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ABSTRACT

STATISTICAL MODELS FOR COVID-19 INFECTION FATALITY RATES AND

DIAGNOSTIC TEST DATA

The COVID-19 pandemic has had devastating impacts worldwide. Early in the pandemic, little

was known about the emerging disease. To inform policy, it was essential to develop data science

tools to inform public health policy and interventions. We developed methods to fill three gaps in

the literature. A first key task for scientists at the start of the pandemic was to develop diagnostic

tests to classify an individual’s disease status as positive or negative and to estimate community

prevalence. Researchers rapidly developed diagnostic tests, yet there was a lack of guidance on

how to select a cutoff to classify positive and negative test results for COVID-19 antibody tests

developed with limited numbers of controls with known disease status. We propose selecting a

cutoff using extreme value theory and compared this method to existing methods through a data

analysis and simulation study. Second, there lacked a cohesive method for estimating the infection

fatality rate (IFR) of COVID-19 that fully accounted for uncertainty in the fatality data, seropreva-

lence study data, and antibody test characteristics. We developed a Bayesian model to jointly

model these data to fully account for the many sources of uncertainty. A third challenge is pro-

viding information that can be used to compare seroprevalence and IFR across locations to best

allocate resources and target public health interventions. It is particularly important to account

for differences in age-distributions when comparing across locations as age is a well-established

risk factor for COVID-19 mortality. There is a lack of methods for estimating the seroprevalence

and IFR as continuous functions of age, while adequately accounting for uncertainty. We present

a Bayesian hierarchical model that jointly estimates seroprevalence and IFR as continuous func-

tions of age, sharing information across locations to improve identifiability. We use this model to

estimate seroprevalence and IFR in 26 developing country locations.
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Chapter 1

Introduction

The coronavirus disease 2019 (COVID-19) pandemic has had devastating impacts worldwide

with 6.72 million recorded COVID-19 deaths as of 2023 (Our World in Data, 2022). Cutler and

Summers (2020) estimated the cost of the COVID-19 pandemic at over 16 trillion dollars, account-

ing for lost GDP, premature deaths, long term health impairments, and mental health impairments.

Timely and accurate information about the disease was essential to allow data-informed policies

and allocation of resources. Perhaps no single piece of information is more essential than under-

standing who is, or has been, infected with COVID-19. However, early in the pandemic, tests were

extremely limited and preferentially given to those showing symptoms (Campbell et al., 2022).

Those with asymptomatic or more mild infections were less likely to be recorded, leading to under-

reporting of COVID-19 cases and reported cases skewed towards more severe cases. Thus, instead

of relying on reported cases, antibody tests were used to estimate the proportion of the popula-

tion that had been infected. As of April 2023, SeroTracker had gathered over 4000 SARS-CoV-2

seroprevalence studies (Arora et al., 2021; SeroTracker, 2023). However, tests for COVID-19 an-

tibodies were rapidly developed with limited lab validation data, leading to uncertainty in the test

characteristics. In this dissertation, we develop statistical approaches to improve testing accuracy

with antibody tests and improve statistical inference on seroprevalence with antibody tests.

This dissertation is motivated by the COVID-19 pandemic, particularly the data and informa-

tion needs that arose early in the pandemic. However, the methods developed in this dissertation are

broadly applicable to any infectious disease. They are particularly relevant to tests that are rapidly

developed for emerging infectious diseases as they address challenges such as limited validation

data and heterogeneous reporting of deaths and infections.

1



1.1 Antibody test and serology study background

1.1.1 Antibody tests

Many types of tests for COVID-19 have been developed. Viral tests are used to identify an

active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, whereas anti-

body tests are used to identify a prior infection. Specifically, antibody tests detect the presence of

antibodies against the SARS-CoV-2 virus in the blood, which develop in the weeks following an

infection. Different antibody tests are designed to detect different types of antibodies and mimic

different structures of the virus (Jacofsky et al., 2020). Thus, the sensitivities and specificities of

the tests can vary dramatically, complicating comparisons between different tests and any sharing

of information across tests.

Because it takes weeks for the antibodies to develop within an individual that contracted

COVID-19 and they persist for months post infection, antibody tests cannot be used to determine

who is currently infected or who should quarantine. The advantage of antibody tests is they can

retroactively give a measure of previous infections. Antibody tests have been widely used to esti-

mate the proportion of the population that has been infected with SARS-CoV-2 via serology studies

(e.g., Garcia-Basteiro et al., 2020; Nisar et al., 2021), as well as to measure the lasting immune re-

sponse either from a SARS-CoV-2 infection or from a COVID-19 vaccine (e.g., Gallichotte et al.,

2021; Ward et al., 2022).

1.1.2 Estimating the number of COVID-19 infections

Reported COVID-19 cases are a dramatic undercount of the total number of COVID-19 cases

due to asymptomatic cases and limited testing (National Academies of Sciences, Engineering, and

Medicine, 2020). Thus, researchers rely on seroprevalence studies to estimate the number of prior

COVID-19 infections. In seroprevalence studies, researchers administer antibody tests to a sample

from the population of interest. The proportion of the sample with antibodies against COVID-19

is then used as an estimator for the proportion of the population that has been infected. Seropreva-

lence studies are not a perfect measure as not everyone who is infected with SARS-CoV-2 develops
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antibodies against the virus, i.e., seroconverts (Lipsitch et al., 2020), and the antibody levels can

wane over time, i.e., serorevert (Brazeau et al., 2022). Additionally, through vaccination, individ-

uals develop COVID-19 antibodies (Ward et al., 2022). However, in this dissertation, we focus on

seroprevalence studies conducted early in the pandemic, before seroreversion and vaccines were

large concerns. Vaccines were not available, and there was less time between potential infection

and the seroprevalence study to allow for waning antibody levels.

Early seroprevalence studies were, however, complicated by the uncertainty associated with

antibody tests. No test is perfectly accurate as they inevitably result in some false positives and

false negatives. Thus, prevalence estimates based on seroprevalence studies must account for these

error rates. For tests rapidly developed early in the pandemic, lab validation sample sizes were

limited, and thus, there was considerable uncertainty associated with the sensitivity and specificity

of a test, including the cutoff value needed to achieve a desired specificity for a test. The test

characteristic uncertainty translates into uncertainty in the prevalence that must be accounted for

(Gelman and Carpenter, 2020).

One of the common approaches for estimating the prevalence from a serology study is the

Rogan-Gladen approach (Rogan and Gladen, 1978), which uses the sensitivity, specificity, and

positivity rate to estimate the prevalence (e.g., Axfors and Ioannidis, 2022; Levin et al., 2020;

Pezzullo et al., 2023). Confidence intervals for the seroprevalence are then created, but many

omit the uncertainty in the sensitivity and specificity values themselves. Seeing this gap, Gelman

and Carpenter (2020) proposed a Bayesian model for jointly modeling sensitivity, specificity, and

prevalence, which fully accounted for the uncertainty from the serology study and lab validation

data.

1.1.3 Estimating the infection fatality rate

The infection fatality rate (IFR) for COVID-19 is the proportion of those infected with SARS-

CoV-2 who then die from the disease. Thus, it requires a measure of the total number of infections

and the total number of deaths. The accuracy of COVID-19 fatality records varied based on re-
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sources and death registration systems; however, we lack empirical evidence of their accuracies, so

we treat the number of deaths as known. The total number of infections is typically estimated from

seroprevalence studies and has uncertainty. This means estimation of IFR has the same sources of

uncertainty that serology studies do: sampling variability and test characteristic uncertainty.

A number of previous papers have estimated IFR for specific age bins or as continuous func-

tions of age (e.g., Campbell and Gustafson, 2021; Levin et al., 2022; Perez-Saez et al., 2021).

However, many of these papers do not fully account for the test characteristic uncertainty (COVID-

19 Forecasting Team, 2022; Levin et al., 2020; O’Driscoll et al., 2021; Pezzullo et al., 2023), and

none jointly model the test characteristics, seroprevalence, and IFR in one cohesive model.

1.2 Outline

1.2.1 Estimating antibody test cutoffs

In Chapter 2 we focus on enzyme-linked immunoassay (ELISA) antibody tests, which measure

the amount of antibodies in a blood sample that bind to an antigen, a protein meant to mimic a

piece of the SARS-CoV-2 virus. These tests result in optical density (OD) measures, which are

proportional to the level of antibodies in the sample (Jacofsky et al., 2020; Nasrallah et al., 2021).

Antibody tests require a cutoff for the OD values to classify positive and negative test results.

Early in the pandemic, when the proportion of the population infected was low, correctly classify-

ing negative samples was a higher priority in order to have a more accurate test overall and to limit

the number of false positive results. For this reason, the Centers for Disease Control and Preven-

tion recommended selecting cutoffs to ensure a high specificity such as 0.995, meaning 99.5% of

those without antibodies would test negative (Centers for Disease Control and Prevention, 2020).

Common solutions for selecting a cutoff targeting a specific specificity include fitting a normal

distribution to the negative controls (or some transformation of them) and estimating the corre-

sponding quantile of this normal distribution, or finding the corresponding empirical percentile of

the negative controls (Devanarayan et al., 2017; Jordan and Staack, 2021; Zhang, 2021). Variations

on the normal distribution approach include fitting a t-distribution instead (Hoffman and Berger,
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2011; Shen et al., 2015) or varying how the normal distribution is fit: mean and standard deviation

versus median and mean absolute deviation (Devanarayan et al., 2017).

Because we typically seek to estimate an extreme quantile of the negative controls distribution,

we propose using extreme value theory to estimate the cutoff in Chapter 2. We fit a generalized

Pareto distribution to the upper tail of the negative controls and estimate the desired quantile using

this fitted distribution. Furthermore, out of the existing methods, there lacks a formal comparison

showing which cutoff estimation method is preferred when lab validation sample sizes are limited,

as was the case early in the COVID-19 pandemic. Thus, we formally compare cutoff estimation

methods via a data analysis and simulation study using COVID-19 antibody test data from the first

year of the pandemic. We consider seven cutoff estimation methods, including our new method,

with varied target specificities and focus on the situation where there is limited validation sample

sizes.

1.2.2 Estimating Age-Specific IFR: Binned age case

Case and mortality data are often reported for age ranges, i.e., age bins. The specific age

bins used vary across studies, and death reporting procedures vary across locations. In Chapter

3, we present a Bayesian model that jointly models seroprevalence, antibody test characteristics,

and age-specific IFR based on the age bins for which the data is available. We account for the

challenges of limited serology and test validation sample sizes, misaligned bins between the sero-

prevalence and fatality data, heterogeneous test characteristics, and uncertainty in the inherent test

characteristics. By estimating serology and IFR at the age bin level, we can apply to our model

to locations with any granularity level of data. In contrast to existing methods (e.g., COVID-19

Forecasting Team, 2022; Levin et al., 2020), we minimize assumptions by limiting how informa-

tion was shared across locations and not assuming any particular relationship between IFR and age

such as log-linearity. We compare our new method for prevalence estimation to the commonly used

Rogan-Gladen method (Rogan and Gladen, 1978), which does not account for test characteristic

uncertainty. We demonstrate the improvements to our estimates and their uncertainty when consid-
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ering the data sources simultaneously. Using our proposed method we analyzed test characteristic,

seroprevalence, and fatality data for 107 locations from 44 developing countries to demonstrate the

utility of our tools.

1.2.3 Estimating Age-Specific IFR: Continuous age case

In Chapter 4 we focus on developing country locations with age-specific seroprevalence and

fatality data. We estimate location- and age-specific seroprevalence and IFR as continuous func-

tions of age to compare the burden of COVID-19 across locations that had limited data available at

varying age bins and population age distributions. To meet this objective, we develop a hierarchical

Bayesian model that shares information on the shape of the IFR curve across locations. We further

share information across age bins by estimating seroprevalence and IFR as continuous functions of

age. The continuous functions naturally allow for misaligned bins between the serology and death

data. We estimate and compare age-specific IFR in 26 locations in developing country locations.

1.2.4 Conclusion

In Chapter 5, we summarize the contributions of the prior chapters and explore paths for future

work.
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Chapter 2

Estimating cutoff values for diagnostic tests to

achieve target specificity using extreme value theory

2.1 Introduction

When faced with an emerging infectious disease outbreak, it is imperative to rapidly develop

diagnostic tests to determine individual disease status and estimate community prevalence. Both

individual- and community-level information is necessary to target public health interventions and

deploy medical resources. In addition to designing tests that accurately measure biological samples

for evidence of disease (e.g., antibodies), a critical challenge is how to classify quantitative test

results as positive or negative. Therefore, a threshold, based on controls with known disease status,

must be selected to determine positive and negative test results.

Estimating cutoffs for newly developed tests provides unique challenges. First, tests can show

little separation in the distributions for positive and negative controls. The threshold can be chosen

to target a particular sensitivity or specificity, but not both. Second, many early tests have a limited

number of controls with known disease status. For example, a study found that of 47 coronavirus

disease 2019 (COVID-19) antibody tests used in developing countries, the majority had fewer than

200 negative controls and some had as few as 31 (Levin et al., 2022). Thus, estimating the cutoff

that will have the desired sensitivity or specificity must be done from limited data.

This raises two important questions. First, what sensitivity or specificity should be targeted?

Second, how to best estimate a cutoff value for the target sensitivity or specificity? For emerging

diseases, we expect the prevalence to be low. Thus, to optimize the number of tests with the cor-

rect result, we should prioritize correctly identifying negative results and consequently have a high

specificity (Takahashi et al., 2020; Klumpp-Thomas et al., 2021). For this reason, the Centers for

Disease Control and Prevention (CDC) recommended high specificity, such as 0.995, for tests de-
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veloped in the early part of the COVID-19 pandemic (Centers for Disease Control and Prevention,

2020). To achieve a target specificity, researchers commonly use the same quantile of the negative

controls distribution as a cutoff. Two common approaches to estimating a quantile of the negative

controls are to use the empirical quantile or use the quantiles of a parametric distribution, such as

normal or lognormal, fitted to the data (Klumpp-Thomas et al., 2021; Devanarayan et al., 2017;

Hoffman and Berger, 2011; Zhang et al., 2013). However, these methods have not been specifically

evaluated for selecting cutoffs of rapidly developed tests for emerging diseases.

We provide two contributions to the literature. First, we propose a method to estimate a cutoff

for a desired target specificity based on extreme value theory. Our proposed approach is to fit a gen-

eralized Pareto distribution to the upper tail of the negative control data (Pickands III, 1975). This

approach has been broadly used to estimate extreme values of events such as rainfall (Cooley et al.,

2007), air pollution exposures (Martín et al., 2022), and stock prices (Kiriliouk et al., 2019), among

other applications, but has never been applied to cutoff selection. Second, we compare commonly

used methods and the proposed extreme value-based approach, for estimating the cutoffs of emerg-

ing disease tests through a simulation study and data application. We compare cutoff estimation

methods based on their accuracy in achieving a target specificity, individual tests, and estimating

community prevalence. We also compare the impact of target specificities on these outcomes. In

our data analysis, we focus on enzyme linked immunosorbent assay (ELISA) antibody test data

collected during the first year of the COVID-19 pandemic. However, the methods proposed are

general and can be applied to data from any test. In our simulation study, we demonstrated the

extreme value method had the least bias for estimating a cutoff for a high target specificity and

that lower target specificities are easier to estimate and may perform better when the objective is

estimating prevalence.
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2.2 Methods

2.2.1 Data

We used two data sources in our analysis. The training dataset contained blood samples from

staff at long-term care facilities in Colorado, USA, sampled between June and December of 2020.

A total of 226 staff members underwent up to five tests each, resulting in 690 samples. Each sample

was tested using three different antibody tests: a neutralization assay test and two different ELISA

antibody tests. One ELISA test targeted the spike protein and the other targeted the receptor-

binding domain (RBD). The neutralization assay test is considered the “gold standard" in antibody

testing, so we used these results to identify positive and negative controls (Bewley et al., 2021;

Cohen et al., 2008; Eyal et al., 2005). This resulted in 245 positive controls and 445 negative

controls. Additional details are given elsewhere (Gallichotte et al., 2021).

The testing dataset consisted of samples from 186 skilled nursing staff during May 2020. Re-

searchers collected one sample from each staff member and ran multiple antibody tests, including

the spike and RBD ELISA tests used in the training dataset, as described elsewhere (Nehring et al.,

2023).

For both datasets, we normalized the results of the ELISA tests to account for batch effects.

We calculated the positive to negative ratio (P/N) by dividing the average optical density for each

sample by the average of the negative controls run on the same plate (Zhang et al., 2013).

2.2.2 Statistical methods to estimate cutoff values

Our objective in determining the cutoff value is to estimate the Q quantile of the negative

controls for a target specificity of Q. Let x denote the vector of n negative control test results.

Normal method. The normal method finds the Q quantile of a normal distribution with a mean

of x and a standard deviation of sx, where x and sx denote the mean and standard deviation of x,

respectively (Klumpp-Thomas et al., 2021; Devanarayan et al., 2017; Hoffman and Berger, 2011;

Zhang et al., 2013; Jordan and Staack, 2021; Mire-Sluis et al., 2004).
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Lognormal method. The lognormal method is the normal method applied to the data after

a natural log transformation (Devanarayan et al., 2017; Zhang et al., 2013; Jordan and Staack,

2021). This equates to fitting a lognormal distribution to the raw data and using the Q quantile of

that lognormal distribution.

MAD method. The MAD method is a modification of the normal method that replaces the mean

with the median, x̃, and the standard deviation with the scaled mean absolute deviation (MAD),

sMAD
x = 1.4826 × median{|xi − median(x)|}ni=1 (Devanarayan et al., 2017; Hoffman and Berger,

2011; Mire-Sluis et al., 2004). This approach is intended to be robust to outliers.

Log MAD method. The log MAD method is the MAD method applied to natural log trans-

formed data (Devanarayan et al., 2017; Hoffman and Berger, 2011).

Empirical method. The empirical method uses the empirical quantile of x as an estimator of

the cutoff, avoiding parametric assumptions (Devanarayan et al., 2017; Hoffman and Berger, 2011;

Zhang et al., 2013; Jordan and Staack, 2021; Mire-Sluis et al., 2004).

Pareto method using the upper 10% (Pareto 0.9) and upper 5% (Pareto 0.95). The Pareto

method, based on extreme value theory, fits a generalized Pareto distribution to the upper tail of

x. Let u denote some threshold, and y be the values in x that exceed u. Asymptotically, under

regularizing conditions, y follows the generalized Pareto distribution as u approaches the upper

limit of the distribution for x (Pickands III, 1975; Balkema and De Haan, 1974). The generalized

Pareto distribution is

G(y; σu, ξ) =





1−
(
1 + ξ(y−u)

σu

)− 1

ξ

ξ ̸= 0

1− exp
(
−y−u

σu

)
ξ = 0.

(2.1)

We make the simplifying assumption that ξ = 0, which results in a shifted exponential distri-

bution and has been shown to be preferable for small sample sizes (Rosbjerg et al., 1992). Thus,

we only estimate σu from the data as u is pre-specified.
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We set u to be the kth quantile of x and consider two values of k: 90 and 95 (DuMouchel, 1983;

Durán-Rosal et al., 2022). We then fit an exponential distribution to y − u. We use maximum

likelihood to estimate y − u ∼ exp(λ) such that λ̂ = 1
y−u

where y is the sample mean of y.

Since y is assumed to be the upper (100 − k)% of the data, the upper Q′ = Q−k/100
1−k/100

quantile

of our fitted exponential distribution corresponds to the upper Q quantile of the data overall. Thus,

we set the cutoff as

C = F−1(Q′, λ̂) + u (2.2)

= −λ̂ log(1−Q′) + u, (2.3)

where F−1(Q′, λ̂) is the inverse CDF of an exponential distribution with a scale parameter of λ̂,

evaluated at Q′. When Q = 0.95 and k = 95, the cutoff estimate is equivalent to the empirical

method estimate because Q′ = 0.

Hybrid approaches. We also consider hybrid approaches that provide a data-driven approach

to select a cutoff estimation method (Devanarayan et al., 2017; Zhang et al., 2013). We first test for

normality using the Shapiro-Wilk test with a significance level of 0.05. If the test fails to reject, we

use the normal method. If the test rejects normality, we natural log transform and test for normality

again. If the test fails to reject, we use the lognormal method. If the test rejects normality, we use

one of three methods: empirical, Pareto 90%, and Pareto 95% (henceforth referred to as hybrid

empirical, hybrid Pareto 0.9, and hybrid Pareto 0.95, respectively).

Additional details on the estimation methods are given in Appendix A.1.

2.2.3 Statistical methods to estimate prevalence

To accurately estimate the proportion of the population with antibodies for the disease, the

seroprevalence, we account for the sensitivity and specificity of the test via the Rogan-Gladen ad-

justment (Rogan and Gladen, 1978), modified to disallow any negative estimates. The prevalence
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estimator is

π̂ = max

(
p̂+Q− 1

Q+ ŝens − 1
, 0

)
, (2.4)

where p̂ is the proportion of tests classified as positive in the testing data and ŝens denotes the

estimated sensitivity of the test: the proportion of the positive controls that correctly tested positive

in the training data. We use the target specificity Q as the specificity estimate.

2.2.4 Data analysis

We established cutoffs for both the spike and RBD ELISA tests using two different target

specificities: 0.95 and 0.995. For each target specificity and test, we estimated the cutoff using each

of the seven methods described above and the three hybrid methods. To estimate the sensitivity for

each cutoff, we used the samples with positive neutralization assay results as positive controls.

We then used the cutoffs to classify each observation in the testing dataset as positive or nega-

tive. The resulting positivity was used to calculate the Rogan-Gladen adjusted prevalence for each

cutoff.

2.2.5 Simulation study

We modeled our simulated data after the training dataset. We fit mixture distributions sepa-

rately to the positive and negative controls for each test. See Appendix A.2.

We sampled from the fitted mixture distributions to generate data for the simulation study. By

sampling from known mixture distributions, we were able to calculate the true quantiles for the

population we sampled from, allowing us to assess bias and the root mean squared error (RMSE)

of the cutoff value.

We considered eight scenarios in our simulation study. The data was either simulated from the

fitted spike P/N ratios distribution (scenario A) or the fitted RBD P/N ratios distribution (scenario

B). We varied the training sample size between 50 and 200 controls of each type (positive and

negative) and set the target specificity at 0.95 or 0.995. For each simulated training dataset, we
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generated a corresponding testing dataset of size 500, with the number of positive and negative

controls determined by the prevalence: either 0.05 or 0.3. We generated 10,000 training datasets

and testing datasets.

For each training dataset, we estimated the cutoff using all seven methods and the three hybrid

methods. Then, we estimated the sensitivity of the cutoff using the proportion of the positive

controls in the training dataset that were correctly predicted as positive using that cutoff. We also

used each cutoff to classify positive and negative results in the testing dataset. We calculated the

Rogan-Gladen adjusted prevalence as previously described. We evaluated the cutoffs in terms of

the bias and RMSE. We calculated the accuracy of the predictions for the testing dataset as the

proportion of testing dataset observations that were correctly predicted for each cutoff.
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Figure 2.1: (a)-(d) Histogram of the training dataset for each test and control type overlaid with the cor-

responding mixture distribution from which the data was generated in the simulation study (training data

only). The testing data set are in panels (e) and (f). The first column corresponds to the spike test, and the

second to the receptor-binding domain (RBD) test. Training data was sampled from staff at long-term care

facilities in Colorado, USA between June and December 2020. Testing data collected from skilled nursing

staff in Colorado during May 2020.
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2.3 Results

2.3.1 Data analysis

Figure 2.1 shows the negative control training data, positive control training data, and testing

data for both the spike and RBD tests. The spike test had a smaller range of P/N ratios and less

separation between the positive and negative controls. The RBD negative controls had a sparser

upper tail, and the positive controls had a more symmetric distribution compared to the spike test.

Spike test

Figure 2.2 shows the training and testing data and the estimated cutoff for each method, target

specificity, and test. Appendix A.3 shows the results in numerical form. Overall, the different

estimation methods resulted in very different cutoff values. When targeting a specificity of 0.995,

the spike test cutoffs ranged from 1.8 to 4.6 compared to a range of 1.5 to 2.5 when targeting a

specificity of 0.95. The MAD normal methods consistently estimated the lowest cutoffs, while the

empirical and Pareto methods resulted in the highest estimates. Using the hybrid approaches, we

rejected normality for the untransformed and natural log transformed data and used the empirical

and Pareto estimators.

Because the cutoffs are in the tail of the distribution for the negative controls, there are not

many negative control observations between the cutoff values from the different methods (Figure

2.2). Thus, the differences in the cutoffs have minimal impact on the empirical specificities (Table

2.1). The cutoffs had a larger impact on the empirical sensitivity because there were many positive

controls in the range of the cutoffs as shown in Figure 2.2. For example, the Pareto 0.9 and

the lognormal cutoffs had similar training data empirical specificities, 0.993 versus 0.978, when

targeting a specificity of 0.995. However, the empirical sensitivities were substantially different:

0.27 and 0.63, respectively.

The Rogan-Gladen adjusted prevalence estimate for each cutoff method is shown in Table 2.1.

The prevalence estimates from cutoffs targeting a specificity of 0.95 ranged from 0.29 to 0.37.

Those targeting 0.995 ranged from 0.29 to 0.64. Most prevalence estimates ranged from 0.26
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to 0.42 with either target specificity, but the prevalence estimates from the empirical and Pareto

cutoffs targeting a specificity of 0.995 were much larger, between 0.61 and 0.64.

RBD test

The estimated cutoffs for the RBD test were also more variable when targeting a specificity

of 0.995. The MAD normal cutoffs were the smallest, and the empirical and Pareto cutoffs were

similar to each other. We again rejected normality both for the raw and log transformed data, and

the hybrid method estimates were equivalent to the empirical and Pareto estimates.

The RBD test showed greater separation in the distributions of the negative controls and pos-

itive controls, resulting in higher and more consistent empirical sensitivities, with all sensitivities

greater than 0.87 (Table 2.1). The reduced variability in the empirical sensitivity estimates between

estimation methods resulted in less variability of the prevalence estimates, compared to the spike

tests.

Table 2.1: Rogan-Gladen adjusted prevalence estimate of the testing dataset for each cutoff method, test,

and target specificity.

Spike RBD

Prevalence Sensitivity Specificity Prevalence Sensitivity Specificity

Target specificity=0.995

Empirical 0.64 0.28 0.99 0.26 0.87 0.99

Normal 0.30 0.77 0.97 0.28 0.96 0.99

Log Normal 0.35 0.63 0.98 0.28 0.98 0.98

MAD 0.32 0.99 0.91 0.39 1.00 0.85

Log MAD 0.29 0.93 0.95 0.32 0.99 0.93

Pareto 0.9 0.63 0.27 0.99 0.27 0.91 0.99

Pareto 0.95 0.61 0.31 0.99 0.26 0.87 0.99

Target specificity=0.95

Empirical 0.29 0.93 0.95 0.30 0.99 0.95

Normal 0.30 0.98 0.94 0.28 0.98 0.98

Log Normal 0.31 0.99 0.93 0.31 0.99 0.94

MAD 0.37 0.99 0.85 0.42 1.00 0.80

Log MAD 0.34 0.99 0.90 0.39 1.00 0.84

Pareto 0.9 0.29 0.96 0.94 0.28 0.99 0.97

Abbreviations: mean absolute deviation, MAD; receptor-binding domain, RBD

16



0.0

2.5

5.0

7.5

10.0

Negative Positive Testing

Data type

S
p
ik

e
 P

/N
 r

a
ti
o

Target specificity=0.995

(a)

0.0

2.5

5.0

7.5

10.0

Negative Positive Testing

Data type

S
p

ik
e

 P
/N

 r
a

ti
o

Method

Empirical

Normal

MAD normal

Pareto 0.9

Pareto 0.95

 

No transformation

Log−transformation

Target specificity=0.95

(b)

0

10

20

30

Negative Positive Testing

Data type

R
B

D
 P

/N
 r

a
ti
o

Target specificity=0.995

(c)

0

10

20

30

Negative Positive Testing

Data type

R
B

D
 P

/N
 r

a
ti
o

Method

Empirical

Normal

MAD normal

Pareto 0.9

Pareto 0.95

 

No transformation

Log−transformation

Target specificity=0.95

(d)

Figure 2.2: P/N ratios for the positive controls, negative controls, and testing data, jittered horizontally.

Cutoffs as calculated by each of the seven methods are shown as horizontal lines. The first row shows the

spike test cutoffs with (a) a target specificity of 0.995 and (b) a target specificity of 0.95. The second row

shows the receptor-binding domain (RBD) test with (c) a specificity of 0.995 and (d) a target specificity of

0.95. Training data was sampled from staff at long-term care facilities in Colorado, USA between June and

December 2020. Testing data collected from skilled nursing staff in Colorado during May 2020.
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2.3.2 Simulation study

Figures 2.1 (a)-(d) show the distribution functions we generated data from. There was more

overlap between the positive and negative cases in the data for scenario A than in scenario B. This

is partially a result of the right skew of the positive controls and partially because the tail of the

negative controls extends further in scenario A than in scenario B.

Table 2.2: The mean and Monte Carlo standard error in parentheses of the bias and RMSE of the cutoff

when targeting a specificity of 0.995. The method(s) with minimal bias and RMSE in each scenario or

equivalent after rounding are bolded.

Scenario A Scenario B

n=50 n=200 n=50 n=200

Bias of cutoff

Empirical -0.93 (0.0049) -0.37 (0.0035) -3.60 (0.0327) -1.77 (0.0249)

Normal -1.74 (0.0027) -1.70 (0.0014) -6.26 (0.0158) -5.71 (0.0112)

Log Normal -1.34 (0.0030) -1.36 (0.0015) -6.72 (0.0070) -6.79 (0.0032)

MAD -2.68 (0.0010) -2.68 (0.0005) -9.08 (0.0013) -9.09 (0.0006)

Log MAD -2.00 (0.0025) -2.02 (0.0012) -8.41 (0.0031) -8.47 (0.0014)

Pareto 0.9 -0.15 (0.0064) -0.02 (0.0033) -3.03 (0.0309) -2.97 (0.0154)

Pareto 0.95 -0.50 (0.0059) -0.02 (0.0035) -2.73 (0.0368) -1.35 (0.0227)

Hybrid Empirical -0.93 (0.0048) -0.38 (0.0036) -3.59 (0.0327) -1.77 (0.0249)

Hybrid Pareto 0.9 -0.37 (0.0069) -0.03 (0.0033) -3.06 (0.0310) -2.97 (0.0154)

Hybrid Pareto 0.95 -0.62 (0.0061) -0.03 (0.0035) -2.74 (0.0368) -1.35 (0.0227)

RMSE of cutoff

Empirical 1.35 (0.0039) 0.80 (0.0031) 7.47 (0.0789) 5.28 (0.0360)

Normal 1.82 (0.0024) 1.72 (0.0014) 7.01 (0.0180) 6.14 (0.0090)

Log Normal 1.47 (0.0026) 1.39 (0.0014) 6.86 (0.0059) 6.82 (0.0031)

MAD 2.69 (0.0010) 2.68 (0.0005) 9.08 (0.0013) 9.09 (0.0006)

Log MAD 2.07 (0.0022) 2.04 (0.0012) 8.43 (0.0030) 8.48 (0.0014)

Pareto 0.9 1.28 (0.0059) 0.65 (0.0029) 6.88 (0.0619) 4.28 (0.0133)

Pareto 0.95 1.28 (0.0052) 0.70 (0.0033) 7.84 (0.0871) 4.74 (0.0294)

Hybrid Empirical 1.34 (0.0037) 0.80 (0.0031) 7.45 (0.0790) 5.28 (0.0360)

Hybrid Pareto 0.9 1.43 (0.0057) 0.66 (0.0030) 6.91 (0.0616) 4.28 (0.0133)

Hybrid Pareto 0.95 1.37 (0.0050) 0.71 (0.0033) 7.85 (0.0870) 4.74 (0.0294)

Abbreviations: mean absolute deviation, MAD; root mean squared error, RMSE
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Table 2.3: The mean and Monte Carlo standard error in parentheses of the bias and RMSE of the cutoff

when targeting a specificity of 0.95. The method(s) with minimal bias and RMSE in each scenario or

equivalent after rounding are bolded.

Scenario A Scenario B

n=50 n=200 n=50 n=200

Bias of cutoff

Empirical -0.14 (0.0025) -0.05 (0.0014) -0.02 (0.0041) -0.02 (0.0015)

Normal -0.26 (0.0018) -0.23 (0.0010) 0.65 (0.0105) 1.00 (0.0073)

Log Normal -0.35 (0.0014) -0.36 (0.0007) -0.23 (0.0029) -0.24 (0.0014)

MAD -0.92 (0.0007) -0.92 (0.0004) -1.29 (0.0009) -1.29 (0.0004)

Log MAD -0.68 (0.0012) -0.68 (0.0006) -1.03 (0.0015) -1.06 (0.0007)

Pareto 0.9 -0.07 (0.0022) -0.03 (0.0012) 0.65 (0.0077) 0.70 (0.0038)

Hybrid Empirical -0.17 (0.0024) -0.05 (0.0014) -0.03 (0.0041) -0.02 (0.0015)

Hybrid Pareto 0.9 -0.12 (0.0023) -0.03 (0.0012) 0.64 (0.0077) 0.70 (0.0038)

RMSE of cutoff

Empirical 0.51 (0.0021) 0.29 (0.0012) 0.82 (0.0130) 0.31 (0.0017)

Normal 0.45 (0.0015) 0.30 (0.0008) 2.20 (0.0341) 1.77 (0.0170)

Log Normal 0.45 (0.0012) 0.38 (0.0007) 0.63 (0.0028) 0.37 (0.0011)

MAD 0.93 (0.0007) 0.93 (0.0004) 1.30 (0.0009) 1.30 (0.0004)

Log MAD 0.72 (0.0011) 0.69 (0.0006) 1.08 (0.0013) 1.07 (0.0007)

Pareto 0.9 0.45 (0.0019) 0.23 (0.0010) 1.67 (0.0182) 1.04 (0.0056)

Hybrid Empirical 0.51 (0.0020) 0.29 (0.0012) 0.83 (0.0129) 0.31 (0.0017)

Hybrid Pareto 0.9 0.47 (0.0019) 0.24 (0.0010) 1.67 (0.0181) 1.04 (0.0056)

Abbreviations: mean absolute deviation, MAD; root mean squared error, RMSE

Cutoff estimation

Table 2.2 shows the bias and the RMSE of the cutoff for each method when targeting a speci-

ficity of 0.995. In the majority of cases, the Pareto methods were superior in terms of bias and

RMSE. The only exception was scenario B with a training sample size of 50 where the RMSE was

smallest for the lognormal method because the larger bias for this method was offset by the smaller

variance.

The cutoff estimates with every method were negatively biased, meaning the cutoff was below

the true 0.995 quantile for each method, on average. Thus, the specificity of the estimated cutoff

was below the target, on average. The MAD and log MAD methods were the most biased while

the Pareto methods were the least biased.
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The hybrid methods all had slightly higher RMSE and bias than their corresponding Pareto

or empirical methods. Normality and log normality were both rejected for the vast majority of

the datasets: 99-100% of datasets with a training sample size of 200 and 59-92% with a training

sample size of 50. The results are, therefore, mostly the Pareto and empirical cutoffs but with a

small number of poorer performing normal or lognormal cutoffs mixed in.

Table 2.3 shows, when targeting a specificity of 0.95, the magnitude of the bias and RMSE

were smaller. The empirical method had the minimal bias under scenario B. The Pareto 0.9 and

normal methods had a positive bias for scenario B, compared to the negative bias when targeting a

specificity of 0.995.
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Prevalence estimation

Table 2.4: The mean and middle 95% (2.5% quantile, 97.5% quantile) of the Rogan-Gladen adjusted preva-

lence estimates when targeting a specificity of 0.995. The method(s) with the prevalence estimate nearest

the truth in each scenario or equivalent after rounding are bolded.

Scenario A Scenario B

n=50 n=200 n=50 n=200

Prevalence=0.05

Empirical 0.07 (0.01, 0.13) 0.06 (0.00, 0.10) 0.07 (0.02, 0.13) 0.05 (0.03, 0.08)

Normal 0.09 (0.05, 0.13) 0.09 (0.06, 0.11) 0.08 (0.04, 0.15) 0.06 (0.05, 0.10)

Log Normal 0.08 (0.04, 0.12) 0.08 (0.05, 0.11) 0.07 (0.05, 0.12) 0.07 (0.05, 0.09)

MAD 0.14 (0.10, 0.20) 0.14 (0.11, 0.17) 0.19 (0.11, 0.26) 0.19 (0.14, 0.23)

Log MAD 0.10 (0.06, 0.15) 0.10 (0.07, 0.13) 0.13 (0.06, 0.22) 0.12 (0.08, 0.17)

Pareto 0.9 0.06 (0.00, 0.14) 0.05 (0.00, 0.10) 0.07 (0.02, 0.10) 0.05 (0.04, 0.07)

Pareto 0.95 0.07 (0.00, 0.13) 0.05 (0.00, 0.10) 0.07 (0.01, 0.13) 0.05 (0.03, 0.07)

Hybrid Empirical 0.07 (0.01, 0.12) 0.06 (0.00, 0.10) 0.07 (0.02, 0.13) 0.05 (0.03, 0.08)

Hybrid Pareto 0.9 0.07 (0.00, 0.14) 0.05 (0.00, 0.10) 0.07 (0.02, 0.11) 0.05 (0.04, 0.07)

Hybrid Pareto 0.95 0.07 (0.00, 0.13) 0.05 (0.00, 0.10) 0.08 (0.01, 0.13) 0.05 (0.03, 0.07)

Prevalence=0.30

Empirical 0.32 (0.19, 0.48) 0.31 (0.21, 0.41) 0.31 (0.24, 0.38) 0.30 (0.26, 0.34)

Normal 0.33 (0.25, 0.41) 0.33 (0.28, 0.37) 0.32 (0.28, 0.37) 0.31 (0.29, 0.34)

Log Normal 0.33 (0.23, 0.43) 0.32 (0.26, 0.38) 0.32 (0.29, 0.35) 0.31 (0.30, 0.33)

MAD 0.37 (0.33, 0.42) 0.36 (0.34, 0.39) 0.40 (0.34, 0.46) 0.40 (0.36, 0.44)

Log MAD 0.34 (0.27, 0.40) 0.33 (0.30, 0.36) 0.36 (0.30, 0.43) 0.35 (0.32, 0.39)

Pareto 0.9 0.31 (0.09, 0.63) 0.30 (0.20, 0.42) 0.31 (0.23, 0.37) 0.30 (0.27, 0.33)

Pareto 0.95 0.32 (0.14, 0.55) 0.30 (0.19, 0.43) 0.31 (0.22, 0.39) 0.30 (0.26, 0.34)

Hybrid Empirical 0.32 (0.20, 0.48) 0.31 (0.21, 0.41) 0.31 (0.24, 0.37) 0.30 (0.26, 0.34)

Hybrid Pareto 0.9 0.31 (0.09, 0.60) 0.30 (0.20, 0.42) 0.31 (0.23, 0.37) 0.30 (0.27, 0.33)

Hybrid Pareto 0.95 0.32 (0.15, 0.54) 0.30 (0.19, 0.43) 0.31 (0.22, 0.39) 0.30 (0.26, 0.34)

Abbreviations: mean absolute deviation, MAD

Table 2.4 shows simulation results for the Rogan-Gladen adjusted prevalence estimates when

targeting a specificity of 0.995. The Pareto cutoffs had little bias but had larger variability when

targeting a specificity of 0.995. In every case, the average of the prevalence point estimates was

closest to the truth using one of the Pareto methods. However, in scenario A the Pareto estimates,

especially with a sample size of 50, were more variable than the normal-based methods. Table

2.5 shows the prevalence when targeting a specificity of 0.95. The variability for the Pareto and

empirical methods were lower when targeting a lower specificity, and particularly at the smaller

sample size. With both target specificities, the MAD and log MAD methods were positively biased,
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Table 2.5: The mean and middle 95% (2.5% quantile, 97.5% quantile) of the Rogan-Gladen adjusted preva-

lence estimates when targeting a specificity of 0.95. The method(s) with the prevalence estimate nearest the

truth in each scenario or equivalent after rounding are bolded.

Scenario A Scenario B

n=50 n=200 n=50 n=200

Prevalence=0.05

Empirical 0.06 (0.00, 0.15) 0.05 (0.01, 0.10) 0.07 (0.01, 0.15) 0.05 (0.02, 0.10)

Normal 0.07 (0.01, 0.14) 0.07 (0.03, 0.10) 0.06 (0.00, 0.16) 0.04 (0.00, 0.10)

Log Normal 0.08 (0.03, 0.13) 0.07 (0.04, 0.11) 0.08 (0.02, 0.16) 0.07 (0.03, 0.12)

MAD 0.15 (0.09, 0.25) 0.15 (0.10, 0.20) 0.21 (0.12, 0.29) 0.20 (0.15, 0.26)

Log MAD 0.11 (0.05, 0.20) 0.11 (0.07, 0.15) 0.16 (0.06, 0.26) 0.16 (0.11, 0.22)

Pareto 0.9 0.06 (0.00, 0.13) 0.05 (0.02, 0.09) 0.05 (0.00, 0.14) 0.03 (0.01, 0.08)

Hybrid Empirical 0.06 (0.00, 0.14) 0.05 (0.01, 0.10) 0.07 (0.01, 0.15) 0.05 (0.02, 0.10)

Hybrid Pareto 0.9 0.06 (0.00, 0.13) 0.05 (0.02, 0.09) 0.05 (0.00, 0.14) 0.03 (0.01, 0.08)

Prevalence=0.30

Empirical 0.31 (0.23, 0.38) 0.30 (0.26, 0.34) 0.31 (0.27, 0.37) 0.30 (0.28, 0.34)

Normal 0.32 (0.26, 0.37) 0.31 (0.28, 0.34) 0.31 (0.25, 0.38) 0.29 (0.26, 0.34)

Log Normal 0.32 (0.27, 0.37) 0.32 (0.29, 0.35) 0.32 (0.27, 0.39) 0.31 (0.28, 0.35)

MAD 0.38 (0.32, 0.45) 0.37 (0.34, 0.41) 0.41 (0.35, 0.48) 0.41 (0.37, 0.46)

Log MAD 0.35 (0.30, 0.41) 0.34 (0.31, 0.38) 0.38 (0.31, 0.45) 0.38 (0.34, 0.43)

Pareto 0.9 0.31 (0.23, 0.36) 0.30 (0.26, 0.33) 0.30 (0.26, 0.36) 0.29 (0.26, 0.32)

Hybrid Empirical 0.31 (0.23, 0.37) 0.30 (0.26, 0.34) 0.31 (0.27, 0.38) 0.30 (0.28, 0.34)

Hybrid Pareto 0.9 0.31 (0.23, 0.37) 0.30 (0.26, 0.33) 0.30 (0.26, 0.37) 0.29 (0.26, 0.32)

Abbreviations: mean absolute deviation, MAD

while the other methods had a smaller bias, generally positive. The hybrid method estimates were

again similar to the corresponding empirical and Pareto estimates.
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Test accuracy

We consider the accuracy of the cutoff estimation methods for classifying individuals as pos-

itive or negative in the testing data. Tables 2.6 and 2.7 show the proportion of testing set obser-

vations correctly classified with a target specificity of 0.995 and 0.95, respectively. The MAD

methods’ cutoffs were negatively biased, leading to a lower specificity and decreased accuracy

in low prevalence scenarios. The Pareto methods had the highest accuracy (or equivalent to the

highest accuracy) when prevalence was 0.05.

When the prevalence was higher at 0.3 and using the lower target specificity, the Pareto method

was most accurate in scenario B. All but the MAD methods performed similarly for scenario A.

With the higher target specificity, the MAD cutoffs had highest accuracy for scenario A, and the

lognormal method was most accurate for scenario B.
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Table 2.6: The mean and middle 95% (2.5% quantile, 97.5% quantile) of the accuracy of the test as mea-

sured by the proportion of testing dataset observations correctly predicted when targeting a specificity of

0.995. The method(s) with highest accuracy in each scenario or equivalent after rounding are bolded.

Scenario A Scenario B

n=50 n=200 n=50 n=200

Prevalence=0.05

Empirical 0.96 (0.93, 0.97) 0.96 (0.95, 0.97) 0.97 (0.93, 0.99) 0.98 (0.96, 0.99)

Normal 0.95 (0.91, 0.97) 0.96 (0.93, 0.97) 0.97 (0.90, 0.99) 0.98 (0.95, 0.99)

Log Normal 0.96 (0.93, 0.97) 0.96 (0.94, 0.97) 0.97 (0.93, 0.99) 0.98 (0.96, 0.99)

MAD 0.90 (0.84, 0.95) 0.91 (0.87, 0.94) 0.86 (0.78, 0.93) 0.86 (0.81, 0.90)

Log MAD 0.94 (0.89, 0.97) 0.95 (0.92, 0.97) 0.92 (0.83, 0.98) 0.93 (0.87, 0.97)

Pareto 0.9 0.96 (0.94, 0.97) 0.96 (0.95, 0.97) 0.98 (0.95, 0.99) 0.99 (0.97, 1.00)

Pareto 0.95 0.96 (0.93, 0.97) 0.96 (0.95, 0.97) 0.98 (0.94, 0.99) 0.98 (0.96, 0.99)

Hybrid Empirical 0.96 (0.93, 0.97) 0.96 (0.95, 0.97) 0.97 (0.93, 0.99) 0.98 (0.96, 0.99)

Hybrid Pareto 0.9 0.96 (0.93, 0.97) 0.96 (0.95, 0.97) 0.98 (0.94, 0.99) 0.99 (0.97, 1.00)

Hybrid Pareto 0.95 0.96 (0.93, 0.97) 0.96 (0.95, 0.97) 0.98 (0.94, 0.99) 0.98 (0.96, 0.99)

Prevalence=0.30

Empirical 0.85 (0.73, 0.95) 0.81 (0.73, 0.89) 0.95 (0.74, 0.99) 0.94 (0.77, 0.99)

Normal 0.91 (0.81, 0.96) 0.91 (0.84, 0.96) 0.96 (0.90, 0.99) 0.97 (0.94, 0.99)

Log Normal 0.88 (0.78, 0.96) 0.87 (0.81, 0.94) 0.97 (0.94, 0.99) 0.98 (0.96, 0.99)

MAD 0.93 (0.88, 0.96) 0.93 (0.90, 0.95) 0.89 (0.84, 0.95) 0.90 (0.86, 0.93)

Log MAD 0.92 (0.82, 0.96) 0.94 (0.88, 0.96) 0.94 (0.87, 0.98) 0.94 (0.90, 0.98)

Pareto 0.9 0.81 (0.71, 0.95) 0.79 (0.73, 0.86) 0.95 (0.74, 0.99) 0.96 (0.87, 0.99)

Pareto 0.95 0.82 (0.71, 0.95) 0.79 (0.73, 0.86) 0.94 (0.72, 0.99) 0.94 (0.78, 0.99)

Hybrid Empirical 0.85 (0.73, 0.95) 0.81 (0.73, 0.89) 0.95 (0.74, 0.99) 0.94 (0.77, 0.99)

Hybrid Pareto 0.9 0.82 (0.71, 0.95) 0.79 (0.73, 0.86) 0.95 (0.74, 0.99) 0.96 (0.87, 0.99)

Hybrid Pareto 0.95 0.83 (0.71, 0.95) 0.79 (0.73, 0.86) 0.94 (0.72, 0.99) 0.94 (0.78, 0.99)

Abbreviations: mean absolute deviation, MAD
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Table 2.7: The mean and middle 95% (2.5% quantile, 97.5% quantile) of the accuracy of the test as mea-

sured by the proportion of testing dataset observations correctly predicted when targeting a specificity of

0.95. The method(s) with highest accuracy in each scenario or equivalent after rounding are bolded.

Scenario A Scenario B

n=50 n=200 n=50 n=200

Prevalence=0.05

Empirical 0.93 (0.86, 0.97) 0.94 (0.91, 0.97) 0.94 (0.86, 0.99) 0.95 (0.91, 0.98)

Normal 0.93 (0.87, 0.97) 0.94 (0.90, 0.96) 0.94 (0.85, 0.99) 0.96 (0.90, 0.99)

Log Normal 0.93 (0.87, 0.96) 0.93 (0.90, 0.96) 0.93 (0.84, 0.98) 0.93 (0.89, 0.97)

MAD 0.85 (0.76, 0.92) 0.86 (0.81, 0.90) 0.80 (0.72, 0.88) 0.81 (0.76, 0.85)

Log MAD 0.89 (0.81, 0.95) 0.90 (0.86, 0.94) 0.85 (0.75, 0.94) 0.85 (0.79, 0.90)

Pareto 0.9 0.94 (0.88, 0.97) 0.95 (0.91, 0.97) 0.95 (0.87, 0.99) 0.97 (0.93, 0.99)

Hybrid Empirical 0.93 (0.86, 0.97) 0.94 (0.91, 0.97) 0.94 (0.85, 0.99) 0.95 (0.91, 0.98)

Hybrid Pareto 0.9 0.94 (0.88, 0.97) 0.95 (0.91, 0.97) 0.95 (0.86, 0.99) 0.97 (0.93, 0.99)

Prevalence=0.30

Empirical 0.93 (0.84, 0.96) 0.94 (0.88, 0.96) 0.95 (0.89, 0.99) 0.96 (0.93, 0.98)

Normal 0.93 (0.88, 0.96) 0.94 (0.92, 0.96) 0.95 (0.88, 0.99) 0.97 (0.92, 0.99)

Log Normal 0.94 (0.90, 0.96) 0.94 (0.92, 0.96) 0.94 (0.88, 0.98) 0.95 (0.91, 0.98)

MAD 0.89 (0.82, 0.94) 0.89 (0.86, 0.93) 0.86 (0.79, 0.91) 0.86 (0.82, 0.89)

Log MAD 0.92 (0.86, 0.96) 0.92 (0.89, 0.95) 0.89 (0.82, 0.95) 0.89 (0.84, 0.93)

Pareto 0.9 0.93 (0.85, 0.96) 0.94 (0.90, 0.96) 0.96 (0.90, 0.99) 0.97 (0.94, 0.99)

Hybrid Empirical 0.93 (0.84, 0.96) 0.94 (0.88, 0.96) 0.95 (0.89, 0.99) 0.96 (0.93, 0.98)

Hybrid Pareto 0.9 0.93 (0.85, 0.96) 0.94 (0.90, 0.96) 0.96 (0.90, 0.99) 0.97 (0.94, 0.99)

Abbreviations: mean absolute deviation, MAD
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2.4 Discussion

It is imperative to rapidly develop and deploy prognostic tests for emerging infectious diseases

that can be used to classify individuals and estimate prevalence in a community. A common chal-

lenge for tests is determining a cutoff value to separate positive and negative cases as there is often

overlap in the results between the positive and negative cases. This is especially challenging with

early tests for emerging diseases for which there is limited training data with validated positive

and negative controls. Common approaches to estimating cutoff values are using the quantile of

a parametric distribution fit to the negative control test data or using the empirical quantile of the

negative control test data. Yet, there is little guidance on how to select a cutoff to separate positive

and negative results, especially for small data sets. Here, we proposed using methods from ex-

treme value theory, specifically using the generalized Pareto distribution to estimate the upper tail

of the negative control training data and its quantiles, to estimate a cutoff value to achieve a target

specificity. We compared the proposed approach and common alternatives in a simulation study.

Our simulation demonstrated that when targeting a very high specificity, 0.995 as recom-

mended by the CDC early in the COVID-19 pandemic (Centers for Disease Control and Preven-

tion, 2020), the Pareto methods proposed had lower bias and RMSE for estimating a cutoff value.

When targeting a lower target specificity of 0.95, the empirical method consistently performed

well. Methods that relied on parametric distributions (e.g., normal, lognormal, MAD normal and

MAD lognormal) generally had large bias and RMSE. As a result, the Pareto methods for the

higher target specificity and the empirical methods for the lower target specificity, estimated cut-

offs closest to the target specificity of any methods considered.

Estimating a cutoff that results in the desired target specificity is essential for both estimating

prevalence and classifying individuals. The methods showing minimal bias in cutoff estimation

also had the least biased prevalence estimates.

In addition to the cutoff estimation method, a second factor that influences cutoff estimation

accuracy is the target specificity. We compared the recommended target specificity of 0.995 to

a target specificity of 0.95 and found the desired target specificity varied according to the goal
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of the analysis as well as the prevalence of the population. In the low prevalence, as setting we

might expect for an emerging disease, using a higher target cutoff of 0.995, as compared to the

more moderate 0.95, resulted in better accuracy for classifying individuals as positive or negative

(Tables 2.6 and 2.7). When prevalence is low, specificity affects the accuracy more than sensitivity.

However, in a higher-prevalence setting, the need for a large specificity is balanced with the need

for a large sensitivity as there are more true positives that could potentially be misclassified. Thus,

with higher prevalence, accuracy was overall higher when targeting a specificity of 0.95 instead of

0.995. The slightly lowered target specificity allowed for much higher sensitivities. When targeting

a specificity of 0.995, the median sensitivities ranged from 0.31 to 0.99 across the various methods

and simulation scenarios. When targeting a specificity of 0.95, the median sensitivities ranged

significantly less, from 0.94 to >0.99 (Appendix A.4).

We also found the target specificity impacted uncertainty in prevalence estimation. The average

prevalence estimate was near the true value for the empirical and Pareto methods with either target

specificity, but the variability of the prevalence estimate was generally lower for these methods

when targeting a specificity of 0.95. The standard error was over two times larger for the Pareto

methods when using a target specificity of 0.995 compared to 0.95 for the smaller training sample

size of 50: the scenario where the Pareto methods was the least biased for prevalence estimates.

The empirical standard error was also larger when using a target specificity of 0.995, but to a

lesser degree for scenario A. Therefore, if the goal is estimating the population prevalence, we

recommend a lower target specificity as this reduces the variability of the cutoffs and in turn the

variability of the prevalence estimates.

The results of our data analysis of two COVID-19 antibody tests are consistent with the results

of the simulation study. The Pareto and empirical methods, which showed minimal negative bias

in the simulation study, also tended to have the highest cutoff estimates in the data analysis. The

MAD methods showed considerable negative bias in the simulation study and had the smallest

estimates in the data analysis. Additionally, like the simulation study, the prevalence estimates

showed more variability when targeting a specificity of 0.995 rather than 0.95.
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The performance of the cutoff estimators and the resulting accuracy at the individual level and

prevalence estimators at the community-levels will vary depending on the shape of the distributions

of positive and negative results and the separation between those two distributions. The shape of

the distribution impacts how accurately the target specificity can be estimated for the methods

using parametric assumptions. The separation of the distributions impacts accuracy, sensitivity,

and prevalence estimates. If the distributions show considerable overlap, the accuracy is lowered,

and a cutoff cannot be selected that results in both a highly sensitive and highly specific test. We

only generated data from two possible distributions and two possible sample sizes, so the results

of our simulation study should be limited to this context.

The normal methods rely on stricter distributional assumptions than the Pareto or empirical. In

our simulation, the assumptions of the normal methods were not met. Even in the hybrid methods

when the normal and lognormal methods were only used if we failed to reject normality, the bias

and RMSE were still larger than if we only used the empirical or Pareto methods. In contrast,

the empirical method makes no distributional assumptions. The Pareto methods rely on general

regularity conditions about the negative controls distribution (Pickands III, 1975; Balkema and

De Haan, 1974).

Because an emerging disease has potential cross-reactivity and few true positives expected,

we focus on methods for establishing cutoffs that target a high specificity (Takahashi et al., 2020).

However, in other applications, approaches that consider both the sensitivity and specificity, as well

as the relative costs of false positive and false negative results and the prevalence, may be preferred

(Felder and Mayrhofer, 2022; Greiner et al., 2000; Hajian-Tilaki, 2018; Linnet and Brandt, 1986).

When only estimating prevalence, some methods forgo establishing a cutoff and instead fit a mix-

ture model (Bottomley et al., 2021; Bouman et al., 2021; Hitchings et al., 2023; Schaarschmidt

et al., 2015; Vink et al., 2015) or a latent class model (Kostoulas et al., 2021; Laurin et al., 2019;

Symons et al., 2021) to the continuous test results.

Based on our simulation and data analysis, we recommend using the Pareto methods or the

empirical method to estimate the cutoff when developing tests, depending on the target specificity.
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When targeting a high specificity such as 0.995, we demonstrated the Pareto method was least

biased in estimating the cutoff with the desired specificity, as well as showed minimal bias in

estimating the population prevalence. When targeting a lower specificity, the empirical method

performed consistently well. The commonly used normal methods showed a larger negative bias

than either of these methods, and the MAD normal methods showed a considerable bias in our

simulation.

The choice of target specificity of the cutoff should account for the goals of the test. If the goal

is to have accurate tests at the individual level, a high target specificity of 0.995 was ideal in our

simulation when in the low prevalence case we would expect of an emerging disease. However,

if the goal is instead to use the antibody test to estimate the population prevalence, a lower target

specificity may be preferred to reduce variability in the cutoff and thus in the prevalence estimate.
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Chapter 3

Data integration via Bayesian modeling for

estimation of COVID-19 infection fatality rates

3.1 Introduction

COVID-19 severely disrupted daily life globally in early 2020 with at least 643.89 million

infections and 6.64 million deaths worldwide as of December 2022 (Jha et al., 2022; Our World

in Data, 2022). However, availability of location-specific data on the number of COVID-19 in-

fections and fatalities is inconsistent. Some locations have age-specific records of both infections

and fatalities, while others report these for varying numbers of age bins or lack such data entirely.

We developed a statistical model to formally assess the location-specific burden of COVID-19 in

terms of infection rates and fatality rates. We perform data integration to use all the available data

sources and get age bin-level estimates rather than population estimates, leveraging all granularity

provided by the data. The proposed model is an advance over existing methods because it fully

accounts for uncertainty in infection and fatality rates. Using this model, we estimate seropreva-

lence and infection fatality rates for 107 locations in developing countries as well as the associated

uncertainty, as detailed in Levin et al. (2022). In this chapter we provide the technical details of our

model. We compare our model for infection and fatality rates to previous methods, highlighting

the importance of fully accounting for uncertainty in the infections and the fatalities data. Our re-

sults can be used to facilitate data-driven, age-specific decisions regarding distribution of vaccines,

treatments, and international aid, as well as interventions such as social distancing measures.

We use the proportion of infections that result in a death to compare locations. This can

be estimated as the number of COVID-19 deaths divided by the reported number of COVID-19

infections–the case fatality rate (Alimohamadi et al., 2021). However, the number of reported cases

is likely a drastic under-count of the total number of COVID-19 infections (National Academies
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of Sciences, Engineering, and Medicine, 2020). At the start of the pandemic tests were not avail-

able (Vandenberg et al., 2021). Once tests were developed, asymptomatic cases were still likely to

go unreported as did many symptomatic cases (Lau et al., 2021). Thus, instead of relying on the

reported number of cases, we estimate the number of infections to infer the infection fatality rate

(IFR): the number of COVID-19 deaths divided by the estimated number of COVID-19 infections.

In our analysis, we use serology survey data to estimate the number of COVID-19 infections.

In serology studies, a sample of the population is selected, and each study participant is tested

for COVID-19 antibodies. People who have been infected with SARS-CoV-2 build antibodies

against the virus (i.e., seroconvert) and should test positive. The proportion of the serology study

sample that tests positive for COVID-19 antibodies is then used to estimate the proportion of the

population that has antibodies–the seroprevalence, which is used as an estimate for the proportion

of the population that has experienced a COVID-19 infection.

In estimating the seroprevalence from a serology study, it is essential to account for the false

positive and false negative rates of the antibody tests. As an example, consider a test with 100%

sensitivity (i.e., the probability an individual with COVID-19 antibodies tests positive is one) in

a location with a low seroprevalence of 5%, as we might expect early in a pandemic (Table 3.1).

If the test had perfect specificity (i.e., the probability an individual without COVID-19 antibodies

tests negative is one), we would expect none of our positive test results to be false positives, and the

positivity rate would be an unbiased estimator for the seroprevalence. However, if the specificity

was lowered to just 0.95, then the expected false discovery rate jumps to 49%, meaning we would

expect almost half of the cases we identify as positive to be false positives. Thus, our estimated

seroprevalence should be about half of the positivity rate.

Table 3.1: The expected percent of positive test results that are false positives for various specificity values,

assuming perfect sensitivity and a 0.05 prevalence.

Specificity False discovery rate

1.000 0%

0.975 32%

0.950 49%
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Because the COVID-19 antibody tests used in serology studies during the first year of the

pandemic were rapidly developed with limited lab validation, it is also essential to account for the

uncertainty of the false positive and false negative rates (Gelman and Carpenter, 2020; Larremore

et al., 2022). Early test developers evaluated the sensitivity and specificity for each assay by

testing positive and negative controls. They ran their COVID-19 antibody tests on blood samples

from individuals either known to have been infected with SARS-CoV-2 (positive controls) or those

known not to have been infected (negative controls), and the number of correct test results were

recorded. Sometimes many controls were used (1000 or more), while in other cases very few were

used (around 30). For the tests evaluated with few controls, the confidence interval for the test

characteristics can be wide enough that the end points result in drastically different seroprevalence

estimates. In our dataset, the Luminex S protein trimer IgG assay had the fewest negative controls

with just 31, and the 95% confidence interval for the specificity is (0.888, 1). Extending our

prior example, assume a sensitivity of 100%, a true prevalence of 0.05, and assume that of 100

individuals tested, 10 had a positive test result. The false discovery rate is

FDR =
P (false positive)

P (test positive)
=

(1− π)(1− spec)

(1− π)(1− spec) + πsens
, (3.1)

for a sensitivity of sens, specificity of spec, and true prevalence of π. First considering a specificity

of 0.888, we would expect 68% of positive tests to be false positives, i.e., about 7 of those that

were tested. The prevalence could then be estimated as the 3 true positives over the 100 total for an

estimated prevalence of 0.03. If the specificity were instead 1, we would expect all of the positive

tests to be true positives, resulting in a prevalence estimate of 0.1.

Many of the previous approaches for estimating IFR using seroprevalence studies have ac-

counted for the test characteristics in a two-stepped approach. First, they estimate the seropreva-

lence and uncertainty, accounting for the test characteristics, then they use the seroprevalence

estimates to estimate IFR. One of the common approaches is to use the Rogan-Gladen adjusted

confidence interval to estimate seroprevalence (Rogan and Gladen, 1978), which relies on the sen-

sitivity and specificity point estimates (e.g., Axfors and Ioannidis (2022); Levin et al. (2020)).
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However, this approach does not account for any additional uncertainty due to the test character-

istics being unknown. To account for the test characteristic uncertainty, some such as Perez-Saez

et al. (2021) and Tunheim et al. (2022) followed Gelman and Carpenter (2020) to simultaneously

estimate the sensitivity, specificity, and seroprevalence via a Bayesian model to fully account for

the test characteristics as well as their uncertainty. They then used these results and associated

uncertainty to estimate the IFR. By separating estimation into two steps, any information from the

fatality data is not accounted for in estimating the seroprevalence and test characteristics.

When estimating the IFR from many previous studies, obtaining sufficient lab validation and

serology study data for each study can be challenging, so some previous meta-analyses, such

as Campbell and Gustafson (2021) and Pezzullo et al. (2023), relied on the seroprevalence esti-

mates and confidence intervals reported in the previous studies. Pezzullo et al. (2023) directly

utilized the reported confidence intervals that accounted for test characteristics, while Campbell

and Gustafson (2021) inverted confidence intervals of the seroprevalence as reported in the serol-

ogy studies to back out the correlated sample size and number testing positive. They then used

these in a Bayesian model to estimate the IFR. However, the serology studies included in the meta-

analyses used different methods to account for test characteristics, with some accounting for test

characteristic uncertainty and others not. This means the IFR estimates inconsistently accounted

for test characteristic uncertainty.

Improving on these methods, we present a Bayesian model which performs data integration to

simultaneously estimate the test characteristics, seroprevalence, and IFR in one cohesive model,

fully accounting for the uncertainty in the test characteristics. We highlight the benefits of our

cohesive model by comparing our results to the commonly used Rogan-Gladen adjustment (Rogan

and Gladen, 1978) and the Rogan-Gladen based IFR estimate. We estimate IFR and seroprevalence

for each age bin the data was reported at, which can harmonize across data reported at any data

granularity and has the additional benefit of avoiding imposing assumptions about how age bins

relate to each other. We simultaneously model data, regardless fatality data availability, estimating

seroprevalence for all locations and IFR for locations with fatality data.
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3.2 Data

We analyze the data published in Levin et al. (2022), which consists of 107 non-overlapping

locations from 44 developing countries, with developing countries defined as low- and middle-

income countries as designated by the International Monetary Fund (International Monetary Fund,

2021). These locations had varying amounts of data as shown in Table 3.2: 63 had COVID-19

fatality data as well as seroprevalence study data, while the remaining 44 locations only reported

seroprevalence study data, with no corresponding fatality data available. Of the studies with fatality

data, 28 had age-specific fatality data reported for up to eight age bins, and 35 only reported the

total number of deaths across all ages. Nine of the seroprevalence only locations did not report

age-specific data, while the other 35 reported data for between two and ten age bins. In addition to

the seroprevalence and fatality data, we modeled the lab validation data for each of the tests used

in the seroprevalence studies.

Table 3.2: Number of locations with and without death data for each country as well as the range of the

number of seroprevalence age bins and death bins for each location within a country.

Region Country
# of # with # without # sero # death

locations death data death data bins bins

Latin America Argentina 3 2 1 1–7 4–7

Latin America Bolivia 1 1 – 1 1

Latin America Brazil 9 9 – 1–8 1–8

Latin America Chile 1 1 – 5 5

Latin America Colombia 10 10 – 5–8 5–7

Latin America Dominican Republic 1 – 1 1 –

Latin America Ecuador 1 1 – 5 5

Latin America Mexico 1 1 – 4 1

Latin America Paraguay 1 1 – 6 6

Latin America Peru 4 4 – 1–8 1–8

Africa Cameroon 1 – 1 5 –

Africa Dem. Republic of Congo 1 – 1 3 –

Africa Ethiopia 3 2 1 1–4 1

Africa Kenya 1 1 – 7 5

Africa Libya 1 – 1 1 –

Africa Mozambique 12 1 11 4 1

Africa Nigeria 1 – 1 7 –

Africa Senegal 1 1 – 6 1

Africa South Africa 5 2 3 1–6 1

Africa South Sudan 1 – 1 8 –

Africa Zambia 1 1 – 1 1
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Africa Zimbabwe 1 – 1 9 –

Europe Albania 1 – 1 1 –

Europe Bosnia and Herzegovina 1 1 – 5 1

Europe Georgia 1 – 1 5 –

Europe Hungary 1 1 – 3 3

Europe Poland 1 1 – 8 1

Europe Russia 1 1 – 4 1

Middle East Iran 1 1 – 4 1

Middle East Iraq 1 – 1 1 –

Middle East Jordan 1 1 – 8 4

Middle East Oman 1 1 – 4 1

Middle East Palestine 2 – 2 8 –

Middle East United Arab Emirates 1 – 1 8 –

Middle East Yemen 1 – 1 6 –

East Asia China 3 2 1 5 1–4

East Asia Laos 1 – 1 4 –

East Asia Malaysia 1 – 1 2 –

East Asia Mongolia 1 – 1 10 –

East Asia Thailand 1 – 1 3 –

South Asia Bangladesh 1 – 1 8 –

South Asia India 20 13 7 1–8 1–8

South Asia Nepal 1 1 – 10 1

South Asia Pakistan 3 2 1 1–4 1

3.2.1 Inclusion criteria

Levin et al. (2022) searched for COVID-19 seroprevalence studies publicly disseminated by

December 17th, 2021. Each study was then evaluated in terms of sampling bias and only studies

deemed to have representative samples were included in the analysis.

The analysis was restricted to seroprevalence studies conducted before April 2021. By only

considering studies within the first year of the pandemic, we can reduce the impact of serorever-

sion, people losing antibodies against COVID-19 over time and therefore no longer testing positive

with antibody tests. Additionally, vaccines were not widely distributed before March of 2021, so

we can reasonably assume that individuals in these studies only developed COVID-19 antibodies

as a result of a prior infection and not from a vaccine.

The timing of serology studies was also considered in relation to a “wave" of COVID-19.

If the number infections was dramatically increasing in a condensed period of time (defined as

the number of reported COVID-19 deaths increasing by a factor of at least three between the
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midpoint of the study and four weeks past the midpoint), it is nearly impossible to match the

number of COVID-19 fatalities to the cumulative infections due to the delay between infection,

seroconversion, a potentially fatal outcome, and reporting of deaths. Therefore, we opted to use

only studies that were not conducted during an accelerating outbreak.

3.2.2 Data structure

Seroprevalence data

The seroprevalence study data consisted of the number of study participants tested and the

number of the participants that then tested positive on the COVID-19 antibody test. These counts

were either reported for specific age bins (e.g., (0, 20], (20, 40], (40, 60], . . . ) or for the study as a

whole, representing the average for all ages. The number of participants in an age bin ranged from

8 to 12,897, with a median sample size of 371. The seroprevalence studies in our analysis were

conducted between April of 2020 and March of 2021 with 80% of the studies conducted between

mid-June and December of 2020.

Death data

For each study with fatality data, researchers collected the cumulative number of COVID-19

deaths up to fourteen days past the midpoint of the corresponding serology study. The fourteen-day

lag was introduced to account for the timing between infection and a potentially fatal outcome. For

data gathered from official reports, rather than case data, an additional fourteen days was added

to account for the lag in death reporting (see Levin et al. (2022)). Because of the heterogeneity

in study date, population of the study area, and COVID-19 risk by age, the number of COVID-19

deaths varied dramatically between locations, as well as across age bins within a location. The

cumulative number of deaths in an age bin ranged from 0 to 151,910.

Test characteristic data

We analyzed lab validation data for each test assay used in the seroprevalence studies. In total,

47 assays were used with 13 assays used in multiple studies. The number of positive and negative
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controls tested for each assay is shown in Figure 3.1. The number of positive controls tested ranged

from 29 to 1000 and the number of negative controls tested ranged from 31 to 5991. Twelve assays

had less than 100 negative controls, two of which were used in four or more seroprevalence studies.

For most assays, more negative controls were used than positive controls.
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Figure 3.1: Number of positive controls and number of negative controls for each test assay used. The size

and color of the point indicates the number of locations using each assay.

Population age distribution data

Population data was collected for various age bins for each study location, primarily from web-

sites such as populationstat.com, worldpopulationreview.com, and populationpyramid.net as well

as from census data, when available. When age bins were wider than five years, we combined the

location-specific data with national population data from similar sources to estimate the population

for five-year age intervals. Details are given in Appendix B.1.
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3.3 Methods

We present a cohesive Bayesian model, which simultaneously models fatality, serology, and

test assay lab data to allow for age-specific and location-specific seroprevalence and IFR inference.

In Section 3.3.1 we present a model for the seroprevalence and test characteristic, which applies

to all locations. Then, in Section 3.3.2 we present a model for the fatality data, which only applies

to locations with fatality data. Thus, the model simultaneously estimates seroprevalence and test

characteristics for all locations, while also estimating the IFR for those with fatality data. We

discuss handling of misalignment between seroprevalence and fatality age bins in Section 3.3.3

and conclude by discussing priors is Section 3.3.4.

3.3.1 Modeling seroprevalence data

We model the number of study participants that test positive in age bin A and location ℓ, R⋆
ℓ,A,

as following a binomial distribution

R⋆
ℓ,A ∼ Bin(nℓ,A, pℓ,A), (3.2)

where nℓ,A denotes the serology study sample size. Therefore, we assume tests to be independent,

Bernoulli trials, with the probability an individual tests positive equal to pℓ,A. For locations with

multiple age bins, A represents the interval containing the ages of a particular bin. For locations

without age-specific data, A = [0, 100+) represents all ages.

Test characteristics

Because the seroprevalence tests used are imperfect, the test positivity rate differs from the

seroprevalence rate. The test positivity rate includes individuals with correct positive results and

false positive results, whereas the seroprevalence rate includes individuals with correct positive

results and false negative results. Thus, the test positivity rate, pℓ,A, can be expressed as a function

of the test characteristics and the seroprevalence. Let πℓ,A be the seroprevalence for age bin A at
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location ℓ, one of our primary parameters of interest. Then

pℓ,A = senstℓπℓ,A + (1− spectℓ)(1− πℓ,A), (3.3)

where tℓ denotes the test assay used at location ℓ, senstℓ is the sensitivity, and spectℓ is the specificity

of the test. Thus, senstℓπℓ,A represents the probability of a true positive: the probability someone

tests positive given they are seropositive times the probability they are seropositive. Similarly, the

probability of a false positive is represented by (1− spectℓ)(1− πℓ,A).

To account for the uncertainty in the test characteristics, we treat the sensitivity and specificity

as unknown parameters. We model the lab validation data with binomial distributions

xsens,t ∼ Bin(nsens,t, senst) (3.4)

xspec,t ∼ Bin(nspec,t, spect), (3.5)

where nsens,t and nspec,t denote the number of positive and negative controls tested, respectively,

while xsens,t and xspec,t denote the number of controls that had the correct test result.

3.3.2 Modeling fatality data

A primary objective is to estimate the IFR for the location with fatality data. However, we only

observe data for the death rate, which can be defined as the proportion of the population, for a

particular location and age bin, that died of COVID-19. The IFR can be expressed as the propor-

tion that experience a COVID-19 infection times the probability an individual dies of COVID-19

given they were infected, or equivalently, the seroprevalence, πℓ,A, times the infection fatality rate,

IFRℓ,A. We can convert this death rate to the expected number of deaths by multiplying by the

population, Nℓ,A.

Let D⋆
ℓ,A represent the number of COVID-19 fatalities for location ℓ and age bin A. We model

the number of deaths with a Poisson distribution with the mean equal to the expected number of
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Figure 3.2: The death age bin cutoffs (vertical lines) compared to the seroprevalence study age bins (pink

boxes) for Nairobi County, Kenya. The pink horizontal lines give the Rogan-Gladen seroprevalence estimate

and the boxes give the 95% confidence interval.

deaths:

D⋆
ℓ,A ∼ Poisson(Nℓ,A × πℓ,A × IFRℓ,A). (3.6)

We chose to use a Poisson distribution, similar to O’Driscoll et al. (2021), because a COVID-19

death is a relatively rare event.

The mean in (3.6) utilizes estimates of πℓ,A and IFRℓ,A at the same age bin A. However, the

seroprevalence study age bins did not always match the age bins the deaths were reported at. In

the following section, Section 3.3.3, we discuss how we handled this issue.

3.3.3 Aligning age bins

The mismatches between seroprevalence study age bins and fatality data age bins at a given

location can be classified into one of four categories.

(1) Fatality data age bins are nested within seroprevalence study age bins: If we use the

seroprevalence estimate from the larger age bin and match it to the fatality data for a subset of
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that bin, we assume the average seroprevalence is a sufficient estimate for the smaller subset

of ages. This assumption is particularly bad for cases like Nairobi County, Kenya where the

seroprevalence estimates vary greatly across age bins (see Figure 3.2). The seroprevalence

estimate from the 0-9 age bin of 0.18 is likely too low for the 5-9 age bin and too high for

the 0-4 age bin.

Solution: We aggregated the death age bins to match the seroprevalence study age bin.

(2) Seroprevalence study age bins are nested within fatality data age bins: Similar to case

(1), we do not want to assume the death rate for the entire age bin is representative of the

death rate for a subset of the age bin. As an example, consider the 20-39 and 40-59 death

data age bins in Figure 3.2 where the serology data is available for 10-year bins.

Solution: We aggregated the information across serology bins to create an average sero-

prevalence for the fatality age bin. Let B represent the death age bin. We took a weighted

average of the seroprevalence estimates for the age bins contained in B with weighting pro-

portional to the population in each serology age bin.

(3) Seroprevalence study age bins are not nested within the death age bins but are within

two years of the fatality data age bins: Our dataset contained a number of locations where

the bounds were within two years of aligning, particularly around ages 18-20. For example,

consider the youngest age bins in Chennai, India. The serology study data was available for

age bins 0-19 and 20-29, whereas the fatality data was available for age bins 0-18, 19-24,

and 25-29. The death age bins are almost nested within the serology age bins except the

discrepancy in the cutoff at age 18 versus 19.

Solution: The seroprevalence age limits were adjusted to match those of the death data so

the bins aligned or they fell into Case 1 or Case 2.

(4) Seroprevalence study age bins are not nested and are more than two years away from

the fatality data age bins: In some cases, the only common age bin bounds were at ages 0

and 100.
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Solution: The seroprevalence or fatality data age bins were pooled until the location fell into

one of the three cases above.

Using the rule set introduced here, this process can be automated. Thus, the model can be

applied to new data sets without the need for manually aligning the age bins for each location.

3.3.4 Priors

Identifiability

Our interest is in estimating the seroprevalence rate and the infection fatality rate, but we only

observe data on the positivity rate, death rate, and lab validation data. Considering first the in-

fection fatality rate, there are infinitely many combinations of πℓ,A and IFRℓ,A that give the same

death rate (πℓ,A× IFRℓ,A) in (3.6). While there are data to inform estimation of test characteristics,

seroprevalence, and IFR, we found that the death data had a tendency to dominate the model. The

number of data points used to estimate the death rate, the population Nℓ,A, is generally very large

relative to the seroprevalence study sample sizes or the lab validation sample size.

Further, in the case of seroprevalence, we observe data on the test positivity, but not the sero-

prevalence itself. There are infinitely many combinations of the triplet senstℓ , spectℓ , and πℓ,A

that could give the same positivity, pℓ,A, in (3.3). The lab validation data can inform the senstℓ

and spectℓ estimates. However, particularly in cases of small lab validation sample sizes, the lab

validation data can be overwhelmed.

To improve identifiability and leverage known serology test development processes, we utilize

a combination of weakly informative and strongly informative priors. The details of these priors

are described in the following subsections.
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Seroprevalence priors

We use weakly informative priors for seroprevalence. For each age bin A and location ℓ we

model prevalence with a beta distribution:

πℓ,A ∼ Beta(2, 6). (3.7)

The resulting distribution had a mode at 0.167 and 94% of the mass below 0.5. All the seropreva-

lence studies were concluded before March of 2021, so we do not expect seroprevalence to exceed

0.5. Given the wide spread of COVID-19, we also do not expect seroprevalence to be zero, so we

chose a prior with a nonzero mode. Note, these priors do not allow any pooling of information

across locations. We use independent priors for each πℓ,A to avoid making any assumptions about

how the seroprevalence is related within a location or across locations.

3.3.5 Test characteristic priors

We use more informative priors for the test characteristics, similar to Gelman and Carpenter

(2020). Seroprevalence tests are designed to prioritize specificity, with the Centers for Disease

Control and Prevention (2020) recommending a specificity of 99.5% when developing COVID-19

antibody tests. Therefore, we use a stronger prior for specificity favoring larger values, and an

informative but not as strong prior on the test sensitivity

senst ∼ Beta(10, 1), (3.8)

spect ∼ Beta(50, 1). (3.9)

The sensitivity and specificity are assumed to be the same across studies using the same test assay,

but the sensitivity or specificity of one assay is independent of the sensitivity or specificity of

another assay a priori.
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IFR prior

We developed a mildly informative IFR prior. We know the IFR generally increases with age

(Levin et al., 2020; Pezzullo et al., 2023; Starke et al., 2021). Therefore, we want a prior that

allows for larger IFR values when the age bin contains older ages. In addition, age bins containing

only older ages should have a larger IFR compared to age bins that contain a wider range of ages.

In general, we expect more variability in the IFR for smaller age bins, and less variability for wider

age bins. Therefore, we define our prior for IFR as a function of the age bin limits, Lℓ,A and Uℓ,A

corresponding to the lower age and upper age cutoffs, respectively, for age bin A and location ℓ.

When the upper age is open ended (e.g., 85+), we set Uℓ,A = 100.

After consulting with COVID-19 epidemiologists and other experts and looking at studies of

the COVID-19 IFR in high-income countries (Levin et al., 2020), we set independent prior distri-

butions for IFR accordingly:

IFRℓ,A ∼ Beta(1, IFR
prior
ℓ,A ) (3.10)

IFR
prior
ℓ,A = 30− 20

[
Uℓ,A − 50

50

(
1− Uℓ,A − Lℓ,A

100

)]
. (3.11)

If the age bin represents the entire population (Lℓ,A = 0, Uℓ,A = 100), the prior simplifies to a

Beta(1, 30). This is mildly informative, but still appropriately vague, with over 85% of the mass

below 0.07 (see panel (a) of Figure 3.3). If the upper bound of the age bin is above 50, IFR
prior
ℓ,A will

be less than 30, resulting in a flatter prior which allows for larger IFR values. If the upper bound is

below 50, IFR
prior
ℓ,A will be greater than 30, giving a prior that is more concentrated near zero. The

amount that is added or subtracted from 30 then depends on the width of the age bin, Uℓ,A − Lℓ,A,

with more dramatic adjustments being made for narrower age bins, which are likely more variable.

These patterns are visualized in panel (a) of Figure 3.3 with example prior distributions for four

age bins.

Panel (b) illustrates the IFR
prior
ℓ,A value as a function of the width and midpoint age of the age bin.

As the midpoint of the age bin increases, IFR
prior
ℓ,A decreases and the slope is steeper for narrower
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age bins. Specifically, IFRprior for the 40-width bin is smaller than that of the 10-width bin for

midpoints less than age 75, and smaller than that of the 20-width bin for midpoints less than 70.

Because a wider age bin would incorporate older individuals, who we expect to have a higher IFR,

we believe the IFR would be larger for this wider age bin. After around age 70 IFRprior is larger for

the age bins with a width of 40, resulting in a tighter prior around zero. This is because the wider

age bin would incorporate more younger individuals and should therefore have a smaller IFR. This

is further illustrated by panel (c). The 95th quantile for the 40-year width bin is larger below about

age 70 and smaller above age 70 for.
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Figure 3.3: Panel (a) shows the prior distribution for example age bins. Panel (b) shows IFRprior values

for age bins centered at the midpoint value and with a total width indicated by the color. Note, Uℓ,A has

an upper bound of 100, so the width 40 bin can have a maximum midpoint of 80. Panel (c) shows the 95th

quantile of the prior distribution for various widths and midpoints.

3.4 Estimation

The joint posterior distribution of ({πℓ,A}, {IFRℓ,A}, {senst}, {spect}) given the seropreva-

lence, lab validation, and fatality data ({nℓ,A}, {R⋆
ℓ,A}, {xsens,t}, {xspec,t}, {nsens,t}, {nspec,t},

{D⋆
ℓ,A}) is not available in a closed form. We obtained 10,000 posterior parameter samples from

three Markov chains using version 3.32.2 of Stan (Stan Development Team, 2022). The first 5000

iterations were discarded as burn-in. This resulted in an effective sample size of at least 1,200 for

each parameter. The traceplots and R̂ suggested convergence. We therefore leverage a Markov
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chain Monte Carlo algorithm to sample from the posterior distribution of the parameters given the

data.

3.5 Comparison of methods

We compare our Bayesian estimates of the test characteristics, seroprevalence, and IFR to

the Rogan-Gladen (RG) based estimates commonly used in practice (Axfors and Ioannidis, 2022;

Levin et al., 2020; Pezzullo et al., 2023). For test characteristics, we consider the raw estimates

ŝenst = xsens,t/nsens,t and ŝpect = xspec,t/nspec,t for sensitivity and specificity, respectively. The

adjusted RG seroprevalence estimate is then

π̂ℓ,A =
pℓ,A + ŝpectℓ − 1

ŝpectℓ + ŝenstℓ − 1
. (3.12)

To create confidence intervals for the RG seroprevalence, we use the epiR package (Stevenson

and Sergeant, 2023) to create Blaker’s confidence intervals (Blaker, 2000) that account for the

adjustments made to the positivity rate, but do not account for the uncertainty in ŝens and ŝpec.

The naive estimate for IFR, based on the RG prevalence estimate, is then

ÎFRℓ,A =
D⋆

ℓ,A/Nℓ,A

π̂ℓ,A

. (3.13)

Following Levin et al. (2020), we calculated naive confidence intervals for the IFR by replacing

π̂ℓ,A with either the upper bound or the lower bound of the corresponding confidence interval for

π̂ℓ,A in (3.13).

Across these 107 locations, we estimate seroprevalence for 471 age bins and estimate IFR for

182 age bins, where the serology study sample, test assay accuracy, amount of lab validation data,

and population vary.
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Figure 3.4: Boxplots show the posterior distribution of the (a) sensitivity and (b) specificity for each test

assay. The whiskers indicate the 95% credible interval, the box indicates the 80% credible interval, and

the center line is at the posterior mean. The pink and yellow dots indicate the raw estimates (number of

correctly identified controls/number of controls tested). Raw sensitivity and specificity estimates of interest

are emphasized and labeled in pink and purple.

3.5.1 Test characteristics

Figure 3.4 shows the posterior distributions for the test characteristics. In most cases, the raw

estimate is within the range of the posterior distribution, with a few exceptions.

First, we consider the sensitivity estimates (Figure 3.4(a)). The average difference between the

posterior mean and the raw estimate was 0.013, with a standard deviation of 0.014. The posterior

mean was over 0.05 greater than the raw estimate for the three assays with the smallest raw sensi-
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tivities (highlighted in pink). Two of the assays (A and C) had only 30 positive controls, while the

third (B) had 122 positive controls. These unusually low estimates with limited sample sizes were

pulled slightly upwards by the prior on sensitivity.

For the specificity estimates (Figure 3.4(b)), the mean difference between raw estimates and

the posterior means was 0.007, with a standard deviation of 0.009. We focus on the tests where the

difference between estimates was greater than 0.01. There were a few notable differences between

the raw estimate and the posterior mean (highlighted in pink) that demonstrate the benefits of

simultaneously estimating the test characteristics and seroprevalence, rather than estimating these

separately. To illustrate, we focus on the Qingdao Hightop Biotech IgM/IgG Duo assay (labeled

B). The raw specificity estimate was 0.96. This means we expect a minimum of 4% of the tests to

be positive. However, multiple locations using this assay had positivity rates far below 4%. Tete,

Mozambique had positivity rates as low as 0.3% and 0.9% in age bins with sample sizes of 623

and 336, respectively. By simultaneously estimating seroprevalence and the test characteristics,

the model identified that given the positivity rates, it was likely the specificity was higher than the

raw estimate. The other assays with raised specificity estimates were also used in locations with

lower than expected positivity rates, assuming the specificity was equal to the raw estimate. This

benefit of joint modeling had also been noted by Larremore et al. (2022).

Additionally, three tests (highlighted in purple) had posterior means for specificity that were

between 0.01 and 0.02 smaller than the raw estimates. Both E and F had small numbers of negative

controls (42 and 31, respectively) and raw specificities of 1.0, so the lowered estimates reflect the

uncertainty about the specificities. For D, the uncertainty in the specificity estimate was much

larger than the change in the point estimate as shown by Figure 3.4 (b). The lower raw specificity

and smaller sample size (56) led to additional uncertainty for this test.

3.5.2 Seroprevalence point estimate

Figure 3.5 shows the RG estimates compared to the posterior means for seroprevalence. For

90% of the bins, the posterior mean seroprevalence was within 0.035 of the RG estimate. The 46
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bins with a difference in estimates greater than 0.035 fall into at least one of three cases. Case

1: there are 13 RG estimates more than 0.035 from the posterior mean that are negative. This

occurs when the Bayesian model does not allow for negative estimates, and thus, its estimates are

larger. Case 2: there are 32 age bins for which the posterior mean sensitivity or specificity differed

substantially from the raw estimates as explained in Section 3.5.1. These resulted in changes to

the seroprevalence estimate. Case 2 contains case 1 as all the age bins with negative RG estimates

also had a change in the associated sensitivity or specificity estimate. Finally, the 14 remaining

bins with large differences between the RG estimate and the posterior mean all had small serology

sample sizes, ranging from 8 to 68. When seroprevalence was low (RG less than 0.05), the large

uncertainty allowed for higher posterior means as the Bayesian estimates cannot go below zero,

leading to right skewed posterior distributions. When seroprevalence was higher (greater than

0.25), the posterior means were smaller the RG estimates, as weakly suggested by the prior.

Figure 3.6 (a) shows an example location where the RG and posterior mean estimate notably

differ. In the 80+ age bin in Karnataka, India, 5 out of 9 study participants tested positive for

COVID-19 antibodies. With raw sensitivity and specificity estimates of 0.85 and 1.0, respectively,

the RG seroprevalence estimate is 0.66. Due to the small serology study sample size, our prior for

seroprevalence was rather influential for this age bin. The posterior mean was pulled down to 0.39,

aligning with the prior mode of 0.167.

3.5.3 Seroprevalence intervals

Figure 3.7 shows the width of the RG 95% confidence intervals compared to the 95% credible

interval for seroprevalence. Panel (a) shows that the seroprevalence sample size directly relates to

the width of the confidence intervals and credible intervals. The age bins with a confidence interval

width greater than 0.3 had a serology study sample size between 8 and 68. In these cases where

the serology study provided limited information, the RG confidence intervals were wider than the

credible intervals. This reflects the slight shrinkage in the parameter posterior that results from

our prior when serology sample sizes are low. The difference in confidence interval and credible
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Figure 3.5: The Rogan-Gladen estimates of seroprevalence compared to the posterior mean of the sero-

prevalence. The points are colored by (a) an indicator for which estimate differ by more than 0.035 or (b)

the serology study sample size. In (b), open circles indicate points where, compared to the raw estimate, the

posterior mean of the sensitivity differed from the raw estimate by more than 0.05 or the posterior mean of

the specificity differed from the raw estimate by more than 0.01. The dotted line shows x = 0.

interval widths is especially apparent for bins with RG intervals widths greater than 0.6. The upper

two age bins in Karnataka (Figure 3.6) correspond with two of the black points in Figure 3.7(a)

with serology study sample sizes of 29 and 9.

When the RG widths were less than 0.2, the credible interval width tended to align with the

RG width or were wider. In the cases where the credible intervals width was greater than the

confidence interval width by at least 0.02, the number of positive and negative controls was small

(see Figure 3.7(b)). The limited number of controls increased the uncertainty about the sensitivity

and specificity, which in turn increased uncertainty about seroprevalence in the Bayesian estimates.

The RG intervals treat sensitivity and specificity as known, and do not account for this added

uncertainty.

Figure 3.6(b) shows the confidence intervals and credible intervals for Asunción and Central

Department, Paraguay. The test sensitivity and specificity were established with 30 positive con-

trols and 80 negative controls, resulting in non-negligible uncertainty in the test characteristics.

Notably, the 95% credible intervals for sensitivity and specificity are (0.84, 0.99) and (0.86, 0.96),
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Figure 3.6: Bayesian posterior means and 95% credible intervals for seroprevalence compared to Rogan-

Gladen point estimates and 95% confidence intervals.
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Figure 3.7: Width of the 95% confidence interval for the Rogan-Gladen seroprevalence estimate compared

to the width of the 95% credible interval for seroprevalence. The points are colored by (a) the serology

sample size and (b) the total number of positive and negative controls combined.

respectively, and the serology sample sizes ranged from 151 to 603 across the age bins. In general,

the RG confidence intervals, which only account for serology study sampling variability and not

test characteristic uncertainty are distinctly narrower.

3.5.4 IFR

Figure 3.8(a) shows the RG-based and Bayesian IFR point estimates are largely similar. Of

the 11 age bins with a difference in IFR estimate greater than 0.0015, all had a corresponding

difference in the seroprevalence estimates. Either the RG seroprevalence estimate was larger and

the IFR estimate was smaller compared to the Bayesian estimates, or the reverse was true. Note,

the RG-based IFR estimate is not useful if the RG estimate is negative or 0. In our dataset, none

of the locations containing fatality data had a negative RG estimate, so the RG estimate can be

applied to all age bins with fatality data.

Figure 3.8(b) compares the widths of the 95% intervals. The naive confidence interval for IFR

assumes there is no variability in the number of deaths, whereas the Bayesian model assumes that

deaths follow a Poisson distribution. As noted by Campbell and Gustafson (2021), the difference

between the observed number of deaths and the expected number of deaths is an additional source
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Figure 3.8: (a) The RG-based IFR estimate compared to the posterior mean for IFR and (b) the width of

the 95% RG-based IFR confidence interval compared to the width of the 95% IFR credible interval. Points

are colored according to which method gave a larger seroprevalence estimate, and the size indicates the

magnitude of the difference between the seroprevalence estimates of the two methods. One outlying age bin

with an RG based IFR estimate of 0.63 and confidence interval width over 12 was removed.

of uncertainty that should be accounted for. Additionally, the Bayesian model accounts for test

characteristic uncertainty that the RG estimates do not. Most of the credible intervals (91%) are

wider than the confidence intervals, accounting for these added sources of uncertainty.

Eleven age bins had a confidence interval width greater than the credible interval width. In

each case, the Bayesian seroprevalence estimate was larger than the RG estimate. Thinking of

the IFR as a ratio of the death rate divided by the seroprevalence, the impact of small changes in

the seroprevalence estimate on the IFR estimate increases as seroprevalence decreases. Thus, the

uncertainty in IFR will naturally be larger for the smaller seroprevalence estimates. For example,

in the 60+ age bin in Cuiabá, Brazil, the 95% RG confidence interval for seroprevalence and

the 95% credible interval for seroprevalence had similar widths: 0.111 and 0.113, respectively.

However, the RG seroprevalence estimate was 0.016 smaller than the posterior mean of 0.160,

which translated into the RG-based IFR confidence interval being wider than the credible interval

with a width of 0.079 for the RG-based interval and a width of 0.068 for the credible interval. If
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we add 0.016 to the seroprevalence confidence interval bounds, the new RG-based IFR confidence

interval would be narrower than the credible interval for IFR with a width of 0.062.

Omitted from the Figure 3.8 are age bins with zero deaths. If zero deaths were observed for a

particular location and age bin, then the RG-based IFR estimate is zero and the interval is exactly

zero. Additionally, one location had a negative lower bound for the RG estimate, disallowing

computation of a confidence interval for IFR.

3.6 Inferences for Developing Countries

The posterior mean seroprevalence for locations with age-specific serology studies is shown

in Figures 3.9-3.11. Seroprevalence does not appear to change much across the age bins for most

locations, with a few exceptions such as West Bank, Palestine or Nairobi Country, Kenya. In each

of these locations the seroprevalence is lower for the oldest age bin, suggesting the older, more

vulnerable individuals were protected from infection to some degree. Some regions such as East

Asia or Africa have generally lower seroprevalence levels, but we cannot make direct comparisons

between locations because the serology studies were conducted at different times. For example,

the serology studies in China were conducted in April 2020 while the serology studies in India

were conducted between June 2020 and January 2021. The seroprevalence for the three locations

in China is low as these studies were conducted early in the pandemic. The seroprevalence is

generally higher in India where studies occurred later in the pandemic.

Figure 3.12 shows the age-specific IFR estimates for the corresponding death and serology

bins. IFR is generally monotonically increasing with a few minor exceptions in places like Nairobi

County, Kenya or Villavicencio, Colombia. Karnataka, India shows lower IFR estimates for all

ages compared to the other countries and the high-income country benchmark. However, in India,

only 24% of deaths are well-certified, meaning only 24% of deaths are attributed to a specific,

well-defined cause (Fullman et al., 2017), suggesting COVID-19 deaths may be under-reported. If

COVID-19 deaths are under-reported, the true IFR would be above our estimate, and closer to the

high-income country benchmark. In general, locations show similar IFR estimates.
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Figure 3.9: Posterior mean seroprevalence for locations with age-specific seroprevalence data.
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Figure 3.10: Posterior mean seroprevalence for locations with age-specific seroprevalence data.
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Figure 3.12: Posterior mean IFR for locations with age-specific fatality data. These are compared to the

high-income country benchmark from Levin et al. (2020).
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3.7 Discussion

The Bayesian model introduced here achieves our goal of enabling simultaneous inference for

age-specific and location-specific seroprevalence, test characteristic, and IFR (when applicable) for

each of our developing-country locations. By estimating the sensitivity and specificity for each as-

say, our seroprevalence and IFR estimates incorporate the full uncertainty in the test characteristics.

Our choice of priors allows data-driven estimates while incorporating prior knowledge, allowing

for estimation of a flexible model with limited data. Our model makes minimal assumptions about

the relationship between age and seroprevalence, or age and IFR by estimating these at the bin

level. The bin-level model also allows for modeling locations with any level of data whether that

be just seroprevalence data, or seroprevalence and fatality data, and either age-specific or popu-

lation level data. While our model was developed to model the IFR of COVID-19 in developing

countries, the flexibility and lack of assumptions make it applicable to modeling IFRs in general

for diseases using seroprevalence studies.

Comparing our model to the Rogan-Gladen based estimates we found our model improved both

the point estimates and the uncertainty quantification of these estimates. Our model constrained

seroprevalence to be between zero and one, unlike the Rogan-Gladen estimates, and it allowed for

IFR estimates with uncertainty even when zero deaths occurred. By simultaneously modeling test

characteristics, seroprevalence, and IFR, the uncertainty of the test characteristics was fully prop-

agated into the seroprevalence and IFR estimates. The IFR credible intervals tended to be wider

than the confidence intervals after accounting for variability in the number of deaths, uncertainty

in the seroprevalence, and uncertainty in the test characteristics. Additionally, the simultaneous

modeling meant all of our estimates accounted for all the data sources, collectively, rather than

considering each data source separately. For example, the specificity estimates reflected both the

lab validation data and the serology study data in our model.

We found seroprevalence estimates were generally consistent across age bins within a location,

suggesting developing countries were not able to shelter older individuals in most of our study

locations. However, the average seroprevalence varied dramatically across locations as studies
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were performed at different times during the first year of the pandemic. IFR overall increased with

age, and most of the locations had similar estimates for commensurate age bins.
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Chapter 4

Hierarchical Bayesian modeling of age-specific

COVID-19 infection fatality rates in developing

countries

4.1 Introduction

The 2019 coronavirus disease (COVID-19) pandemic has had devastating impacts worldwide,

with at least 6.59 million confirmed COVID-19 deaths as of November 2022 (Jha et al., 2022; Our

World in Data, 2022). However, comparing the burden across locations with varying age distribu-

tions is specifically difficult because COVID-19 infections and fatalities vary substantially by age

(Levin et al., 2020; Pezzullo et al., 2023; Starke et al., 2021). Estimating age-specific metrics of the

COVID-19 burden is, therefore, necessary to make meaningful comparisons across locations and

best allocate scarce resources with age-specific policies. Between location comparisons are further

complicated by small sample sizes and uncertainty about testing characteristics of newly developed

COVID-19 tests, such as sensitivity and specificity, both of which result in additional uncertainty

about location-specific estimates. Policy makers turned to these studies to make real-time deci-

sions, and therefore, it was essential to quantify and communicate uncertainty in the estimates.

In this study, we focus on estimating age-specific metrics of the COVID-19 burden, along with

corresponding uncertainty bounds, and comparing the burden across developing country locations

with different age distributions.

There are several possible measures of disease burden. In this paper, we focus on estimating

prevalence and the infection fatality rate (IFR)–the proportion of individuals infected with severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that subsequently die from the disease.

Compared to the more commonly used and easier to estimate case fatality rate (CFR)–defined as

the ratio of the number of deaths to the number of reported cases–IFR depends on a measure of the
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number of prior infections, including unreported infections. A key benefit of IFR is it not biased

by preferential testing and reporting.

Early in the COVID-19 pandemic, tests for active infection of COVID-19 were limited and

essentially unavailable in many areas. Thus, reported cases were likely a substantial under count

of infections (National Academies of Sciences, Engineering, and Medicine, 2020) and researchers

instead turned to serology studies to estimate the number of infections. In a serology study, a sam-

ple of the population is tested with an antibody test to identify those who have had a COVID-19

infection and seroconverted, i.e., built antibodies against the virus. The proportion of individuals

with SARS-CoV-2 antibodies–the seroprevalence–is then used as a proxy for the proportion of

the population that has been infected. Antibody tests used early in the pandemic were developed

quickly using limited validation data to estimate test characteristics such as specificity and sensitiv-

ity. As a result, estimates of prevalence from serology studies were plagued by uncertainty due to

often small samples from the population, inaccuracies from the antibody tests, and further general

uncertainty in the antibody test’s characteristics. Accounting for these avenues of uncertainty was

paramount in reporting uncertainty in community prevalence (Gelman and Carpenter, 2020).

Discrepancies between the effects of COVID-19 for the young and old was quickly recog-

nized. Levin et al. (2020) estimated that variation in age distributions between countries explained

approximately 90% of the variation in population-level IFRs. Specifically, they found the IFR for

high-income countries to be about 0.01% at age 25 and about 15% at age 85. Thus, age-specific

IFR estimates are required to make meaningful comparisons of the disease burden across locations

and inform age-based policies that mitigate disease transmission (Malani et al., 2022). This relies

upon information on age-specific infections and age-specific fatalities. Most studies of COVID-19

IFR reported estimates for coarse age bins (e.g., Perez-Saez et al., 2021; O’Driscoll et al., 2021;

Pezzullo et al., 2023). A limited number of studies have reported estimates of COVID-19 IFR as a

continuous function of age (Levin et al., 2020, 2022; COVID-19 Forecasting Team, 2022), but all

of these studies rely on multi-step modeling approaches and lack location-specific curves.
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The majority of studies quantifying the burden COVID-19 have focused on high income coun-

tries, with large serology studies and highly granular death data. The data availability and quality

in developing counties posses additional challenges for estimating age-specific rates and between

country comparison. In developing countries, serology studies typically had smaller sample sizes

and reported data on age inconsistently, with some locations providing individual data and other

reporting only coarse age bins. As a result, existing methods that rely on detailed infection and

death data are not suitable.

In this study, we focus on estimating infection and fatality rates for 26 developing country

locations, where serology studies were reported for coarse age bins with often low sample sizes.

We propose a Bayesian hierarchical modeling approach to jointly estimate continuous age-specific

and location-specific seroprevalence and IFR curves that account for the many aforementioned

challenges: the many sources of uncertainty, binned nature of seroprevalence and death data, and

the inconsistent and coarse data resolution at which the developing country data are reported. By

jointly modeling seroprevalence, antibody test assay characteristics, and the IFR, we fully propa-

gate uncertainty to all model estimates. Our hierarchical modeling framework shares information

across age bins within a location, as well as across locations to improve estimation in cases of

limited data. While prior works have addressed some aspects of this problem, we present a holistic

solution that addresses all objectives simultaneously. Using our proposed model, we estimate con-

tinuous seroprevalence curves for all locations, which allow for age-specific comparisons between

our developing country study locations and high-income country estimates.

4.2 Data

In this study we revisit the serology and death data from developing countries described in

Levin et al. (2022). The rich data set contains seroprevalence study data for a total of 107 loca-

tions from 44 countries. Of the 107 locations, 63 had corresponding COVID-19 fatality data. Lab

validation data was assimilated from antibody test manufacturers and the population age distribu-
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tion was gathered for each location. The data sources vary in terms of information provided, age

aggregation, antibody test and test characteristics, and quality.

Because our aim is to estimate seroprevalence and IFR as flexible, continuous functions of

age, we restricted our analysis to studies with age-specific seroprevalence and death data. Making

inference about the shape of a curve from only a few data points is extremely challenging, and prior

analysis found IFR showed heterogeneity across locations that was not well explained by observed

covariates, such as healthcare capacity or GDP, limiting the potential of borrowing information in

a data-informed manner (Levin et al., 2022). Therefore, we restrict our attention to studies with

at least four serology age bins and at least five death age bins to allow inference on the structure

of IFR with age, resulting in a total of 26 study locations for this analysis. Twenty-two locations

are from Latin America, two are from South Asia, and there is one study each from Africa and

the Middle East (see Figure 4.1). Each study focused on a specific region within the country, with

the exception of Jordan, which is a national study. For example, there are nine studies within

Colombia, each confined to a different, non-overlapping region.

4.2.1 Serology data

As described in Levin et al. (2022), we collected and evaluated serology studies from gov-

ernment reports, published papers, and preprints. Studies using convenience samples like blood

donors, volunteers, or residual sera were excluded, as well as those with imbalanced gender ratios,

inaccurate test assays, insufficient reported data, and studies occurring during accelerating out-

breaks. All studies were concluded before March 2021–before vaccines were readily available in

developing countries. Therefore, a positive antibody test due to a COVID-19 vaccine, rather than

a prior infection, is extremely unlikely in the data.

For each location, researchers reported results for between four and eight age bins. The total

number of participants tested and the number of participants that tested positive were then recorded

for each bin. Figure 4.1 shows the age bins for each study location, as well as the number of par-

ticipants (i.e., sample size) in each bin. Most locations have wider age bins and often smaller
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Figure 4.1: Number of participants in serology study for each age bin and location (nℓ,AR
ℓ,b

). Total sample

size shown in parentheses.

sample sizes for the oldest individuals as seen in, for example, Hurlingham, Argentina and Lam-

bayeque, Peru. Karnataka, India had the smallest average bin sample size with between 9 and 353
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samples for each age bin, whereas Chennai, India had the largest average bin sample size with

between 1473 and 2353 samples for each bin. Panel (a) of Figure 4.2 shows an example of the

seroprevalence data for Lambayeque, Peru.

Age bin(
AR

ℓ,b

) Sample size(
nℓ,AR

ℓ,b

) Number positive(
R∗

ℓ,AR
ℓ,b

)

9-20 220 59

21-30 329 102

31-40 394 139

41-50 353 109

51-60 315 94

61-70 215 54

71-80 129 26

81+ 55 12

(a)
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Figure 4.2: (a) Seroprevalence data collected between 6/24/2020 7/10/2020 and (b) corresponding cumula-

tive death data (D⋆
ℓ,AD

ℓ,b

) for Lambayeque, Peru.

4.2.2 Test characteristic data

For each test used in a seroprevalence study, we directly model the test assay lab validation data,

namely the number of positive/negative controls tested in the validation study and the number that

test positive in the validation study, to estimate the test sensitivity and specificity. In total, thirteen

tests were used in our sample of seroprevalence studies, with six of the test assays used in multiple

studies (see Figure 4.3). Between 29 and 632 positive controls and between 42 and 5272 negative

controls were used to validate each test assay. For instance, the Coretest COVID-19 IgM/IgG

Antibody Test used in Lambayeque, Peru was developed using 73 positive controls, 58 of which

tested positive, giving a crude sensitivity estimate of 0.795, and 222 negative controls, which all

correctly tested negative, giving a crude specificity estimate of 1.
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Figure 4.3: Number of positive controls (nsens,t) and number of negative controls (nspec,t) for each test

assay. The color and shape of the point indicate the number of locations using the assay, either 1, 2, or 9.

The line x = y is shown in grey.

4.2.3 Death data

We modeled aggregate data on the number of confirmed and suspected COVID-19 fatalities

associated with each serology study location using individual case data, when available, and pub-

lic health reports otherwise. To account for the delay in time between infection and fatality, we

collected the cumulative number of deaths up to fourteen days after the midpoint date of the asso-

ciated seroprevalence study when using individual case data and the cumulative number of deaths

up to twenty-eight days after the midpoint date of the study when using public health reports due

to the lag in death reporting.

Twenty study locations had individual case data available, from which we can determine the

number of deaths for each one-year age bin (e.g., [0, 1), [1, 2), etc.). For the remaining six locations,

death data was available for between six and eighteen age bins. Lambayeque, Peru, for example,

has individual case data summarized in one-year age bins (Figure 4.2 panel (b)). Fifteen ages had

zero deaths, with the most deaths, namely 71, occurring at age 65.
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4.2.4 Age distribution data

The population distribution data, collected from census data and websites such as worldome-

ters.info, worldpopulationreview.com, and populationpyramid.net, contained the number of people

in each study area at a resolution of between seven to twenty age bins. These distributions were

further refined to a 5-year age bin resolution using national age distribution data (see Appendix

C.1). Acknowledging that age is a fundamentally continuous measure, our model operates on a

density function of age. For application to this developing country data set, the 5-year binned age

distribution data was further converted to a continuous function of age by fitting a locally weighted

linear regression line. The resulting smooth function for the age distribution was then scaled to

integrate to one to create a density. While a simpler approach would have been to assume the pop-

ulation is uniform within an age bin, this assumption is clearly violated for older age groups where

the risk of death is largest and most variable. These facts motivated our more complex approach,

which is detailed further in Appendix C.1.

4.3 Methods

We propose a joint model for seroprevalence and IFR using a Bayesian hierarchical framework.

Our approach includes two submodels to combine the many data sources shown in Figure 4.4.

First, we use a logistic regression model to model the serology study data as a function of age.

To account for uncertainty in the test characteristics, we use binomial models for the positive and

negative controls to model sensitivity and specificity. Second, we model the fatality data using a

Poisson regression as a function of age and estimated age-specific seroprevalence. Together, these

submodels allow for location- and age-specific seroprevalence and IFR estimates that fully account

for the uncertainty of each data source.

4.3.1 Modeling seroprevalence

We seek to model seroprevalence as a continuous function of age from the serology study

data that is only reported for age bins. We assume the observed data is informative about the
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Figure 4.4: The relationship between our data sources and the seroprevalence and IFR functions of interest.

Note, this represents a single location and a single age bin within this location.

(population weighted) average seroprevalence within the respective age bin. Specifically, we define

this average seroprevalence as the integral of the continuous seroprevalence function with respect

to the population’s age distribution over the bin. In the rest of this section, we describe our model

for the continuous seroprevalence function and the test validation data.

Modeling observed serology data

Let πℓ(a) represent the unknown seroprevalence rate for location ℓ and age a, one of our pri-

mary parameters of interest. We define b ∈ {1, . . . , BR
ℓ } as indices for the serology age bins at

location ℓ. Let AR
ℓ,b denote an age bin of the serology study at location ℓ, R⋆

ℓ,AR
ℓ,b

denote the num-

ber of individuals who tested positive in age bin AR
ℓ,b in study ℓ, and nℓ,AR

ℓ,b
denote the number of

individuals tested in age bin AR
ℓ,b at location ℓ.

We model the number of people who test positive as coming from a binomial distribution

R⋆
ℓ,AR

ℓ,b
∼ Binomial(nℓ,AR

ℓ,b
, pℓ,AR

ℓ,b
), (4.1)
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where the average test positivity in that age bin is represented by pℓ,AR
ℓ,b

. The test positivity repre-

sents the proportion of individuals’ tests we expect to be positive, while the seroprevalence repre-

sents the proportion of individuals with COVID-19 antibodies (i.e., are seropositive). Utilizing a

binomial distribution assumes the tests are independent of each other, which aligns with the study

inclusion criteria of Levin et al. (2022) that required samples to be representative.

We model the average positivity for age bin AR
ℓ,b at location ℓ, pℓ,AR

ℓ,b
, as the integral of a

continuous age-specific positivity function, pℓ(a), which is integrated with respect to the location

ℓ’s population age distribution. Mathematically this can be expressed

pℓ,AR
ℓ,b

=

∫

AR
ℓ,b

pℓ(a)
fℓ(a)∫

AR
ℓ,b

fℓ(x)dx
da, (4.2)

where fℓ(a) denotes the population age density at location ℓ evaluated at age a. The age distribution

is normalized by the total population in age bin AR
ℓ,b, so pℓ,AR

ℓ,b
is a weighted average positivity rate,

weighted by the relative population within the interval. Details for defining fℓ(a) are given in

Appendix C.1.

Since serology tests are not perfectly accurate, false positive results and false negative results

are expected, and the frequency of these depends on the true seroprevalence and characteristics of

the test (Gelman and Carpenter, 2020). For the test assay tℓ used at location ℓ, the relationship

between the test positivity rate and true seroprevalence is

pℓ(a) = πℓ(a)senstℓ + (1− πℓ(a))(1− spectℓ), (4.3)

where senstℓ and spectℓ represent the sensitivity and specificity of the test, respectively. The first

term in pℓ(a) equals the proportion of the population correctly identified as seropositive and the

second term is the proportion of the population incorrectly identified as seropositive.
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Seroprevalence as a continuous function of age

We model seroprevalence for location ℓ and age a, πℓ(a), as a linear function of covariates on

the logit scale:

logit (πℓ(a)) = γℓ,0 + z′
ℓ,aγℓ, (4.4)

where γℓ,0 is an intercept, zℓ,a is a p-dimensional vector of covariates, and γℓ = (γℓ,1, . . . , γℓ,p)
′

is a p-dimensional vector of coefficients. Because seroprevalence is a proportion, we use the logit

link to constrain πℓ(a) to be between zero and one. We are specifically interested in seroprevalence

as a function of age and, therefore, specify z′
ℓ,a to be a natural spline of age. Yet, our framework

is general and can accommodate any covariates of interests. For example, population density

in a location or an indicator for whether the location underwent government delegated stay-at-

home orders could be added as covariates. These may be informative predictors if seroprevalence

is higher in denser populations or mobility restrictions prevented transmission leading to lower

seroprevalence. In our application, we lacked rich covariate information on all locations, so z′
ℓ,a

was specified to be a natural spline of age (details given in Section 4.3.3).

Modeling test validation data

At the onset of the pandemic, serological test assays were developed quickly with limited con-

trols. Therefore, we consider sensitivity and specificity to be unknown parameters and explicitly

model the lab validation data as done in Gelman and Carpenter (2020), Stringhini et al. (2020),

and Larremore et al. (2022). Let nsens,t denote the number of positive controls and nspec,t denote

the number of negative controls for test assay t. Further, let xsens,t denote the number of positive

controls that tested positive and xspec,t denote the number of negative controls that tested negative.

Naive point estimates of the test sensitivity and specificity are then xsens,t/nsens,t and xspec,t/nspec,t,

respectively. Rather than taking the test characteristics as known, we estimate spect and senst
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along with their uncertainty from the lab validation data. The model is

xsens,t ∼ Binomial(nsens,t, senst), (4.5)

xspec,t ∼ Binomial(nspec,t, spect). (4.6)

We assume each control sample tested is a Bernoulli trial, where positive controls test positive with

probability equal to the sensitivity of the assay, and negative controls test negative with probability

equal to the specificity of the assay.

When a test is used at multiple study locations, the sensitivity and specificity are assumed to be

the same in each study. However, we do not assume any relationship between the sensitivity and

specificity across tests. One reason for this is that antibody tests are designed to target different

types of antibodies, such as IgG versus IgM, as well as rely on binding different regions of SARS-

CoV-2 (Jacofsky et al., 2020). Therefore, while we pool information across locations that use the

same test, we do not pool information about the sensitivity and specificity across tests.

Seroprevalence, sensitivity, and specificity jointly determine the positivity rate. With small

sample sizes, sensitivity and specificity are weakly identified. We have prior information on the

target test characteristics for antibody tests, so we use informative priors to improve identifiability.

The priors selected for the developing countries data set specifically are discussed in Section 4.3.3.

4.3.2 Modeling IFR

The model for IFR is similar to the model for seroprevalence as we model IFR as a function

of age and other covariates. We link the continuous age-specific IFR parameter to the data by

calculating the average IFR at the observed age bins via integration.
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Modeling observed death counts

Let AD
ℓ,b denote an age group for which deaths caused by COVID-19 are recorded, b ∈ {1, . . . ,

BD
ℓ }. We model the D⋆

ℓ,AD
ℓ,b

deaths at location ℓ and age bin AD
ℓ,b as following a Poisson distribution:

D⋆
ℓ,AD

ℓ,b
∼ Poisson(Nℓ,AD

ℓ,b
Λℓ,AD

ℓ,b
), (4.7)

where Nℓ,AD
ℓ,b

denotes the population at location ℓ in age group AD
ℓ,b, and Λℓ,AD

ℓ,b
represents the

proportion of individuals in location ℓ and age group AD
ℓ,b expected to die from the disease. Thus,

the product Nℓ,AD
ℓ,b
Λℓ,AD

ℓ,b
represents the number of individuals in that location and age bin expected

to die from the disease. Similar to O’Driscoll et al. (2021), we chose to model deaths with a

Poisson distribution rather than a binomial distribution because COVID-19 deaths are a relatively

rare event. Note, deaths are modeled as a census of the population, assuming deaths are accurately

reported.

The death rate for age a is given by πℓ(a) × IFRℓ(a): the probability of infection times the

probability of death given infection at age a. Similar to the average positivity in (4.2), we define

the population weighted average death rate for age bin AD
ℓ,b, Λℓ,AD

ℓ,b
, as

Λℓ,AD
ℓ,b

=

∫

AD
ℓ,b

πℓ(a)× IFRℓ(a)
fℓ(a)∫

AD
ℓ,b

fℓ(x)dx
da. (4.8)

There are infinitely many possible combinations of seroprevalence and IFR that can result in the

same Λℓ,AD
ℓ,b

, so we recommend an informative prior for at least one of these when the serology

data is limited. In our analysis, we apply informative priors to the parameters in the serology model

as described in Section 4.3.3.

73



IFR as a continuous function of age

Let IFRℓ(a) be the IFR at location ℓ and age a. We define log(IFRℓ(a)) as a function of a

natural spline of age, xℓ,a ∈ R
q and associated location-specific coefficients βℓ = (βℓ,1, . . . , βℓ,q)

′

log (IFRℓ(a)) = βℓ,0 + x′
ℓ,aβℓ, (4.9)

where βℓ,0 represents the study location-specific intercept. This framework is general and can

incorporate additional covariates.

Since we expect the IFR to be generally similar across study locations, we use hierarchical

priors to pool information about βℓ across locations. We further expect overall IFR levels to be

more similar for locations within the same country compared to study locations in different coun-

tries, so we model the IFR intercept with a common country effect. This is particularly relevant for

developing countries as the death registration systems can differ dramatically between countries

(Karanikolos et al., 2020). Thus, we define priors on the coefficients as

βℓ,0 ∼ N (βglobal,0 + βcountry,cℓ , σ
2
0), (4.10)

βℓ,i ∼ N (βglobal,i, σ
2
i ), for i ∈ {1, . . . , q}. (4.11)

The intercept (βℓ,0) is informed by an overall global intercept parameter (βglobal,0) as well as a

country specific intercept (βcountry,cℓ). The other covariates, which control the shape of the IFR

function, pool information at the global level using βglobal,i, but not at the country level.

4.3.3 Covariate and prior distribution selection

The methods have been discussed rather generally up until this point as they are applicable to

any disease setting. However, we now focus on modeling choices made to account for the specific

nuances of our application: COVID-19 in developing countries from June 2020 to March 2021.

Specifically, we discuss the covariates and the prior distributions in this section.
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Covariates

For modeling IFR as a function of age, we used natural cubic splines with boundary knots at 0

and 80, and internal knots at 10 and 60 as the covariates, xℓ,a. Thus, log IFR is modeled as cubic

functions of age between 0 and 80 and is constrained to be log-linear above age 80. The knots

were selected based on expert opinion and prior literature (Cai et al., 2021; COVID-19 Forecasting

Team, 2022). Similarly, we used natural cubic splines for the seroprevalence covariates, zℓ,a, with

an internal knot at 60 and the boundary knots at 10 and 80. We decreased the number of internal

knots in the natural spline for the serology model because each location in our data set contains

only three to eight age bins, with over half the observations having five bins.

Prior specification

Estimation of our model is straightforward in a Bayesian context. Similar to Gelman and

Carpenter (2020), we set independent, informative beta priors for the sensitivity and specificity of

each of the T = 13 tests:

senst ∼ Beta(10, 1), for t ∈ {1, . . . , 13}, (4.12)

spect ∼ Beta(50, 1), for t ∈ {1, . . . , 13}. (4.13)

Seroprevalence assays are generally designed to ensure a high specificity. For example, the Centers

for Disease Control and Prevention recommended a specificity of 0.995 for COVID-19 antibody

tests (Centers for Disease Control and Prevention, 2020). The prior specified for specificity has a

0.9 probability the specificity is greater than 0.95. Because tests are designed to prioritize speci-

ficity, the sensitivity is typically more variable, reflected by our more dispersed prior with 0.9

probability the sensitivity is greater than 0.79.

We utilize informative priors on the coefficients for the seroprevalence function at each location

based on prior studies. Specifically, we specify independent normal distributions centering the
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non-intercept coefficients about zero:

γℓ,0 ∼ N (−1, 1.5), (4.14)

γℓ,j ∼ N (0, 0.05), for j ∈ {1, 2}. (4.15)

Here γℓ,0 denotes the intercept at location ℓ and γℓ,j for j > 0 are the coefficients associated

with the natural spline, controlling the shape of the seroprevalence function. Because seropreva-

lence is modeled as a logit-linear function of the covariates, the prior on the intercept is a right

skewed distribution with a median of about 0.27 and a 95th quantile of about 0.81. The more in-

formative priors on the spline coefficients (j > 0) have a prior mean of zero, corresponding to a

seroprevalence function that does not vary with age, which has been noted in the literature. Levin

et al. (2022) found the ratio of seroprevalence for those age 60+ compared to 40-59 was not sig-

nificantly different from one in most locations. Esteve et al. (2020) also found countries where

multigenerational households are common, such as developing countries (Ruggles and Heggeness,

2008), may not be able to shield their older population from COVID-19.

We use weakly-informative priors for the age spline coefficient parameters associated with IFR:

βglobal,i ∼ N (0, 5), for i ∈ {0, . . . , 3},

βcountry,cℓ ∼ N (0, σcountry),

σi ∼ half-normal(0, 2), for i ∈ {0, . . . , 3},

σcountry ∼ half-normal(0, 2).

(4.16)

Note, IFR is modeled on the log scale, so these priors are relatively non-informative. For example,

with a prior probability of 0.8, the global intercept, βglobal,0 is between -6.4 and 6.4, corresponding

to a multiplicative effect between 0.002 and 606.5.
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4.3.4 Estimation and Inference

Inference was based on the joint posterior distribution of the IFR parameters ({βℓ,i}, {βglobal,i},

{βcountry,c}, {σi}, σcountry) and serology parameters ({γℓ,j}, {senst}, {spect}) given the death, serol-

ogy, and antibody test validation data ({nℓ,AR
ℓ,b
}, {R⋆

ℓ,AR
ℓ,b

}, {D⋆
ℓ,AD

ℓ,b

}, {xsens,t}, {xspec,t}, {nsens,t},

{nspec,t}). The joint posterior is not available in closed form, so we obtain posterior draws through

a Markov chain Monte Carlo (MCMC) algorithm. We approximated the integrals in (4.2) and (4.8),

which calculate the average positivity and death rates for the age bins, using trapezoidal Reimann

sums scaling the mesh appropriately to increase computation speed, while maintaining sufficient

accuracy. The MCMC algorithm was implemented in version 2.21.5 of RStan (Stan Development

Team, 2022).

We use the γℓ,j and βℓ,j posterior draws to calculate the location-specific IFR and seropreva-

lence functions of age as in (4.9) and (4.4). These allow for age-specific comparisons, rather than

age bin level comparisons. We summarized the parameters of interest in terms of posterior means

and 95% credible intervals. Note, we do not interpret βglobal,i as a “global average" in the geo-

graphic sense since the study locations are not a representative sample of the world as a whole.

Similarly, βcountry,cℓ is not interpreted as the adjustment for an entire country since the study loca-

tions are not a representative sample of locations within a country.

4.4 Analysis of the developing countries data

To sample from the posterior distribution, we ran three chains with a burn-in of 2500 iterations

and the subsequent 3000 samples were retained from each chain. Code is available at https://

github.com/pughs/covid-ifr. Convergence was assessed via traceplots, effective sample size, and

R̂ (Gelman et al., 1995). Each parameter had an effective sample size greater than 1000 and R̂

within 0.0042 of one (see Appendix C.2).

Figure 4.5 shows the posterior mean seroprevalence curves for each study location. While most

curves do not show age-specific trends, a few show clear deviations, notably, Bogotá, Colombia

and Chennai, India. The 95% credible interval of the seroprevalence function did not contain
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a flat trend for both of these locations. Both showed a decreased seroprevalence for the oldest

individuals. While most locations showed roughly flat seroprevalence, the average seroprevalence

varies substantially across locations. This is unsurprising as we expect heterogeneity due to factors

such as when the seroprevalence study was conducted and when waves of COVID-19 arose in each

location.
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Figure 4.5: (a) Posterior mean seroprevalence curve for each location, colored to emphasize those locations

where seroprevalence varies by age. Panels (b) and (c) show the posterior mean and 95% credible interval

for the locations highlighted in (a). All studies were conducted between June 2020 and March 2021.

Figure 4.6 shows the global IFR curve as well as the posterior mean IFR curve for each loca-

tion, where we again use the term “global" in the modeling rather than geographic sense. Viewing

IFR on the log-scale (Figure 4.6(b)), we can see the locations generally follow a s-curve with IFR

increasing less quickly or even decreasing with age for children and older individuals. The indi-

vidual locations show variation in this trend in terms of their intercepts and shapes. IFR posterior

mean increased with age for children in some locations but decreased with age in others, although

not significantly. Similarly, the IFR flattened out more or less for older individuals depending

on the location. These results highlight the need for a model that can estimate location-specific,

non-linear IFR curves.

Figure 4.7 focuses on the seroprevalence and IFR functions for Cuiabá, Brazil and Chennai,

India. The posterior mean and 95% credible intervals are compared to naive estimates at the age bin

level. For seroprevalence, the Rogan-Gladen estimate is shown, which adjusts the raw prevalence
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Figure 4.6: Posterior mean of the global IFR curve with 95% credible interval for the mean. Panel (a) shows

the IFR on its original scale and panel (b) shows the log-scale. The posterior means of location-specific IFR

curves are shown in black.

by estimates of the test sensitivity and specificity (Rogan and Gladen, 1978). For IFR, the naive

estimate represents the death rate divided by the Rogan-Gladen seroprevalence estimate, assuming

the death rate and seroprevalence are constant within an age bin.

We can see the strength of modeling the seroprevalence and IFR as smooth functions of age

rather than modeling each age bin separately. We do not expect seroprevalence or IFR to largely

jump across consecutive age bins as is observed in the naive estimates, but rather expect some

smooth underlying function. For example, the 50-59 serology age bin in Cuiabá had a smaller

sample size relative to the surrounding bins and showed an unusual jump in seroprevalence. Rather

than fitting a seroprevalence curve that goes through the naive seroprevalence estimate, the model

pools information across adjacent age bins. However, the seroprevalence curve can overcome the

mean zero prior when the data suggests it, as is shown for Chennai, India (see panel (b) of Figure

4.7). Additionally, by sharing information across age bins, the uncertainty of our seroprevalence

function is smaller than the uncertainty of the naive point estimates in most cases.

Figure 4.7 again shows the benefits of estimating IFR as a continuous function of age. In

Cuiabá, the death data is aggregated into less than 10 bins. By estimating a smooth, underlying

function of IFR, we are able to estimate IFR for each specific age, not just averages for the age bins

the data is available at. In Chennai, the IFR function passes through roughly the center of the naive
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Figure 4.7: Panels (a) and (b) show the posterior mean and 95% credible interval for (a) Cuiabá, Brazil’s

and (b) Chennai, India’s seroprevalence curves, annotated with the seroprevalence study sample size for

each bin. The Rogan-Gladen estimators and approximate 95% confidence intervals are shown as error bars.

Panels (c) and (d) show the posterior mean and 95% credible interval for the IFR curves. Naive estimates

for the IFR are shown as points when single year age bins are available for the death data and as black lines

when the death data is binned.

estimates, estimating a smooth function given the extremely noisy single year naive estimates (see

Figure 4.7(d)). Seroprevalence and IFR functions for each of the 26 locations in our analysis are

included in Appendices C.4 and C.5.

Figure 4.8 provides estimates and credible intervals for IFR at age sixty at all locations. Be-

cause we model IFR as a continuous function of age, we can estimate IFR for this specific age

rather than being restricted to discussing the average IFR over the age bin at which the data was
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Figure 4.8: IFR at age 60 for each location. Whiskers indicate 95% credible intervals, boxes indicate 80%

credible intervals, and the center line indicates the posterior median of the posterior distribution for age-

60 IFR. The high-income countries (HIC) benchmark from Levin et al. (2020) is shown as a vertical line.

Locations with a grey background have less than 50% of deaths well certified (Fullman et al., 2017).
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reported. These location-specific estimates are compared to the estimated IFR of high-income

countries at age 60 given in Levin et al. (2020). Note, this high-income country benchmark was

deemed an appropriate comparator for the studies in this data set by Levin et al. (2022) in terms

of the timing and the inclusion criteria of the seroprevalence studies and seroreversion/death re-

porting adjustments made. We can see most locations have an IFR near or above the high-income

countries estimate at age 60. Of the eight study locations below the benchmark, three have less

than 50% of all deaths well certified, meaning less than 50% of deaths in that country are reg-

istered to a specific, well-defined cause (Fullman et al., 2017). These three are Nairobi County,

Kenya, Chennai, India, and Karnataka, India. Combining this result with the findings in Knutson

et al. (2022), which found COVID-19 deaths are likely to be undercounted in many developing

countries, suggests the estimated IFR may be below the high-income country benchmark because

of an under-reporting of COVID-19 deaths, rather than an actual decrease in the risk of COVID-

19 at these locations. For example, da Silva et al. (2020) found the increased number of natural

cause deaths for those over the age of 60 during the pandemic compared to before was around two

times the number of reported COVID-19 deaths in Maranhão, Brazil. If the increased number of

natural cause deaths could be attributed to unreported COVID-19 deaths, the IFR estimate would

approximately double and exceed the high-income country benchmark.

If we view the number of reported deaths in our study locations as minimums, with death re-

ports either accurate or an underreport, then our IFR estimates can be interpreted as lower-bounds

for the true IFR. In this case, COVID-19 has been catastrophic for some developing country loca-

tions like Cuiabá, Brazil and Lima, Peru that have an IFR at least three times that of high-income

countries for those aged sixty.
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Figure 4.9 shows the effect of the age distribution on the population IFR. In Buenos Aires City,

Argentina and Cali, Colombia the population IFR was significantly higher when based on their

own age distributions compared to the standardized age distribution. This is because the average

age was smaller for the standardized distribution than that for their specific locations. In the case

of Buenos Aires City, the population IFR estimate was considerably closer to the other locations’

when controlling for the age distribution. We see the opposite at locations like Maranhão, Nairobi

County, and the Jordan national study, where the average age was smaller for the specific locations

than the standardized distribution. The standardized distribution estimates were closer to the other

locations for these locations as well. By estimating seroprevalence and IFR as functions of age,

we are able to separate out the effects of the seroprevalence, IFR, and age distribution on the

population level estimate.
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Figure 4.9: The posterior mean population IFR (the point) with a 95% credible interval. Estimates are

based on the location-specific age distribution (“Individual") or based on the median age distribution across

our study locations (“Standardized"). Locations with a grey background have less than 50% of deaths well

certified (Fullman et al., 2017). The age distribution for each location (filled) compared to the standardized

age distribution (the line) is shown on the right.
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4.5 Discussion

In this work, we introduced an adaptable Bayesian hierarchical model that enables estimation

of location- and age-specific IFR and seroprevalence curves, which accurately reflect uncertainty

due to limited data and uncertainty in the underlying test characteristics. The Bayesian frame-

work presents a natural framework for propagating test characteristic uncertainty and allowed us

to incorporate prior knowledge to improve identifiability.

Apply this model to our developing countries dataset, we found seroprevalence was not depen-

dent on age for most locations, while IFR increased non-linearly with age. The IFR curves were

diverse, emphasizing the need for location-specific estimates. IFR for those aged 60 in our study

locations was near or above the age 60 high-income country benchmark for most locations. Finally,

we showed the importance of considering the location’s age distribution by comparing the popu-

lation IFR using the location-specific age distribution to the population IFR using a standardized

age distribution.

While our model was tailored to the developing countries COVID-19 data set, the model is

applicable to estimating IFR for any disease using seroprevalence studies and reported deaths.

Specifically, this methodology may be particularly useful for modeling novel emerging pathogens.

During the initial surge of COVID-19, one of the primary issues noted in public communica-

tions was the challenge of incorporating uncertainty into estimates (see, e.g., Dean (2020); Foad

(2021)). Our model may be useful for estimating IFR for future novel pathogens, when it is essen-

tial to maintain sufficient model flexibility, such as avoiding assumptions about the relationship of

mortality with age, before much is known about the disease.

Our model is flexible and can meet the unique challenges and opportunities of future applica-

tions. For example, additional covariates beyond age could be added to the vector of covariates for

serology, zℓ,a, or deaths, xℓ,a. While we chose not to pool information across the seroprevalence

coefficients in our application, information could be pooled following the hierarchical modeling

framework presented for the IFR coefficients.
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Chapter 5

Conclusion

The COVID-19 pandemic quickly and dramatically changed life for people worldwide. At

the start of the pandemic, it was impossible to track all the COVID-19 cases, especially as viral

tests were not initially available. To estimate the number of infections and consequently the risk

of COVID-19, antibody tests were rapidly developed. These tests had diverse and unknown test

characteristic, and the studies employing these tests had varying sample sizes and age-specific

granularity. Thus, we required methods to make inference and policy decisions based on limited

and disparate datasets.

In this dissertation we present methods to fill three gaps in the literature. First, there was a

lack of guidance on how to establish cutoffs for antibody tests when limited samples with known

disease status were available. Second, there was no cohesive model to estimate test characteristics,

seroprevalence, and IFR to account for the many sources of uncertainty. Third, building off the

previous gap, there were no cohesive methods that treated seroprevalence and IFR as continuous

functions of age while accounting for the three data sources.

In Chapter 2 we proposed using extreme value theory to select a cutoff for antibody tests. We

compared the extreme value method to common, existing methods for selecting cutoffs through

a simulation study and data analysis. We also evaluated how the choice of target specificity im-

pacts test characteristics. We demonstrated that the extreme value-based method was superior for a

high target specificity, while the empirical quantile approach was superior for a lower target speci-

ficity. We also found that the common normal distribution-based methods could have considerable

bias. A lower target specificity was ideal for estimating seroprevalence, while the higher target

specificity was ideal for overall test accuracy when the prevalence was low. These findings can be

applied to selecting cutoffs for any diagnostic test with limited lab validation data.

In Chapter 3 we developed a cohesive model to estimate seroprevalence and IFR while fully

accounting for test characteristic uncertainty. Our model was able to synthesize all available data,
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regardless of whether age-specific or fatality data were available. Applying our model to a COVID-

19 developing countries dataset, we found the IFR behaved similar across countries with IFR

increasing with age. Seroprevalence was relatively independent of age, so developing countries

were not able to shelter older individuals as well as high-income countries. We compared the

results of our model to common Rogan-Gladen-based estimates (Rogan and Gladen, 1978). We

found the sources of uncertainty omitted by the Rogan-Gladen based intervals were non-negligible,

with the credible intervals for IFR wider than the corresponding confidence intervals for the vast

majority of age bins. We further demonstrated the improvements in the estimates that come from

modeling the data sources simultaneously rather than independently.

In Chapter 4 we extended the model from Chapter 3 to estimate serology and IFR as continuous

functions of age, while still jointly estimating test characteristics, seroprevalence, and IFR. This

allowed for comparison of the seroprevalence or IFR for specific ages, rather than estimates at

the age bin level. We verified seroprevalence was roughly independent of age when considering

it as a continuous function. We additionally found evidence that IFR was not log-linear, which

provides further motivation for using the nonparametric approach that we developed in this thesis.

This model could be applied to future emerging diseases as it is flexible enough to accommodate

mismatched age bins in the data and does not make strong assumptions about the relationship

between seroprevalence or IFR and age.

5.1 Impact

The methods in this dissertation are motivated by the testing and data challenges faced in the

early stages of the COVID-19 pandemic, but they are broadly applicable. Seroprevalence studies

utilizing antibody tests are used for many diseases including HIV (Brookmeyer and Gail, 1988;

Sakarovitch et al., 2007; Stengaard et al., 2021), H1N1 (Wong et al., 2013; Zimmer et al., 2010),

and MERS-CoV (Degnah et al., 2020; Ryu et al., 2019). The methods we have developed can be

applied to similar emerging diseases in the future. The challenges of diverse test characteristics,

limited sample sizes, and variable data availability are most severe for the early stages of emerging
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infectious diseases, but the methods we present in this dissertation can be applied to diseases at

any stage.

5.2 Future work

There are many possible directions for future work. We established positive and negative con-

trols in Chapter 2 using a neutralization assay test. We could explore the impact of uncertainty

is the lab validation controls, due to imperfect sensitivity and specificity, on the cutoff methods.

In Chapters 3 and 4 we could explore combining multiple sources of death data. In our analysis,

we used the confirmed and suspected cases. We could explore leveraging both the confirmed and

suspected cases and the excessive mortality: the difference between the total number of deaths

recorded for the time period of interest and the total number of deaths recorded for a commen-

surate time period prior to 2020. Future work could also include modeling the timing between

infection, fatality, and death reporting to estimate the true number of deaths corresponding to the

seroprevalence study time period (Jersakova et al., 2022; O’Driscoll et al., 2021; Perez-Saez et al.,

2021; Seaman et al., 2022).
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Appendix A

Supplemental Material for Chapter 2

A.1 Cutoff estimation methods

A.1.1 Empirical quantile estimation

To calculate the Q empirical quantile from a sample of size n, we calculate a weighted average

of the two order statistics surrounding the desired quantile. Specifically, (1−γ)x(i)+γx(i+1) where

x(i) denotes the ith order statistic, i = ⌊(n− 1)Q+ 1⌋, γ = (n− 1)Q+ 1− ⌊(n− 1)Q+ 1⌋, and

⌊·⌋ is the floor function.

A.1.2 Hybrid methods

Figure A.1 shows the flow chart for the hybrid methods.

Shapiro-Wilk test

Negative control data

Normal method
Shapiro-Wilk test 


natural log-transformed data

p-value  0.05≤p-value > 0.05

Lognormal method Empirical, 


Pareto 0.9, or 


Pareto 0.95 method 

p-value  0.05≤p-value > 0.05

Figure A.1: Flow chart indicating how the cutoff is estimated for the hybrid methods.
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A.2 Mixture distribution for the simulation study

For each test (spike or RBD) and control type (positive or negative), we fit mixture distributions

of the form

g(x) =
K∑

i=1

πifi(x) (A.1)

where K is the number of components, πi gives the weight of each component, fi(x) is the prob-

ability density function of each component evaluated at x, and g(x) is the resulting mixture distri-

bution evaluated at x. We considered gamma, Weibull, and lognormal distributions and either two

or three components. All possible combinations of these distribution were fit using the ltmix

package in R for each number of components Blostein and Miljkovic (2019). We selected the best

model for each in terms of BIC and visual inspection. The resulting mixture distributions are given

in Table A.1.

Table A.1: The mixture distribution fit to each test and control type. The mixture probabilities are given by

πi.

Test Control type π1 Distribution 1 π2 Distribution 2 π3 Distribution 3

Spike Positive 0.65 gamma(8.42, 0.53) 0.35 lognormal(1.06, 0.12)

Negative 0.13 lognormal(0.75, 0.42) 0.87 lognormal(-0.13, 0.32)

RBD Positive 0.36 gamma(5.87, 2.32) 0.59 gamma(13.33, 1.48) 0.05 gamma(1.67, 4.71)

Negative 0.27 gamma(6.62, 0.29) 0.69 lognormal(-0.05, 0.22) 0.03 lognormal(1.49, 0.88)

Abbreviations: receptor-binding domain, RBD
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A.3 Data analysis cutoffs

Table A.2 gives the results from Figure 2 in the main text in numerical form. Specifically, it

gives the cutoffs for each test, method, and target specificity.

Table A.2: Estimated cutoff for each estimation method on each training data source.

Empirical Normal Log Normal MAD Log MAD Pareto 0.9 Pareto 0.95

Target specificity=0.95

Spike 2.5 2.2 2.1 1.5 1.7 2.4 2.5

RBD 3.0 4.2 2.7 1.6 1.8 3.6 3.0

Target specificity=0.995

Spike 4.4 2.8 3.1 1.8 2.4 4.6 4.3

RBD 9.6 5.8 4.2 1.9 2.5 8.2 9.7

Abbreviations: mean absolute deviation, MAD; receptor-binding domain, RBD
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A.4 Sensitivity estimates

Table A.3: The median and middle 95% (2.5% quantile, 97.5% quantile) of the sensitivity. The method

with the largest sensitivity in each scenario is bolded.

Scenario A Scenario B

n=50 n=200 n=50 n=200

Target specificity=0.995

Empirical 0.51 (0.11, 0.98) 0.38 (0.13, 0.69) 0.97 (0.12, 0.99) 0.91 (0.23, 0.99)

Normal 0.84 (0.39, 0.99) 0.80 (0.52, 0.96) 0.98 (0.71, 0.99) 0.97 (0.81, 0.99)

Log Normal 0.64 (0.30, 0.97) 0.62 (0.43, 0.88) 0.98 (0.92, 0.99) 0.98 (0.96, 0.99)

MAD 0.99 (0.96, 1.00) 0.99 (0.98, 0.99) 0.99 (0.99, 1.00) 0.99 (0.99, 1.00)

Log MAD 0.94 (0.44, 0.99) 0.93 (0.69, 0.98) 0.99 (0.98, 1.00) 0.99 (0.99, 0.99)

Pareto 0.9 0.35 (0.03, 0.96) 0.31 (0.12, 0.55) 0.96 (0.12, 0.99) 0.93 (0.56, 0.98)

Pareto 0.95 0.42 (0.05, 0.97) 0.31 (0.10, 0.57) 0.96 (0.05, 0.99) 0.90 (0.25, 0.98)

Hybrid Empirical 0.52 (0.11, 0.97) 0.38 (0.13, 0.70) 0.97 (0.12, 0.99) 0.91 (0.23, 0.99)

Hybrid Pareto 0.9 0.40 (0.03, 0.97) 0.31 (0.12, 0.56) 0.96 (0.12, 0.99) 0.93 (0.56, 0.98)

Hybrid Pareto 0.95 0.45 (0.05, 0.97) 0.31 (0.10, 0.58) 0.96 (0.05, 0.99) 0.90 (0.25, 0.98)

Target specificity=0.95

Empirical 0.97 (0.52, 1.00) 0.95 (0.69, 0.99) 0.99 (0.97, 0.99) 0.99 (0.99, 0.99)

Normal 0.98 (0.69, 1.00) 0.97 (0.88, 0.99) 0.99 (0.88, 0.99) 0.99 (0.92, 0.99)

Log Normal 0.98 (0.83, 1.00) 0.98 (0.95, 0.99) 0.99 (0.98, 0.99) 0.99 (0.99, 0.99)

MAD 1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 1.00 (1.00, 1.00)

Log MAD 0.99 (0.96, 1.00) 0.99 (0.98, 1.00) 0.99 (0.99, 1.00) 0.99 (0.99, 1.00)

Pareto 0.9 0.96 (0.54, 1.00) 0.94 (0.74, 0.99) 0.99 (0.92, 0.99) 0.99 (0.97, 0.99)

Hybrid Empirical 0.97 (0.52, 1.00) 0.95 (0.69, 0.99) 0.99 (0.97, 0.99) 0.99 (0.99, 0.99)

Hybrid Pareto 0.9 0.97 (0.54, 1.00) 0.94 (0.74, 0.99) 0.99 (0.92, 0.99) 0.99 (0.97, 0.99)

Abbreviations: mean absolute deviation, MAD
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A.5 Properties of estimators

A.5.1 Empirical quantile

If the cumulative distribution function (CDF) of the negative controls, F , is differentiable

with a positive derivative at F−1(Q), the empirical quantile is asymptotically normally distributed

(van der Vaart, 1998). Let F̂−1
n (·) denote the empirical quantile based on a random sample of n ob-

servations as defined in Appendix A.1.1 and F−1(·) denote the inverse CDF. Then asymptotically,

√
n
(
F̂−1
n (Q)− F−1(Q)

)
∼ N

(
0,

Q(1−Q)

f 2 (F−1(Q))

)
(A.2)

where f 2(·) is the squared derivative of F .

However, we focus on the limited sample size case, which poses unique challenges. For ex-

ample, our estimate will be a value contained in the range of the sample, but with a sample size

of 50 we would only expect 22% of samples to contain the 99.5% quantile. Thus, 78% of the

empirical quantile estimates for 0.995 must be below the true quantile. This induces bias in the

empirical estimator for the small sample sizes (see Tables 2.2 and 2.3). Additionally, in our limited

sample size scenario, the empirical quantile can have considerable variability. Thus, we consider

the Pareto methods as a parametric alternative.

A.5.2 Extreme value theory

Typically, the peaks over threshold approach in extreme value theory is used in the scenario

where we seek to extrapolate. For example, Castellanos and Cabras (2007) used 35 years of flood

data to predict the 25-, 50-, and 100-year events, i.e., the largest flood we would expect to see in 25,

50, or 100 years, respectively. Thus, we make parametric assumptions to extrapolate to unobserved

years.

Let F be the CDF for a random variable X that is in the domain of attraction of an extreme

value distribution, and let Y = X − u for threshold u. Then the distribution of the exceedances of
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the threshold follow a generalized Pareto distribution (GPD)

P (Y > y|Y > 0) ≈





1− (1 + ξy
σ
)−1/ξ if ξ ̸= 0,

1− exp(− y
σ
) if ξ = 0,

(A.3)

as u approaches the upper limit of the support of X (Beirlant et al., 2006).

A feature of typical extreme value theory applications is that in such applications we seek to

estimate increasingly extreme events that are contained in an increasingly extreme section of the

tail of the distribution. Therefore, as the sample size increases, the threshold u can also increase

while staying below the extreme event being estimated. In our application, the quantile being

estimates is fixed and increasing the threshold u will ultimately result in the situation where u

is greater than the target specificity. For example, consider a target specificity of 0.995. If the

threshold u exceeds the 0.995 quantile, then we cannot use the exceedances to estimate the 0.995

quantile. Thus, the concept of u approaching the upper limit of the support does not apply for our

application. However, due to our limited sample sizes, we aim to make parametric assumptions to

minimize variability, and the GPD (generalized Pareto distribution) is a reasonable distribution to

assume for the exceedances. In our scenario with the least data, where we have a training sample

size of 50 and fit a GPD to the upper 5% of the data, we must estimate the parameters of the GPD

with only three data points. Thus, with limited data, we further make the assumption that the shape

parameter, ξ, is zero, corresponding to a shifted exponential distribution, to reduce the number of

parameters that need to be estimated.

Next we consider estimation of the parameters of the generalized Pareto distribution. Smith

(1985) showed that for ξ > −1/2, the standard regularity conditions for asymptotic properties of

maximum likelihood estimates hold. Thus, assuming the model is correct, the maximum likelihood

estimates are consistent and have a convergence rate of
√
nu where nu is the number of exceedances

above the threshold u. These properties also hold for the exponential distribution, corresponding

to our estimator which fixes ξ = 0 and estimates only the scale parameter. As our estimator of

the Q quantile is a linear function of the scale parameter, the estimator is also consistent for the
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target quantile by the continuous mapping theorem. Our modeling approach would fall within this

framework, where we assume a fixed threshold and increasing sample size above the threshold.

However, the properties discussed here assume that the exceedances exactly follow a GPD, or

more specifically the exponential distribution in our case, while the GPD is in practice just the

limiting distribution of the exceedances.

Instead of assuming the exceedances follow a GPD, some such as Drees et al. (2004) have

studied the estimation of the GPD parameters for general underlying distribution. They estimate

the parameters as the threshold u approaches the upper limit of the distribution for any distribution

F that is in the domain of attraction of the extreme value distribution. Drees et al. (2004) showed

that when the threshold u is based on upper order statistics and ξ > −1/2, the maximum likelihood

estimates are asymptotically normal with convergence rate
√
nu. However, such work assumes the

sample size, n, approaches infinity and the number of exceedances, nu, approaches infinity such

that limn→∞ n/nu = 0. As before, this type of asymptotics does not apply to our setting because

the fixed quantile we seek to estimate would eventually fall below the threshold.

In summary, we employ the GPD because it is a sensible model for the tail, justified by results

from extreme value theory. At the same time, our small sample size setting is quite different from

the typical extremes setting, and its asymptotic results are less relevant here. When the threshold

u is fixed, there is no convergence of the tail to a GPD, so we would not expect consistency of our

estimator in general. If the sample size is large enough, the empirical estimator performs well. For

the limited sample sizes of our application, our simulation study showed the parametric alternative

outperforms the nonparametric empirical estimator for the higher target specificity.
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Appendix B

Supplemental Material for Chapter 3

B.1 Combining bins using the population age distribution

Let fℓ(a) denote the number of individuals of age a at location ℓ for a ∈ {0, 1, . . . , 84+}. Note,

if population age structure is only available in 5-year age bins, then define

fℓ(a) =
∑

b∈{0,5,...,80}

fℓ([b, b+ 5))

5
I[b,b+5)(a) (B.1)

where fℓ([b, b+ 5)) is the proportion of the population ages [b, b+ 5).

In cases where the location specific age structure is only available in larger bins, but the na-

tional age structure is available in 5-year age bins, we leverage the national age structure to inform

the location specific age structure as follows. Let A denote an interval the location specific age

structure is available for (e.g., [0, 18)). If f(A) is the proportion of the population at location ℓ

with an age in A and fn(a) is the proportion of the population aged a at the national level, then we

estimate fℓ(a), the proportion at location ℓ that is age a, as

fℓ(a) = f(A)
fn(a)∑

b∈A∩N fn(b)
. (B.2)

Essentially, we rescale fn(a) such that the total mass in A matches the observed total mass in A at

location ℓ, f(A). Since we model seroprevalence as constant past age 85, we let fℓ(85) represent

the proportion of the population aged 85 or older, rather than just the proportion aged 85.
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Appendix C

Supplemental Material for Chapter 4

C.1 Approximating the age distribution

The exact age distribution is not available for any particular location. Instead, we have the age

distribution split into age bins that do not necessarily correspond to those of the serology study or

death data. Let A be the set of such disjoint age bins corresponding to the age distribution data.

Let f̂ℓ(A) denote the the observed proportion of the population in age bin A, for A ∈ A. Then we

define the step function

f̃ℓ(a) =
∑

A∈A

f̂ℓ(A)

|A| I(a ∈ A) (C.1)

where |A| gives the length of interval A.

When the age bins for a population were larger than five, we further refined the step function

using the national age distribution for that location, f̂nℓ
(A), which was expanded using (C.1) to

f̃nℓ
(a). We then define

f̃ℓ(a) =
∑

A∈A

f̂ℓ(A)
f̃nℓ

(a)
∑

b∈A∩N f̃nℓ
(b)

I(a ∈ A) (C.2)

where N denotes the natural numbers. Thus, the national age distribution is rescaled so the propor-

tion of the population in A equals f̂ℓ(A), the proportion for location ℓ.

Finally, we used locally weighted smoothing (LOESS) to smooth the population age distribu-

tion, rather than using the step function defined in (C.2). We used the points from the step function

up to age 85, as this was the limit of our data in some locations. We added a data point at age 100

with a value of 0 as individuals over the age of 100 are very rare in developing countries. If any

predictions were less than zero, we subtracted the minimum values from all the predictions to give

all predictions a positive value. This made minimal changes as the negative values were always
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negligible. Finally, we rescaled the predictions to sum to one. These resulting predictions, shown

in Figure C.1, are what we defined to be fℓ(a).
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Figure C.1: Population density for each location, fℓ(a).
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C.2 Convergence diagnostics

The range of R̂ and effective sample size are shown for groupings of parameters in Table C.1

(Gelman et al., 1995). All effective samples sizes were above 1000 and R̂ were within 0.0042

of one for each parameter. The traceplots for the three parameters with the smallest effective

samples sizes are shown in Figure C.2. Traceplots for the other parameters are similar, suggesting

convergence. Sampling via RStan took 129 minutes using a standard laptop with a 2.7 GHz quad-

core processor and 16 GB of RAM.

Table C.1: The range of R̂ and the effective sample size (ESS) for each grouping of parameters.

R̂ ESS

βℓ,i (0.9998, 1.0014) (5673, 11765)
βglobal,i (1.0002, 1.0042) (1338, 3634)

βcountry,cℓ (1.0007, 1.0037) (1419, 2493)
σi (1.0001, 1.0002) (2936, 3517)

σcountry (1.0005, 1.0005) (2952, 2952)
γℓ,j (0.9998, 1.0017) (5109, 15224)

senst (1.0000, 1.0014) (2929, 11443)
spect (0.9998, 1.0006) (5869, 14531)
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Figure C.2: Traceplots of (a) βglobal,0, (b) βcountry,3, and (c) βcountry,2, colored by chain.
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C.3 Seroprevalence curves by study date
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Figure C.3: Posterior mean seroprevalence curve for each study location, colored by the start date of each

study.
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C.4 Seroprevalence curves for each location

Each of the following plots shows the posterior mean seroprevalence curve with a 95% credible

interval. Also shown is the Rogan-Gladen estimate with an approximate confidence interval that

treats sensitivity and specificity as known.
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C.5 IFR curves for each location

Each of the following plots shows the posterior mean IFR curve with a 95% credible interval.

Naive estimates for the IFR are calculated as the empirical death rate divided by the Rogan-Gladen

estimator for seroprevalence. Note, when data is only available at the bin level, death and sero-

prevalence rates are assumed uniform within the age bin for the naive estimate.
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C.6 Data and parameter notation

Data

R⋆
ℓ,AR

ℓ,b

Number of individuals in age bin AR
ℓ,b for location ℓ that tested positive

for COVID-19 antibodies

nℓ,AR
ℓ,b

Sample size of the serology study in age bin AR
ℓ,b for location ℓ

D⋆
ℓ,AD

ℓ,b

Number of COVID-19 deaths in age bin AD
ℓ,b for location ℓ

Nℓ,AD
ℓ,b

Population in age bin AD
ℓ,b for location ℓ

xsens,t Number of positive controls for test t that correctly tested positive

nsens,t Number of positive controls for test t

xspec,t Number of negative controls for test t that correctly tested negative

nspec,t Number of negative controls for test t

fℓ(a) Population density at age a for location ℓ

z′
ℓ,a Location and age-specific covariates for seroprevalence

x′
ℓ,a Location and age-specific covariates for IFR

Parameters

pℓ,AR
ℓ,b

Probability an individual at location ℓ in age bin AR
ℓ,b tests positive for

COVID-19 antibodies

pℓ(a) Probability an age a individual in location ℓ tests positive for COVID-

19 antibodies

πℓ(a) Seroprevalence at age a for location ℓ

γℓ,0 Intercept of the seroprevalence curve, on the logit scale, for location ℓ

γℓ = (γℓ,1, . . . , γℓ,p)
′ Coefficients of the seroprevalence curve at location ℓ

senst Sensitivity for test t

spect Specificity for test t

Λℓ,AD
ℓ,b

Probability of a COVID-19 death at location ℓ in age bin AD
ℓ,b

IFRℓ(a) Infection fatality rate at age a for location ℓ
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βℓ,0 Intercept of the IFR curve, on the log scale, for location ℓ

βℓ = (βℓ,1, . . . , βℓ,q)
′ Coefficients of the IFR curve at location ℓ

βglobal,0 Global intercept for IFR

σ2
0 Variance of location-specific intercepts for IFR

βcountry,cℓ Country specific effect on the IFR intercept for the country, c, that

contains location ℓ

σ2
country Variance of the country effects for the IFR intercepts

βglobal,i ith global coefficient for IFR

σ2
i Variance of the ith location-specific coefficients for IFR
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C.7 Model summary

R⋆
ℓ,AR

ℓ,b
∼ Binomial(nℓ,AR

ℓ,b
, pℓ,AR

ℓ,b
)

pℓ,AR
ℓ,b

=

∫

AR
ℓ,b

pℓ(a)
fℓ(a)∫

AR
ℓ,b

fℓ(x)dx
da

pℓ(a) = πℓ(a)senstℓ + (1− πℓ(a))(1− spectℓ)

logit (πℓ(a)) = γℓ,0 + z′
ℓ,aγℓ

γℓ,0 ∼ N (−1, 1.5)

γℓ,j ∼ N (0, 0.05) for j ∈ {1, 2}

xsens,t ∼ Binomial(nsens,t, senst),

xspec,t ∼ Binomial(nspec,t, spect)

senst ∼ Beta(10, 1) for t ∈ {1, . . . , 13}

spect ∼ Beta(50, 1) for t ∈ {1, . . . , 13}

D⋆
ℓ,AD

ℓ,b
∼ Poisson(Nℓ,AD

ℓ,b
Λℓ,AD

ℓ,b
)

Λℓ,AD
ℓ,b

=

∫

AD
ℓ,b

πℓ(a)× IFRℓ(a)
fℓ(a)∫

AD
ℓ,b

fℓ(x)dx
da

log (IFRℓ(a)) = βℓ,0 + x′
ℓ,aβℓ

βℓ,0 ∼ N (βglobal,0 + βcountry,cℓ , σ
2
0),

βℓ,i ∼ N (βglobal,iσ
2
i ), for i ∈ {1, . . . , q}

βcountry,cℓ ∼ N (0, σcountry)

σcountry ∼ half-normal(0, 2)

βglobal,i ∼ N (0, 5) for i ∈ {0, . . . , 3}

σi ∼ half-normal(0, 2) for i ∈ {0, . . . , 3}
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