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ABSTRACT 

Under the concept that monthly precipitation series over an area are composed of deterministic components 
specified by periodic parameters and a stationary stochastic component, a mathematical model of area-time process 
of monthly precipitation, especially of the stationary stochastic component, using the Upper Great Plains in 
the U.S.A. as an example of the model, is developed. The independent identically distributed variables are 
obtained from the transformed stochastic component. Their regional dependence structure is given by an 
exponential decay function with the interstation distance. By using this model, new samples of time series 
over t.he area at a new grid of 80 points are generated in order to investigate area-deficit-intensity chara·cter­
istics. of droughts. 

The deficit area, the total areal deficit, and the maximum deficit intensity are defined as primary in·dices 
of drought characteristics. The basic parameters of their frequency distributions and of mutual relationships 
are analyzed for various truncation levels of drought definitions. The areal drought characteristics are 
modeled and their parameters defined by three basic indices. 

Probabilities of areal coverage of droughts are further investigated by applying the theory of runs, the 
theory of recurrent events, and by similar approaches. Probabilities of specific areas covered by droughts of 
given properties are also investigated ~y considering the effects of the size and the shape of an area. 

Run properties of a simple, periodic-stochastic process are investigated analytically. Moments of 
negative run-sums are found by considering the negative run-length and the onset time. Some other techniques 
are discussed in comparison with the use of run properties in evaluating drought characteristics of periodic­
stochastic processes. 

FOREWARD 

Droughts are characterized by several properties. In general , mostly droughts of point processes have 
been investigated, meaning droughts at a given point on the earth's surface are investigated by using time 
series of variables which determine the drought phenomenon. From these time series serveral indices have been 
used for drought descriptions, such as ·the total deficit of water, its maximum deficit intensity, shape, du­
ration or any other characteristics of drought runs. When droughts are investigated for its distributions 
over a .region, investigat ions become much more compl ex. Two area concepts are then necessary, namely the fixed 
region with its size and shape must be defined, and probabilities must be found for a part of this region to 
be covered by the drought of given point characteristics. Therefore, drought area coverage inside a fixed 
region, studied simultaneously with the size and time characteristics of droughts, represent a realistic ap­
proach to analysis of drought properties by using probability theory, mathematical statistics and stochastic 
processes. 

Two problems have been emphasized by Dr . Norio Tase in his Ph.D. dissertation work in studying droughts. 
First, i t was necessary to select a variable which describes the drought area coverage. Second, it was neces­
sary to select drought charact eristics which will be studied simultaneousl y with the area coverage. When the 
region to be studied for drought occurrence is l arge, variables which determine drought conditions must be 
relatively simple. It is most appropriate for agricultural droughts to use either the soil moisture variable, 
or the total moisture available i n soil for plants in function of their water requirements. However, this 
simple approach requires data which usuall y are not available, or must be computed indirectly from other varia­
bles; therefore, a simplification was needed by selecting the monthly precipitation as the basic variable in 
defining droughts . The concept is based on the principl e that long historical developments of agriculture in 
an area have already adjusted mainly to mean values of monthly precipitation, so that the variation around the 
monthly means and not the mean monthly precipitation themselves determine drought characteristics. The vari­
tions in the form of the periodic standard deviation of monthly precipitation should be included in one way or 
another to simplify and make uniform drought investigations for a region. The standardized monthly precl.p~­
tation, equivalent to precipitation of each month decreased by the mean monthly precipitation and divi ded by 
its standard deviation, is used as the basic random variable. The new standardized variable is then the same 
all over a large region. 

iii 



The selection of the area-time parameters for description of droughts must be simplified . In the study by 
Dr. N. Tase only three parameters are selected for investigations: area covered by a drought inside the fixed 
region, total water deficit below the level which defines drought conditions, and maximum intensity or deficit. 
It was difficult to include the drought duration as a simple parameter with the three above parameters, because 
the duration changes in length from point to point over a region and does not coincide over the drought area. 
By simplifying the selection of parameters, the major objective was to obtain a general idea on probabi l ities 
of large droughts covering extensive areas. Because of importance of food production in Great Plains of the 
United States, a large, fixed region inside the Great Plains was selected as an example to show the properties 
of these drought probabilities. Monthly precipitation series are treated by the already standard technique in 
studying the area-time periodic-stochastic processes within the Graduate and Research, Hydrology and Water Re­
sources Program of the Department of Civil Engineering at Colorado State University. To simplify the investi­
gation, a relatively limited number of precipitation station series over this large region is selected. 

In the real case of forecasting drought occurrences in probability terms for a large region, all the 
available information should be condensed in form of mathematical models and their estimated parameters, and 
not only in form of a limited number of station series of a given , same sample size. To obtain best estimates 
of models and their parameters, all observations over that region should be included in practical cases. 
Models represent the time structure of monthly precipitation and their estimated parameters are presented in 
form of their changes over the region . Once the time independent stochastic components (TISC) of monthly pre­
cipitation have been determined for all the stations, their interstation dependence in form of l ag-zero cross­
correlation coefficients can be determined as a model relating these coefficients to station position, distance 
and orientation. By condensating all the information on monthly percipitation over a large region in form of 
mathematical models, the generation of new samples of monthly precipitation process over that region becomes 
feasible and independent of observation points. To simplify this generation, it is feasib le to cover the 
region of drought investigation by a square grid of points, each point being associated with a well defined 
unit area. In other words, the use of sample generation method for the investigation of droughts properties 
can be separated from the observation points. This is important because the observation points were selected 
basically by two criteria in the past, as points at which the observations could be easily organized, with the 
constraint of available funds for observations. 

Because of difficulties for the application of analytical method in the inve~tigation of area-defficit­
intensity characteristics of droughts, the experimental (Monte Carlo) or sample g~n~ration method was used 
exclusively in Or . N. Tase's study in order to estimate these characteristics . In general, one can start with 
the analytical method by trying to obtain close solutions for simplified cases of drought problems. Then, 
these simple results serve as the guide to the approach by generating samples over region in order to investi­
gate the more complex drought problems. Or, in the opposite case , one can start with the experimental, sample 
generation method, by investigating the characteristics of droughts over a large region, and then--as a second 
phase--apply the analytical method for obtaining the generalized solutions in the close forms. This second 
approach, in its first phase of the application of experimental method, has been followed in this study. It 
is e~ected that the results presented would stimulate specialists in stochastic processes and mathematical 
statistics to theoretically investigate the joint distributions of drought character istics, especially in­
cluding the drought area coverage. 

The study by Dr . Norio Tase gives relationships between the three selected drought characteristics as well 
as probabilit y of these characteristics, either as marginal distributions or as joint distributions . Further­
more, the study shows that the shape of a region, especially of smal l region, is also an important factor for 
drought area coverage . However, the larger the region the lessor becomes the effect of the shape and the more 
important becomes the surface of that region. 

In studying the effect of periodicity of periodic-stochastic processes on drought characteristics it was 
shown that periodicity is one of the major obstacles for extensive studies of drought characteristics by the 
analytical method. However, the effect of periodicity in parameters can be studied by generating many time 
series over a region, in preserving not only the time periodic-stochastic character of series but also their 
regional dependence among the time independent stochastic components . Because periodicities in parameters 
involve a large number of coefficients, especially Fourier coefficients of harmonics , it would be difficult to 
relate the various drought characteristics to all these coefficients. This fact then requires the regional 
s tudies onl y, by generating new samples as closely as possible of the area-time processes of controling random 
variables, and by properly defining what are the droughts for periodic-stochastic processes of water supply 
and water demand . By generating new samples of these processes, the experimental method produces estimates of 
margi nal probabilities or joint probabilities of drought characteristics . 

This study is a part of a continous effort in the Hydrology and Water Resources Program of Department of 
Civil Engineering at Colorado State University in the analysis of various aspects of droughts . Basically, 
first their physical aspects are investigated, and then studies are broadened to economic and social aspects. 

November, 1976 
Fort Collins, Colorado 
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Vujica Yevjevich 
Professor of Civil Engineering 
and Professor-in-Charge of 
Hydrology and Water Resources Pr ogram 
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Chapter 1 
INTRODUCTION 

1.1. General on Droughts 

Droughts and floods are extremes in the fluct ua­
tion of vari ous hydrologic phenomenon. General l y human 
settlements have been river valley-oriented since time 
immemorial. This ~as attracted t he attention of people 
to flood problems more than· to drought problems, be­
cause flood damages to society are much more visible 
and sudden in comparison with drought damages . In 
modern t imes, this situation has been changed due to 
the following reasons: (1) the pressure on l i mited 
water resources by an increase of population and the 
standard of living, especially in big cit ies, required 
attention to water shortage or drought problems; (2) 
the specia lizat ion of regions as it concerns the use 
and allocation of water resources, such as the granary 
region of the Great Plains i n t he United States, makes 
a region 's role especially important. Thus, crop fail­
ures in such regions may heavily affect not onl y t he 
national but also the world economy . Nith an increase 
of the worl d population, the food problems become more 
serious day by day. Therefor e, reduction or fai lure 
i n grai n production for several years in an important 
region, such as i n the wheat be lt of the United States, 
would make a great impact on the world total food sup­
ply. Drought is one of the main causes of food supply 
deficits. 

Drought problems are a critical aspect of water 
resources conservation, development, and control at 
present. Continued pressure on limited water supplies 
will make drought problems much more serious in the 
future. Therefore, intensive and systematic inveatiga­
tions on drought problems a;e urgent and necessary. 

The definition of drought is a controversial 
subject. The difference between drought and water 
shortage is also vague. Every water user may have his 
own concept of drought, and furthermore , that concept 
may change with conditions of operation . In agricul­
ture, drought means a shortage of moisture in t he root 
zone of crops. To a hydrologist, i t means bel ow aver­
age water l evel s in streams, reservoirs, groundwater , 
lakes, etc. In an economic sense, drought means a 
wat er shortage which affects or disturbs the est ablish­
ed production . Al t hough these concepts are based on 
different viewpoints, they basically depend upon the 
effects of prolonged or unusual weather conditions . 
This study is only concerned with the hydrologic and/or 
meteorologic drought concepts . The 1•riter contends 
that an evaluation of the hydrologic or meteor ologic 
drought, defined by an objective way, permits each 
1vater user to apply such measures as to determine the 
effect -relationship in which it has an i nterest. For 
a more accurate estimation of drought effects, the def­
i ni tion of drought must be tailored to a particular 
problem. For an anal ysis of hydrologic droughts i n 
this study, monthly precipitation phenomenon is taken 
i nto account, as a primary water supply . 

1.2. Major Problems Needing Studies 

Two main drought probl ems need solutions . First, 
the problem of the areal coverage , or the extent of a 
drought, relates to t he scale and the shape of droughts 
and their probabi l ity of occurrence. It has not been 
studies because the precise definition of the ar eal 
coverage by a drought and the analyses of ar eal extent 
are not simple t o attack. For regions within a l arge 
area r elated to each other in many aspects, the areal 

1 

extent of a drought s hould be studied f or a good plan­
ning of water resources development and of al l eviating 
drought effect s over t he large areas , such as regional 
water exchange (Takeuchi, 1974) . 

The second problem is related to difficulties 
involved with evaluating drought characteristics for 
the periodic-stochastic time processes such as the 
dai ly or monthly precipit ation or runoff series . Com­
pared with the stationary series such as annual pr eci­
pitation or runoff, in t he periodic-stochastic series 
the time position or season is a very i mportant factor 
in evaluating the drought charact eristics such as its 
duration, magnitude, intensity, etc. This means that 
in case of periodic- stochastic processes i t is diffi­
cult t o find and/or define the basic drought character­
ist ics such as the negative run-length and the negative 
run-sum , whi ch are useful characterist ics of describi ng 
droughts of st ationary processes such as annual preci­
pitation or run~ff . 

1.3. Objectives of the St udy 

Si nce the fundamental causes of drought in the 
form of physical factors of atmospheric circulation are 
s t i ll not well understood , the practical method of 
studying droughts i s to consider t heir properties as 
random variables and to use the statistics and observed 
time series in order to estimate these characteristics . 

The first objective of this study was to find 
experimentally the gener al characteristics of hydrolo­
gic droughts over a l ar ge area after developing the 
mathematical models of area-time processes of monthly 
pr ecipitation for the case of the Upper Great Plains in 
t he United States. An areal structure of droughts is 
also studies. 

The second objective was to study probabilities of 
droughts covering a specific area, such as a state 
within the Great Plains, in consider i ng t he effects of 
the size and shape of t his area on probabilit ies 
obtained . 

Since ther• are not many investigations on the 
areal coverage of droughts, this study is r e l ated to 
several genera l aspects of the areal drought coverage. 
To document concept s and pr esent t he ideas for further 
studies on large droughts, as many figures and tables 
are given as was considered necessary or warranted . 

The third study objective was to discuss some 
f easible methods of analyzi ng droughts of periodic­
stochastic pr ocesses, by finding some basic properties 
of negative runs of these processes. 

1 .4. Procedures Used 

The procedures used in developing t he mathematical 
model of area-time stochastic process of monthly pre­
cipitation are presented with the model appl ied to the 
Upper Great Plains in Chapter III . 

In Chapter IV, the determination of t he grid 
system and grid interval is studied with the generation 
of a new series at new, systematic grid points . The 
generated series based on the model and the new grid 
system, are tested statistically to verify that they 
simulated the basic processes wel l . Using the genera­
ted series, the charact eristics of large area droughts 



are studied in Chapter V. The three variable: the 
deficit area, the total areal deficit, and the maximum 
deficit intensity, are defined as the basic character­
istics of regional droughts . Their basic properties 
studied are probability distributions and mutual rela­
tionships. The areal structure of droughts is also 
described in this chapter. Probabilities of areal 
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coverage by droughts are investigated in considering 
both the size and the shape of an area. 

In Chapter VI, the analysis of droughts of 
periodic-stochastic processes is discussed. The basic 
properties of negative runs of the periodic-stochastic 
processes are studied analytically and compared with 
those of the stationary processes. 



Chapter 2 
REVIEW OF LITERATURE 

2.1. Drought Definition and Studies 

The definitions of hydrologic or meteorologic 
droughts have already been discussed for a long time. 
Hoyt (1938) stated that drought conditions might pre­
vail when t he annual precipitat ion was as l ow as 85 
per cent of the mean . McGuire and Palmer {1957) defined 
the drought as condition of monthly or annual precipi­
tation l ess than some part icular percentage of normal. 
Thomas (1962) used the definition that d r ought was a 
meteorologic phenomenon and occurred during a period 
when precipitation is l es s than the long-term average. 
Yevjevi<:h (1967) defined a hydrologic drought as the 
deficiency in water supply on the earth's surface and 
used the runs as t he basic concept f or an object ive 
definit ion of droughts . Drought investigations until 
1968 have been presented in the form of annotated 
references by Palmer and Denny (1971), which can give 
a good insight to problems and approaches. 

The classical appr oach to drought pr oblems was to 
find the probability of the instantaneous smallest 
value on the basis of the theory of extremes (Gumbel, 
1963) . This approach does not tel l anything about the 
duration and areal coverage of droughts. Unlike 
f l ood problems, the duration and areal coverage are 
very import ant i n drought pr obl ems. 

Figure 2.1 represents a discrete series of a 
variable X. By selecting an arbitrary truncation 
level x0, two new truncated series of positive and 

negat ive deviations ar e obt ained. The number or 
l ength of consecuti ve negative deviations preceded and 
followed by positive deviations is defined as a nega­
t ive run- length, which may be associat ed wit h the con­
cept of the duration of a drought. The sum or integral 
of a l l negative deviat ions over such a run-length is 
defined as the negat i ve run-sum. The ratio of the 
negative run-sum and the negative run-l ength is defined 
as the negative run-intensity (Ycvjevich, 1967) . The 
negative run-sum and run- intensity can be associat ed 
with t he severity of a drought. 

Fig .. 2.1. Definiti on of the Positi ve Run-Length , M, 
the Negati ve Run-Length, N, the Positive 
Run-Sum, S, and the Negative Run-Sum, w, 
for a Di screte Ser ies , X . . 

l 
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Several theoretical and experimental studies of 
runs related to drought problems are available. The 
run- lengt h has been mor e widely investigated. Saldar­
riaga and Yevjevich (1970) summarized the exact proper ­
ties of distributions of run-length for univariate 
i ndependent random variables, which showed that the 
run-length properti es are free of underlying distr i bu­
tion of input processes . They further studied the 
propert ies of run-length for univariate dependent 
random variables, especially defined by the firs.t­
order autoregressive model. 

The study of run-sums is very complex theoretical­
ly. Only for the univariate independent normalprocess, 
t he exact proper t ies of run-sums were found by Downer 
et al. (l 967). The exact properties of run-sums of 
normal dependent or non-normal independent and d·epen­
dent processes have not been developed. 

The application of the theory of runs to a 
univariate stationary process is useful because it 
gives t he main drought characteristics, such as the 
probabi l ity of occurrence of duration and severity, 
except the probabil i ty of areal cover age. Mi l lan and 
Yevjevich (1971) studied t he probability of historic 
hydrologic droughts by using the l ongest negative run­
length and the lar gest negat ive run-sum as basic para­
meters of samples of a given size for given probability 
of the truncation level, the autoregressive coeffi­
cient s, and the skewness coefficient s. Guerrero­
Salazar (1973) further studied probabilities of the 
longest negative run-l ength and the l argest negative 
run-sum for both univariate and bivariate pr ocesses, 
ana l yticall y and experimentally. For bivar iate pro­
cess, Llamas and Siddiqui (1969) studied several basic 
prope~ies . The overall summary of runs is given by 
Guerrero-Sal azar and Yevjevich (1975). 

The appl ication of run properties of univariate 
and bivariate stationary processes to drought i nvesti­
gations is limited t o processes such as annual preci­
pi tation or annual runof f series, where the assumption 
of a stat ionary process is sufficient ly accurate. The 
shor t i nterval processes such as monthly, weekly , and 
daily precipitation series are per iodic- st ochastic 
processes. Hence the above analysis is not directly 
applicable to such pr ocesses, and the problem of devel­
oping the techniques to study the periodic-stochastic 
processes needs attention. 

Based on the wat er budget of the soil , Palmer 
(1965) used t he difference between t he actual precipi­
tat ion and the computed pr ecipitat i on which is required 
for the average climate of the area to evaluate drought 
severity in space and time. Since many factors such as 
runoff and evapotranspiration are estimated, an appli­
cation of this method to a large area is verydifficult. 
Herbst et al . (l966) developed a technique for the 
eva luation of drought onl y from monthl y precipitation. 
The technique determi nes t he duration and int ensity of 
droughts and t heir months of onset and termi nation. It 
can a l so compare the intensity of droughts irrespective 
of their seasonal occurrence. 

Few investigations on areal coverage of droughts 
have been carried out . Even a descriptive method of 
areal characteristics of drought has not been well 
developed, and littl e has been done on applying quanti­
tative or stat istical methods to drought coverage . 
Pi nkayan (1966) studied the probabilit y of occurrence 



of wet and dry years over a large area . He used the 
conditional probability mathematical functions to 
describe the occurrence of wet and dry years over the 
area. He concluded that the occurrence of wet and dry 
years between two stations up to a distance of 1000 
miles is dependent. Gibbs and Maher (1967) analyzed the 
areal extent of past drought s in Australia by classify­
ing the annual precipitation with the decile range. 
As a crude index of drought, the first decile r ange of 
ca~endar year rainfall is used to find the return peri­
ods of droughts covering certain percentage of the 
continent. Many invest igators , such as Spar (1967) 
used a kind of precipitation or runoff distribution to 
discuss the drought phenomenon, wi thout analyzing i t 
quant i tatively. 

2.2 . Models of Monthly Precipitation Series 

Roesner and Yevjevich (1966) studied the time 
structures of monthly precipitation series for 219 
stations in the Western United States. They concluded 
that t he monthly precipitation series is composed of 
det erministic periodic parameters and a nearly indepen­
dent stochastic component. The periodic component can 
be described by a Fourier series, mainly- with a har­
monic of the 12-month cycle. 

The spatial extension or smoothing of the time 
structure parameters of t he point series has been 
invest igated by using surface-fitting techniques. In 
particular, polynomial functions of the space coordi­
nates are usually used (Amorocho and Brandst etter , 
1967) . These techniques or surface trend analysis are 
extensively used in geology (Krumbein, 1959, 1963; 
Mandelbraum, 1963) for separating the relatively 
large-scale systematic changes in mapped data from 
essentially non- systematic small scale variat ions due 
to local effects or errors. 

Spat ial or regional structures of monthly 
precipitation are st udied by using cross correlation 
coefficients (Stenhouse and Cornish, 1958; Huff and 
Shipp, 1969). Usually the cross correlation coeffi­
cients are expressed by various functions of the 
interstation distance and the orientation of the line 
connect i ng the two stations, as well as some other 
factors. Stenhouse and Cornish (1958) showed that the 
decay rate of the cross correlation coefficients with 
the distance and the axis of the maximal correlation 
are changing month by month. Yevjevich and Karplus 
(1973) studied the regional dependence structure of 
the stochastic component of monthly precipitati on by 
using the cross correlat ion coefficients with t en 
different functions of the interstation distance and 
the orientation. 

Karplus (1972) studied the structures of area­
time hydrologic process of monthly precipitation based 
on the concept that the process consists. of determin­
istic component s specified by periodic parameters and 
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a stationary stochastic component, with the coeffi­
cients of the periodic parameters following regional 
trends. As a result of the application of this con­
cept , the area-time process of monthly precipitation 
is sufficiently described by the four mathematical 
models : 

(1) Periodic functions for the periodic parame­
ters of the mean and the standard deviation; 

(2) Regional trend planes; 
(3) Three-parameter gamma probability distribu­

tion function of the identically distributed, time 
independent stationary stochastic component; and 

(4) The regional dependence function for the 
stochastic component. 

2. 3. ~tul tivariate Data Generation and Grid System 

The data generation or the experimental Monte 
Carl o method has been used i n hydrology for some time. 
The method of generating hydrologic series over an 
area, or multivar iate series , preserves the properties 
of historic sequences i n t erms of the sample means, 
standard deviations , l ag-one or lag-one and lag-two 
serial correlation coefficients, and the lag-zero 
cross cor rel ation coefficients as a second-order sta­
tionary process (Fiering, 1964; Matalas, 1967) . The 
Matalas model and its modified model are used for 
generation of annual, seasonal , monthly, and dai'ly 
precipitation (Schaake et al. , 1972). 

Karplus (1972) applied the method of principal 
component s, using only the first several statistically 
significant principal components , to the generation of 
new samples of monthly precipitation and studied the 
effects of the number of principal components used on 
the generated series . 

~lilian and Yevjevich (1971) showed that the 
experimental method could give very good results by 
comparing the exact solution wi th the solution obtained 
by the experimental method. 

With the advent of comp~ters, i ntroduction of the 
grid system facilitates storing, processing, and re­
trieving of a large amount of information (Solomon 
et al., 1968). Yevj evich and Karplus (1973) reconunended 
the use of a systematic grid of points across an area 
to solve problems rel ated to area-time processes such 
as droughts, especially by generating multivariate 
series , based on t heir mat hematical models. 

The problem of finding an appropriate grid system 
and grid interval has been studied indirectly in r ela ­
tion with the problem of areal representativeness of 
point information or network design of observatories 
(Linsley and Kohler, 1951; Huff and Neill , 1957; 
Steinitz et al. , 1971; Rodriguez-Iturbe and Mejia, 
1974; etc. ) . 



Chapter 3 
MATHEMATICAl MODEl OF MONTHLY PRECIPITATION O VER A lARGE AREA 

The basic hydrologic pr ocesses such as precipita­
tion and river run-off are four dimensional space-time 
random processes and usually dependent both in time and 
in area. When a surface is considered, the processes 
are reduced to three dimensional area-time processes. 
The series of the amount of monthly precipitation at 
ground level can be consi dered as an area-time process 
as long as the regional topography is fairly homogene­
ous. To develop mathematical models of area-time 
process such as monthly precipitation series, Yevjevich 
and Karplus (1973) gave the basic assumption that the 
process consists of deterministic components specified 
by periodic parameters and a stationary stochastic 
component. The coefficients of the periodic parameters 
follow some regional trends and the stationary stochas­
tic component has regional characteristics such as 
regional dependence. Generally, the more stations used 
and the l onger their data, the better is the area-
time information of the models. The following discus­
sions are mainly based on Yevjevich and Karplus (1973) 
and the more det ailed procedures can be found in their 
work. 

3.1. Determini stic and Stochastic Components 

Two ways of separating deterministic and station­
ary stochastic components can be considered . The 
differences between these two methods come from how 
the monthly means and standard deviations are estimat­
ed . The first method is called a non-parametric method. 
A stationary stochastic component series ~ for a 
given station is defined by a standardized series of 
monthly precipitat ion series X· That is, the observed 
monthly means and standard deviations are considered as 
the deterministic components and are removed from the 
monthly precipit ation series. Therefore, the stochas­
tic component is given by 

(3 .1) 

where p and T denote the sequence of years and the 
month within the year, respectively, and m, and s, 

are the estimated sample means and standard deviations 
of the monthly precipitation, respectively. The new 
variable ~ can be a second-order s.tati onary pro-p,-r 
cess and can be replaced by ~ .• that i s, ~ . = C in 

J J p, T 

which j = 12(p-l ) + T. Now c. is the basic stochas-
) 

tic process to be studied. The mathematical model of 
area-time structures of the stochastic seri es may be 
developed from al l series of ;j. Models for area-

time structures of the deterministic components of the 
monthly precipitation series can be made on the basis 
of mT and sT. Finally, both models can be combined 
together . 

On the other hand, the second meth.od is paramet­
ric, as used by Yevjevich and Karplus (1973). It is 
based on the assumption that once the deterministic 
area-time components in the parameters of the basic 
random variable of the monthl y preci pi tation ( p,T 
have been estimated or modeled and removed from all the 
point-time series , a second-order stationary area-time 
stochastic process ; would remain. That is, ;p 
is given by p,T ,T 
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f;p,T (3. 2) 

where m and s are estimated means and standard 
T T 

deviations by some area-time models, which are discus­
sed later . 

These two procedures are compared in Figure 3.1. 
In the second method, the population means and stand­
ard deviati ons of the monthly precipitation are esti­
mated by using areal information besides the point 
values . If the model of the deterministic area-time 
components is derived well , the second method is more 
useful. However, modeling of the deterministic area­
time components for a large area is difficult. When 
the stochastic component is of primar y concer n in an 
investigation and the area studied is fairly large, 
the first method is easier to apply. 

Although there are some differences between the 
two methods in separating the deterministic and sto­
chastic components, the analysis and modeling proce­
dures are basically the same. The following discussion 
will be done in this chapter. First , the mathematical 
model for the t ime structure of the monthly precipita­
tion series at a given point is found. The model of 
extending the basic parameters of the deterministic 
components at a point to regional structures is follow­
ed. After discussing the analysis of the area-time 
stationary stochastic component of the monthly precipi­
tation, the mat hematical model of the area-time process 
of the monthly precipitation is applied to the Upper 
Great Pl ains, as a case study . 

3. 2. ~1athematical ~lodel for Time Structure of ~lonthly 
Precipitation 

Define the random variable xp,T as the monthly 

precipitation for a given station i (i=l,2, . . . ,M), 
with M the number of stations in a region, p = 1,2, 
. . . ,n, the sequence of years, n the sample size ex­
pressed in years, T = 1,2, ... ,12 month within the year. 
Also define ;p,T as the standardized random variable 

with the periodicity of the mean and the standard devi­
ation removed from the station series as 

X - \IT 
G; = _p......_, T--"-
p,T C\ (3.3) 

where \IT is the periodic monthly mean and oT is 

the periodic monthly standard deviation for the station 
ser ies . 

The variable ~p,T can be assumed as second-order 

stationary and it is either independent or dependent in 
sequence. In the case of dependence, the general m-th 
order autoregressive linear dependence model is usually 
used. The m-th order autoregressive l inear model is 
given in general by 

m 

;p,T = k~l ak,T-k;p,T-k 

m m 
+ (1 - I L a. .a. .p

1
• • k)l/Z w 

i=l j=l _~,T-~ J , T-J 1-J I ,T- p,T 
(3 .4) 



Method I Non-Parametric Method 

1 Observed MonthlY Precipitation Series 

I 
Estimating Monthly Means, m , and r­
St andard Deviations, s . t 

T 

I 
Separating Stochastic Component I 
from the Monthly Precipitation by 
Standardization. 

I 
Modeling Time and Regional I 
Structures of Deterministic 
Components. 

I 
Modeling Time and Regional I 
Structures of Stochastic 
Component . 

~lethod II : Parametric Method 

Observed Monthl 

Estimating ~lonthly Means, m,, and 
Standard Deviations, s,. 

Modeling Time and Regional Structures 
. of mt and s,. 

Removing Estimated tilt and ST by the 
Models from the Monthly Precipitation 
and Obtainin Stochastic ·Com anent. 

Modeling Time and Regional Structures 
of the Stochastic Com anent. 

Fig . 3. 1 . Comparison of Two Methods of Separating 
Deterministic and Stochastic Components . 

in which k = i if i < j and k = j if i > j with 
~k,t-k the autoregressive coefficient at the position 

r-k , which are dependent on the autocorrelation coef­
ficients, Pk, t-k' and w is a second-order stationary 

and independent stochastic variable. In hydrology, the 
first three linear models have been used by various 
investigators (Yevjevich, 1964; Roesner and Yevjevich, 
1966) . 

The periodic parameters ll and a in Eq . (3. 3) 
T T 

are symbolized by v The mathematical description of 
' the periodic variation of v is represented in the 

t 

f-ourier series analysis by 

v + 
hfv) 

C.(v)cos[ljt + e
1
.(v)] 

j =1 J 
(3. 5) 

where v is the average value of v , C.(v) the ampli­
t J 

tude, e.(v) the angular phase, 
J 

indexes the sequence 
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of harmonics (j=l,2, ... ,h), h(v) denotes the total num­
ber of significant harmonics, and l is the bas ic 
frequency of the periodic process . 

The general mathematical model of the time 
structure of x is expressed as p,r 

h,(ll) 
1. ll + }. C.(IJ)cos[ljt + e.(IJ)]} 

j=l ] J 

h.(o) 
+ {a+ L C.(o)cos(ljt + e.(o)l} ~ 

j =1 J J p' t 
(3.6) 

lvhere the symbolS \.I T and aT for Cj and 9 j 

correspond to v, in Eq . (3 .5). In case of monthl y 

precipitation, the maximum number of harmonics for all 
periodic par ameters is six . However, it is shown by 
several studies that for monthly precipitation series 
one, t wo, or a maximum of three harmonics are suffi­
cient for each periodic parameter. 

The ratio of the variance 2 
s (v,) of the fitted 

v 
T 

t o the variance of the estimated values such as 

m, and s, , is used to select the cutoff point in 

determining the significant h(v) harmonics, since the 
ratio increases with an increase of the number of 
harmonics h(v). 

A simpl e model for the monthly precipitation 
series could be obtained under the following condi ti.ons: 

(1) The first harmonic with a period of 12 months 
alone explains most of the variance; and 

0 
T 

(2) ~ is an independent, random variable . 

This simplified model, with the periodic ll, 

and with the above hypotheses of time series 

and 

structure for the monthly precipitation, is given by 

1J + Cl (IJ)COS(lT + 91(1J)) 

+{a+ c1(a)cos[lt + a1(a)]}tp,t (3. 7) 

The ~ series is then an independent, stationary p,T 
random variable at any station. 

3.3. Regional Structure Model for Basic Hydrologic 
Parameters 

Let the hypothesis be that the regional variation 
of any parameter can be obtained from the M point 
estimates vi (i=l ,2 , .. . ,M), and be wel l defined in 

the form of a trend surface function 

v = >P (X, Y) (3. 8) 

with X and Y the coordinates (longitude and lati­
tude) of point positions. In sampling the population 
function >P(X,Y) by a limited number of station points 
and l imited number of observed data for each point 
during n years, the estimate of the function 1/I(X,Y) 
and its coefficients by a sample fitted surface f(X,Y) 
required a regression equation such as 

v = f(X, Y) + £ (3.9) 

in which E represents the sampling errors and the 
difference between the true regional surface function 



and the fitted function . However, f(X,V) is usually 
accepted as the best estimate of ~(X,Y) . 

Since ~(X,Y) is a continuous function, it can 
always be expanded in a power seri es form. By taking 
a polynomial i n X and Y of the m-th order , Eq. 
(3 .8) becomes 

v "' B1 + B2X + e3Y + B_4X2 
+ e

5
XY + e

6
Y2 + 

t m- 1 . .m 
+ BkX + Bk+lX Y + • • • + Bk+my + O(X;Y) (3 . 10) 

where 

cients 
O(X, Y) 

Bj' j = 1,2, . . . , k + m, are regression coeffi­

to be estimated by the l east-squares method and 
is the remaining expansion error. 

The boundaries of the t rend surface are greatly 
affect ed by the estimates vi of those stations loca-

t ed near the edge of a region . These estimates may 
introduce undesirable values of vi at t hese edges, 

such as negative means or standard deviations , when 
the coefficients e. of Eq. (3 . 10) are estimated by 

J 
the least-squares method. To minimize the boundary 
effects, the trend surface may be fitted to a l arger 
region having more stations, rather than the region 
under s tudy with M stations. The e. coefficients 

J 
of Eq . (3 . 10) are estimated for all stations but are 
applied onl y to t he smal l interior region defined by 
M stat ions. 

A 

To evaluate the fitted function v f(X, Y) of 
v = ~(X,Y) , the residuals ei =vi - v should be 

analyzed . If the estimate is not good , the ar eal 
distribution of the residuals may have some patterns 
over a region. 

3 . 4. Separation of Det erminist ic and Stochastic 
Component s of ~1onthly Precipitation 

In order to separate deterministic and stochastic 
components, and to obtain a second-order stationary 
independent s tochastic process t . two methods can be 
considered as mentioned earlier. As the first method 
i s cal l ed a non-parametric method, Eq. (3 . 1) is direct­
ly appl ied for al l the stations to obtain an approxi­
mately second-order s t ationary series ~ . by using t he 
observed means m and standard deviat ions s of the 

T T 

monthly precipitation x_ The second method is ba-·p,T. 
sed on the assumption that once the deterministic area­
time components in the parameters of the monthly pre-
cipitati on x have been established by Eqs . (3.6), 

p,T 
(3.7), and (3.10) and removed from a l l point-time ser­
ies by Eq. (3 . 2), an approximately second-order s t a t ­
ionary i ndependent ar ea-time stochastic process ~ 
would remain . 

The stochastic process s, either by the first or 
t he second method, can be then considered as a multi­
variate, identically distributed, stationary area-time 
process, which is time independent but areally depen­
dent. In other words, the point series at s tations 
over an area are mutually dependent, identically dis­
tributed time independent variabl es. 

3 .5. .~alysis of Area-Time Stationar y Stochastic 
Component of the Monthly Precipitation Series 

Once the deterministic component of the monthly 
precipitation series are separated by the first or 
second method, the following condit ions should be 
checked : 
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(1) Each series is time independent ; 
(2) The point-time series in the region are 

identically distributed variables; and 
(3) The type of dependence among series is in the 

form of the mathematical regional dependence model. 

The t ime i ndependence of ; is t ested by using 
t he correlograms of i ndividual sample time series of 
~ . The hypothesis of identically dist ributed ~ for 
all stations in the region is t est ed by comparing their 
distribution or distribution parameters as estimated 
from the observed indivi dual t i me series . 

Once the ~-series can be assumed as time indepen­
dent, identically distributed variable , the analysis of 
regional dependence can be undertaken. Generally the 
areal dependence is s t udied by using the linear cor­
relation coefficient p .. among stations . The cor-

~J 
relation coefficient between the series at station i 
and j may be a function of the absolute posi t i on of 
t he s t ation (X,Y), the interstation distance dij , the 

orientation of the line connect ing t he two stations 
~ij ' and time with the year t. This relation i s 

expr essed by 

(3 .11) 

For a fairly topographically, hydrologically, and 
meteorologically homogeneous region, the correlation 
coefficients may be approximated by a function of only 
the interstation distance and the orientation. That 
is , Eq. (3 .11) is reduced to 

(3 .12) 

Several functions rel ating the estimated interstation 
correlation coefficient with the interst ation distance 
and the orientation have been studied (Caffey, 1965; 
St enhouse and Cornish, 1958 ; Karplus , 1972) . 

Under t he consideration that the range of P for 
the funct ion should be between zero and unity for all 
values of d, and that for d = 0 by the definition 
p = 1, and for d = ~. p should be zero , the following 
two functions are used in this study: 

p .. exp(B1 d) (3.13) 

and 
(3 .14) 

The first model is a s imple regi onal dependence r ela­
tion between the lag-zero cross correlation coefficient 
and inter s t ation dist ance . In this model, the depen­
dence structure is considered to be isotropic and a 
simple exponentia.l decay. On the other hand, the 
second model relates the lag-zero cross correlation 
coefficient of any pair of stations to their distance 
and orientation . Characteristics of this function are 
that t he rate of t he decrease of the correlation coef­
ficient with distance from the station varies wi th the 
direction and the slope is symmetrical about the st a­
tion for a given axis . The direction for the least 
rate of the decrease of the correl ation coefficient, 
which is called the major axis (Caffey, 1965), is given 
by 

(3.15) 

where ~max is measured from the refer ence axis in 

degrees , counter-clockwise from the east in t his study . 
The ratio of the rates of change of the correlation 
coefficients al ong the major and the minor axes shows 
the degree of ellipticity. 



3.6. Application of the Models to the Upper Great 
Plains in U.S.A. 

The Upper Great Plains in the United States is 
chosen to show how the mathematical models of monthly 
precipitation are applied and to analyze drought cha­
racteristics. The Upper Great Plains is an important 
agricultural region for production of wheat, corn, and 
livestock. It is considered to be fairly homogeneous 
topographically. 

Study Area. In the area studied as shown in Fig. 
3.2, seventy-nine stations (M=79) with 30 years of 
monthly values (N=360) for t he period 1931-1960 are 
selected for use in this i nvestigation. These avail­
able data are assumed to be statistically homogeneous 
and are selected to avoid climatic effects of the Rocky 
~~untains, the Ozark ~~untains, and the Great Lakes. 
The locations of the 79 stations are shown in Fig. 3.2. 

z · 4 

0 
'0 
0 

2 
0 
u 

100" 

100 zoo 
miles 

Fig . 3 . 2. The Study Area and Location of the 79 
Stations. 

Table 3.1 gives the station identity number, which is 
identical to the U.S. Weather Bureau index number, 
station name, degrees west longitude , and degrees 
north latitude . The index number is prefixed with 5 
for Colorado, 11 for Illinois , 13 for Iowa, 14 for 

· Kansas, 21 for Minnesota, 23 for Missouri, 25 for 
Nebraska, 32 for North Dakota, 34 for Oklahoma, 39 for 
South Dakota, 41 for Texas, and 47 for Wisconsin. 

Looking to the average monthly mean and st andard 
deviation of the 79 stations in Figs. 3.3 and 3.4, it 
is clear that they have almost the same pattern . They 
decrease from the southeast to the northwest, though 
the pattern of the average monthl y standard deviation 
is more complex, as would be expected for a parameter 
related to the second central moment. 

Time Variation of Parameters. The monthly means 
for each station fo llow the periodic cycle of the year , 
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which can be described by the Fourier series of Eq . 
(3.5) . For the estimated monthly means ~t' Eq . (3.5) 
takes the form 

-m + 
T 

hfll) 
C.(~) cos(Ajt + e .(~)) 

j•l J J 
(3. 16) 

where mr is the average of the monthly means m . 

Similarly for the estimated monthly standard 
deviations ot' Eq. (3.5) is given by 

a 
T 

_ h!a) 
s + l C.(o)cos[Ajr + e.(o)] 

't: j • 1 J J 

T 

(3 .17) 

in which st is the average of the monthly standard 

deviations st. Once h(~) and h(a) have been infer­
red by the method mentioned in Section 3.2, the dif­
ferences (mt - liT) and (sr - or) are considered to 

be random sampling variations. That is , the annual 
cycle of the parameters mt and sT is considered 

with only h(~) and h(a) significant harmonics, 
respectively. 

For the mT and sT series, h(~) = h(o) • 1 is 

hypothesized and tested by statistical analysis for 
each of the 79 stations. Table 3.2 presents the esti­
mated values of mT, c1 (~). e1 (~). st, c1 (a), e1(a), 

and the percent of variance of both mT and sr, ex­

plained by the fitted 12-month harmonic of ~r and 

oT for the 79 stations . From 70.21 to 97.86 percent 

of the variance, or on the average 88.26 percent, is 
explained by the fitted 12-month harmonic in the case 
of mt' and from 49.53 to 97.84 percent of the vari-

ance, or on the average 83.90 percent, is explained by 
t he first harmonic in the case of sT. The average 

explained var iances of mT and sT by the second 

harmonic or 6-month harmonic are 5. 01 and 5.02 percent, 
respectively. The second harmonic is not significant 
in comparison with the first harmonic. 

For 72 out of the 79 stations, or 91.14 percent , 
more than 80 percent of the variance of mt is ex-

plained by the first harmonic of uT only. While in 

71 out of the 79 stations, or 89 .87 percent, more than 
70 percent of the variance of st is explained by the 

first harmonic of aT. Since the explained variance 

by the first harmonic is large for the majority of the 
stations, the hypothesis of h(u) • h(o) = 1 seems to 
be acceptable. 

The above hypothesis can be justified by studying 
the correlograms of the stations 25 , 29, and 52 given 
in Fig. 3.5 . It may be noticed that the correlograms 
are very close to the 12-month cosine function , which 
indicates that the first harmonic for IDr is the most 
important and all the other harmonics could be neglec­
ted. Similar correlograms can be found for the other 
st ations also . Thus , the values of h(~) = h(a) = 1 
satisfy the objective in obtaining the minimum number 
of parameters in using onl y the most significant har­
monic , and in this case only the 12-month harmonic, as 
required in considering the annual cycle of the month­
ly means and the monthly standard deviations. 

Regional Variation in ?arameters . Since onl y the 
12-month harmonic is selected to be considered as the 



Table 3.1. Monthly Precipitation Stations Used for Investigation. 

Station Index Station Name 
Number Number 

1 5. 1564 Cheyenne Wells 
2 5 . 3038 Port Morgan 
3 5.4<:13 Julesburg 
4 5 . 9295 Yuma 
5 11.3335 Galva 
6 11. 3930 Havana 
7 11.4442 Jacksonville 
8 11. 7067 Quincy 
9 11. 8916 l~a1nut 

10 13.0364 Atlantic 1 NE 
ll 13.2208 Des ~to i nes WB City 
12 13.5230 Mason City 3 N 
13 13.6391 Ottum1,ra 
14 13.7161 Rockwell City 
15 14.1769 Concordia WB City 
16 14. 1866 Council Grove 
17 14.2459 Ellsworth 
18 14. 3759 Holton 
19 14.4421 La Cygne 
20 14.5173 Medicine Lodge 
21 14.6374 Phillipsburg 
22 14.6427 Plains 
23 14.6637 Quinter 
24 14.7305 Sedan 
25 14.7313 Sedg1,rick 
26 14.8186 Toronto 
27 21.0783 Bird Island 
28 21. 1630 Cloquet For. Res. Cent 
29 21.2142 Detroit Lakes 1 NNE 
30 21.2737 Farmington 3 NW 
31 21.2768 Fergus Falls 
32 21.3411 Gull Lake Dam 
33 21.4652 Leech Lake Dam 
34 21.5020 ~lahonig Mine 
35 21.5400 ~lilan 

36 21.5615 Mora 
37 21.6565 Pipe Stone 
38 21.7087 Rseau Power Plant 
39 21.8692 Waseca Expt. Farm 
40 21.9046 Winnebago 

Degrees Degrees 
North West 

Lat. Long. 

38.82 102.35 
40.25 103.80 
41.00 102.25 
40.12 102.73 
41.17 90.03 
40.30 90.05 
39. 73 90.23 
39.95 91.40 
41.57 89 .58 
41.42 95.00 
41.58 93.62 
43.18 93.20 
41. 00 92 . 43 
42.40 94.62 
39.57 97.67 
38. 67 96 .50 
38.73 98.23 
39.47 95.73 
38. 35 94.77 
37.27 98.58 
39.77 99.32 
37.27 100.58 
39.07 100.23 
37.12 96.17 
37.92 97 . 43 
37.80 95.95 
44. 77 94.90 
46. 68 92.50 
46 . 83 95.85 
44. 67 93.18 
46.28 96.07 
46 .42 94 . 35 
47 . 25 94.22 
47.47 92 .98 
45.12 95.93 
45.88 93.30 
44.00 96.30 
48. 85 95 . 77 
44 . 07 93.52 
43.77 94.17 

annual cycle in t he basic parameters of t he monthly 
precipitation for all the stations , the next investi­
gation is fOCUSed On how the basic parameters of mT, 

c1 (u), e1 (u), sT, c1(a), and e1 (o) vary over the 

area studied . 

Figures 3.2 and 3.3 show that the trend surfaces 
of m and s can be well defined by a low-order 

T T 
polynomial function of the longitude and latitude. 
However , Figs . 3.6 through 3. 9 indicate that the trend 
surfaces of c

1 
(u), e1 (u), c

1 
(a), and e

1 
(o) may be 

too complex to be defined easily by a low-order poly­
nomial function . In this study, the longitude Xi 
is referenced to x0 = 95.00 degrees west longitude as 

the zero abscissa, and the latitude Yi is referenced 

to Y0 = 42.00 degrees north latitude as the zero 

ordinate . 

Since a low-order polynomial function explaining 
a high variance of the regional variation is preferable 
for further investigations, the polynomial function 
with more than the fifth-order was considered too com­
plicated to be carried out. Since the usual techniques 
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Station Index Station Name 
Number Number 

41 21.9166 l~orthington 
42 23.1580 Chillicothe 25 
43 23.2503 Eldon 
44 23.2823 Fayette 
45 23.7720 Shelbina 
46 23.871,2 l~arrensburg 
47 25 .0930 Blair 
48 25. 1145 Bridge Port 
49 25. 2020 Crete 
50 25 . 2805 Ewing 
51 25 . 3185 Genoa 
52 25.3630 Hartington 
53 25 . 6970 Purdum 
54 25.7040 Ravenna 
55 32 . 2188 Dickenson Expt. Stat . 
56 32 . 3621 Grand Forks u. 
57 32. 4418 Jamestown St. Hosp. 
58 32.5638 ~lax 

59 32.6025 Mohall 
60 34 . 3497 Geary 
61 34.4766 Kenton 
62 34 . 7012 Perry 
63 39.0296 Armour 
64 39 . 1972 Cotton 1'/ood 
65 39.2797 Eureka 
66 39.3832 Highmore 1 w 
67 39 . 4007 Hot Springs 
68 39.11661 Ladelle 7 NE 
69 39.4864 Lemmon 
70 39.5536 Milbank 
71 39 . 7667 Sioux Falls WB AP 
72 39.8552 Vale 
73 39 . 9442 1'/ood 
74 41.6950 Perryton 
75 47. 3654 llillsboro 
76 47. 4391 Ladysmith 
77 47.5120 ~Iarsh field Expt . Farm 
78 47.6827 Prairie Du Chien 
79 47.7226 River Falls 

Degrees Degrees 
North 1\'est 

Lat . Long. 

43. 62 95.60 
39 . 75 93 . 55 
38.35 92. 58 
39.15 92.68 
39 . 68 92.05 
38.77 93 . 73 
41.55 96. 13 
41. 67 103.10 
40.62 96.95 
42.25 98.35 
41.45 97.73 
42.62 97.27 
42. 07 100.25 
41.03 98.92 
46 . 88 102.80 
47.92 97:os 
46. 88 98.68 
47.82 101.30 
48. 77 101.52 
35. 63 98.32 
36.92 102.97 
36.28 97.2S 
43.32 98 .35 
43.97 101.87 
45.77 99.62 
44. 52 99.47 
43.43 103.47 
44.68 98 . 00 
45.93 102.17 
45.22 96 . 63 
43. 57 96. 73 
44 .62 103.40 
43. 50 100.48 
36. 40 100.82 
43.65 90.33 
45.47 91.08 
44. 65 90.13 
43.05 91.17 
44. 87 92.62 

of step-wise multiple regression analysis are used, 
elimination of the terms in the regression equation 
for which the regression coefficients are not signifi­
cant, and/or those for which the simple correlation 
coefficients are low, produce the incomplete polynomial 
equations. 

Table 3 . 3 presents the percent of variance of 
m . , c1 . (IlL e1 . (IlL s . , c

1 
. (a), and e1 . (a), 

t,l ,1 , 1 t ,l ,~ ,~ 

explained by the fitted polynomial functions with 
various orders up to the fifth. These equations are: 

m . 
T,l 

2.4114 - 0.0991Y- 0.1203X + 0.0026Y2 

- 0.0046X2 
+ 0.0105XY (3 .18) 

s . 1. 4909 - 0. 0489X - 0.0945Y - 0.0042X2 
T,l 

+ 0.0051Y2 + 0.008lXY (3 . 19) 



Fig. 3.3. Isolines of the 30-Year General ~lonthly 
Mean, m. 

roo" gs• 

Fig . 3.4. Isolines of t he 30-Year Gener al Monthly 
Standard Devi ation, s . 

Table 3 . 2. Mont hly Average Value, m , . of ~leans, Amplitude c1 (ll) and Phase 9l (ll) of the Fi rst Harmonic 

of Monthly Moans, Monthly Average Value, s,, of Standar d Oevia t ions , Amplitude c1 (a ) and Phase 

91(0) of t he First Harmoni c of Monthly Standard Deviations, and the Percent of Variance of mT 

and s, Explained by the Fir st Harmonic of m 
T 

and s, . 

Station • cl <•J II (•! •. C
1
(o) 11 (ol Stat l oa ; C1(•) II(") • . CI(•J t

1
(o) 

~~•r 1 N~t f 

I 1.247 1.182 2.836 93.3G 1.050 0. 69~ 2.679 87. 36 41 2. 206 1.781 !.819 91.33 1.250 0. 758 2.658 S3.SI 
2 1.072 C.92S 1.074 15.15 o. ; 45 0.521 2. 722 ~9.96 42 2.121 1.643 1.115 88.51 1.8:9 0.~~~ ~ . .:17' H.10 
3 J.l59 1.213 l.lr.l9 91.95 C.S96 0.6<15 2.952 94.19 43 3.312 1. :11 2.1<l< 76.98 2.113 0.891 2.S93 67.59 
4 1.394 1.2:o s. ~<1 S4. 47 0.946 o.os9 2.675 96.90 .. 2.971 1.291 2.529 s; . J2 l.olo 0.79, :.(j.? ''·:a s :.a~7 J.:30 2.961 f6.4• 1.557 0.529 2.:63 50.25 45 3.012 1.390 2.!11)~ !9.91 1.9C~ 0.9.6 z.~z1 u: . i -1-
6 2. f.oS 1.160 3.014 88.b6 I. 707 V.U6 2. 481 78.05 46 3,0ll 1. 378 ~.SSl 7.). ::s 1.93$ o.~z: ~ • .:!13 ::.r•: 
7 2.~01 1.004 3.014 74 .39 I. 764 0.~51 2.~50 73.94 -17 2.:10 I. !OS l.~os o:.,o 1.4!1 0.617 2.n1 12 .~3 

a 2.9')7 l.J3S 2.3$6 91.32 LaS? 0.915 2.524 90.63 48 1.2>9 1.180 3.071 fS.I I 0.648 n.7H :! . 364 10.54 
9 Z.!U J.2?i 2.115 &..90 I.S;6 0.635 2.252 6J.S7 49 2.l~l ! .77! 2.912 a•.7> l.)SO 0.9~11 2. :'3~ .i\3.18 

10 2.$91 l.SI3 2. i6l 91.15 1.603 0.!115 ~.549 91.03 so 1.112 1.608 2.054 9l.5S 1.1~7 o.t~a z.n: 04. : 0 
ll 2. 563 l.!iOS 2.862 86.72 1.679 0.865 2.424 92.71 51 1.9~7 1.607 2. ?;4 87.50 1.:!27 O. 77U 2.646 ib. l6 
12 2.49~ I. ~·· 2. 766 92 . 07 t.•24 0. ~94 2. 664 80.71 52 2.062 1.402 3.0l9 92.57 l. z;G 0.604 2. 6Jl so. :• 
ll 2.Z6S 1.594 2.8S8 &4.93 l. 762 0.9>19 2.374 84.14 53 1.703 1.!$0 3.077 9!>. 43 l.JZ2 0.655 2.932 ~7. 75 
l4 2.447 1.648 2.174 91.27 1.522 0.&60 2.735 86. 87 54 1.818 1.6<7 3.007 B9 . o0 1.107 0.679 2. s.n ~1.1)6 

IS :.116 1.514 2.115 09.17 1.471 0.?64 2.U9 95.U 55 1.285 1.191 2.954 74.72 0.894 0.(,(,6 :. :~s 16.~3 
16 2. 7'J9 1.962 2.15$ 92.27 1.892 1.045 2.539 90.15 56 1.676 1.~09 2. 675 91.71 1.092 O. lSI :.•:1 t:.s1 
17 2.183 1.482 2 . 904 90 . 06 I. 527 0.91.1 2.635 95 . 48 57 1.480 1.291 2. 813 88. 32 0.915 0.605 2.iS~ os .. n 
I~ 2. 827 1.954 2.115 88. 41 1.841 1.102 2.625 90. 46 58 1 . 406 1.358 2. 888 80 . 70 O. S6S O.o70 :: . ;.r,g -~- t:J 19 3.267 1.874 2.886 89.65 :.247 l.l91 2.479 79.68 59 1.387 I. lSI 2. 853 82. <2 0.9<»2 0. 756 .!. 7bl 1s.s: 
zo z.ou 1.369 2.956 81.31 1.607 0.824 2.752 70.47 60 2.315 1.219 2. 986 70.21 1.101 o. 710 2. 775 53.56 
21 1.&60 1.497 2.9ol9 9<"1.14 I.SII 0.819 2.if.O 86.20 61 1.282 l.OS9 z.us 9o.'ii 1.172 0.811 :. 778 76.&0 
22 1.$62 1.125 2.953 86.48 1 . 269 0.627 2 . !100 64.03 62 2.6S2 1.415 3.~16 77.9 1 1.982 O.RI5 2.a1 A9.Sl 
23 I . 796 \.485 3.023 92.92 1.452 1.008 2.146 80.99 63 1. 768 1.354 2.938 ss.;7 1.096 0.601 2.6!0 n:iT 
l 4 3.172 l. 774 2.137 11.02 2.250 I. 270 2.476 7C.V9 6• 1.219 1.074 3.207 S\.05 0.379 0.401 l .t.).'H~ 79.Sl 
25 2.4 .... 1.612 2.166 90.ol2 I. 760 1.004 2. 732 M.IO 65 1.422 1.•41 2.900 86.32 0.~87 O.t>:4 l.S~ I 89 .o3 
26 2.989 1.122 2.UI 80. 9$ 2. 111 1.146 2. 746 12.53 66 1.424 I.IS6 l . OOI $5.!3 LOCi 0.578 2. 5~9 91.8~ 
27 2. 277 1. 746 2.1;7 91.34 1. 377 0.916 2. 7ll 97.74 67 l.l3S 1.2<3 l.17 1 90.92 o.~$-= O. S•6 S. l-10 91.$.9 
2S 2.427 1.615 2. 7ll 94. ':2 1,249 0. 718 2.$91 96. 86 68 1.581 1.3i8 2.!>'o 90.~7 1.G22 0.6116 2.6S6 94.90 
29 1. 963 1.67:! 2.773 $0. i 9 1.205 O. PSI 2. 746 88. 62 69 1.277 1.154 3.019 76.lt 0.168 0.637 2.959 67.65 
30 2. 372 l. 724 2.755 92. 09 1.461 0.915 2.444 82 . 37 70 1. 762 1.431 2.925 8G.07 J .OlJl o.Mo 2.928 11. 16 
31 1.949 1.541 2.927 85.64 1.087 0. 716 2. 680 90. 66 71 2. 096 1.628 2. 896 90 . 76 1.252 0. 725 :! . S~-1 % . 33 
32 2.207 I. 760 2. 711 91.91 1.272 0.1100 2.111 91.45 72 1.287 I. ISS 3.117 8l . .C!) 0.>71 0.827 l.L1ll4 ao. s5 
33 2.059 1.711 2. 741 9$.71 1.191 0.911 2.664 15.91 73 1.529 1.207 3.153 $6.19 1.!10 0.602 :.927 u.u 
34 2. 037 1.595 2.069 97.t6 1.07> 0, 755 2.510 94.84 74 1.700 1.310 2.866 87.18 l. lS7 0.697 :. ;z• 69.<9 
35 1.969 1.4~ 2.141 8<1. 60 1. 263 O.U1 2. 763 83. 69 75 2.642 1.536 2.661 93. 11 1.396 0. 77l 2. J-15 89. 49 
36 2.347 1. 720 2.7b2 8&.54 1.320 o.~8o 2. 755 81.60 76 2.480 1.808 2.668 96 . 78 l.H7 0.992 2.650 97. b4 
31 2.011 l. 731 2.111 89.~ 1.224 0.117 2. 755 93.48 77 2.606 1.600 2.672 89 . 15 1.376 0. 740 2.492 rr:n 
ll 1.634 1.393 2.560 95.47 0.952 0.67J 2.392 83.41 78 2.756 1.734 2. ,34 ?2.80 l.467 0.912 2.4~6 S9.7a 
Jt 2.321 1.605 2.141 91.11 1. 335 o. 763 2.623 93.60 19 2.468 1.7<6 2. 779 93.56 1.366 0.123 2.6Sil 76.10 
40 2.340 1.812 2. 132 89.21 1.300 0.160 2,611 9 4 .23 

~ ..... 2.138 1.478 2.101 88. 26 1.367 0 . 102 2.677 ~3.90 
S . d. 0.592 0.245 0.121 5.63 0.364 0. 161 0 . 187 10.SS 
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Fig. 3.5. Correlograms of the Monthly Precipitation 
Series for Stations 25 , 29, and 52. 

Fig. 3 .6. Isolines of the Amplitude, Ct(~), of the 

First Harmonic of Monthly Means. 

cl . (~) 
,1 

1. 7538 - o.0225X - o.Ol73 y- o . 0155i 

0.0173XY + 0.0011X3 

+ 0 . 0025X
2 Y + 0 . 0012Xy2 + 0.0011f (3.20) 

e1 .(~) 2.8450 + 0.0314X- 0.0020Y+ 0 . 0037X2 
, 1 

+ 0. 0069X Y - 0.0004X
3 

- 0. 0004X
2 

Y 

- 0.0009Xf - 0.0008 f (3.21) 
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Fig . 3.7. Isolines of the Angular Phase, e 1 (~J, of 

the First Harmonic of ~tonthly Means. 

•oo• 95° 90° 

Fig . 3.8 . Isolines of the Amplitude, c1 (o), of the 

First Harmonic of Monthly Standard Devia­
tions. 

C1 . Co) 0 . 8349 - o . 0250X - o . o6o5Y- o. oos5x2 
,1 

- 0.0094XY + 0.0210f + 0.0008X3 
+ 0.002SX2Y 

0 . 0013X f - 0. 0010Y3 - 0. 0006Y
4 

+ 0. 0001X
3

y2 

2.3 4 
- o.ooolX v- + o . ooorx Y (3.22) 



Fig. 3.9. Isolines of the Angular Phase, e1 (a) , of 

the First Harmonic of ~1onthly Standard 
Deviations. 

Table 3.3. Percentage of the Explained Variance of 
Trend Surfaces by the Polynomial Functions 
wi th Various Orders. 

Parameter Order of Polynomial Function 
1st 2nd 3rd 4th Sth 

m 
"C 

87 .9 93.3 

cl (IJ) 78.4 

e 1 C11) 81.8 

5 78 .9 90.6 
't 

c
1

(a) 5~.4 70 .0 

e
1 

(a) 71.7 

el,i (a) '" 2.6239 + 0. 0501X + 0 . 03'8~ Y + 0. 0002X
2 

+ 0. 0009~ Y + 0. 0007 t - o. ooozx3 
+ 0. ooolX2

Y 

- 0.0007XY
2 

- 0.001~f (3.23) 

The fitted functions do not explain substantiallY 
the variance of the par ameters except for m and s . 

"C T 
It may be noticed that for the c

1 
. (a) even the fifth-

,1 
order polynomial function does not explain t he variance 
well. This means t hat the r egional ization of parame­
ters of periodic variations is very difficult for a 
large area, and also that the separation of the stocha­
stic component from the monthly precipitation series 
by the parametric method may not be successful. 
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Yevjevich and Karplus (1973) had the same difficulties 
over the area used, which was much smaller than the 
area used in this stu~. They tried to i nfer that the 
rat ios of c1 (11)/m , s /m , and c

1
(a)/m were con-

T T T 1: 

stants over the area. The other method to resolve 
this difficulty in fitting is to divide the total area 
into small subarea, and to find a different model for 
each subarea. 

With the above regional models for the basic 
parameters, the second-order s tationary component tp,t 
for any station series is given by 

( = p,t 
. (3.24) 

Separation of Stochastic Component from Monthly 
Precipitation Series . Since the mathematica 1 model of 
area-time process of the monthly precipitation is not 
estimated well, the stochastic component given by Eq. 
(3.24) cannot be assumed to be a second-order station­
ary process . Therefore, the non-paramet ric method of 
separating the stochast ic component from monthly pre­
cipitation series is used. The stochastic component 
is defined by 

tp ,'t (3 . 25) 

with the supscript p,T then replaced by j, tp , t by 

<:j ' where j = 12 (p-l) + T. The next study is to 

analyze properties of the stochastic component <;j. 

Test of Time Inde endence of Stati onar Stochastic 
Component . In order to test whet er <: is an i ndepen­
dent stationary stochastic process, the correlogram of 
each series ( of the 79 mont hly precipitation series 
is tested for significant departures. Some of the 
correlograms are shown in Fig . 3.10. The test is 
carried out with the 95 per cent tolerance limits 
for the correlogram of an independent series. Only 
the firs t twenty lags of correlograms were checked. 
The 95 percent tolerance l imits, ru and rt, for an 

independent sories are given by 

-1 ± t Jh- k - 2 (3.26) 
ru,l • N - k - 1 

with k = the Lag, t = 1.96 being the deviate from the 
standard normal distribution for a two-tail test that 
Pk = 0 for k > 0 for the (-series, and N = t he 

sampl e size . Table 3. 4 presents the number of rk 

values for the lags 1 through 20, which are outside 
the tolerance l imits for the 79 stations . The per­
centage of the total number of the serial correlation 
coefficients which are outside the 95 percent tol­
erance limits is 6 .27, which is a little higher than 
the expected value of five percent . Among the serial 
correlation coefficients, rk• which are often outside 
the tolerance limits, only the first ser ial cor rela­
tion coefficient r 1 is promi nent. This fact is im-

portant because the r
1 

is affected by some small 

dependence in the monthly precipitation ser ies due 
to t he dependence in the monthly precipitation ser ies 
due to the inherent in meteorological processes from 
day t ·o day. However, only 13 out of 79 stations have 
significant differences of the first correlation 
coefficient from P1 = 0 . The stochastic component of 



0 

rk 

0.1 

0 

-0.1 
-95% T.L. 

0 5 10 15 20 

Fig. :>.10. Correlograms of the Stochastic Component of 
Monthly Precipitation Series of Stations 1' 
25, 29, and 52 . 

Table 3.4. Numbers of Serial Correlation Coefficients 
for the 79 Series of ~ Outside the 95 
Percent Tolerance Limits of Independent 
Series. 

Lags 
Number of Stations Percentage 
Outside 95\ T. L. 

1 13 16.46 
2 5 6.33 
3 3 3. 80 
4 4 5.06 
5 2 2 .53 
6 2 2. 53 
7 3 3.80 
8 6 7.59 
9 6 7.59 

10 4 5.06 
11 6 7.59 
12 3 3.80 
13 7 8 .86 
14 3 3.80 
15 1 1.27 
16 6 7.59 
17 8 10.13 
18 5 6.33 
19 8 10. 13 
20 4 5.06 

Total 99 6.27 

the monthly precipitation series over the Upper Great 
Plains can be considered to be approximately the time 
independent variable, also supported by other studies, 
such as Roesner and Yevjevich (1966) and Karplus (1972). 
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Analysis of Independent Identically Distributed 
Stochastic Component. For the further mathematical 
description of monthly precipitation series, it is 
necessary to determine the probability distribution 
function of the ~-series. It is more important to 
transform the distribution of the stochastic component 
t into a normal distribution than to determine the 
exact distribution of the stochastic component itself, 
because the normal distribution is convenient for the 
generation of multivariate stationary series , and the 
t has usually a positively skewed distribution. The 
problem is what transformation should be used to 
transform ~ into a normal distribution. Generally 
logarithmic, square-root, cube-root, and similar 
transformations are used (Stidd, 1953; Kirby, 1972). 
Suzuki (1968) developed a way of finding the root which 
can be taken in transformation to obtain a symmetric 
(not necessarily normal) distributi on from an asym­
metrical distribution. The exponent "e" required! 
to normalize the distribution is found f r om the fo llow­
ing two equations: 

e 
Q (0.16N) + 

e 
Q (0.84N) 

e 
ZQ (0 .5N) = O (3.27) 

and 

(3.28) 

where N c the sample size and Q( · ) = an ascending 

ordered value of the concerned variable. The exponent 
e, satisfying the above two equations, can be found by 
Newton ' s approximation method. The simple way of 
finding the exponent , suggested by Suzuki (1968), is 
used in this study. The approximated values of the e 
are given by 

log2/(l ogQ(0. 84N) 

and 

e2 = log2/(logQ(O.?SN) - logQ(0. 5N) ] 

while the difference terms are given by 

and 

681 • [Q(O.l6N)/Q(0.84N)J el/[logQ(O.SN) 

- log:Q(0 . 84N)l 

682 • [Q(0.25N)/Q(0.7SN)Jez/(logQ(O.SN) 

- logQ(0.7SN)] 

Finally, the estimate e is given by 

(3 . 29) 

(3. 30) 

(3.31) 

(3.32) 

(3.33) 

Since the stochastic component of monthly precipitation 
series is standardized, thus having negative values, a 
direct application of the above method to ~ series 
is not feasible. A rate of transformation is the same 
in both directions with regard to the mean or zero and 
the skewed shape is not transformed well by direct ap­
plication . Therefore, (~ + c)-series is used in this 
transformation. The c may be a parameter rather 
than a constant. However, it is not easy to find 
simultaneously the best estimates of these two parame­
ters. In this study, c is considered a constant. To 
obtain a general idea of the value of e, the minimum 
values of ~ for each station are taken as constants. 
In this approacn, the average va lue of the exponent 
was 0.348, with the standard deviation of 0.164 and 



the range of values from -0.078 to 0 . 778 . Since the 
average value of the estimated exponent is cl ose to 
0.333 and no special pattern of the areal distribution 
can be found, the cube-root transformation i s chosen 
to make the distribution of the st ochast ic component 
normal. The cube-root transformation was used for the 
same purpose by Karplus (1972) . 

The new series ~. whose values are all or al most 
a ll positive, is defined by adding a certain constant 
to the stochastic component and taking the cube-root, 
that is, 

(3. 34) 

The absolute mi ni mum values of t for each station, 
denoted by I ~ . I, and their average value of 1.7653 m1n 
are taken as constants. The goodness of fit of the 
normal distribution to the ~-series is determined . 
The chi-square values for the 79 fits are computed 
using ten class interval s of equal probability with 
seven degrees of freedom at the 95 percent tolerance 
l i mit. For the I~ . I as the constant, 60 out of m1n · 
the 79 stations were accepted to be normally distribu­
ted, but wi th different means and standard deviations. 
For the average minimum, or 1.7653, only 49 stations 
were accepted. The distribution of the ~-series over 
the area may be approxi mated by the normal distribu­
tion. Distributions are not identical for each 
station, however. Therefore, further steps are needed 
to obtain time independent , but regionally dependent, 
i dentically distributed normal variable. 

On the basis of the above analysis, the ~-series 
are assumed to be defined by the standar·d normal vari­
able u, as 

~ = (1.1604 + 0. 238lu)3
- 1.7653 (3.35) 

The three constants, 1.1604, 0. 2381, and. 1. 7653, are 
the averages of the means and standard deviations of 
the 79 series of '' for I ~ . I as the constant, and m1n 
t he average value of ltmin l ' respectively. If the 

relation given by Eq . (3 . 35) is accepted for the area, 
the '-series can be assumed independent identical ly 
distributed random variable. The expected value and 
the expected variance of ~ can be calculated anal y­
t ically when u is a standar d normal variable. For 
a standard normal distribution, the k-th moment Ilk 
is given by 

1 f "' k -x2/2 ;z.rr x e dx _.., (3.36) 

k - x2/2 When k is an odd number, x e in Eq. (3 .36) is 
an odd function, and its integrat ion from to "' 
gives zeros. For k even, Eq . (3. 36) becomes 

Ilk = 1•3•5• •• (k- 1) ' (k=2,4,6, •• · ) (3.37) 

Since the first six moment s of a st andard normal 
. 3 5 2 var1able are E(u) = E(u ) = E(u ) = 0, E(u ) = 1, 

E(u4) = 3, and E(u6) = 15, the expected value and 
variance of s are 

E[(l. l604 + 0.238lu) 3 - 1.7653] 

-0 .0054 (3 . 38) 
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2 
Var (t ) = E{ (~ - E (~)} } 

= 1. 0809 (3 . 39) 

Aft er the distribution function of ; is cal­
culated from the· di stribution function of the 
standard normal distribution , the comparison of 
the observed frequency distribution with the a s ­
sumed distribution function of ~ is carried out by 
the Kolmogorov-Smirnov test at the five percent level 
of significance, though i t is a weak test. Some 
compari sons are shown i n Fig . 3. 11. Only two out of 
the 79 t ests give significant t est statist ics . That 
is, the maximum differences of probabilities of 
distribution curves, (AF)max' for these two stations 

are bigger than the critical value of Kolmogorov­
Smirnov statistic of AF = 0.0717, for the sample 
size N = 360. Thus the 79 series of t of the area 
can be considered as independent i dent ically distri­
buted random variable, defined by Eq. (3 .35). 

F!{) 

Fig. 3.11. Theoretical Distribution of t (1), the 
Corresponding 95 Percent Tolerance Limits 
(2) and (3) for the Use of Kolmogoro~­
Smirnov Statist ic Tests, and Two Observed 
Frequency Distributions of Station 1 (4) 
and Station 52 (S). 

Regional Dependence Structure for Stochastic 
Component. The r egional dependence of the identically 
distributed series of stationary stochastic variables 
is analyzed by using the lag-zero cross correlation 
coefficients as related to the i nterstation distance 
d and the orientation ~ · The two models discussed 
in Sect ion 3.5 are studied for the standardized 
stochast ic component ~ and the transformed series ~ . 
which are defined in t he previous Section. Figures 
3.12, 3.13, and 3.14 present relations of the (r,d)­
point and figures of isolines of the interstation 
cross correlati~n coefficient s from a given center 
stat ion. The correlation structure is not isotropic 
as shown i n Fig . 3. 13 . In the Upper Great Plains, the 
decay of correlation coefficient for the north-south 
direction is higher than that for the east-west d irec­
tion. Those figures support the two models 

(3. 40) 

and 
(3.41) 
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-0.2 

d 
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Fig. 3.12. 

Fig. 3.13. 

Lag Zero Cross Correlation Coefficient , 
r, Versus the Interstation Distance, d, 
and the Fitted Function r = exp (-0.00418d) 
for the Stochastic Component of Monthly 
Precipitation. 

Isocorrelation Patterns Based on Relation­
ship Between Station 52 and All Other 

Stations for (t - t )
113

. min 
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Fig. 3.14 . lsocorrelation Patterns Based on Relation­
ship Between Station 1 and All Other 
Stations for the Series (. 

The unknown coefficients in Eqs . (3.40) and (3 .41) are 
estimated by using a nonlinear least-squares fitting 
procedure, which is available in the Biomedical Compu­
ter Programs (Dixon, 1969). The 3081 values of r, d, 
and ~ are used to estimate the coefficients. The 
results are summarized in Table 3.5. For the different 
series , the two types of regression explain over 80 
percent of the variance of r. There are little dif­
ferences between the estimated coefficients of the 
original and the transformed series, though the maxi­
mum orientation of the original series is a little 
bigger than those of the transformed series. The 
transformation of the series does not affect the cor­
relation structure of the original series, which is 
the same conclusion as that made in the study by Huff 
and Shipp (1969). Since the differences of the ex­
plained variances by Eq. (3.41) from those by Eq. 
(3.40) are only three percent higher, thus introducing 
the complication and the additional labor by using Eq. 
(3.41) , the increased accuracy does not seem worth­
while. Therefore, the model given by Eq . (3.40) is 
used in consequent investigations. 

Under the circumstances, the regional dependence 
structure of the series u is defined by 

r ~ exp(-0.00402d) 

However, the regional dependence structure of t he 
original series t is defined by 

(3.42) 

r = exp(-0.00418d) (3 .43) 



Table 3.5. Fitting Models P = f(d,~) for the Regional Dependence for the Sample Size N=3081. 

Series Regression Equation Expl ained 
~max Ellipticity Variance 

; r = exp(-0 .00418d) 80 . 6% 

(; -;min) 
1/3 r = exp(-0.00402d) 80. 3% 

(; ... -;:-, 7653) 113 r Q exp(-0 .00410d) 79.3% 

f; r Q exp[(-0 .00416 + 0.00048cos2~ + 0. 00023sin2') d] 83.1% 12.98 0. 773 

(t - f;min) 
1/3 r = exp[(-0.00402 + 0.00055cos2' + 0.00006sin2,)d] 83.4% 3.05 0.758 

(f; - tmin) 
1/3 r = 0.922exp(-0.00404d) + 0.078 82 . 7% 
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Chapter 4 
MULTIVARIATE DATA GENERATION AT A NEW GRID OF POINTS 

The data generation or the experimental Monte 
Carlo method is useful when problems are too compli­
cated to be analyzed analytically. In hydrologic 
problems associated with area and time or space and 
time, the main concern is for the areal or spatial 
distribution and the variation in time. Since the 
present observational points are located irregularly 
over an area, representing different area sizes, the 
esti.mates of areal distributions are made by drawing 
the isohyetal maps and measuring enclosed areas by a 
planimeter. This is time consuming work, subject to 
some errors. The generation of new samples of data 
at a new systematic grid of points can help to solve 
the above problem, by using the models as discussed 
in Chapter III, since the models condense the area­
time information. Hence, the solution of the problems 
involved may be dissociated from the set of observa­
tional stations. 

4.1. Multivariate Generation Method 

To generate hydrologic series at points over an 
area, or generate multivariate sample series, the 
cross correlation coefficients between stations over 
the area must be considered as well as the series 
means, variances, skewness coefficients, and serial 
correlation coefficients (Fiering, 1964; Matalas, 
1967). A rather simple way of generating multivariate 
series is based on a multivariate second-order station­
ary generating process, which is discussed by Matalas 
(1967) and Young and Pisano (1968). 

The multivariate generation of samples of the 
stochastic component of the monthly precipitation, or 
C, is the subject of this study, and its model is 
then 

ij+l " Atj + ~+1 (4 .1) 

with j the month, A and B the (M x M) diagonal 
matrices, c. 1 a (M x 1) matrix . The variable t -J+ 
should be considered normally distributed with mean 
zero and variance unity. When t is not normally 
distributed, transformations such as logarithmic and 
cube-root are made to approach a normal distribution 
as closely as possible. Therefore , t and u 'follow 
the standard normal distribution, and E(C) = 0, 
E(u) \ = 0, Var (C) = 1, and Var (u) "'). The 
matrices A and ! arc given by 

A"' 

and 

-1 
RlRO 

(4. 2) 

B BT = R -1 T (4. 3) 
-- 0 - RlRO Rl 

where R0 = the lag-zero cross correlation matrix of 

t, R1 • the lag-one serial correlation matrix, R~1 = 

the inverse of R0, and BT and Ri = the transposes 

of ! and R
1

, respectively. Equations (4.2) and 

{4.3) define the coefficients of matrices A and B. 
The solution for B can be obtained either by ortho­
gonalization or recursive scheme technique, or by 
principal component technique (Matalas, 1967; Young 
and Pisano, 1968). 

In general, the stochastic component of the 
monthly precipitation can be assumed to be independent, 
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then Eqs. (4 .2) and (4.3) are reduced to the following 
forms 

and 

A • 0 

B BT .. R 
-- 0 

(4.4) 

(4 .5) 

For the generation at a new grid point instead of 
the original stations, the lag- zero cross correlation 
matrix R0 can be defined by regional dependence 

model such as Eq. {3.42). 

4.2. Determination of Grid System 

One of the important problems in using the grid 
system is how to define the system, especially the 
grid interval which determines, to a large extent, the 
accuracy of the representation. 

The objective and general method of designing the 
grid network has not been established. Determination 
of the grid system may depond upon the phenomenon 
studied, the scale of area studied, the needed 
accuracy of results, and economic restrictions. Among 
several kinds of grid systems such as square, rectan­
gular, and triangular ones, a square grid system is 
exclusively considered in this study because the 
correlation structure i n the Upper Great Plains is 
assumed to be isotropic. If the regional dependence 
structure is anisotropic or elliptic like that of Eq. 
(3.14), a rectangular grid system with the major and 
minor axes of the ellipse as the sides of the rectan­
gles may be better to givo the equal weights to in­
formation availabl~ for all directions. 

Considering the scale of the area, the number of 
the original stations used in modeling, and a capacity 
of the available computer, the number of the grid 
points in this study was selected to be around one 
hundred, giving a grid interval of about one hundred 
miles. On the basis of these considerations, the grid 
interval is decided by the criterion that a correla­
tion coefficient r between the value at a grid 
point and the average value of the area represented 
by the grid point is higher than a certain value. 
From purely statistical grounds, one might plausibly 
choose an acceptable value of the coefficient of deter-

mination such as r 2 = 0.8 and 0.9. The procedure of 
obtaining this correlation coefficient is as follows. 
A (L x L) - square area consisting of (l x l) smaller 
squares, as shown in Fig. 4.1, is considered to be an 
area represented by a grid point located in the middle 
area. Assuming that each small area (l x l) is 
homogeneous and the point in the middle of each area 
represents that area properly, the mean value of the 
big square area is given by the average of values of 
these small squares. Let ti and (c denote the 

value of the small square i and the value of the 
representative point c, respectively. The number 
of the small squares is denoted by n. Then the 
average val ue ~ is given by 

1 n 
t =- I c. 

n i • l l 
(4 .6) 

Since ti is standardized, the mean, variance, and 

covariance are given by E(t1) '• 0, Var (t1) • 1, 



. . . 
~. ~2 ~, 

. . . t • 
!c 1 

. . . 
~n- 1 !n 

L 

Fig. 4.1. Graph for Determining the Grid Interval L 
on the Basis of the Correlation Coefficient 

1 n 
of t c and the Average Value ~"' - L f;., 

n i"'l ~ 
where ti Represents Values of the Small 

(.f. x .t) Squares. 

and Cov (ti ,tj) = rij' where rij is the cross 

correlation coefficient given by Eq. (3.43). The 
mean and variance of f and the covariance of I and 
tc are given by 

and 

E(~) 0 

1 2 n-1 n 
• - + -2 r r r .. 

n n i =1 j=i+l 13 

Cov(tc•t) 2 Cov[tc'~t 1 + t 2 +•••+ tn)] 

1 n 
=- L r . 

n i"'l C1 

(4 . 7) 

(4. 8) 

(4 .9) 

Then the correlation coefficient of f; and 'f is 
c 

r = Cov(t .t)/[Var(C )Var(tH
112 

c c 

- - 1 l/2 Cov (t , f; )/ [Var(t) c (4 .10) 

Because the value of ten miles for .t can be reason­
able for the monthly precipitation, the correlation 
coefficients are calculated for a several set of n 
and L with .t = 10 miles. The results are shown in 

Table 4.1. When r 2 = 0.9 is taken as the criterion 
to define the grid system, the grid interval of 100 
miles is chosen from Table 4.1. For r2 "' 0.8, the 
gr id i nterval of 200 miles is chosen. Considering 
these values as well as the previously described con­
ditions, the 100-mile grid interval is chosen in this 
study. 

To cover the study area, a (10 x 8) square grid 
system with 100-mile grid interval is chosen for the 
generation of new samples and the investigation of 
drought characteristics. Each station represents an 
area of 10,000 square miles, which is cal led here a 
unit-~~. The grid system covers a total of 800,000 
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Table 4.1. Correlation Coefficients of the Areal 
Represen~ative Value t c and its Areal 
Average t for Various Grid Interval L 
Consisting of n small (.t x .t) 
Miles Areas. 

Square 

n .t L r r 2 

9 10.0 30.0 0.9861 0 .9723 
25 10.0 50.0 0.9759 0.9524 

49 10.0 70.0 0.9661 0.9334 
81 10.0 90.0 0.9563 0.9145 

121 10.0 110.0 0.9467 0.8962 
169 10.0 130.0 0.9372 0.8783 
225 10.0 150. 0 0.9275 0.8602 
289 10.0 170. 0 0.9181 0.8428 
361 10.0 190.0 0.9086 0. 8255 

square miles, or 80 unit-areas. Figure 4. 2 shows the 
grid system over the area studied and the l ocation of 
the new eightly stations or points. 

I DO" 9 • ~ 

• ' • • • • • • I 2 3 4 1:1 6 7 8 . 
• • • •• 14 . ~. • • • 9 . 10 12 13 . 15 16 . 
• • •• • io • • • • • 17 18 19 2.0 o 2.1 22. 23 24 . . . 

2.8 2.9 • • • • • • • • • 2.!1 • 26 27 . . 30 31. 32 . . 
• • • .. • •• • 33 3 4 35 3& 3 • 38 39 40 . 
• . . • .. ~ . • • • 

[45 
• • • 42 43 . 44 46° 47 48 . . 

• • •• • 53 • • • . • 49 1:10 5 1 • 52 . !54 !IS 56 

40" 

. . 61 . 
• • • • . • • • • :H 58 59 • 60 62 63 64 . . 

• • • • • • • • • 6 •66 61 . 68 69 TO 71 72. 

• 7~ 7 ... . 7~ 7~ :. 7.Q . ~ 73 3 

Fig. 4.2. Grid System (Big Points) with 100-Mile 
Grid Interval over the Upper Great Plains 
and Observed Stations (Small Points) with 
Their Series Used for Objectives of ~lodel­
ing. 

4.3. Checking the Generated Samples 

The sample series of t , each 1200 months long, 
are generated at the selected 80 grid points by pre­
serving the mean, variance, and lag-zero cross correla­
tion coefficient, as defined by Eqs. (3 .35) and (3.43). 
The mean, standard deviation, skewness coeffici ent, 
excess coefficient, and the minimum value for the 
generated samples of the 80 stations , each sample 500 
months long, are given in Table 4.2. The generated 
samples could be accepted without a rigorous statisti­
cal test, becaus·e the multivariate generation of 



Table 4. 2. Statistics of Generated Samples Each of 
N = 500 Months, with Extremes Underlined, 
and Values Outside the 95\ Tolerance 
Limits with the Sign*. 

S..tatioo. 

I · 0.11092 
2 ·0.0556 
l -0.00911 
4 •0.0211 
5 · 0.0106 
6 0.0145 
7 ·0.0162 
a -o.o52S 
9 0.0006 

10 0.0064 
l1 0.0451 
12 -0.0 151 
13 ·0.0101 
14 -0.0323 
IS ·0.0102 
16 0 .0127 
17 0.02U 
II 0.0401 
19 0.0191 
20 0.0456 
21 O.Oh05 
2Z 0.0214 
2l 0.0205 
24 o.osu 
z.s 0.0¢03 
26 0.0554 
27 0.0540 
za o.ouo· 
29 0.0715 
30 0.1219" 
31 0.0411 
32 0.0121 
n o.ono 
Sol 0.0824 
35 0.0727 
36 0.1050" 
37 o .uza• 
38 0.1192" 
39 0.0275 
40 ·0.0226 
h 0 .0624 
42 0 . 1018" 
41 0.1260" 
u o.o•n• 
45 0.07l3 
46 o.oa54 
47 0.0528 
48 ·0.0339 
49 o.oau • 
5o o .04U 
51 0 .0409 
52 0.0263 
53 0.0207 
54 0.0453 
ss 0 .0203 
56 ·0.0071 
57 0 .0246 
sa -o.o;o2 
59 ·0.0019 
60 -0.0101 
61 -0.0191 
62 0.0075 
63 0.0205 
64 0.0154 
65 0.0144 
66 -0.0195 
67 0.0099 
68 -0. 0226 
69 •0.0191 
70 -0.0099 
71 -0.0096 
72 0.0304 
73 0.0158 
74 0.0015 
75 •0.0066 
76 0.0165 
71 -0. 0135 
78 ·0.0041 
79 0.0124 
10 0.0199 

Hem 0.0259 
s.o. 0.0424 

o:::nn•d 0.0000 

Sund.ud Skewness 2.);cess 
DeYiatioa Coe££ic.ia.t Coe!£ic:ie::nt 

1.0143 
1.0130 
1.0010 
1.0710 
1.0752 
l. llll" 
1.0263 
0.9·U2• 
t:O'l'iT 
I.Cll4 
1.0398 
1.0181 
0.9891 
1.02$9 
1.0659 
1.0971 
1.0554 
1.0119 
1.0403 
1.0661 
1.0292 
1.0007 
1.0'!2 
1.1234• 
l.i19U 
1. 14SO• 
r:T.i"!'O• r:om 
1.0114 
1.0469 
1.0651 
1.0797 
1. 0951 
1.113&• 
1.0092 
1.06U 
1.0106 
1.0577 
0.9962 
1.0241 
1.0913 
1.0294 
0.9931 
1.05U 
1.1176• 
1.0734 
1.0439 
0.9513 
1.0732 
1.0260 
l .Ol!i6 
0 .9980 
1.0919 
1.0799 
1.0671 
o . 9952 
1.0144 
0. 9a02 
0 . 9471" 
0 .9595 
1.0921 
1.0575 
1.06~1 
1.0019 
l.O~OS 
t.o.a::s 
1.0317 
1. 0046 
1.0222 
0.9974 
1.03U 
1.0652 
1.0350 
1.0761 
1.0912 
1.0941 
1.0044 
I.OZ31 
1.0761 
1.0466 

1.0464 
0.0421 

1.0000 

1.0753 
l.4Ul 
0.9464 
1.3290 
1.2211 
1.4363 
1.3321 
1.2666 
1.0291 
1.0155 
o. 8527 
1.2112 
0.9S21 
0.9910 
1.5951 
1.4840 
1.1003 
1.1617 
I. IS61 
1. 1!45 
1.0106 
0.91&6 
1.2424 
1.4594 
1.2557 
2. 0074 
T:4ffi' 
0.8162 
0.9030 
0.9191 
1.14116 
1.3614 
1.0044 
1.3459 
0. 9381 
1.05<7 
1.0994 
0.9611 
1.0742 
1.5394 
1.1138 
0.9604 
0. 7413 
o.gm 
1.3619 
1.3'%44 
1.3168 
1.1622 
0.9?14 
0.1745 
0.!772 
0.9687 
1.4916 
1.2616 
1.1695 
1.1175 
1.226t 
0.8819 
0.!000 
0.6964 
l.lO~!f 

0 .9993 
1.1519 
1.0241 
1.3217 
1.26~0 

l.0$~9 
0.9950 
1.1140 
1.0191 
1.0391 
1.3349 
0.9232 
l.Ul7 
1.40" 
1.4514 
1.2262 
1.0212 
1.1139 
1.3157 

1.1569 
0.2202 

1.6511 
4.1743 
0. 997~ 

2.5061 
I,I12Z 
3.0546 
3.0162 
3.4078 
t.ll5C 
1.1220 
o. 7601 
2.0770 
1.1114 
1.1056 
4,45611 
3.06<8 
1. 7790 
2. 7469 
2. 2531 
3. 7411 
2.2134 
1.1216 
2.11411 
!. 5526 
2.29~ 
a. 7175 
T.'mT 
0.4611 
r.nn 
1.0467 
2.02&1 
2.4110 
1.0339 
2.&lS9 
1.2501 
1.3129 
1. 6346 
0.9507 
1.4130 
3.60as 
1.<127 
1 . 1566 
0.5507 
1.0333 
2.3754 
2.4630 
2. 8399 
3.5096 
0.96•3 
0.<671 
0.6285 
0.19~2 

3. 1641 
2.1(106 
1.66$1 
2. 2711 
2.16~6 
0 .9~94 
0.1211 
1.01!1 
2.3381 
O. 7SIO 
1.4333 
l.I:S.Sl 
2.a499 
2.3Sll 
1.ll30 
1.1511 
1.1290 
1.3643 
o.nn 
2.•• 34 
0.9390 
1. 8539 
2. 7600 
3,4461 
3.0616 
I. 2794 
2.0796 
2.9147 

2.0541 
1.2.76 

O.U71 

- 1.7459 
·I. 749a 
-1.7480 
-1.675a 
·1. 7073 
· 1. 70U 
·1.1243 
·1.6223 
·1.6919 
-I. 7121 
· 1.6607 
· I. 7117 
·1.6105 
·1.6310 
·1.6131 
-1.6379 
-1.7053 
•I. 7146 
·1.7135 
·1.7131 
· 1.6235 
· 1.6970 
· 1.11U 
·1. 5929 
-1.6675 
·1. iOOl 
· I. 7147 
· I. 7646 
-1.7639 
-1.6655 
· 1."67 
- 1.6554 
·1. 7539 
·1.72:)6 
·I. 736& 
- 1. 7Z22 
·I. 7590 
-I. 7440 
-1.6443 
·l.Slll 
·I. 7%19 
-I. 7631 
·1.6633 
-1.1560 
·1.5759 
·1.6110 
·1.6-ISO 
·1.6764 
·1.6662 
·I. 7059 
·1.7155 
·1. 7032 
-1.1480 
· 1.6501 
-1.6326 
·I. 7160 
-1.6512 
·1.6672 
-I. 5826 
·1.69H 
·1.6223 
· 1.6900 
-1.6l0l 
-1. SiOl 
-1.6368 
-I. 7001 
· 1.6161 
·1.6305 
·1.6511 
-1.7067 
-1.6963 
-1 .6549 
·1.6832 
-1. 75n 
· 1.6779 
·I. 7112 
· 1.6279 
·I. 71"6 
· 1.1410 
· 1.6796 

·1.683a 
0.0513 

• 1.7653 

samples has been used for a long time. However, since 
the method was applied to generate many samples of 
point s eries over a large area, simple statistical 
tests were carried out to check whether the generated 
sampl es preserved the inferred stat istical properties. 
For testing the preservation of the mean, standard 
deviation, serial correlation coefficient, and cross 
correlation coefficient , tolerance limits at the 95 
percent level w~th the sample size N • 500 wore used. 
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For the mean, the 95 percent tolerance limits, 
and mt, are given by 

m • = p ± 1.96o//SGO u., .... (4.11) 

For 11 0.0054 and o = 1. 0397, then mu. = 
0.0965. In case of the standard 

percent tolerance interval is 

0.0857 and mt • -

deviation, the 95 
defined by 

2 2 
0 xo.o25 2 
--4;.9.;.9;..=.:~ < s 

2 2 
0 xo .975 

< 499 

2 For a • 1.0397, x0_025 439.0701, 

562.7223, then Eq. (4.12) gives 

0.9375 < s < 1.0615 

and 

(4 .12) 

2 
xo.975 c 

(4 . 13) 

The 95 percent tolerance limits for the serial 
correlation coefficients with the lag k are given 
by Eq. (3.26), namely 

-1 ± 1. 96 f,i98:k 
riL,l = 499 - k ( 4 .14) 

The tolerance limits for the zero lag cross correla­
tion coefficient as related to distance d, defined 
by Eq. (3. 43) , was found by transforming the estimated 
p values into the Fisher's z variable. The 95 
percent tolerance limits for z are 

zu.,! • zp ± 1.96oz , ( 4 .15) 

where zp 
-1 

tanh p, oz 

( -0 . 00418d). 
are converted 

Then these 
back into 

• 1/1497, and p = exp 

95 percent tolerance limits 
ru.,t(d), by 

( 4 .16) 

Using these above tolerance limits, the statis­
tics are tested. For the means, nine out of 80 
stations, or 12.5 percent of stations, showed the 
values outside the 95 percent tolerance limits. For 
the standard deviation, eight out of 80 stati ons , or 
ten percent of total stations, were outside the 
tolerance limits. Though for both statistics the 
numbers of stations outside the 95 percent tolerance 
limits were somewhat larger t han four (5 percent of 
80 stations), the deviations are not very large. 

Table 4.3 shows the number of stations, whose 
serial correlation coefficients are outside the 95 
percent tolerance limits. Though tho serial correla­
tion coefficient for the lag three is often outside 
t he tolerance limits, the generated samples as a 
whole were considered to be time independent, because 
the total percentage of the s tations with the rk 

outside the t ol erance limits was small , 3.88 percent. 
Figure 4.3 presents some randomly selected cr oss 
correlation coefficients of the generated samples 
versus the inter station distance , with the original 
regional dependence function and its corresponding 95 
percent tol erance limits . The points outside the 
tolerance limits are few. Therefore, the regional 
dependence structure was preserved in the generated 
samples. The time and r egional structures were well 
preserved. 



Table 4.3. 

Lags 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Total 

Number of Serial Correlation Coefficient 
of the 80 Generated Samples, Which are 
Outside the 95 Percent Tolerance Limits 
of the Independent Series. 

Number of Stations 
Outside 95% T. L. 

2 
3 

12 (15.0%) 
2 
2 
7 
2 
1 
1 
0 
2 
3 
1 
4 
3 
3 
1 
7 
3 
3 

62 (3.88%) 

The average of the skewness coefficients for the 
generated samples was greater than that of t he original 
series. The excess coefficients for the generated 
samples were very scattered, with their average value 
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1.0 

Fig . 4.3. Randomly Selected Cross Correlation 
Coeff icients of Generated Samples Versus 
t he Interstation Distance, with the 
Original Regional Dependence Function and 
its Corresponding 95 Percent Tolerance 
Limits. 

much greater than the average value of the original 
series. The difference between the minima of the 
generated and original samples was not large, but 
their standard deviation was different, which may come 
from the model of the stochastic component defined 
by Eq. (3.35) . Border effects on generation seem to 
exist in l ocations of occurrences of extreme values. 
That is, the extreme val ues seem to occur around the 
border more often than in the middle of the area. 
However, a rigorous statistical test was not carried 
out. 

In view of these tests and considerations, the 
generated samples for the stochastic component of the 
monthly precipitation series can be accepted as appro­
ximately a time independent, second-order stationary 
process, with the regional dependence defined by Eq. 
(3.43) . 



Chapter 5 
EXPERIMENTAL METHOD OF ANALYSIS OF AREAL DROUGHT CHARACTERISTICS 

The monthly precipitation is a periodic-stochastic 
process, because each month has a different mean and 
a different standard deviation. Therefore, the time 
position inside the year is an important factor in 
the analysis of discrete time series with their int er­
val a fraction of the year. The stochastic component 
inside the monthly precipitation series is approxi­
mately a second-order stationary, identically distri­
buted stochastic process in most cases. In this 
Chapter, only the stochastic component is analyzed in 
order to derive general characteristics of regional 
droughts. Drought characteristics of monthly precipi­
tation are discussed in Chapter VI. 

The generated samples at t he 80 station points 
of the i.i.d. process of ~ . with the lengt h of 1200 
month.ly values f or each sample, are based on the 
models developed in Chapter III . These samples are 
then used to investigate the areal drought character ­
istics. As shown in Fig. 4.2, these 80 stations of 
the selected grid cover an area larger than the area 
of the Upper Gr eat Plains , from whose observational 
stat ions the models were inferred. Since the coverage 
of this larger area does not seem to influence the 
general characterist ics obtained on droughts of the 
Upper Great Plains , the generated series at the 80 
stations are used without further modification. 

5.1. Definition of Droughts and Development of 
Indices of Drought Characteristics 

In this study, a drought is defined by using the 
differences between the water supply and water demand 
series . The water supply series are def ined by the 
stochastic component in the monthly precipitation, 
which is assumed to be a time independent stationary 
stochastic process. The water demand series are 
given either by the mean of the stochastic component 
or by its probability quantiles as 

(5.1) 

To analyze the general drought character ist ics, the 
mean of the stochastic component may bo used as the 
truncation level . For a standardized random input 
process, the water demand is then t 0 • 0. The other 

-1 truncation levels, such as t 0 ~ F (0 . 5) , are used 

for comparisons , with all the truncation levels used 
as water demands being time invariant. In practice, 
truncation l evels at the mean or the median are 
important as the benchmark levels. 

Indi ces expressing drought characteristics should 
be defined before an analysis . Some of them are listed 
up by Yevjevich (1967) and Kates (1971), such as (1) 
magnitude, (2) duration, (3) areal cover age, (4) in­
tensity (maximum, average), (5) spatial distribution, 
(6) drought initiation or termination, etc . The cap­
ability for drought prediction on a medium or long 
range is very limited if not zero . By using a statis­
tical approach, the first four characteristics of 
drought are investigated i n this chapter, par ticularly 
the areal coverage and drought severity over that 
area, with their probabilities and time durations. 
First, the areal dr ought characteristics !or a month 
are studied without any consideration of drought 
duration. Then, the time factor of areal drought 
characteristics i s investigat~d . 
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For the areal drought characterist ics, tho three 
indices selected are : the def i cit area, A, the total 
areal deficit, D, and the maximum deficit intensity, 
I. For the truncation level, t 0, these indices 

as random variables are defined as 
80 

A " .I r ct<~ l ctil 
~=1 - 0 

(5. 2) 

80 
D .I c~o- til 1 ct~c ) ct.) (5.3) 

and 
l=l 0 ~ 

I ~0 - min(tl,t2 ,···,~80'~0) (5.4) 

where is an indicator function defined 

by 

= 0 (5.5) 

and i = the stat ion number. According to definitions, 
the deficit area does not express how the deficit s are 
distributed over the whole area. The total areal 
deficit, therefore, does not take into account t he 
spatial distribution of the deficit. Though these 
variables do not present the complete information on 
regional droughts, they are primary factors in drought 
investigations for a large area. Other viewpoints 
can be applied in further i nvestigations on the areal 
aspects of droughts. 

The indices defined by Eqs. (5.2) through (5.5) 
can be consider ed as non-negative, bounded random 
variables. The deficit area, A, is bounded by zero 
and 80. Since the probability of P(~~-1.7653) is 
less than 0.0001, the highest maximum deficit inten­
sity at the truncation level c0 may be conceived 

as (1.7653 + t 0) . Ther efore, the maximum deficit 

intensity, I, may be considered as bounded by zero 
and (1 .7653 + ~0) . A product of the highest maximum 

deficit intensity and the whole area, that is , 
80(1 . 7653 + t 0), gives the maximum possible total 

areal deficit . Tbe total areal deficit, D, is 
bounded by zero and 80(1.7653 + t 0) . Although the 

deficit area is defined as a discrete variable by 
Eq. (5.2), the deficit area should be a continuous 
random variable. 

5.2. Statistical Analyses of Drought Characteri stics 
I 

The basic statistics of the t hree drought 
characteristics (the deficit area, the total areal 
deficit, and t he maximum deficit int ensity) are com­
puted from the 1200-month generated sampl es for 
different truncation levels. The results are pre­
sented in Table 5.1. The variation of basic statis­
tics of distributions of the deficit area and t he 
total areal deficit ~ as funct ions of the truncation 
level , are shown in Fig. 5 .1 . The di stribution 
statistics of the deficit area are expr essed in per­
centage of t.ho total whole area (or of 80 stations). 
The mean of the deficit area increases with the prob­
ability of the truncation level, as expected . The 



Table 5.1. Basic Statistics of the Deficit Area, the 
Total Areal Deficit, and the Maximum 
Deficit Intensity for the Sample Size 
N = 1200. 

.... 
"' Q) 
1-< f.> < ..... 

CJ 
·..-i ........ 

01 Q) 
f.>O 

{?. 

~ 0 

0 
Q) .... 
<{ 

0 
._ 
II) 

Cl 

Mean 

St. Dev. 

Maximum 

~linimum 

Skei\'Jless 

Excess 

Mean 

St. Dev. 

Maxi mum 

Minimum 

Skewness 

Excess 

Mean 

St . Dev. 

Maximum 

Minimum 

Skewness 

Excess 

100 

50 

0.4 

-0. 4340 

38.9000 

18.8658 

92.90 

1.25 

0.3763 

- 0 . 4868 

14.8555 

10.2524 

63. 5489 

0 . 0374 

1.1588 

1.4293 

0 . 9756 

0. 2080 

1. 3311 

0.0214 

-0.9033 

1.1296 

Truncat ion Level 

0.5 

-0.2028 

49.0330 

19.4985 

96.25 

3.75 

0.1201 

-0.6544 

23.0262 

13. 6123 

80.5565 

0. 7310 

0.9028 

0.6572 

1.2074 

0. 2080 

1.4623 

0 . 2527 

-0.9033 

1.1296 

0.58 

0. 0000 

57 . 0187 

19. 0549 

98.75 

7.50 

- 0.6731 

- 0.6731 

31.6495 

16.5516 

0 . 65 

0.1987 

64.0198 

18.2022 

100.00 

7.50 

-0.2909 

- 0.5786 

41.2836 

19.3148 

96. 0696 111. 5682 

1. 9529 4.2244 

0 . 7240 0 . 4679 

0 . 2606 -0.0259 

1.4102 1.6089 

0.2080 0.2080 

1. 7651 1. 9638 

0 . 4554 0.6542 

-0.9033 -0.9033 

1. 1296 1.1296 

1.0 

0 
._ 
Q) 

Cl 

c 
Q) ... 
<{ 

0 

0 
1-

standard deviation of the deficit area is symmetrical 
about the point q = 0.5. The highest variation of 
the deficit area is found for the truncation level at 
the median. The mean of the total areal deficit in­
creases exponentially with an increase of the trunca­
tion level. 

A comparison of the maximum and minimum percen­
tages of the deficit area for various truncation 
levels indicates that at the truncation levels of 
q = 0.5 and q = 0.58, or at the median and the mean , 
respectively, the deficit never covers the whole area 
completely. On the other hand, at least a small 
deficit area always occurs within the whole area. 
Though this does not prove that the probabilities of 
the two extremes, of the whole area completely covered 
by a drought and no part of the whole area covered 
by a drought, are zeros, these two extremes very rarely 
occur for such a large region, as used in this study, 
for the truncation levels of the median and the mean . 
The fact that there is always at least a small deficit 
area covered by a drought within the area studied, is 
a specific feature of droughts. The three variables 
have time independent sequences, as expected, because 
the original stochastic component series is time 
independent. 

The probability distributions are fitted to the 
frequency distributions of the three variables for the 
truncation level of ~O = 0 (q = 0.58). The beta 

distribution function is used to these frequency 
distributions of the three variables, because they 
are assumed to be bounded at both t ails, as specified 
in the previous section. The bounds f or the three 
variables are given in Table 5.2. The weak point in 
the fi t of the beta probability distribution function 
to the frequency distribution of these three variables 
is that the probability densities at both bounds are 
zeros, though the probabilities for t he bounds may 
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Fig. 5.1. Variations of Basic Statistics of the Deficit Area and the Total Areal Deficit 
in Function of the Probability of Truncation Level for the Sample Size N=600. 
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Table 5 . 2 . Boundary Values of the Deficit Area , A, 
the Total Areal Deficit, D, and the 
Maximum Deficit Intensity, I, for the 
Truncation Level of ~O = 0. 

Variables Lower Bound Upper Bound 

A 0 80 .0 
D 0 141.224 

0 1.7653 

not be zeros. Since probabil ities of both extremes 
are close to zero, as mentioned earlier , and the ob­
jectives of this study were not to analyze these 
extremes , this weak point is not decisive so that 
the use of the beta distribution may be accepted. 
When t his weak point is not negligible, a mixed 
distribution could be used. 

The general form of the beta distribution func­
tion is 

1 a-1 a-1 
fy(Y) "' -;;-;,.::.......,~ -'"'(y_-::..a),____,(b.::-~-Y~) __ 

B(a, 8) (b-a)a+s-1 
(5.6) 

with a>O, 
(l and a. 

13>0, and B(a,S) = the beta function of 
By using the transformation 

X = (Y - a)/(b - a) (5.7) 

the standard form of the beta distribution with param­
eters a and e becomes 

and 

1 a-1 13 1 
B(a,l3) X (1- X)- , (0 < X< 1). (5 . 8) 

Johnson and Kotz (1970b) gives estimates a and 
as the first approximation as 

a = 
n n 

1 (1 - I1 x~/n)/ [1 - n x~/n 2 i=l 1 i=l 1 

n 
- I1 (l- x.)l/n] 

i=l 1 

! [1- ~ (1 - x.)l/n]/[1 
2 i=l 1 

n 
- I1 ( 1 - x.) 1/n] . 

i=l .l 

(5.9) 

n 
rr x~/n 
i=1 .l 

(5.10) 

Using the transformation of Eq. (5 .7) with the values 
i n Table 5.2, the est imates a and B for the three 
variables are made by using Eqs. (5 .9) and (5. 10). 
The goodnesses of the fit of the beta distribution to 
the computed f requency distributions of the deficit 
area, the total areal deficit, and the maximum deficit 
intensity, are tested by using the chi-square statistic 
of ten class intervals at the five percent l evel of 
significance . At this significance, the critical 
value of chi-square statistic with the number of 
degrees of fr eedom of seven is 14.1 The estimates 
a and s and the test are as follows. 

For the deficit area, the estimates a and e 
are 3.417 and 2.559, respectively , with the beta den­
sity function 
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f(x) = 27.6128 x2 .417 (1- x)l . 559 (S .11) 

Its chi-square statistic is 12.80, which is less than 
the critical value of 14 .1. 

For the total areal deficit, a and a esti­
mates are 2.760 and 9.566, respectively, with the bet a 
density function 

f(y) = 403.4121 yl.760 (1- y)8.566 (5 .1 2) 

with the chi-squar e statistic of 9.33. 

For the maxi mum deficit intensity, the estimated 
density function with the parameters 8.314 and 2.092 
is 

f(z) = 91.6392 %7.314 (1 - z)l.092 (5 .13) 

and the chi-square statistic of 11.70, being smaller 
than the critical value. 

Since the chi-square statistics for all the 
three variables are smaller than the critical value 
at the five percent level of significance, the fitted 
distributions may be accepted. Comparisons of fitted 
distribution functions and tho frequency distributions 
of these three variables are show~ in Fig. 5. 2. 

I 

/ Max imum 
,' In tensi ty 

1.0 

ll 

Fig . 5.2. Relative Frequency Distribut ion (Broken 
Lines) and the Fitted Beta Distribution 
Functions (Sol id Lines) for the Deficit 
Area, the Total Areal Defici t, and the 
Maximum Deficit Intensity. 

The cross corr elat ion and r egressi on anal ysis are 
carried out to find relationships among the deficit 
area, A, the total areal deficit, D, and the maxi­
mum deficit intensity, I . The lag zero cross corre­
lation coefficients among the pairs of the three 
variables are given in Table 5 .3, and relationships 
are presented in Figs . 5.3 through 5.6. It is seen 
that the pair s of the three variables are highly 
correlated, especially the correlation coeffici ent 
of the deficit area and the total areal deficit is 
high, namely 0.934 . Since Fig. 5 .3 shows that the 
relation is non-linear (quadratic or exponential) 
rather than linear, two types of regression func t ions 
are fitted, namely 



Table 5. 3. Pairwise Cross Correlation Coefficients for the Deficit Area, A, 
the Total Areal Deficit, D, the Maximum Deficit Intensity, 1 , and 
Their Derived Variables, for the Sample Size NK600. 

A D I AI 

A 1.000 

D 0.936 1. 000 

0.660 0.719 1.000 

AI 0.973 0. 963 0. 789 1. 000 

D/A 0 . 741 0.900 0 . 797 0.821 

I/D -0.796 -0 .710 -0 .553 -0 . 744 

DI 0.903 0 . 991 0 . 765 0.958 

I/A -0.730 -0 . 581 -0 . 260 -0 .628 
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Fig. 5.3. 
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Relationship of the Total Areal Deficit, 
D, to the Deficit Area, A, with the 
Inferred Regression Equation or D = 
0.2479A + 0 . 0088A2 . 

D = 0.2479A + 0 . 0088A2 , (5.14) 

with the explained variance of R2 0.9078, and 

D • 0. 0558A1· 6433 (5 .15) 

with the explained variance of R2 
= 0.9031. As the 

two equations explain the variance of the total areal 
deficit well, the unexplained variance may result 
from the neglect of the shape or the spatial dis­
tribution of the deficits as well as from the sampling 
errors. 
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Fig . 5 .4. 

1/D DI 1/A 

1.000 

-0.665 1.000 

0. 877 -0 .522 1.000 

Relationship of the Maximum Deficit 
Intensity, I, to the Deficit Area, A, 
with the Inferred Regression Equation or 

I • 0. 5131A0· 2682 . 

The relation between either the deficit area or 
the total areal deficit and the maximum deficit 
intensity, as shown by Figs. 5.4 ~d 5.5, are not 
easily inferred, though the maximum deficit intensity 
increases both with an increase of the deficit area 
and with an increase of the total areal deficit . 
Using the power f unction relationships, the fits give 

" 0.5131A0•2682 (5 .16) 

and 
I a 0.72650°· 1994 

(5 .17) 
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Fig. 5.5. Rela'tionship of the Maximum Deficit 
Intensity, I, to the Total Areal Deficit, 
D, with the Inferred Regression Equation 

AI 

Fig . 5 . 6. 

or I = 0. 7265D0· 1994 . 

.. 

0 
100 

Relationship of the Product AI to the 
Total Areal Deficit, D, with the Inferred 
Regression Equations: (1) AI = 14.7749 + 

1.6306D and (2) AI a 3.6489D0·8457 . 

with the explained variances 0.4480 and 0.6054, res­
pectively. 

The correlation coefficient between D and AI 
suggests a high relationship among the variables, as 
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shown by Fig. 5 .6. 
between D and AI 

The simple linear regressions 
are given by 

D -6.1420 + 0.5684AI 
and 

AI; 14.7749 + 1.63060 

(5 .18) 

(5 .19) 
with the explained variances of D.9266 and 0.9274, 
respectively. Figure 5.6 implies a power relation, 
as a better function to fit, 

AI ; 3.64890°·8457 (5. 20) 

with the explained variance of 0.9482, and with the 
difference from Eq . (5.19) of 0.0208 , or about 2. 1 
percent . 

Since the regression functions represent only 
the expected value of the dependent variable for a 
given value of the independent variable, the joint 
probability distribution may be of interest also, 
especially the joint probability distribution of the 
deficit area and the total areal deficit may be use­
ful in practice. The joint cumulative frequency 
values of the deficit area, given in percentage of 
the whole area, and the total areal deficit are given 
in Table 5.4. 

5.3. Trivariate Distribution 

Instead of studying the joint distributions of 
A and I or D and I, the trivariate distribu­
tion for these three variables is studied. Joint 
frequency distribution of the deficit area, the 
total areal deficit, and the maximum deficit inten­
sity is fitted by using the beta distribut ion 
functions with the Jacobi polynomials, because the 
marginal distributions for the three variables are 
assumed to be beta distributions as per Eqs. (5 .11) 
through (5 .13). The product of the three beta distri­
bution functions with the Jacobi polynomials is used 
as an approximation to the joint, trivariate prob­
ability density function, expressed by 

fx y zCx,y,z) ; fx(x)fy(Y)fz(z) L L L a .. k· 
' ' i j k lJ 

Gi (a1,B1;x)Gj Ca2,82;y)Gk(a3,83;z) (5.21) 

with aijk the coefficients and G1 (a,S;x) the 

Jacobi polynomial s of degree i with two parameters 
a and S. 

A Jacobi polynomial of degree n, Gn(a,S;x), 

when expanded i n the power series of x, becomes 

For a -S>-1 and. S>O, 

for (n = 1,2, ... ) form 

(0,1), with the weight 

(1-x)a-s, so t hat 

r(S+n) 
f(a+2n) 

(5.22) 

the polynomials Gn(a,S;x} 

an orthogonal system in 
function g(x) = xB-l 

1 
J G. (a ,B ;x)Gn(a ,8 ;x)g(x)dx = 0 if i ~ n 

0 l. 
(5 . 23) 

d
2 if i = n 
n 

(5.24) 



Table 5.4. Joint Cumulative Frequency of the Deficit Area and the Total Areal Deficit. 
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where d2 = n!r(n+a)f(n+B)f (n+a-8+1) 

n (2n+a)r2(2n+a) 

Deficit Area (%) 

40 so 60 70 80 90 100 

1.0000 

t 0.9975 

t 0.9625 0.9933 

t 0.8592 0.9558 0 . 9767 

t 0. 7142 0. 8567 0.9267 0.9342 

t 0.5492 0 . 7125 0.8300 0.8550 .. 
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0.1867 0.2550 0.2650 ... 
0.0583 ... 

Taking further into account Eqs . (5.23) and (5.24), 
(s .25) the expected value of Eq. (5 . 26) becomes 

Coefficients a .. L can be estimated by taking the 
1)11. 

expected value of Gi(a1,B1 ;x) Gj(a2,s2;y) GK 

(a3,a3; z) , that is 

E(Gi(al,Bl;x)Gj(a2 ,82;y)~(a3,83;z)) 

1 1 1 
= /

0
/

0
/

0
Gi(aJ,Il1;x)Gj(a2,B2 ;y)Gk(a 3 ,s3 ;z)f(x,y,z)dxdydz. 

(5.26) 

Replacing f(x,y,z) by its value of Eq. (5.21), and 
considering that the postulated marginal distribution 
are beta functions 

and 

(5. 29) 

then Eq. ( 5. 26) becomes 

ai ' k d~d~~2 
B(a1 ,al-Bl+l)8(B2,a2-S2+l)B~Il3 ,a3-s3+1) 1 J-k 

(5.31) 

Therefore, the a .. k coefficients can be expressed 
as 1 J 

(5. 32) 

The aijk coefficients are then obtained for the 

selected values of i , j, and k by Eq. (5 .32). 
Using only up to the values i +j+k•3 , and simplifying 
Eq . (5 . 32), then 

E (XY) - E (X) E (Y) . 
allO = Var(X)Var(Y) ' 

a 
210 

2 2 
d

0
(x)d

0
(y) 

2 2 d2 (x)d1 (y) 

E(X
2
)E (Y) ; 

2(Bl+l) [E(XY) - E(X)E(Y)) 
Q1+3 

(5.30) + 2E(X)E(Y)E(Z) )/[Var(X)Var(Y)Var(Z)] ; and 
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(5 . 33) 

The other coefficients can be obtained by interchanging 
the variables and subscripts. Computing E(X), E(Y), 

E(Z), E(X2), E(Y2), E(Z2), E(X3), E(Y3), E(Z3), E(XY), 

E(YZ), E(XZ), E(X
2
Y), E(Y2Z), E(Z2X), E(X2Z) , E(Y2X), 

E(Z2Y), and E(XYZ) from the 1200 months long 
samples , the coefficients a .. k can be obtained. 

lJ 
Using these estimates of the a. "k coefficients and 

lJ 
expanding Eq. (5 . 21) in function of up to the values 
i+j+k•3, the beta distribution function with the 
Jacobi polynomials becomes 

2. 417 1. 559 fx y z (x,y, z) = 1021401. 514x (1-x) 
' , 

y1 . 769(1-y)8 . 566 z7 . 314(l-z)1.092 ( 8• 1901x3 

3 3 2 2 + 2.4360y - 15.2448z + 53. 4116x y - l4.5653x z 

- 54.6704xy2 - 111.3110y2
7 + 4.8804xz2 

+ 81.6306yz
2 

- 6.7835xyz- 13.6763x2 + 117.9596y2 + 11.6667z
2 

+ 16.8549xy- 7. 8702yz + 39 . 8227zx- 27 .5350x 

- 72. 1956y - 30.5372z + 28.8814 ) (5 . 34) 

The use of this function for the triviate frequency 
distribution of deficit area, total areal deficit, and 
maximum def icit intensit y, did not show a good fit 
because the probability densities often take negative 
values. The main reason for it is that these three 
variables are highly mutual ly correlated. Therefore, 
the use of the product of the three marginal distri­
butions might not be a v~lid assumption for the tri­
variate distribution. Since the convergence of the 
polynomials is slow due to a high dependence among 
the components , taking more values of i+j+k, up to 
4 or 5, does not improve the goodness of fit . 

The method of transforming the three variables 
into the normal variables and/or into mutually in­
dependent variables may show a better fit. However, 
it was not tried to find this trivariate distribution 
in this study. 

5.4. Model for the Areal Drought Structure 

It is useful to generalize the areal drought 
structure as in the form of depth-area relationship 
of thunderstorms or showers (Woolhiser and Schwalen, 
1960; Court, 1961). The analogous idea to the depth­
area relationship is applied herein to define the 
areal drought structure, though the deficit area, A, 
does not always consist of one deficit cel l but may 
be composed of several deficit cells. To obtain a 
general idea of the areal drought structure, the 
dimensionless deficit-area relationship is first in­
vestigated. The deficit intensity, z~. at a point . 
i, is denoted by the absolute value Jf a negative 
deviate from a certain truncation level, that is, 
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(5.35) 

where ~i = the stochastic component of monthly pre­

cipitation . Under the deficit area, A, and the 
maximum deficit int ensity, I, the dimensionless 
expression of the area-intensity relationship may be 
in the form 

where i .. 

0 ~a,. ~ 1, 

.. 
Z. /I 

1 

and 

i .. = f(a.) (5. 36) 

• with 0 ~ i* ~ 1, a,. = X./A with 
• 1 • 

X~ is the area where Z. < Z and 
1 1-

0 < X~< A. To find a functional form of Eq. (5. 36), 
some iefations obtained from the generated samples are 
presented in Fig. 5. 7. This figure shows that the 
dimensionless area-intensity relat ionship i s very 
close to be linear. This means that the deficit 
intensity may be relatively uniformly distributed 
over the area. Figure 5.6 and Eq. (5.19) also suggest 
the uniform distribution of the deficit intensity 
because the relationship between D and AI is close 
to D = AI/2 for a uniform distri bution. This linear 
relationship is given by 

(5 . 37) 

As the first approximation, the distribution of the 
deficit intensity over the deficit area can be con­
sidered to be uniformly distributed. 
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Fig . 5 . 7. Dimensionl ess Area-Intensity Relationships 
of Drought, Obtained from the Generat ed 
Samples . 

For more flexibi l ity in this relationship and for 
explaining the concave or convex shapes of Fig. 5. 7, a 
parameter is added to Eq. (5.37) , expressed by 

{5. 38) 

This dimensionless expression becomes 

(5 . 39) 



The conceptual relationship is then shown as i n Fig. 
5.8 . The total areal deficit, D, is given by inte­
grating z* over x* from zero to A, 

AI 
m (5 .40) 

then the parameter b is defined by 

AI 
b = 0 - 1 (5 .41) 

With the parameter b computed from A, I , and D 
of generated samples, the goodness of fit of this 
model for the areal drought structure is tested. The 
600 samples at three different truncati on levels, 
q = 0.58, 0.50, and 0.65 are used. For all the trun­
cation levels, the average of the explained variance 
by the model is greater than 95 percent. Comparisons 
between the data and model are shown in Fig. 5.9. The 
average b value for the 600 samples at the trunca­
tion level q = 0.58 is 1.2292, wi t h the standard 
deviation 0.3467. Generally the larger the deficit 
area or the total areal deficit, the smal ler is the 
parameter b. This comes from the condit ions that the 
deficit area and the maximum deficit intensity are 
limited so that the deficit intensity function should 
be convex upwards in order to produce a large t otal 
areal deficit . 

1.7653 
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Fig . 5.8. Graph for Modeling the Relationship of 
Deficit Intensity to Deficit Area. 

Once the deficit area, the total areal deficit, 
and th·e maximum deficit intensity are computed, the 
model defines the areal drought s.tructure. The model 
may be more useful if the joint distribution of the 
three vari ables is obtai ned. However, the model does 
not indicate how: the deficit area or how the deficit 
intensity is distributed areally. 

z* min' 

In this model, the minimum deficit intensity, 
is assumed to be zero . However, the minimum 
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Fig. 5.9. Comparisons of the Model with the Resul ts 
Obtained from the Generated Samples: Model 
Values are Given by Solid Lines , and 
Computed Values by Broken Lines. 

deficit intensity can be larger than zero when a con­
cerned region is small and a drought covers the whole 
region. In this case, the above model is not valid 
and some modifications are needed. By using deficit 

* * * intensity defined as (Z - Zmin) instead of Z , 

the above areal drought structure model may be appli­
cable. 

5.5 . Probability of Areal Coverage by Droughts 

The areal coverage by droughts is further investi­
gated without considering the corresponding total 
areal deficit. 

The probability density function of the deficit 
area, A, over the whole area is given by Eq . (5.11). 
Defining a random variable by X = A/80 and using 
Eq. (5.11), the probability of more than the 100x0 
percent of the whole area to be covered by a drought, 
with the truncation level ~O = 0, is given by 

1 F( x
0

) 

X 
= l- J 027 .6128x2.417(1-x)l.SS9dx (5. 42) 

0 

This probability can be found easily from Fig. 5.2. 
For example, the probability of more than the SO per­
cent of the whole area to be covered by a drought 
in a certain month is 0.65 at the truncation level 
~O = 0. This probability is relatively high, though 

the drought does cover each time a different area 
within the whole ar ea. 

Since the deficit area is a time independent 
variable, some information on the time duration of 



areal coverage can be obtained by using the theory of 
runs and the recurrence of random events. For an 
independent process, the expected positive run-length, 
M, is given by · 

E(M} = 1/q (5.43) 

with q = F(x0) • P(X ~ x0). Therefore, the expected 

duration of a drought which covers more than the 
100x0 percent of the whole area can be found. Table 

S.S shows some probabilities. For x0 = O.S in the 

deficit area given by the truncation level ~O : 0, 

or q ~ F(O.S) = 0.3S, the expected duration of that 
drought from Eq. (S.43) is 2.8S7 months. This expect­
ed duration of about three months seems to be long 
enough to affect many water users, such as crop 
producers. 

Table S.S. The Expected Duration of Drought Covering 
More than 100x0 Percent of the Whole Area 

xo 0.4 o.s 0.6 0. 7 

For ~ "' 0 
0 S.l13 2.8S7 1.876 1.393 

For ~0 ,. -0. 2028 2.984 1.93S 1.438 1.185 

The other interesting property is the longest 
drought duration. Millan and Yevjevich (1971) applied 
the theory of recurrent events to find probabilities 
of the longest negative run-length of a given sample 
size N, on the basis of the formula given by Feller 
(1957). The probability of the longest drought dura­
tion in a given sample size N is, as an ~pproxima­
tion, 

1 - pw 1 
[1 + 2 - (1 +l)w]q ~ w 

(5.44) 

with q '" F(x0) • 1 - p and 

Probabilities of the longest drought duration 
during a given period covering more than the 100x0 
percent of the whole area are calculated by Eq. (5.44). 
For 60-, 600-, and 1200-month periods, the expected 
longest drought durations E(Mmax)' with droughts 

covering more than the 100x0 percent of the whole area 

are computed for the deficit area of the truncation 
level ~0 s 0 and -0.2028 and given in Table 5.6. 

For the 1200-month period of the deficit area series 
based on the generated series C at the truncation 
level c

0 
= 0, the observed longest duration of the 

drought covering more than the SO percent of the whole 
area is 13 months , which is a little lower than the 
expected value, or 14.5 months. During 600 months 
or SO years, the expected longest duration of the 
drought which covers more than a half of the whole 
area is more than one year. This duration is fairly 
long. 

The conditional distributions of the deficit area, 
A, given that a certain point has or has not a deficit 
are investigated analytically. The probability density 
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function of the deficit area defined by A/80 is 
given by Eq. (S.l l), namely 

1 a-1 t!-1 
B (a, t!) x (1-x) 

27.6128 x2•417 (1-x) 1'S59 
(S . 4S) 

Table S.6. The Expected Longest Duration of Droughts 
Covering More Than SO Percent of the Whole 
Area in 60-, 600- , 1200-Month Periods for 
t 0 • o and -0.2038. 

Longest Drought Duration 

Sample Size for t 0 .. o for ~O • -0.2028 

in Months Expected Observed Expected Observed 

60 7.866 5.007 

600 13.077 ll.S 8.181 8.0 

1200 14. sos 13.0 9.134 10.0 

The probability that a certain point has a deficit at 
the truncation level ~O is defined by 

(5 . 46) 

Assuming that every point is equally likely to exper­
ience a drought, the conditional probability that a 
certain point has a deficit given that the deficit 
area x exists in the whole area is 

P(~ ~ ~oiX=x) = x 

Then the joint probability P(~ ~ t 0, X ~ x) is 
defined by 

P(~ ~ ~0 • x s x) 

• P(t ~ t 01X ~ x)P(X ~ x) 

(S. 47) 

(S. 48) 

Therefore, the conditional probability of the deficit 
given that a certain point has a deficit is given by 

P(X ~ xl~ ~ t 0) 

= P(X ~ x, ~ S ~0)/P(t S ~0) 

1 X 
"q I oxfX(x)dx 

I
X 3.417(1 )1.559dx 47.6083 X -X 
0 

(5 . 49) 

(S. SO) 

Because this is also a gamma distribution, the con­
ditional density function is 

(S .Sl) 



Similarly, the conditional probability of the defi cit 
area given that a certain point has no deficit is 

• P(X s x, t > t 0)/P(t > to) 

1 X 
= l - q J

0
(1-x)fx(x)dx 

X • f 65.7448 x2.417(1-x)2.559dx 
0 

• 1 X Cl-1 ll 
B(a, S+l) f

0
x (1-x) dx 

Therefore , the density function is 

(5.52) 

(S. 53) 

(5. 54) 

The two conditional probability density functions of 
the deficit area, with the t wo corr esponding condi­
tional frequency curves, are shown in Fig. 5. 10, in 
comparison with the probability density function of 
the deficit area. A quantitative comparison of the 
three probability density functions may be possible 
by appl ying the Fisher ' s information content, which 
is defined as the reciprocal of the variance of the 
concerned variable or par ameter. The conditional 
distributions clearly have more information than the 
original distribution. As the extension of this 
concept, the conditional distribution of the deficit 
area given that more than a station, selected randomly 
or systematically, have deficits and/or no deficits 
can be analyzed by an experimental method . A number 

2.5 

Fig. 5. 10. The Probability Density Function of the D·e­
ficit Area and the Two Condit ional Probabi­
lity Functions of the Deficit Area Given 
That a Certain Point Has or Has not a De­
ficit (Solid Lines), with the Two Sample 
Conditional Frequency Curves (Broken Lines). 
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of selected stations and their locations will affect 
additional information content. Their effects are 
worthy of studying as concerning to the network design 
or some other problems. 

5. 6. Probabilities of Specific Area Covered by Drought 

In previous analysis, the deficit area inside the 
whole area consisting of 80 unit-areas or 800 000 
square miles has been considered. In practic~, how­
ev~r! one may be more interested in finding the prob­
ab1l1ty of drought covering a small, specific area, 
or sub-area inside the whole area. For example, what 
is the probability of drought covering the State of 
Kansas, the wheat region, or the corn belt of the Mid­
west? Bec~u~e of regional dependence, the probability 
of the def1c1t area depends upon the size and shape 
of this small, specific sub- area. 

First, the probability of a drought covering a 
whole sub-area is investigat ed by considering the 
effect of the shape of the sub-areas. Int uitively, it 
is clear that the smaller a sub-area, the higher is 
the probability of the drought covering t his whole 
sub-area. An elongated sub-area should have a smaller 
chance for a drought to cover the whole sub-area 
than would be the case of a circle or square typ~ 
sub-area of the same surface. The analysis is carried 
out quantitatively by using the generated samples. 
Figure 5.11 shows the experimental results of two 
cases , with probabilities of drought covering the 
sub-areas, from one to 32 unit-areas, by changing 
the area shape, in different ways . The probability of 
a drought covering the whole sub-area of 16 unit-areas 
or a 400 x 400 square miles square shape in case 
(1) is 0.0793, which is higher than 0.0583 for case 
(2) , for which the same 16 unit-areas are arranged 
as a 200 x 800 square miles rectangular area. Figure 
S.ll further indicates that the probability of a 
drought covering the whole sub-area decreases rapidly 
with an increase of the area . The probability of the 
drought coverage is very sensitive to the shape of the 
sub-area; this is especial ly the case for the sub-area 
with about eight unit-area. However, the effect of 
the shape of the sub-area decreases with an increase 
of the area. For a large area, the shape does not 
seem to be a decisive factor as long as a particularl y 
irregular sub-area is not considered. Since prob­
abilities are estimated by sample frequencies, and 
since these frequencies have smal l variations , the 
average frequencies as estimates of probabilities are 
used to evaluate the effect of the area size and the 
area shape on probabilities of areal coverage by 
droughts. The assumption used is that any geometri­
cal l y i dentical sub-area would have the same prob­
ability regardl ess of sub-area position. Table 5.7 
summarizes these average estimates of probabilities 
of the drought covering the whole sub-areas of various 
sizes and shapes. Table 5.7 indicates that the size 
of an area seems to be more important than its shape 
as it concerns the probability of drought coverage, 
as long as the shape is not of a very elongated type. 
Although the estimates of probabilities in Table 5.7 
may be in error due to small sample sizes and the 
assumption, these values give a general picture of 
drought probabilities for a specific area. For 
example, the probability of the drought covering the 
whole state of Kansas, of 82,264 square miles, 
approximated by 200 x 400 miles rectangle, is about 
17.5 percent and 11.7 percent for each month at the 
truncation levels of the mean and the medi an , respec­
tively. 

In order to evaluate the shape factor more 
quantitatively, a mean areal correlation coefficient 
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by the Droughts, Obtained by the Two Schemes Illustrated by Cases 1 and 2. 

Table 5.7. Estimates of Probabilities of the Drought 
Covering the Whole Subarea with Various 
Sizes and Shapes for the Truncation Levels 
of the Mean and the Median. 

Subarea 

Site Shape 
in Unit- Area 

1 1 X 1 
2 1 X 2 
3 1 X 3 
4 1 X 4 
4 2 X 2. 
5 1 X 5 
6 2 X 3 
8 1 X 8 
8 2 X 4 
9 3 X 3 

10 2 X 5 
12 3 X 4 
15 3 X 5 
16 2 X 8 
16 4 X 4 
18 3 X 6 
20 4 X S 
21 3 X 7 
24 3 X 8 
24 4 X 6 
25 5 X 5 
27 3 X 9 
28 4 X 7 
30 5 X 6 
32 4 X 8 
36 6 X 6 
49 7 X 7 
64 8 X 8 

Probabilities of Drought 

Nos. of Truncation 
Samples Levol•~lcan 
Used c0•o 

14 0.5698 
14 0.4367 
ll 0.3459 
9 0.2759 
3 0.3092 
4 o. 2171 
4 0.2320 
3 0.1150 
8 0.1748 
6 0 . 1609 
1 0.1343 

11 0.1155 
1 0.0793 
3 0.0569 

14 0 . 0766 
1 0.0600 
3 0.0545 
1 0.0451 
3 0.0300 
3 0.0394 
3 0.0369 
1 0.0208 
3 0.0242 
3 0.0239 
6 0.0164 
2 0.0175 
2 o.ooso 
2 0.0013 

Nos. of 
Sampl es 
Used 

2 

4 

4 

s 

2 

Truncation 
Levcl•~lcdian 
c0,.-o.2o29 

0.1654 

0.1167 

0.0736 

0.0437 

0.0059 
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is introduced. It is defined by 

r 2 n~l ~ 
= n(n-1) .L L r .. 

1=1 j•i+l 1) 
(5 .55) 

Figure 5.12 compares the probabilities of the drought 
covering the whole sub-area of eight unit-areas with 
different shapes as a function of the mean areal 
correlation coefficient. For contiguous areas, prob­
abilities of drought are linear functions of the 
mean areal correlation coefficient. A gradient of 
the line decreases with a decrease of the probabi lity 
of truncation level s. This means that effects of 
shape of the sub-area decreases with a decrease of the 
truncation levels. Figure 5.13 shows the probabilities 
of the drought covering the whole sub-area with 
different sizes and shapes as a function of the mean 
areal correlation coefficient. Three probabilities 
for r z 0 are calculated from a binomial distribu­
tion. For contiguous areas which are surrounded by 
broken lines, probabilities of the drought are approxi­
mated by a linear function of the mean areal correla­
tion coefficient. The gradi ent of the line for eight 
unit-areas seems steepest, that is, the shape factor 
is most sensitive to the probabilities. With an in­

·crease of the area, the gradient of lines decreases. 

Probability distributions of the deficit area 
within sub-areas of various sizes are also investigat­
ed. The sub-areas considered are of 2 x 3, 2 x 4, 
3 x 4, 4 x 4, and 4 x 8 unit-areas. Besides, a sub­
area of 63 unit-areas, as the original study area, is 
also considered. For the truncation levels at the 
mean and the median, frequency curves of the deficit 



Shape of Aroa an4 
•"an Al'eal Conel.C1CM 
CoeC!lcl011t 

Probablllty ot Drouchu 
at T·~utiOft lAve! of · 
q-o.sa q-o.so .-o.co 

1·1 ·I ·I ·I ·I ·I ·I · I o.mo o.om o.ow 
<-o.JS6 

UJJ·I·I ... 

EITI u.:::rn 
T•O.S il 

~ 
t:±f 

r•o.m 

r 
r.o.J9S 

~ 
~ 

r.o.ua 

0.1627 

0.1741 0.1167 

0.1774 

0.1304 

0.1444 0.09$41 o.osu 

0 .2 f Ae 

0 . 1 
(/'=0 .40 

0.1 0.2 0 .3 0.4 0.5 0 .6 

Fig. 5.12. Probabilities of Drought Covering the Whole 8 Unit-Areas (80,000 sq. miles) with 
Six Different Shapes as a Function of the Mean Areal Correlation Coefficient. 

f 
0 .5 ~=0. 58 

0.1 

0 0.1 0.2 0.3 0.4 0 .5 0.6 0.7 

Fig. 5.13. Probabilities of Orought Covering the 
Whole Subareas of Different Sizes and 
Shapes, as a Function of the Mean Areal 
Correlation Coefficient. 

area within these sub-areas are obtained from some 
sampl es, and shown in Fig. 5.14. Their cumulative 
frequency distributions are shown in Fig . 5.15, as 
the reduced variables in percentages of the whole 
sub-area, for comparison. 
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Fig. 5.14. Relative Frequency Curves of Def i cit Area 
Within the Subareas of the 6, 8, 12, 16, 
and 32 Unit-Areas. 
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12, 16, 32, 63, and 80 Unit-Areas at the 
Truncation Level of the Mean. 

For the 2 x 3 and 2 x 4 unit- areas, probabilities 
of both extremes , that is, the whole sub-area covered 
by a drought and no part of the sub-area covered by a 
drought, are very high. Their frequency curves are 
either U-shaped or J-shaped . These are intuitively 
obvious because of the regional dependence. In the 
case of the truncation level of the mean, the prob­
ability of no part of the area covered by a drought 
is decreasing faster than 'for the other extreme with 
an increase of the area. For the truncation level of 
the median, the opposite trend seems valid. The 
distribution of the deficit area is affected by the 
truncation level, especially for the small areas, as 
shown by Fig. 5. 14. The probability of the deficit 
area for a given sub- area with the area l ess than 80 
unit -areas can be approximated from Fig. S . 15 . 

5.7. Conversion of the Total Areal Deficit of Station­
ary Stochastic Series into the Total Areal 
Deficit of Periodic-Stochasti c Seri es 

The stationary stochastic series, C, are stand­
ardized, (or dimensionless) , with the regional and 
temporal variations in the means and the standard 
deviations removed. Thus the drought characteristics, 
such as the total areal deficit and the maximum 
deficit intensity, do not represent the absolute values 
or the actual amount of deficits. However, these 
values are needed for planning drought contr ol measures. 
Therefore, the method of converting the total areal 
deficit of the standardized series, ~. over an area 
into the total areal deficit of the original monthl y 
precipitation series over the same area must be avail­
able. In this section, only the regional variations 
in parameters are investigated, while their temporal 
(or periodic) variations are discussed in the next 
chapter. 

Let OS denote the total areal deficit of the 

series ;, and Da the total areal deficit of the 

original series x. or the actual total areal deficit. 
They are defined as 
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80 
D ~ <to - ti)I (tsto) (~) s i=l 

(5. 56) 

and 
80 

D a L 
i=1 

(Xo- xi) I (xsxo>Cxi) 

80 

.L 
1=1 

si <to - ti)I(tsto) Cti) (S. 57) 

where to and xo are the truncation levels for the 

series E; and x. respectively , s. 
1 

is the standard 
deviation at station i, and I( · )( · ) is an indicator 

function. These definitions are valid as long as the 
relationship between the two truncation levels t0 
and is defi ned by 

(50 58) 

with m. 
1 

station 

and si the mean and standard deviation at 

i , respectively. 

The actual total areal deficit, Da, can be 

approximated by a function of the total areal deficit, 
Ds , the mean and standard deviation of t he regional 

standard deviat ion, si and s(si). and the deficit 

area, A. Thi s relationship is expressed as 

(5. 59) 

In the case the regional variation of the standard 
deviation is small in comparison with the mean, Eq. 
(5 .59) can be r educed to 

(S. 60) 

Figure 5 . 16 shows a relationship between Ds and 08 , 

with the regional standard deviations for t he 80 
stations given by Eq . (3.19), and their mean and 
standard deviation of 1.4360 and 0.4747 , respectively . 
The regression analysis gives the relationship 

Da = 0.1060 + 1.4374 OS (5.61) 

with the explained variance of 95.84 percent. This 
equation is further approximated by 

Da = 0. 1060 + 1.4374 OS 

(S. 62) 

This indicates that the actual total areal deficit 
Da of the original series can be well approximated 

by the product of the total areal deficit Os of the 

standardized stationary series 
regional standard deviations, 

showing a relationship between 

Os and t he deficit area, A, 

and the mean of the 
si. However, Fig. 5.17 

the ratio of D to a 
indicates that , for a 

smnll deficit ar ea , the mean of the regional standard 
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Fig . 5.16. Relationship Between the Total Areal 
Deficit Da of Periodic-Stochastic Series 
and the Total Areal Deficit 0 of the 

s 
Stationary Series, with the Inferred Re­
gression Equation or Oa • 0.1060 + 
l. 43740 s. 

deviations for that area rather than the mean of al l 
the standard deviations over the whole area should be 
taken for determining si. Since the larger deficit 
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Fig. 5.17. Relationship Between the Ratio Da/Ds ~nd 

the Deficit Area A, with the Equation 
D/Ds = 1.4360 . 

areas are mostly of interest, the above approximation 
to the determination of the actual total areal deficit, 
by using the product siDs' has a practical s ignifi­
cance. 



Chapter 6 
DROUGHT ANAlYSIS OF PERIODIC- STOCHATIC PROCESSES 

Drought characteristics of the stochastic compo­
nent of the monthly precipitation were studied in the 
previous chapter. This stochastic component of the 
monthly precipitation is a stationary process for 
good, consistent data, while the monthly precipitation 
is a periodic-stochastic process . The drought analysis 
of periodic-stochastic processes is much more complex 
than the drought analysis of stationary stochastic 
processes. Each month has a different mean and a 
different standard deviation. Therefore, the time 
position is one of the important factors in evaluating 
drought characteristics. The main reason of analyzing 
drought char acteristics of periodic-stochastic series 
is to find fluctuations of deficits within a year and 
at specific months such as a growing season rather 
than to find long-term fluctuations. Drought charac­
teristics depend upon the hydrologic phenomenon such 
as precipitation and river runoff which is used for 
drought definition and upon the objectives of drought 
analysis. They make difficult a generalization of 
drought characteristics of periodic-stochastic pro­
cesses. 

6. 1. Run Properties of Periodic-Stochastic Processes 

Although run properties of univariate periodic­
stochastic processes may not give the best parameters 
for drought analysis, they are studied analytically 
for some simple cases in order to compare them with 
those of univariate stationary stochastic processes 
and to find out possibilities of using run properties 
i n evaluation of drought characteristics of periodic­
stochastic processes. 

The following assumptions, considered to be close 
to real processes of nature such as for the monthly 
precipitation, are used for a simpl e study. The 
monthly precipitation process, x. as an example of 
periodic-stochastic processes, is assumed to be com­
posed as 

x_ "'1.1 +of; ·p,T 1: 1: p,T (6 . 1) 

where p and 1: denote the sequence of years and the 
month within the year, respectively, 1.1, and oT are 

the means and standard deviations of monthly precipi­
t ation, respectively, and ; is a time independent 
stationary stochastic component . Next , the standard 
deviation o, is assumed to be composed only of the 

12-month harmonic 

- ll o + Ccos( 6( + 8) (6. 2) 

with o = the average value of o, C the ampli­

tude, and e : the phase. The truncation level Xo,t 
(or the water demand series) is also assumed to be a 
periodic function 

x = 1.1 + o to 0,1: 1: 1: (6. 3) 

with ~O = the truncation level for f; corresponding 

to x
0

• Under these conditions, negative runs as 

various random variables are defined as: N = the 
negative run-length, T : the onset time of a negative 
run, wN,T : the negative run-sum with the run-length 
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N and the onset time T, t 0 = the truncation level 

of q = P(~ ~ t 0) = F(,0) or P = 1-Q, E(t*) = (* = 
the expected value of the truncated series, t*, and 
Var (~*) = the variance of the truncated ser ies. The 
distribution of the negative run-length of an i ndepen­
dent process is a geometric distribution (Downer et 
al ., 1967), with the expected value and the variance 
given by 

and 

E(N) = 1/p 

2 
Var(N) = q/p 

(6.4) 

(6. 5) 

Since each month is assumed to have the same prob­
ability for the negative run to start, t he probability 
of the onset time can be defined by 

P(T=t) : 1/12 (t=l,2, • •• ,12) (6.6) 

Under t hese basic assumptions , run properties of 
univariate periodic-stochastic processes can be ob­
tained. As long as the truncation level of x is 
defined by Eq . (6 . 3), the distribution of the negative 
run- length of t he monthly precipitation x is a p,T 
geometric distribution, with the expected value and 
the variance given by Eqs. (6.4) and (6. 5), respect­
ivel y. The expected value, variance, and conditional 
expected values and variances of the negative run-sum 
of wN,T can be also derived analytically. 

Since the negative run-sum is defined by 

T+N-1 T+N-1 
I o. c t 0 - t . ) 

i=T 1 1 

L o.W - F:o)• (6.7) 
i=T l l 

then by taking into account Eq . (6.2) the conditional 
expected value of the negative run-sum for given N=n 
and T~t is 

t+n-1 
ncr + c L cos ( ii- + e)] (~* - F:0) 

i=t 
(6. 8) 

The conditional expected value of WN T for given . 
N•n is given by the expected value of Eq. (6.8) with 
regard to T. Therefore, it is given by 

aE (E(WN TIN=n,T)) 
' 

(6 . 9) 



12 n+t-1 
Taking into account \ \ 'll 0 0 IT L L cos ('6 l + 6) "' , 

t=l i=t 

Eq. (6. 9) becomes 

(6 0 10) 

The expected value of WN T is given by the expected 
' value of Eq. (6ol0) with regard toN, that is, 

•E (E(WN 1 JN)] • E [Na(~* - ~0) ] 
' 

• a(C* - ~ )E (N) 0 
(6.11) 

Since E(N) is given by Eqo (6.4), the expected value 
of the negative run-sum i s given by 

1 - -E(W ) • - o(~* - ~ ) N,T p 0 
(6 ol2) 

Since t is a time independent variable , the 
conditional variance of the negative run-sum for given 
N=n and T=t is given by the sum of variance of each 
term, 

Var(WN,TJN=n,T=t) 

Var(ot(t0 - t t)] + Var[ot+lct0 - 't+l)] + ··· 

2 
t+n-1 

[no + 2aC L cos(~+6) 
i • t 

2 t+n-1 2 
+ C L cos (~i+6)]Var(C*). 

i •t 
(6 .13) 

Applyi ng the fo llowing r elation (Thomas, 1971, p. 103) 

Var(Y) = Var[E(YJX)] + E[Var(Y JX)] (6.14) 

the condit ional variance of the negative run-sum for 
given N• n is 

Var(WN,TJN=n) 

= Var[E(WN,TJN=n,T)] + E[Var(WN,TJN=n,T) ] 

_ T+n-1 1f _ -2 
= Var{[no + C L cos(6i+6)]((* - t 0)} + E{[no 

i•T 

T+n-1 2 T+n-1 2 
+ 2cc L cos(~i+6) + c L cos (~i+e)]Var(t*) } · 

i•T i•T 

(6.15) 

12 n+t- 1 
Taki ng 1/12 L L 

t • l i • t 

1f 
cos(6 i + e) 0 and 1/12 
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12 n+t- 1 
E E 2 1t 0 ) /2 cos (6 1 + e ,. n , Eq. (6.15) becomes 

t =l i=t 

n 
£~ c2

• c
2 E cn-i)cos-611tlc~· -, ) 2 

2 i=l 0 

-2 n 2 
+ (no + ~ )Var(( *) (6 .16) 

Using Eq . (6 .14), the variance of the negative run­
sum is 

Var(WN,T) 

Var(E(WN,T JN)] + E[Var(WN,TJN)] 

-- { - 2 N2 () • Var[No(t* - t 0)] + E (No + 1C )Var (* 

N 
+ (~2 

+ c2 L (N-i)cos~i](~*- 'o)2
} (6.17) 

i=l 

Finally, taking account of Eqs . (6 o4) and (6.5) , 

Var (WN,T) • ~a2(t* - t 0) 2 + ~ o2Var(t*) 

+ ;\var(~*) + ct* - t 0) 21 

N 
+ c2(t* - t )2E[ L (N - i)cos-61fi) 

0 i=l 
(6 . 18) 

The conditional moments of the negative run-sum 
for given N=n and T=t can be found by the moment 
generating function and the cumulant generating func ­
tion, as used by Downer et al. (1967) to find run 
properties of stationary processes . The following 
notations are adopted: ~ and Kw are the moment 

and the cumulant generating function of wN,T (N=n, 

T=t), respect i vely, Kw = log Mw, K* is the 

cumulant generating function of t *, 

m-th cumulant of t *. Thus 

.. m 
• K* (u) '" L ~<* ~ 

m•l m ml 

In part icular, 

and K* is the 
m 

(6 .19) 

(6. 20) 

~<t = E(t*), ~<i = Var(t*), and~<; 

• E[(t* - i *)3] · 
(6.21 ) 

The cumulant generating function of the conditional 
negative run-sum for given N=n and T=t is given 
by 

t+n-1 
L (6 . 22) 

i"t 

where O o is defined by Eq. (6. 2) . The first two 
l 

moments are the same as those given by Eqs. (6 .8) and 
(6.13). 



Looking at these results, the conditional 
e~pected value and variance of the negat ive run-sum 
for given N=n, the e~pected value and the variance of 
the negative run- sum do not depend upon the phase e. 

The e~ected value and variance of the negative 
run-sum of a stationary series with the mean zero and 
the standard deviation a are given by Downer et al. 
(1967), 

E(w) = ~oCt* - t 0) (6 . 23) 

and 

(6 . 24) 

The expected values of the negative run-sum of the 
stationary process and the periodic -stochast ic pro­
cess are the same. The variance V of the negative 
run-sum of the periodic-stochastic process consi st s of' 
two parts , namely the variance Vs due to the statio-

nary process, which is given by Eq. (6 . 24) , and the 
variance Vp due to the periodicity in C. This is 

e~ressed by 

v = v ... v s p 
(6.25) 

For a given series t , the variance V depends on 
the truncation level t 0 , the average of standard 

deviations a, and the amplitude C. A relationship 
of the ratio of Vs to V t o the ratio of C to a 
is considered. This relationship as shown in Table 
6.1 i ndicates that the variance of the negative run­
sum of periodic-stochastic processes is mainly due to 
their stationary part, especially for the ratio of C 
to o less than 0.5. 

The distribution of the negati ve run-sum, 

which cannot be obtained analytically, depends 
the distribution of t, the truncation level 

upon 
t 0, the 

average standard deviation a ' and the amplitude c. 
The method used by Llamas and Siddiqui (1969) and the 
fitting of a theoretical distribution to experimental­
ly obtained data may be a feasible way of finding the 
distribution of the negative run-sum. 

Since in evaluating droughts of periodic­
stochastic series of the monthly precipitat ion, de­
ficit during a short period within the annual cycle, 
for e~ample two or three month period including the 
specific months , may be of i nterest besides the long­
est duration and the largest deficit, the conditional 
distribution of the negative run-sum for given N=n 
and T=t should be useful in practice. Since the 
moments of the conditional distr ibution may be given 
by Eq . (6. 22) for a distribution of t, and trunca­
tion level t

0
, an average standard deviation o , 

and an amplitude C, the conditional distribution can 
be estimated from the Pearson system of distributions 
on the basis of the first four moments (Johnson and 
Kotz, 1970). Once the conditional distributions are 
determined, it is possible to cal culate their various 
probabilities. 

6.2 . Discussion on Drought Analyses of Periodic­
Stochastic Pr ocesses 

The techni ques for evaluating drought character­
istics of periodic-stochastic series are not we l l 
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Table 6.1. Relationship of the Ratio of the Variance 
Vs Due to the Stationarity to the Vari-

ance V to the Ratio of the Amplitude C 
to the Average Standard Deviation a. 

Case 1 Case 2 

Distribution of t Normal Eq.(3.35) 

to 0.0 0 .0 

q 0.5 0.58 

E(t*) 0.7979 0.6988 * 

Var(t*) 0. 3634 0.1699 * 

v 2.ooooa2 2.o1o1a2 
s 

v 1.6069C2 1.36soc2 
p 

c/a v I (V ... v 
s s 

0.1 0.992 0.993 

0.2 0 .969 0.974 

0.3 0.933 0.942 

0.4 0.886 0.902 

0.5 0.833 0. 855 

0,6 o. 776 0.804 

0 . 7 o. 718 0.750 

0.8 0.660 0.697 

0.9 0.606 0.645 

1.0 0.555 O.S96 

* Obtained e~erimentally . 

developed . For doing it, several promising methods 
are outlined herein. First, the use of the theory of 
runs, as appl ied i n the previous section, is a 
promising method. The good aspect of this approach is 
t hat the definitions of run-length, run-sum, and run­
intensity are clear and these properties may be 
studied analytically except when they are very complex. 
At the same time , this aspect has a weak point. That 
is, objective definitions are based on the anal ytical 
approach so that the physical meanings of the series 
invol ved may be ignored. Definitions of runs do not 
take into account the previous moisture conditions. 
The previous moisture state, or the previous run-sum, 
which affects the following conditions in physical 
and practical terms of the next run-sum, must be con­
sidered in evaluating the effect of the present or 
the next state . This point may become critical with 
a decrease of time interval of the series. Therefore, 
run properties without any modifications may not be 
suff icient to analyze the drought characteristics of 
periodic- st ochastic series such as monthly or weekly 
precipitation series . However, for the secondary 
series , which t akes the carr y-over effect of an ori­
ginal series and therefore is a time dependent series, 
the run properties may be useful for studying drought 
characteristics . 

Another possible technique in treating the droughts 
of periodic-stochastic processes is the use of partial 
sum series or of i ts cumulative series. The concepts 
of deficit and surpl us, the maximum deficit or the 
maximum surplu5, the range , and the maximum range, are 
connected to the general theory of water storage . 
Therefore, these concepts may be useful and proper for 
t he drought analysis of runoff series . They might be 



applicable for a rather long-range evaluation of 
droughts than for a short term such as a few months. 
Guerrero-Salazar and Yevjevich (1975) used the drought­
magnitude and drought-duration criteria on the basis of 
these cumulative series. Their results of a case 
study seem to support the expectation that the criteria 
are useful for an analysis of long-term droughts. To 
analyze the short-term periods, other concepts must be 
added. 

S~ill another alternative may be in deriving the 
series by using the water budget, and to investigate 
this series in the evaluation of drought characteristics. 
Palmer (1965) developed such a method of calculating 
the de£icit and the surplus index, called the Palmer 

index. Herbst et al. (1966) developed a rather simple 
method, based on monthly rainfall data. The method 
derives the effective rainfall in considering the 
water carry-over from month to month. Though this 
method includes subjective procedures or criteria, it 
is useful and may have a possibility for further 
developments. An application of the theory of runs 
to these secondaTY series may help the investigation 
of drought characteristics to be obj ective and quanti­
tative. 

A comparison of these various techniques for the 
same original data would be worth of trying in order 
to find their advantageous or disadvantageous aspects. 

Chapter 7 
CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY 

Under the inferred model of the stochastic com­
ponent of monthly precipitation over the Upper Great 
Plains, generated samples in a systematic grid were 
used to analyze drought characteristics. The deficit 
area, the total areal deficit, and the maximum de­
ficit intensity were used as the primary drought 
indices. Some other areal aspects of droughts were 
also investigat ed. Drought characteristics of 
periodic-stochastic processes were analyzed by using 
the theory of runs. 

The study leads to the following conclusions: 

(1) The extreme that the whole area is completel y 
covered by a drought occurs very rarely in a large 
area, such as that used in this study, for the trunca­
tion levels at the median and the mean, though prob­
abilit ies of droughts over the area are shown to be 
relatively high. 

(2) Once the deficit area, the total areal 
deficit, and the maximum deficit intensity were com­
puted, the areal drought structure was defined by 
Eqs. (5.39) through (5.41). 

(3) The probability of a drought covering a 
whole subarea is more affected by the size than by 
the s hape of the subarea. For a small area, the 
shape of the area affects probabilities of droughts . 

(4) Probability distributions of the deficit 
area within a subarea are affected by the truncation 
levels, especially for a small subarea, as well as 
by the size and the shape of the subarea. 

(5) The total areal deficit of monthly precipi­
tation series can be obtained as a product of an 
areally averaged standard deviation and the total 
areal deficit of stochastic component series of 
monthly precipitation. 

(6) Under simple assumptions, run properties of 
univariate periodic-stochastic processes were obtained 
analytically. The conditional moments of the negative 
run- sum for given run- length and the onset time , given 
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by Eqs. (6.8) , (6. 13), and (6.22), are expected to 
be useful in practice. 

(7) The variance of the negative run-sum, con­
sisting of the variance resulting from the stationary 
stochastic component and the variance resulting 
from the periodicity, is explained predominately by 
the variance which results from the stationary sto­
chast ic component. 

Suggestions and reconunendatons for further 
studies: 

(1) Improvements in the regionalization of 
important parameters of monthly precipitation series 
for a large area are needed in order to accurately 
describe the drought characteristics of monthly pre­
cipitation series over a lar~e area. 

(2) In generating new sampl es , at a. systematic 
grid of points over a large area, the border effects 
should be investigated . Some properties of generated 
series may be biased due to these effects, and t he 
generation method may not be as effective for the 
solution of some problems as expected. 

(3) Systematic and quantitative analysis of 
observed data over a rather l arge area is very much 
needed for the study of drought characteristics, 
especially of areal coverage of droughts. 

(4) The areal drought structure should be further 
investigated by analyzing each deficit cell (instead 
of using these combined multi- cell). Analysis of 
characteristics of each deficit cell, such as its size, 
shape, deficit intensity, and duration, would give the 
physical expl anation to process modeling. 

(5) There is a need for developing advanced 
techniques of evaluating the drought characteristics 
of periodic-stochastic processes. By advancing con­
cepts of such techniques, by comparing their results, 
and by finding positive and negative aspects, general 
and objective techniques of evaluating drought 
characteristics of periodic-stochastic processes would 
be produced. 
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Key Words : Drought, Areal Droughts, Drought Deficit , Drought 
Intensity, Monthly Precipitation. 

Abstract: Under the concept that monthly precipitation series over 
an area are composed of deterministic components specified by peri­
odic parameters and a stationary stochastic component , a mat hemati­
cal model is developed of the area -time process of monthl y precipi­
tation, especially of the stationary stochastic component, using the 
Upper Great Plains in USA as an example. The independent indenti­
cally distributed variables are obtained from the transformed sto­
chastic component. Their regional dependence structure is given by 
an exponential decay function of the interstat ion di stance. By using 
this model, new samples of time series over the are4 at a new grid of 
80 points were generated in order to investigate area-deficit in­
tensity drought characteristics. 

The deficit area, the total area l deficit , and the maximum defi­
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parameters of their frequency distributions and of mutual relation­
ships are analyzed for various truncation levels in drought de­
finitions. 

Probabili ties of areal coverage of droughts are further investi­
gated by applying the theory of runs, the theory of recurrent events, 
and similar approaches. Probabilities of specific areas covered by 
droughts of given properties are investigated by considering the 
effects of the size and the shape of an area. 

Run properties of a simple, periodic-stochastic process are in­
vestigated analytically. Moments of negative run-sums are found by 
considering the negative run-length and the onset time. Other tech­
niques are discussed in comparison with the use of run properties in 
evaluating drought characteristics of periodic-stochastic processes . 
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