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Abstract—In this paper, we use the theory of generalized likeli-
hood ratio tests (GLRTs) to adapt thematched subspace detectors
(MSDs) of [1] and [2] to unknown noise covariance matrices. In
so doing, we produceadaptiveMSDs that may be applied to signal
detection for radar, sonar, and data communication. We call the re-
sulting detectorsadaptive subspace detectors(ASDs). These include
Kelly’s GLRT and the adaptive cosine estimator (ACE) of [6] and
[19] for scenarios in which the scaling of the test data may deviate
from that of the training data. We then present a unified analysis
of the statistical behavior of the entire class of ASDs, obtaining sta-
tistically identical decompositions in which each ASD is simply de-
composed into the nonadaptive matched filter, the nonadaptive co-
sine or -statistic, and three other statistically independent random
variables that account for the performance-degrading effects of
limited training data.

Index Terms—Adaptive signal detection, adaptive subspace de-
tector, data communication, matched subspace detector, radar de-
tection, sonar detection.

I. INTRODUCTION

OUR AIM in this paper is to adapt the four matched sub-
space detectors (MSDs) of [1] and [2] to unknown noise

covariance in order to produceadaptive subspace detectors
(ASDs) that may be applied to signal detection for radar, sonar,
and data communication. Whenever we speak of an MSD
problem, we assume that the noise covariance matrixis
known. When we speak of an ASD problem, we assume the
covariance matrix is unknown and is estimated from training
data.

There are four (nonadaptive) matched subspace detectors that
form the basis for the adaptive subspace detectors of interest
to us here. They arise from two types of generalizations of the
matched filter detector. First, the inner product of the matched
filter may be generalized to a projection of the measurement
onto a higher dimensional signal subspace, thus producing a
subspacedetector [2]. Second, the detector may be normalized
by an estimate of the noise power to make it have a constant
false alarm rate (CFAR) with respect to the noise power. The
four detectors are thus
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1) thecoherent MSD(i.e., matched filter), which is a nor-
mally distributed statistic that detects coherent signals
by resolving the inner product of the measurement and
signal;

2) the MSD, which is a statistic that detects subspace
signals (including noncoherent signals) by computing the
energy of the measurement in the signal subspace;

3) thecoherent CFAR MSD, which is a or “cosine” statistic
that detects coherent signals in noise of unknown vari-
ance by resolving the cosine of the angle the measurement
makes with the signal;

4) the CFAR MSD, which is an or “cosine-squared”
statistic that detects subspace signals (including non-
coherent signals) in noise of unknown variance by
measuring the fraction of energy the measurement has in
the signal subspace.

Each of the resulting four detectors is a GLRT for a concrete
problem, and each is UMP-invariant, uniformly most powerful
over the entire class of detectors invariant to an appropriate
transformation group. This was one of the main points of [2],
namely, that the GLRTs have the same invariances as the UMP-
invariant tests of [1], and therefore, they inherit the optimality
properties of the UMP-invariant tests for an interesting class of
multivariate Gaussian detection problems.

All of these detectors are compelling. They have clearly
stated optimalities and invariances, and they have evocative
geometrical interpretations. The MSDs use extra knowledge
of the noise variance for some performance gain against the
CFAR MSDs, which do not assume this knowledge (the gain
is slight unless the SNR exceeds the measurement dimension).
On the other hand, the CFAR MSDs (or “cosine” statistics)
compensate for this lack of knowledge by providing an extra
invariance to data scaling, a property that the MSDs do not
have. A consequence of this invariance is that the CFAR
MSDs are CFAR over the whole class of elliptically contoured
distributions (a result that is obvious for the special case of
compound-Gaussian noise, multivariate Gaussian with random
amplitude scaling; see Section II). The scale invariance sacri-
fices some high-SNR performance gain in return for robustness
to tenuous and changeable prior information about channel
noise variances, filter gains, and noise statistics.

The MSDs and CFAR MSDs all assume prior knowledge of
noise covariance matrices. However, this information is often
not known, meaning that, in practice, it must be estimated and
then used correctly in an adaptive detector. In this paper, we
address this problem by adapting the MSDs and CFAR MSDs
to unknown noise covariance in order to derive ASDs and CFAR
ASDs. To adapt the MSDs, we appeal to the fundamental results
of Kelly [5] on GLRTs, and to adapt the CFAR MSDs, we use
the results of [6].

1053–587X/01$10.00 © 2001 IEEE
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In order to clarify the adaptive problems we are studying and
to establish the meaning of the abbreviations we use, we offer
the following taxonomy of adaptive problems and detectors.

1) Thecoherent ASDis the adaptive GLRT generalization
of the coherent MSD, wherein the training data for esti-
mating the unknown covariance matrix is scaled the same
as the test data.

2) The ASD is the adaptive GLRT generalization of the
MSD, and it equals the Kelly GLRT [5], wherein the
training and test data are scaled the same.

3) Thecoherent CFAR ASDis the adaptive GLRT general-
ization of the coherent CFAR MSD, and it is used for de-
tecting a coherent signal when the training data is not con-
strained to be scaled the same as the test data.

4) TheCFAR ASDis the adaptive GLRT generalization of
the CFAR MSD, wherein the training and test data are
not constrained to be uniformly scaled, and it equals the
adaptive cosine/coherence estimator (ACE) of [7], [8],
and [29].

In the nomenclature of the nonadaptive detection literature,
“CFAR” is with respect to noise level or variance in the test
data. In the adaptive detection literature (see, e.g., [9] and [10]),
“CFAR” is with respect to the noise covariance, assumed to
be uniform over test and training data. Retaining the assump-
tion that the noise is uniform in covariance structure, we say
a detector is “CFAR” when it is insensitive to variation in the
overall scale. In other words, we allow the noise level to vary
between training and test data with covarianceand , re-
spectively. We mean “CFAR” with respect to both the shared
noise covariance structure and independent scaling of the
noise in the test data. This generalizes the meaning of “CFAR”
in both the nonadaptive and adaptive detection literature, where
“CFAR” is respect to a presumed noise level or shared covari-
ance between test and training data, respectively.

The CFAR ASDs have the remarkable property that they are
just the “sample versions” of their corresponding CFAR MSD’s,
with a known covariance replaced by the sample covariance

. The coherent ASD and the ASD arenot sample versions of
their corresponding MSDs. However, these two ASDs may be
approximated as in [9] and [10] to obtainadaptive matched fil-
ters(AMFs). Thecoherent AMFis the sample version of the co-
herent MSD and theAMF is a sample version of the MSD. The
AMFs arenot GLRTs, but they may be used when the training
and test data are scaled uniformly.

In the following treatment of matched and adaptive subspace
detectors, we compare and contrast invariances and perfor-
mances. Under ideal conditions, the coherent ASD and ASD
typically outperform the coherent CFAR ASD and CFAR ASD,
although the performance gain is small for low SNR and small
sample support. However, the CFAR ASDs enjoy an extra
invariance with respect to data scaling that makes them robust
against system gains and deviations from the standard Gaussian
model. Consequently, we expect the CFAR ASDs to find
application in radar, sonar, data communication, time series
analysis, and array processing, where this extra invariance to
scaling will be desirable for operations in channels and systems
with variable gains or non-Gaussian statistics. This point will
be developed more fully in the sections to follow.

We conclude the paper with identical statistical decomposi-
tions for the ASDs, AMFs, and CFAR ASDs. These decomposi-
tions allow us to gain insight into the structure of adaptive detec-
tion statistics by decomposing them in terms of their nonadap-
tive counterparts and corruptive noise terms attributable to finite
training-data support. They also allow us to quantitatively char-
acterize the random effects of adaptation, simplify Monte-Carlo
simulations, more simply derive exact distributions, and com-
pute receiver operating characteristic (ROC) curves.

II. PROBLEM OF DETECTINGA SUBSPACESIGNAL

The problems we study are these. The parameterlocates a
signal in the signal subspace of dimension
. That is, , which is the linear space of ( )

complex matrices. This signal is scaled by, and the channel
adds scaled noise to the signal to produce the measure-
ment , which is distributed as ,
where denotes the complex-normal density of the-di-
mensional complex measurement. The problem is to test hy-
potheses about the parameter, indicating presence or absence
of the signal, under various assumptions about the parameters

, , , and .
Throughout our developments, we define the whitened signal

mode matrix and the whitened measurementas follows:

and (1)

Then, when the detectors are written in terms of whitened vari-
ables, these relations may be used to express the detectors in the
original coordinates.

Whenever we refer to the “rank-1 case,” we are discussing
the situation where the dimension of the signal subspaceis
1. We denote this one-dimensional (1-D) complex subspace by

, where . In this case, the parameteris the complex
phase term , and the signal is the phased vector

. The whitened signal vector is then .
The matched subspace detection problem is as follows.
Measure , with the signal modes ,

and the noise covariance known. Depending on the problem
specification, the noise variance and the location parameter

may be known or unknown. Test the hypothesis:
(noise only) versus the alternative : (signal plus noise).

Throughout this paper, we use the notationto mean “is
distributed as.”

A. MSD for Coherent Detection

A coherent signal can be written as . In
the matched subspace problem forcoherentdetection, the noise
variance and the location parameterare both known. When

is completely known, then both and are known, which
is the coherent rank-1 case. A slight modification of standard
results (see, for example, [1] and [2]) produces the MSD for
coherent detection:

Re (2)
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where is the whitened matched-filter statistic

(3)

In the original coordinates, this has the form

(4)

Thus, the whitened matched filter statistic is complex normal,
with noncentrality parameter

which is the output “voltage” SNR (which equals signal-to-
noise ratio when squared). This means the detector statistic
is an unbiased estimator of the output voltage SNR, where the
estimator may be thought of as

Re Re (5)

where is the unbiased, maximum-likelihood estimator of the
signal level under . We call this an SNR representation for

. This detector resolves the whitened measurementin the
whitened signal subspace. The statistic is invariant to transla-
tion of in the perpendicular subspace .

B. MSD for Subspace Detection

In the matched subspace detection problem for noncoherent
detection, the noise variance is known, but the location pa-
rameter is unknown. The MSD for noncoherent detection is
[1], [2]

(6)

where is the matched subspace detector statistic

(7)

and is the orthogonal projection onto the subspace:
. In this formula, denotes the density

for a noncentral complex chi-squared (or gamma) random vari-
able. By this, we mean a chi-squared random variable, scaled
by , with complex degrees of freedom (or real degrees
of freedom), and with a noncentrality parameter .
Thus, by measuring the energy in the whitened signal
subspace , the detector is estimating the output SNR

. It does this by estimating

as , where
is the pseudo-inverse of. This gives the unbiased, maximum-
likelihood estimate of , which is then squared to estimate
the output SNR. Alternatively, we can write the noncoherent
MSD statistic in its SNR representation as

(8)

This detector resolves the energy of the measurementthat lies
in the whitened signal subspace . This energy is invariant to
rotation of the measurement in the signal subspaceand to
translation in the perpendicular subspace .

C. CFAR MSD for Coherent Detection

In the CFAR matched subspace detection problem forco-
herentdetection, the location parameteris known, but the
noise variance is unknown. The CFAR MSD for coherent
detection is

Re (9)

where is the “cosine” form of the coherent CFAR MSD [1],
[2]:

(10)

The square of the statistic has a noncentral beta distribution,
which is beta under . The statistic is a monotone function
of the CFAR MSD in its form [1], [2]. That is

(11)

where is a complex -distributed statistic

(12)

In this formula, denotes a -distribution with
complex degrees of freedom and with a noncentrality

parameter . This so-called -form of the
CFAR MSD for coherent detection uses the estimate

in place of the unknown scaling

. The -form of this statistic estimates the output voltage SNR

, by estimating both and :

Re

Re

(13)

where is an unbiased estimate of the noise level. The co-
sine form measures the cosine of the angle that the test vector
makes with the signal vector (see [1, p. 141]. This angle is
invariant to rotation in the subspace and to scaling of the
test vector.
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D. CFAR MSD for Subspace Detection

In the CFAR matched subspace detection problem for nonco-
herent detection, the location parameterand the noise variance

are both unknown. The CFAR MSD is [1], [2]

(14)

where is the cosine-squared form of the noncoherent CFAR
MSD:

(15)

This statistic has a noncentral beta distribution, which is com-
plex central beta under . It may be written in terms of an

-statistic by constructing the monotone function

(16)

where

(17)

In this formula, denotes an -distribution with
and degrees of freedom and noncentrality parameter

. This -form of the detector statistic uses the

estimator in place of the unknown .
By measuring the ratio of energies per dimension, in the signal
subspace and the orthogonal subspace , the detector
estimates the output SNR .
It does this by estimating as , and as

. Alternatively, we can write the noncoherent
CFAR MSD statistic in the SNR representation

(18)

The form estimates the squared direction cosine between
the measurement and the signal subspace , as illustrated
in Fig. 1. This direction cosine is invariant to rotations in
and , and to scaling of the measurement, as illustrated.

E. Summary and General Comments

There are four detectors of interest for detecting subspace
signals, which establish the basis for the adaptive detectors of
the next section. They are summarized in Table I. The “CFAR”
detectors were obtained in [1] and [11] as UMP-invariant de-
tectors and are invariant to scaling of the test data. They were
rederived in [2] as generalized likelihood ratio tests by incor-
porating maximum-likelihood estimates for the noise standard
deviation, i.e., by estimating the scaling of test data. The nonco-
herent, rank-1 CFAR MSD was obtained in [12] and [13] as an
asymptotic GLRT when the scaling of the test measurement is
treated as a random parameter, i.e., under compound-Gaussian
noise (multivariate-Gaussian with random amplitude scaling).
Compound Gaussian noise is a special case of “elliptically con-
toured” (EC) random vectors, whose distribution depends on the

Fig. 1. Geometry and invariancesof the CFAR matched subspace detector
(CFAR MSD) for noncoherent detection. The statistic is invariant to
transformationsg(z) that include scaling and rotations in the subspacesh�i
andh�i .

measurement only through the quadratic form . Then,
contours of constant probability density forare ellipsoids, and
contours of the density for are spheres, meaning
that is a spherically invariant random vector.

A result from the study of spherically invariant distributions
is that the (or cosine-squared) and(or cosine) statistics
presented in this section have thesamedistribution for any
zero-mean EC distribution on and are therefore CFAR
across the class of such distributions (see, for example, [14,
pp. 38–39]). This result is a consequence of the scale-in-
variance property of these statistics; that is, a zero-mean
elliptical random vector has the stochastic representation

, where means “equal in distribution to,”
is uniformly distributed on the -dimensional unit spherical

shell ( ), and incorporates the radial dependence
that distinguishes different EC distributions (see, for example,
[15, p. 55–57]). Any scale-invariant statistic will not depend
on and will thus be distribution free within the class of
zero-mean EC distributions on(note that this is not true of
the and statistics). This point is critical and not widely
appreciated in the detection literature; with the CFAR MSDs,
a given threshold will give the same the probability of false
alarm for any multivariate density with ellipsoidal contours
parameterized by constant . The density could
be Gaussian, compound-Gaussian, uniform on an ellipsoid,
multivariate-Cauchy, etc.

Richmond uses this type of scale invariance argument to show
that theadaptiveKelly GLRT (ASD) and AMF statistics are dis-
tribution free under over a whole class of EC distributions
on the test and training data [15, p. 70], in which the concate-
nated vector consisting of stacked training and test data vectors
is EC distributed, meaning that these vectors are uncorrelated
but statistically dependent. He uses the fact that the ASD and
AMF are invariant to uniform scaling of the test and training
data. Richmond’s argument can also be applied to the adaptive
cosine (ACE) statistic of the next section because it has this in-
variance, in addition to being more generally invariant to inde-
pendent scaling of test and training data.
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TABLE I
TAXONOMY OF RESULTS FORMATCHED SUBSPACEDETECTORS

III. PROBLEM OF ADAPTIVELY DETECTING A SUBSPACE

SIGNAL

How does one make the MSDs and CFAR MSDs of the pre-
vious section adaptive to unknown covariance structurein
order to derive ASDs and CFAR ASDs? To make this ques-
tion meaningful, we must be clear about the assumptions under
which the detector is applied. There are many variations on the
experiment we describe, and each produces a different detector.
We will depart slightly, but significantly, from Kelly’s lead [5]
and design the experiment as follows.

A sequence of independent and identically distributed
trainingvectors , , each distributed as ,
is measured in the training phase of the experiment. In the
detection phase, a statistically independenttest vector

is measured, and from it, the hypothesis
: (noise only) is tested against the alternative:

(signal plus noise).
In this experiment, we generalize Kelly’s original experiment

by allowing the covariance matrix for the test vector, namely
, to differ by a scale constant from the covariance ma-

trix for the training data . This generalization produces new
adaptive detectors, with extra invariances that Kelly’s detector
[5], and its derivative AMF forms [9], [10], do not have.

We organize the training vectors into the data matrix
and call the compositemeasurement. The

joint density function for the composite measurement, under the
alternative , is then

(19)

Under , the density is . The den-
sity may be rewritten as

(20)

where is the compositesamplecovariance matrix con-
structed from both the training and test data:

(21)

(22)

In the section to follow, we extend the GLRT methodologies of
[2], [5], and [6] to determine the GLRT tests

(23)

where the carets denote the generalized likelihood ratios that re-
sult from maximizing the likelihood with respect to parameters
which are unknown, such as, , , and .

When the noise scaling is assumed to be known, this
GLRT procedure yields coherent andmultirank versions of
the noncoherent detector of Kelly [5]. These detectors are
not sample-matrix versions of the coherent MSD and MSD,
meaning that a sample covariance does not simply replace a
known covariance in the detector statistic. However, when
is unknown, maximizing the likelihood functions over this ad-
ditional parameter yields CFAR ASDs thatare sample-matrix
versions of the CFAR MSDs [6]. Thus, we have the remarkable
fact that the CFAR ASDs retain thesame formas the CFAR
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MSDs when is unknown. We proceed case by case to outline
these results.

In our discussion of the GLRT, we will find that the following
approximatelywhitened signal modes, whitened signal vector

, and measurementarise naturally in the theory:

and

(24)

A. ASD for Coherent Detection

The adaptive subspace detection problem for coherent detec-
tion is the MSD problem outlined in Section II-A, with the mod-
ification that the noise covariance matrixis unknown. When
the maximum-likelihood estimates ofare used (under and

), together with the maximum-likelihood estimate of(con-
strained to be real and positive), the resulting generalized like-
lihood ratio (GLR) is [6]

Re
(25)

Constructing a monotonic function of this gives the GLRT

Re (26)

where is the ASD statistic for coherent detection

(27)

where we have set the known parameterequal to unity to be
consistent with the adaptive detection literature. This statistic
may also be written as a monotone function of, which is de-
fined through

(28)

Then, an alternate representation for the coherent ASD is

Re

Re (29)

where we employ the double-hat notation to indicate that
is anadaptiveestimator of the signal amplitudeaffected by
the training data. The quadratic form would be propor-

tional to the maximum-likelihood estimator of the relative noise
scaling were not constrained to be unity (we will discuss
this further in Section III-C).

The coherent ASD statistic extends Kelly’s detector [5] to
coherent problems. It is not quite thesample-matrixdetector that
one obtains by just replacing with in (4). However, it does

become this detector if the denominator term is well
approximated by . Then, it generalizes the “adaptive matched
filter” (AMF) of [9], [10] to coherent problems, as follows:

(30)

The detector resolves the projection of the adaptively whitened
measurement in the adaptively whitened signal subspace.
The interpretation and invariances remain those of Section II-A.

B. ASD for Subspace Detection

The adaptive MSD problem for noncoherent detection is the
problem outlined in Section II-B, with the modification that the
noise covariance matrix is unknown. The maximum-likeli-
hood estimates of (under and ), and the product ,
yield the GLR [6]

(31)

A monotone function of this gives the GLRT

(32)

where is the ASD statistic for noncoherent detection

(33)

In terms of , this statistic has the SNR representation

(34)

This detector generalizes Kelly’s test [5] to multidimensional
subspaces [16], [17] and when the denominator is well-approx-
imated by it generalizes the AMF of Robeyet al. [10] and
Chen and Reed [9] to multidimensional subspaces [15], [18]

(35)

The AMF measures the energy ofin the subspace . The
interpretations and invariances remain those of Section II-B.

C. CFAR ASD for Coherent Detection

The CFAR ASD problem for coherent detection is the
problem outlined in Section II-C, with the modification that the
noise covariance matrix is unknown. The maximum-likeli-
hood estimates of and (under and ), as well as
(constrained to be real and positive), yield the GLR [6]

Re
(36)

A monotone function of this gives the GLRT

Re (37)
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where is the CFAR ASD statistic for coherent detection:

(38)

This detector generalizes the detector of [12] and [19] to co-
herent problems. It is just the “sample-matrix” version of the
coherent CFAR MSD detector, and itsversion is the sample
version of

(39)

This statistic may be written as

Re

(40)
where is anadaptiveestimator of the signal amplitude. The
quadratic form is the maximum-

likelihood estimate of under , which is inserted into the
likelihood-ratio to obtain the CFAR ASD, or ACE detector, as
a GLRT in [6]. The interpretation and invariances remain those
of Section II-C.

D. CFAR ASD for Subspace Detection

The CFAR ASD problem for noncoherent detection is the
problem outlined in Section II-D, with the modification that the
noise covariance matrix is unknown. The maximum-likeli-
hood estimates of and (under and ), and the product

, yield the GLR [6]

(41)

A monotone function of this gives the GLRT

(42)

where is the CFAR ASD statistic for noncoherent detection

(43)

This detector generalizes the ACE of [12] and [19] to multidi-
mensional subspaces. It is just the sample version of the CFAR
MSD, and its version is just the sample version of

(44)

This statistic may be rewritten in its SNR form as

(45)

The interpretation and invariances remain those of Fig. 1.

E. Summary and Taxonomy

The results for ASDs and CFAR ASDs are summarized in
Table II. This time, the noise structure is unknown. Each of
the ASD and CFAR ASD detectors is a GLRT. The CFAR ASDs
are sample versions of their CFAR MSD counterparts and thus
enjoy the same invariances. The approximations to the ASDs,
which are termed “adaptive matched filters” (AMFs) to be con-
sistent with the terminology of [10], are not GLRT. However,
they are sample versions of their MSD counterparts.

The ASD and AMF statistics are invariant to the transforma-
tion group , where is a positive scalar
for the coherent detectors, complex for the subspace detectors,
meaning the test and training data may be scaledidentically
without changing these statistics. In contrast, the CFAR ASD
statistics are invariant to the transformation group

, which means the training data and the test data may
be scaleddifferentlywithout affecting them. This is the key point
when comparing ASDs, AMFs, and CFAR ASDs.

IV. STOCHASTIC REPRESENTATIONS FORMULTIRANK

ADAPTIVE SUBSPACEDETECTORS

In this section, we will analyze how the ASDs in Section III
are distributed by using statistically identical decompositions
[3]. Using this approach, it is possible to represent any one of the
adaptive detectors in Table II as a simple function of the same
set of five independent random variables. We will carry out our
derivation, in detail, for the AMF, when the signal subspace
has dimension. For this analysis, we make use of insights ob-
tained from a similar, and simpler, analysis of the rank-1 case in
[3] and [4]. To compare the robustness of the adaptive statistics,
their distribution is analyzed in the general case where the mea-
surement has covariance , even though is assumed to
be unity in the standard derivations of the ASD and AMF detec-
tion statistics.

The derivation of statistical decompositions for the multirank
ASD, AMF, and CFAR ASD can be outlined in six steps. The
first four steps are analogous to those presented in [3] and [4]
for the rank-1 detectors.

1) Apply the whitening transformation to the
training and test data to generate the transformed signal
modes and test vector .

2) Next, apply a unitary transformation to rotate to a coordi-
nate system in which the first basis vectors are set
in the direction of and , where is the number of
signal modes or columns of .

3) Resolve the inverse of the sample covariance matrix
onto the subspace .

4) Perform a change of variables on the elements of the re-
sulting covariance matrix so that these
variables are nowstatistically independent.

For the 1-D case, where , the procedure terminates here.
For higher rank ASDs, these steps must be followed by two
more steps: 5) rotation and 6) matrix partitioning. Those less
interested in the details of the derivation may wish to skip to
(62).

The analysis will be based on the statistical behavior of the
samplecorrelation matrix , where the
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TABLE II
TAXONOMY OF RESULTS FORADAPTIVE SUBSPACEDETECTORS. NOTE THAT THE LOWER FOUR PANELS HAVE THE SAME FORM AS THOSE OFTABLE I, WITH S

REPLACINGR. THE UPPERTWO PANELS ARE GENERALIZATIONS OF THEKELLY DETECTOR[5]. ALL FOUR ASDS ARE GLRTS. THE AMFS ARE NOT

training dataused to build is complex Gaussian distributed as
. Then, the scaled covariance estimate

has a complex Wishart distribution

where

(46)

This puts the noncoherent AMF statistic into the normalized
form

(47)

Throughout the derivation, we will follow the lead of Reedet al.
[20] by making use of the following theorem mentioned in [21]:
If and is nonsingular, then

. We will also make use of
the following theorem, which describes how to construct statis-
tically independent random matrices from partitioned Wishart
matrices.

A. Partitioned Wishart Matrices

Theorem 1: Consider the whitened random vector
, which we partition as ,

where and . Now, suppose we construct a data
matrix consisting of realizations

of . Partition the Wishart matrix
as follows:

(48)

Then, the following change of variables produces random ma-
trices that arestatistically independent

(49)

and are Wishart with and degrees of
freedom, and is a matrix with complex normal columns.

This can be verified by substituting the change of variables
into the density of (48) and computing the Jacobian of the trans-
formation by using the techniques employed in [20], for ex-
ample. Then, the joint density of , , and is

(50)
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The interpretation of this is as follows. The data matrices
and are uncorrelated (and because they are Gaussian, statis-
tically independent). Further, we can apply the following pro-
jection operator to the rows of , which projects onto the row
space of : . This allows us to decom-
pose as a superposition of two parts ( ), where
is asampleversion of the Wiener-filter estimator of , and
is the residual adaptive error

(51)

where and are the adaptive estimators of and
, respectively. Then

gives the adaptive estimate of the error covari-
ance, and gives the estimate of . The
remaining matrix can be attributed to by con-
structing the unitary transformation ,
where , and . Then,

. (Theorem 1
is a little more general than the standard theorem on Schur
complements of Wishart matrices in its treatment of the matrix

. It generalizes to arbitrary , but the case is all that
is needed for the results of this paper. Please note thatand
are used differently in this section than in the rest of this paper.)

B. Step 1: Whitening

We now return to (47) and apply a series of trans-
formations to simplify its form. The whitening transfor-
mation generates the transformed signal modes

, test vector , and whitened sample covariance matrix
. The multirank

AMF can now be written as

(52)

C. Step 2: Rotation Into the Signal and Measurement Subspace

Next, we rotate into a new coordinate system by applying the
unitary transformation

(53)

where , and . In the new coordinate
system, the signal matrix determines the direction of the
first basis vectors: .
The th basis vector is determined by that part of
the test vector that does not lie in the signal basis; there-
fore, the rotated test vector has only
nonzero components: .
These vectors are illustrated in Fig. 2. The vector

is
the same vector that arises in the (nonadaptive) MSD statistic:

. The component contributes to the estimated

noise scaling, that is, is an estimate of

Fig. 2. The rotation into the signal and measurementsubspaceU sets the first
p+ 1 basis vectors in the directions of� andP z.

. Then, has a complex chi-squared distribution
with degrees of freedom: . Note that the
ratio is the -test version of
the CFAR MSD in (17):

The transformed sample covariance is
also an estimate of identity and is Wishart distributed as

. In this new coordinate system, the
multirank AMF statistic is

D. Step 3: Partitioning the Covariance Matrix

Since the signal and test vectors in the new coordinate system
have, at most, nonzero components, we are really only
concerned with the upper left block of .
We partition as

(54)

and use Theorem 1 to identify as a
Wishart distributed block, with reduced degrees
of freedom, .

The multirank AMF can now be written in terms of the
Wishart matrix

(55)
where contains the first elements of ,

and .
We now apply Theorem 1 for a second time to identify the

upper-left block of
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where .
Then, we can write the multirank AMF as the quadratic form

(56)

E. Step 4: Transformation to Independent Covariance
Coefficients

While is an estimate of identity, the covariance partitions
( , , ) are not independent, as can be seen from the
Wishart distribution of . However, application of Theorem 1
generates new variables (, , ) that are statistically inde-
pendent:

(a matrix)

(a vector)

(a scalar) (57)

This gives the following representation for the multirank
AMF as a quadratic form in the Wishart matrix:

(58)

where and are Rayleigh-distributed random vari-
ables (square-root of a chi-squared).

F. Step 5: Another Rotation

For 1-D subspaces with , the stochastic representa-
tion of (58) is completely simplified since, , and will be
scalars, which we will later denote as , , and . However,
for multirank subspaces, rotation and matrix partitioning oper-
ations need to be applied once again in order to reduceto a
scalar. Letting , we apply the unitary trans-
formation

(59)

where . The transformation rotates to a coordinate
system in which the first basis vector is set in the direction of

TABLE III
STATISTICAL DECOMPOSITIONS FOR THEMULTIRANK ASD, AMF, AND

CFAR ASD STATISTICS

, that is, , where . This
operation transforms the multirank AMF to

(60)

where is the transformed sample covariance
.

G. Step 6: Another Matrix Partitioning

We can again use Theorem 1 to identify the upper-left element
of

(61)

where the scalar .
This gives the final decomposition for the multirank AMF
statistic compared with the multirank MSD:

vs. (62)

(Recall from Section IV-C that the nonadaptive MSD is
.) In this formula, the normal random vectorsand , and

the Rayleigh random variables, , and , are all statistically
independent.

The decompositions for the remaining multirank adaptive de-
tectors, namely, the ASD and the CFAR ASD , can be
found by following the same sequence of six steps. The results
are summarized in Table III.

H. Observations

Table III is organized so that decompositions for the MSD
and CFAR MSD statistics are recorded in the left-hand column,
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TABLE IV
STATISTICAL DECOMPOSITIONS FOR THECOHERENT ASD, AMF, AND

CFAR ASD STATISTICS

and decompositions for the ASD, AMF, and CFAR ASD sta-
tistics are recorded in the right-hand column. To illustrate the
heuristic value of these decompositions, consider the multirank
MSD statistic and the multirank AMF statistic

. It is as if the statistic under-
goes the linear transformation before
its norm-squared is computed to obtain. This linear trans-
formation is of the form , where and are inde-
pendent noise terms. The influence of these additive and mul-
tiplicative noise terms decreases as the available training data
increases. When , meaning in distribution,
then , and in distribution.

Similarly, consider the multirank CFAR MSD
and the multirank CFAR ASD
. It is as if the statistic undergoes the linear trans-

formation before its norm-
squared is computed. Again, the influence of the noise terms
decreases as ; then, , and .
The ASD has a similar interpretation.

The rank-1 versions of Table III, together with the decompo-
sitions for all of the rank-1 coherent detectors, have been ob-
tained in [3] and [4]. The rank-1 versions that apply to coherent
problems are summarized in Table IV. All of the observations
just made about ASDs being equivalent to noise-corrupted ver-
sions of their MSD counterparts apply here as well.

It should be noted that these decompositions are not merely
“stochastic representations” in the sense of being “equal in dis-
tribution to” (or “ ”). They are identical decompositions on a
realization by realization basis, i.e., for a given realization of
, the adaptive statistics are expressed in terms of the corre-

sponding realizations of, , etc.
In addition to the intuitive insight into the structure of the

adaptive detectors that these decompositions bring, they also
help in quantitative analysis in several ways. First, they make
it possible to directly calculate the moments, such as mean and

Fig. 3. Densitiesfor the statistics
p
K n̂, K� , cos, andcos . Densities are

shown under bothH (symmetric about zero for the coherent statistics and
weighted toward zero for the noncoherent statistics) andH hypotheses. As
the number of training samplesK increases, the hypotheses become better
separated. These densities were obtained from a Monte Carlo simulation using
a million realizations of thestatistical decompositionsof Tables III and IV.
Other parameters: dimensionN = 10; SNR = (� =� ) R  = 5 (7
dB).

variance, of the adaptive detectors, without the need to find ana-
lytical expressions for their densities or characteristic functions.
To see how the complexity of the density or characteristic func-
tions can be bypassed, consider the decomposition for the co-
herent AMF in Table IV. It is written as sums and products of

, , , , and . It is possible to write the moments
of exactlyin terms of the moments of these five random vari-
ables, which are distributed as normal, Rayleigh, or the recip-
rocal of a Rayleigh. In this way, we can analyze how the output
SNR of the adaptive statistics improves as the number of avail-
able training samples increases. This is discussed in full detail
in [22] and [23].

A second advantage comes in performing Monte Carlo
simulations. With the statistical decompositions, the generation
of random realizations of an adaptive statistic can be achieved
much more efficiently. If the gamma random variables are
generated by summing normals, only normal
random variables need to be generated for a realization of a
rank-1 detector in Table IV, compared with
if the training and test data were generated explicitly. This
is a significant reduction: about a factor of for .
The results of Monte Carlo simulations performed in this
manner are shown in Figs. 3–5. Fig. 3 shows how the densities
under and separate as the available training data
increases. Densities are shown for the rank-1 case
of the ASD and CFAR ASD statistics, which in this figure
and all subsequent figures are labelled Kelly and ACE. Fig. 4
shows the corresponding improvement in the receiver operating
characteristics (ROCs) as the training data increases. Fig. 5
shows the same plots, but they are grouped to compare the
detection performance of the ASD statisticsand , and the
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Fig. 4. Receiver operating characteristics(ROCs) for then̂; � ; cos, and
�̂ statistics. As the number of training samplesK increases, the hypotheses
become better separated. These curves are obtained from the same Monte Carlo
simulation discussed in the caption to Fig. 3; they are plotted as though on
“normal probability paper.”

Fig. 5. ROCs when the number of training vectorsK is 13, 20, 100, and
infinite. These are thesamecurves as those in Fig. 4 but plotted to compare
the behavior of thên; � ; cos and ~̂� statistics.

CFAR ASD statistics and , for various amounts of
training data. As a general rule, the detectors that correspond
to increased knowledge of system parameters (phaseor

) have better performance. However, as seen in Fig. 5, the
performance loss of the CFAR ASD detectors compared with
the ASD detectors becomes negligible for small training sets
(even becoming a slight performance gain in places), where the
CFAR ASD becomes a better approximation of the ASD.

A third advantage of the statistical decompositions is that they
simplify the derivation of analytical expressions for the density
functions of the ASDs, a topic that we discuss in detail in the
next section.

V. OBTAINING DISTRIBUTIONS FROM THESTATISTICAL

DECOMPOSITIONS

In this section, we use the statistical decompositions of
Table III to find analytical expressions for the distributions of
the ASD, AMF, and CFAR ASD statistics. Those less interested
in some of the details may wish to skip to (68).

A. Multirank ASD, AMF, and CFAR ASD

We will start with the ASD . Recall from Table III that
the equivalent decomposition writes as .
The first step here is to separate out the mean of the vector

. We denote by VSNRthe mean of : VSNR
. Then, from Table III, may be written

VSNR
(63)

where and are distributed as , and denotes
“equal in distribution to.” The sum is distributed
the same as , where (this is
true, irrespective of how and are distributed, assuming they
are independent of and ). Therefore, we can write as

VSNR

VSNR

At this point, we can follow a line of reasoning similar to that of
Kelly, et al. [5], [10], [24] and find the distribution conditioned
on the ratio

(64)

In the multidimensional case, and have different degrees
of freedom, and is distributed as [inter-
estingly, in the rank-1 case ( ), this has the same distribu-
tion as the Reedet al.normalized output SNR [5], [20]].
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With this identification, the factor on the right can be
rewritten with the following algebra:

(65)

and can be rewritten as

VSNR
(66)

Conditioned on , the left-hand factor of is an -dis-
tributed random variable with degrees of
freedom scaled by

(67)

where VSNR is a complex normal random
vector whose mean is conditioned on. We denote the distri-
bution function of the scaled noncentral by ;
we define this to be the probability that the ratio of a com-
plex-chi-square with degrees of freedom and a noncentrality
parameter , divided by a complex chi-square with degrees
of freedom is less than. The conditional distribution of is
then given by

(68)

where SNR VSNR
. Again, an expression for the final distribu-

tion can be obtained by integrating this distribution over the
beta density of .

Using the same procedure for the AMF yields, from
Table III

VSNR (69)

Conditioning on , we obtain the following statistical equivalent
for :

(70)

where is defined as above. Then, the distribution ofis given
by

SNR (71)

Finally, we can go through the same procedure for the-version
of the CFAR ASD, . From Table III

VSNR (72)

Conditioned on , the statistical equivalent of is

(73)

Then, the distribution of is given by

(74)

which notably does not depend on. The probability of detec-
tion (PD) for one of these statistics is given by one minus the
distribution function evaluated at the threshold. The probability
of false alarm (PFA) is the PD when SNR .

B. Coherent ASD, AMF, and CFAR ASD

Using the decompositions in Table IV, we can apply the same
techniques to find distributions for the coherent versions of the
ASD, AMF, and CFAR ASD. Conditioned on the beta parameter

and , they are all related to the noncentraldistribution

Re

(75)

Re (76)

Re (77)

Here, we denote the distribution function of the scaled noncen-
tral by ; this we define to be the probability that the
ratio of the real part of a complex normal with mean, divided
by the square root of a complex chi-square withdegrees of
freedom, is less than. Note that the distribution of Re does
not depend on .

In summary, the statistical decompositions of Table IV may
be used to get statistically equivalent random variables condi-
tioned on the beta-distributed random variable. Each of these
conditional random variables is a linear transformation of either
a -distributed or an -distributed random variable. This means
that their distributions may be obtained by integrating a noncen-
tral - or -distribution against a beta density to get integral rep-
resentations for the distributions of the coherent and multirank
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Fig. 6. Detection probabilitiesfor (left)K = 100 and (right)K = 25; PFA= 10 , andN = 20.

versions of the ASD, AMF, and CFAR ASD statistics. The dis-
tribution results for the coherent ASD, AMF, and CFAR ASD
statistics are original with this paper. The distributions for the
rank-1 noncoherent detectors (in [5], [10], and [24]) arise when
the noise scaling is set to 1, and the signal subspace rank
is set equal to 1, in the expressions obtained here for the general
multirank case.

VI. NUMERICAL PERFORMANCECOMPARISONS

Now, let us compare the detection performance of the ASD,
AMF, and CFAR ASD statistics. We will consider the rank-1
case of these statistics ( ), referring to them in this case
as the Kelly, AMF, and ACE to be consistent with the stan-
dard nomenclature of the radar literature. In the rank-1 case, the
ASD (Kelly), AMF, and CFAR ASD (ACE) and associated sta-
tistical decompositions (which are obtained by setting in
Table III, or by magnitude squaring the expressions in Table IV)
take on the form

(78)

(79)

(80)

We use expressions for the distribution functions obtained in
Section V conditioned onand . We also make use of a useful
finite-sum expression for the noncentral-distribution, which
was found by Kelly [25]. Instead of numerical integration, we
approximate the integral of the distribution, over the densities
of , by averaging realizations of distribution given by 1000 re-
alizations of . (Based on examination of these realizations, we
estimate the uncertainty to be about the height of the

plots; the qualitative behavior discussed here is still seen with
far fewer realizations.)

The resulting detection curves for the Kelly, AMF, and ACE
are shown in Fig. 6 for equal to unity and . They
are more easily interpreted by recognizing that the probability
of detection of the nonadaptive cosine detector (CFAR MSD)
is always upperbounded by that of the MSD; this is the price
paid for estimating the noise scaling. The performance of the
CFAR MSD only approaches that of the MSD whenis large
compared with the SNR, resulting in a relatively good estimate
of the noise scaling, as given by (13)

(see [1]; this can also be verified, in terms of the variance and
expectation of and under and , using the analysis
approach of [22]).

When in Fig. 6, the training data support is rel-
atively high, and consequently, the adaptive detectors behave
close to their nonadaptive counterparts. Consistent with this ob-
servation, we can see that the AMF does well against the ACE
at high SNRs, with the difference becoming negligible at low
SNRs.

When in Fig. 6, the training data support is rela-
tively low. Here, the adaptive detectors rely on poor sample co-
variance estimates. ACE is not only invariant to scaling of the
measurement but is separately invariant to global scaling of
the training data set (and, thus, to scaling of ). For this
reason, we expect it to be more robust under conditions of small
sample support. For , the ACE begins to take advantage
of its scale invariance to and overtakes the AMF at low SNR.

By comparing (78) with (79) and (80), one can see that the
Kelly GLRT approaches the AMF for very high values of the
sample support and more closely approximates ACE for very
low values of sample support. In Fig. 6, this can be observed in
how close the Kelly curve is to that of the AMF for and
to the ACE for . In the very regime of small in which
the ACE performs relatively well, the Kelly begins to behave
more like the ACE, which would be expected by considering
the normalization term in (78) in the small limit.

A. False Alarm Stability

These comparisons have been made under the idealized con-
dition of , which the Kelly and AMF assume but the
ACE does not. When, which is the true relative scaling of the
measurement, deviates from unity, the probability of false alarm
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Fig. 7. Change in false alarm probability for a constant thresholdas the
variance of the noise scaling increases;K = 80, andN = 20.

(PFA) of the Kelly and AMF will be affected, but the PFA of
the ACE will not be affected. In Fig. 7, we illustrate this effect
by introducing a randomly fluctuating noise scaling. Under,
this is equivalent to the random amplitude scaling of the com-
pound-Gaussian noise model of [12]. We chose a simple distri-
bution for : complex chi-squared but normalized to have unit
mean and with a variance equal to 1 divided by the number of
degrees of freedom. Because ACE is invariant to scaling of,
then under , its PFA is completely insensitive to fluctuations
in the noise scaling.

Conversely, while the Kelly and AMF may do well against the
ACE in terms of plots of PD versus PFA, their thresholds cannot
be set to achieve a desired PFA without requiring the user to have
some knowledge of the scaling distribution. The ACE does not
require this information; for a set threshold, its PFA does not
depend on the statistics of the noise scaling, whereas the PFA
of the AMF and Kelly may vary considerably, as illustrated in
Fig. 7.

In summary, ACE sacrifices a small amount of SNR perfor-
mance (about 2 dB in Fig. 6, for a PFA of ; results are
similar at other PFAs), for low SNRs (less than), or for small
sample support. In exchange, it has scaling invariance and true
CFAR performance against scale fluctuations in the test data.

VII. CONCLUSION

In this paper, we have offered a unified treatment of two
classes of generalized likelihood ratio tests: the MSDs, which
use a known noise covariance structure, and the ASDs, which
use training data to estimate an unknown noise covariance struc-
ture. Both matched and adaptive subspace detectors may be fur-
ther classified according to whether the test signal is completely
specified (coherent) or parameterized (subspace) and according
to whether the noise level is known or unknown. In the adaptive
case, the unknown noise-level problem translates to an unknown
scaling between the noise in the training data and test data; it is
assumed that the training data accurately represents the noise
structurebut may not accurately represent the noiselevel.

Maximizing the likelihood ratios over this additional scaling
parameter produces the cosine-based CFAR MSDs and the

CFAR ASDs, which are invariant with respect to arbitrary
scaling of the test data. In addition, the CFAR MSDs are
CFAR with respect to the entire class of elliptically contoured
distributions, which include compound-Gaussian distributions.
It is interesting that the CFAR ASDs, which include the ACE
statistic, have thesame formas the CFAR MSDs, with the
sample covariance replacing the known covariance. This is
not true of the ASDs for known noise scaling, such as the
Kelly GLRT [5], which does not take the form of the matched
subspace detector.

The CFAR ASDs suffer some performance loss under the
idealized scenario of homogeneity between training-data and
test-data noise statistics. However, their invariance to test-data
scaling makes them CFAR with respect to variation in the noise
level between training and test data; other researchers have
shown them to have robustness to more complicated inhomo-
geneities, such as changes in the power of clutter discretes [24].

We have presented a unified description of the statistical be-
havior of the class of ASDs, including those parameterized by
multidimensional signal subspaces. We have shown that they
each have an identicalstatistical decomposition, which is a sim-
plified function of the same set of five statistically indepen-
dent random variables. These same random variables appear in
all such representations; they include the nonadaptive matched
filter and the /cosine statistic, plus three perturbing variables
attributable to training data. In addition to their heuristic value,
these representations provide some computational advantages.
We have used them here for more efficient Monte Carlo simula-
tions and to present in detail a simplified derivation of analytical
expressions for the probability distributions of the ASDs.

VIII. POSTSCRIPT

This paper traces its heritage to the collaboration of LLS and
D. W. Lytle, who in [11] applied the theory of invariance in hy-
pothesis testing to the problem of CFAR signal detection. These
ideas were then generalized to incorporate multidimensional de-
tectors in the collaborations of LLS and M. J. Dunn [26], re-
sulting in the treatment of MSDs given in [1]. The collaboration
of LLS and B. J. Friedlander led to the GLRT interpretation of
[2]. The work of Kelly [5], a major contribution to adaptive de-
tection, was followed by the work of Chen and Reed [9] and
Robeyet al. [10]. These papers are the natural predecessors of
this paper.

About the time of [11], R. L. Spooner [27] and G. Vezzozi
and B. Picinbono [28] derived CFAR detectors for spherically
invariant noise. These papers are predecessors of the work on
adaptive detection for spherically invariant noise by Conteet al.
[12], [13], who suggest the rank-1 version of the noncoherent
CFAR ASD derived in [6]. Conteet al.[12], [13] slightly predate
the rank-1 version of the CFAR ASD presented in [7], [19], and
[29]. However, as we show in this paper, the detector of [12],
[13], and [19] is just one of a large class of adaptive detectors
one can derive from a maximum likelihood principle, beginning
with the MSDs of [1], [2], and [26]. In fact, it was not until the
publication of [6] that we had a convincing derivation for the
CFAR ASD, based on asymptotic arguments in [12] and [13]
and based on heuristic arguments in [19].
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