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ABSTRACT

Under the concept that monthly precipitation series over an area are composed of deterministic components
specified by periodic parameters and a stationary stochastic component, a mathematical model of area-time process
of monthly precipitation, especially of the stationary stochastic component, using the Upper Great Plains in
the U.S.A. as an example of the model, is developed. The independent identically distributed variables are
obtained from the transformed stochastic component. Their regional dependence structure is given by an
exponential decay function with the interstation distance. By using this model, new samples of time series
over the area at a new grid of 80 points are generated in order to investigate area-deficit-intensity character-
istics of droughts.

The deficit area, the total areal deficit, and the maximum deficit intensity are defined as primary indices
of drought characteristics. The basic parameters of their frequency distributions and of mutual relationships
are analyzed for various truncation levels of drought definitions. The areal drought characteristics are
modeled and their parameters defined by three basic indices.

Probabilities of areal coverage of droughts are further investigated by applying the theory of runs, the
theory of recurrent events, and by similar approaches. Probabilities of specific areas covered by droughts of
given properties are also investigated by considering the effects of the size and the shape of an area.

Run properties of a simple, periodic-stochastic process are investigated analytically. Moments of
negative run-sums are found by considering the negative run-length and the onset time. Some other techniques
are discussed in comparison with the use of run properties in evaluating drought characteristics of periodic-
stochastic processes.

FOREWARD

Droughts are characterized by several properties. In general, mostly droughts of point processes have
been investigated, meaning droughts at a given point on the earth's surface are investigated by using time
series of variables which determine the drought phenomenon. From these time series serveral indices have been
used for drought descriptions, such as the total deficit of water, its maximum deficit intensity, shape, du-
ration or any other characteristics of drought runs. When droughts are investigated for its distributions
over a region, investigations become much more complex. Two area concepts are then necessary, namely the fixed
region with its size and shape must be defined, and probabilities must be found for a part of this region to
be covered by the drought of given point characteristics. Therefore, drought area coverage inside a fixed
region, studied simultaneously with the size and time characteristics of droughts, represent a realistic ap-
proach to analysis of drought properties by using probability theory, mathematical statistics and stochastic
processes.

Two problems have been emphasized by Dr. Norio Tase in his Ph.D. dissertation work in studying droughts.
First, it was necessary to select a variable which describes the drought area coverage. Second, it was neces-
sary to select drought characteristics which will be studied simultaneously with the area coverage. When the
region to be studied for drought occurrence is large, variables which determine drought conditions must be
relatively simple. It is most appropriate for agricultural droughts to use either the soil moisture variable,
or the total moisture available in soil for plants in function of their water requirements. However, this
simple approach requires data which usually are not available, or must be computed indirectly from other varia-
bles; therefore, a simplification was needed by selecting the monthly precipitation as the basic variable in
defining droughts. The concept is based on the principle that long historical developments of agriculture in
an area have already adjusted mainly to mean values of monthly precipitation, so that the variation around the
monthly means and not the mean monthly precipitation themselves determine drought characteristics. The vari-
tions in the form of the periodic standard deviation of monthly precipitation should be included in one way or
another to simplify and make uniform drought investigations for a region. The standardized monthly precipi-
tation, equivalent to precipitation of each month decreased by the mean monthly precipitation and divided by
its standard deviation, is used as the basic random variable. The new standardized variable is then the same
all over a large region.

iii



The selection of the area-time parameters for description of droughts must be simplified. In the study by
Dr. N. Tase only three parameters are selected for investigations: area covered by a drought inside the fixed
region, total water deficit below the level which defines drought conditions, and maximum intensity or deficit.
It was difficult to include the drought duration as a simple parameter with the three above parameters, because
the duration changes in length from point to point over a region and does not coincide over the drought area.
By simplifying the selection of parameters, the major objective was to obtain a general idea on probabilities
of large droughts covering extensive areas. Because of importance of food production in Great Plains of the
United States, a large, fixed region inside the Great Plains was selected as an example to show the properties
of these drought probabilities. Monthly precipitation series are treated by the already standard technique in
studying the area-time periodic-stochastic processes within the Graduate and Research, Hydrology and Water Re-
sources Program of the Department of Civil Engineering at Colorado State University. To simplify the investi-
gation, a relatively limited number of precipitation station series over this large region is selected.

In the real case of forecasting drought occurrences in probability terms for a large region, all the
available information should be condensed in form of mathematical models and their estimated parameters, and
not only in form of a limited number of station series of a given, same sample size. To obtain best estimates
of models and their parameters, all observations over that region should be included in practical cases,
Models represent the time structure of monthly precipitation and their estimated parameters are presented in
form of their changes over the region. Once the time independent stochastic components (TISC) of monthly pre-
cipitation have been determined for all the stations, their interstation dependence in form of lag-zero cross-
correlation coefficients can be determined as a model relating these coefficients to station position, distance
and orientation. By condensating all the information on monthly percipitation over a large region in form of
mathematical models, the generation of new samples of monthly precipitation process over that region becomes
feasible and independent of observation points. To simplify this generation, it is feasible to cover the
region of drought investigation by a square grid of points, each point being associated with a well defined
unit area. In other words, the use of sample generation method for the investigation of droughts properties
can be separated from the observation points. This is important because the observation points were selected
basically by two criteria in the past, as points at which the observations could be easily organized, with the
constraint of available funds for observations.

Because of difficulties for the application of analytical method in the investigation of area-defficit-
intensity characteristics of droughts, the experimental (Monte Carlo) or sample generation method was used
exclusively in Dr. N. Tase's study in order to estimate these characteristics. In general, one can start with
the analytical method by trying to obtain close solutions for simplified cases of drought problems. Then,
these simple results serve as the guide to the approach by generating samples over region in order to investi-
gate the more complex drought problems. Or, in the opposite case, one can start with the experimental, sample
generation method, by investigating the characteristics of droughts over a large region, and then--as a second
phase--apply the analytical method for obtaining the generalized solutions in the close forms. This second
approach, in its first phase of the application of experimental method, has been followed in this study. It
is expected that the results presented would stimulate specialists in stochastic processes and mathematical
statistics to theoretically investigate the joint distributions of drought characteristics, especially in-
cluding the drought area coverage.

The study by Dr. Norio Tase gives relationships between the three selected drought characteristics as well
as probability of these characteristics, either as marginal distributions or as joint distributions. Further-
more, the study shows that the shape of a region, especially of small region, is also an important factor for
drought area coverage. However, the larger the region the lesser becomes the effect of the shape and the more
important becomes the surface of that region.

In studying the effect of periodicity of periodic-stochastic processes on drought characteristics it was
shown that periodicity is one of the major obstacles for extensive studies of drought characteristics by the
analytical method. However, the effect of periodicity in parameters can be studied by generating many time
series over a region, in preserving not only the time periodic-stochastic character of series but also their
regional dependence among the time independent stochastic components. Because periodicities in parameters
involve a large number of coefficients, especially Fourier coefficients of harmonics, it would be difficult to
relate the various drought characteristics to all these coefficients. This fact then requires the regional
studies only, by generating new samples as closely as possible of the area-time processes of controling random
variables, and by properly defining what are the droughts for periodic-stochastic processes of water supply
and water demand. By generating new samples of these processes, the experimental method produces estimates of
marginal probabilities or joint probabilities of drought characteristics.

This study is a part of a continous effort in the Hydrology and Water Resources Program of Department of
Civil Engineering at Colorado State University in the analysis of various aspects of droughts. Basically,
first their physical aspects are investigated, and then studies are broadened to economic and social aspects.

Vujica Yevjevich

Professor of Civil Engineering

and Professor-in-Charge of

Hydrology and Water Resources Program

November, 1976
Fort Collins, Colorado
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Chapter 1
INTRODUCTION

1.1. General on Droughts

Droughts and floods are extremes in the fluctua-
tion of various hydrologic phenomenon. Generally human
settlements have been river valley-oriented since time
immemorial. This has attracted the attention of people
to flood problems more than to drought problems, be-
cause flood damages to society are much more visible
and sudden in comparison with drought damages. In
modern times, this situation has been changed due to
the following reasons: (1) the pressure on limited
water resources by an increase of population and the
standard of living, especially in big cities, required
attention to water shortage or drought problems; (2)
the specialization of regions as it concerns the use
and allocation of water resources, such as the granary
region of the Great Plains in the United States, makes
a region's role especially important. Thus, crop fail-
ures in such regions may heavily affect not only the
national but also the world economy. With an increase
of the world population, the food problems become more
serious day by day. Therefore, reduction or failure
in grain production for several years in an important
region, such as in the wheat belt of the United States,
would make a great impact on the world total food sup-
ply. Drought is one of the main causes of food supply
deficits.

Drought problems are a critical aspect of water
Tesources conservation, development, and control at
present. Continued pressure on limited water supplies
will make drought problems much more serious in the
future. Therefore, intensive and systematic inveatiga-
tions on drought problems are urgent and necessary.

The definition of drought is a controversial
subject. The difference between drought and water
shortage is also vague. Every water user may have his
own concept of drought, and furthermore, that concept
may change with conditions of operation. In agricul-
ture, drought means a shortage of moisture in the root
zone of crops. To a hydrologist, it means below aver-
age water levels in streams, reservoirs, groundwater,
lakes, etc. In an economic sense, drought means a
water shortage which affects or disturbs the establish-
ed production. Although these concepts are based on
different viewpoints, they basically depend upon the
effects of prolonged or unusual weather conditions.
This study is only concerned with the hydrologic and/or
meteorologic drought concepts. The writer contends
that an evaluation of the hydrologic or meteorologic
drought, defined by an objective way, permits each
water user to apply such measures as to determine the
effect-relationship in which it has an interest. For
a more accurate estimation of drought effects, the def-
inition of drought must be tailored to a particular
problem, For an analysis of hydrologic droughts in
this study, monthly precipitation phenomenon is taken
into account, as a primary water supply.

1.2, Major Problems Needing Studies

Two main drought problems need solutions. First,
the problem of the areal coverage, or the extent of a
drought, relates to the scale and the shape of droughts
and their probability of occurrence. It has not been
studies because the precise definition of the areal
coverage by a drought and the analyses of areal extent
are not simple to attack. For regions within a large
area related to each other in many aspects, the areal

extent of a drought should be studied for a good plan-
ning of water resources development and of alleviating
drought effects over the large areas, such as regional
water exchange (Takeuchi, 1974).

The second problem is related to difficulties
invelved with evaluating drought characteristics for
the periodic-stochastic time processes such as the
daily or monthly precipitation or runoff series. Com-
pared with the stationary series such as annual preci-
pitation or runoff, in the periodic-stochastic series
the time position or season is a very important factor
in evaluating the drought characteristics such as its
duration, magnitude, intensity, etc. This means that
in case of periodic-stochastic processes it is diffi-
cult to find and/or define the basic drought character-
istics such as the negative run-length and the negative
run-sum, which are useful characteristics of describing
droughts of stationary processes such as annual preci-
pitation or runoff.

1.3. Objectives of the Study

Since the fundamental causes of drought in the
form of physical factors of atmospheric circulation are
still not well understood, the practical method of
studying droughts is to consider their properties as
random variables and to use the statistics and observed
time series in order to estimate these characteristics.

The first objective of this study was to find
experimentally the general characteristics of hydrolo-
gic droughts over a large area after developing the
mathematical models of area-time processes of monthly
precipitation for the case of the Upper Great Plains in
the United States. Am areal structure of droughts is
also studies.

The second objective was to study probabilities of
droughts covering a specific area, such as a state
within the Great Plains, in considering the effects of
the size and shape of this area on probabilities
obtained.

Since there are not many investigations on the
areal coverage of droughts, this study is related to
several general aspects of the areal drought coverage.
To document concepts and present the ideas for further
studies on large droughts, as many figures and tables
are given as was considered necessary or warranted.

The third study objective was to discuss some
feasible methods of analyzing droughts of periodic-
stochastic processes, by finding some basic properties
of negative runs of these processes.

1.4, Procedures Used

The procedures used in developing the mathematical
model of area-time stochastic process of monthly pre-
cipitation are presented with the model applied to the
Upper Great Plains in Chapter III.

In Chapter IV, the determination of the grid
system and grid interval is studied with the generation
of a new series at new, systematic grid points. The
generated series based on the model and the new grid
system, are tested statistically to verify that they
simulated the basic processes well. Using the genera-
ted series, the characteristics of large area droughts



are studied in Chapter V. The three variable: the
deficit area, the total areal deficit, and the maximum
deficit intensity, are defined as the basic character-
istics of regional droughts. Their basic properties
studied are probability distributions and mutual rela-
tionships. The areal structure of droughts is also
described in this chapter. Probabilities of areal

coverage by droughts are investigated in considering
both the size and the shape of an area.

In Chapter VI, the analysis of droughts of
periodic-stochastic processes is discussed. The basic
properties of negative runs of the periodic-stochastic
processes are studied anmalytically and compared with
those of the stationary processes.



Chapter 2
REVIEW OF LITERATURE

2.1. Drought Definition and Studies

The definitions of hydrologic or meteorologic
droughts have already been discussed for a long time.
Hoyt (1938) stated that drought conditions might pre-
vail when the annual precipitation was as low as 85
percent of the mean. McGuire and Palmer (1957) defined
the drought as condition of monthly or annual precipi-
tation less than some particular percentage of normal.
Thomas (1962) used the definition that drought was a
meteorologic phenomenon and occurred during a period
when precipitation is less than the long-term average.
Yevjevich (1967) defined a hydrologic drought as the
deficiency in water supply on the earth's surface and
used the runs as the basic concept for an objective
definition of droughts. Drought investigations until
1968 have been presented in the form of annotated
references by Palmer and Denny (1971), which can give
a good insight to problems and approaches.

The classical approach to drought problems was to
find the probability of the instantaneous smallest
value on the basis of the theory of extremes (Gumbel,
1963). This approach does not tell anything about the
duration and areal coverage of droughts. Unlike
flood problems, the duration and areal coverage are
very important in drought problems.

Figure 2.1 represents a discrete series of a
variable X. By selecting an arbitrary truncation
level Xg» two new truncated series of positive and

negative deviations are obtained. The number or

length of consecutive negative deviations preceded and
followed by positive deviations is defined as a nega-
tive run-length, which may be associated with the con-
cept of the duration of a drought. The sum or integral
of all negative deviations over such a run-length is
defined as the negative run-sum. The ratio of the
negative run-sum and the negative run-length is defined
as the negative run-intensity (Yevjevich, 1967). The
negative run-sum and run-intensity can be associated
with the severity of a drought.

') xl

ot N

. M—

Fig. 2.1. Definition of the Positive Run-Length, M
the Negative Run-Length, N, the Positive
Run-Sum, S, and the Negative Run-Sum, W

for a Discrete Series, xi.

Several theoretical and experimental studies of
runs related to drought problems are available. The
run-length has been more widely investigated. Saldar-
riaga and Yevjevich (1970) summarized the exact proper-
ties of distributions of run-length for univariate
independent random variables, which showed that the
run-length properties are free of underlying distribu-
tion of input processes. They further studied the
properties of run-length for univariate dependent
random variables, especially defined by the first-
order autoregressive model.

The study of run-sums is very complex theoretical-
ly. Only for the univariate independent normal process,
the exact properties of run-sums were found by Downer
et al.(1967). The exact properties of run-sums of
normal dependent or non-normal independent and depen-
dent processes have not been developed.

The application of the theory of rumns to a
univariate stationary process is useful because it
gives the main drought characteristics, such as the
probability of occurrence of duration and severity,
except the probability of areal coverage. Millan and
Yevijevich (1971) studied the probability of historic
hydrologic droughts by using the longest negative run-
length and the largest negative run-sum as basic para-
meters of samples of a given size for given probability
of the truncation level, the autoregressive coeffi-
cients, and the skewness coefficients. Guerrero-
Salazar (1973) further studied probabilities of the
longest negative run-length and the largest negative
run-sum for both univariate and bivariate processes,
analytically and experimentally. For bivariate pro-
cess, Llamas and Siddiqui (1969) studied several basic
properties. The overall summary of rumns is given by
Guerrero-Salazar and Yevjevich (1975).

The application of run properties of univariate
and bivariate stationary processes to drought investi-
gations is limited to processes such as annual preci-
pitation or annual runoff series, where the assumption
of a stationary process is sufficiently accurate. The
short interval processes such as monthly, weekly, and
daily precipitation series are periodic-stochastic
processes. Hence the above analysis is not directly
applicable to such processes, and the problem of devel-
oping the techniques to study the periodic-stochastic
processes needs attention.

Based on the water budget of the soil, Palmer
(1965) used the difference between the actual precipi-
tation and the computed precipitation which is required
for the average climate of the area to evaluate drought
severity in space and time. Since many factors such as
runoff and evapotranspiration are estimated, an appli-
cation of this method to a large area is verydifficult.
Herbst et al.(1966) developed a technique for the
evaluation of drought only from monthly precipitation.
The technique determines the duration and intensity of
droughts and their months of onset and termination. It
can also compare the intensity of droughts irrespective
of their seasonal occurrence.

Few investigations on areal coverage of droughts
have been carried out. Even a descriptive method of
areal characteristics of drought has not been well
developed, and little has been done on applying quanti-
tative or statistical methods to drought coverage.
Pinkayan (1966) studied the probability of occurrence



of wet and dry years over a large area. He used the
conditional probability mathematical functions to
describe the occurrence of wet and dry years over the
area. He concluded that the occurrence of wet and dry
years between two stations up to a distance of 1000
miles is dependent. Gibbs and Maher (1967) analyzed the
areal extent of past droughts in Australia by classify-
ing the annual precipitation with the decile range.

As a crude index of drought, the first decile range of
calendar year rainfall is used to find the return peri-
ods of droughts covering certain percentage of the
continent. Many investigators, such as Spar (1967)
used a kind of precipitation or runoff distribution to
discuss the drought phenomenon, without analyzing it
quantitatively.

2.2, Models of Monthly Precipitation Series

Roesner and Yevjevich (1966) studied the time
structures of monthly precipitation series for 219
stations in the Western United States. They concluded
that the monthly precipitation series is composed of
deterministic periodic parameters and a mearly indepen-
dent stochastic component. The periodic component can
be described by a Fourier series, mainly with a har-
monic of the 12-month cycle.

The spatial extension or smoothing of the time
structure parameters of the point series has been
investigated by using surface-fitting techniques. In
particular, polynomial functions of the space coordi-
nates are usually used (Amorocho and Brandstetter,
1967). These techniques or surface trend analysis are
extensively used in geology (Krumbein, 1959, 1963;
Mandelbraum, 1963) for separating the relatively
large-scale systematic changes in mapped data from
essentially non-systematic small scale variations due
to local effects or errors.

Spatial or regional structures of monthly
precipitation are studied by using cross correlation
coefficients (Stenhouse and Cornish, 1958; Huff and
Shipp, 1969). Usually the cross correlation coeffi-
cients are expressed by various functions of the
interstation distance and the orientation of the line
connecting the two stations, as well as some other
factors. Stenhouse and Cornish (1958) showed that the
decay rate of the cross correlation coefficients with
the distance and the axis of the maximal correlation
are changing month by month. Yevjevich and Karplus
(1973) studied the regional dependence structure of
the stochastic component of monthly precipitation by
using the cross correlation coefficients with ten
different functions of the interstation distance and
the orientation.

Karplus (1972) studied the structures of area-
time hydrologic process of monthly precipitation based
on the concept that the process consists of determin-
istic components specified by periodic parameters and

a stationary stochastic component, with the coeffi-
cients of the periodic parameters following regional
trends. As a result of the application of this con-
cept, the area-time process of monthly precipitation
is sufficiently described by the four mathematical
models:

(1) Periodic functions for the periodic parame-
ters of the mean and the standard deviation;

(2) Regional trend planes;

(3) Three-parameter gamma probability distribu-
tion function of the identically distributed, time
independent stationary stochastic component; and

(4) The regional dependence function for the
stochastic component.

2.3. Multivariate Data Generation and Grid System

The data generation or the experimental Monte
Carlo method has been used in hydrology for some time.
The method of generating hydrologic series over an
area, or multivariate series, preserves the properties
of historic sequences in terms of the sample means,
standard deviations, lag-one or lag-one and lag-two
serial correlation coefficients, and the lag-zero
cross correlation coefficients as a second-order sta-
tionary process (Fiering, 1964; Matalas, 1967). The
Matalas model and its modified model are used for
generation of annual, seasonal, monthly, and daily
precipitation (Schaake et al., 1972).

Karplus (1972) applied the method of principal
components, using only the first several statistically
significant principal components, to the generation of
new samples of monthly precipitation and studied the
effects of the number of principal components used on
the generated series.

Millan and Yevjevich (1971) showed that the
experimental method could give very good results by
comparing the exact solution with the solution obtained
by the experimental method.

With the advent of computers, introduction of the
grid system facilitates storing, processing, and re-
trieving of a large amount of information (Solomon
et al., 1968). Yevjevich and Karplus (1973) recommended
the use of a systematic grid of points across an area
to solve problems related to area-time processes such
as droughts, especially by generating multivariate
series, based on their mathematical models.

The problem of finding an appropriate grid system
and grid interval has been studied indirectly in Tela-
tion with the problem of areal representativeness of
point information or network design of observatories
(Linsley and Kohler, 1951; Huff and Neill, 1957;
Steinitz et al., 1971; Rodriguez-Iturbe and Mejia,
1974; etc.).



Chapter 3
MATHEMATICAL MODEL OF MONTHLY PRECIPITATION OVER A LARGE AREA

The basic hydrologic processes such as precipita-
tion and river run-off are four dimensional space-time
random processes and usually dependent both in time and
in area. When a surface is considered, the processes
are reduced to three dimensional area-time processes.
The series of the amount of monthly precipitation at
ground level can be considered as an area-time process
as long as the regional topography is fairly homogene-
ous. To develop mathematical models of area-time
process such as monthly precipitation series, Yevjevich
and Karplus (1973) gave the basic assumption that the
process consists of deterministic components specified
by periodic parameters and a stationary stochastic
component. The coefficients of the periodic parameters
follow some regional trends and the stationary stochas-
tic component has regional characteristics such as
regional dependence. Generally, the more stations used
and the longer their data, the better is the area-
time information of the models. The following discus-
sions are mainly based on Yevjevich and Karplus (1973)
and the more detailed procedures can be found in their
work.

3.1. Deterministic and Stochastic Components

Two ways of separating deterministic and station-
ary stochastic components can be considered. The
differences between these two methods come from how
the monthly means and standard deviations are estimat-

ed. The first method is called a non-parametricmethod.

A stationary stochastic component series £ for a
given station is defined by a standardized series of
monthly precipitation series x. That is, the observed
monthly means and standard deviations are considered as
the deterministic components and are removed from the
monthly precipitation series. Therefore, the stochas-
tic component is given by

(3.1)

where p and 1t denote the sequence of years and the
month within the year, respectively, and m and S,

are the estimated sample means and standard deviations
of the monthly precipitation, respectively. The new

variable Ep . can be a second-order stationary pro-

cess and can be replaced by Ej’ that is, £, = £ in

J P.T
which j = 12(p-1) + 1. Now Ej is the basic stochas-

tic process to be studied. The mathematical model of
area-time structures of the stochastic series may be
developed from all series of aj' Models for area-

time structures of the deterministic components of the
monthly precipitation series can be made on the basis
of m_ and S Finally, both models can be combined

together.

On the other hand, the second method is paramet-
ric, as used by Yevjevich and Karplus (1973). It is
based on the assumption that once the deterministic
area-time components in the parameters of the basic
random variable of the monthly precipitation EP T

»

have been estimated or modeled and removed from all the
point-time series, a second-order stationary area-time
stochastic process g would remain. That is, §

is given by X Rok

(32}

S

where m_ and s, are estimated means and standard

deviations by some area-time models, which are discus-
sed later.

These two procedures are compared in Figure 3.1.
In the second method, the population means and stand-
ard deviations of the monthly precipitation are esti-
mated by using areal information besides the point
values. If the model of the deterministic area-time
components is derived well, the second method is more
useful. However, modeling of the deterministic area-
time components for a large area is difficult. When
the stochastic component is of primary concern in an
investigation and the area studied is fairly large,
the first method is easier to apply.

Although there are some differences between the
two methods in separating the deterministic and sto-
chastic components, the analysis and modeling proce-
dures are basically the same. The following discussion
will be done in this chapter. First, the mathematical
model for the time structure of the monthly precipita-
tion series at a given point is found. The model of
extending the basic parameters of the deterministic
components at a point to regional structures is follow-
ed. After discussing the analysis of the area-time
stationary stochastic component of the monthly precipi-
tation, the mathematical model of the area-time process
of the monthly precipitation is applied to the Upper
Great Plains, as a case study.

3.2. Mathematical Model for Time Structure of Monthly
Precipitation
Define the random variable Xp . s the monthly
»
precipitation for a given station i (i=1,2,...,M),

with M the number of stations in a region, p = 1,2,
.,n, the sequence of years, n the sample size ex-
pressed in years, T = 1,2,...,12 month within the year.
Also define Ep ¢ 28 the standardized random variable

kS
with the periodicity of the mean and the standard devi-
ation removed from the station series as

(3.3)

where n is the periodic monthly mean and o is
the periodic monthly standard deviation for the station
series.

The variable Ep . can be assumed as second-order

stationary and it is either independent or dependent in
sequence. In the case of dependence, the general m-th
order autoregressive linear dependence model is usually
used. The m-th order autoregressive linear model is
given in general by

m
Ep,1: = kgl o‘k,'lultg];),‘r-l':

m
+ (1 - E ? o /2 W

} (3.4)
i=1 j=1 3,1-1%,1-5P 1i-5 1, 1K) i



Method I : Non-Parametric Method

[Observed Monthly Precipitation Series |

Estimating Monthly Means, m, and
Standard Deviations, st.

Separating Stochastic Component
from the Monthly Precipitation by
Standardization.

Modeling Time and Regional
Structures of Deterministic
Components.

Modeling Time and Regional
Structures of Stochastic

Component.,
|

Method II : Parametric Method

[Observed Monthly Precipitation Series |

Estimating Monthly Means, m_, and
Standard Deviations, G

Modeling Time and Regional Structures
. of m and 5o

Removing Estimated M, and &, by the
Models from the Monthly Precipitation
and Obtaining Stochastic Component.

Modeling Time and Regional Structures
of the Stochastic Component.

Fig. 3.1. Comparison of Two Methods of Separating

Deterministic and Stochastic Components.

i<j and k=3 if 1 >j with
the autoregressive coefficient at the position

in which k=i if

X,

k, -k
-k, which are dependent on the autocorrelation coef-
ficients, I and w 1is a second-order stationary

,T-

and independent stochastic variable. In hydrology, the
first three linear models have been used by various
investigators (Yevjevich, 1964; Roesner and Yevjevich,
1966).

in Eq. (3.3)
The mathematical description of

The periodic parameters e and o,

are symbolized by v _.
13

the periodic variation of % is represented in the

Fourier series analysis by

_ h(v)
Ve B9 3 § C.(v)cos[AjT + 8.(v)] (3.5)
j=1 !

where Vv is the average value of v, Cj{v} the ampli-
tude, Hj(u) the angular phase, j indexes the sequence

of harmonics (j=1,2,...,h), h(v) denotes the total num-
ber of significant harmonics, and X is the basic
frequency of the periodic process.

The general mathematical model of the time

structure of xp " is expressed as
»

) hfu}
I Cj(n}cosmr+ﬁj(u)]}

_ hiag)
+{ o+ f Cj[c)cos[Ajr + ej[n]]} EPaT (3.6)

j=1
where the symbols oo and .
£3.5):

precipitation, the maximum number of harmonics for all
periodic parameters is six. However, it is shown by
several studies that for monthly precipitation series
one, two, or a maximum of three harmonics are suffi-
cient for each periodic parameter.

for C, and 6.
J ]

correspond to Yoo in Eq. In case of monthly

o
The ratio of the variance s"[ur] of the fitted
v to the variance of the estimated values such as

m and
determining the significant h(v) harmonics, since the
ratio increases with an increase of the number of
harmonics h(v).

ST, is used to select the cutoff point in

A simple model for the monthly precipitation
series could be obtained under the following conditions:

(1) The first harmonic with a period of 12 months
alone explains most of the variance; and

(2) & 1is an independent, random variable.

This simplified model, with the periodic ¥, and

g and with the above hypotheses of time series

structure for the monthly precipitation, is given by

- o+ Cl(u)cos[kr + al(u)]

+ {o + lec):os[}r * BI(U)]}Ep,T (3.7)

The Ep > series is then an independent, stationary

random variable at any station.

3.3. Regional Structure Model for Basic Hydrologic
Parameters

Let the hypothesis be that the regional variation
of any parameter can be obtained from the M point

estimates vy (i=1,2,...,M), and be well defined in
the form of a trend surface function
v o= K Y) (3.8)

with X and Y the coordinates (longitude and lati-
tude) of point positions. In sampling the population
function W(X,Y) by a limited number of station points
and limited number of observed data for each point
during n years, the estimate of the function u(X,Y)

and its coefficients by a sample fitted surface f(X,V)
required a regression equation such as
rEX, 0 s (3.9)

in which e represents the sampling errors and the
difference between the true regional surface function



and the fitted function. However, £(X,Y) is usually
accepted as the best estimate of ¢(X,Y).

Since ¥(X,Y) is a continuous function, it can
always be expanded in a power series form. By taking
a polynomial in X and Y of the m-th order, Eq.
(3.8) becomes

v o= Bl + BZX + BSV * 54X2 + BSXV + Bﬁyz * e
it m-1
tBX B XY e w0 (3.10)

where Bj' j=1,2,...,k + m, are regression coeffi-

cients to be estimated by the least-squares method and
0(X,Y) is the remaining expansion error.

The boundaries of the trend surface are greatly
affected by the estimates vy of those stations loca-

ted near the edge of a region. These estimates may
introduce undesirable values of vy at these edges,

such as negative means or standard deviations, when
the coefficients Sj of Eq. (3.10) are estimated by

the least-squares method. To minimize the boundary
effects, the trend surface may be fitted to a larger
region having more stations, rather than the region
under study with M stations. The B, coefficients

of Eq. (3.10) are estimated for all stations but are
applied only to the small interior region defined by
M stations.

v = £(X,Y) of
should be
analyzed., If the estimate is not good, the areal

distribution of the residuals may have some patterns
over a region.

To evaluate the fitted function :
v = §(X,¥), the residuals € =V, -V

3.4, Separation of Deterministic and Stochastic
Components of Monthly Precipitation

In order to separate deterministic and stochastic
components, and to obtain a second-order stationary
independent stochastic process £, two methods can be
considered as mentioned earlier. As the first method
is called a non-parametric method, Eq. (3.1) is direct-
ly applied for all the stations to obtain an approxi-
mately second-order stationary series £, by using the
observed means m_ and standard deviations S, of the

monthly precipitation x The second method is ba-

p, T’
sed on the assumption that once the deterministic area-
time components in the parameters of the monthly pre-

cipitation L . have been established by Eqs. (3.6),

(3.7), and (3.10) and removed from all point-time ser-
ies by Eq. (3.2), an approximately second-order stat-
ionary independent area-time stochastic process ¢§
would remain.

The stochastic process £, either by the first or
the second method, can be then considered as a multi-
variate, identically distributed, stationary area-time
process, which is time independent but areally depen-
dent. In other words, the point series at stations
over an area are mutually dependent, identically dis-
tributed time independent variables.

3.5. Analysis of Area-Time Stationary Stochastic

Component of the Monthly Precipitation Series

Once the deterministic component of the monthly
precipitation series are separated by the first or
second method, the following conditions should be
checked:

(1) Each series is time independent;

(2) The point-time series in the region are
identically distributed variables; and

(3) The type of dependence among series is in the
form of the mathematical regional dependence model.

The time independence of £ is tested by using
the correlograms of individual sample time series of
£. The hypothesis of identically distributed £ for
all stations in the region is tested by comparing their
distribution or distribution parameters as estimated
from the observed individual time series.

Once the £-series can be assumed as time indepen-
dent, identically distributed variable, the analysis of
regional dependence can be undertaken. Generally the
areal dependence is studied by using the linear cor-
relation coefficient Py among stations. The cor-

relation coefficient between the series at station i
and j may be a function of the absolute position of
the station (X,¥), the interstation distance dij’ the

orientation of the line connecting the two stations
¢ij’ and time with the year <£. This relation is

expressed by

p = y(XY,d,4,0) (3.11)
For a fairly topographically, hydrologically, and
meteorologically homogeneous region, the correlation
coefficients may be approximated by a function of only

the interstation distance and the orientation. That
is, Eq. (3.11) is reduced to
p = £(d,9) (3.12)

Several functions relating the estimated interstation
correlation coefficient with the interstation distance
and the orientation have been studied (Caffey, 1965;
Stenhouse and Cornish, 1958; Karplus, 1972).

Under the consideration that the range of p for
the function should be between zero and unity for all
values of d, and that for d = 0 by the definition
p =1, and for d = @, p should be zero, the following
two functions are used in this study:

i eXP[BIdJ (3.13)
and

p = exp[{sl + B,c0S2¢ + Bssin2¢)d} . (3.14)

The first model is a simple regional dependence rela-
tion between the lag-zero cross correlation coefficient
and interstation distance. In this model, the depen-
dence structure is considered to be isotropic and a
simple exponential decay. On the other hand, the
second model relates the lag-zero cross correlation
coefficient of any pair of stations to their distance
and orientation. Characteristics of this function are
that the rate of the decrease of the correlation coef-
ficient with distance from the station varies with the
direction and the slope is symmetrical about the sta-
tion for a given axis. The direction for the least
rate of the decrease of the correlation coefficient,
which is called the major axis (Caffey, 1965), is given
by

1 -1
pax = 3 tan (63182) (3.15)
where ¢max is measured from the reference axis in

degrees, counter-clockwise from the east in this study.
The ratio of the rates of change of the correlation
coefficients along the major and the minor axes shows
the degree of ellipticity.



3.6. Application of the Models to the Upper Great
Plains in U.S.A.

The Upper Great Plains in the United States is
chosen to show how the mathematical models of monthly
precipitation are applied and to analyze drought cha-
racteristics. The Upper Great Plains is an important
agricultural region for production of wheat, corn, and

livestock. It is considered to be fairly homogeneous
topographically.
Study Area. In the area studied as shown in Fig.

3.2, seventy-nine stations (M=79) with 30 years of
monthly values (N=360) for the period 1931-1960 are
selected for use in this investigation. These avail-
able data are assumed to be statistically homogeneous
and are selected to avoid climatic effects of the Rocky
Mountains, the Ozark Mountains, and the Great Lakes.
The locations of the 79 stations are shown in Fig. 3.2.
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Fig. 3.2.

Table 3.1 gives the station identity number, which is
jdentical to the U.S. Weather Bureau index number,
station name, degrees west longitude, and degrees
north latitude. The index number is prefixed with 5
for Colorado, 11 for Illinois, 13 for Iowa, 14 for
Kansas, 21 for Minnesota, 23 for Missouri, 25 for
Nebraska, 32 for North Dakota, 34 for Oklahoma, 39 for
South Dakota, 41 for Texas, and 47 for Wisconsin.

Looking to the average monthly mean and standard
deviation of the 79 stations in Figs. 3.3 and 3.4, it
is clear that they have almost the same pattern. They
decrease from the southeast to the northwest, though
the pattern of the average monthly standard deviation
is more complex, as would be expected for a parameter
related to the second central moment.

Time Variation of Parameters. The monthly means
for each station follow the periodic cycle of the year,

which can be described by the Fourier series of Eq.
(3.5). For the estimated monthly means Hos Bq. (3.5)
takes the form

_ h{u)
W =mo+ Cj[u)cos[Ajr + ej(u]] (3.16)

% ja1
where E} is the average of the monthly means m.

Similarly for the estimated monthly standard
deviations Ter Eq. (3.5) is given by

h(o)
g =5 + i Cj{u)cos[ljt + Bj(u)] (3.17)

T T j’l

in which E; is the average of the monthly standard

deviations s_. Once h(u) and h(o) have been infer-
red by the method mentioned in Section 3.2, the dif-
ferences (m_r - “r) and (ST - ot) are considered to

be random sampling variations. That is, the annual
cycle of the parameters m_ and s, is considered

with only h(u) and h(o) significant harmonics,
respectively.

series, h(u) = h(o) = 1 is

hypothesized and tested by statistical analysis for
each of the 79 stations. Table 3.2 presents the esti-
mated values of m, cl{")' Bl[u), ;r’ Clta). 91{0),

and the percent of variance of both n and

For the m and s
T T

5., ex-
T
plained by the fitted 12-month harmonic of M and
O for the 79 stations. From 70.21 to 97.86 percent

of the variance, or on the average 88.26 percent, is
explained by the fitted 12-month harmonic in the case
of m_, and from 49.53 to 97.84 percent of the vari-

ance, or on the average 83.90 percent, is explained by

the first harmonic in the case of S, The average
explained variances of m and s, by the second

harmonic or 6-month harmonic are 5.01 and 5.02 percent,
respectively. The second harmonic is not significant
in comparison with the first harmonic.

For 72 out of the 79 stations, or 91.14 percent,
more than 80 percent of the variance of m_ is ex-
While in
71 out of the 79 stations, or 89.87 percent, more than
70 percent of the variance of S, is explained by the

plained by the first harmonic of . only.

first harmonic of O+ Since the explained variance

by the first harmonic is large for the majority of the
stations, the hypothesis of h(u) = h(g) = 1 seems to
be acceptable.

The above hypothesis can be justified by studying
the correlograms of the stations 25, 29, and 52 given
in Fig. 3.5. It may be noticed that the correlograms
are very close to the l2-month cosine function, which
indicates that the first harmonic for m; is the most
important and all the other harmonics could be neglec-
ted. Similar correlograms can be found for the other
stations also. Thus, the values of h(u) = h(g) =1
satisfy the objective in obtaining the minimum number
of parameters in using only the most significant har-
monic, and in this case only the 12-month harmonic, as
required in considering the annual cycle of the month-
ly means and the monthly standard deviations.

Regional Variation in Parameters. Since only the
12-month harmonic 1s selected to be considered as the




Table 3.1.

Monthly Precipitation Stations Used for Investigation.

Degrees Degrees

Degrees Degrees

Station Index " Station Index :

o Station Name North West Station Name North West

Number  Number Lat. Long. Number Number Lat. Long.
1 5.1564 Cheyenne Wells 38.82 102.35 41 21.9166 Worthington 43.62 95,60
2 5.3038 Fort Morgan 40.25 103.80 42 23.1580 Chillicothe 25 39.75 93.55
3 5.4413 Julesburg 41,00 102.25 43 23,2503 Eldon 38,35 92,58
4 5.9295 Yuma 40.12 102.73 44 23.2823 Fayette 39.15 92,68
5 11.3335 Galva 41.17 90.03 45 23.7720 Shelbina 39.68 92.05
6 11.3930 Havana 40.30 90.05 46 23,8712 Warrensburg 38.77 93.73
7 11.4442 Jacksonville 39.73 90.23 47 25.0930 Blair 41.55 96.13
8 11.7067 Quincy 39.95 91.40 48 25.1145 Bridge Port 41.67 103.10
9 11.8916 Walnut 41.57 89.58 49  25.2020 Crete 40.62 96.95
10 13,0364 Atlantic 1 NE 41.42 95.00 50 25.2805 Ewing 42.25 98,35
11 13.2208 Des Moines WB City 41.58 93.62 51 25.3185 Genoa 41.45 97.73
12 13,5230 Mason City 3 N 43.18 93.20 52 25,3630 Hartington 42.62 97.27
13  13.6391 Ottumwa 41.00 92.43 53 25.6970 Purdum 42.07 100.25
14 13.7161 Rockwell City 42.40 94.62 54 25.7040 Ravenna 41.03 98,92
15 14.1769 Concordia WB City 39.57 97.67 55 32.2188 Dickenson Expt. Stat. 46.88 102,80
16 14.1866 Council Grove 38.67 96.50 56 32.3621 Grand Forks U. 47.92 97.08
17 14.2459 Ellsworth 38.73 98,23 57 32.4418 Jamestown St. Hosp. 46.88 98.68
18 14,3759 Holton 39.47 95,73 58 32.5638 Max 47.82 101.30
19 14.4421 La Cygne 38.35 94.77 59 32,6025 Mohall 48.77 101.52
20 14.5173 Medicine Lodge 37.27 98.58 60 34.3497 Geary 35.63 98.32
21 14,6374 Phillipsburg 39.77 99.32 61 34.4766 Kenton 36.92 102.97
22 14.6427 Plains 37.27 100.58 62 34,7012 Perry 36.28 97.28
23 14,6637 Quinter 39.07 100.23 63 39.0296 Armour 43.32 98.35
24 14,7305 Sedan 37.12  96.17 64 39.1972 Cotton Wood 43.97 101.87
25 14.7313 Sedgwick 37.92 97.43 65 39.2797 Eureka 45.77 99.62
26 14,8186 Toronto 37.80 95.95 66 39.3832 Highmore 1 W 44.52 99.47
27 21.0783 Bird Island 44,77  94.90 67 39.4007 Hot Springs 43.43 103,47
28 21.1630 Cloquet For. Res. Cent 46.68 92.50 68 39.4661 Ladeclle 7 NE 44.68 98,00
29 21,2142 Detroit Lakes 1 NNE 46.83 095.85 69 39.4864 Lemmon 45.93 102,17
30 21.2737 Farmington 3 NW 44,67 93.18 70 39.5536 Milbank 45.22 96.63
31 21.2768 Fergus Falls 46.28 96.07 71 39,7667 Sioux Falls WB AP 43,57 96.73
32 21.3411 Gull Lake Dam 46.42 94.35 72 39,8552 Vale 44.62 103.40
33 21.4652 Leech Lake Dam 47.25 94.22 73 39.9442 Wood 43.50 100.48
34 21.5020 Mahonig Mine 47.47 92,98 74 41.6950 Perryton 36.40 100.82
35 21.5400 Milan 45,12 95.93 75 47.3654 Hillsboro 43.65 90,33
36 21.5615 Mora 45,88 93.30 76 47.4391 Ladysmith 45.47 91.08
37 21.6565 Pipe Stone 44.00 96.30 77 47.5120 Marshfield Expt. Farm 44.65 90.13
38 21.7087 Rseau Power Plant 48.85 95.77 78 47.6827 Prairie Du Chien 43,05 91.17
39 21.8692 Wascca Expt. Farm 44,07 93.52 79 47.7226 River Falls 44.87 92.62
40 21.9046 Winncbago 43,77 94.17

annual cycle in the basic parameters of the monthly of step-wise multiple regression analysis are used,

precipitation for all the stations, the next investi-
gation is focused on how the basic parameters of ﬁ;,

Cl(u). el(u], 3 C‘{a}, and Bl{a) vary over the

area studied.

_Figures 3.2 and 3.3 show that the trend surfaces
can be well defined by a low-order

an 5
of m., d G

polynomial function of the longitude and latitude.

However, Figs. 3.6 through 3.9 indicate that the trend

surfaces of leu), Bl(uJ, Cl[c], and ﬁl(a) may be

too complex to be defined easily by a low-order poly-
In this study, the longitude

is referenced to XU = 95.00 degrees west longitude as

nomial function.

the zero abscissa, and the latitude Vi

to ¥

ordinate.

X,
i

is referenced

0= 42.00 degrees north latitude as the zero

Since a low-order polynomial function explaining

a high variance of the regional variation is preferable

for further investigations, the polynomial function
with more than the fifth-order was considered too com-

plicated to be carried out.

Since the usual techniques

elimination of the terms in the regression equation
for which the regression coefficients are not signifi-
cant, and/or those for which the simple correlation
coefficients are low, produce the incomplete polynomial

equations.

-
[ 3% g

Cp,iMs 31,1(“)' s

2%

Table 3.3 presents the percent of variance of
Cl i(u], and Bl i(cr),

explained by the fitted polynomial functions with

various orders up to the fifth.

m o=
Tid

- 0.0046X° + 0.0105XY

s
T

+ 0.0051¥2 + 0.0081XY

4 = 1.4909 - 0.0489X - 0.0945 - 0.0042%%

These equations are:

2.4114 - 0.0991Y - 0.1203X + 0.002692

(3.18)

(3.19)
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Table 3.2. Monthly Average Value, H’r’ of Means, A.mp_l}tude CI (#) and Phase Bl(u} of the First Harmonic
of Monthly Means, Monthly Average Value, S of Standard Deviations, Amplitude Cl(cr) and Phase
ﬁl (o) of the First Harmonic of Monthly Standard Deviations, and the Percent of Variance of m_
and 5. Explained by the First Harmonic of m. and S,

el WA BT N TR 5, Gl s podes & o ) Y i o) v
1 1.247  1.182 2,886 93.36 1.050 0,699 2.679 87.36 41 2.206 1,781 2,819 91.33 1.250 0.758 2.658 63.51
2 1.072 0.925 3,074 85,1% 0.745 0.521 2.722 RY.96 42 2,821 1.043 2,815 6A.51 1,629 0.965 2.427 74,10
3 1.3% L 3.099 51.95 C.896 0.605 2.952 94,19 43 5,312 1.281 2,804 76.93  2.113 0.891 2.393 67.59
1 1.394 1,220  3.041 S4.47  0.945 0.659 2.675 96.90 “ 2,971  1.291 2.529 8752 1,410 0.796 2.439 64,18
5 2.827  1.230  2.961 26,44 1.557 0,529 2.263 50.25 45 3.012 1.390 2.995 85.51 1.962 0,936 2.331 9i.73
6 2,005 1,160  3.014 48,66 1,707 0,636 2,481 78.05 46 3,011 1,378 2.831 7.3 D58 0,330 2,483 .00
7 2,901 1,004 3,014 74,39 1,764 0,651 2,550 73,94 47 2.:10 1,508 2,008 692.90 1.411 0,637 2,781 82,03
8 2,997 1,338 2.856 91.32 1.887  0.915 2.524 90.63 48 1.239 1,180 5.071 £5.18  0.448 0,711 2.864 £0.34
9 2,842 1.273  1.81% 36,90 1.596 0.635 2.252 61.37 44 2,353 728 2,512 8a.1s 1,350 0.803 2.733 RIl8
0 2.598 1,83 2,763 91,15 1,603 0.0:5 2,549 91,03 50 1,872 1.608 2.954 92,35 1.197 0.8%0 2,737 95,39
11 2.563 1.503 2,662 B6.72 1.679 0.865 2,424 92.71 51 1.957  1.607 2.934 87.50 1.227 0.7 1.646 90,36
12 2,490 L.B44 2,766 92,07 1.424 0,804 2,664  80.77 52 2.062 1,402 3.020 92,87 1,276 0.684 2.631  86.24
13 2,865 1,594 2,B58 84,03 1,762 0,979 2.374 84,124 53 1,703 1.%350  3.077  95.43 1.132 0,685 2,932 47.75
4 2,447  1.648  2.874 91,27 1.522  0.860 2.735 86.87 54 1,818  1.647 3.007 &9.80 1.107  0.67 2,827 9l.06
15 2,116 1,584 2,885 49,87 1.477  0.964 2,639 95.93 85 1,285 1,198 2,954 7472 0.354 0.606 2.735 76,33
16 2,799  1.962 2,833 92.27 1.892 1,045 2,539 90.15 56 1.676 1.409 2,675 51.712 1,092 0,851 I.421 92,51
17 2,183 1,482 2,504 90.06 1.527  0.913 2,635 95.48 57 1.480 1,291 2.583 B8.32  0.915 0.605 2.7 3,32
14 2,827 1,954  2.815 88.41 1.841 1,102  2.625 S0.46 58 1.406 1,358 2,888 8070  0.56%3 0.070 2.745 0110
19 3,267 1.874  2.BBG  BD.65 2,247 1,201 2.479 79,68 59 1,387 1,281 2,853 22,42 0,962 0,756 2.TH1 75,52
20 2.088 1,369 2.856 81.31 1,607 0.824 2,752 70.47 &0 2,315 1.219  2.986 70.21 1.808 0,770 2.77% 53.%6
2 1.860 1,487 2,949 96,14 1.311  0.819 2.860 86.20 61 .282  1.059 2,835 §0.84 1.172 0,811 2.778  76.850
22 1,562 1.125 2.953 86.48 1.269 0.627 2,900 64.03 62 2.652  1.415  3.ul6  77.91 1.982 0.815 2.737 49.53
23 1,796 1.485 3,023 92,92 1,452 1,008 2,846 80,99 63 1.768 1,354 2,958 85,37 1.096 0,601 2.620 85,61
24 5.172  1.774 2,837 81.92 2,250 1,270 2,476 74,499 64 1.219 1,074 3.3107 81.08 0,879 0,401 5.0 79.81
s 2.444 1,612 2,866 90.42 1.760 1,008 2.732  #9.10 65 1,422 1,441 2,900 86.32  0.487 0.e24  2.801 89,03
2 2.589 1,822 2,988 80.95 2,111  1.146 2.746 82.53 66 1.424 1,186  3.008 s5.83 1,065 0.578 2.5%9 91.83
27 2.277 L7466  2.857 9134 1.377 0,916 2.738 97.74 &7 1,338 1.243  3.171  90.92  0.954 0.846 3.130 9L.39
8 2.427  L.615 2,713 94.7 1.249 0.718 2.591 96.86 68 1.581 1.368 2.8 90.37 1,622 0.68 2.736 94,90
29 1,963  L.672 2,773 $0.79 1,205 0,951 2.746 88,62 69 1,277 1.454 3,019 76,28 0,868 0,637 2.959 67,65
30 2,372 1,724 2,758 92.09 1,461  0.915 2.444 82,37 70 1,762 1,431 2,925  BG.07 1,092 0.6F6  2.928  Bl.1é
31 1.949 1,541 2,927 85,64 1.087 0.716 2.880 50.86 71 2.096 1.628 2.896 90.76 .252 0,725  1.534 86,18
2 2,207 1760 2,781 91.98 1,272 0.%00 2.811 91.45 72 1.287 1,155 3,117 BlL.49 0,871 0.827 3.ued4 B0.5S
3 2,059 1.717  2.741 95.28 1.158 0,988 2.664 85.98 73 1.529 1.207 L1583 86,89 1.11c  0.602 2.927 83,18
14 2,037 1.595 2.069 S7.86 1.075 0,755 2.510 94.84 74 1.700 1.3l0 2.R66 A7.18 1.287 0.687 2.726 69.49
35 1.969 1.483 2.841 B30 1.263 0.811 2.763  83.69 75 2,642  1.536 2.661 §3.11 1,396 0.772 2,345 #9.49
i6 2.347 1,720 2.762 85.54 1.320 0.880 2.755 8L.60 76 2,480 1.808 2.668 96,78 1,457 0.992 2.650 97.%%
37 2.038 1,731 2,818 89.80 1.224 0.817 2,758 93.48 77 2,406 1.600 2,672 89,15 1.376 0.740 2.492 Tiel
38 1.634 1.393 2,560 95.47 0.952 0.670 2.392 B3.41 78 2,75 1.7 2.7  01.50 1.467 0.912 2.426 89.78
39 2.321  1.605 2.848 9i.21 1,338  0.763 2.623 93,60 7% 2.468 1,786 2.779 935.56 1.366 0.823 2.659 76.10

40 .50 1812 2,852 89,21 1.300 0.860 2,611 94.23

Mean  2.138 1,478 2,891  BE.26 1.367 0.802 2.677 83,90
S.d. 0,582 0.245 0.128 5.63  0.364 0.l161 0.187 10,58
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Fig. 3.7. Isolines of the Angular Phase, Bl(uJ, of
the First Harmonic of Monthly Means.
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Fig. 3.6. Isolines of the Amplitude, Cl(u). of the

First Harmonic of Monthly Means.

1,7538 - 0.0225X - 0.0173Y - 0.0155X2

Cl,]_(l-ll =
- 0.0092%" - 0.0173XY + 0.0011X°
+ 0.0025X2V + 0.0012XV2 + 0.0011?3 (3.20) Fig. 3.8. Isolines of the Amplitude, Cl(U), of the
First Harmonic of Monthly Standard Devia-
tions.
6, (W) = 2.8450 + 0.0314X - 0.0020 ¥ + 0.0037X°
C, ;(0) = 0.8349 - 0.0250X - 0.0605Y - 0.0055X>
+ 0.0069XY - 0.0004X° - 0.0004%% Yy § .
- 0.0094XY + 0.0210%° + 0.0008X° + 0.0025X%Y
- D.UUOQXVZ = 0.0008‘; (3.21) " 0.0013XS; - 0.0010y3 - [].00065’4 + G.U{)lesvz
2
- 0.0001X* ¥ + 0.0001X Y (3.22)

11



18° miles
Fig. 3.9. 1Isolines of the Angular Phase, Bl(u), of
the First Harmonic of Monthly Standard
Deviations.

Table 3.3, Percentage of the Explained Variance of
Trend Surfaces by the Polynomial Functions
with Various Orders.

Order of Polynomial Function
FAriniter st 2nd  3rd  4th  Sth
m 87.9 93.3
T
Cl{p] 78.4
81.8
8, () 1
5 78.9  90.6
T
Cl(a) 57.4 70.0
Gl(u) 71.7

8, ;o) = 2.6239 + 0,0501X + 0.0384 Y + 0.0002%*
+ 0.0009XY + 0.0007 ¥ - 0.0002X° + 0.0001X%Y

- 0.0007XY* - 0.0014 ¥’ (3.23)

The fitted functions do not explain substantially
the variance of the parameters except for m and S+

It may be noticed that for the Cl i(o) even the fifth-
£}

order polynomial function does not explain the variance
well. This means that the regionalization of parame-
ters of periodic variations is very difficult for a
large area, and also that the separation of the stocha-
stic component from the monthly precipitation series

by the parametric method may not be successful.

Yevjevich and Karplus (1973) had the same difficulties
over the area used, which was much smaller than the
area used in this study. They tried to_infer that the
ratios of Cl[u]/mT, sT/mT. and C:l(f:r)/m_r were con-

stants over the area. The other method to resolve
this difficulty in fitting is to divide the total area
into small subarea, and to find a different model for
each subarea.

With the above regional models for the basic

parameters, the second-order stationary component £
for any station series is given by Be®
- T ;
= m_ - C (ucos[z + 0, (u)
gp = %Pat T 1 5 1 ] (3.24)
»T

§T + Cl[c)cos[% + el(c}]

Separation of Stochastic Component from Monthly
Precipitation Series. Since the mathematical model of
area-time process of the monthly precipitation is not
estimated well, the stochastic component given by Eq.
(3.24) cannot be assumed to be a second-order station-
ary process. Therefore, the non-parametric method of
separating the stochastic component from monthly pre-
cipitation series is used. The stochastic component
is defined by

(3.25)

with the supscript p,t then replaced by j, EP R by
5j’ where j = 12(p-1) + t. The next study is to

analyze properties of the stochastic component £

§*
Test of Time Independence of Stationary Stochastic

Component. In order to test whether £ is an indepen-

dent stationary stochastic process, the correlogram of

each series & of the 79 monthly precipitation series

is tested for significant departures. Some of the

correlograms are shown in Fig. 3.10. The test is

carried out with the 95 percent tolerance limits

for the correlogram of an independent series. Only

the first twenty lags of correlograms were checked.

The 95 percent tolerance limits, r, and Tp, for an

independent series are given by

-1 it Wk el

3.26
N-k-1 ( )

T
u,l

with k = the lag, t = 1.96 being the deviate from the
standard normal distribution for a two-tail test that
P, =0 for k> 0 for the E-series, and N = the

sample size. Table 3.4 presents the number of T

values for the lags 1 through 20, which are outside
the tolerance limits for the 79 stations. The per-
centage of the total number of the serial correlation
coefficients which are outside the 95 percent tol-
erance limits is 6.27, which is a little higher than
the expected value of five percent. Among the serial
correlation coefficients, ry, which are often outside
the tolerance limits, only the first serial correla-

tion coefficient T, is prominent. This fact is im-

portant because the r, is affected by some small

1
dependence in the monthly precipitation series due

to the dependence in the monthly precipitation series
due to the inherent in meteorological processes from
day to day. However, only 13 out of 79 stations have
significant differences of the first correlation

coefficient from Py 0. The stochastic component of

12
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Fig. 3.10. Correlograms of the Stochastic Component of
Monthly Precipitation Series of Stations 1,
25, 29, and 52.
Table 3.4, Numbers of Serial Correlation Coefficients
for the 79 Series of & Outside the 95
Percent Tolerance Limits of Independent
Series.
Number of Stations
ings Outside 95% T. L. YELPEROEE
1 13 16.46
2 5 6.33
3 3 3,80
4 4 5.06
5 2 2.53
6 2 253
7 3 3.80
8 6 7.59
9 6 7.59
10 4 5.06
11 6 7.59
12 > 3.80
13 7 8.86
14 5 3.80
15 1 .27
16 6 7.59
17 8 10.13
18 5 6.33
19 8 10.13
20 4 5.06
Total 99 6.27

the monthly precipitation series over the Upper Great
Plains can be considered to be approximately the time
independent variable, also supported by other studies,
such as Roesner and Yevjevich (1966) and Karplus (1972).

13

Analysis of Independent Identically Distributed
Stochastic Component. For the further mathematical
description of monthly precipitation series, it is
necessary to determine the probability distribution
function of the E-series. It is more important to
transform the distribution of the stochastic component
£ into a normal distribution than to determine the
exact distribution of the stochastic component itself,
because the normal distribution is convenient for the
generation of multivariate stationary series, and the

E has usually a positively skewed distribution. The
problem is what transformation should be used to
transform £ into a normal distribution. Generally

logarithmic, square-root, cube-root, and similar
transformations are used (Stidd, 1953; Kirby, 1972).
Suzuki (1968) developed a way of finding the root which
can be taken in transformation to obtain a symmetric
(not necessarily normal) distribution from an asym-
metrical distribution. The exponent "e'' required

to normalize the distribution is found from the follow-
ing two equations:

e e o
Co.en) * Vosany - Qospy =0 » (.27

and

e @ e _
Ci.25m * Co.75m = X o.sm = ° (3.28)

where N = the sample size and Q(_) = an ascending

ordered value of the concerned variable. The exponent
e, satisfying the above two equations, can be found by
Newton's approximation method. The simple way of
finding the exponent, suggested by Suzuki (1968), is
used in this study. The approximated values of the e
are given by

e = logzl[logQ(o.34~) - logQ[o.SN}] (3.29)
and
e, = 1032![103Q(0.75N) - logQ[O.SH}] y (3.30)
while the difference terms are given by
e
sey = 19, 16870, sany] 1/ [198Q(q 5)
- 1QEQ[0.84~)1 (3.31)
and =
sey = [Qg, 268y Q0. 75My ] 2/ 1198 (g, sy
- logQ(O.-;sN]] . (3.32)
Finally, the estimate e 1is given by
e= (e1 +he, te,+ Aezjfz . (3.33)

Since the stochastic component of monthly precipitation
series is standardized, thus having negative values, a
direct application of the above method to £ series
is not feasible, A rate of transformation is the same
in both directions with regard to the mean or zero and
the skewed shape is not transformed well by direct ap-
plication. Therefore, (§ + ¢)-series is used in this
transformation. The ¢ may be a parameter rather
than a constant. However, it is not easy to find
simultaneously the best estimates of these two parame-
ters. In this study, ¢ 1is considered a constant. To
obtain a general idea of the value of e, the minimum
values of £ for each station are taken as constants,
In this approach, the average value of the exponent
was 0,348, with the standard deviation of 0.164 and



the range of values from -0.078 to 0.778. Since the
average value of the estimated exponent is close to
0.333 and no special pattern of the areal distribution
can be found, the cube-root transformation is chosen
to make the distribution of the stochastic component
normal. The cube-root transformation was used for the
same purpose by Karplus (1972).

The new series ¢, whose values are all or almost
all positive, is defined by adding a certain constant
to the stochastic component and taking the cube-root,
that is,

1/3
L= (E +c) / (3.34)
The absolute minimum values of & for each station,
denoted by [£ . [, and their average value of 1.7653

are taken as constants. The goodness of fit of the
normal distribution to the r-series is determined.
The chi-square values for the 79 fits are computed
using ten class intervals of equal probability with
seven degrees of freedom at the 95 percent tolerance
limit. For the lEminl as the constant, 60 out of
the 79 stations were accepted to be normally distribu-
ted, but with different means and standard deviations.
For the average minimum, or 1.7653, only 49 stations
were accepted. The distribution of the -series over
the area may be approximated by the normal distribu-
tion. Distributions are not identical for each
station, however. Therefore, further steps are needed
to obtain time independent, but regionally dependent,
identically distributed normal variable.

On the basis of the above analysis, the E-series
are assumed to be defined by the standard normal vari-
able v, as

£ = (1.1604 + 0.2381v)° - 1.7653 . (3.35)

The three constants, 1.1604, 0.2381, and 1.7653, are
the averages of the means and standard deviations of
the 79 series of ¢, for |, | as the constant, and

!Emin|’ respectively., If the

relation given by Eq. (3.35) is accepted for the area,
the &£-series can be assumed independent identically
distributed random variable. The expected value and
the expected variance of £ can be calculated analy-

the average value of

tically when v 1is a standard normal variable. For
a standard normal distribution, the k-th moment My
is given by
o
o1 k -x2/2
bt T Ihwx e dx (3.36)
el

When k is an odd number, xke ¥°/2 in Eq. (3.36) is
an odd function, and its integration from - to =
gives zeros. For k even, Eq. (3.36) becomes

we = 1e3e5eee (k1) , (k=2,4,6,%*+) (3.37)

Since the first six moments of a standard normal
E(v) = E@WY) = EQWY) = 0, EQY) =1,

E(ud] = 3, and E[uaj = 15, the expected value and
variance of £ are

variable are

E[(1.1604 + 0.2381v)° - 1.7653]
-0.0054

E(£)

and (8:88)
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Var(g) = E{[§ - E{Ellz}

= 1.0808 . (3.39)
After the distribution function of £
culated from the distribution function of the
standard normal distribution, the comparison of
the observed frequency distribution with the as-
sumed distribution function of £ is carried out by
the Kolmogorov-Smirnov test at the five percent level
of significance, though it is a weak test. Some
comparisons are shown in Fig. 3.11. Only two out of
the 79 tests give significant test statistics. That
is, the maximum differences of probabilities of
distribution curves, (ﬂF)max, for these two stations

are bigger than the critical value of Kolmogorov-
Smirnov statistic of AF = 0.0717, for the sample
size N = 360. Thus the 79 series of £ of the area
can be considered as independent identically distri-
buted random variable, defined by Eq. (3.35).

is cal-

4 F(E)
1LOF

0.8

0.6

0.4

£

1.0 2.0 3.0

Fig. 3.11. Theoretical Distribution of £ (1), the
Corresponding 95 Percent Tolerance Limits
(2) and (3) for the Use of Kolmogorov -
Smirnov Statistic Tests, and Two Observed
Frequency Distributions of Station 1 (4)

and Station 52 (5).

Regional Dependence Structure for Stochastic
Component. The regional dependence of the identically
distributed series of stationary stochastic variables
is analyzed by using the lag-zero cross correlation
coefficients as related to the interstation distance
d and the orientation ¢. The two models discussed
in Section 3.5 are studied for the standardized
stochastic component £ and the transformed series
which are defined in the previous Section. Figures
3.12, 3.13, and 3.14 present relations of the (r,d)-
point and figures of isolines of the interstation
cross correlation coefficients from a given center
station. The correlation structure is not isotropic
as shown in Fig. 3.13. In the Upper Great Plains, the
decay of correlation coefficient for the north-south
direction is higher than that for the east-west direc-

;’

tion. Those figures support the two models

T = exp[ﬁld) (3.40)
and

r = exp[(B; + 8,C082¢ + B,sin2¢)d] . (3.41)
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Fig. 3.14. Isocorrelation Patterns Based on Relation-
ship Between Station 1 and All Other
Stations for the Series E.

The unknown coefficients in Eqs. (3.40) and (3.41) are
estimated by using a nonlinear least-squares fitting
procedure, which is available in the Biomedical Compu-
ter Programs (Dixon, 1969). The 3081 values of r, d,
and ¢ are used to estimate the coefficients. The
results are summarized in Table 3.5. For the different
series, the two types of regression explain over 80
percent of the variance of r. There are little dif-
ferences between the estimated coefficients of the
original and the transformed series, though the maxi-
mum orientation of the original series is a little
bigger than those of the transformed series. The
transformation of the series does not affect the cor-
relation structure of the original series, which is
the same conclusion as that made in the study by Huff
and Shipp (1969). Since the differences of the ex-
plained variances by Eq. (3.41) from those by Eq.
(3.40) are only three percent higher, thus introducing
the complication and the additional labor by using Eq.
(3.41), the increased accuracy does not seem worth-
while. Therefore, the model given by Eq. (3.40) is
used in consequent investigations.

Under the circumstances, the regional dependence
structure of the series v is defined by

T = exp(-0.00402d) (3.42)

However, the regional dependence structure of the
original series £ is defined by

r = exp(-0,00418d) . (3.43)



Table 3.5. Fitting Models p = f(d,¢) for the Regional Dependence for the Sample Size N=3081.

. Regression Equation Explained ] Ellipticit
Series &T q Variance 'max P y
£ r = exp(-0.00418d) 80.6%

1/3 = exp(-0.00402d 80. 3%
(£ +1.7653) /% 1 = exp(-0.004104) 79.3%

E
(& - Eggn)

(& 'Emin)

1/3

1/3

exp[(-0.00416 + 0.00048cos2¢ + 0.00023sin2¢)d]

exp[ (-0.00402 + 0.00055c0s2¢ + 0.00006s5in2¢)d]

0.922exp(-0.00404d) + 0.078

83.1% 12,98 0.773

83.4% 3.05 0.758

82.7%
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Chapter 4
MULTIVARIATE DATA GENERATION AT A NEW GRID OF POINTS

The data generation or the experimental Monte
Carlo method is useful when problems are too compli-
cated to be analyzed analytically. In hydrologic
problems associated with area and time or space and
time, the main concern is for the areal or spatial
distribution and the variation in time. Since the
present observational points are located irregularly
over an area, representing different area sizes, the
estimates of areal distributions are made by drawing
the isohyetal maps and measuring enclosed areas by a
planimeter. This is time consuming work, subject to
some errors. The generation of new samples of data
at a new systematic grid of points can help to solve
the above problem, by using the models as discussed
in Chapter III, since the models condense the area-
time information. Hence, the solution of the problems
involved may be dissociated from the set of observa-
tional stations.

4,1, Multivariate Generation Method

To generate hydrologic series at points over an
area, or generate multivariate sample series, the
cross correlation coefficients between stations over
the area must be considered as well as the series
means, variances, skewness coefficients, and serial
correlation coefficients (Fiering, 1964; Matalas,
1967), A rather simple way of generating multivariate
series is based on a multivariate second-order station-
ary generating process, which is discussed by Matalas
(1967) and Young and Pisano (1968).

The multivariate generation of samples of the
stochastic component of the monthly precipitation, or
E, 1is the subject of this study, and its model is

then
Ejtl N éij * E!ﬁfl

the month, A and B the (M x M) diagonal
§§+1 a (M x 1) matrix. The variable &£

should be considered normally distributed with mean
zero and variance unity. When £ is not normally
distributed, transformations such as logarithmic and
cube-root are made to approach a normal distribution
as closely as possible. Therefore, & and v follow
the standard normal distribution, and E(£) = 0,

(4.1)

with j
matrices,

E(v)i= 0, Var () =1, and Var (v) =1. The
matrices A and B are given by
=3 (4.2)
A=RR
and
T -1.T

BB =Ry - RR Ry (4.3)
where Ro = the lag-zero cross correlation matrix of
£ Rl = the lag-one serial correlation matrix, Ral =
the inverse of Ro, and ET and R? = the transposes

of B and Rl' respectively. Equations (4.2) and

(4.3) define the coefficients of matrices A and B.
The solution for B can be obtained either by ortho-
gonalization or recursive scheme technique, or by
principal component technique (Matalas, 1967; Young
and Pisano, 1968).

In general, the stochastic component of the
monthly precipitation can be assumed to be independent,
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then Eqs. (4.2) and (4.3) are reduced to the following
forms
=0

A (4.4)

and

T

BB =R (4.5)

0

For the generation at a new grid point instead of
the original stations, the lag-zero cross correlation

matrix Ry can be defined by regional dependence

model such as Eq. (3.42).

4.2. Determination of Grid System

One of the important problems in using the grid
system is how to define the system, especially the
grid interval which determines, to a large extent, the
accuracy of the representation.

The objective and general method of designing the
grid network has not been established. Determination
of the grid system may depend upon the phenomenon
studied, the scale of area studied, the needed
accuracy of results, and economic restrictions. Among
several kinds of grid systems such as square, rectan-
gular, and triangular ones, a square grid system is
exclusively considered in this study because the
correlation structure in the Upper Great Plains is
assumed to be isotropic, If the regional dependence
structure is anisotropic or elliptic like that of Eq.
(5.14), a rectangular grid system with the major and
minor axes of the ellipse as the sides of the rectan-
gles may be better to give the equal weights to in-
formation available for all directions.

Considering the scale of the area, the number of
the original stations used in modeling, and a capacity
of the available computer, the number of the grid
points in this study was selected to be around one
hundred, giving a grid interval of about one hundred
miles. On the basis of these considerations, the grid
interval is decided by the criterion that a correla-
tion coefficient r between the value at a grid
point and the average value of the area represented
by the grid point is higher than a certain value.

From purely statistical grounds, one might plausibly
choose an acceptable value of the coefficient of deter-

mination such as rz = (0.8 and 0.9. The procedure of
obtaining this correlation coefficient is as follows.
A (L x L) - square area consisting of (£ x £) smaller
squares, as shown in Fig. 4.1, is considered to be an
area represented by a grid point located in the middle
area, Assuming that each small area (£ x £) is
homogeneous and the point in the middle of each area
represents that area properly, the mean value of the
big square area is given by the average of values of
these small squares. Let Ei and g, denote the

value of the small square i and the value of the

representative point ¢, respectively. The number
of the small squares is denoted by n. Then the
average value ¥ is given by
T ! f
E== g # (4.6)
n ooy i

Since Ei is standardized, the mean, variance, and

covariance are given by E(Ei)'- 0, Var (Ei) =1,
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Fig. 4.1. Graph for Determining the Grid Interval L

on the Basis of the Correlation Coefficient

n
of and the Average Value £ = % Z £
i=1

where £. Represents Values of the Small
(£ x £) Squares.

e

is the cross
The

and Cov (Ei,Ej) = Ty where T35
correlation coefficient given by Eq. (3.43).

mean and variance of € and the covariance of £ and
£, are given by
EE@) =0 , (4.7)
= 1
Var(€) = Var[ =(g, + £, +++++ E)]
n-1 n
1. 2
il T, . ’ 4.8
non2 g juie1 13 “.8)
and < 1
Cov (g 4E) = Cov[g (g + €, ++vo+ £ )]
n
1
== .glrci . (4.9)

Then the correlation coefficient of Ec and % is

r = Cov(e E)/ Var e IVar )1/

1/2

= Cov(gc.E}![Var(EJ} ‘ (4.10)

Because the value of ten miles for £ can be reason-
able for the monthly precipitation, the correlation
coefficients are calculated for a several set of n
and L with £ = 10 miles. The results are shown in

Table 4,1. When r% = 0.9 is taken as the criterion
to define the grid system, the grid interval of 100
miles is chosen from Table 4.1. For 1< = 0.8, the
grid interval of 200 miles is chosen. Considering
these values as well as the previously described con-
ditions, the 100-mile grid interval is chosen in this
study.

To cover the study area, a (10 x 8) square grid
system with 100-mile grid interval is chosen for the
generation of new samples and the investigation of
drought characteristics. Each station represents an
area of 10,000 square miles, which is called here a
unit-amrea. The grid system covers a total of 800,000
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Table 4.1, Correlation Coefficients of the Areal
Representative Value £. and its Areal
Average £ for Various Grid Interval L

Consisting of n small (£ x £) Square

Miles Areas.

n 4 L T r2
9 10.0 30.0 0.9861 0.9723
25 10.0 50.0 0.9759 0.9524
49 10.0 70.0 0.9661 0.9334
81 10.0 90.0 0.9563 0.9145
121 10.0 110.0 0.9467 0.8962
169 10.0 130.0 0.9372 0.8783
225 10.0 150.0 0.9275 0.8602
289 10.0 170.0 0.9181 0.8428
361 10.0 190.0 0.9086 0.8255

square miles, or 80 unit-areas. Figure 4.2 shows the
grid system over the area studied and the location of
the new eightly stations or points.
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Fig. 4.2. Grid System (Big Points) with 100-Mile

Grid Interval over the Upper Great Plains
and Observed Stations (Small Points) with
Their Series Used for Objectives of Model-
ing.

4.3, Checking the Generated Samples

The sample series of £, each 1200 months long,
are generated at the selected 80 grid points by pre-
serving the mean, variance, and lag-zero cross correla-
tion coefficient, as defined by Eqs. (3.35) and (3.43).
The mean, standard deviation, skewness coefficient,
excess coefficient, and the minimum value for the
generated samples of the 80 stations, each sample 500
months long, are given in Table 4.2. The generated
samples could be accepted without a rigorous statisti-
cal test, because the multivariate generation of



Table 4,2, Statistics of Generated Samples Each of
N = 500 Months, with Extremes Underlined,
and Values Outside the 95% Tolerance
Limits with the Sign*.

Standard Skewness Excess
Statlon  Mean ;. iation Coeificient Coefficient | hMIEUR
1 1.0143 1.0753 1.651% -1,7459
2 1.0130 1.4441 48783 -1.7498
3 1.0080 0.5464 0.9979 =1.7480
4 1.0780 1.3290 2.5068 -1.6758
5 1.0752 1.2208 1.8722 -1,7073
6 1.1113*  1.4363 3.0546 -1,7081
7 1.0263 1.3321 3.0162 =1.7243
8 0.5332% 1.2666 3.4078 =1.6223
9 T.0le2 1.0291 1.1354 -1.6939
10 1.c314 1.0758 1.7220 =1.7123
11 1.0398 0.8527 0,7601 =1,6607
12 1.0187 1.2112 2.0770 =1.7117
13 0.5891 0.5521 1.1784 -1.6108
14 1.0259 0.9910 1.lo86 -1.6380
15 1.0659 1.5958 4.4568 -1.6138
16 1.0877 1.4840 3.9648 -1.6379
17 1.0554 1,1003 1.7790 =1,70583
18 1.0719 1.1657 2.7489 =1.7148
19 1.0403 1.1568 2.2538 =1.7135
0 1.0661 1.184% 3.1 =1,7138
21 1.0292 1.0l08 2.2834 -1.6235
22 10007 0.9786 1.1286 =1.6970
i3 1.04352 1.2424 2,1849 -1,7383
24 1.1234% 1.4594 1.5526 =1.5629
25 1.0983 1.2557 21,2594 =1.6675
26 1.1330* 20074 8.7175 -1.7003
27 T.I336 T.4008 TTIET =1,7147
28 10569 0.8362 0.4613 =1.7646
2 1.0114 0.9030 » T.76:%
30 1.0469 0.9191 1.0487 =1.6655
31 1.0651 1.1486 2.0287 -1,6767
32 1.0797 1.3614 2.4110 =1,6554
i3 1.0951 1.0044 1.0339 -1.7839
34 1.1138* 1.3459 2.835 =1.7206
35 1.0092 0.53233 1.2501 -1.7363
36 1.0695 1.0547 1.3829 -1,7222
37 1.0806 1.0994 1.6346 -1.7590
38 1.0577 0.5641 0.8507 =1.7440
3 0.5962 1.0742 1.4130 -1.6443
a0 1.0248 1.5394 3.6085 -1.5218
41 1.0013 1.1158 1.4827 =1,721%
42 1.0294 0.9604 1.1568 =1.7631
43 0.5931 0.7483 0.5507 =1.8633
44 1.0584 0.9785 1.0333 -1.7
4s 1.1176* 1.3619 2.3754 -1.5759
46 1.0734 1.3244 2,4630 =1.6270
47 1.0439 1.3168 2,8399 -1.6430
48 0.9573 1.3622 3,5006 -1.6764
49 1.0732 0.9714 0.9643 -1.6662
50 1.0260 0.8745 D.45671 =1.7058
51 1.0356 0.8772 0.6285 =1.71585
52 0.9980 0.8687 0.7992 -1.7032
53 1,0919 1.4936 3.3643 =1.7480
54 1.0799 1.2616 2.8006 -1.6501
55 1.0671 1.1685 1.6651 -1.6326
56 0.5952 1.1778 2.2117 =1.7160
57 1.0744 1.2268 2.1626 =1.6512
58 0.0802 0.8880 0.9994 ~1.6672
59 0.9477 G.E00O 0,8283 =1.5826
&0 0.9595 0.5964 1.0881 =1.6943
61 1.0921 1.3049 2.3381 =1.6223
62 1.0875 0.9993 0.7510 ~1.6900
63 1.0621 1.1519 1,4333 =1.6302
64 1.0019 1.0248 1.1351 -1.5703
65 1.0:08 1.3217 2.8499 =1.6368
66 1.0425 1.262 2,3821 -1.7008
67 1.0317 1.0509 1,2130 =1.6668
68 1.0046 0.5850 1.1571 -1,6308
&9 1.0222 1.1140 1.7290 =1.6511
70 0.9974 1.01%8 1.3643 =1.7067
71 1.0353 1.0398 0.9857 -1.6963
72 1.0652 1.3349 2.4434 =1.6549
73 1.0350 0.9232 0.9390 -1.6852
74 1.0763 1.2237 1.8539 =1.7577
7 1.0972 1.4046 2.7600 -1.8779
76 1.0941 1.4624 3.4408 -1,7132
77 1.0044 1.2262 3.0616 -1.6279
78 1.0231 1.0212 1.2794 =1,7146
79 1.0768 1.1739 2.0796 -1.7410
80 1.0466 1.3867 2.9847 -1.6796
Mean 1.0464 1.1568 2.0561 =1.6838
5.0, 0.0421 0.2202 1.2476 0.0513
'?:::“‘ 0.0000 1.0000 0.9737 0.8878 -1.7653

samples has been used for a long time. However, since
the method was applied to generate many samples of
point series over a large area, simple statistical
tests were carried out to check whether the generated
samples preserved the inferred statistical properties.
For testing the preservation of the mean, standard
deviation, serial correlation coefficient, and cross
correlation coefficient, tolerance limits at the 95
percent level with the sample size N = 500 were used.
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For the mean, the 95 percent tolerance limits,

n, and mp, are given by

mp =Mt 1.960/V500 (4.11)
For u = - 0.0054 and o = 1.0397, then m, =

0.0857 and mp = - 0.0965.

deviation, the 95 percent tolerance interval is
defined by

In case of the standard

52,2 2.2
¥0.025 . 2, 7 Xo0.975 4.12)
—ass ¢ 499 ’

For o = 1.0397, xg 025 = 439.0701,
562.7223, then Eq. (4.12) gives

2 =
and X g75

0.9375 < s < 1.0615 (4.13)

The 95 percent tolerance limits for the serial
correlation coefficients with the lag k are given
by Eq. (3.26), namely

-1 + 1.96/498-k
499 - k :

LW (4.14)

The tolerance limits for the zero lag cross correla-
tion coefficient as related to distance d, defined
by Eq. (3.43), was found by transforming the estimated

p wvalues into the Fisher's 2z variable. The 95
percent tolerance limits for 2 are
2L =% 1.960, , (4.15)

where zp = tanh-lp. B ™ 1/Y497, and p = exp
(-0.00418d). Then these 95 percent tolerance limits
are converted back into T, £td}’ by

ru L(d] = tanhzu.L . (4.16)

Using these above tolerance limits, the statis-
tics are tested. For the means, nine out of 80
stations, or 12.5 percent of stations, showed the
values outside the 95 percent tolerance limits. For
the standard deviation, eight out of 80 stations, or
ten percent of total stations, were outside the
tolerance limits. Though for both statistics the
numbers of stations outside the 95 percent tolerance
limits were somewhat larger than four (5 percent of
80 stations), the deviations are not very large.

Table 4.3 shows the number of stations, whose
serial correlation coefficients are outside the 95
percent tolerance limits. Though the serial correla-
tion coefficient for the lag three is often outside
the tolerance limits, the generated samples as a
whole were considered to be time independent, because

the total percentage of the stations with the Ty

outside the tolerance limits was small, 3.88 percent.
Figure 4.3 presents some randomly selected cross
correlation coefficients of the generated samples
versus the interstation distance, with the original
regional dependence function and its corresponding 95
percent tolerance limits. The points outside the
tolerance limits are few. Therefore, the regiomal
dependence structure was preserved in the generated
samples. The time and regional structures were well
preserved.



Table 4.3. Number of Serial Correlation Coefficient
of the 80 Generated Samples, Which are
Outside the 95 Percent Tolerance Limits

of the Independent Series.

Number of Stations

Lags Outside 95% T. L.
1 2
2 3
3 12 (15.0%)
4 2
5 2
6 7
7 2
8 1
9 1
10 0
11 2
12 3
13 1
14 4
15 3
16 3
17 1
18 7
19 3
20 3
Total 62 (3.88%)

The average of the skewness coefficients for the
generated samples was greater than that of the original
series. The excess coefficients for the generated
samples were very scattered, with their average value
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Fig. 4.3.

Randomly Selected Cross Correlation
Coefficients of Generated Samples Versus
the Interstation Distance, with the
Original Regional Dependence Function and
its Corresponding 95 Percent Tolerance
Limits.

much greater than the average value of the original
series. The difference between the minima of the
generated and original samples was not large, but
their standard deviation was different, which may come
from the model of the stochastic component defined
by Eq. (3.35). Border effects on generation seem to
exist in locations of occurrences of extreme values.
That is, the extreme values seem to occur around the
border more often than in the middle of the area.
However, a rigorous statistical test was not carried
out,

In view of these tests and considerations, the
generated samples for the stochastic component of the
monthly precipitation series can be accepted as appro-
ximately a time independent, second-order stationary
process, with the regional dependence defined by Eg.
(3.43).



Chapter 5
EXPERIMENTAL METHOD OF ANALYSIS OF AREAL DROUGHT CHARACTERISTICS

The monthly precipitation is a periodic-stochastic
process, because each month has a different mean and
a different standard deviation. Therefore, the time
position inside the year is an important factor in
the analysis of discrete time series with their inter-
val a fraction of the year. The stochastic component
inside the monthly precipitation series is approxi-
mately a second-order stationary, identically distri-
buted stochastic process in most cases. In this
Chapter, only the stochastic component is analyzed in
order to derive general characteristics of regional
droughts. Drought characteristics of monthly precipi-
tation are discussed in Chapter VI.

The generated samples at the 80 station points
of the i.i.d. process of §, with the length of 1200
monthly values for each sample, are based on the
models developed in Chapter III. These samples are
then used to investigate the areal drought character-
istics. As shown in Fig. 4.2, these 80 stations of
the selected grid cover an area larger than the area
of the Upper Great Plains, from whose observational
stations the models were inferred. Since the coverage
of this larger area does not seem to influence the
general characteristics obtained on droughts of the
Upper Great Plains, the generated series at the 80
stations are used without further modification.
5.1, Definition of Droughts and Development of
Indices of Drought Characteristics

In this study, a drought is defined by using the
differences between the water supply and water demand
series. The water supply series are defined by the
stochastic component in the monthly precipitation,
which is assumed to be a time independent stationary
stochastic process. The water demand series are
given either by the mean of the stochastic component
or by its probability quantiles as

q = F(§5) = P(E<Ey) (5.1)

To analyze the general drought characteristics, the
mean of the stochastic component may be used as the
truncation level. For a standardized random input
process, the water demand is then £0 = 0. The other

truncation levels, such as &, = F'I{D.SJ, are used

for comparisons, with all the truncation levels used
as water demands being time invariant. In practice,
truncation levels at the mean or the median are
important as the benchmark levels.

Indices expressing drought characteristics should
be defined before an analysis. Some of them are listed
up by Yevjevich (1967) and Kates (1971), such as (1)
magnitude, (2) duration, (3) areal coverage, (4) in-
tensity (maximum, average), (5) spatial distribution,
(6) drought initiation or termination, etc. The cap-
ability for drought prediction on a medium or long
range is very limited if not zero. By using a statis-
tical approach, the first four characteristics of
drought are investigated in this chapter, particularly
the areal coverage and drought severity over that
area, with their probabilities and time durations.
First, the areal drought characteristics for a month
are studied without any consideration of drought
duration. Then, the time factor of areal drought
characteristics is investigated.
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For the areal drought characteristics, the three
indices selected are: the deficit area, A, the total
areal deficit, D, and the maximum deficit intensity,
I. For the truncation level, EO’ these indices

as random variables are defined as
80

A= T 1 £ 5 5.2
i=1 (ESEO){ 1} ( ]
80
= 0
and
I= 50 > min(gl‘gz’."’eSO'Eo) (5-4)
where I(Efﬁojtsi) is an indicator function defined
by
Fgsgp 0) = 1 e
=0 if B8y (5.5)

and i = the station number. According to definitionms,
the deficit area does not express how the deficits are
distributed over the whole area. The total areal
deficit, therefore, does not take into account the
spatial distribution of the deficit. Though these
variables do not present the complete information on
regional droughts, they are primary factors in drought
investigations for a large area, Other viewpoints

can be applied in further investigations on the areal
aspects of droughts.

The indices defined by Eqs. (5.2) through (5.5)
can be considered as non-negative, bounded random
variables. The deficit area, A, is bounded by zero
and 80. Since the probability of P(£2-1.7653) is
less than 0.0001, the highest maximum deficit inten-
sity at the truncation level EO may be conceived

as (1.7653 + EU].

intensity, I, may be considered as bounded by zero
and (1.7653 + zo). A product of the highest maximum

deficit intensity and the whole area, that is,
80(1.7653 + EOJ, gives the maximum possible total

areal deficit. The total areal deficit, D, is
bounded by zero and 80(1.7653 + EQJ. Although the

deficit area is defined as a discrete variable by
Eq. (5.2), the deficit area should be a continuous
random variable.

Therefore, the maximum deficit

§5.2. Statistical Analyses of Drought Characteristics

The basic statistics of the three drought
characteristics (the deficit area, the total areal
deficit, and the maximum deficit intensity) are com-
puted from the 1200-month generated samples for
different truncation levels. The results are pre-
sented in Table 5.1. The variation of basic statis-
tics of distributions of the deficit area and the
total areal deficit, as functions of the truncation
level, are shown in Fig. 5.1. The distribution
statistics of the deficit area are expressed in per-
centage of the total whole area (or of 80 stations).
The mean of the deficit area increases with the prob-
ability of the truncation level, as expected. The



Table 5.1. Basic Statistics of the Deficit Area, the standard deviation of the deficit area is symmetrical

Total Areal Deficit, and the Maximum about the point ¢ = 0.5. The highest variation of
Deficit Intensity for the Sample Size the deficit area is found for the truncation level at
N = 1200. the median. The mean of the total areal deficit in-
creases exponentially with an increase of the trunca-
Truncation Level tion level.
q 0.4 0.5 0.58 0.65

A comparison of the maximum and minimum percen-
Eg -0.4340 -0.2028 0.0000 0.1987 tages of the deficit area for various truncation
levels indicates that at the truncation levels of

q =0.5and q = 0.58, or at the median and the mean,

. v 38.9000 49.0330 57.0187 64.0198 respectively, the deficit never covers the whole area
o u St. Dev., 18.8658 19.4985 19.0549 18,2022 completely. On the other hand, at least a small
< @ Maxi deficit area always occurs within the whole area.
B e 92:90 96.25 98.75 100.00 Though this does not prove that the probabilities of
E & Minimum 1.25 3.75 7.50 7.50 the two extremes, of the whole area completely covered
oo by a drought and no part of the whole area covered
a Skewness  0.3763  0.1201 -0.6731 -0.2909 by a drought, are zeros, these two extremes very rarely
Excess -0.4868 -0.6544 -0.6731 -0.5786 occur for such a large region, as used in this study,
for the truncation levels of the median and the mean.
Mean 14,8555 23,0262 31.6495 41,2836 The fact that there is always at least a small deficit
- area covered by a drought within the area studied, is
® St. Dev. 10.2524 13.6123 16.5516 19.3148 a specific feature of droughts. The three variables
E.’g. Maximum 63.5489 80.5565 96.0696 111.5682 have time independent sequences, as expected, because
o e s the original stochastic component series is time
E o Minimum 0.0374  0.7310 1.9529 4,2244 independent .
E-°- S Skewness 1.1588 0.9028 0.7240 0.4679
The probability distributions are fitted to the
Excess 1.4293 0.6572 0.2606 -0.0259 frequency distributions of the three variables for the
t ti 1 1 of =0 = 0,58). The bet
©  Mean 0.9756  1.2074  1.4102  1.6089 TIENCDR SRR oy @ ) ki
o distribution function is used to these frequency
o s, St. Dev. 0.2080  0.2080 0.2080 0.2080 distributions of the three variables, because they
A5 Maximum 1.3311  1.4623  1.7651  1.9638 are assumed to be bounded at both tails, as specified
5 B o in the previous section. The bounds for the three
2 8 Mininum 0.0214  0.2527  0.4554  0.6542 variables are given in Table 5.2. The weak point in
E 5 Skowness -0.9033 -0.9033 -0.9033 -0.9033 the fit of the beta probability distribution fun?tlon
= to the frequency distribution of these three variables
Excess 1.1296 1.1296 1.1296 1.1296 is that the probability densities at both bounds are
zeros, though the probabilities for the bounds may
' y £
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|
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Fig. 5.1. Variations of Basic Statistics of the Deficit Area and the Total Areal Deficit
in Function of the Probability of Truncation Level for the Sample Size N=600.
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Table 5.2, Boundary Values of the Deficit Area, A,
the Total Areal Deficit, D, and the
Maximum Deficit Intensity, I, for the
Truncation Level of o = 0.
Variables Lower Bound Upper Bound
A 0 80.0
D 141.224
1.7653

not be zeros. Since probabilities of both extremes
are close to zero, as mentioned earlier, and the ob-
jectives of this study were not to analyze these
extremes, this weak point is not decisive so that
the use of the beta distribution may be accepted.
When this weak point is not negligible, a mixed
distribution could be used.

The general form of the beta distribution func-
tion is

1 g-1
1 r-2)" " (b-y)
£,.(y) = » (5.6)
Y B(ﬂu g) {b_a)u*ﬁ'l
with o>0, Bg>0, and B(x,B8) = the beta function of
o and B. By using the transformation

X=(Y-a)(-a) , (5.7

the standard form of the beta distribution with param-
eters a and B becomes

1 -1 -
fx{x) = B8 x® a - x]s ' » (0 < x< 1), (5.8)

N Johnson and Kotz (1970b) gives estimates a and
B, as the first approximation as
n n
a= 2a-m<Myp-naln
i=1 i=1 *
n
< 11 @=xd P, (5.9)
i=1
and = "
B= z0-1a-x)"yp - o/t
i=1 i=1
n
R O T e (5.10)
i=1 >

Using the transformation of Eq. (5.7) with the values
in Table 5.2, the estimates & and B8 for the three
variables are made by using Egs. (5.9) and (5.10).

The goodnesses of the fit of the beta distribution to
the computed frequency distributions of the deficit
area, the total areal deficit, and the maximum deficit
intensity, are tested by using the chi-square statistic
of ten class intervals at the five percent level of
significance. At this significance, the critical
value of chi-square statistic with the number of
degrees of freedom of seven is 14.1 The estimates

@ and B and the test are as follows,

For the deficit area, the estimates & and &
are 3.417 and 2.559, respectively, with the beta den-
sity function
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2.417 1.559

f(x) = 27.6128 x (1-x) (5.11)

Its chi-square statistic is 12.80, which is less than
the critical value of 14.1.

For the total areal deficit, & and B esti-
mates are 2.760 and 9.566, respectively, with the beta
density function

8.566

1.760 ¥) 2

a-

with the chi-square statistic of 9.33.

f(y) = 403.4121 y (5.12)

For the maximum deficit intensity, the estimated
density function with the parameters 8.314 and 2.092
is

7.314 1.092

f(z) = 91.6392 z (1-2) (5.13)
and the chi-square statistic of 11.70, being smaller

than the critical value.

Since the chi-square statistics for all the
three variables are smaller than the critical value
at the five percent level of significance, the fitted
distributions may be accepted. Comparisons of fitted
distribution functions and the frequency distributions
of these three variables are shown in Fig. 5.2.
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Fig. 5.2. Relative Frequency Distribution (Broken

Lines) and the Fitted Beta Distribution
Functions (Solid Lines) for the Deficit
Area, the Total Areal Deficit, and the
Maximum Deficit Intensity.

The cross correlation and regression analysis are
carried out to find relationships among the deficit
area, A, the total areal deficit, D, and the maxi-
mum deficit intensity, I. The lag zero cross corre-
lation coefficients among the pairs of the three
variables are given in Table 5.3, and relationships
are presented in Figs. 5.3 through 5.6. It is seen
that the pairs of the three variables are highly
correlated, especially the correlation coefficient
of the deficit area and the total areal deficit is
high, namely 0,934. Since Fig. 5.3 shows that the
relation is non-linear (quadratic or exponential)
rather than linear, two types of regression functions
are fitted, namely



Table 5.3.

Pairwise Cross Correlation Coefficients for the Deficit Area, A,

the Total Areal Deficit, D, the Maximum Deficit Intensity, I, and
Their Derived Variables, for the Sample Size N=600.

A D I Al D/A 1/D DI I/A
A 1.000
D 0.936 1.000
1 0.660 0.719 1.000
Al 0.973 0.963 0.789 1.000
D/A 0.741 0.900 0.797 0,821 1.000
1/D -0.796 -0.710 -0,553 -0.744 -0.648 1.000
DI 0.903 0.991 0.765 0.958 0.911 =-0.665 1.000
I/A -0.730 -0.581 -0.260 -0.628 -0.366 0.877 -0.522 1.000
ILD kI
120 20
100 |
-
-
.
ao b
60 -
40 |-
20 -
-
e
= L] = .
-e . . s
.. A A
0 1 1 . 1 1 i 1 0 L 1 1 L 1 1 1
0 10 20 30 40 50 80 70 80 0 10 20 30 40 50 60 70 80
Fig. 5.3. Relationship of the Total Areal Deficit, Fig. 5.4. Relationship of the Maximum Deficit
D, to the Deficit Area, A, with the Intensity, I, to the Deficit Area, A,
Inferred Regression Equation or D = with the Inferred Regression Equation or
0.2682
0.2479A + 0.0088A°. I = 0.5131A '
2 The relation between either the deficit area or
D = 0.2479A + 0.0088A" , (5.14)  the total areal deficit and the maximum deficit
A 2 intensity, as shown by Figs. 5.4 and 5.5, are not
with the explained variance of R™ = 0.9078, and easily inferred, though the maximum deficit intensity
increases both with an increase of the deficit area
D= 0-0558A1'6433 (5.15) and with an increase of the total areal deficit.

with the explained variance of R2 = 0.9031. As the
two equations explain the variance of the total areal
deficit well, the unexplained variance may result

from the neglect of the shape or the spatial dis-
tribution of the deficits as well as from the sampling
errorTs.
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Using the power function relationships, the fits give

b g 8EEA0 6 (5.16)

and

0.1994

I = 0.7265D (5.17)
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Fig. 5.5. Relationship of the Maximum Deficit
Intensity, I, to the Total Areal Deficit,
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Fig. 5.6. Relationship of the Product AI to the

with the Inferred
Al = 14,7749 +
0.8457

Total Areal Deficit, D,
Regression Equations: (1)

1.6306D and (2) AI = 3.6489D

with the explained variances 0.4480 and 0.6054, res-
pectively,

The correlation coefficient betweem D and AI
suggests a high relationship among the variables, as
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shown by Fig. 5.6. The simple linear regressions
between D and AI are given by

D = -6.1420 + 0.5684A1I (adh)

and
Al = 14,7749 + 1.6306D ’ (5.19)
with the explained variances of 0.9266 and 0.9274,

respectively. Figure 5.6 implies a power relation,
as a better function to fit,
Al = 3.6480p0-8457 (5 .20)

with the explained variance of 0.9482, and with the
difference from Eq. (5.19) of 0.0208, or about 2.1
percent.

Since the regression functions represent only
the expected value of the dependent variable for a
given value of the independent variable, the joint
probability distribution may be of interest also,
especially the joint probability distribution of the
deficit area and the total areal deficit may be use-
ful in practice., The joint cumulative frequency
values of the deficit area, given in percentage of
the whole area, and the total areal deficit are given
in Table 5.4.

5.3. Trivariate Distribution
Instead of studying the joint distributions of
A and I or D and I, the trivariate distribu-

tion for these three variables is studied. Joint
frequency distribution of the deficit area, the
total areal deficit, and the maximum deficit inten-
sity is fitted by using the beta distribution
functions with the Jacobi polynomials, because the
marginal distributions for the three variables are
assumed to be beta distributions as per Eqs. (5.11)
through (5.13)., The product of the three beta distri-
bution functions with the Jacobi polynomials is used
as an approximation to the joint, trivariate prob-
ability density function, expressed by

£y y,252) = £ 0E0E, (2) ; § E a5k

G; (31,B1;X)G, (a2,B2;Y)Gy (23,8352) (5.21)

with aijk the coefficients and Gi[a,B;x) the
Jacobi polynomials of degree i with two parameters
a and B.

A Jacobi polynomial of degree n, G (a,8;x),

when expanded in the power series of x, becomes

s F%Bml
Gn(“ »8 3%) T(a*2n)
min r(u+2n-m} n-m
[m]F{B+ n-m) * -

For a-g>-1 and #>0, the polynomials Gn{u.s;x}

n
I (-1)

n=0 (5.22)

for (n=1,2,...) form an orthogonal system in

(0,1), with the weight function g(x) = xﬁ—l

(l-x)u's, so that

j:Gi(a 8 3x)G (@ ,B ;x)p(x)dx = 0 if i 4 n  (5.23)
=d§ ifi=n, (5.24)



Table 5.4. Joint Cumulative Frequency of the Deficit Area and the Total Areal Deficit.
Deficit Area (%)
10 20 30 40 50 60 70 80 90 100

100 1.0000

90 + 0.9975
3 80 +  0.9625 0.9933
@ 70 +  0.8592 0.9558 0.9767
o 60 +  0.7142 0.8567 0.9267 0.9342
E 50 + 0.5492 0.7125 0.8300 0.8550 ->
: 40 + 0,3492 0.5467 0.6717 0.7150 0.7167 -
§ 30 4 0.1933 0.3475 0.4983 0.5275 0.5283 »
= 20 + + 0.0842 0.1867 0.2550 0.2650 o

10 0.0017 0.0192 0.0542 0.0583 >

n!T (n+a)l (n+8)I (n+a-£+1)
(2n4a)T2[2n+a]

d

= S

where (5.25)

Coefficients aijk
expected value of Gi(al.Bl;x] Gj(uz,ﬂz;y) GK

(33,33;3), that is

can be estimated by taking the

E[Gi(ﬂ1:Szix)ﬂj(&z,ﬁziy}ﬁk(aa.sa;z]]

- 1

1

/

1
Dcital-ﬁx;X)Gj(az.Bz:y)Gk(us,Bs;z)f(x,y,z)dxdydz-

(5.26)

Replacing f(x,y,z) by its value of Eq. (5.21), and
considering that the postulated marginal distribution
are beta functions

- 1 By=1.,_ q21-81
£y, () B0, 60D * (1-x) (5.27)
ool o ol az-8 5.28
EYU] B(Bp,ap~-Bp+*1) Y (1-y) ( )
and
e L ,B3-1. ca3-83
£, (2) B(ea00-B571) 2 (1-z) (5.29)
then Eq. (5.26) becomes

E[GifﬂlselixJGj(stﬁz;Y)Gk(ﬂg.Ba;Z)]
1 1
. g § E aijkqui{u1.Bx;X}GE(ul,B;;x)f{x}dequ{az.ﬁz;Y)‘

|
Gm{“Z-Sz;Y}deaGk[ﬂa.B3;z}Gn(u3.Ba;szz .
(5.30)

26

Taking further into account Eqs. (5.23) and (5.24),
the expected value of Eq. (5.26) becomes

E[Gi(ﬁ1,81;x)ﬁj{az.BQ;YJGk(ug,BsizH

a,
ijk d2d2 2
B(8y,a1-8171)B(8;,a2-B,7 B (B3,a3-Pa+ D) “1%5%
(5.31)

Therefore, the 85k coefficients can be expressed
as

- _B(By,09-81+1)B(Bs,a5-8,+1)B(B5,a23-8+1) _
2.2.2
didjdk

E [Gi[“]_)ﬁ], ;x)Gj (“ZJEZ;YJG]‘(‘ZB aBB;zJ]

3 jk

(5.32)

coefficients are then obtained for the

and k by Eq. (5.32).

The ﬂijk

selected values of i, j,

Using only up to the values i+j+k=3, and simplifying
Eq. (5.32), then
%00 = 13 2j00 = %10 * %01 = ¥
3200 = 2020 = %002 = %
o EQY) - EQEQY) |
110 ";WE%TXT?éE%Y§'l ;
R, .2
d.(x)d; (y)
a = ——D—{EGY) - -2—‘&3—:;—1)-[5[m - EQOE(Y)]
210 dZ(x]dl(y) 1
2 :
- EXDEM }
a,;; = [EQOYZ) - EQOE(Y2) - E(OEQQ) - E@)E(KY)

and

+

2E(X)E(Y)E(Z)]/[Var(X)Var(Y)Var(Z)] ;



2

d—(x)
0 3 B1+2 2
0 " Tz 1RO - s B0

= (B1+2) (B1+1)

> (01%5) (a1+4)

___(By*2) (By*1)By }
(@1%5) (a1 +4) (01+3)

+ E(X)

(5.33)

The other coefficients can be obtained by interchanging
the variables and subscripts. Computing E(X), E(Y),

E(2), E0P), B, EZD), exY), E(YD), EED), EQ),
E(Y2), E(X2), EQCY), E(Y2D), EZ2X), E(x%2), E(v2X0),

E(z?Y), and E(XYZ) from the 1200 months long

samples, the coefficients 23k can be obtained.

- P
ijk
gxPanding Eq. (5.21) in function of up to the values
i+j+k=3, the beta distribution function with the
Jacobi polynomials becomes

Using these estimates of the coefficients and

2.417 1.559

fx,Y.z{x,y,:} = 1021401.514x (1-x)

8.566 1,092

J1:769 (1-2)

7.314
zZ

(1-y) ( 8.1901x°

3 3

+ 2.4360y" - 15.2448z + 53.4116x2y - 14.5653x21

2
54.6704xy? - 111.3110y°z + 4.8804xz> + 81.6306yz

6.7835xyz - 13.6763x° + 117.9596y2 + 11.66672°

16.8549xy - 7.8702yz + 39.82272x - 27.5350x

+

72.1956y - 30.5372z + 28.8814 ) (5.34)

The use of this function for the triviate frequency
distribution of deficit area, total areal deficit, and
maximum deficit intensity, did not show a good fit
because the probability densities often take negative
values. The main reason for it is that these three
variables are highly mutually correlated. Therefore,
the use of the product of the three marginal distri-
butions might not be a valid assumption for the tri-
variate distribution. Since the convergence of the
polynomials is slow due to a high dependence among
the components, taking more values of i+j+k, up to
4 or 5, does not improve the goodness of fit.

The method of transforming the three variables
into the normal variables and/or into mutually in-
dependent variables may show a better fit. However,
it was not tried to find this trivariate distribution
in this study.

5.4, Model for the Areal Drought Structure

It is useful to generalize the areal drought
structure as in the form of depth-area relationship
of thunderstorms or showers (Woolhiser and Schwalen,
1960; Court, 1961). The analogous idea to the depth-
area relationship is applied herein to define the
areal drought structure, though the deficit area,
does not always consist of one deficit cell but may
be composed of several deficit cells. To obtain a
general idea of the areal drought structure, the
dimensionless deficit-area relationship is first in-
vestigated, The deficit intemnsity, Z¥, at a point
i, 1is denoted by the absolute value of a negative
deviate from a certain truncation level, that is,

A,
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=% (5.35)
where & = the stochastic component of monthly pre-
cipitation. Under the deficit area, A, and the

maximum deficit intensity, I, the dimensionless
expression of the area-intensity relationship may be
in the form

i, = f(a,) , (5.36)

*
where i . = Xi/A with

*

and

*
= Zi /T with 0 <idi, <1,

-
- L
0<a, <1, and X, is the area where 2. <2

0< X; < A. To find a functional form of Eq. (5.36),
some Telations obtained from the generated samples are
presented in Fig. 5.7. This figure shows that the
dimensionless area-intensity relationship is very
close to be linear. This means that the deficit
intensity may be relatively uniformly distributed

over the area. Figure 5.6 and Eq. (5.19) also suggest
the uniform distribution of the deficit intensity
because the relationship between D and AI is close

to D= AI/2 for a uniform distribution. This linear
relationship is given by
i, *1=/8, (5.37)

As the first approximation, the distribution of the
deficit intensity over the deficit area can be con-
sidered to be uniformly distributed.
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Fig. 5.7. Dimensionless Area-Intensity Relationships

of Drought, Obtained from the Generated
Samples.

For more flexibility in this relationship and for
explaining the concave or convex shapes of Fig. 5.7, a
parameter is added to Eq. (5.37), expressed by

i, = (1 -a)0 (5.38)
This dimensionless expression becomes
* -b *b
Z, = 1A (A - X)) (5.39)



The conceptual relationship is then shown as in Fig.

5.8. The total areal deficit, D, is given by inte-
grating Z over X from zero to A,
A
D=/ 1A% a-x"HP ax*
0
Al
Wt (5.40)
then the parameter b is defined by
Al
b -1 (5.41)
With the parameter b computed from A, I, and D

of generated samples, the goodness of fit of this
model for the areal drought structure is tested.
600 samples at three different truncation levels,
q = 0,58, 0.50, and 0.65 are used. For all the trun-
cation levels, the average of the explained variance
by the model is greater than 95 percent. Comparisons
between the data and model are shown in Fig. 5.9. The
average b value for the 600 samples at the trunca-
tion level ¢ = 0,58 is 1,2292, with the standard
deviation 0.3467. Generally the larger the deficit
area or the total areal deficit, the smaller is the
parameter b. This comes from the conditions that the
deficit area and the maximum deficit intensity are
limited so that the deficit intensity function should
be convex upwards in order to produce a large total
areal deficit,

The

az*
1.7653

I 7= 1P (A-X"P

b<|

Deficit Intensity

0 Xs A
Deficit Area

Fig. 5.8. Graph for Modeling the Relationship of
Deficit Intensity to Deficit Area.

Once the deficit area, the total areal deficit,
and the maximum deficit intensity are computed, the
model defines the areal drought structure., The model
may be more useful if the joint distribution of the
three variables is obtained. However, the model does
not indicate how: the deficit area or how the deficit
intensity is distributed areally.

. In this model, the minimum deficit intensity,
zmin’ is assumed to be zero. However, the minimum
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\ b=1.3964

Comparisons of the Model with the Results
Obtained from the Generated Samples: Model
Values are Given by Solid Lines, and
Computed Values by Broken Lines.

deficit intensity can be larger than zero when a con-
cerned region is small and a drought covers the whole
region. In this case, the above model is not valid
and some modifications are needed. By using deficit
* L

G - zmin)
the above areal drought structure model may be appli-
cable.

L
intensity defined as instead of 2

»

5.5. Probability of Areal Coverage by Droughts

The areal coverage by droughts is further investi-
gated without considering the corresponding total
areal deficit.

The probability density function of the deficit

area, A, over the whole area is given by Eq. (5.11).
Defining a random variable by X = A/80 and using
Eq. (5.11), the probability of more than the lﬂﬂxu

percent of the whole area to be covered by a drought,
with the truncation level EO = 0, 1is given by

P(X> X, ) =1-P(X< xﬂ)
=1~ F( xU)
X
=1 - [ 927.6128x% 417 (1-x) 1559 . (5.42)

0

This probability can be found easily from Fig. 5.2.
For example, the probability of more than the 50 per-
cent of the whole area to be covered by a drought

in a certain month is 0.65 at the truncation level

50 = 0. This probability is relatively high, though

the drought does cover each time a different area
within the whole area.

Since the deficit area is a time independent
variable, some information on the time duration of



areal coverage can be obtained by using the theory of
runs and the recurrence of random events. For an
independent process, the expected positive run-length,
M, is given by

E(M) = 1/q (5.43)

with ¢ = F(xcl = P(X < xo}. Therefore, the expected

duration of a drought which covers more than the
IOOxU percent of the whole area can be found. Table

5.5 shows some probabilities. For Xg = 0.5 in the

deficit area given by the truncation level EO =0,

or q = F(0.5) = 0.35, the expected duration of that
drought from Eq. (5.43) is 2.857 months. This expect-
ed duration of about three months seems to be long
enough to affect many water users, such as crop
producers.

Table 5.5. The Expected Duration of Drought Covering
More than 100x0 Percent of the Whole Area

xo 0.4 0.5 0.6 0.7
For £, = 0 5.113 2.857 1.876 1,393
For 50 = -0.2028 2.984 1.935 1.438 1.18B5

The other interesting property is the longest
drought duration. Millan and Yevjevich (1971) applied
the theory of recurrent events to find probabilities
of the longest negative run-length of a given sample
size N, on the basis of the formula given by Feller
(1957). The probability of the longest drought dura-
tion in a given sample size N is, as an approxima-
tion, 3

1 - 1
B » T pc (5.44)

with ¢ = foo) =1-p and
walepgt o (00) (g2 ¢ eafpg)d + oo

Probabilities of the longest drought duration
during a given period covering more than the IDOxU

percent of the whole area are calculated by Eq. (5.44).
For 60-, 600-, and 1200-month periods, the expected
longest drought durations E(Mmax]' with droughts

covering more than the 100xG percent of the whole area

are computed for the deficit area of the truncation
level 50 = 0 and -0.2028 and given in Table 5.6,

For the 1200-month period of the deficit area series
based on the generated series £ at the truncation
level € = 0, the observed longest duration of the

drought covering more than the 50 percent of the whole
area is 13 months, which is a little lower than the
expected value, or 14.5 months. During 600 months

or 50 years, the expected longest duration of the
drought which covers more than a half of the whole
area is more than one year. This duration is fairly
long.

The conditional distributions of the deficit area,
A, given that a certain point has or has not a deficit
are investigated analytically. The probability density
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function of the deficit area defined by A/80 is
given by Eq. (5.11), namely

1 a-1.. _\B-1
fx[x} = “Bla.B) x T (1-x)
= 27.6128 x2.417{1_x)l.559 (5.45)
Table 5.6. The Expected Longest Duration of Droughts
Covering More Than 50 Percent of the Whole
Area in 60-, 600-, 1200-Month Periods for
€ = 0 and -0.2038.
Longest Drought Duration
Sample Size for €y = 0 for EO = -0.2028
in Months Expected Observed Expected Observed
60 7.866 - 5.007 -
600 13.077 11.5 8.181 8.0
1200 14.505 13.0 9.134 10.0

The probability that a certain point has a deficit at
the truncation level EU is defined by

P(E < EOJ =q. (5.46)

Assuming that every point is equally likely to exper-
ience a drought, the conditional probability that a
certain point has a deficit given that the deficit
area x exists in the whole area is

P(E < go|X=x) = x . (5.47)

Then the joint probability P(£ < £y, X < x) s
defined by

P(E < ;0. X s x)

= P(E < colx < x)P(X £ x)
X
= fuxfx(x]dl ; (5.48)

Therefore, the conditional probability of the deficit
given that a certain point has a deficit is given by

P(X < x|g < &y

P(X <X, § 5 ED/P(E 3 &)

1 X
E onfx(x)dx

X
- J 47.083 S 417 (101550 (5.49)
1 X a. 8-1
By /4 (5.50)

Because this is also a gamma distribution, the con-
ditional density function is

La-oft . (5.51)

_ 1
f"lzs%“'“‘“’ ® Be+L,B)



Similarly, the conditional probability of the deficit
area given that a certain point has no deficit is

P(X s x|g > gg)

= P(X s X, £ > §)/P(E > E))

1 X
© 1 [, a0 g xdx
x
= ] 65.7448 il B3 P (5.52)
1 751 (1 Bax
Bla,p+1) 0 (5.53)
Therefore, the density function is
1 -1
foE>E0{X|E>E0} = Bla, 1) & {l—xjﬁ (5.54)

The two conditional probability density functions of
the deficit area, with the two corresponding condi-
tional frequency curves, are shown in Fig. 5.10, in
comparison with the probability density function of
the deficit area. A quantitative comparison of the
three probability density functions may be possible
by applying the Fisher's information content, which
is defined as the reciprocal of the variance of the
concerned variable or parameter. The conditional
distributions clearly have more information than the
original distribution. As the extension of this
concept, the conditional distribution of the deficit
area given that more than a station, selected randomly
or systematically, have deficits and/or no deficits
can be analyzed by an experimental method. A number

‘fx{al
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Fig. 5.10. The Probability Density Function of the De-

ficit Area and the Two Conditional Probabi-
lity Functions of the Deficit Area Given
That a Certain Point Has or Has not a De-
ficit (Solid Lines), with the Two Sample

Conditional Frequency Curves (Broken Lines)
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of selected stations and their locations will affect
additional information content. Their effects are
worthy of studying as concerning to the network design
or some other problems.

5.6. Probabilities of Specific Area Covered by Drought

In previous analysis, the deficit area inside the
whole area consisting of 80 unit-areas or 800,000
square miles has been considered. In practice, how-
ever, one may be more interested in finding the prob-
ability of drought covering a small, specific area,
or sub-area inside the whole area. For example, what
is the probability of drought covering the State of
Kansas, the wheat region, or the corn belt of the Mid-
west? Because of regional dependence, the probability
of the deficit area depends upon the size and shape
of this small, specific sub-area.

First, the probability of a drought covering a
whole sub-area is investigated by considering the
effect of the shape of the sub-areas. Intuitively, it
is clear that the smaller a sub-area, the higher is
the probability of the drought covering this whole
sub-area. An elongated sub-area should have a smaller
chance for a drought to cover the whole sub-area,
than would be the case of a circle or square type
sub-area of the same surface. The analysis is carried
out quantitatively by using the generated samples.
Figure 5.11 shows the experimental results of two
cases, with probabilities of drought covering the
sub-areas, from one to 32 unit-areas, by changing
the area shape, in different ways. The probability of
a drought covering the whole sub-area of 16 unit-areas
or a 400 x 400 square miles square shape in case
(1) is 0.0793, which is higher than 0.0583 for case
(2), for which the same 16 unit-areas are arranged
as a 200 x 800 square miles rectangular area. Figure
5.11 further indicates that the probability of a
drought covering the whole sub-area decreases rapidly
with an increase of the area. The probability of the
drought coverage is very sensitive to the shape of the
sub-area; this is especially the case for the sub-area
with about eight unit-area. However, the effect of
the shape of the sub-area decreases with an increase
of the area. For a large area, the shape does not
seem to be a decisive factor as long as a particularly
irregular sub-area is not considered. Since prob-
abilities are estimated by sample frequencies, and
since these frequencies have small variations, the
average frequencies as estimates of probabilities are
used to evaluate the effect of the area size and the
area shape on probabilities of areal coverage by
droughts, The assumption used is that any geometri-
cally identical sub-area would have the same prob-
ability regardless of sub-area position. Table 5.7
summarizes these average estimates of probabilities
of the drought covering the whole sub-areas of various
sizes and shapes. Table 5.7 indicates that the size
of an area seems to be more important than its shape
as it concerns the probability of drought coverage,
as long as the shape is not of a very elongated type.
Although the estimates of probabilities in Table 5.7
may be in error due to small sample sizes and the
assumption, these values give a general picture of
drought probabilities for a specific area. For
example, the probability of the drought covering the
whole state of Kansas, of 82,264 square miles,
approximated by 200 x 400 miles rectangle, is about
17.5 percent and 11.7 percent for each month at the
truncation levels of the mean and the median, respec-
tively.

In order to evaluate the shape factor more
quantitatively, a mean areal correlation coefficient
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Fig. 5.11. Relative Frequencies of Droughts Versus the Whole First i Unit-Area Covered

by the Droughts, Obtained by the Two Schemes Illustrated by Cases 1 and 2.

Estimates of Probabilities of the Drought
Covering the Whole Subarea with Various

Sizes and Shapes for the Truncation Levels

of the Mean and the Median.

Size  Shape
in Unit-Area

Subarea

Probabilities of Drought

Samples Level=Mean

Nos. of Truncation Nos. of Truncation
Samples Level=Median

Used 80-0 Used ;n=-0.2029

1 1x1 14 0.5698

2 1x2 14 0.4367

3 1x3 i1 0.3459

4 1 x4 9 0.2759

4 2x2 3 0.3092

5 1x5 4 0.2171

6 Z2x3 4 0.2320 2 0.1654
8 1x8 3 0.1150

8 2x4 B 0.1748 4 0.1167
9 3x3 6 0.1609

10 - 1 0.1343

12 Ix4 11 0.1155 4 0.0736
18 3xS5s 1 0.0793

16 2x8 3 0.0569

16 4 x4 14 0.0766 5 0.0437
18 3x6 1 0.0600

20 4 x5 3 0.0545

21 Ix7 1 0.0451

24 3x8 3 0.0300
24 4x6 . | 0.0394
25 5x5 3 0.0369

27 3x9 1 0.0208

28 4x7 3 0.0242

30 5x6 3 0.0239

32 4x8 6 0.0164 2 0.0059
36 6x6 2 0.0175

49 7x7 2 0.0050

64 8 x4 2 0.0013

is introduced. It is defined by

2 n-1 n

"e-D 42 j-gur‘j ' et

T =

Figure 5.12 compares the probabilities of the drought
covering the whole sub-area of eight unit-areas with
different shapes as a function of the mean areal
correlation coefficient. For contiguous areas, prob-
abilities of drought are linear functions of the

mean areal correlation coefficient. A gradient of

the line decreases with a decrease of the probability
of truncation levels. This means that effects of

shape of the sub-area decreases with a decrease of the
truncation levels. Figure 5.13 shows the probabilities
of the drought covering the whole sub-area with
different sizes and shapes as a function of the mean
areal correlation coefficient. Three probabilities

for T =0 are calculated from a binomial distribu-
tion. For contiguous areas which are surrounded by
broken lines, probabilities of the drought are approxi-
mated by a linear function of the mean areal correla-
tion coefficient. The gradient of the line for eight
unit-areas seems steepest, that is, the shape factor

is most sensitive to the probabilities. With an in-

‘crease of the area, the gradient of lines decreases.

Probability distributions of the deficit area
within sub-areas of various sizes are also investigat-
ed. The sub-areas considered are of 2 x 3, 2 x 4,
3x4, 4 x4, and 4 x 8 unit-areas. Besides, a sub-
area of 63 unit-areas, as the original study area, is
also considered. For the truncation levels at the
mean and the median, frequency curves of the deficit
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area within these sub-areas are obtained from some
samples, and shown in Fig. 5.14. Their cumulative
frequency distributions are shown in Fig. 5.15, as Fig. 5.14. Relative Frequency Curves of Deficit Area
the reduced variables in percentages of the whole Within the Subareas of the 6, 8, 12, 16,
sub-area, for comparison. and 32 Unit-Areas.
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For the 2 x 3 and 2 x 4 unit-areas, probabilities
of both extremes, that is, the whole sub-area covered
by a drought and no part of the sub-area covered by a
drought, are very high. Their frequency curves are
either U-shaped or J-shaped. These are intuitively
obvious because of the regional dependence. In the
case of the truncation level of the mean, the prob-
ability of no part of the area covered by a drought
is decreasing faster than for the other extreme with
an increase of the area. For the truncation level of
the median, the opposite trend seems valid. The
distribution of the deficit area is affected by the
truncation level, especially for the small areas, as
shown by Fig. 5.14. The probability of the deficit
area for a given sub-area with the area less than 80
unit-areas can be approximated from Fig. 5.15.

5.7. Conversion of the Total Areal Deficit of Station-
ary Stochastic Series into the Total Areal
Deficit of Periodic-Stochastic Series

The stationary stochastic series, £, are stand-
ardized, (or dimensionless), with the regional and
temporal variations in the means and the standard
deviations removed. Thus the drought characteristics,
such as the total areal deficit and the maximum
deficit intensity, do not represent the absolute values
or the actual amount of deficits. However, these

values are needed for planning drought control measures.

Therefore, the method of converting the total areal
deficit of the standardized series, £, over an area
into the total areal deficit of the original monthly
precipitation series over the same area must be avail-
able, In this section, only the regional variations
in parameters are investigated, while their temporal
(or periodic) variations are discussed in the next
chapter.

Let D denote the total areal deficit of the
series E, and Da the total areal deficit of the

original series 1y, or the actual total areal deficit,

They are defined as
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80

D = - - (5.56)
! 121 (& 8T (ggg) (&)
and
80
D = -
80 '
= igl s; (g * Ei)r{;sso)(giJ , (5.57)
where Eo and Xo are the truncation levels for the
series £ and x, respectively, S5 is the standard

deviation at station i, and I(.}(o} is an indicator

function. These definitions are valid as long as the

relationship between the two truncation levels £o
and Xg is defined by

Xo =My * Sigo (5.58)
with m, and i the mean and standard deviation at
station i, respectively.

The actual total areal deficit,

Da' can be

approximated by a function of the total areal deficit,
D the mean and standard deviation of the regional
S& and s[si], and the deficit

This relationship is expressed as

5!
standard deviation,

area, A.

D, = £[Dg, 5, s(s;), Al (5.59)

In the case the regional variation of the standard
deviation is small in comparison with the mean, Eq.
(5.59) can be reduced to

D

s e 3 g

i (5.60)

= f( Ds, s

Figure 5.16 shows a relationship between Dy and D,

with the regional standard deviations for the 80
stations given by Eq. (3.19), and their mean and
standard deviation of 1.4360 and 0.4747, respectively.
The regression analysis gives the relationship

Da = 0.1060 + 1,4374 D5 B (5.61)
with the explained variance of 95.84 percent. This
equation is further approximated by

Da = 0.1060 + 1.4374 D5

= 1.4360 Ds = siDs . (5.62)

This indicates that the actual total areal deficit

D, of the original series can be well approximated
by the product of the total areal deficit D_ of the

standardized stationary series and the mean of the
regional standard deviations, EE. However, Fig. 5.17

showing a relationship between the ratio of Da to
Ds A,
small deficit area, the mean of the regional standard

and the deficit area, indicates that, for a
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deviations for that area rather than the mean of all
the standard deviations over the whole area should be
taken for determining E}. Since the larger deficit

34

26
24

221 .

1.2 .. . .., .h.d.z_af:a. L)
- B s
1.0 - .
cefr
06
04
02F
al. 1 1 I 1 L I A
0 10 20 30 40 50 60 70 8C
Fig. 5.17. Relationship Between the Ratio Da/Ds and
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DaIDS = 1.4360.

areas are mostly of interest, the above approximation
to the determination of the actual total areal deficit,
by using the product EiD , has a practical signifi-
cance, -



Chapter 6
DROUGHT ANALYSIS OF PERIODIC — STOCHATIC PROCESSES

Drought characteristics of the stochastic compo-
nent of the monthly precipitation were studied in the
previous chapter. This stochastic component of the
monthly precipitation is a stationary process for
good, consistent data, while the monthly precipitation
is a periodic-stochastic process. The drought analysis
of periodic-stochastic processes is much more complex
than the drought analysis of stationary stochastic
processes. Each month has a different mean and a
different standard deviation. Therefore, the time
position is one of the important factors in evaluating
drought characteristics, The main reason of analyzing
drought characteristics of periodic-stochastic series
is to find fluctuations of deficits within a year and
at specific months such as a growing season rather
than to find long-term fluctuations. Drought charac-
teristics depend upon the hydrologic phenomenon such
as precipitation and river runoff which is used for
drought definition and upon the objectives of drought
analysis. They make difficult a generalization of
drought characteristics of periodic-stochastic pro-
cesses,

6.1. Run Properties of Periodic-Stochastic Processes

Although run properties of univariate periodic-
stochastic processes may not give the best parameters
for drought analysis, they are studied analytically
for some simple cases in order to compare them with
those of univariate stationary stochastic processes
and to find out possibilities of using run properties
in evaluation of drought characteristics of periodic-
stochastic processes.

The following assumptions, considered to be close
to real processes of nature such as for the monthly
precipitation, are used for a simple study. The
monthly precipitation process, x, as an example of
periodic-stochastic processes, is assumed to be com-
posed as

Yp,x = Ve * %bp,q

where p and 1 denote the sequence of years and the

month within the year, respectively, He and o, are

the means and standard deviations of monthly precipi-
tation, respectively, and § is a time independent

stationary stochastic component. Next, the standard
deviation o_ is assumed to be composed only of the

(6.1)

12-month harmonic

o, =6+Ccas{g—¢ +8) , (6.2)

with o = the average value of O s C = the ampli-

tude, and 8 = the phase. The truncation level

X
0,1
(or the water demand series) is also assumed to be a
periodic function

=M, + UTEB s

Xo,t (6.3)

with &g = the truncation level for £ corresponding

to Xgs Under these conditions, negative runs as

various random variables are defined as: N = the
negative run-length, T = the onset time of a negative

run, Wy o= the negative run-sum with the run-length

35

N and the onset time T, ED = the truncation level
of @=P(E<&) =F(§) or P=1-q, E(") =§" =
the expected value of the truncated series, £*, and
Var (£*) = the variance of the truncated series. The
distribution of the negative run-length of an indepen-
dent process is a geometric distribution (Downer et
al., 1967), with the expected value and the variance
given by

EN) = 1/p (6.4)

and

var(N) = o/p° - (6.5)

Since each month is assumed to have the same prob-
ability for the negative run to start, the probability
of the onset time can be defined by

P(T=t) = 1/12 , (t=1,2,¢0¢,12) . (6.6)

Under these basic assumptions, run properties of
univariate periodic-stochastic processes can be ob-
tained. As long as the truncation level of yx is
defined by Eq. (6.3), the distribution of the negative

run-length of the monthly precipitation xp ¥ is a
i)

geometric distribution, with the expected value and
the variance given by Eqs. (6.4) and (6.5), respect-
ively. The expected value, variance, and conditional
expected values and variances of the negative run-sum
of WN T can be also derived analytically.

Since the negative run-sum is defined by

T+N-1
"t - iﬁ.r (o, = %)
T+N-1 T+N-1
= 0, (8, - E,) = ) o,(&r -85, (6.7)
izT it’o i isT ~Ropis. E

then by taking into account Eq. (6.2) the conditional
expected value of the negative run-sum for given N=n
and T=t is

E(Hy 1 [N=n,T=t)
=E[o, (6y = 84) * ey (Bg = Beag) * *°°

* Ut+n—1{F'0 ) Et*n'l)l
" t+n-1 # _
= [ng +C igt cos( gl + 8)1(E* - &) -

(6.8)

The conditional expected value of NN T for given

N=n is given by the expected value of Eq. (6.8) with
regard to T, Therefore, it is given by

E(HN’T]Nnn]

=E[E{WN’T|N=n,T}] (6.9)



1 12 n+t-1 =
Taking into account =5 | ] cos(zi+0)=0,
12 t=1 {st 6

Eq. (6.9) becomes

E(Wy p[N=n) = na(E* - g . (6.10)

The expected value of "N T is given by the expected

value of Eq. (6.10) with ;egard to N, that is,

EMy, 1)
=E[E(Wy IM] = EDNG(E* - €]

= 5(E* - EEMN) (6.11)
Since E(N) is given by Eq. (6.4), the expected value
of the negative run-sum is given by

A =aed
By p) = 5 9G* - &) (6.12)
Since £ is a time independent variable, the
conditional variance of the negative run-sum for given
N=n and T=t is given by the sum of variance of each
term,

var(wn'T|N-n,T=t)

Var[o, (8 - £.)] + Var[o, ,(Eg - &, )] + ...

s Var[at+n_1(€0 - Et*ﬂ-l)]

u

u:Var(E‘] + az

t*lvar[E’] * Y

2
T

- _ ten-1 .
[ne™ + 20C cos (-i+8)
ist ©

"

2 t+n-1

+ C cosztgi+B]]Var(E*). (6.13)

i=t

Applying the following relation (Thomas, 1971, p. 103)

Var(Y) = Var[E(Y|X)] + E[Var(Y|X)] , (6.14)

the conditional variance of the negative run-sum for
given N=n is

var (W pIN=n)
= Var(E(Wy o |N=n,T)] + E[Var (¥ piN=,T)]

T+n-1 . _ =,
1 cos (gi+0)] (&* - gt + E{[no
i=T

= var{[no + C

2 Tem:l 2.m
cos(Xi+g) + C° ] cos“(zi+8)]var(e*)} -
6 i=T 6

_ Tn-1
+ 20C z
i=T

(6.15)

12 n+t-1
Taking 1/12 [ )

cos{% i+8)=0 and 1/12
ta=] i=t
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12 n+t-1
cos
i=t

2 4
[%-1 +8) = n/2, Eq. (6.15) becomes
t=1

Var(HN N=n)

ITI
« Bc?ec? E (n-i)costi] (B* - £,)2
< i=1 9 e

-2

+ (no” + gcz}Var(;-) . (6.16)

Using Eq. (6.14), the variance of the negative run-
sum is

Var(WN’T}

= Var[E(Hy [N)] + E[Var(Wy 4|N)]

= Var[No(E* - £l * E{(N'Gg + ;Cz)Varts*)

N

v B2 e c? T -DeosHIE - 5% (6.17)

i=1
Finally, taking account of Eqs. (6.4) and (6.5),
o § %
Var(Wy ) = Do (8 - £)2 + £ G2Var(e*)
2 -
+ Svar(er) + G - 5%
i N -
+ C2(E* - g)%[ ] (N - 1)cosgi] (6.18)
i=1

The conditional moments of the negative run-sum
for given N=n and T=t can be found by the moment
generating function and the cumulant generating func-
tion, as used by Downer et al. (1967) to find run
properties of stationary processes. The following
notations are adopted: M, and K" are the moment

and the cumulant generating function of NN T (N=n,

T=t), respectively, Ku = log Mw’ K* is the
cumulant generating function of £*, and x; is the
m-th cumulant of E*. Thus
K,(u) = log M_(u) = 1og[E(e™] (6.19)
© K*(u) = ) - (6.20)
m=1
In particular,
xt = E(E*), x} = Var(g*), and «3
(6.21)

= E[(¢* - E93] .

The cumulant generating function of the conditional

negative run-sum for given N=n and T=t is given
by
t+n-1
K, = 1 Ke(ogu) (6.22)
ist

where oy is defined by Eq. (6.2). The first two

moments are the same as those given by Eqs. (6.8) and
(6.13).



Looking at these results, the conditional
expected value and variance of the negative run-sum
for given N=n, the expected value and the variance of
the negative run-sum do not depend upon the phase 6.

The expected value and variance of the negative
run-sum of a stationary series with the mean zero and
the standard deviation o are given by Downer et al.
(1967),

1=czs
EW) = 506" - &) (6.23)

and

Var(W) = H32(E* - €)% + %Ez\mr(a*) (6.24)

The expected values of the negative run-sum of the
stationary process and the periodic-stochastic pro-
cess are the same, The variance V of the negative

run-sum of the periodic-stochastic process consists of

two parts, namely the variance Y5 due to the statio-

nary process, which is given by Eq. (6.24), and the
variance VP due to the periodicity in C. This is

expressed by

& . 6.25
v vs*vp (6.25)
For a given series ¢, the variance V depends on
the truncation level £0, the average of standard

deviations T, and the amplitude C. A relationship

of the ratio of Vs to V to the ratioof C to ©

is considered. This relationship as shown in Table
6.1 indicates that the variance of the negative run-
sum of periodic-stochastic processes is mainly due to
their stationary part, especially for the ratio of C
to T less than 0.5.

The distribution of the negative run-sum, NN T

which cannot be obtained analytically, depends upon
the distribution of £, the truncation level fo
average standard deviation T , and the amplitude C.
The method used by Llamas and Siddiqui (1969) and the
fitting of a theoretical distribution to experimental-
ly obtained data may be a feasible way of finding the
distribution of the negative run-sum.

Since in evaluating droughts of periodic-
stochastic series of the monthly precipitation, de-
ficit during a short period within the annual cycle,
for example two or three month period including the
specific months, may be of interest besides the long-
est duration and the largest deficit, the conditional
distribution of the negative run-sum for given N=n
and T=t should be useful in practice. Since the
moments of the conditional distribution may be given
by Eq. (6.22) for a distribution of £, and trunca-
tion level an average standard deviation T ,

and an amplitude C, the conditional distribution can
be estimated from the Pearson system of distributions
on the basis of the first four moments (Johnson and
Kotz, 1970). Once the conditional distributions are
determined, it is possible to calculate their various
probabilities.

Eo)

6.2. Discussion on Drought Analyses of Periodic-

Stochastic Processes

The techniques for evaluating drought character-
istics of periodic-stochastic series are not well

the
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Table 6.1. Relationship of the Ratio of the Variance

Vs Due to the Stationarity to the Vari-
ance V to the Ratio of the Amplitude C

to the Average Standard Deviation @.

Case 1 Case 2
Distribution of ¢ Normal Eq. (3.35)
&y 0.0 0.0
q 0.5 0.58
E(E*) 0.7979 0.6988 *
Var(g*) 0.3634 0.1699 *
o 2.000052 2.010152
Y 1.6069C2 1.3650C2
C/o Vo ! (Vg V)
0.1 0.992 0.993
0.2 0.969 0.974
0.3 0.933 0.942
0.4 0.886 0.902
0.5 0.833 0.855
0.6 0.776 0.804
0.7 0.718 0.750
0.8 0.660 0.697
0.9 0.606 0.645
1.0 0.555 0.596

* Obtained experimentally.

developed. For doing it, several promising methods
are outlined herein. First, the use of the theory of
runs, as applied in the previous section, is a
promising method. The good aspect of this approach is
that the definitions of run-length, run-sum, and run-
intensity are clear and these properties may be
studied analytically except when they are very complex.
At the same time, this aspect has a weak point. That
is, objective definitions are based on the analytical
approach so that the physical meanings of the series
involved may be ignored. Definitions of runs do not
take into account the previous moisture conditions.
The previous moisture state, or the previous run-sum,
which affects the following conditions in physical

and practical terms of the next run-sum, must be con-
sidered in evaluating the effect of the present or

the next state. This point may become critical with

a decrease of time interval of the series. Therefore,
Tun properties without any modifications may not be
sufficient to analyze the drought characteristics of
periodic-stochastic series such as monthly or weekly
precipitation series. However, for the secondary
series, which takes the carry-over effect of an ori-
ginal series and therefore is a time dependent series,
the run properties may be useful for studying drought
characteristics,

Another possible technique in treating the droughts
of periodic-stochastic processes is the use of partial
sum series or of its cumulative series. The concepts
of deficit and surplus, the maximum deficit or the
maximum surplus, the range, and the maximum range, are
connected to the general theory of water storage.
Therefore, these concepts may be useful and proper for
the drought analysis of runoff series. They might be



applicable for a rather long-range evaluation of
droughts than for a short term such as a few months.

Guerrero-Salazar and Yevjevich (1975) used the drought-
magnitude and drought-duration criteria on the basis of

these cumulative series. Their results of a case

study seem to support the expectation that the criteria

are useful for an analysis of long-term droughts. To
analyze the short-term periods, other concepts must be
added.

Still another alternative may be in deriving the
series by using the water budget, and to investigate

this series in the evaluation of drought characteristics.

Palmer (1965) developed such a method of calculating
the deficit and the surplus index, called the Palmer

index, Herbst et al. (1966) developed a rather simple
method, based on monthly rainfall data. The method
derives the effective rainfall in considering the
water carry-over from month to month. Though this
method includes subjective procedures or criteria, it
is useful and may have a possibility for further
developments. An application of the theory of runs
to these secondary series may help the investigation
of drought characteristics to be objective and quanti-
tative.

A comparison of these various techniques for the
same original data would be worth of trying in order
to find their advantageous or disadvantageous aspects.

Chapter 7
CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

Under the inferred model of the stochastic com-
ponent of monthly precipitation over the Upper Great
Plains, generated samples in a systematic grid were
used to analyze drought characteristics. The deficit
area, the total areal deficit, and the maximum de-
ficit intensity were used as the primary drought
indices. Some other areal aspects of droughts were
also investigated. Drought characteristics of
periodic-stochastic processes were analyzed by using
the theory of rums.

The study leads to the following conclusions:

(1) The extreme that the whole area is completely

covered by a drought occurs very rarely in a large
area, such as that used in this study, for the trunca-
tion levels at the median and the mean, though prob-
abilities of droughts over the area are shown to be
relatively high.

(2) Once the deficit area, the total areal
deficit, and the maximum deficit intensity were com-
puted, the areal drought structure was defined by
Eqs. (5.39) through (5.41).

(3) The probability of a drought covering a
whole subarea is more affected by the size than by
the shape of the subarea. For a small area, the
shape of the area affects probabilities of droughts.

(4) Probability distributions of the deficit
area within a subarea are affected by the truncation
levels, especially for a small subarea, as well as
by the size and the shape of the subarea.

(5) The total areal deficit of monthly precipi-
tation series can be obtained as a product of an
areally averaged standard deviation and the total
areal deficit of stochastic component series of
monthly precipitation.

(6) Under simple assumptions, run properties of
univariate periodic-stochastic processes were obtained
analytically. The conditional moments of the negative
run-sum for given run-length and the onset time, given
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by Eqs. (6.8), (6.13), and (6.22), are expected to
be useful in practice.

(7) The variance of the negative run-sum, con-
sisting of the variance resulting from the stationary
stochastic component and the variance resulting
from the periodicity, is explained predominately by
the variance which results from the stationary sto-
chastic component.

Suggestions and recommendatons for further
studies:

(1) Improvements in the regionalization of
important parameters of monthly precipitation series
for a large area are needed in order to accurately
describe the drought characteristics of monthly pre-
cipitation series over a large area.

(2) In generating new samples, at a systematic
grid of points over a large area, the border effects
should be investigated. Some properties of generated
series may be biased due to these effects, and the
generation method may not be as effective for the
solution of some problems as expected.

(3) Systematic and quantitative analysis of
observed data over a rather large area is very much
needed for the study of drought characteristics,
especially of areal coverage of droughts.

(4) The areal drought structure should be further
investigated by analyzing each deficit cell (instead
of using these combined multi-cell). Analysis of
characteristics of each deficit cell, such as its size,
shape, deficit intensity, and duration, would give the
physical explanation to process modeling.

(5) There is a need for developing advanced
techniques of evaluating the drought characteristics
of periodic-stochastic processes. By advancing con-
cepts of such techniques, by comparing their results,
and by finding positive and negative aspects, general
and objective techniques of evaluating drought
characteristics of periodic-stochastic processes would
be produced.
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Abstract: Under the concept that monthly precipitation series over
an area are composed of deterministic components specified by peri-
odic parameters and a stationary stochastic component, a mathemati-
cal model is developed of the area-time process of monthly precipi-
tation, especially of the stationary stochastic component, using the
Upper Great Plains in USA as an example. The independent indenti-
cally distributed variables are obtained from the transformed sto-
chastic component. Their regional dependence structure is given by
an exponential decay function of the interstation distance. By using
this model, new samples of time series over the area at a new grid of
80 points were generated in order to investigate area-deficit in-
tensity drought characteristics.

The deficit area, the total areal deficit, and the maximum defi-
cit intensity are used as indices of drought characteristics. Basic
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parameters of their frequency distributions and of mutual relation-
ships are analyzed for various truncation levels in drought de-
finitions.

Probabilities of areal coverage of droughts are further investi-
gated by applying the theory of runs, the theory of recurrent events,
and similar approaches. Probabilities of specific areas covered by
droughts of given properties are investigated by considering the
effects of the size and the shape of an area.

Run properties of a simple, periodic-stochastic process are in-
vestigated analytically. Moments of negative run-sums are found by
considering the negative run-length and the onset time. Other tech-
niques are discussed in comparison with the use of run properties in
evaluating drought characteristics of periodic-stochastic processes.
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