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Abstract—In this paper, we use the theory of generalized likeli-
hood ratio tests (GLRTSs) to adapt thematched subspace detectors
(MSDs) of [1] and [2] to unknown noise covariance matrices. In
so doing, we produceadaptiveMSDs that may be applied to signal
detection for radar, sonar, and data communication. We call the re-
sulting detectorsadaptive subspace detectdsSDs). These include
Kelly’'s GLRT and the adaptive cosine estimator (ACE) of [6] and
[19] for scenarios in which the scaling of the test data may deviate
from that of the training data. We then present a unified analysis
of the statistical behavior of the entire class of ASDs, obtaining sta-
tistically identical decompositions in which each ASD is simply de-
composed into the nonadaptive matched filter, the nonadaptive co-
sine or¢-statistic, and three other statistically independent random
variables that account for the performance-degrading effects of
limited training data.

Index Terms—Adaptive signal detection, adaptive subspace de-
tector, data communication, matched subspace detector, radar de-
tection, sonar detection.

I. INTRODUCTION

1) thecoherent MSIi.e., matched filter), which is a nor-
mally distributed statistic that detects coherent signals
by resolving the inner product of the measurement and
signal,

2) the MSD, which is ax? statistic that detects subspace
signals (including noncoherent signals) by computing the
energy of the measurement in the signal subspace;

3) thecoherent CFAR MS[Dwhich is at or “cosine” statistic
that detects coherent signals in noise of unknown vari-
ance by resolving the cosine of the angle the measurement
makes with the signal;

4) the CFAR MSD which is anF' or “cosine-squared”
statistic that detects subspace signals (including non-
coherent signals) in noise of unknown variance by
measuring the fraction of energy the measurement has in
the signal subspace.

Each of the resulting four detectors is a GLRT for a concrete
problem, and each is UMP-invariant, uniformly most powerful

UR AIM in this paper is to adapt the four matched sulPVer the entire class of detectors invariant to an appropriate

space detectors (MSDs) of [1] and [2] to unknown noiskansformation group. This was one of _the r_nain points of [2],
covariance in order to producadaptive subspace detectord@Mely, that the GLRTs have the same invariances as the UMP-
(ASDs) that may be applied to signal detection for radar, Songﬁ/anant tests of [1], and therefore, they inherit the optimality
and data communication. Whenever we speak of an mdtsoperties of the UMP-invariant tests for an interesting class of
problem, we assume that the noise covariance mariis multivariate Gaussian detection problems.
known. When we speak of an ASD problem, we assume theAll of th'ese. Qetectors are compelling. They have clearly
covariance matrix is unknown and is estimated from trainingjateéd optimalities and invariances, and they have evocative

data.

geometrical interpretations. The MSDs use extra knowledge

There are four (nonadaptive) matched subspace detectors fidf1€ noise variance for some performance gain against the

form the basis for the adaptive subspace detectors of intere§A\R MSDs, which do not assume this knowledge (the gain

to us here. They arise from two types of generalizations of teSlight unless the SNR exceeds the measurement dimension).
matched filter detector. First, the inner product of the match&)? the other hand, the CFAR MSDs (or “cosine” statistics)
filter may be generalized to a projection of the measuremeimpensate for this lack of knowledge by providing an extra
onto a higher dimensional signal subspace, thus producing™@riance to data scaling, a property that the MSDs do not

subspaceletector [2]. Second, the detector may be normaliz

ve. A consequence of this invariance is that the CFAR

false alarm rate (CFAR) with respect to the noise power. Tiflstributions (a result that is obvious for the special case of

four detectors are thus

compound-Gaussian noise, multivariate Gaussian with random
amplitude scaling; see Section Il). The scale invariance sacri-

fices some high-SNR performance gain in return for robustness
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In order to clarify the adaptive problems we are studying and We conclude the paper with identical statistical decomposi-
to establish the meaning of the abbreviations we use, we offems for the ASDs, AMFs, and CFAR ASDs. These decomposi-
the following taxonomy of adaptive problems and detectors. tions allow us to gain insight into the structure of adaptive detec-

1) Thecoherent ASDs the adaptive GLRT generalizationtion statistics by decomposing them in terms of their nonadap-
of the coherent MSD, wherein the training data for estfive counterparts and corruptive noise terms attributable to finite
mating the unknown covariance matrix is scaled the sarif@ining-data support. They also allow us to quantitatively char-
as the test data. acterize the random effects of adaptation, simplify Monte-Carlo

2) The ASD is the adaptive GLRT generalization of thesimulations, more simply derive exact distributions, and com-
MSD, and it equals the Kelly GLRT [5], wherein thePute receiver operating characteristic (ROC) curves.
training and test data are scaled the same.

3) Thecoherent CFAR ASIB the adaptive GLRT general-
ization of the coherent CFAR MSD, and it is used for de-
tecting a coherent signal when the training data is not con-The problems we study are these. The parantlecates a
strained to be scaled the same as the test data. signals = w6 € CV in the signal subspageP) of dimension

4) The CFAR ASDis the adaptive GLRT generalization ofp. That is,® € C"*?, which is the linear space of\{ x p)
the CFAR MSD, wherein the training and test data ar@@mplex matrices. This signal is scaled joyand the channel
not constrained to be uniformly scaled, and it equals tl@elds scaled noisew to the signal to produce the measure-
adaptive cosine/coherence estimator (ACE) of [7], [8nenty = us + ow, which is distributed a&' Ny [ ®6, o2 R],
and [29]. whereC' Ny denotes the complex-normal density of tNedi-

In the nomenclature of the nonadaptive detection literatumaensional complex measurementrhe problem is to test hy-
“CFAR” is with respect to noise level or variane@ in the test potheses about the parameteindicating presence or absence
data. In the adaptive detection literature (see, e.g., [9] and [1Gjj,the signal, under various assumptions about the parameters
“CFAR” is with respect to the noise covarianBg assumed to ¥, R, o2, and®.
be uniform over test and training data. Retaining the assump-Throughout our developments, we define the whitened signal
tion that the noise is uniform in covariance structure, we sayode matrix® and the whitened measuremerdas follows:

a detector is “CFAR” when it is insensitive to variation in the
overall scale. In other words, we allow the noise level to vary
between training and test data with covariaftando?R, re-

spectively. We mean “CFAR” with respect to both the shared ] ] ) )
noise covariance structulR and independent scaling of the Then, when the detectors are written in terms of whitened vari-

noise in the test data. This generalizes the meaning of “CFAQbf'e_S’ these rglations may be used to express the detectors in the
in both the nonadaptive and adaptive detection literature, wh&fddinal coordinates. _ .
“CFAR" is respect to a presumed noise level or shared covari-"Vhenever we refer to thednk-1 cas¢’ we are discussing
ance between test and training data, respectively. the situation Wh(_are the d_lmens_lon of the signal subspd@tes

The CFAR ASDs have the remarkable property that they afe Ve denote this one-dimensional (1-D) complex subspace by
just the “sample versions” of their corresponding CFAR MSD'$)» Wherey € C™. In this case, the parametgis the complex
with a known covarianc® replaced by the sample covarianc@hase ternd = ¢, and the signal is the phased vector =
S. The coherent ASD and the ASD amet sample versions of ¥¢’*- The whitened signal vectaris theng = f_{_(m)ﬂ-
their corresponding MSDs. However, these two ASDs may pe The matched subspace detectlon_problem is as follows.
approximated as in [9] and [10] to obtaidaptive matched fil-  Measurey ~ CNy[n®8, o*R], with the signal mode,
ters(AMFs). Thecoherent AMFs the sample version of the co-and the noise covariand@ known. Depending on the problem
herent MSD and thA&MF is a sample version of the MSD. Thespecification, the noise varianeé and the location parameter
AMFs arenot GLRTS, but they may be used when the trainin% may be known or unknown. Test the hypotheHis 1 = 0
and test data are scaled uniformly. noise only) versus the alternati¥g : 1+ > 0 (signal plus noise).

In the following treatment of matched and adaptive subspace! roughout this paper, we use the notatierto mean "is
detectors, we compare and contrast invariances and perfdgiributed as.”
mances. Under ideal conditions, the coherent ASD and ASD
typically outperform the coherent CFAR ASD and CFAR ASDA. MSD for Coherent Detection
although the performance gain is small for low SNR and small o gnerent signal can be written as= ¥4 = e, In

sample support. However, the CFAR ASDs enjoy an extffe matched subspace problemdoherentetection, the noise
invariance with respect to data scaling that makes them robystiance>2 and the location parameteare both known. When
against system gains and deviations from the standard Gausﬁi?é‘completely known, then both ande’e are known. which
model. Consequently, we expect the CFAR ASDs to find he coherent rank-1 case. A slight modification of standard

application in radar, sonar, data communication, time serigsy its (see, for example, [1] and [2]) produces the MSD for
analysis, and array processing, where this extra invariancesiherent detection:

scaling will be desirable for operations in channels and systems
with variable gains or non-Gaussian statistics. This point will
be developed more fully in the sections to follow. max[0, Re{n}] = n (2)

Il. PROBLEM OF DETECTING A SUBSPACE SIGNAL

=R /¥, and z=R /Iy (1)
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wheren is the whitened matched-filter statistic This detector resolves the energy of the measuremgat lies
—ja i in the whitened signal subspa¢®). This energy is invariant to
o= Pz ~CN; [ﬁ [, 1} . (3) rotation of the measurement in the signal subsgdeeand to
[¢Tdpo ov- = translation in the perpendicular subspéde .
In the original coordinates, this has the form C. CFAR MSD for Coherent Detection
e—jaz/}TR—ly " In the CFAR matched subspace detection problemcter
n=——>n~CN [—\@TR@, 1} . (4) herentdetection, the location parameteris known, but the
VY R o o noise variancer? is unknown. The CFAR MSD for coherent
) _ S detection is
Thus, the whitened matched filter statistic is complex normal,
with noncentrality parameter max[0, Re{cos}] = 7 9)
(/o) 8¢ = (/o) /¥ Ry wherecos is the “cosine” form of the coherent CFAR MSD [1],

[2]:

which is the output “voltage” SNR (which equals signal-to-
noise ratio when squared). This means the detector statistic ) p
. . . G_Ja(/)TZ G_JQZ/JTR_ly
is an unbiased estimator of the output voltage SNR, where the .. _ £ L g

estimator may be thought of as /?T? /ETZ \/MR—%\/QTR—@'

Re{n} = H\/QTQ; {i = max :
i P9 which is beta undeH . Thecos statistic is a monotone function

wherej; is the unbiased, maximum-likelihood estimator of th8]c the CFAR MSD in its form [1], [2]. That is
signal leveln. underH; . We call this an SNR representation for

(10)

—jou st
0, Re{ ﬂ H (5) The square of theos statistic has a noncentral beta distribution,

n. This detector resolves the whitened measurementthe cos = _t (11)
whitened signal subspacge The statistic is invariant to transla- VIt +1

tion of z in the perpendicular subspagg)*. . - -
= perp page) wheret is a complext-distributed statistic

B. MSD for Subspace Detection

—jo gt
In the matched subspace detection problem for noncohereq)zmt _ 'z ~tng [H d)Td)}
detection, the noise varianeg is known, but the location pa- /¢T¢ 2Pz /(N - 1) oV= =
rameterd is unknown. The MSD for noncoherent detection is Sl A
[1], [2] Py =1-¢(¢'¢) '¢". (12)
2 >
Xo=n 6) In this formula, ¢y_; denotes a-distribution with &N — 1
wherey? is the matched subspace detector statistic complex degrees of freedom and with a noncentrality
: ) parameter (u/a),/f@. This so-called ¢-form of the
=z Paz ~ 2 [“_ (/)T(j)} (7) CFAR MSD for coherent detection uses the estimate
o? Plo?= = G = gTPig/(N— 1) in place of the unknown scaling

and P‘I’ is the Orthogona| projection onto the Subsp@@: ag. Thet-forme this statistic estimates the Output Voltage SNR
Pg = &(®7®) 1®7. Inthis formulax?[-] denotes the density (;1/0)1/¢'¢ = (1/0)(/y R4, by estimating boti ando':

for a noncentral complex chi-squared (or gamma) random vari-
able. By this, we mean a chi-squared random variable, scaled

by 1/2, with p complex degrees of freedom (2p real degrees Re{t} = ! H b

of freedom), and with a noncentrality parametgf /o)¢'¢. VN—-10¥==

Thus, by measuring the energyP sz in the whitened signal eIegly

subspace®), the detectory? is estimating the output SNR fi = max [07 Re{%}]

(12/o)p'¢ = (1?/o?)yp Ry, It does this by estimating s

§®0 as®pf = @8*z = Poz, whered# = (279) 1 &f 5= L1 [pl, (13)
is the pseudo-inverse @. This gives the unbiased, maximum- vN -1 d

likelihood estimate of:®8, which is then squared to estimate

the output SNR. Alternatively, we can write the noncoheretff€r€4 is an unbiased estimate of the noise levelThe co-
MSD statistic in its SNR representation as sine form measures the cosine of the angle that the test vector

makes with the signal vectdp) (see [1, p. 141]. This angle is

invariant to rotation in the subspa(:@L and to scaling of the

2 ||N¢||2 - —ja tHy— 1Pt
55 P =cP(2'R)T R (8) test vector.

2
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D. CFAR MSD for Subspace Detection

In the CFAR matched subspace detection problem for nonco-
herent detection, the location parameétand the noise variance - Cone of Invariances
&% are both unknown. The CFAR MSD is [1], [2]

cos> = n (14)
wherecos? is the cosine-squared form of the noncoherent CFAR (@)
MSD:
Pz Cone of Invariances
cos? = £ 2% (15)
2z

This statistic has a noncentral beta distribution, which is com-
plex central beta undel,. It may be written in terms of an
F-statistic by constructing the monotone function

Fig. 1. Geometry and invariancesf the CFAR matched subspace detector

Ja (CFAR MS_D) for nonc_oherentdete_ction. The _statis}tic is invariant to
cogl = — (16) transformationg(z) that include scaling and rotations in the subspaep
F+1 and{®)~.
where
measurement only through the quadratic forgi R=1%. Then,
N-p,._ 2 Poz/p ~ T {N_Q d)%} . (17) contours of constant probability density fpare ellipsoids, and
P 2iPgz/(N —p) 07T 0?5 = contours of the density for = R=(1/2)y are spheres, meaning

. e . thatz is a spherically invariant random vector.
In this formula, /,, n_, denotes anl'-distribution with p : L S
: . A result from the study of spherically invariant distributions
and N — p degrees of freedom and noncentrality parameter

) - IS that the /" (or cosine-squared) antd(or cosine) statistics
(w?/ OQ)QTQ' This '-form of the detector stafistic uses thepresented in (this sectionqhave 'zbame(distributioz for any
estimatoro? = (1/N — p)z'Pgz in place of the unknowa?.  7ero.mean EC distribution o and are therefore CFAR
By measuring the ratio of energies per dimension, in the signgdyoss the class of such distributions (see, for example, [14,
subspacé®) and the orthogonal subspa¢®), the detector pn 3g-39]). This result is a consequence of the scale-in-
estimates the output SNR*/0%)¢"'¢ = (4°/0*)¥"R™4.  variance property of these statistics; that is, a zero-mean
It does this by estimating:?¢’¢ as z'Psz, and 0 as elliptical random vector has the stochastic representation
(z'Pgz/N — p). Alternatively, we can write the noncoherent, < R(/Dy, /5, where < means “equal in distribution to,”

CFAR MSD statistic in the SNR representation w is uniformly distributed on theéV-dimensional unit spherical
—~ shell (Ju||> = 1), and p incorporates the radial dependence
P 1 el . (18) that distinguishes different EC distributions (see, for example,
N-p o2 [15, p. 55-57]). Any scale-invariant statistic will not depend

) ) ) ) on p and will thus be distribution free within the class of
Thecos? form estimates the squared direction cosine betweed,o_mean EC distributions on (note that this is not true of

the measurement and the signal subspa¢@), as illustrated ne \, and 2 statistics). This point is critical and not widely

in Fig. 1¢ This direction cosine is invariant to rotations(#) 5 nreciated in the detection literature; with the CFAR MSDs,
and(®)-, and to scaling of the measurement, as illustrated. 5" given threshold will give the same the probability of false
alarm for any multivariate density with ellipsoidal contours
parameterized by'R~'y = constant. The density could
There are four detectors of interest for detecting subspawe Gaussian, compound-Gaussian, uniform on an ellipsoid,
signals, which establish the basis for the adaptive detectorswiltivariate-Cauchy, etc.
the next section. They are summarized in Table I. The “CFAR” Richmond uses this type of scale invariance argument to show
detectors were obtained in [1] and [11] as UMP-invariant dé¢hat theadaptiveKelly GLRT (ASD) and AMF statistics are dis-
tectors and are invariant to scaling of the test data. They werbution free undeH, over a whole class of EC distributions
rederived in [2] as generalized likelihood ratio tests by incopn the test and training data [15, p. 70], in which the concate-
porating maximume-likelihood estimates for the noise standan@ted vector consisting of stacked training and test data vectors
deviation, i.e., by estimating the scaling of test data. The nonds-EC distributed, meaning that these vectors are uncorrelated
herent, rank-1 CFAR MSD was obtained in [12] and [13] as dut statistically dependent. He uses the fact that the ASD and
asymptotic GLRT when the scaling of the test measurementAMF are invariant to uniform scaling of the test and training
treated as a random parameter, i.e., under compound-Gausdita. Richmond’s argument can also be applied to the adaptive
noise (multivariate-Gaussian with random amplitude scalingjosine (ACE) statistic of the next section because it has this in-
Compound Gaussian noise is a special case of “elliptically covariance, in addition to being more generally invariant to inde-
toured” (EC) random vectors, whose distribution depends on thendent scaling of test and training data.

E. Summary and General Comments
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TABLE |
TAXONOMY OF RESULTS FORMATCHED SUBSPACEDETECTORS

SNR Representations

Invariances Detector Stlatistic ﬁ' — e—]a(¢f¢)—l¢f£;
Problem . wi;h resi)lect tof '<I> =R72¥; . ;;b - e—ja—P;E; -
ransformations of z % =80; z=R 2y p A mn
@ <z VN =pé=,/zIP 32
—Jjo g f .

Coherent MSD n== gz n="/¢tp
known: ¥, R,0%,0| Translations in ($)* Volgo agV=+
unknown: p (Equation 3) (Equation 5)

tp 2
M3D 2 Rotations in (@) L X2 = lledll
known: ¥,R,o L n o? o?
Translations in (®) . .
unknown: u,0 (Equation 7) (Equation 8)
e 7°¢lz t

Coherent CFAR MSD Seali cos = = = = —L E ¢T¢
known: ¥, R,8 e Jotevz  VIP+1 N-igVEE

unknown: p,o? Rotations in_ (¢) (Equation 13)

(Equation 10)

CFAR MSD Scaling cos? — {Pgz _ F [ Ik
known: ¥ R Rotations in (@), (®)+ 2tz +1 T N-p 52
unknown: p,0%,68 (Figure 1) (Equation 15) (Equation 18)

[ll. PROBLEM OF ADAPTIVELY DETECTING A SUBSPACE Under Hy, the density isfo(X, y) = f1(X, ¥)|u.=0. The den-

SIGNAL sity fi may be rewritten as
How does one make the MSDs and CFAR MSDs of the pre- 1
vious section adaptive to unknown covariance struciira HX, ) = { ~ ENTETD
order to derive ASDs and CFAR ASDs? To make this ques- B ™ det(R)o

tion meaningful, we must be clear about the assumptions under . K+l

which the detector is applied. There are many variations on the - exp{—tr(R Tl)}} (20)
experiment we describe, and each produces a different detector.

We will depart slightly, but significantly, from Kelly's lead [5] where T; is the compositesample covariance matrix con-

and design the experiment as follows. structed from both the training and test data:
A sequence ofK independent and identically distributed
trainingvectorse,, z,, - - -, each distributed s8Ny [0, R], K 1 i B 3 i
is measured in the training phase of the experiment. In the™ ' ~ K + 1 S+ K+1 02 (y = p¥0)(y — p0) (21)

detection phase, a statistically independetefst vector K
y ~ CNx[p®6, 0?R]is measured, and from it, the hypothesis g _ 1 Z z.zh. (22)
Hy: = 0 (noise only) is tested against the alternatife: K&
i > 0 (signal plus noise).
In this experiment, we generalize Kelly’s original experimerin the section to follow, we extend the GLRT methodologies of
by allowing the covariance matrix for the test vector, namelg], [5], and [6] to determine the GLRT tests
o?R, to differ by a scale constant’ from the covariance ma- .
trix for the training dataR. This generalization produces new o 11X y)
adaptive detectors, with extra invariances that Kelly’s detector AMX, y) = m (23)
[5], and its derivative AMF forms [9], [10], do not have. =

We organize the training vectors into the data maKXix=\here the carets denote the generalized likelihood ratios that re-
[21, -~z ] and call(X, y) the compositemeasurement. The gyt from maximizing the likelihood with respect to parameters
joint density function for the composite measurement, under thgich are unknown, such &, 02, i, andg.
alternativeH1, is then When the noise scaling? is assumed to be known, this

GLRT procedure yields coherent amdultirank versions of
K the noncoherent detector of Kelly [5]. These detectors are
H(Xy) = f1(y) Hf@i) not sample-matrix versions of the coherent MSD and MSD,
=1 meaning that a sample covariance does not simply replace a

B 1 1 TOV R o known covariance in the detector statistic. However, whén
T 7V det(o?R) P —au— n¥o) (w—n®9) ¢ s unknown, maximizing the likelihood functions over this ad-
K ditional parameter yields CFAR ASDs thate sample-matrix
11 1 exp {—azTR—lm} (19) Versions of the CFAR MSDs [6]. Thus, we have the remarkable
N =1 = N .
7V det(R) fact that the CFAR ASDs retain treame formas the CFAR

i=1
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MSDs whens2 is unknown. We proceed case by case to outliteecome this detector if the denominator telin 2 is well

these results. approximated by<. Then, it generalizes the “adaptive matched
In our discussion of the GLRT, we will find that the followingfilter” (AMF) of [9], [10] to coherent problems, as follows:

approximatelyhitened signal mode®, whitened signal vector

. . et et
¢, and measureme#tarise naturally in the theory: eI eiyisTly 1 o [

= = == ——jée  (30)
At B RE
o5 DY, Hos W2y \/KQ ¢ \/Kfs vy VK
and The detectof resolves the projection of the adaptively whitened
3 =82y (24) measuremert in the adaptively whitened signal subspédgg.

The interpretation and invariances remain those of Section II-A.

A. ASD for Coherent Detection B. ASD for Subspace Detection

The adaptive subspace detection problem for coherent detecFhe adaptive MSD problem for noncoherent detection is the
tion is the MSD problem outlined in Section II-A, with the mod-problem outlined in Section 11-B, with the modification that the
ification that the noise covariance matiis unknown. When noise covariance matriR is unknown. The maximum-likeli-
the maximum-likelihood estimates Bf are used (undelify and hood estimates oR. (underH, and H;), and the productg,
H,), together with the maximum-likelihood estimate.ofcon-  yield the GLR [6]
strained to be real and positive), the resulting generalized like-

K+1
lihood ratio (GLR) is [6 o 1
(GLR) is [6] A(X, y) = <—A> . (31)

) 1 K41 1—x?

MX, y) = <1 — [max]0, Re{ﬁ}]P) ) (25) A monotone function of this gives the GLRT
Constructing a monotonic function of this gives the GLRT ;(3 =X (32)

max[0, Re{n}] = n (26) where}? is the ASD statistic for noncoherent detection
wherer is the ASD statistic for coherent detection =5 gTP(i,g 2 (33)
X = /\T = = /5 .
) g IS ly - frzs wied
n —= — fd — — gl
T 2 thj isti i
/QT@\/K e \/@TS—%\/K +yiS—ly In terms ofx?, this statistic has the SNR representation
—12
where we have set the known parameterqual to unity to be . H/@ -
consistent with the adaptive detection literature. This statistic ;2 = = = T P(dT D) DTz (34)
may also be written as a monotone functioniofvhich is de- K+z'Pgz B
fined through This detector generalizes Kelly's test [5] to multidimensional
. i (28) subspaces [16], [17] and when the denominator is well-approx-
n=——

imated byXK it generalizes the AMF of Robegt al. [10] and
Chen and Reed [9] to multidimensional subspaces [15], [18]

VIRE+T

Then, an alternate representation for the coherent ASD is

~ 1 ooy
A r?=—2"Pgi=— Hud) (35)
Re{k} = # /?T? K K
K+z P(;é The AMF 72 measures the energy ®fn the subspaceiJ). The
- interpretations and invariances remain those of Section II-B.
san by
—ja
/i = max |0, Re e 2 (29) C. CFAR ASD for Coherent Detection
ATA
Voo The CFAR ASD problem for coherent detection is the

. problem outlined in Section II-C, with the modification that the
where we employ the double-hat notation to indicate hatnoise covariance matriR is unknown. The maximum-likeli-
is anadaptiveestimator of the signal amplitude affected by hood estimates oR ando (underH, and H;), as well asu
the training data. The quadratic fO@ﬁPiZ would be propor- (constrained to be real and positive), yield the GLR [6]
tional to the maximum-likelihood estimator of the relative noise N
scalings? weres? not constrained to be unity (we will discuss MX, y) = < 1 _ ) (36)
this further in Section 11I-C). o 1 — [max[0, Re{cos}]]?

The coherent ASD statistit extends Kelly’s detector [5] t0 o monotone function of this gives the GLRT
coherent problems. Itis not quite teemple-matrixletector that
one obtains by just replacirig with S in (4). However, it does max[0, Re{cos}] = n (37)
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wherecos is the CFAR ASD statistic for coherent detection: E. Summary and Taxonomy

e—j‘X(})T ; c—danytg—1y The results for ASDs and CFAR ASDs are summarized in
= = = = (38) Table II. This time, the noise structuR is unknown. Each of
(})T(}) 2 \/@S—lﬁ\/ys—lg the ASD and CFAR ASD detectors is a GLRT. The CFAR ASDs
T are sample versions of their CFAR MSD counterparts and thus
This detector generalizes the detector of [12] and [19] to cenjoy the same invariances. The approximations to the ASDs,
herent problems. It is just the “sample-matrix” version of th@hich are termed “adaptive matched filters” (AMFs) to be con-
coherent CFAR MSD detector, and #twersion is the sample sjstent with the terminology of [10], are not GLRT. However,
version oft they are sample versions of their MSD counterparts.
t The ASD and AMF statistics are invariant to the transforma-
¢ (39) tion groupg(X, y) = (cX, cy), wherec is a positive scalar
. /AT(;) i pLs for the coherent detectors, complex for the subspace detectors,
- = 4 meaning the test and training data may be scadedtically
This statistic may be written as With_ou_t changing t_hese statistics. In con_trast, the CFAR ASD
statistics are invariant to the transformation gredX, ») =

|

€08 =

>

>

—ja

-
>

=

>
I8

A R (})T} (1 X, e2y), which means the training data and the test data may
N R /(})T(}); /i = max |0, Re f_— be scaledlifferentlywithout affecting them. This is the key point
gTPiz - ¢ ¢ when comparing ASDs, AMFs, and CFAR ASDs.

. (40)
whereji is anadglptiveestimator of the signal amplitude The
quadratic fornd” = (K —N+1/KN)2"P 2is the maximum-

IV. STOCHASTIC REPRESENTATIONS FORMULTIRANK
ADAPTIVE SUBSPACEDETECTORS

- , 5 R _ In this section, we will analyze how the ASDs in Section IlI

likelihood estimate o6~ underfy, which is inserted into the ;.0 gistributed by using statistically identical decompositions
likelihood-ratio to obtain the CFAR ASD, or ACE detector, ags) |ysing this approach, it is possible to represent any one of the
a GLRT in [6]. The interpretation and invariances remain thosgahtive detectors in Table Il as a simple function of the same

of Section II-C. set of five independent random variables. We will carry out our
D. CFAR ASD for Subspace Detection derivation, in detail, for the AMF, when the signal subspgce
has dimensiop. For this analysis, we make use of insights ob-
The CFAR ASD problem for noncoherent detection is thgjined from a similar, and simpler, analysis of the rank-1 case in
problem outlined in Section II-D, with the modification that the[3] and [4]. To compare the robustness of the adaptive statistics,
noise covariance matriR. is unknown. The maximum-likeli- theijr distribution is analyzed in the general case where the mea-
hood estimates d® ando (underH, andH;), and the product syrement, has covariance®R, even thoughs? is assumed to

19, yield the GLR [6] be unity in the standard derivations of the ASD and AMF detec-
X 1 M+1 tion statistics.
AX, y) = <7/\> . (41) The derivation of statistical decompositions for the multirank
- 1 —cos? ASD, AMF, and CFAR ASD can be outlined in six steps. The
A monotone function of this gives the GLRT first four steps are analogous to those presented in [3] and [4]
. for the rank-1 detectors.
cos? Z 7 (42) 1) Apply the whitening transformatioR~(1/? to the
— o . training and test data to generate the transformed signal
wherecos? is the CFAR ASD statistic for noncoherent detection modes® = R—(/2% and test vector = R~(1/2)y,.
— 3P Y 2) Next, apply a unitary transformation to rotate to a coordi-
cos? = ST (43) nate system in which the firgt+ 1 basis vectors are set
== in the direction of® andP3 z, wherep is the number of
This detector generalizes the ACE of [12] and [19] to multidi- signal modes or columns &.
mensional supspaces. It is just the sample version of the CFAR3) Resolve the inverse of the sample covariance matrix
MSD, and itsf" version is just the sample version Bf onto the(p + 1) x (p + 1) subspacé®, P4 z2).
P 5 4) Perform a change of variables on the elements of the re-
AR 2y (44) sulting(p + 1) x (p + 1) covariance matrix so that these
ETP(I%% variables are nowtatistically independent

For the 1-D case, whene = 1, the procedure terminates here.

This statistic may be rewritten in its SNR form as .
' ISt y i n! For higher rank ASDs, these steps must be followed by two

=2 more steps: 5) rotation and 6) matrix partitioning. Those less
. K-N+1 1 interested in the details of the derivation may wish to skip to
F=—r = (45) (62).

g The analysis will be based on the statistical behavior of the

K 22!, where the

=1 H1g)

The interpretation and invariances remain those of Fig. 1. samplecorrelation matrixS = (1/K) >’
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LE 1l

TAXONOMY OF RESULTS FORADAPTIVE SUBSPACEDETECTORS NOTE THAT THE LOWER FOUR PANELS HAVE THE SAME FORM AS THOSE OFTABLE |, WITH S
REPLACING R.. THE UPPERTWO PANELS ARE GENERALIZATIONS OF THEKELLY DETECTOR[5]. ALL FOUR ASDs ARE GLRTs. THE AMFs ARE NOT

SNR Representations

Invariances Detector Statistic ﬂ = e~ J ($T$)—l$t§’
Problem with respect to $=8:y 3= e‘ja_P_A 3
transformations of 2 ed =86 5=81 K o
p=26 2 Y .
- N K16 =/'Pt2
K-N+1 o
agts . Z a2

Coherent ASD ao ey g i= K '
known: ¥,02,0 | Rotations in (¢)* Vé'evErE:  VIRPHL K + 3Pz
unknown: R, pu o) ion 2 -

(Equation 27) (Equation 29)
5_ #Pe & = _ _ lagl?

ASD s 5 £Ps: & PR s 4
known: ¥,02 RotaF;ons.m ('I))J_ X =K +55 41 K +3Pis
unknown: R, 1,0 Rotations in (®) =& é

e (Equation 33) (Equation 34)
e ils

Coherent AMF LA X e LT
known: ¥,0%,0 | Translations in ($)* K$'$ T VEPVE L
unknown: R, u (Equati ‘3_) (Equation 30)

quation

AMF — DT — =
known: ¥, 0? Rotatl.ons in (@) A r?=gi'Pg2 r? = L|ludl?
unknown: R, u,8 Translations in (&) (Equation 35) (Equation 35)

—ja iV, A
Jo ~
Coherent CFAR ASD . —_ ez t . ~ i [t
Scaling cos = = f=fEZNHLE, (306
k : ¥ 8 . [tz [o4s 212 KN V2%
niwn . R" 2 Rotations in (@)*+ X4 &'z VI +1 9
unknown: R,pu,o e (Equation 38) (Equation 40)
: P2 7 =
CFAR ASD Scaling = % Pz F P lug|?
known: ¥ Rotations in (&), (&)L stz F+1 RN a2
unknown: R,u,02,6 (Figure 1)

(Equation 43)

(Equation 45)

training dataused to builds is complex Gaussian distributed a®f 2. Partition the Wishart matriB = ZZ" ~ CW[K, N;1x]
z; ~ CNx[0, R]. Then, the scaled covariance estimate= as follows:
K'S has a complex Wishart distributioh ~ CW[K, N;R]

F(a) J(R)
where

_ det(A) e ot (RTLA)

J(R) =nM/INN=DP(KD(K — 1)

-~ T(K — N + 1) det(R)*.

C

f(C)

Cupo | Cuy

det(C)K_N —tr(C)

T (O 4
O (48)

(46) Then, the following change of variables produces random ma-

This puts the noncoherent AMF statistic into the normalizdfices that arestatistically independent
H,, =C,, — C;,C,,; Cyp ~ CW[K — 71, ¢;1,]
H,,=C,, ~ CW[K, r,1,]

form

2 =y  ATIE(ETATTE) LT A,

(47)

Throughout the derivation, we will follow the lead of Restdl.
[20] by making use of the following theorem mentioned in [21]: . '
If A ~ OW[K, N;R] andC € CN*N is nonsingular, then Hz» andH,, are Wishart with(K' — ) and K" degrees of

B = CAC' ~ CW[K, N; CRC']. We will also make use of freedom, and,,, is a matrix with complex normal columns.

the following theorem, which describes how to construct statis- This can be verified by substituting the change of variables
tically independent random matrices from partitioned Wishaftto the density of (48) and computing the Jacobian of the trans-
formation by using the techniques employed in [20], for ex-
ample. Then, the joint density &1, H,,,, andH,,, is

matrices.

A. Partitioned Wishart Matrices
Theorem 1:Consider

the whitened
z ~ CNJ[0, Iy], which we partition asz’
wherez’ € C? andgT € C". Now, suppose we construct a data

random vector
[zf, y'],

matrixZ = [z1, 2o - - 2] = [ﬁ] consisting ofK realizations

H,, =C,,C,/? ~ CN[0, I, @1,].

J(T)

. det(Hyy)K—re—tr(Hyy) . e—tr(H_.,,yHly).

(49)

det(Hmc)(Kfr)fqeftr(H” )

(50)



KRAUT et al: ADAPTIVE SUBSPACE DETECTORS 9

The interpretation of this is as follows. The data matriXes (@)
andY are uncorrelated (and because they are Gaussian, statis-
tically independent). Further, we can apply the following pro-
jection operator to the rows &, which projects onto the row
space ofY: Py: = Y(YY")~'Y. This allows us to decom- |
poseX as a superposition of two parX (= X+ E), whereX =
is asampleversion of the Wiener-filter estimator af, andE
is the residual adaptive error

X =XPy: = XY (YY) 'Y =R, R}]Y

E=XP{, =X-X (51)

A A . . ®)t

whereR,, andR,, are the adaptive estimators B, and (@)

R,,, respectively. Theil,, = EE' = K(R,. — Ry,

f{—lf{]‘ ) gives the adaptive estimate of the error covarffi9-2. Therotation into the signal and measuremsubspacdJ sets the first
vy Ty A . . p + 1 basis vectors in the directions & andP 3 z.

ance, andH,, = KR,, gives the estimate oR,,. The

remaining matrix H,, can be attributed toX by con- ) ) o
structing the unitary transformatioll = [Uy, U], VN —po. Then, g has a complex chi-squared distribution

where Uy = YT (YY")"/? and YU, = 0. Then, with N — p degrees of freedony® ~ x%_,[0]. Note that the
XUy = XUy = XYH(YYH)~/2 = H,,. (Theorem 1 ratio (||n|*/g%) = (' Paz/z'Pgz) is the F-test version of
is a little more general than the standard theorem on Scfiig CFAR MSD in (17):

complements of Wishart matrices in its treatment of the matrix 1h€ transformed sample covarian€® = U_TB.U is
H.,. It generalizes to arbitrar®, but theR = I case is all that also an estimate of identity and is Wishart distributed as

is needed for the results of this paper. Please notertaatdy C ~ CWIK, N;1J. In this new coordinate system, the
are used differently in this section than in the rest of this papefpltirank AMF statistic is

B. Step 1: Whitening r? =¢'ctaaicTtA)TTATCTIE

We now return to (47) and apply a series of trans-
formations to simplify its form. The whitening transfor-D

mation R~(/2) generates the transformed signal modes™ ~ _ . .
&, test vectorz, and whitened sample covariance matrix Since the signal and test vectors in the new coordinate system

B = R-W2AMR /DY ~ OW[K, N;I]. The multirank have, at mostp + 1 nonzero components, we are really only
AME can now be written as concerned with the upper lefb + 1) x (p + 1) block of C2.
We partitionC as

. Step 3: Partitioning the Covariance Matrix

2 =B '®(@B &) &'B 2. (52) i
Cu Cyy

021 022

C= (54)

C. Step 2: Rotation Into the Signal and Measurement Subspace

Next, we rotate into a new coordinate system by applying tla@d use Theorem 1 to identilp = C;; — CEIC;;CQl as a
unitary transformation Wishart distributedp+1) x (p+1) block, with reduced degrees
pL of freedomD ~ CW[K — N+p+1,p+1, I,4].
o= 3

&(HTH)~1/2), . U (53) The multirank AMF can now be written in terms of tle+
\/ 2 Pz

U= 1) x (p + 1) Wishart matrixD

whereUt® = 0, andU'PLz = 0. In the new coordinate " :§;+1D71Ap+1(A;+1D71Ap+1)7lA;+1Dfl§p+1
system, the signal matri® determines the direction of the ; _ _ (5?)
first p basis vectors(UT®) = AT = [(&®)1/2 0f]. Where§erl =o[n! g]containsthe firsp+1 elements of",

The (p + 1)th basis vector is determined by that part OéndA;rH—l = [(®T®)/2D) Q;:]_

the test vectorz that does not lie in the signal basis; there- We now apply Theorem 1 for a second time to identify the

fore, the rotated test vectf = U’z has onlyp + 1 upper-leftp x p block of D~

nonzero components{Ufz)t = ¢ = o[l g, 0.

These vectors are illustrated in Fig. 2. The vector Dy D},

n = (1/0)(®7@)~ WD &tz ~ ON[(n/o)(T®)1/28, L] is "o b

the same vector that arises in the (nonadaptive) MSD statistic: 2t 2

x> = |lz/*>. The componeny contributes to the estimated . E-! | ~E-'D} D5}

noise scaling, that is;pg = 4/zfP%z is an estimate of N —D; Dy EL ‘ D3, Dy E-1Df, D3} + D3}
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whereE = Dy; — D}, D3, Doy ~ CW[K — N +p, p, L]. TABLE Il

Then, we can write the multlrank AMF as the quadratic form STATISTICAL DECOMPOSITIONS FOR THEMULTIRANK ASD, AMF, AND
CFAR ASD SATISTICS

~ E-!
2 =o?[n' | g] [— (@T®)1/2) MSD ASD
~Dy Dy EL . o I
_ = llnll® o # o s
to\ /DR et e/ o=, =l
(@) E (@1 9) )] 21 m (G + 25)
n AMF
1/2 _ _ _
.(@T@)( / )[E L] —E 1D£1D22]L [—] L2 2
g ri= W n+ hiig
1 2
=o’[nf | ¢]
[ E-! | —~E~'D} D3} ] l@] CFAR MSD CFAR ASD
|-t -1 -1 Ipip-t | | F o, F H_ 1| he :
2 D22:)21E1 ‘ 1D22D21TE ]1)21D22 g b=t F= |3 '3=ﬁ'+—17 F=h—12 ﬂ?J%z
=0’(n— D} D3y g)'E7! (n — D} Dy g). (56)
n, g, hi, he, hs all I (independent)
E. Step 4: Transformation to Independent Covariance n~CN[E(@®)30,L,], ¢° ~x%_,l0]

Coefficients

. . . . . . .. h2"“’X2_ 07h22~x2_ [0]7hNCN[Qvl]
While D is an estimate of identity, the covariance partitions v Xl KoNepri s ™ >

(D11, D21, Dys) are not independent, as can be seen from the

Wishart distribution ofD. However, application of Theorem 1)\, that is, Vi) — /ATM, wheres' = [1 0 --- 0].This
generates new variableE( k5, 73) thatare statistically inde- ! .

pendent: operation transforms the multirank AMF to

2 =g asfa1s (60)
E =D11 D21D D21 ~ CW[K N +p, D, p]

(a matrix) whereG is the transformed sample covariarGe= VIEV ~
CW[K — N +p,p, L.

D
hy = — 22~ CNJo, L] (a vector)
VD2: G. Step 6: Another Matrix Partitioning
h3 =D ~ X% n4p+1[0]  (ascalar) (57)  Wecanagain use Theorem 1 to identify the upper-left element

of G71
This gives the following representation for the multirank

o~ —2 o
AMF 72 as a quadratic form in the Wishart matiix Gl = [L’i] (61)
* *

. hy\' o h
r?=o? <ﬂ+ g h—i) E™! <ﬂ+ g h_i) (58)  where the scalali;? = G1; — G} G35 Gar ~ x%_ n1.1[0]-
This gives the final decomposition for the multirank AMF

whereg andh, = \/h»? are Rayleigh-distributed random vari _stat|st|C7 compared with the multirank MSD:

ables (square-root of a chi-squared). " o2

ré = —5
hi?

2
vs. x> =|nl>. (62

h
ﬂ‘i‘g;—i

F. Step 5: Another Rotation

For 1-D subspaces with = 1, the stochastic representa{Recall from Section IV-C that the nonadaptive MSDyis =

tion of (58) is completely simplified sinck, /., andn willbe  [|=||?.) In this formula, the normal random vecterandh., and

scalars, which we will later denote as?, k3, andn. However, the Rayleigh random variablgsh,, andh., are all statistically

for multirank subspaces, rotation and matrix partitioning opeirdependent.

ations need to be applied once again in order to redite a The decompositions for the remaining multirank adaptive de-

scalar. Lettingh = n + g(h3/h2), we apply the unitary trans- tectors, namely, the ASI;?2 and the CFAR ASDros?, can be

formation found by following the same sequence of six steps. The results
are summarized in Table III.

= aah V] (59)

H. Observations

whereVT\ = 0. The transformatiofV rotates to a coordinate  Table Ill is organized so that decompositions for the MSD

system in which the first basis vector is set in the direction @hd CFAR MSD statistics are recorded in the left-hand column,
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TABLE IV Densities for Coherent Kelly Statistic Densities for Kelly Statistic
STATISTICAL DECOMPOSITIONS FOR THECOHERENTASD, AMF, AND 0.8
CFAR ASD SATISTICS - Eo?(—)gdap- o8 - Eo?agdm
06 - - K=20 ' — = Ke20
=z K=13 2 K=13
Coh. MSD Coh. ASD 2 2
o gh 804 a
n - K L __Ptas g 8
"= Tma T 1. & é &
I~I? +1 hiy/ 3z + i 02
0 = -
Coh. AMF -4 6 8 0 5 015 20
Coherent Kelly Kelly statistic
.o
= — |n+ ih Densities for Coherent ACE Statistic Densities for ACE Statistic
3
h1 ho 3 10
— Non-adap. —— Non-adap.
25 —- K=100 8 ~- K=100
— - K=20 — — K=20
\
Coh. CFAR MSD Coh. CFAR ASD z 2 K=13 z |\ K=13
] ]
~ 6
t n i 1 h % 5
— o~ > 2
COS:W’ t—g f05= ————, t=h— n— -+ h3 S 34\
A [=] f=} A
VI +1 vl g, g 4\
0.5 2 NSV it
. : N < Sl
n, g, hi, h2, hs all Il (independent) ol ) o2 ST NTL
-1 -0.5 0 05 1 0 0.2 0.4 0.6 0.8 1
- 2 Coherent ACE statistic ACE statistic
n~CNEJER19,1], ¢ ~ X310
[‘7 '1é 2’ ], g XN 1[ ] SNR=5=7dB, #Elem =10, #Sam =13 20 100, # Real = 1000000, # Bins = 100

N 0], ho?~ x3 0], hs ~CN[0,1 —~ —
ha® ~ Xar-w a0 h2” ~ Xaronal0)s B [0, 1] Fig. 3. Densitiesfor the statistics/K 7, K x?, ¢os, andcos?. Densities are

shown under both, (symmetric about zero for the coherent statistics and
weighted toward zero for the noncoherent statistics) Ahdhypotheses. As
the number of training sampleS increases, the hypotheses become better

and decompositions for the ASD, AMF, and CFAR ASD steseparated. These densities were obtained from a Monte Carlo simulation using
tistics are recorded in the right-hand column. To illustrate t rr?é':'%’;ggﬁgﬁf”&g&g%ﬁtﬁ“‘;g' %ﬁg”fif:g?g?g?ﬂfﬂ' i”g 2\7/
heuristic value of these decompositions, consider the multiragg). 7 - -

MSD statisticx? = ||n/|* and the multirank AMF statistic

r? = (02/}?12)”ﬂ+ (9/h2)hs ”2' Itis as if the statistie under- \arjance, of the adaptive detectors, without the need to find ana-
goes the linear transformaticia /1) (n + (g9/h2)hs) before ysica| expressions for their densities or characteristic functions.
its norm-squared is computed to obtaih This linear trans- 1o see how the complexity of the density or characteristic func-
formation is of the forma(n + b), wherea and b are inde- tions can be bypassed, consider the decomposition for the co-
pendent noise terms. The influence of these additive and mykyent AMF# in Table IV. It is written as sums and products of
tiplicative noise terms decreases as the available training d@'g%, (1/h1), (1/h2), andhs. Itis possible to write the moments
increases. Whel' — oo, meaningS — R in distribution,  of # exactlyin terms of the moments of these five random vari-
then(v/K /hy) — 1, and(g/hs)hy — 0 in distribution. ables, which are distributed as normal, Rayleigh, or the recip-

Similarly, consider the multirank CFAR MSB" = (||z]|*>  rocal of a Rayleigh. In this way, we can analyze how the output
/9°) and the multirank CFAR ASD" = (1/h1)||ln(h2/9) + SNR of the adaptive statistics improves as the number of avail-
hs||*. It is as if the statisti¢n/g) undergoes the linear trans-gpje training samples increases. This is discussed in full detalil
formation ' = (h2/h1)((n/g) + (hs/h2)) before its norm- iy 22] and [23].
squared is computed. Again, the influence of the noise termsa second advantage comes in performing Monte Carlo
decreases a& — oo; then,(hz2/hy) — 1, and(hs/h2) — 0. simulations. With the statistical decompositions, the generation
The ASD has a similar interpretation. of random realizations of an adaptive statistic can be achieved

The rank-1 versions of Table Ill, together with the decomp@nuch more efficiently. If the gamma random variables are
sitions for all of the rank-1 coherent detectors, have been qfenerated by summing normals, o§2K — N + 4) normal
tained in [3] and [4]. The rank-1 versions that apply to coherefgndom variables need to be generated for a realization of a
problems are summarized in Table IV. All of the observationgnk-1 detector in Table IV, compared withV x (2K + 1)
just made about ASDs being equivalent to noise-corrupted V@frthe training and test data were generated explicitly. This
sions of their MSD counterparts apply here as well. is a significant reduction: about a factor 8f for K > N.

It should be noted that these decompositions are not mergtye results of Monte Carlo simulations performed in this
“stochastic representations” in the sense of being “equal in diganner are shown in Figs. 3-5. Fig. 3 shows how the densities
tribution to” (or “i“). They are identical decompositions on aunder H, and H; separate as the available training data
realization by realization basis, i.e., for a given realization aficreases. Densities are shown for the rank-1 ¢ase- 1)

y, the adaptive statistics are expressed in terms of the cormé-the ASD and CFAR ASD statistics, which in this figure
sponding realizations of, g, etc. and all subsequent figures are labelled Kelly and ACE. Fig. 4

In addition to the intuitive insight into the structure of theshows the corresponding improvement in the receiver operating
adaptive detectors that these decompositions bring, they at@racteristics (ROCs) as the training data increases. Fig. 5
help in quantitative analysis in several ways. First, they magbows the same plots, but they are grouped to compare the
it possible to directly calculate the moments, such as mean atetection performance of the ASD statisticaind x2, and the
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ROG Gurves (Goherent Kelly) ROG Gurves e ezea A thlrd advanf[ag(_e of the statls_t|cal decomposmons is that they
o A o [ Nor-am simplify the derivation of analytical expressions for the density
. L R pae functions of the ASDs, a topic that we discuss in detail in the
13 Rk 4 o .89 - .
2 C L 2 K18 g next section.
3 o -, 3 @ T
S 8 / - e 5 8 o
g § 7 — Non-adap | & é ot V. OBTAINING DISTRIBUTIONS FROM THE STATISTICAL
s, - - ka0 3l DECOMPOSITIONS
A ) . . - .
0001001 01 1 2345678 9 D001 001 01 1 2.3.456.7.8 .9 In this section, we use the statistical decompositions of
Prob. False Alarm Prob. False Alarm . . . . . .
ROG Gurves (Caherent ACE) ROG Curves (ACE Table Il to find analytical expressions for the d|str|bgt|ons of
9009 S ST the ASD, AMF, and CFAR ASD statistics. Those less interested
%99 7 S9N - K00  in some of the details may wish to skip to (68).
5 .99 e L 5 .99 K=13 y
§ 4 e ’ g 7 e P .
g @ e g 77 A. Multirank ASD, AMF, and CFAR ASD
g 7 I e g 7 2 . : -5
I Tk & f S We will start with the ASDx2. Recall from Table Il that
300 T 3 S the equivalent decomposition writgg asy? = (k2/k2 + 1).
Boo1 001 01 1 2546678 8 doroor o1 1 2345678 o The first step here is to separate out the mean of the vector

Prob. False Alarm Prob. False Alarm
SNR=5=7dB, #Elem=10, # Sam =13 20 100, # Real = 1000000, # Bins =100

n. We denote by VSNRhe mean of@:'l/‘SNR = E[n] =
(/o) (@7 ®)(/29. Then, from Table I1lx2 may be written

Fig. 4. Receiver operating characteristigROCs) for thes, {5 cos, and

3 statistics. As the number of training samplEsincreases, the hypotheses

become better separated. These curves are obtained from the same Monte Carlo

simulation discussed in the caption to Fig. 3; they are plotted as though on ;5 g
“normal probability paper.”

2

no + ~-hy + VSNR
]7,2
1 92
=+ 9
' <0'2 - h22>

wheren,, andh, are distributed a€’ N[0, I,], and £ denotes

(63)

29-May-1998 (#5252)

ROC Curves (K =13) ROC Curves (K =20)

“equal in distribution to.” The sumg, + (g/h2)hs is distributed

9999 9999
— Coh. Kell — Coh. 2/h2 is i
sesp | T gon kel ) seof [T ConKely the same agn/1+ (g9°/h3), wherem ~ CNI0, L] (this is
g oop |7 SRACE g g9p | 7 ConAcE - true, irrespective of how, andg are distributed, assuming they
s TR e are independent of, andh). Therefore, we can write? as
a ' - a . -
8 :g o g :Z S
o . - o . s 2
3 - 3 e g2
2 v 2 A my 1+ -5+ VSNR
.i)1001 .001 .01 1 23458678 9 ,8001 001 .01 12345678 9 -5 d h’2
Prob. False Alarm Prob. Faise Alarm [{,2 = 3
ROC Curves (K =100) ROC Curves (Non-adaptive) h2 i + g_
Rl pu—ry Kelly 9998 Coh. Kelly L 0'2 h%
.999 - 999 -
s 99 S 99 2
E o -
g :g £ :Z m + VSNR
B 4 9 .92
3v 3 1+ h_% 1+ h_2
.f)1001 .001 .01 1 2345678 9 .8001 001 .01 1 2345678 9 = - 2
Prob. False Alarm Prob. False Alarm h% 1 92
SNR =5=74dB, #Elem =10, #Sam =13 20 100, # Real = 1000000, # Bins = 100 —2 ]—2
g [z
2

Fig. 5. ROCs when the number of training vectdtsis 13, 20, 100, and
infinite. These are theamecurves as those in Fig. 4 but plotted to compar
the behavior of thé:, \2, cos and 3 statistics.

At this point, we can follow a line of reasoning similar to that of
Kelly, et al.[5], [10], [24] and find the distribution conditioned

on the ratio
CFAR ASD statisticscos and (55\2, for various amounts of b= 1 (64)
training data. As a general rule, the detectors that correspond 1 g_2'
to increased knowledge of system parameters (phéser + ho?

&%) have better performance. However, as seen in Fig. 5, the

performance loss of the CFAR ASD detectors compared with the multidimensional case? andh3 have different degrees
the ASD detectors becomes negligible for small training set$freedom, and is distributed a$ ~ Fx_ y4p4+1, v—p [iNtET-
(even becoming a slight performance gain in places), where #singly, in the rank-1 case & 1), this has the same distribu-
CFAR ASD becomes a better approximation of the ASD.  tion as the Reedt al. normalized output SNR [5], [20]].
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With this identification, the factor on the right can bewhere( is defined as above. Then, the distributionfs given

rewritten with the following algebra: by
1 ¢ g2 > _ b
i + h_% B ﬁ 1 g2 Pr[r? < n|b] = F[p K—-N+1, SNR#) <77 a2/ (71)
@ h34g? . o
14 nz Finally, we can go through the same procedure foztheersion
2 of the CFAR ASD,5 = (F//F + 1). From Table Ill
— 1 h% + 92 _ b + (1 b) 2
o2 \h3+ g2 R3+g% o2 <h§ n 1)
~ d 92 1
:1+<i2—1)b (65) FLM L lnt——VSNR| . (72)
o 1 g
1+ ﬁ
andx2 can be rewritten as ?
2 Conditioned orb, the statistical equivalent df is
_y |m+vovsnR] .
K2 = : . (66) ~ooa IKP
1 1+<§—1>b b B2 T—b (73)
Conditioned onb, the left-hand factor oi? is an F-dis- Then, the distribution of” is given by
tributed random variable witlfp, K — N + 1) degrees of PrlF < nlbl = Fr. o 1—b 74
freedom scaled bfp/K — N + 1) [ < mlb) = Fp, s v, sire (7 ) (4
R e 1 which notably does not depend enThe probability of detec-
}#|b 4 = (67) tion (PD) for one of these statistics is given by one minus the
hi 1+ <i _ 1) b distribution function evaluated at the threshold. The probability
0? of false alarm (PFA) is the PD when SNRO0.

where¢ ~ CN[VSNR- Vb, 1] is a complex normal random B, Coherent ASD, AME, and CFAR ASD

vector whose mean is conditioned dnWe denote the distri- . . .

. : i Using the decompositions in Table IV, we can apply the same
bution function of the scaled noncentr&l by Fj,,. ., q(7); . . o d
we define this to be the probability that the ratio of a COmtechnlques to find distributions for the coherent versions of the

: . P y . ASD, AMF, and CFAR ASD. Conditioned on the beta parameter
plex-chi-square withv,, degrees of freedom and a noncentralit o
. . . ando, they are all related to the noncenttalistribution

parameter, divided by a complex chi-square withy degrees

of freedom is less than. The conditional distribution of2 is X - _
then given by ! Pr[Re(r) < nlb] =Tjx_ni1, vonms)

Pr[;E < n|b] : <77\/ 1+ <% - 1) b) (75)
= Fp, k- N41,SNR-b] <77 <1 + <% — 1) b)) (68)
Pr

where SNR = |VSNR||Z = (p2/c2)0/(®'®)9 =

u2/02)p'¢. Again, an expression for the final distribu- Dt _ ( o )
'Eion/ca)n_bé obtained by integrating this distribution over the Pr{Ret?) < nlbl =Ty, vsmmay (V1 =0) - (71)
beta density ob. ~ Here, we denote the distribution function of the scaled noncen-
Using the same procedure for the AMF yields, from {5, byTj,., /a)(n); this we define to be the probability that the
Table Il ratio of the real part of a complex normal with mega, divided
) 2 by the square root of a complex chi-square wi&hdeqrees of
o2 <1 + }9_2> ) free(cjiom, iz less than. Note that the distribution of Ré) does
%5 d 2 not depend om.
o h? m + 2 VSNR] - (69) In summary, the statistical decompositions of Table IV may
1+ be used to get statistically equivalent random variables condi-
tioned on the beta-distributed random variahl&ach of these
conditional random variables is a linear transformation of either
at-distributed or art'-distributed random variable. This means
that their distributions may be obtained by integrating a noncen-
S L 1?02 2y ralt-or F-distribution against a beta density to getintegral rep-
rib = ' (70) resentations for the distributions of the coherent and multirank

. Vb
[Re(#) < nlb, o] =T}, _nq4, vanr <77 — (76)

Conditioning orb, we obtain the following statistical equivalen
for r2:
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Fig. 6. Detection probabilitiegor (left) K = 100 and (right) KX’ = 25; PFA= 10~3, andN = 20.

versions of the ASD, AMF, and CFAR ASD statistics. The disgplots; the qualitative behavior discussed here is still seen with
tribution results for the coherent ASD, AMF, and CFAR ASDar fewer realizations.)

statistics are original with this paper. The distributions for the The resulting detection curves for the Kelly, AMF, and ACE
rank-1 noncoherent detectors (in [5], [10], and [24]) arise wheare shown in Fig. 6 for? equal to unity andV = 20. They

the noise scaling? is set to 1, and the signal subspace rankare more easily interpreted by recognizing that the probability
is set equal to 1, in the expressions obtained here for the geneffalletection of the nonadaptive cosine detector (CFAR MSD)

multirank case. is always upperbounded by that of the MSD; this is the price
paid for estimating the noise scaliag The performance of the
VI. NUMERICAL PERFORMANCE COMPARISONS CFAR MSD only approaches that of the MSD whanis large

Now, let us compare the detection performance of the ASBompared with the SNR, resulting in a relatively good estimate

AMF, and CFAR ASD statistics. We will consider the rank-Pf the noise scaling, as given by (13N — 15 = zTPéz

case of these statistice & 1), referring to them in this case (see [1]; this can also be verified, in terms of the variance and
as the Kelly, AMF, and ACE to be consistent with the starexpectation of» and¢ under H; and Hy, using the analysis
dard nomenclature of the radar literature. In the rank-1 case, tigroach of [22]).

ASD (Kelly), AMF, and CFAR ASD (ACE) and associated sta- When K = 100 in Fig. 6, the training data support is rel-
tistical decompositions (which are obtained by setjing 1 in ~ atively high, and consequently, the adaptive detectors behave

Table 111, or by magnitude squaring the expressions in Table I\Jose to their nonadaptive counterparts. Consistent with this ob-
take on the form servation, we can see that the AMF does well against the ACE

fq-1,,2 —~ at high SNRs, with the difference becoming negligible at low
5 ['S™ gl _ SNRs.
(fS*l@(KJrQTS*lg) K241 When K = 25 in Fig. 6, the training data support is rela-

tively low. Here, the adaptive detectors rely on poor sample co-
variance estimateS. ACE is not only invariant to scaling of the
(78) measuremeny but is separately invariant to global scaling of
B2 <i N 9_2) the training data sefz; } (and, thus, to scaling &). For this
o2 " hZ reason, we expect it to be more robust under conditions of small
sample support. Fak = 25, the ACE begins to take advantage

2= 2 _7 |+ ha (79) of its scale invariance t8 and overtakes the AMF at low SNR.
PpTS—14p hi ha By comparing (78) with (79) and (80), one can see that the
T_—l ) . Kelly GLRT approaches the AMF for very high values of the
cos? = 'Syl - _ F sample suppotk” and more closely approximates ACE for very
(z/;TS*lz/;)(yTS*ly) F4+1 low values of sample support. In Fig. 6, this can be observed in
S, how close the Kelly curve is to that of the AMF f&f = 100 and
= 1 nh_2 + Iy (80) to the ACE forK = 25. In the very regime of smalk” in which
i g the ACE performs relatively well, the Kelly begins to behave

We use expressions for the distribution functions obtained more like t_he ACE’ Wh!Ch WO[_"d be expec_tec_zl by considering
Section V conditioned ohando. We also make use of a usefult"® normalization term in (78) in the smal limit.

finite-sum expression for the noncentrdldistribution, which -
was found by Kelly [25]. Instead of numerical integration, wé False Alarm Stability

approximate the integral of the distribution, over the densities These comparisons have been made under the idealized con-
of b, by averaging realizations of distribution given by 1000 redition of & = 1, which the Kelly and AMF assume but the
alizations of. (Based on examination of these realizations, waCE does not. Whem, which is the true relative scaling of the
estimate the uncertainty to be abguif100) the height of the measurement, deviates from unity, the probability of false alarm
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Change in PFA CFAR ASDs, which are invariant with respect to arbitrary
scaling of the test data. In addition, the CFAR MSDs are
AMF CFAR with respect to the entire class of elliptically contoured
| — Kelly dlgtr!butlons., which include compound-Ggus_slan distributions.
001 — ACE E It is interesting that the CFAR ASDs, which include the ACE
statistic, have thesame formas the CFAR MSDs, with the

_ ‘ sample covariance replacing the known covariance. This is
0001 | R not true of the ASDs for known noise scaling, such as the
I Kelly GLRT [5], which does not take the form of the matched
s subspace detector.

The CFAR ASDs suffer some performance loss under the
idealized scenario of homogeneity between training-data and
test-data noise statistics. However, their invariance to test-data
scaling makes them CFAR with respect to variation in the noise
level between training and test data; other researchers have
Fig. 7. Change in false alarm probability for a constant threshaisl the ShOwnN them to have robustness to more complicated inhomo-
variance of the noise scaling increasas;= 80, andV' = 20. geneities, such as changes in the power of clutter discretes [24].

We have presented a unified description of the statistical be-

(PFA) of the Kelly and AMF will be affected, but the PFA thavior of the class of ASDs, including those parameterized by

the ACE will not be affected. In Fig. 7, we illustrate this eﬁec{nultidimensio.nal sjgnal_sgbspaces. We.have ;hoyvn that they

by introducing a randomly fluctuating noise scaling. Unéigg ea_u_:h have an identicatatistical decomPOS'“O'YNh'Ch 'S asim-

this is equivalent to the random amplitude scaling of the corﬂl—IerOI function O_f the same set of five stat|st|cglly indepen- .

pound-Gaussian noise model of [12]. We chose a simple dis Fnt random varlablgs. These same random varlabl_es appear in
bution foro2: complex chi-squared but normalized to have unffI such represent.atmns, Fh(_ey include the nonadgptlve matched
mean and with a variance equal to 1 divided by the number HFer and thet/cosine statistic, plus three perturbing variables

degrees of freedom. Because ACE is invariant to scaling Ofattributable to training data. In addition to their heuristic value,
then undetHy, its PFA is completely insensitive to fluctuaﬁonsthese representations provide some computational advantages.
in the noise s’caling We have used them here for more efficient Monte Carlo simula-

Conversely, while the Kelly and AMF may do well against thg’ons and to present in detail a simplified derivation of analytical
ACE in terms of plots of PD versus PFA, their thresholds cannptPressions for the probability distributions of the ASDs.
be setto achieve a desired PFA without requiring the user to have
some knowledge of the scaling distribution. The ACE does not VIIl. POSTSCRIPT

require this information; for a set threshold, its PFA does not ) _ )

depend on the statistics of the noise scaling, whereas the PFA IS paper traces its heritage to the collaboration of LLS and
of the AMF and Kelly may vary considerably, as illustrated ifp- W- Lytle, who in [11] applied the theory of invariance in hy-
Fig. 7. pothesis testing to the problem of CFAR signal detection. These

In summary, ACE sacrifices a small amount of SNR perfofdeas were then generalized to incorporate multidimensional de-
mance (about 2 dB in Fig. 6, for a PFA 86~3; results are tectors in the collaborations of LLS and M. J. Dunn [26], re-
similar at other PFAs), for low SNRs (less tha), or for small sulting in the treatment of MSDs given in [1]. The collaboration
sample support. In exchange, it has scaling invariance and tAfd-LS and B. J. Friedlander led to the GLRT interpretation of

CFAR performance against scale fluctuations in the test datd2]- The work of Kelly [5], a major contribution to adaptive de-
tection, was followed by the work of Chen and Reed [9] and

Robeyet al.[10]. These papers are the natural predecessors of
this paper.

In this paper, we have offered a unified treatment of two About the time of [11], R. L. Spooner [27] and G. Vezzozi
classes of generalized likelihood ratio tests: the MSDs, whieimd B. Picinbono [28] derived CFAR detectors for spherically
use a known noise covariance structure, and the ASDs, whiokiariant noise. These papers are predecessors of the work on
use training data to estimate an unknown noise covariance stradaptive detection for spherically invariant noise by Catta.
ture. Both matched and adaptive subspace detectors may be[fle}, [13], who suggest the rank-1 version of the noncoherent
ther classified according to whether the test signal is completé}*AR ASD derived in [6]. Contet al.[12], [13] slightly predate
specified (coherent) or parameterized (subspace) and accordigrank-1 version of the CFAR ASD presented in [7], [19], and
to whether the noise level is known or unknown. In the adaptiy29]. However, as we show in this paper, the detector of [12],
case, the unknown noise-level problem translates to an unknd@8], and [19] is just one of a large class of adaptive detectors
scaling between the noise in the training data and test data; ibiee can derive from a maximum likelihood principle, beginning
assumed that the training data accurately represents the naigh the MSDs of [1], [2], and [26]. In fact, it was not until the
structurebut may not accurately represent the ndesel publication of [6] that we had a convincing derivation for the

Maximizing the likelihood ratios over this additional scalingCFAR ASD, based on asymptotic arguments in [12] and [13]
parameter produces the cosine-based CFAR MSDs and #mel based on heuristic arguments in [19].

Prob. False Alarm
\

00001 === —5am = 80

30 _20 ~10 0
variance (%) (dB)

VIl. CONCLUSION
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