M. F. Porter. Probabilistic models of indexing

and searching. pages 35–56, 1980.

[127] E.-K. Ryu and T. Takagi. Efficient conjunctive keyword-searchable encryption. In Pro-

ceedings of the 21st International Conference on Advanced Information Networking and

Applications, pages 409–414, Niagara Falls, Canada, May 2007.

[128] E. Shi, J. Bethencourt, H. T. H. Chan, D. X. Song, and A. Perrig. Multi-Dimensional Range

Query over Encrypted Data. In Proceedings of the 28th IEEE Symposium on Security and

Privacy, pages 350–364, Berkley, California, USA, May 2007.

[129] E. Shi, T.-H. Chan, E. Stefanov, and M. Li. Oblivious ram with o((logn)¡sup¿3¡/sup¿) worst-

case cost. In Advances in Cryptology - ASIACRYPT ’11, pages 197–214. Springer-Verlag,

2011.

[130] D. Song, D. Wagner, and A. Perrig. Practical techniques for searching on encrypted data.

In IEEE Symposium on Research in Security and Privacy, pages 44–55. IEEE Computer

Society, 2000.

[131] E. Stefanov, C. Papamanthou, and E. Shi. Practical dynamic searchable encryption with

small leakage. In 21st Annual Network and Distributed System Security Symposium, NDSS,

2014, San Diego, California, USA, February 23-26, 2014, 2014.

[132] E. Stefanov and E. Shi. Multi-cloud oblivious storage. In 2013 ACM SIGSAC Conference on

Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013,

pages 247–258, 2013.

187

[133] E. Stefanov and E. Shi. Oblivistore: High performance oblivious distributed cloud data

store. In 20th Annual Network and Distributed System Security Symposium, NDSS 2013,

San Diego, California, USA, February 24-27, 2013, 2013.

[134] E. Stefanov, E. Shi, and D. Song. Towards practical oblivious RAM. In Network and

Distributed System Security Symposium (NDSS ’12, 2012.

[135] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path oram:

An extremely simple oblivious ram protocol. In ACM Conference on Computer and Com-

munications Security (CCS ’13), 2013.

[136] M. Strizhov and I. Ray. Multi-keyword similarity search over encrypted cloud data. In ICT

Systems Security and Privacy Protection - 29th IFIP TC 11 International Conference, SEC

2014, Marrakech, Morocco, June 2-4, 2014. Proceedings, pages 52–65, 2014.

[137] P. Wang, H. Wang, and J. Pieprzyk. Keyword Field-Free Conjunctive Keyword Searches on

Encrypted Data and Extension for Dynamic Groups. In Proceedings of the 7th International

Conference, Cryptology and Network Security, Hong-Kong, China, December 2008.

[138] P. Williams and R. Sion. Usable pir. In Proceedings of the Network and Distributed System

Security Symposium, San Diego, USA, 2008.

[139] P. Williams, R. Sion, and B. Carbunar. Building castles out of mud: practical access pat-

tern privacy and correctness on untrusted storage. In ACM Conference on Computer and

Communications Security (CCS ’08), pages 139–148, 2008.

[140] P. Williams, R. Sion, and A. Tomescu. PrivateFS: A parallel oblivious file system. In

Proceedings of the 2012 ACM conference on Computer and communications security, pages

977–988. ACM, 2012.

[141] J. Xu and W. B. Croft. Corpus-based stemming using cooccurrence of word cariants. ACM

Trans. Inf. Syst., 16(1):61–81, 1998.

188

[142] Y. Zhang, J. Katz, and C. Papamanthou. All your queries are belong to us: The power of file-

injection attacks on searchable encryption. In 25th USENIX Security Symposium, USENIX

Security 16, Austin, TX, USA, August 10-12, 2016., pages 707–720, 2016.

189

	Abstract to.44em.
	Acknowledgements to.44em.
	Dedication to.44em.
	List of Tables to.44em.
	List of Figures to.44em.
	Introduction
	Research contributions
	SSE contributions
	ORAM contributions
	Ongoing Work
	Dissertation Outline.
	Research Challenges and Background
	Research dimensions
	Searchable Encryption
	Oblivious RAM
	Scheme Definitions
	Setting definition
	Structured Encryption (STE)
	Tree-based Oblivious RAM
	Security Definitions
	STE security definition
	ORAM security definition
	Cryptographic Primitives
	Related Works
	Searchable Encryption
	Oblivious RAM
	Expressiveness in Symmetric Searchable Encryption
	BSSE: Boolean SSE
	Contribution Summary
	BSSE construction
	Security Analysis
	BSSE Performance
	3SE: Semantic SSE
	Contribution Summary
	Stemming Algorithms
	Semantic SSE: Construction Overview

	SED: Substring SSE
	Contribution Summary
	Substring search over Encrypted Data - Pre-construction
	Substring Search Over Encrypted Data #1 – SED-1
	Substring Search Over Encrypted Data #2 – SED-2
	Security analysis for SED-2
	SED-2 Generalization
	Performance Analysis

	Oblivious RAM
	Resizable ORAM
	Motivation and Findings
	Resizable ORAM
	Adding
	Pruning
	Recursive ORAM
	Contribution Summary
	 Recursive Binary Trees
	-ary Trees
	Security Analysis
	Performance Analysis

	Constant bandwidth ORAM
	Contribution Summary
	Background: Onion ORAM
	Constant Communication ORAM
	C-ORAM analysis
	Evaluation

	Conclusion
	References

