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Abstract 

The Effect of Horizontal Pressure Gradients on the 

Momentum Transport in Tropical Convective Lines 

Measurements of the momentum transport in tropical convective 

lines suggest that horizontal momentum can be generated on the cloud 

scale by the mesoscale low located near the center of the convective 

part of the line. 

A simple convective parameterization is used to evaluate this 

effect. The parameterization is a version of the Fritsch and Chappell 

scheme modified for tropical conditions. Calculation of momentum is 

modified in order to evaluate the influence of the horizontal pressure 

gradients on momentum transport. The results suggest that in modeling 

of convective (particulary slow-moving) lines, horizontal pressure 

gradients should be taken into account. Sensitivity studies show that 

the magnitude of the calculated momentum flux strongly depends on 

average mesoscale vertical velocity and the vertical velocity in 

clouds. 

The results from Fritsch and Chappell's parameterization are 

supported by the results of momentum flux calculations for the 

Lagrangian parcels moving in the two-dimensional pressure field 

generated by the slow moving convective lines. Some suggestions 

ii 



concerning the proper formulation of the momentum flux para-

meterization are made. 
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I. Introduction 

The properly formulated parameterization of convection is one of 

the most important problems in large- and mesoscale modeling. Because 

the strongest impact of convection on environment is connected with 

the release of latent heat, most convective parameterizations 

emphasize thermodynamic effects of cloud ensembles. However, dynamic 

effects of convection cannot be neglected. The first step towards 

formulation of parameterization of those effects is to determine the 

magnitude and structure of convective momentum fluxes through 

observation. This can be done by calculating the residual terms in 

large scale budget equations, but in the tropics the uncertainty in 

geopotential field measurements made this task practically impossible. 

However, substantial progress was made after the GARP Atlantic 

Tropical Experiment (GATE), which provided data with sufficient 

density and quality for momentum budget calculations. 

The first attempt to calculate the momentum budget in tropical 

atmosphere was made by Stevens (1979). Using the data from Phase III 

of GATE (derived from A-scale and AlB-scale ship data), he calculated 

the vorticity, divergence, and momentum budgets for the average 

composite synoptic-scale wave. The results of this study showed the 

existence of the large apparent momentum sources in budget equations, 

suggesting that sUbsynoptic-scale circulations strongly affect wave 

dynamics.. The momentum sources in Stevens I study were calculated as a 
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residual from the momentum equatioI). for the synoptic wave, and geo-

potential was calculated from the hydrostatic equation and temperature 

field. 

Another approach to the estimation of convective sources of 

momentum was presented by Sui (l984}. He calculated vorticity 

residuals for seven convective events in GATE and then recovered 

momentum sources by integrating the Laplace equation: 

"iJ2 (~) = z at cu 

where Z is an apparent vorticity source and tjJ the stream function. 

This approach, however, allowed him only to calculate the momentum 

source connected with a nondivergent part of the wind (VtjJ = kx"iJtjJ). 

As concluded by Stevens (1979), the apparent source of momentum 

has too complicated a structure to be parameterized by simple formulas 

a2u like Rayleigh drag (X = -D(p)u) or diffusion (X = K a2z)' Since an 

apparent source of momentum can be attributed to convective activity, 

a better way to parameterize this effect is to express it in terms of 

cumulus mass flux and the excess horizontal momentum of cumulus 

relative to the environment (Yanai, 1973; Schneider and Lindzen, 

1976): 

X = I [(J. W • (V . - V
E

)] 
1 1 C1 C1 P 

where the swrunation is taken over all cloud types, 

(1.1) 

(J. is the 
1 

fractional area occupied by each cloud type, W is the vertical 

velocity in pressure coordinates (m. = -cr.w. is the mass flux in each 
111 

cloud type), V , V
E 

represent horizontal velocity in cloud and in the 
c . 

environment respectively. As shown by Shapiro and Stevens (1980), eq. 

1.1 can be written in the bulk form: 
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x = 0 (Vc - VE) + [M VE + a (V$) ] c ,p c 
(1. 2) 

In this formulation, the first term describes the detrainment of 

momentum to the environment (0 is the detrainment coefficient), McVE 

describes the effects connected with compensating environmental sub-

sidence caused by the convective activity, and a(V$) describes the 
c 

changes caused by the horizontal acceleration in clouds caused by 

cloud-scale horizontal pressure gradients. A one-dimensional cloud 

model is used to calculate V , M and o. The term involving cloud-
c c 

scale pressure gradients is usually neglected. 

The formula (1.2) was used by Shapiro and Stevens (1980) to 

calculate convective momentum fluxes, in order to compare them with 

the apparent momentum sources from Stevens' (1979) large-scale 

momentum budget calculations. The results showed some inconsistencies 

between parameterized and observed convective momentum sources, 

although the same comparison for vorticity showed much better agree-

ment. Shapiro and Stevens concluded that the momentum fluxes can be 

much more dependent on organization of the convective system than 

vorticity fluxes. The assumption that the influence of the cloud-

generated pressure forces on momentum flux is negligible can be 

justified in the case of strictly random convection, but it is 

questionable for the highly organized convective systems such as 

convective lines. 

Indeed, aircraft measurements of momentum flux in GATE convective 

lines documented by LeMone (l983)and LeMone et al. (1984) suggested 

that although the momentum fluxes for the isol"ated clouds or less-

organized convective lines do not show the influence of pressure 
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gradients, the momentum flux in two-dimensional convective lines is 

strongly affected by the horizontal pressure gradient force. In 

GATE, the fluxes of horizontal momentum perpendicular to the line 

were always negative (when positive horizontal wind is in the 

direction of line motion), showing in many cases the upgradient 

transport of momentum. LeMone et al. (1984) argued that taking into 

account this kind of momentum transport in the convective lines 

observed in GATE would improve Shapiro and Stevens (1980) results and 

bring parameterized values of apparent momentum sources closer to 

those calculated from large-scale budget. 

LeMone's observational results were supported by the results of 

the numerical study of the momentum generation in the tropical con­

vective line, presented by Soong and Tao (1984). They used a two­

dimensional cloud ensemble model to simulate the formation of an 

ensemble of clouds under the given large scale conditions. The 

momentum flux perpendicular to the line (u'w') appeared to be 

extremely sensitive to the details of simulations, as was the cloud 

configuration produced by the model. Since the momentum flux in the 

direction parallel to the line (v'w') remained almost unchanged, they 

concluded that it was the pressure force connected with the cloud 

configuration that caused such dramatic changes in the u-momentum 

flux. 

The results presented by LeMone (1983) and LeMone et a1. (1984) 

showed also that most of the momentum generation occurs in the 

convective part of the line - the narrow (20-40 kIn) zone behind the 

leading edge. This suggests that convection-generated pressure forces 

can cause problems not only in large-scale models, but also in 
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mesoscale models. However, the convective parameterization used in 

mesoscale models also use the assumption that horizontal momentum in 

clouds is conserved (Raymond 1984, Beniston 1985, Fritsch and Chappell 

1980 a,b). It is the goal of this study to determine, using the data 

from the GATE two-dimensional convective lines and simple convective 

parameterization, what error can be made by neglecting the c~oud-scale 

pressure forces in parameterization of convective momentum flux. We 

evaluate the effect of horizontal pressure forces on momentum flux 

using two methods. In the first, we use the convective para­

meterization designed by Fritsch and Chappell, but modified for 

tropical conditions. This procedure is described in Chapter II, and 

the results appear in Chapter III. Chapter IV describes the other 

approach we used. In this part we calculate the momentum fluxes for 

the set of Lagrangain parcels moving in the two-dimensional pressure 

field generated by the convective line. The conclusions are contained 

in Chapter V. The Appendix A contains some of our suggestions 

concerning implementation of the Fritsch and Chappell parameterization 

in mesoscale models. 



II. Description of the Fritsch and Chappell Parameterization 

In numerical models momentum fluxes generated by convection are 

usually parameterized with the formula 1.1. 

The cloud budget of the horizontal momentum is given by: 

(2.1) 

where E and <5 are entrainment and detrainment coefficients, (J is the 

area occupied by convection and F is the horizontal pressure force 
c 

The purpose of this study is to determine, using convective para-

meterization and data for the convective lines studied by LeMone et 

al. (1984), the change in momentum flux caused by horizontal pressure 

forces acting on updraft and downdraft parcels. Since we deal with 

mesoscale phenomena, where convective drafts can occupy a significant 

fraction of the grid area, we chose the Fritsch and Chappell (1980a) 

parameterization, which was designed for mesoscale models with grid 

spacing about 20 km and which does not contain the assumption that the 

area occupied by active convection has to be small. 

2.1 General description 

The Fritsch and Chappell parameterization is based on a local 

consumption of the available buoyant energy. In this parameterization 

the mesoscale model provides temperature, humidity, and horizontal and 

vertical velocities at the given grid point. If the mesoscale model 
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generates positive available buoyant energy at this grid point, con-

vection is asswned to entirely remove this energy in the specified 

period of time t. A simple one-dimensional cloud model is used to 
c 

calculate vertical distributions of the temperature, mixing ratios, 

and momentwn adjusted for convection. 

To determine the amount of convection (updraft and downdraft 

area) the following iterative procedure is used: Initially it is 

asswned that updraft occupies 1% of the grid area. Temperature, water 

vapor mixing ratio, and the amount of condensate are calculated for 

the updraft and downdraft. The amount of downdraft air corresponding 

to the initial unit of updraft air is determined (see next section). 

Environmental compensating subsidence is calculated from the maSs 

continuity condition. The new values of variables in the considered 

grid area are evaluated as the average over updraft, downdraft, and 

environment area. If the new buoyant energy is larger then zero, a 

larger area of the updraft is asswned, and the calculation is 

repeated. This iterative procedure is continued until all buoyant 

energy is used for convection. Final values of meteorological para-

meters adjusted for convection are used to calculate convective 

tendencies in the mesoscale model. A flow diagram for the para-

meterization and its interaction with the mesoscale model is shown in 

Fig. 2-1. 

Fritsch and Chappell's parameterization was originally designed 

for mid-latitudes and involves a large nwnber of specified a priori 

parameters based on mid-latitude experiments. In our calculations the 

basic idea of Fritsch and Chappell's parameterization is preserved, but 

parameters more appropriate for tropical conditions are used. Also, 
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horizontal pressure gradient terms are introduced in calculations of 

the horizontal momentum perpendicular to the line. 

2.2 Mesoscale conditions 

The mesoscale conditions needed as input to the Fritsch and 

Chappell parameterization are: vertical profiles of temperature, 

mixing ratio and horizontal wind used as initial environmental values; 

and vertical profile of mesoscale vertical velocity to calculate 

compensating subsidence. Usually mesoscale values are provided by a 

mesoscale numerical model. However, in this study we use the 'GATE 

observations for the quasi two-dimensional convection line ~ rather 

than a numerical model, to supply the input values for the para­

meterization. Composite soundings for the environment of the fast and 

slow convective lines and environmental horizontal wind profiles are 

shown in Fig. 2-2. We use a right-handed coordinate system in which 

axis X is normal to the line with positive sign in the direction of 

the line movement, and axis Y is parallel to the line. Pressure 

disturbance fields for those lines appear in Fig. 2-3. Horizontal 

pressure gradients in the Y direction are equal to zero. Due to the 

lack of data above 6 km we assume that pressure forces above this 

level are also equal to zero. We perform our calculations for the 

convective part of the line. According to Barnes and Sieckman (1984), 

the convectively active region of the line occupies roughly a 20-40 km 

wide zone normal to the leading edge. For the purpose of our 

calculations~ we define the convective part of the line as the first 

30 km behind the leading edge. Fig. 2-4 shows the virtual temperature 

disturbance field calculated from the pressure disturbance field shown 
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in Fig. 2-3a, with the assumption that pressure disturbance is 

hydrostatic. The greatest temperature changes (strong heating in the 

upper layers close to the leading edge and strong cooling on the 

surface) occur in the convective region. Barnes and Sieckman's (1984) 

calculations also show that the buoyant energy is significantly 

reduced (96% in the fast composite line and 66% in the slow composite 

line) in the convective part of the line. Because we do not take into 

account the differences in the size of convective area, we assume for 

both types of lines that 80% of the initial convective energy is 

removed in the 30 km wide convective region. This implies that the 

time required by convection to remove buoyant energy is calculated as 

6x/c~ where c is the speed of the line known from observations and 6x 

= 30 km. When the Fritsch and Chappell parameterization is used in the 

mesoscale model (Fritsch and Chappell, 1980a, 1980b) t is estimated as 
c 

the time needed for clouds to move through the grid element, by 

dividing grid length by the mean environmental wind speed. 

In order to evaluate compensating subsidence in the environment, 

it is necessary to know the mean vertical velocity in the considered 

grid area. This mesoscale vertical velocity is usually provided by 

the mesoscale model. In our study we assume that the average vertical 

velocity is equal to zero, but "average vertical velocity" means in 

this case vertical velocity averaged over an area larger than our 

"grid box", because it would not be reasonable to assume that mean 

vertical velocity in the convective part of the line is equal to zero. 

This means that we allow compensating subsidence to occur outside the 

convective region. We also run parameterization with different 

mesoscale vertical velocities in order to evaluate the sensitivity of 

calculated momentum fluxes to this parameter. 
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According to LeMone (1983), the updraft cores tend to occur 

between the leading edge and the pressure low, and downdraft cores are 

observed behind the low. (Fig. 2-5). Therefore, in this study 

pressure gradient forces acting on updraft and downdraft cores are 

assumed to have opposite signs. Since the center of the low pressure 

is close to the center of the considered region, pressure forces 

acting on the cores are stronger than those for environmental parcels. 

2.3 Cloud model 

The one dimensional cloud model used in the Fritsch and Chappell 

parameterization consists of a steady-state plume convective updraft 

and a steady state plume convective downdraft. It is assumed that the 

mass of the updraft changes linearly from the cloud base to the cloud 

top~ so the fractional entrainment for a layer is equal to: 

(2.3) 

where ~ (k) is the amount of entrained mass for the level z(k); B is 
u u 

a constant depending on how much mass is entrained between the cloud 

base and the cloud tOPi zLCL is the height of the cloud base and zCT 

is the height of the cloud top. A similar procedure is used for the 

downdraft which increases its mass from the level of free sink to the 

surface. Detrainment is neglected for both updraft and downdraft. To 

initialize the updraft, 50 mb layers are mixed and checked for 

buoyancy on the lifting condensation level (LCL). The lowest layer 

buoyant on its LCL is chosen as the cloud base. The downdraft starts 

at the level where a 1:1 mixture of updraft air and environmental air 

becomes negatively buoyant. 
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Fig. 2-5 Schematic of the processes leading to momentum generation ~n 
the convective band (LeMone, 1983). 

Fig. 2-6 

~ STRATIFORM 
~. 

]m~mmLLllJJ:LLl4! SEA 
SURFACE 

.!II R 

Schematic diagram of the squall-system water budget (Gamache 
and Houze, 1983). 



17 

The cloud top is defined as the level where vertical velocity in 

the updraft becomes negative. In the original Fritsch and Chappell 

formulation, vertical veloc!ty in updraft and downdraft depends only 

on buoyancy force. In our study, following Anthes (1977) liquid water 

drag (only in the updraft), virtual mass effect (see Appendix B), and 

mixing of the vertical momentum are also taken into account. The 

temperature of the updraft changes due to adiabatic cooling, diabatic 

heating (condensation and freezing), and mixing with the environment. 

Downdraft temperature is changed by adiabatic warming, mixing, 

melting, and the evaporation of the condensate. It is assu.riled that 

the downdraft is always saturated above the cloud base. Condensate in 

the updraft freezes at -SoC, and melting level for downdraft is at 

OOC. 

Fritsch and Chappell calculate a fraction of the condensate 

evaporated in the anvil and lost by precipitation. Those calculations 

give the basis for determining the area occupied by a downdraft 

relative to the updraft area. They assume that all condensate that 

did not evaporate in the anvil and did not reach the ground evaporates 

in the downdraft. Since evaporation per unit area in the downdraft 

can be calculated, it is possible to determine the downdraft area 

needed to satisfy this condition. The same approach is taken in our 

study, but the ratio of the water condensed in updraft to the water 

evaporated in downdraft is taken from the Gamache and Houze (1983) 

observational study of convective systems in GATE (Fig. 2-6). 

Horizontal momentum in updrafts and downdrafts is changed by 

entrainment of the environmental momentum and by horizontal pressure 

gradients (eq. 2.1). 
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Changes in the environment are caused mainly by compensating 

subsidence. Temperature and mixing ratio of the environment can also 

change because of evaporation of the condensate in the anvil (anvil is 

defined by Fritsch and Chappell as the region from the equilibrium 

level to the cloud top). Grid point values adjusted for convection 

are defined as: 

(2.4) 

where X(z) is the value adjusted for convection, subscripts E, D, U 

identify environment, downdraft, and updraft respectively, and 

A = AE + AD + AU is the grid element area. 



III. Analysis of the Results 

Vertical fluxes of the horizontal momentum depend on cloud mass 

flux, wind shear, pressure forces, and vertical velocity in updraft 

(downdraft) which determines the time in which the pressure gradient 

force can act on updraft (downdraft) parcels Ceq. 2.2). In the first 

section of this chapter we will present the influence of the hori­

zontal pressure gradients on the momentum flux in the slow- and fast­

moving convective lines. In this section, for both types of lines, we 

use the condition that the mesoscale vertical velocity is constant 

with height and equal to zero. Compensating subsidence is allowed to 

occur on an area four times larger than the area at the convective 

region. In the second section we will compare our results with GATE 

observations, and discuss factors influencing cloud mass flux (e. g. , 

assumptions concerning mesoscale vertical velocity), which in turn 

determines the magnitude of the momentum flux. In the third section 

we will consider what implications our findings can have for mesoscale 

numerical models. 

3.1 The influence of the horizontal pressure gradients on the 

momentum flux. 

As we mentioned before, the influence of the horizontal pressure 

force on the momentum of the updraft (downdraft) parcels depends on 

the vertical velocity in the updraft (downdraft). The vertical 
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velocities calculated in Fritsch and Chappell parameterization reach 

15 mis, and they are much too large compared with vertical velocities 

measured in the GATE convective cores which, as can be seen from Fig. 

3-1, have the median value about 2 m/s. A similar problem was 

reported by Zipser and LeMone (1980). Despite the use of different 

models, different soundings, and different mesoscale conditions they 

were not able to obtain realistic vertical velocities and realistic 

cloud top heights at the same time. Zipser and LeMone (1980) 

attribute this difference to the fact that the "environment tl of the 

convective cores is defined not by the sounding ahead of the con-

vective line but by the mesoscale conditions. 

Because of this large difference between calculated and measured 

vertical velocity in clouds, we performed two sets of experiments. In 

the first set, we used vertical velocities calculated in the para-

meterization; in the second, the cloud vertical velocities were 

modified to match approximately the vertical velocities observed in 

the GATE convective cores (Fig. 3-2), while keeping the mass flux as 

calculated in the parameterization. The results for the slow and fast 

convective line are shown in Figs. 3-3 to 3-6. Fig. 3-3 a,b show the 

area occupied by convective updrafts for the slow and fast convective 

line. In the Fritsch and Chappell parameterization the area of the 

convective draft is calculated as: 

o = M I(w-p) 
c 

where the mass flux (M) and vertical velocity (w) in convective 
c 

drafts are calculated independently. This implies that the area 

occupied by convection is much larger when we use the verti cal 
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Fig. 3-6 Horizontal momentum flux viw': A - generated by updraft, 
B -generated by downdraftj a/ in the slow-moving line, bl in 
the fast moving line. 
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velocities in drafts from GATE measurements. Since the vertical 

velocities are similar for both types of lines (Fig. 3-2), Fig. 3-3 

indicates also that mass flux in the fast convective line is about 2.5 

times larger than in the slow line. 

Figs. 3-4 and 3-5 show the momentum fluxes produced by the 

updraft (Fig. 3-4) and downdraft (Fig. 3-5) for three cases. In the 

first case (indicated by line A) the horizontal pressure forces are 

neglected. In the second case (line B) the horizontal drafts 

calculated in the parameterization is used. In the third case 

horizontal pressure gradients and vertical velocities from GATE are 

used. Comparison of Fig. 3-4 and 3-5 shows that for both types of 

lines the momentum flux generated by the downdraft is about an order 

of magnitude smaller than the momentum flux generated by the updraft. 

This result is caused by a similar difference in the mass fluxes for 

the updraft and downdraft. As described in Chapter II, the mass flux 

in the downdraft is estimated from the water budget considerations. 

Because the slow-moving lines are roughly aligned to maximize the 

vertical shear parallel to their axes (LeHone et al., 1984, Fig. 2-

2a), u' w' (Fig. 3-4a) without horizontal pressure forces is much 

smaller than v'w' (Fig. 3-6a) and changes sign according to the 

changes in the environmental wind. When the pressure gradient forces 

are taken into account, momentum flux u'w' becomes larger and 

negative. This effect is about two times stronger when we consider 

vertical velocities matching those for GATE convective cores. 

The momentum flux for the fast line (Fig. 3-4b) is about ten 

times bigger than for the slow one. This can be explained by the 

presence of the larger mass flux and stronger shear in the u velocity. 
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Horizontal pressure gradients in the fast convective line are stronger 

than those in the slow line, and also act to increase the magnitude of 

the momentum flux, but they do not significantly change the shape of 

the momentum flux profile, as in the case of the slow line. Because 

in the fast line low-level shear in the horizontal wind parallel to 

the line is small, v'w' momentum fluxes (Fig. 3-6b) below 6 km are 

smaller than u'w' and have magnitudes similar to those in the slow 

line (3-6a). 

These results show that the change of momentum flux caused by 

horizontal pressure gradient depends strongly on vertical velocity in 

clouds. Therefore, to account properly for the effect of the hod­

zontal pressure, it is necessary to use a parameterization which 

produces realistic vertical velocities. 

Most interesting from the modeling point of view are vertical 

derivatives of the momentum fluxes. They are shown in Fig. 3-7. The 

derivative of the momentum flux in the fast line (Fig. 3-7 b) is about 

ten times larger than in the slow line (Fig. 3-7 a). A comparison of 

the vertical derivative of the momentum flux calculated with (lines B, 

C) and without (line A) pressure gradi.ents for both types of lines 

indicates that momentum flux derivative shows relatively less 

dependence on pressure gradient, for the fast line. The maximum change 

caused by taking into account horizontal pressure gradient (i.e., C-A) 

is, in the case of slow line, of the same magnitude as the vertical 

derivative of the momentum flux calculated without pressure gradients 

(Fig. 3-7 a, line A). In the case of fast line it is about three 

times smaller than the momentum flux derivative. 
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The comparison of the component of the vertical derivative of the 

momentum flux connected with the shear in the environmental wind 

~z (Mc~)' with the component describing the vertical change in the 

horizontal velocity in clouds ~ (M u ), (Fig. 3-8) explains why this uz c c 

is the case. In the slow convective line vertical shear in the u -

velocity is small and, when the horizontal pressure forces are taken 

into account, ~z (Mcuc) has the magnitude comparable with ~z (McuE)· 

In the strong convective line, the changes in the cloud velocity 

caused by horizontal pressure gradients are larger than in the slow 

line but the shear in the direction parallel to the line is strong, 

o 
and oz (Mcu

E
) term is dominant. It is worth noticing however, that 

o 
although oz (Mcu

E
) is connected with the shear in the horizontal wind, 

since it is proportional to the first, not to the second derivative of 

~, it does not wipe out the maximum in the horizontal wind (as for 

example diffusion would do) but lowers its position. 

3.2 Comparison with the GATE measurements 

Some examples of the momentum fluxes measured in GATE fast and 

slow convective lines (LeMone et a1., 1984) are shown in Fig. 3-9. 

Presented. fluxes are normalized to 100 km-Iong flight legs. Since 

most of the momentum flux is created in the convective part of the 

line, we expect momentum flux in the first 30 km behind the leading 

edge to be significantly larger than that averaged over 100 km. 

Comparison of Figs. 3-4 and 3-6 with the momentum fluxes measured in 

GATE shows that momentum fluxes calculated in the parameterization are 

smaller than the 100 km averages from GATE. It is worth noticing 

however, that this underestimation of the momentum flux is similar for 
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both line types and for both u'w'and v'w' momentum fluxes. According 

to the GATE measurements, the momentum flux in fast lines is about ten 

times larger that in slow Hnes. That fact agrees with our results 

(Fig. 3-4). Also, v'w' momentum fluxes are underestimated in the same 

degree as u' w' . This suggests that it is the mass flux which is 

responsible for the underestimation of the mQmentum flux. Indeed, 

even when we use in calculation the observed vertical velocity in 

convective cores, the area occupied by the active convection 

calculated from the Fritsch and Chappell parameterization is still 

much smaller then area occupied by convective cores measured in GATE. 

Table la shows the fractional length of the GATE aircraft legs 

occupied by convective cores (Zipser and LeMone, 1980). Since roughly 

all convective cores occur in the convective part of the line, the 

fractional coverage by convective cores of the first 30 km behind the 

leading edge should appear as in Table lb. The results shown in Table 

la are based on the measurements of different types of lines. To 

determine how our parameterization underestimates mass flux, we 

average the fractional coverage by updrafts for both types of lines 

(Fig. 3-3) and compare it with the values shown in Table lb. It 

appears that the results of the parameterization are about 4.4 times 

smaller than the values measured in GATE. Since we use the vertical 

velocity in convective cores based on the GATE measurements, it 

suggests that our mass flux is also about 4.4 times too small. The 

reason for that may be the following. 

The updraft mass flux on the cloud base in the Fritsch and 

Chappell parameterization is iterated until the available buoyant 

energy (APE) in the grid area is equal to zero. The reduction of APE 
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Drafts Cores 
Altitude 

range em) Up Down Up . Down 

4300-8100 16.9 29.9 4.6 1.8 
2500-4300 18.3 30.3 4.8 3.7 

700-2500 16.3 25.2 2.1 1.1 
300-700 16.6 18.8 1.5 0.8 

0-300 15.9 15.7 0.3 0.2 

Table 1a. Fractional length of aircraft legs occupied by drafts and 
cores (Zipser and LeHone 1980). 

Altitude 
Cores 

range em) Up 

4300-8100 15.3 
2500-4300 15.3 

700-2500 7.0 
300-700 5.0 

0..;300 1.0 

Table lb. Fractional length of the convective region (30km) occupied 
by updraft cores (calculated from Table la). 



36 

T DIFF. 
13000 

12000 

11000 

10000 

'1000 

!lOOO -

7000 
x: 

N 6000 

5000 

4000 

3000 

2000 

1000 

o~~~~IU~~~~~~~~~~~~~ 
-3.0 -2.5 -2.0 -1.5 -1.0 -.5 0 

T 

.5 1.0 1.5 2.0 2.5 3.0 

Fig. 3-10 Difference between the initial 
environment and: AI the temperature 
averaged over the grid area,· BI . the 
ture after the parameterization. 

temperature of the 
after parameterization 
environmental tempera-



37 

is achieved by the combination of the cooling of the layers close to 

the surface and the warming of the higher layers. The change in the 

grid area temperature depends mainly on the compensating subsidence. 

Only close to the ground does the spreading downdraft cause signif-

icant cooling of the lowest layer (Fig. 3-10). This means that the 

cloud mass flux calculated in the Fritsch and Chappell para-

meterization depends mainly on parameters influencing the compensating 

subsidence. The compensating subsidence depends on two factors: 

cloud mass flux and the mean vertical velocity in the grid area.· We 

will show how the change in the magnitude and the vertical structure 

of these parameters influences the heating of the environment and, as 

a result, the magnitude of the cloud mas s flux needed to reduce the 

available buoyant energy to zero. 

Following Fritsch and Chappell (1980) the compensating subsidence 

is calculated from: 

wE = (Awp - A w P u u u (4.1) 

It can be seen from the above equation that if the mesoscale 

vertical velocity w is larger than zero, the same updraft mass flux 

causes s~aller compensating subsidence than that which occurs in the 

case with zero mean vertical velocity. This means that the increase 

in the mean vertical velocity will increase the cloud mass flux needed 

to reduce APE. In addition, when the mean vertical velocity increases 

with height, heating of the higher layers is smaller and the updraft 

mass flux needed to reduce the APE has to be even larger than in the 

former case. This example is illustrated in Fig. 3-11. 
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On the other hand, when updraft mass flux is increasing with 

height (for example with no lateral detrainment), warming of the 

higher levels is stronger than in the case of the updraft mass flux 

constant with height (entrainment=detrainment). This implies that the 

mass flux needed to reduce APE to zero has to be larger in the case of 

updraft mass flux constant with height. This is illustrated in Fig. 

3-12. 

Even though heating caused by compensating subsidence dominates, 

stronger cooling of the lower layers by downdraft air can also help to 

reduce APE and, consequently, to reduce updraft mass flux calculated 

in the parameterization. Fig. 3-13 shows the increase of the mass 

flux caused by neglecting the cooling of the lowest layer by the 

spreading downdraft air. 

It can be seen from the above analysis that the mean mesoscale 

vertical velocity is a very important factor in the calculations of 

the convective heating and the cloud mass flux. Fig. 3-14 shows that 

the vertical velocity in the slow convective line averaged over the 

first 30 km behind the leading edge can be even larger than that used 

in the sensitivity test presented above. Because of the lack of data 

above the 6 km level, we did not try to reproduce the convective 

heating and mass flux using the mesoscale vertical velocity from Fig. 

3-14, but we believe that non-realistic w is the source of our under­

estimation of the cloud mass flux and momentum flux. Fig. 3-15 shows 

the comparison of the momentum flux for the slow line calculated with 

the correction to the realistic mass flux, with the momentum flux 

measured in the slow line observed during GATE on 14 September 1974 

(LeMone, 1983). The data for the 14 September line are averaged over 
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the first 30 km behind the leading edge. It can be seen that the 

pressure forces play a dominant role in creating the momentum flux 

which resembles that measured in GATE. Calculated momentum flux, even 

after corrections for pressure forces and realistic mass flux, is 

still smaller than the momentum flux of the 14 September line, but 

this can be caused by the fact that we compare momentum flux 

calculated for the composite slow line with the momentum flux for a 

particular case. 

3.3 Implications for the mesoscale numerical models 

The problem with estimating the mean mesoscale vertical velocity 

is avoided when parameterization is used in numerical model, where w 

is supplied by the model itself. The other factors (lateral 

detrainment, low-level cooling) do not drastically change the mass 

flux calculated in the parameterization, so we believe that the para­

meterization used in the numerical model which predicts realistic ;,; 

should produce reasonable magnitudes of mass and momentum fluxes. It 

is then worthwhile to see what the influence of the subgrid pressure 

gradients on the mean mesoscale wind can be, compared with other terms 

in the mesoscale momentum equation. To do so, we use the momentum 

fluxes calculated in Fritsch and Chappell parameterization and 

corrected for the observed mass flux. We also use two-dimensional 

wind fields for the line from LeMone (1983) paper. Fig. 3-16 shows 

the profiles of the different terms in the u-momentum equation, 

averaged over 30 km. The correction for the horizontal pressure 

gradients is calculated as the difference between vertical derivatives 

of the momentum flux with and without pressure gradients. It can be 
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seen that the effect of the horizontal pressure gradient has a 

magnitude comparable with the other terms in the momentum equation. 

It seems that at least in the slow-moving convective line that effect 

must be taken into account. 

3.4 Summary 

1. The vertical flux of the horizontal momentum in the Fritsch 

and Chappell parameterization is generated mainly by updrafts. The 

effect of downdrafts on the total momentum can be neglected. The 

parameterization estimates properly the difference between momentum 

flux in the fast and slow lines, but the magnitude of the momentum 

flux is underestimated. 

2. The magnitude of the momentum flux calculated in Frisch and 

Chappell parameterization strongly depends on the mesoscale vertical 

velocity used in the calculations of the convective mass flux. When, 

as assumed in our calculations, the mesoscale vertical velocity is 

equal to zero (with the compensating subsidence occuring in the area 4 

times bigger then the grid area), the convective mass flux and 

momentum flux is underestimated by a factor of 4.4. This problem 

however, ,seems to be easy to avoid in numerical models where mesoscale 

velocity is provided by the model. 

3. The influence of the pressure forces on momentum flux 

strongly depends on vertical velocities in convective drafts. 

Realistic vertical velocities are needed to evaluate the effects of 

horizontal pressure gradients. 

4. Taking pressure forces into account brings values of momentum 

flux much closer to those measured in GATE. In the case of the slow 



47 

convective line, neglecting the horizontal pressure gradients changes 

not only the magnitude, but also the sign of the momentum flux. For 

the fast convective line, including horizontal pressure forces changes 

the magnitude of the momentum flux, but effects connected with the 

strong environmental wind shear are dominant. 

5. Calculations for the slow convective line show that when the 

realistic vertical velocities in convective drafts and the realistic 

cloud mass flux are used, the effect of the horizontal pressure 

gradient (the difference between vertical derivative with and without 

pressure terms) has a magnitude comparable with the magnitude of the 

mesoscale (averaged over 30 km) terms in the momentum equation. We 

conclude that in modeling of the slow convective lines, cloud-scale 

pressure forces should be taken into account in parameterization of 

the subgrid momentum flux. 
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IV. Lagrangian Calculation for the Movement of the Parcel in 

the Pressure Field Generated in the Convective Line 

In the previous chapters we discussed the parameterization of the 

momentloo flux generated in the convective line, using a 1D cloud model 

and composite soundings for the environment. of the fast and slow 

convective line. In our calculations we did not take into account the 

fact that convective cores move in the environment changed already by 

convection, except in the momentum equation, where we used convection-

generated horizontal pressure gradients. We also had to use the 

vertical velocity in updraft and downdraft taken from measurements, 

rather than calculated in parameterization, in order to obtain the 

realistic momentum flux. In this section we would like to evaluate 

the effect of the horizontal pressure gradients on the momentum flux 

in the convective line· using a somewhat different approach. Instead 

of looking at one cloud type and the 1D cloud model, we consider the 

movement .of the set of Lagrangian parcels ("convective cores"), with 

different initial conditions, moving in the two-dimensional pressure 

field. We will also take into account vertical gradients of the 

convection-generated pressure disturbance which were neglected in 

calculations done in the previous chapter. 

4.1 Description of the calculations 

The Lagrangian parcel accelerates under the influence of gravity, 

vertical pressure gradient force, and liquid water drag in the 
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vertical direction and horizontal pressure gradient force in the 

horizontal direction. When we use the coordinate system moving with 

the line with the axes directed as in the previous chapter the 

quations of motion have the form: 

Du 1 oPD 
+ sUE = - p ox Dt 

(4.1) 

Dw _ (! oPD 
T - T - gqL) / (I + P s + ('1) + sWE = 

Dt P OZ T 
(4.2) 

where u is the horizontal velocity in the x direction, w is the 

vertical velocity and PD is the pressure disturbance generated by 

convection. They buoyancy term in the equation 4.2 is calculated 

relative to the environmental composite sounding shown in Fig. 22a. 

T is the parcel virtual temperature, T is the virtual temperature on 
p s 

the level z given by the composite sounding. The term gqL describes a 

liquid water drag, where qL is the liquid water content calculated 

with the assumption that rain efficiency is equal to 0.5 and qL is max 

equal to 4g/kg. As in the previous chapter (see also Appendix B), we 

take into account the virtual mass effect (('1 = .5 is the virtual mass 

coefficient). Mixing with the environment is considered in the same 

way as in the Fritsch and Chappell parameterization (s is an 

entrainment coefficient), with the assumption that the cloud top is at 

12 km. The parcel is moving dry adiabatically below the lifting 

condensation level (LCL) and moist-adiabatically above LeL. We use 

the same data as in the previous chapters; this means composite 

sounding for the slow line shown in Fig. 2-2a and pressure 

disturbances field shown in Fig. 2-3a. We also use the disturbances 

of the virtual temperature calculated from the pressure disturbances 
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(Fig. 2-4) to determine the temperature of the air mixed into the 

parcel. The initial temperature for every parcel is assumed to be 

equal to the environmental temperature (temperature from the sounding 

plus the correction calculated from the pressure disturbances). As in 

the Fritsch and Chappell parameterization, the initial vertical 

velocity in every case is equal to 1 m/s. 

4.2 Results 

We consider Lagrangian parcels moving in the pressure disturbance 

field for the slow convective line, originating in points (x , z ) 
o 0 

where: z = 100, 200, 300, 400, 500 m and x = -300, -4300, -8300, o 0 

-12300, and -16300 m. Figs. 4-1 to 4-3 show the vertical and 

horizontal forces acting on the parcel depending on the initial 

position of the parcel in the convective line. The resulting 

trajectories, velocities and momentum fluxes are plotted in Figs. 4-4 

to 4-6. The parcels which originate in the lower layer (l00-300 m) 

and close to the leading edge (Fig. 4-1) have the highest initial 

temperature and are the most buoyant. They can reach large vertical 

velocities of the order 14 mls (Fig. 4-4a). Parcels originating in 

the lower layer, but farther from the leading edge (Fig. 4-2) have a 

lower initial temperature and smaller buoyancy, but below 1500 m they 

are accelerated abruptly by a strong vertical pressure gradient force 

(Fig. 4-2b). The resulting vertical velocity is large below 1500 m, 

but it increases slowly above 1500 m, and finally it reaches values 

smaller than those for parcels starting close to the leading edge 

(Fig. 4-4b). The parcels originating on the higher level (400-500 m) 

have the smallest buoyancy (Fig. 4-3a). They move through the line 
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b 
PRESSURE FORCE 

HORIZONTAL PRESSURE FORCE 

Fig. 4 -1 Forces acting on the parcel which originate in the point Xo 
= -300m, z = 100m. a/ buoyancy, bl vertical pressure 
gradient, c? buoyancy + vertical pressure gradient .... liquid 
water drag, d/ horizontal pressure gradient. Note: In 
Figs. 4-1 to 4-3 fine vertical lines ("fence") indicate time 
steps. 
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Fig. 4-2 Forces acting on the parcel which originate in the point Xo 
= -8300m, Zo = 100m. al buoyancy, bl vertical pressure 
gradient, cl buoyancy + vertical pressure gradient + liquid 
water drag, d/ horizontal pressure gradient. 
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b 
PRESSURE FORCE 

d 
HORIZONTAL PRESSURE FORCE 

Fig. 4-3 Forces acting on the parcel which originate in the point Xo 
= -300m, Z == SOOm. a/ buoyancy, bl vertical pressure 
gradient, cP buoyancy + vertical pressure gradient + liquid 
water drag, d/ horizontal pressure gradient. 
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Fig. 4-4 Examples of the trajectories, vertical velocities, momentum 
(u -~) and momentum fluxes for the parcels originating on 
zop= 100m. Solid lines indicate xo = -300m, dashed lines xo 
= -4300m, fine dashed lines xo = 8300m. 
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until they are pushed up by the strong vertical pressure gradient 

close to the low center (Fig. 4-3b). They have the smallest vertical 

velocities and, as seen in Fig. 4-6a, the parcels starting at this 

level and closer to the low center do not have enough buoyancy to form 

an updraft. 

The change of parcel momentum caused by horizontal pressure 

gradients depends on the vertical velocity profile for the parcel and, 

as a consequence, on the initial position of the parcel. For example, 

as can be seen in Fig. 4-3c, the parcel originating at 500 m stays for 

a long time in the region with the large horizontal pressure gradient 

and gains the high momentum (Fig. 4-6c).- Parcels starting at the 

lower levels spend less time under the influence of the large hori-

zontal pressure gradient. The change of their momentum is usually 

smaller and depends on the distance of the initial position of the 

parcel from the low center. Parcel starting close to the low center 

(x < -8300) gain less momentum than the parcels originating in the 
o 

vicinity of the leading edge (Fig. 4-1c and 4-2c). The examples of 

the trajectories, vertical velocities, horizontal momentum (up - uE), 

and the vertical flux of horizontal momentum (w(u
p 

uE)) for 

different parcels are shown in Figs. 4-4 to 4-6. 

To determine how the properties of the Lagrangian parcels in our 

calculations compare to the properties of the convective cores 

measured in GATE, we calculate mean vertical velocity and mean 

vertical momentum flux for our "cores". As in the GATE measurements, 

we assume that the parcel represents a convective core if it has a 

vertical velocity larger then 1 m/s. Fig. 4-7 shows that up to 3 km, 

the mean vertical velocity of the Lagrangian parcels is roughly equal 
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Fig. 4-7 Comparison of the calculated and measured vertical velocity 
in tqe convective cores. Dashed line - median w in GATE 
convective cores, solid line - vertical veloc~€f in the 
updraft as calculated in Fritsch and Chappel para­
meterization in Chapter III, dotdashed line average 
vertical velocity for the set of Lagrangian parcels. 



59 

MOMENTUM FLUX 

5500 

5000 

4500 

4000 

3500 

3000 

2500 

2000 

1500 

1000 

500 

/ 

'. .. , . 
,~ .. ... . 

.... .... ' 
'" ,. 

\\, 
M 
J. 

" ,'I , . . \ 
I, 

"I' 
" tl 

~1.2 -1.0 -2.' -2.~ -2.' -2.2 -2.0 -\ .• -1.0 -I.' -1.2 -1.0 -.8 -.~ -.' -.2 

~'W' (M2/S2) 

. 
\ 
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14 September convective line averaged over the first 30km 
behind the leading edge, dashed line - average momentum flux 
for Lagrangian parcels calculated with the horizontal 
pressure gradients, dot-dashed line - average momentum flux 
for the Lagrangian parcels calculated without pressure 
gradients, 
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to the median maximal vertical velocity w in the GATE convective max 

cores (for definition of w see LeMone and Zipser (1980)). At the 
max 

higher levels (above 3 km) the average vertical velocity for 

Lagrangian parcels is larger than the median GATE core velocities, but 

it is significantly closer to the observed w than the vertical 

velocity in updraft calculated in the Fritsch and Chappell para-

meterization. 

Fig. 4-8 shows the effect of horizontal pressure gradients on the 

momentum flux of the Lagrangian parcels. Momentum fluxes for all the 

parcels calculated as w(u
p 

- uE) are averaged and multiplied by the 

fractional coverage by the cores in the convective part of the line 

(Table Ib). This procedure is used for the cases with and without 

horizontal pressure gradients. As in the previous chapter, both 

momentum fluxes are compared with the momentum flux for the 14 

September slow convective line, averaged over the first 30 km behind 

the leading edge. The results agree with those obtained in the 

Fritsch and Chappell parameterization for the slow convective line 

corrected for the realistic vertical velocities and mass flux, 

although magnitudes of momentum fluxes differ by the factor of two 

(this difference can be caused by the fact that fractional coverages 

by convective cores shown in Table Ib, describe measurements for the 

different types of lines). In the absence of horizontal pressure 

gradients, momentum flux is small and changes the sign depending on 

the enviromental wind shear. When the horizontal pressure gradients 

are taken into account, momentum flux below 6 km is negative and has a 

magnitude close to that measured in GATE. 
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4.3 Summary 

1. The use of the 2D convection-generated pressure field, and of 

the set of Lagrangian parcels moving in this field with different 

initial conditions, allows us to obtain the mean vertical velocity in 

cloud which agrees better with measurements than that obtained in the 

Fritsch and Chappell parameterization. 

2. The results of the calculations presented above support the 

conclusions obtained in the previous chapter, i. e., that in the 2D 

convective line, the horizontal pressure forces play an important role 

in the generation of the momentum flux. The mean momentum flux for 

the convective parcels looks like the measured momentum flux for the 

slow convective line, only if horizontal pressure gradients are 

included in the calculations. 



V. Concluding Discussion 

The main purpose of this study is to evaluate the influence of 

the subgrid horizontal pressure gradients on convective momentum 

fluxes in two-dimensional tropical convective lines. In addressing 

this problem we have used two techniques and both of them gave similar 

answers. In 2D convective lines, especially the slow moving lines, 

the horizontal pressure forces play a crucial role in creating 

momentum fluxes corresponding to those observed in GATE. We have 

shown that for the slow moving line, it is not possible to obtain 

either the observed magnitude or the sign of momentum flux, unless the 

horizontal pressure gradient effects are included. We also looked at 

the different terms in the u momentum equation averaged over 30 km, 

and concluded that the change of the vertical derivative of the 

subgrid momentum flux caused by subgrid scale horizontal pressure 

gradient has magnitude comparable with the other terms in the momentum 

equation. This result suggests that in modeling of the convective 

(particularly slow-moving) lines, horizontal pressure gradients should 

be taken into account. However, although both our techniques appeared 

to be useful in answering the question of how important horizontal 

pressure forces are in creating observed momentum flux, neither of 

them can be used in a numerical model to actually calculate momentum 

fluxes. Calculations for the Lagrangian set of parcels used GATE data 

extensively and were just a method of looking at the existing data 
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set. The Fritsch and Chappell parameterization allowed us to 

calculate mass and momentum fluexes, but it had at least two 

deficiencies. The mass and momentum fluxes were underestimated and 

vertical velocities in convective drafts were too large compared to 

those observed in GATE. We showed that underestimation of the mass 

and consequently momentum flux was probably caused by nonrealistic 

mean mesoscale velocity used in our calculations and can be avoided in 

a numerical model. The overprediction of the vertical velocity in 

convective drafts is, however, a more serious problem because it 

causes the underestimation of the horizontal pressure gradient 

influence on momentum. The results of Lagrangian calculations give us 

some suggestions on how the calculations of the vertical velocity in 

clouds (and as a result momentum flux) can be improved. In the 

Fritsch and Chappell parameterization the updraft velocity was 

represented by the velocity of the parcel with the average character-

is tics of the most buoyant layer. Our calculations for the set of 

Lagrangian parcels in 2D pressure field showed that when the vertical 

pressure gradients were taken into account and the set of parcels with 

different initial temperatures were considered, the average vertical 

veloci ty . was much closer to the observed one. In the Lagrangian 

calculation we used the coordinate system moving with the line, so we 

believe the parcels originating at different distances from the 

leading edge represent the· updraft at the given point in different 

stages of cloud development. Therefore, we think that convective 

parameterization attempting to account properly for the horizontal 

pressure gradient effects hould have the following features. The 

first is a time dependent cloud model and time dependent coupling 
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between cloud scale and mesoscale. This would allow to take into 

acount the change in the convective environment and the change in 

properties of updraft and downdraft. The second improvement which 

could be made is considering not only the horizontal but also vertical 

pressure gradient forces. The importance of this introduction was 

already shown by Holton (1973). Such a parameterization was lately 

proposed by Pointin (1985). Since it was used with the model with 

I.8km grid space, the horizontal pressure gradient effects were 

explicitly resolved in the model. It seems however, that in mesoscale 

models with grid resolution about 20 km, some characteristics of 

Pointin's approach would be desirable in order to account properly for 

the horizontal pressure gradient effects. 
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Appendix A 

The Formulation of the Convective Forcing Term in a Mesoscale Model 

We discuss here some problems connected with the formulation of 

the convective forcing term in numerical models. 

horizontal momentum equation in the form: 

du 
dt = F 

We consider the 

CA. 1) 

where u a horizontal velocity and F describes forcing (for example the 

horizontal pressure gradient), When the equation A.I is used in the 

numerical model it has to be averaged over the grid volume. If we use 

anelastic approximation and write eq. A. 1 in the flux form we get: 

o Cu'w') _ ;; ~ opo + F oy po oz CA.2) 

where bar denotes the averaging operator it means for every variable 

X: X = X + X', and X' = O. 

The goal of parameterization is usually to express eddy fluxes in 

terms of grid-scale values, or to find the expression for them from 

another, smaller scale model. 
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In the equation A.2 the horizontal eddy flux terms are generally 

assumed to be small compared to the vertical eddy flux terms. 

Horizontal eddy fluxes are usually parameterized in terms of grid-

averaged variables and included in calculations for computational, 

rather then physical, purposes (Cotton and Anthes, 1986). 

Now, let's consider the case when the subgrid-scale momentum flux 

is the result of convection. Our grid-averaged equation can be 

written now in the form: 

au 
at = a (u-w-) 1 opo + D + F + F oz - w po oz c (A.3) 

where D denotes horizontal eddy fluxes and F describes convective 
c 

forcing involving vertical fluxes. F is usually calculated from the 
c 

one-dimensional cloud model in the following manner (Yanai, 1973): 

The grid area we consider~ can be partitioned for the fractional 

area occupied by cloud (a) and environment (1 - a). For simplicity we 

neglect the downdraft. Now we can calculate u as: 

(A.4) 

where the subscripts c and E denote cloud and environment respect-

ively. In this case, the vertical derivative of the subgrid momentum 

flux can be expressed as (Yanai, 1973): 

(A.S) 

when the area of the cloud a is small F can be approximated as: 
c 
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(A.6) 

Expression A.6 is usually used as the convective forcing term in the 

momentum equation aveaged over the grid scale and u 
c 

and w 
c 

are 

calculated from the one-dimensional cloud model. Horizontal velocity 

in the environment u
E 

is usually assumed to be equal to u Ceq. A.4, 

with a « 1 and U c '" uE) and is calculated in the mesoscale Cor 

large-scale) model. 

Fritsch and Chappell (1980 a, b) calculate convective forcirlg 

using a different method. 

term is equal to: 

- u 
o F t 

C 
= OUI _ uF ot - --t--

cloud 

In their approach the convective forcing 

CA.7) 

ou . 
where ot I cloud 

denotes the local change in the mean momentum 

calculated from the cloud model. u is equal to the horizontal 
0 

velocity in the grid area before the parameterization, t is the 

characteristic time for convection (see chapter II) and uF is the 

horizontal velcoity in the grid volume after the parameterization. uF 

is calculated according to the formula A.4. Horizontal velocity in 

clouds U c is calculated from the cloud model and uE is equal to: 

(A.8) 

where wE is the vertical velocity in the environment and is calculated 

from the eq. 3.1. 
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Our results for the convective lines show (Fig. A-I) that the 

convective forcings calculated from eq. A.6 and A.7 differe 

substantially when the average vertical velocity is different then 

zero. Our explanation why this is the case is the foLLowing: 

In calculations of the horizontal momentum after the para-

meterization - ~, the mean values of u and ware not subtracted. It 

oil I means that ot cloud calculated from the formula A.7 containes not 

only eddy but also mean advective terms i.e.: 

F ' c = ~~I = - ~z (uw) = 
cloud 

oz (W;) - oz (u'w') (A. 9) 

Fig. A-I shows that it is really the case. When expression give by 

F 
, 

is put into the averaged equation A.2 as a convective forcing the c 

advective term - a (uw) is accounted for twice. OZ 

Therefore, we conclude that the formula A.6 is not a proper 

expression for the convective forcing. The convectiv= forcing should 

be calculated either directely as a momentum flux derivative (eqs. 

A.5, A.6) ) or, when local derivatives produced by a cloud model are 

used, vertical advection by the mean wind has to be subtracted (the. 

last approach was used for example by Pointin, 1985). It is worth 

mentioning, that no matter which approach is used it is the eddy flux 

term that needs to be parameterized. The same kind of reasoning can 

be applied when three-dimensional cloud model is used. In this case, 

if local derivatives produced by cloud model ~~ I cl<md are used in 

calCUlation of the convective forcing, F should have the form. 
c 

F = F ' + a (uw) + 0 Cuu) + 0 euv) = 
c c oz ax oy 
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= ~Ui + ou (uw) + ~ (uu) + ~ (u~) 
otjcloud oz ax ay 

(A.I0) 
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CONVECTIVE FORCING 

1:2 

11 

1~ - -- ---

: ~-~-------====--..... 
---'-.... 

7 

N 6 
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~.~6~~~~~~~~~~~~~~~-L-L-L~-~~~-L-J 
" .1 .2 .3 .4 .5 .0 

F 

Fig. A-I The comparison of the convective forcing calculated from the 
formula A.S and ~6. The solid line indicates the momentum 
flux derivative az (u 'w') the dashed line the aconvective 
forcing calculatea according to the eq. A.6 (- a~ cloud)' 

the fine dashed line indicates - ~~ cloud - ~z (uw). 



Appendix B 

Virtual Mass Effect 

When we consider the movement of a body in fluid under the 

influence of an external force, the equation of motion is given by: 

ciu d£ 
M dt + dt = .f B.1 

where f is the external force, E is the momentum of the fluid and M~ 

is the monentum of the body. It can be shown (see for example Landau, 

and Lifshitz, 1959) that the components of the fluid momentum can be 

written a~;: 

P. = 
1 

B.2 

where miK is calied an induced mass tensor. Using the formula B.2 we 

can write the equation of motion in the form: 

B.3 

Obtaining the induced mass coefficient for a given body is, in 

general, a complicated procedure and requires solving the flow of the 

fluid past the body with proper boundary conditions (for further 

details see Landau and Lifshitz, 1959). 

In atmospheric science the induced mass concept is usually used 

in one dimensional Lagrangian cloud models (for example: Anthes, 
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1979; Frank and Cohen, 1985). Since the vertical momentum equation 

for a buoyant parcel predicts vertical velocities larger than those 

actually observed, the density of the parcel in the vertical momentum 

equation is increased by a factor (1 + a), where 1:.1 is called an 

virtual mass coefficient. Usually it is assumed thCit a = .5 what 

corresponds to the induced mass calculated for the potential, 

incompressible flow passing a spherical body. In reality calculation 

of an induced mass tensor for the buoyant parcel would be practically 

impossible. Introducing the virtual mass parameter (a = .5) in the 

vertical momentum equation results from the need for fitting the 

calculated vertical velocity to observations, rather than from 

detailed theoretical consideration. Therefore fo llowing Anthes 

(1979), we use a = .5 in the vertical momentum equation but we assume 

that a = 0 in the horizontal momentum equation. From the sensitivity 

tests for the Lagrangian parcels described in Chapter IV, we estimated 

that including a = .5 in the horizontal momentum equation decreases 

the average momentum flux for the Lagrangian parcels about 15% - 20% 

at 6 km (where the change of momentum due to the change of Ci is the 

largest). Assuming a = 0 in the vertical momentum =quation causes 

about a 15% increase in the vertical velocity and a slight increase in 

the momentum flux. 
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