WIND TUNNEL STUDY OF VENTILATION SYSTEM

ENTRAINMENT OF BUILDING EXHAUSTS

AT COOLBAUGH HALL,

COLORADO SCHOOL OF MINES CAMPUS, GOLDEN, COLORADO

Prepared by

Dr. David E. Neff

Dr. Hesham El-Badry

for

Mr. Brit Probst

Davis Partnership

1775 Sherman, Suite 3100

Denver, CO 80203

FLUID MECHANICS AND WIND ENGINEERING PROGRAM

CSU Contract No. 53-6809

CER93-94-DEN-2 43

September 1993

WIND TUNNEL STUDY OF VENTILATION SYSTEM ENTRAINMENT OF BUILDING EXHAUSTS AT COOLBAUGH HALL, COLORADO SCHOOL OF MINES CAMPUS

Prepared by

David E. Neff Hesham El-Badry

FINAL REPORT (September 9, 1993)

for

Mr. Brit Probst Davis Partnership 1775 Sherman, Suite 3100 Denver, CO 80203

FLUID MECHANICS AND WIND ENGINEERING PROGRAM

TABLE OF CONTENTS

LI	ST OF TABLES ii
LI	ST OF FIGURES
1	REPORT SUMMARY 1
2	FLUID MODEL DESIGN22.1SITE SPECIFICATIONS22.2WIND SPEED AND DIRECTION SPECIFICATIONS22.3WIND SPEED VARIATION WITH HEIGHT SPECIFICATIONS22.4EXHAUST AND INTAKE SPECIFICATIONS32.5BOUNDARY LAYER WIND TUNNEL CONFIGURATION3
3	TEST PROGRAM53.1WIND PROFILE MEASUREMENTS53.2STACK PLUME VISUALIZATION53.3CONCENTRATION MEASUREMENTS6
4	INSTRUMENTATION AND MEASUREMENT METHODOLOGY74.1VELOCITY MEASUREMENT AND PRESENTATION74.2PLUME VISUALIZATION TECHNIQUES74.3CONCENTRATION MEASUREMENT AND PRESENTATION84.4STACK FLOW RATE AND COMPOSITION TECHNIQUES8
TA	ABLES
FI	GURES
AI	PPENDIX A: VIDEO TAPE ENCLOSURE
AI	PPENDIX B: CONCENTRATION FILE PRINTOUTS
AI	PPENDIX C: FACILITIES AND TECHNIQUES C-1 C.1: FLUID DYNAMICS AND DIFFUSION LABORATORY C-2 C.2: ENVIRONMENTAL WIND TUNNEL DESCRIPTION C-5 C.3: WIND SPEED MEASUREMENT DESCRIPTION C-6 C.4: FLOW VISUALIZATION TECHNIQUES C-11
	C.5: CONCENTRATION MEASUREMENT DESCRIPTION C-13

LIST OF TABLES

Table 1	Wind Speed and Direction Frequency Table T-2
Table 2	Field Intake and Exhaust Flow Summary T-3
Table 3	Model Intake and Exhaust Flow Summary ($U_{ref} = 5 \text{ m/s}$)
Table 4	Model Intake and Exhaust Flow Summary ($U_{ref} = 10 \text{ m/s}$) T-5
Table 5	Reference Velocity and Turbulence Profile Data ($U_{ref} \sim 5 \text{ m/s}$) T-6
Table 6	Reference Velocity and Turbulence Profile Data ($U_{ref} \sim 10 \text{ m/s}$) T-7
Table 7	Visual Test Results Program T-8
Table 8	Concentration Test Program T-9
Table 9	Concentration Test Results (ppm values) T-10
Table 10	Concentration Test Results (K values) T-11
Table 11	Stack Gas Flow Settings and Composition T-12
Table B-1	Concentration Data File, Runs 1 and 2 B-2
Table B-2	Concentration Data File, Runs 3 and 4 B-3
Table B-3	Concentration Data File, Runs 5 and 6 B-4
Table B-4	Concentration Data File, Runs 7 and 8 B-5
Table B-5	Concentration Data File, Runs 9 and 10 B-6

LIST OF FIGURES

Figure 1	Model Turntable Area Drawing	F-2
Figure 2	Coolbaugh Hall Roof Intake and Exhaust Drawing	F-3
Figure 3	Model Turntable and Coolbaugh Hall Roof Pictures	F-4
Figure 4	Model Visual Plume Pictures	F-5
Figure 5	Reference Velocity and Turbulence Profiles	F-6
Figure 6	Reference Velocity Profile Regression Curve Fits	F-7
Figure C-1	Fluid Dynamics and Diffusion Laboratory Layout	C-3
Figure C-2	Environmental Wind Tunnel Schematic	C-5
Figure C-3	Velocity Calibration and Measurement System	C-10
Figure C-4	Video Image Analysis System	C-12
Figure C-5	Concentration Sampling and Measurement System Schematic	C-16

 \sim

1 REPORT SUMMARY

Mr. Brit Probst of Davis Partnership requested Dr. David Neff of Colorado State University to perform a wind tunnel measurement program designed to study the recirculation of exhaust gases into air intake units on the roof of Coolbaugh Hall at the Colorado School of Mines campus. Subsequently Colorado School of Mines issued a contract with Colorado State University to fund this research. This report describes all work performed by Colorado State University staff.

A 1:120 scale model of Coolbaugh Hall (including surrounding terrain features and adjacent buildings) was constructed and tested in a wind tunnel facility. These tests, both visual and concentration measurements, covered twenty wind directions, two wind speeds, nine effluent release locations, three air intake structures and two building configurations (with and without the addition). The results from these tests determined that:

- 1) Exhaust gases will recirculate into the rooftop air intake units for all nine effluent sources tested whenever the wind is directed from an effluent stack towards an air intake unit.
- 2) This recirculation occurred for both rooftop wind speeds tested, 5 and 10 meters per second.
- 3) Recirculation from effluent sources to the ground level air intake units appeared to be small.
- 4) Several test conditions showed effluent fumigation over the addition rooftop area.
- 5) The highest concentration of recirculated effluents were 2.4 percent from the additions room air and fume hood exhaust units, 1.3 percent from the existing fume hood exhausts, 0.15 percent from the radioisotope stacks and 0.076 percent from the perchloric stacks.
- 6) Some leeward building downwash from all the effluent plumes tested was observed in a majority of the conditions tested.

Full documentation of the testing conducted on Coolbaugh Hall is provided in this report. The organization of major topics discussed in this report are as follows:

- Section 2 The fluid model design with discussion of the similarity criteria employed.
- Section 3 Wind tunnel testing program and results documenting the stacks tested.
- Section 4 Discussion of the instrumentation and measurement methodologies used.

2 FLUID MODEL DESIGN

2.1 SITE SPECIFICATIONS

This boundary layer wind tunnel fluid model is a 1:120 reduced scale representation of:

- 1) the Coolbaugh Hall's existing and additional buildings,
- 2) the topography and structures within 220 meters of the site,
- 3) the atmospheric wind structure of interest approaching the site,
- 4) the roof top stack discharges, and
- 5) the air handling unit intake characteristics.

A twelve foot diameter turntable model of the Colorado School of Mines Campus area is depicted in Figure 1. Coolbaugh Hall is located in the center of this model. Figure 3 shows pictures of the Coolbaugh Hall wind tunnel model.

2.2 WIND SPEED AND DIRECTION SPECIFICATIONS

The top part of Table 1 displays the annual wind speed and direction frequencies observed at Denver Stapleton Airport. The lower part of Table 1 displays the annual wind speed and direction frequencies that would be observed at a height equivalent to the roof top height of Coolbaugh Hall. This table should only be considered a crude guide to wind conditions approaching Coolbaugh Hall but will suffice for the present purpose of determining a reasonable set of testing wind speeds. Design prototype wind speeds at roof height of 5 m/s and 10 m/s were selected. Model testing wind speeds at roof height of 1.5 m/s and 3 m/s were selected. The model Reynolds number based on building height and wind speed was always greater than 11,000.

Visual documentation of all sixteen primary wind directions along with four worst case wind directions for both wind speeds are to be tested. Concentration documentation, at both wind speeds, of only the worst case wind directions for each of the effluent stacks is desired.

2.3 WIND SPEED VARIATION WITH HEIGHT SPECIFICATIONS

The variation of mean wind speed with height above the ground (referred to as the boundary layer) at the study site is deduced from empirical equations known to correlate atmospheric data. The log-linear velocity profile relationship should be used for heights up to 100 meters. This relationship is expressed as:

- $U/u_{*} = 2.5*\ln[(z-d)/z_{o}];$ where
- u. \equiv friction velocity,
- d \equiv displacement height,
- $z_0 \equiv roughness length.$

Several references suggested values of the roughness length for various types of ground cover. A roughness length of 0.2 to 0.4 meters is an appropriate value for all wind directions approaching the Coolbaugh Hall site.

The mean velocity through the entire depth of the boundary layer is represented by the power law equation:

 $U/U_{\infty} = (z/\delta)^p$; where

 $U \equiv mean wind speed at height z,$

 $U_{\infty} \equiv$ wind speed at boundary layer height δ ,

- $\delta \equiv \text{boundary layer height} = 600 \text{ meters}$
- $p \equiv power law index.$

A power law index of ~ 0.2 is an appropriate value for all wind directions approaching the Coolbaugh Hall site.

2.4 EXHAUST AND INTAKE SPECIFICATIONS

A diagram detailing the pertinent air handling equipment is shown in Figure 2. Table 2 is a schedule detailing the flow specifications of the prototype air handling equipment. Included in this table is a statement as to which effluent stacks and air handling units were modelled. The last column in Table 2 shows how the different effluents were grouped together as common sources of either air, smoke or tracer gas. The flow specifications for the different intake and exhaust structures in these tests are listed in Table 3 for the lower wind speed model conditions (field velocity of 5 m/s) and Table 4 for the higher wind speed model conditions (field velocity of 10 m/s). Equality of all momentum and velocity ratios were maintained in this fluid model.

2.5 BOUNDARY LAYER WIND TUNNEL CONFIGURATION

All model tests were performed in the Environmental Wind Tunnel (EWT) test facility at Colorado State University (CSU). This tunnel has a 3.66 m by 2.13 m crosssection, a 17.4 m length, a wind speed range of 0 to 13 m/s and a flexible test section roof. A description of this facility is provided in Appendix C.2 and a facility drawing is provided in Figure C-2. Appropriate boundary layer development techniques were utilized to accurately represent wind conditions approaching the Coolbaugh Hall site. The Coolbaugh Hall model was placed 13.6 meters from the start of the EWT's test section. This placement provides sufficient upwind fetch and a sufficient downwind measurement zone. The zone upwind of the turntable area was modeled with a generic roughness (2.54 cm blocks) designed to create the desired model boundary layer. Eight 1.8 meter high vortex generators and an 18 cm floor trip were placed at the beginning of the EWT's test section.

3 TEST PROGRAM

3.1 WIND PROFILE MEASUREMENTS

Two approach flow reference vertical velocity profiles were obtained at the upwind edge of the model turntable. The turntable was in the north position during both velocity profiles. Table 5 lists the data for the lower speed velocity profile and Table 6 lists the data for the higher speed velocity profile. These tables list measured model values, equivalent field values and normalized values. Log-linear and power law regression constants for the profiles are also summarized here. Figure 4 shows the velocity profiles and the turbulence profiles in both model and field units for the lower speed velocity setting. Figure 5 shows both the power law and log-linear law curve fits to the velocity profile data.

The velocity profile regression values of 0.23 meters for roughness length 0.22 for power law index agree well the design values expected for the Colorado School of Mines Campus site.

The wind tunnel reference velocities of 1.5 and 3.0 m/s at model building height were set via the correlation between a pitot probe, 1.5 meters above model center, and measured velocities at 14 cm above model ground level (Coolbaugh Hall roof height) at model center. The Coolbaugh Hall model was removed during these measurements and the turntable was in the north position. Subsequent tunnel velocity settings were adjusted via the pitot probe which was present in all tests.

3.2 STACK PLUME VISUALIZATION

Visualization of the effluent plume motion for 86 different run conditions was documented on the video cassette VHS tape and included with this report in Appendix A. The flow specifications for the different intake and exhaust structures in these tests are listed in Table 2 for field conditions, Table 3 for the lower wind speed model conditions (field velocity of 5 m/s) and Table 4 for the higher wind speed model conditions (field velocity of 10 m/s). Table 7 lists the wind speed, wind direction and effluents tagged with smoke for each of the 86 visual runs.

The camera position for this film sequence was directly outside the wind tunnel from the model center at a height above model ground level. The film test observes the plume trajectories from the model stacks down to the end of the model turntable, approximately 220 meters field equivalent distance, and zooms in on each stack to document downwash and near stack plume rise characteristics.

3.3 CONCENTRATION MEASUREMENTS

Concentration measurements were obtained at ten sample locations for ten different run conditions. The sampling locations all located near the roof top air intake units are shown in Figure 2. The flow specifications for the different intake and exhaust structures in these tests are listed in Table 2 for field conditions, Table 3 for the lower wind speed model conditions (field velocity of 5 m/s) and Table 4 for the higher wind speed model conditions (field velocity of 10 m/s). Table 8 lists the wind speed, wind direction and effluents tagged with tracer gas for each of the ten concentration runs. Table 9 lists the concentration data in parts per millions (ppm) values. Table 10 lists the concentration data in normalized field concentrations, $K_p = (\chi U_H/Q)_p [m^{-2}]$. Appendix B documents the measured tracer concentrations and associated setup information for all ten concentration runs.

4 INSTRUMENTATION AND MEASUREMENT METHODOLOGY

Laboratory measurement techniques are discussed in this section, along with conversion methods used to convert measured model quantities to their meaningful field equivalents.

4.1 VELOCITY MEASUREMENT AND PRESENTATION

The techniques employed in the acquisition of velocity profiles are discussed in detail in Appendix C.3 including basic equations and errors associated with each technique. Single-hot-film (TSI 1220 Sensor) and pitot-static probes are used to measure velocity statistics. TSI 1125 Velocity Calibrator System and Pitot-static Probes are used for velocity calibration.

The approach mean velocity and turbulent statistics profiles are obtained from velocity measurement techniques. The approach mean velocity profiles for a suburban roughness condition are regressed to find the best log-log and log-linear fit. The log-log regression will find a power law exponent, p, such that $U/U_r = (z/z_r)^p$. The log-linear regression $(U/u_* = 2.5 \ln\{(z-d)/z_o\})$ will find a best fit roughness length z_o , friction velocity u_* , and displacement height d.

Velocity measurements obtained in this study are summarized and presented through plots of vertical profiles of mean velocity and longitudinal turbulence intensity. The height and velocity coordinates are normalized by a model reference height and the model velocity at the reference height. Since a neutral boundary layer's velocity is invariant with respect to wind speed, the normalized profiles can be converted to any field velocity at a specific height by the appropriate multiplicative constant. Each of the vertical profiles of mean velocity are plotted on linear-linear and log-linear paper to display the best fit regressions.

4.2 PLUME VISUALIZATION TECHNIQUES

Techniques employed to obtain a visible plume are discussed in Appendix C.4. A Smoke Generator System and a Video Camera System are used for plume visualization. Given a field to model wind speed ratio of 3.33 (=[5m/s]/[1.5m/s] or =[10m/s]/[3.0m/s]) and a model to field length scale ratio of 120, then the time scale ratio between the model and the field is 1:36. Thus phenomena observed over the model in the wind tunnel will occur 36 times faster than observed at full scale. If the TV tapes were replayed in slow motion (36 times slower than the recorded speed) the observed plume trajectories and motions would appear realistic.

4.3 CONCENTRATION MEASUREMENT AND PRESENTATION

Techniques employed to obtain the concentration data are discussed in Appendix C.5. A gas chromatograph with flame ionization detector is used to measure gas concentrations. Figure C-5 shows a schematic of stack gas release, sampling, and analyzing methodology.

Concentration data are reported in terms of field scale normalized concentration, K_p , where $K_p = (\chi U_H/Q)_p [m^{-2}]$. This normalized format is convenient because the concentration results, χ_p [gm/m³], from a test at one particular combination of wind speed, $(U_H)_p$ [m/s], and source mass flow rate, Q_p [gm/sec], can be extrapolated to other $(U_H)_p$ and Q_p values provided that flow physics, such as plume rise, remains the same. $(U_H)_p$ is the field wind speed at the reference height, H. The conversion from model units to field units is as follows:

 $K_p = K_m * (H_m/H_p)^2 [m^{-2}];$ with $K_m = (\chi U_H/Q)_m [cm^{-2}].$

 $\chi_{\rm m}$ is the source normalized model concentration (ppm/10⁶ ppm),

 $(U_H)_m$ [cm/s] is model wind speed at stack height,

Q_m [ccs] is the model stack flow rate,

 H_m [cm] is the model reference height, and

H_n [m] is the field reference height.

4.4 STACK FLOW RATE AND COMPOSITION TECHNIQUES

An Omega mass flow controlling system was used to monitor and control some of the stack gas flow settings. This system has four mass flow channels with full scale responses of 0.1, 1, 10, and 100 SLPM for gases with unity gas factors. Different gases will have different gas factors and this must be taken into account when calculating the proper meter setting. The local atmospheric pressure (~630 mmHg at CSU) must also be accounted for in these calculations. Other stack flow settings were monitored by two 50 SLPM mass flowmeters, a Matheson and a Union Carbide, and a Fisher Porter flowrator.

The air intake flow rates into the three rooftop air handling units was maintained via a vacuum pump connected to a Fisher Porter flowrator that pulled air through three preset valves.

During a visual plume test the proper plume flow rate and specific gravity would be attained by mixing metered quantities of Air (SG = 1) and Helium (SG = 0.14) or Argon (SG = 1.38). This gas mixture is then pass through the smoke generator and then out the model stack. During a plume concentration test a hydrocarbon gas must be in the source mixture so that measurements of sample concentration can be made with a flame ionization type gas chromatograph. Depending upon many experimental considerations, a hydrocarbon, either methane (SG = 0.55), ethane (SG = 1.04), or propane (SG = 1.52) will be mixed with Helium (SG = 0.14), Nitrogen (SG = 0.967), or Argon (SG = 1.38). This mixture is passed directly into the model stack.

Table 11 lists the settings and type of gas used to achieve the proper model stack effluent discharge velocities and specific gravities.

TABLES

Wind		W. 2002		Wind	Speed (Kn	ots)	dan warin man		1		Avg.
Direction	0-3	4-6	7-10	11-16	17-21	22-27	28-33	34-40	Over 40	Total	Speed
N	0.6	2.9	3.2	1.6	0.3	0.1				8.9	8.3
NNE	0.4	1.5	1.6	0.8	0.2					4.5	8.1
NE	0.4	1.6	1.6	0.6	0.1					4.3	7.4
ENE	0.4	1.5	1.3	0.5	0.0					3.8	6.9
Ε	0.7	2.6	1.9	0.5	0.0					5.7	6.6
ESE	0.5	1.9	1.4	0.3	0.0					4.2	6.6
SE	0.5	1.8	1.3	0.4	0.0					4.1	6.6
SSE	0.5	1.9	1.4	0.5	0.1					4.4	7.2
S	1.2	7.2	8.9	2.5	0.3					20.1	7.6
SSW	0.7	4.6	4.4	1.0	0.1					10.8	7.0
SW	0.7	2.4	1.6	0.4	0.1					5.2	6.6
WSW	0.4	1.3	0.7	0.2	0.1					2.7	6.4
W	0.2	0.8	0.9	0.8	0.3	0.1				3.1	9.8
WNW	0.2	0.7	0.9	0.9	0.4	0.1				3.5	10.8
NW	0.3	1.4	1.3	0.9	0.3	0.1				4.2	9.2
NNW	0.3	1.5	1.4	0.7	0.1					4.0	8.0
Calm	6.5									6.5	
Total	14.6	35.8	33.7	12.6	2.6	0.6	0.1	0.0		100.0	7.1

Denver Stapleton Airport Annual Wind Frequency Table from NOAA <u>WFRQ DEN.WK3</u> Sheet A: 04/08/93

Notes 1) 1965-1974; 29215 observations

2) Anemometer Height of 20 feet (6.1 meters)

Denver Stapleton Airport Annual Wind Frequency Table

Wind Speed values are converted to m/s at a 16.8 meter height via a 0.22 power law index

WFRQ DE	N.WK3	Sheet A:	Contraction of the local division of the loc	04/08/93					And a state of the second s		
Wind		"Angen and the	Wind	Speed (m.	ls at 55 fee	t with 1/n=	0.2)		in the second		Avg.
Direction	0-1.9	2.6-3.9	4.5-6.4	7.1-10.3	10.9-13.5	14.1-17.4	18-21.2	21.8-25.7	Over 25.7	Total	Speed
N	0.6	2.9	3.2	1.6	0.3	0.1				8.9	5.3
NNE	0.4	1.5	1.6	0.8	0.2					4.5	5.2
NE	0.4	1.6	1.6	0.6	0.1				1	4.3	4.8
ENE	0.4	1.5	1.3	0.5	0.0					3.8	4.4
E	0.7	2.6	1.9	0.5	0.0					5.7	4.2
ESE	0.5	1.9	1.4	0.3	0.0					4.2	4.2
SE	0.5	1.8	1.3	0.4	0.0					4.1	4.2
SSE	0.5	1.9	1.4	0.5	0.1					4.4	4.6
S	1.2	7.2	8.9	2.5	0.3					20.1	4.9
SSW	0.7	4.6	4.4	1.0	0.1					10.8	4.5
SW	0.7	2.4	1.6	0.4	0.1					5.2	4.2
WSW	0.4	1.3	0.7	0.2	0.1					2.7	4.1
W	0.2	0.8	0.9	0.8	0.3	0.1				3.1	6.3
WNW	0.2	0.7	0.9	0.9	0.4	0.1				3.5	6.9
NW	0.3	1.4	1.3	0.9	0.3	0.1				4.2	5.9
NNW	0.3	1.5	1.4	0.7	0.1					4.0	5.1
Calm	6.5									6.5	
Total	14.6	35.8	33.7	12.6	2.6	0.6	0.1	0.0		100.0	4.6

Colorado School of Mines CSM_PROG.WK3 Sheet A:

04/12/93

Prototype Intake and Exhaust Flow Summary

Port	Port	Building	Gas	Flow	Intake	Exhaust	Intake	Exhaust	Exhaust	Presently	Model
Number	Туре	Unit	Туре	Rate	Velocity	Velocity	Area	Area	Height	Modelled	Flow
See Sec.				(cfm)	(fpm)	(fpm)	(ft²)	(ft²)	(ft)		Number
EF1	Vert. Exh.	Addition	Lab&fume Air	25,000		3,000		8.33	10.0	yes	Qex1
EF2	Vert. Exh.	Addition	Lab&fume Air	25,000		3,000		8.33	10.0	yes	Qex1
EF3	Vert. Exh.	Addition	Perchloric	785		2,000		0.39	15.0	yes	Qex2
EF4	Vert. Exh.	Addition	Perchloric	600		2,200		0.27	15.0	yes	Qex2
EF5	Vert. Exh.	Addition	Radioisotope	980		2,200		0.45	15.0	yes	Qex3
EF6	Vert. Exh.	Addition	Radioisotope	785		2,200		0.36	15.0	yes	Qex3
EF7	Vert. Exh.	Addition	Radioisotope	980		2,200		0.45	15.0	yes	Qex3
EF8	Horz. Exh.	Addition	Mechroom Air	5,500		1,300		4.23	4.0	no	
EF12	Vert. Exh.	Existing	Room Air	19,000		3,000		6.33	7.0	w/o tracer	Qex4
EF13	Vert. Exh.	Existing	Room Air	19,000		3,000		6.33	7.0	w/o tracer	Qex4
EF14	Vert. Exh.	Existing	Fume Air	17,500		3,000		5.83	7.0	yes	Qex5
EF15	Vert. Exh.	Existing	Fume Air	17,500		3,000		5.83	7.0	yes	Qex5
EF16	Vert. Exh.	Existing	Toilet Air	2,100		1,200		1.75	-	no	
EF17	Horz. Exh.	Existing	Mechroom Air	12,000		1,570		7.64	5.0	no	
AHU1	Intake	Addition	Room Air	52,000	400		130.00			по	
AHU2	Intake/Exh.	Existing	Room Air	23,000	1,000	1,500	23.00	15.33		Intake only	Qin1
AHU3	Intake/Exh.	Existing	Room Air	7,000	1,000	1,500	7.00	4.67		Intake only	Qin2
AHU4	Intake/Exh.	Existing	Room Air	47,000	1,000	1,500	47.00	31.33		Intake only	Qin3
AHU5&6	Intake	Existing	Room Air	70,000	400		175.00			no	
CT1	Intake/Exh.	Addition	Room Air	99,500		2,488		40.00	16.0	Exh. only	Qex6
CT2	Intake/Exh.	Addition	Room Air	99,500		2,488		40.00	16.0	Exh. only	Qex6

note:

All flows are from Gary Schaffer at Cator Roma written on M6.3 Drawing
Some of these flows are different from that specified on Drawings M3.1 & M3.2

CSM_PRO	G.WK3	Sheet B:		04/12/93								Href (cm)	14		
												Up (m/s) =	5		
Model Intel	o and Exhau	of Elaw Sur		Daf Malaaii	- E - (a)							Um (cm/s)	150		
Port	Port	St FIOW SUR	nmary (r	ter. velocit	y = 5 m/s	Exhaust	Intoko	Exhaust	Enhaust	Descention	Madal	Flow Re#	14,000	Disale	Combined
Number	Type	Dunung	Type	Pate	Velocity	Velocity	Intake	Exnaust	Holabt	Presenuy	Model	Diamotor	Patio	Stack	Combined
Humber	Type	Unit	iype	(ccs)	(cm/s)	(cm/s)	(cm²)	(cm ²)	(cm)	Modelled	Number	(cm)		LC#	riownate (ccs)
	and the second			10031	termat	(GIINS)	tem j		Line (Citi)	<u></u>	NUTTINET		(110)		[005]
EF1	Vert. Exh.	Addition	Air	246		457		0.54	2.5	ves	Qex1	0.83	3.0	2.522	492
EF2	Vert. Exh.	Addition	Air	246		457		0.54	2.5	ves	Qex1	0.83	3.0	2.522	
EF3	Vert. Exh.	Addition	Air	7.7		305		0.03	3.8	yes	Qex2	0.18	2.0	365	13.6
EF4	Vert. Exh.	Addition	Air	5.9		335		0.02	3.8	yes	Qex2	0.15	2.2	335	
EF5	Vert. Exh.	Addition	Air	9.6		335		0.03	3.8	yes	Qex3	0.19	2.2	428	27.0
EF6	Vert. Exh.	Addition	Air	7.7		335		0.02	3.8	yes	Qex3	0.17	2.2	383	
EF7	Vert. Exh.	Addition	Air	9.6		335		0.03	3.8	yes	Qex3	0.19	2.2	428	
EF8	Horz. Exh.	Addition	Air	54		198		0.27	1.0	no		0.59	1.3	779	
EF12	Vert. Exh.	Existing	Air	187		457		0.41	1.8	w/o tracer	Qex4	0.72	3.0	2,198	374
EF13	Vert. Exh.	Existing	Air	187		457		0.41	1.8	w/o tracer	Qex4	0.72	3.0	2,198	
EF14	Vert. Exh.	Existing	Air	172		457		0.38	1.8	yes	Qex5	0.69	3.0	2,110	344
EF15	Vert. Exh.	Existing	Air	172		457		0.38	1.8	yes	Qex5	0.69	3.0	2,110	
EF16	Vert. Exh.	Existing	Air	21		183		0.11		no		0.38	1.2	462	
EF17	Horz. Exh.	Existing	Air	118		239		0.49	1.3	no		0.79	1.6	1,264	
AHU1	Intake	Addition	Air	511	61		8.39			no					
AHU2	Intake/Exh.	Existing	Air	226	152	229	1.48	0.99		Intake only	Qin1	1.12	1.5	1,710	226
AHU3	Intake/Exh.	Existing	Air	69	152	229	0.45	0.30		Intake only	Qin2	0.62	1.5	944	69
AHU4	Intake/Exh.	Existing	Air	462	152	229	3.03	2.02		Intake only	Qin3	1.60	1.5	2,445	462
AHU5&6	Intake	Existing	Air	688	61		11.29			no					
CT1	Intake/Exh.	Addition	Air	978		379		2.58	4.1	Exh. only	Qex6	1.81	2.5	4,581	1,957
CT2	Intake/Exh.	Addition	Air	978		379		2.58	4.1	Exh. only	Qex6	1.81	2.5	4,581	

Colorado School of Mines

Table 3Model Intake and Exhaust Flow Summary $(U_{ref} = 5 m/s)$

T-4

CSM_PRO	G.WK3	Sheet B:		04/12/93								Href (cm)	14		
												Up (m/s) =	10		
												Um (cm/s)	300		
Model Intal	e and Exhau	st Flow Sun	nmary (R	ef. Velocit	y = 10 m/s							Flow Re#	28,000		
Port Number	Port Type	Building Unit	Gas Type	Flow Rate (ccs)	Intake Velocity (cm/s)	Exhaust Velocity (cm/s)	Intake Area (cm²)	Exhaust Area (cm²)	Exhaust Height (cm)	Presently Modelled	Model Flow <u>Number</u>	Stack Diameter (cm)	Velocity Ratio (W/U)	Stack Re#	Combined FlowRate (ccs)
EF1	Vert. Exh.	Addition	Air	246		457		0.54	2.5	yes	Qex1	0.83	1.5	2,522	492
EF2	Vert. Exh.	Addition	Air	246	Y.	457		0.54	2.5	yes	Qex1	0.83	1.5	2,522	
EF3	Vert. Exh.	Addition	Air	7.7		305		0.03	3.8	yes	Qex2	0.18	1.0	365	13.6
EF4	Vert. Exh.	Addition	Air	5.9		335		0.02	3.8	yes	Qex2	0.15	1.1	335	
EF5	Vert. Exh.	Addition	Air	9.6		335		0.03	3.8	yes	Qex3	0.19	1.1	428	27.0
EF6	Vert. Exh.	Addition	Air	7.7		335		0.02	3.8	yes	Qex3	0.17	1.1	383	
EF7	Vert. Exh.	Addition	Air	9.6		335		0.03	3.8	yes	Qex3	0.19	1.1	428	
EF8	Horz. Exh.	Addition	Air	54		198		0.27	1.0	no		0.59	0.7	779	
EF12	Vert. Exh.	Existing	Air	187		457		0.41	1.8	w/o tracer	Qex4	0.72	1.5	2,198	374
EF13	Vert. Exh.	Existing	Air	187		457		0.41	1.8	w/o tracer	Qex4	0.72	1.5	2,198	
EF14	Vert. Exh.	Existing	Air	172		457		0.38	1.8	yes	Qex5	0.69	1.5	2,110	344
EF15	Vert. Exh.	Existing	Air	172		457		0.38	1.8	yes	Qex5	0.69	1.5	2,110	
EF16	Vert. Exh.	Existing	Air	21		183		0.11		no		0.38	0.6	462	
EF17	Horz. Exh.	Existing	Air	118		239		0.49	1.3	no		0.79	0.8	1,264	
AHU1	Intake	Addition	Air	511	61		8.39			no					
AHU2	Intake/Exh.	Existing	Air	226	152	229	1.48	0.99		Intake only	Qin1	1.12	0.8	1,710	226
AHU3	Intake/Exh.	Existing	Air	69	152	229	0.45	0.30		Intake only	Qin2	0.62	0.8	944	69
AHU4	Intake/Exh.	Existing	Air	462	152	229	3.03	2.02		Intake only	Qin3	1.60	0.8	2,445	462
AHU5&6	Intake	Existing	Air	688	61		11.29			no					
CT1	Intake/Exh.	Addition	Air	978		379		2.58	4.1	Exh. only	Qex6	1.81	1.3	4,581	1,957
CT2	Intake/Exh.	Addition	Air	978		379	1.10	2.58	4.1	Exh. only	Qex6	1.81	1.3	4,581	

Colorado School of Mines

T-5

Reference Velocity Profile Data VEL_REF.WK3 04/30/93

Height	Local Velocity	Turbulent Intensity	Normalized Height	Normalized Velocity
(cm)	(cm/s)	(%)		
2	78	30	0.02	0.36
3	92	27	0.03	0.42
4	98	28	0.03	0.45
5	105	26	0.04	0.48
8	129	22	0.06	0.59
10	134	21	0.08	0.62
15	142	19	0.13	0.65
20	151	17	0.17	0.70
30	164	15	0.25	0.76
40	173	14	0.33	0.80
50	182	13	0.42	0.84
60	189	12	0.50	0.87
80	199	10	0.67	0.91
100	207	7	0.83	0.95
120	217	6	1.00	1.00
Reference Velocity	/ (cm/s) =	217		
Reference Height	(cm) =	120.0		

Model Values (length scale = 1:120)

Field Values

Height (m)	Local Velocity (m/s)	Turbulent Intensity (%)	Normalized Height	Normalized Velocity
2.4	2.9	30	0.02	0.36
3.6	3.4	27	0.03	0.42
4.8	3.6	28	0.03	0.45
6.0	3.9	26	0.04	0.48
9.0	4.7	22	0.06	0.59
12.0	4.9	21	0.08	0.62
18.0	5.2	19	0.13	0.65
24.0	5.6	17	0.17	0.70
36.0	6.0	15	0.25	0.76
48.0	6.4	14	0.33	0.80
60.0	6.7	13	0.42	0.84
72.0	7.0	12	0.50	0.87
96.0	7.3	10	0.67	0.91
120.0	7.6	7	0.83	0.95
144.0	8.0	6	1.00	1.00
Reference Velocity	/ (m/s) =	8.0	t ett og skala	Retry Company
Reference Height	(m) =	144.0		
Displacement Heig	1ht (m) =	0.0	10.8	
Friction Velocity (r	n/s) =	0.48		
Roughness Lengt	h (m) =	0.23		
Power Law Index =	S the	0.22		

Reference Velocity Profile Data VEL_REF.WK3 04/30/93

Height (cm)	Local Velocity (cm/s)	Turbulent Intensity (%)	Normalized Height	Normalized Velocity
2	157	32	0.02	0.35
3	190	28	0.03	0.42
4	205	27	0.03	0.45
5	230	26	0.04	0.51
8	254	22	0.06	0.56
10	287	18	0.08	0.63
15	304	16	0.13	0.67
20	318	16	0.17	0.70
30	344	14	0.25	0.76
40	351	14	0.33	0.77
50	381	11	0.42	0.84
60	382	11	0.50	0.84
80	409	9	0.67	0.90
100	437	7	0.83	0.96
120	453	6	1.00	1.00
Reference Velocit	y (cm/s) =	453		
Reference Height	(cm) =	120,0		AND NO.

Model Values (length scale = 1:120)

Field Values

Height (m)	Local Velocity (m/s)	Turbulent Intensity (%)	Normalized Height	Normalized Velocity
2.4	5.6	32	0.02	0.35
3.6	6.7	28	0.03	0.42
4.8	7.2	27	0.03	0.45
6.0	8.1	26	0.04	0.51
9.0	9.0	22	0.06	0.56
12.0	10.1	18	0.08	0.63
18.0	10.7	16	0.13	0.67
24.0	11.2	16	0.17	0.70
36.0	12.2	14	0.25	0.76
48.0	12.4	14	0.33	0.77
60.0	13.5	11	0.42	0.84
72.0	13.5	11	0.50	0.84
96.0	14.5	9	0.67	0.90
120.0	15.4	7	0.83	0.96
144.0	16.0	6	1.00	1.00
Reference Velocity	/ (m/s) =	16.0	and the second second	
Reference Height	(m) =	144.0		
Displacement Heig	yht (m) =	0.0		
Friction Velocity (r	n/s) =	0.48		
Roughness Lengt	h (m) =	0.23		
Power Law Index =		0.22		

Colorado School of Mines

CSM_PROG.WK3	Sheet C:
--------------	----------

04/23/93

Visualization Tests (Tape 1)

Run	Building	Wind	Wind	Smoke
Number	Config.	Direction	Speed	Plume
			(m/s)	no.
1	Existing	0.0	5	EF 14,15
2	Existing	22.5	5	EF 14,15
3	Existing	45.0	5	EF 14,15
4	Existing	67.5	5	EF 14,15
5	Existing	90.0	5	EF 14,15
6	Existing	112.5	5	_EF 14,15
7	Existing	135.0	5	EF 14,15
8	Existing	157.5	5	EF 14,15
9	Existing	180.0	5	EF 14,15
10	Existing	202.5	5	EF 14,15
11	Existing	225.0	5	EF 14,15
12	Existing	247.5	5	EF 14,15
13	Existing	270.0	5	EF 14,15
14	Existing	292.5	5	EF 14,15
15	Existing	315.0	5	EF 14,15
16	Existing	337.5	5	EF 14,15
17	Existing	65.0	5	EF 14,15
18	Existing	70.0	5	EF 14,15
19	Existing	75.0	5	EF 14,15
20	Existing	80.0	5	EF 14,15
21	Existing	0.0	10	EF 14,15
22	Existing	22.5	10	EF 14,15
23	Existing	45.0	10	EF 14,15
24	Existing	67.5	10	EF 14,15
25	Existing	90.0	10	EF 14,15
26	Existing	112.5	10	EF 14,15
27	Existing	135.0	10	EF 14,15
28	Existing	157.5	10	EF 14,15
29	Existing	180.0	10	EF 14,15
30	Existing	202.5	10	EF 14,15
31	Existing	225.0	10	EF 14,15
32	Existing	247.5	10	EF 14,15
33	Existing	270.0	10	EF 14,15
34	Existing	292.5	10	EF 14,15
35	Existing	315.0	10	EF 14,15
36	Existing	337.5	10	EF 14,15
37	Existing	65.0	10	EF 14.15
38	Existing	70.0	10	EF 14.15
39	Existing	75.0	10	EF 14.15
40	Existing	80.0	10	EF 14.15

Run Number	Building Config.	Wind Direction	Wind Speed	Smoke Plume
TALL TROUGHT			(m/s)	no.
41	Addition	0.0	5	EE 34567
41	Addition	22.5	5	EF 3,4,5,0,7
42	Addition	45.0	5	EF 3,4,5,0,7
43	Addition	45.0	5	EF 3,4,5,0,7
44	Addition	07.5	5	EF 3,4,5,0,7
45	Addition	112.5	5	EF 3,4,5,0,7
40	Addition	135.0	5	EF 3,4,5,0,7
47	Addition	157.5	5	EF 3,4,5,0,7
40	Addition	180.0	5	EF 3,4,5,0,7
43	Addition	202.5	5	EF 3,4,5,0,7
51	Addition	202.5	5	EF 3 4 5 6 7
52	Addition	223.0	5	EF 3,4,5,0,7
52	Addition	247.5	5 	EF 3,4,5,0,7
53	Addition	270.0	5	EF 3,4,5,0,7
55	Addition	292.5	5	EF 3,4,5,0,7
55	Addition	313.0	5	EF 3,4,5,0,7
57	Addition	345.0	5	EF 3,4,5,0,7
59	Addition	345.0	5	EF 3,4,5,0,7
50	Addition	320.0	5	EF 3,4,5,0,7
59	Addition	320.0	5	EF 1,2 EF 1 2
61	Addition	330.0	10	EF 1234567
62	Addition	22.5	10	EF1234567
63	Addition	45.0	10	EF1234567
64	Addition	67.5	10	EF1234567
65	Addition	90.0	10	EF1234567
66	Addition	112.5	10	EF1234567
67	Addition	135.0	10	EF1234567
68	Addition	157.5	10	EF 123/567
60	Addition	190.0	10	EF 122,5,4,5,0,7
70	Addition	202.5	10	EF 1,2,3,4,5,0,7
70	Addition	202.5	10	EF 1234567
72	Addition	223.0	10	EF 1 2 3 4 5 6 7
72	Addition	247.5	10	EF 1 2 3 4 5 6 7
74	Addition	202.5	10	EF1234567
75	Addition	315.0	10	EF1234567
76	Addition	337.5	10	EF1234567
77	Addition	345.0	10	EF1234567
78	Addition	350.0	10	FF1234567
70	Addition	320.0	10	FF1234567
80	Addition	330.0	10	EF1234567
24	Dath	75.0	10	EE 44 45
82	Both	75.0	201	EF 14,13
02	Both	Potation	5	EF 14,13
03	Doth	Potation	10	EF 14,13
04	Doth	Potation	10	EF 14,13
00	Doth	Pototion	E	EF 1,2,14,13
00	Boun	Rotation	0	EF 1.2.14.13

Colorado School of Mines CSM_PROG.WK3 Sheet D:

04/23/93

Concentration Test Program_

Run Number	Building Config.	Effluent Modelled	Model Flow Number	Wind Direction	Wind Speed (m/s)
1	Addition	EF 1,2	Qex1	320.0	5
2	Addition	EF 1,2	Qex1	320.0	10
3	Addition	EF 3,4	Qex2	305.0	5
4	Addition	EF 3,4	Qex2	305.0	10
5	Addition	EF 5,6,7	Qex3	350.0	5
6	Addition	EF 5,6,7	Qex3	350.0	10
7	Addition	EF 5,6,7	Qex3	355.0	5
8	Addition	EF 5,6,7	Qex3	355.0	10
9	Addition	EF 14,15	Qex5	75.0	5
10	Addition	EF 14,15	Qex5	75.0	10

Colorado School of Mines Coolbaugh Hall

Concentration Summary Table (ppm) CSM_CON1.WK3 Sheet A: 04/27/93

Run Number	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Wind Speed (m/s)	5	10	5	10	5	10	5	10	5	10
Wind Dir.	320	320	305	305	350	350	355	355	75	75
Effuent No.	EF 1,2	EF 1,2	EF 3,4	EF 3,4	EF 5,6,7	EF 5,6,7	EF 5,6,7	EF 5,6,7	EF 14,15	EF 14,15
Meas. Location					Parts per	r Million				
1	9,796	15,117	237	299	2,884	1,613	2,250	1,580	10,626	9,491
2	16,217	14,246	889	547	355	460	89	272	11,516	12,931
3	17,977	12,271	230	248	340	374	194	316	3,715	7,991
4	2,940	4,625	7	19	1,950	1,042	1,568	1,083	10,081	9,496
AUH2-1	20,312	16,667	758	522	1,246	614	995	597	9,696	8,641
AUH2-2	21,983	19,442	339	391	1,477	946	775	825	11,106	10,366
AUH3-1	23,658	18,817	664	512	720	670	276	486	12,061	11,176
AUH3-2	23,398	18,392	707	521	561	582	200	402	11,091	10,931
AUH4-1	24,348	20,187	354	411	448	517	165	371	9,581	12,836
AUH4-2	23,903	18,187	371	424	203	359	61	231	5,540	10,506

Note:

1) Wind Speed is at Roof Height

2) Wind Direction is degrees from North

3) Model Length Scale 120

Colorado School of Mines Coolbaugh Hall

Concentration Summary Table (K value)

CSM_CON1.WK3 Sheet B: 04/26/93

Run Number	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Wind Speed (m/s)	5	10	5	10	5	10	5	10	5	10
Wind Dir.	320	320	305	305	350	350	355	355	75	75
Effuent No.	EF 1,2	EF 1,2	EF 3,4	EF 3,4	EF 5,6,7	EF 5,6,7	EF 5,6,7	EF 5,6,7	EF 14,15	EF 14,15
Meas. Location				Concent	ration Coeff	ficient *10^(6 (m^-2)			
1	2,074	6,401	1,818	4,586	11,125	12,443	8,681	12,189	3,218	5,748
2	3,433	6,033	6,811	8,372	1,368	3,551	342	2,096	3,487	7,831
3	3,806	5,196	1,759	3,801	1,312	2,889	749	2,441	1,125	4,839
4	623	1,959	54	290	7,522	8,038	6,051	8,359	3,053	5,751
AUH2-1	4,301	7,057	5,809	8,002	4,806	4,735	3,838	4,607	2,936	5,233
AUH2-2	4,654	8,233	2,596	5,990	5,699	7,302	2,990	6,366	3,363	6,278
AUH3-1	5,009	7,968	5,087	7,845	2,778	5,173	1,066	3,752	3,652	6,768
AUH3-2	4,954	7,788	5,416	7,979	2,166	4,494	770	3,103	3,358	6,620
AUH4-1	5,155	8,548	2,714	6,298	1,730	3,988	637	2,860	2,901	7,774
AUH4-2	5,061	7,701	2,839	6,498	784	2,769	234	1,786	1,678	6,363

Note:

1) Wind Speed is at Roof Height

2) Wind Direction is degrees from North

3) Model Length Scale 120

Colorado School of Mines

CSM_PROG.WK3 Sheet	D: 04/23/93
--------------------	-------------

Model Concentration Test Flow Rate Schedule (no tracer gas settings)

Model Flow Number	Source Gas Type	Gas Percent	Total Flow Rate (ccs)	Instrument Type	Flow Rate (ccs)	Flow Rate (slpm)	Instrument Setting
Qex1	Air	100.0	492.0	Matheson	492.0	24.5	24,478
Qex4	Air	100.0	374.0	FP Med#2	374.0	18.6	M21.6 @ 10psig
Qex5	Air	100.0	344.0	Union Carbide	344.0	17.1	17,114
Qex6	Air	100.0	1957.0	Omega 100slpm	1957.0	97.4	97.4 %FS
Qin	Air	100.0	757.0	FP Med#1	757.0	37.7	M77 @ -7"H2O

Model Concentration Test Flow Rate Schedule (individual tracer gas settings)

Model Flow Number	Source Gas Type	Gas Percent	Total Flow Rate (ccs)	Instrument Type	Flow Rate (ccs)	Flow Rate (sipm)	Instrument Setting
Oov1	Air	0.8.0	402.0	Mathecop	482.2	24.0	22.088
QCX1	C2H6	2.0	492.0	Omega 1slpm	9.8	0.99	98.7 %FS
Qex2	C2H6	100.0	13.6	Omega 10slpm	13.6	1.36	13.6 %FS
Qex3	C2H6	100.0	27.0	Omega 10sipm	27.0	2.71	27.1 %FS
Qex5	Air	98.0	344.0	Union Carbide	337.1	16.8	16,772
	C2H6	2.0	344.0	Omega 1slpm	6.9	0.7	69.0 %FS

Model Visual Test Flow Rate Schedule

Model Flow Number	Source Gas Type	Gas Percent	Total Flow Rate (ccs)	Instrument Type	Flow Rate (ccs)	Flow Rate (slpm)	Instrument Setting
Qex1	Air,fog	100.0	492.0	Matheson	492.0	24.5	2.45 volts
Qex2	Air,smoke	100.0	13.6	Omega 1slpm	13.6	0.7	68 %FS
Qex3	Air,smoke	100.0	27.0	Omega 10slpm	27.0	1.3	13.4 %FS
Qex4	Air	100.0	374.0	FP Med#2	374.0	18.6	M21.6 @ 10psig
Qex5	Air,fog	100.0	344.0	Union Carbide	344.0	17.1	1.71 volts
Qex6	Air	100.0	1957.0	Omega 100slpm	1957.0	97.4	97.4 %FS
Qin	Air	100.0	757.0	FP Med#1	757.0	37.7	M77 @ -7"H2O

Note

1) Qex2 and Qex3 are inactive when not used as a tracer

- 2) These were set individually
 - AHU2> 226ccs> M17.7@12psia
 - AHU3> 69ccs> M5.4@12psia
 - AHU4> 462ccs> M36.3@12psia

FIGURES

F-3

Figure 5 Reference Velocity and Turbulence Profiles

APPENDIX A: VIDEO TAPE ENCLOSURE

APPENDIX B: CONCENTRATION FILE PRINTOUTS

Colorado School of Mines Coolbaugh Hall

Conc	entration	Data	Tables	
COM	CONIDIAN	12	Choot	٨

CSM_CON0.WK3	Sheet A:	04/26/93		
File Name CSM001.GC	Run#1	HEB	04-25-93	22:28:42
Wind Speed (cm/s) =	150	Hr (cm) =	14	
Air Temp. (C) =	20	Hr (cm) =	14	
Source Designation =	1			
Source Flow Rate (ccs) =	492			
Source Gas Temp. (C) =	20			
Tracer Type =	C2H6			
Tracer Conc. (ppm) =	20000			
Background Conc. (ppm)	2			
Position Grid Filename >	GCPOS.INP			

Tube	Meas.#1	Norm.#1	K1*10^6
No.	(ppm)	(ppm)	(cm^-2)
1	198	9796	2987
2	327	16217	4944
3	362	17977	5481
4	61	2940	896
5	409	20312	6193
6	442	21983	6702
7	475	23658	7213
8	470	23398	7133
9	489	24348	7423
10	480	23903	7287

File Name CSM002.GC Wind Speed (cm/s) = Air Temp. (C) = Source Designation = Source Flow Rate (ccs) = Source Gas Temp. (C) = Tracer Type = Tracer Conc. (ppm) = Background Conc. (ppm)	Run# 2 300 20 1 492 20 C2H6 20000 2	HEB Hr (cm) = Hr (cm) =	04-25-93 14 14	22:53:14
Position Grid Filename >	GCPOS.INP			

Tube No.	Meas.#1 (ppm)	Norm.#1 (ppm)	K1*10^6 (cm^-2)
1	304	15117	9217
2	287	14246	8687
3	247	12271	7482
4	95	4625	2820
5	335	16667	10163
6	391	19442	11855
7	378	18817	11474
8	370	18392	11215
9	406	20187	12309
10	366	18187	11090

TABLE D-1 Concentration Data File, Kuns I and	Table	B-1	Concentration	Data Fil	e. Runs 1	and 2
--	-------	------------	---------------	----------	-----------	-------

Colorado School of Mines Coolbaugh Hall Concentration Data Tables

CSM_CON0.WK3	Sheet B:	04/26/93		
File Name CSM003.GC Wind Speed (cm/s) = Air Temp. (C) = Source Designation = Source Flow Rate (ccs) = Source Gas Temp. (C) = Tracer Type = Tracer Conc. (ppm) = Background Conc. (ppm) Position Grid Filename >	Run# 3 150 20 1 4 20 C2H6 1000000 3 GCPOS.INP	HEB Hr (cm) = Hr (cm) ≕	04-25-93 14 14	23:47:43
	Tubel	Meas #1	Norm.#1	K1*10^6
	No.	(ppm)	(ppm)	(cm^-2)
				/
	1	240	237	2617
	2	892	889	9808
	3	233	230	2533
	4	10	7	77
	5	761	758	8365
	6	342	339	3738
	7	667	664	7325
	8	710	707	7799
	9	357	354	3908
	10	373	371	4088
File Name CSM004 GC	Run#4	HER	04-25-03	23.18.56
Wind Speed (cm/s) =	300	Hr(cm) =	14	20.10.00
Air Temp (C) =	20	Hr(cm) =	14	
Source Designation =			14	
Source Flow Rate (ccs) =	14			
Source Gas Temp. (C) =	20			
Tracer Type =	C2H6			
Tracer Conc. (ppm) =	1000000			
Background Conc. (ppm)	2			
Position Grid Filename >	GCPOS.INP			

Tube No.	Meas.#1 (ppm)	Norm.#1 (ppm)	K1*10^6 (cm^-2)
1	302	299	6604
2	549	547	12055
3	250	248	5473
5	525	522	11524
6	393	391	8625
- 7	514	512	11296
9	413	411	9068
10	426	424	9357

Table B-2	Concentration	Data	File,	Runs	3	and	4

Colorado School of Mines Coolbaugh Hall

Concentration Data Tables				
CSM_CON0.WK3	Sheet C:	04/26/93		
File Name CSM005.GC	Run# 5	HEB	04-26-93	0:22:20
Wind Speed (cm/s) =	150	Hr (cm) =	14	
Air Temp. (C) =	20	Hr (cm) =	14	
Source Designation =	1			
Source Flow Rate (ccs) =	27			
Source Gas Temp. (C) =	20			
Tracer Type =				
Tracer Conc. (ppm) =	1000000			
Background Conc. (ppm)				
Position Grd Filename >	GCPOS.INP			
1	Tube	Meas #1	Norm #1	K1*10^6
	No.	(mag)	(mag)	(cm^-2)
		NPP III	APP-III/	
	1	2889	2884	16020
	2	361	355	1971
	3	346	340	1889
	A	4050	1050	
	4	1956	1950	10832
	5	1956	1950	<u>10832</u> 6921
	5	1956 1252 1483	1950 1246 1477	<u>10832</u> 6921 8207
	4 5 6 7	1956 1252 1483 726	1950 1246 1477 720	10832 6921 8207 4001
	4 5 6 7 8	1956 1252 1483 726 567	1950 1246 1477 720 561	10832 6921 8207 4001 3119
	4 5 6 7 8 9	1956 1252 1483 726 567 454	1950 1246 1477 720 561 448	10832 6921 8207 4001 3119 2491
	4 5 6 7 8 9 10	1956 1252 1483 726 567 454 209	1950 1246 1477 720 561 448 203	10832 6921 8207 4001 3119 2491 1128
	4 5 6 7 8 9 10	1956 1252 1483 726 567 454 209	1950 1246 1477 720 561 448 203	10832 6921 8207 4001 3119 2491 1128
	4 5 6 7 8 9 10	1956 1252 1483 726 567 454 209	1950 1246 1477 720 561 448 203	10832 6921 8207 4001 3119 2491 1128
File Name CSM006.GC	4 5 6 7 8 9 10	1956 1252 1483 726 567 454 209	1950 1246 1477 720 561 448 203	10832 6921 8207 4001 3119 2491 1128

File Name CSM006.GC	Run#6	HEB	04-26-93	1:
Wind Speed (cm/s) =	300	Hr (cm) =	14	
Air Temp. (C) =	20	Hr (cm) =	14	
Source Designation =	1			
Source Flow Rate (ccs) =	27			
Source Gas Temp. (C) =	20			
Tracer Type =	C2H6			
Tracer Conc. (ppm) =	1000000			
Background Conc. (ppm)	4			
Position Grid Filename >	GCPOS.INP			

Tube	Meas.#1	Norm.#1	K1*10^6
INO.	(ppm)	(ppm)	(Cm2)
1	1617	1613	17918
2	465	460	5113
3	379	374	4160
4	1046	1042	11574
5	618	614	6819
6	951	946	10514
7	675	670	7449
8	587	582	6471
9	521	517	5743
10	363	359	3987

Colorado School of Mines Coolbaugh Hall Concentration Data Tables

CSM_CON0.WK3	Sheet D:	04/26/93		
File Name CSM007.GC Wind Speed (cm/s) = Air Temp. (C) = Source Designation = Source Flow Rate (ccs) = Source Gas Temp. (C) = Tracer Type = Tracer Conc. (ppm) = Background Conc. (ppm) Position Grid Filename >	Run# 7 150 20 1 27 20 C2H6 1000000 7 GCPOS INP	HEB Hr (cm) = Hr (cm) =	04-26-93 14 14	0:55:52
	Tube No.	Meas.#1 (ppm)	Norm.#1 (ppm)	K1*10^6 (cm^-2)
		2257	2250	12501
	2	96	89	492
	3	201	194	1079
	4	1575	1568	8713
	5	1002	995	5526
	6	782	775	4306
	7	283	276	1535
	8	207	200	1109
	9	172	165	918
	10	68	61	337
File Name CSM008 CC	Bue# 9	NED	04.26.02	4:22:54
File Name CSM008.GC Wind Speed (cm/s) = Air Temp. (C) = Source Designation = Source Flow Rate (ccs) = Source Gas Temp. (C) = Tracer Type = Tracer Conc. (ppm) = Background Conc. (ppm) Position Grid Filename >	Run# 8 300 20 1 27 20 C2H6 100000 6 GCPOS.INP	HEB Hr (cm) = Hr (cm) =	04-26-93 14 14	1:23:54
File Name CSM008.GC Wind Speed (cm/s) = Air Temp. (C) = Source Designation = Source Flow Rate (ccs) = Source Gas Temp. (C) = Tracer Type = Tracer Conc. (ppm) = Background Conc. (ppm) Position Grid Filename >	Run# 8 300 20 1 27 20 C2H6 1000000 6 GCPOS.INP	HEB Hr (cm) = Hr (cm) = Meas.#1	04-26-93 14 14	1:23:54 K1*10^6
File Name CSM008.GC Wind Speed (cm/s) = Air Temp. (C) = Source Designation = Source Flow Rate (ccs) = Source Gas Temp. (C) = Tracer Type = Tracer Conc. (ppm) = Background Conc. (ppm) Position Grid Filename >	Run# 8 300 20 1 27 20 C2H6 1000000 6 GCPOS.INP Tube No.	HEB Hr (cm) = Hr (cm) = Meas.#1 (ppm)	04-26-93 14 14 14	1:23:54 K1*10^6 (cm^-2)
File Name CSM008.GC Wind Speed (cm/s) = Air Temp. (C) = Source Designation = Source Flow Rate (ccs) = Source Gas Temp. (C) = Tracer Type = Tracer Conc. (ppm) = Background Conc. (ppm) Position Grid Filename >	Run# 8 300 20 1 27 20 C2H6 1000000 6 GCPOS.INP Tube No.	HEB Hr (cm) = Hr (cm) = Meas.#1 (ppm) 1586	04-26-93 14 14 14	1:23:54 K1*10^6 (cm^-2) 17552
File Name CSM008.GC Wind Speed (cm/s) = Air Temp. (C) = Source Designation = Source Flow Rate (ccs) = Source Gas Temp. (C) = Tracer Type = Tracer Conc. (ppm) = Background Conc. (ppm) Position Grid Filename >	Run# 8 300 20 1 27 20 C2H6 1000000 6 GCPOS.INP Tube No.	HEB Hr (cm) = Hr (cm) = Meas.#1 (ppm) 1586 277	04-26-93 14 14 14 14	1:23:54 K1*10^6 (cm^-2) 17552 3018
File Name CSM008.GC Wind Speed (cm/s) = Air Temp. (C) = Source Designation = Source Flow Rate (ccs) = Source Gas Temp. (C) = Tracer Type = Tracer Conc. (ppm) = Background Conc. (ppm) Position Grid Filename >	Run# 8 300 20 1 27 20 C2H6 100000 6 GCPOS.INP Tube No. 1 2 3	HEB Hr (cm) = Hr (cm) = Meas.#1 (ppm) 1586 277 322	04-26-93 14 14 14 14	1:23:54 K1*10^6 (cm^-2) 17552 3018 3514
File Name CSM008.GC Wind Speed (cm/s) = Air Temp. (C) = Source Designation = Source Flow Rate (ccs) = Source Gas Temp. (C) = Tracer Type = Tracer Conc. (ppm) = Background Conc. (ppm) Position Grid Filename >	Run# 8 300 20 1 27 20 C2H6 100000 6 GCPOS.INP Tube No. 1 2 3 4	HEB Hr (cm) = Hr (cm) = Meas.#1 (ppm) 1586 277 322 1089	04-26-93 14 14 14 14 14 1580 272 316 1083	1:23:54 K1*10^6 (cm^-2) 17552 3018 3514 12037
File Name CSM008.GC Wind Speed (cm/s) = Air Temp. (C) = Source Designation = Source Flow Rate (ccs) = Source Gas Temp. (C) = Tracer Type = Tracer Conc. (ppm) = Background Conc. (ppm) Position Grid Filename >	Run# 8 300 20 1 27 20 C2H6 100000 6 GCPOS.INP Tube No. 1 2 3 4 5	HEB Hr (cm) = Hr (cm) = Meas.#1 (ppm) 1586 277 322 1089 603	04-26-93 14 14 14 14 14 1580 272 316 1083 597	1:23:54 K1*10^6 (cm^-2) 17552 3018 3514 12037 6634
File Name CSM008.GC Wind Speed (cm/s) = Air Temp. (C) = Source Designation = Source Flow Rate (ccs) = Source Gas Temp. (C) = Tracer Type = Tracer Conc. (ppm) = Background Conc. (ppm) Position Grid Filename >	Run# 8 300 20 1 27 20 C2H6 100000 6 GCPOS.INP Tube No. 1 2 3 4 5 6	HEB Hr (cm) = Hr (cm) = Meas.#1 (ppm) 1586 277 322 1089 603 831	04-26-93 14 14 14 14 14 1580 272 316 1083 597 825	1:23:54 K1*10^6 (cm^-2) 17552 3018 3514 12037 6634 9167
File Name CSM008.GC Wind Speed (cm/s) = Air Temp. (C) = Source Designation = Source Flow Rate (ccs) = Source Gas Temp. (C) = Tracer Type = Tracer Conc. (ppm) = Background Conc. (ppm) Position Grid Filename >	Run# 8 300 20 1 27 20 C2H6 1000000 6 GCPOS.INP Tube No. 1 2 3 4 5 6 7	HEB Hr (cm) = Hr (cm) = Hr (cm) = 1586 277 322 1089 603 831 492	04-26-93 14 14 14 14 14 14 1580 272 316 1083 597 825 486	1:23:54 K1*10^6 (cm^-2) 17552 3018 3514 12037 6634 9167 5402
File Name CSM008.GC Wind Speed (cm/s) = Air Temp. (C) = Source Designation = Source Flow Rate (ccs) = Source Gas Temp. (C) = Tracer Type = Tracer Conc. (ppm) = Background Conc. (ppm) Position Grid Filename >	Run# 8 300 20 1 27 20 C2H6 1000000 6 GCPOS.INP Tube No. 1 2 3 4 5 6 7 8	HEB Hr (cm) = Hr (cm) = Hr (cm) = 1586 277 322 1089 603 831 492 408	04-26-93 14 14 14 14 14 14 1580 272 316 1083 597 825 486 402	1:23:54 1:23:54 K1*10^6 (cm^-2) 17552 3018 3514 12037 6634 9167 5402 4468
File Name CSM008.GC Wind Speed (cm/s) = Air Temp. (C) = Source Designation = Source Flow Rate (ccs) = Source Gas Temp. (C) = Tracer Type = Tracer Conc. (ppm) = Background Conc. (ppm) Position Grid Filename >	Run# 8 300 20 1 27 20 C2H6 1000000 6 GCPOS.INP Tube No. 1 2 3 4 5 6 7 8 9	HEB Hr (cm) = Hr (cm) = Hr (cm) = 1586 277 322 1089 603 831 492 408 377	04-26-93 14 14 14 14 14 14	1:23:54 K1*10^6 (cm^-2) 17552 3018 3514 12037 6634 9167 5402 4468 4119

Colorado School of Mines Coolbaugh Hall Concentration Data Tables

CSM_CON0.WK3	Sheet E:	04/27/93		
File Name CSM000 CC	Bue# 0	NECE	04 27 02	12.20.27
File Name CSM009.GC	150		04-21-83	13.30.37
vvina Speea (cm/s) =	150	rir (cm) =	14	
Air Temp. (C) =	22	Hr (cm) =	14	
Source Designation =	1			
Source Flow Rate (ccs) =	344			
Source Gas Temp. (C) =	22			
Tracer Type =	C2H6			
Tracer Conc. (ppm) =	20000			
Background Conc. (ppm)	1			
Position Grid Filename >	GCPOS.INP			

Tube	Meas.#1	Norm.#1	K1*10^6
No.	(ppm)	(ppm)	(cm^-2)
1	214	10626	4633
2	232	11516	5021
3	76	3715	1620
4	203	10081	4396
5	195	9696	4228
6	223	11106	4843
7	243	12061	5259
8	223	11091	4836
9	193	9581	4178
10	112	5540	2416

04-27-93

14 14

13:54:10

File Name CSM010.GC Wind Speed (cm/s) =	Run# 10 300	HEB Hr (cm) =
Air Temp. (C) =	22	Hr(cm) =
Source Designation =	1	
Source Flow Rate (ccs) =	344	
Source Gas Temp. (C) =	22	
Tracer Type =	C2H6	
Tracer Conc. (ppm) =	20000	
Background Conc. (ppm)	2	
Position Grid Filename >	GCPOS.INP	

Tube	Meas.#1	Norm.#1	K1*10^6
No.	(ppm)	(ppm)	(cm^-2)
1	192	9491	8277
2	261	12931	11277
3	162	7991	6969
4	192	9496	8281
5	175	8641	7536
6	209	10366	9040
7	225	11176	9747
8	221	10931	9533
9	259	12836	11194
10	212	10506	9162

APPENDIX C: FACILITIES AND TECHNIQUES

C.1: FLUID DYNAMICS AND DIFFUSION LABORATORY

Engineering Research Center (ERC) is located at Foothills Campus of Colorado State University in Fort Collins, Colorado. This ERC has facilities for Agricultural & Chemical Engineering, Civil Engineering, Electrical Engineering and Mechanical Engineering Department including Groundwater Laboratory, Geotechnical Laboratory, Hydraulics Laboratory, Fluid Dynamics and Diffusion Laboratory (FDDL), Thermofluid Laboratory, Laser laboratory, Aerosol Science Laboratory and Heat Transfer Laboratory.

The FDDL is an integral part of the Fluid Mechanics and Wind Engineering Program, and houses facilities with unique research capabilities. Special boundary layer wind tunnels for simulation of atmospheric motions provide a capability for unique research on wind engineering and environmental problems of state, national and international concerns. Modern instrumentation and a variety of flow facilities support fundamental investigations on turbulence and turbulent diffusion. The Fluid Mechanics and Wind Engineering Program was awarded in 1989 from National Society of Professional Engineers for its distinguished research.

Research developed during the first three decades has revolved around basic fluid dynamics - turbulence, heat and mass transfer, boundary layers, jets and wakes, vortex dynamics, and flow separation; physical modeling - winds near the surface of Earth (atmospheric boundary layers), atmospheric diffusion, and mountain and urban winds; basic studies in aerosol mechanics - particle generation techniques, sampling and collection investigations, development of ambient aerosol samplers and fractional systems, behavior of particles in turbulent shear flows, deposition of particles in plant canopies; wind engineering - air pollution control, behavior of smoke plumes from power plant stacks, hazard analysis of liquid natural gas (LNG) storage, industrial aerodynamics, environmental design for urban centers, wind power, heat transfer from buildings, and wind forces on buildings and bridges; turbomachinery - effects of turbulence on the performance of blade cascades; and instrumentation - aerosol and tracer gas concentration sensors and hot wire anemometry. Research in these areas is sponsored primarily by the National Science Foundation, the Office of Naval Research, Project SQUID, the National Aeronautics and Space Administration, the Department of Energy, the Gas Research Institute, the Department of Transportation, the Nuclear Regulatory Commission, the Environmental Protection Agency, and the Electric Power Research Institute.

Research in the Program is complemented by a wide variety of laboratory investigations of wind forces on structures, atmospheric diffusion, and other wind engineering problems associated with the design and planning of major engineering projects. These investigations, sponsored by leading consulting and industrial firms throughout the country, utilize many of the research results obtained by the Program staff and students and help identify areas that will be productive for new research. Figure C-1 below shows the plan view layout of the FDDL laboratory facilities including the meteorological wind tunnel, environmental wind tunnel and industrial aerodynamics wind tunnel.

Figure C-1 Fluid Dynamics and Diffusion Laboratory Layout

The unique meteorological wind tunnel has an overall length of 200 feet with a 6-foot by 6-foot test or working section 100 feet long. Heating and cooling of air in the 18-foot by 18-foot return flow section of the recirculating tunnel provides extreme flexibility for simulating a wide range of atmospheric thermal stratifications, as well as elevated inversions. This thermal control, coupled with well-controlled flow speeds from 0.0 to 100 miles per hour and a long test section, enables boundary layer flows similar to those found in the real atmosphere to be modeled with accuracy. Thus, this facility provides an ideal medium for fundamental studies on the relationship of mean wind speed and turbulence to surface roughness, thermal stratification and topography. On the other hand, the simulation of natural winds for specific sites provides an ideal means for physical modeling of wind effects on existing or proposed buildings, urban developments, or any other of man's activities on earth's surface.

The FDDL houses an environmental wind tunnel with working section 60 feet long and a cross section of 12 by 8 feet. Using wind speed from 0.5 miles per hour up to 34 miles per hour, this facility provides excellent capability for investigation of wind effects on large areas. Dispersion of cloud seeding materials over mountain ranges, dispersion of automobile exhaust in new urban developments and existing cities, effects of buildings and topography on power plant plumes, and heat island effects over large urban areas have been investigated successfully in this facility. The industrial aerodynamics wind tunnel with a working section 60 feet long and 6 feet by 6 feet in cross section provides additional capabilities for basic studies of boundary layer characteristics. Many studies of evaporation from soil and water surfaces, wind pressures on model structures, ventilation of buildings, and the movement of soil and snow by wind have been made in this wind tunnel, which has a speed range of 1 to 70 miles per hour.

A gust wind tunnel equipped with two arrays of oscillating air foils provides opportunities for research on the effects of turbulence scale on the aerodynamics of bluff bodies and aerodynamic stability of long-span bridge decks.

Instrumentation for measurement of flow variables and tracer gas concentrations is available to support either the most advanced studies on turbulence and diffusion or the applied investigations of wind engineering. This instrumentation includes hot wire anemometer system; electronic pressure transducers and meters; aerosol, radioactive gas, and helium and hydrocarbon concentration measurement systems; optical systems; and strain gage balances. Data processing equipment includes analog-to-digital converters connected to PC, AT and 386 type computer, spectral analyzers, probability density analyzers, and a variety of special purpose systems. Additional data processing and numerical analyses are accomplished on the University CDC 170 model 720 digital computer, or the CRAY 1 digital computer of the National Center for Atmospheric Research (NCAR). Recording capabilities are provided by 50 FM magnetic tape channels, 25 digital tape channels, floppy disks, and a variety of motion and still picture cameras.

C.2: ENVIRONMENTAL WIND TUNNEL DESCRIPTION

This wind tunnel, especially designed to study atmospheric flow phenomena, incorporates special features such as an adjustable ceiling, a rotating turntable and a long test section to permit adequate reproduction of micrometeorological behavior. Mean wind speeds of 0.1 to 15 m/sec in the EWT can be obtained. A boundary-layer thickness up to 1.5 m can be developed over the downwind portion of the EWT test section by using vortex generators at the test section entrance and surface roughness on the floor. The flexible test section on the EWT roof is adjustable in height to permit the longitudinal pressure gradient to be set at zero.

Figure C-2 Environmental Wind Tunnel Schematic

C.3: WIND SPEED MEASUREMENT DESCRIPTION

Velocity Standards

a. CSU Mass Flow System

The velocity standard used in the present study consisted of a Omega Model FMA-78P4 mass controller and a profile conditioning section designed and calibrated by the Fluid Dynamics and Diffusion (FDDL) staff at Colorado State University (CSU). The mass flow controller sets mass flow rate independent of temperature and pressure. The profile conditioning section forms a flat velocity profile of very low turbulence at the position where the hot-film-probe is located. Incorporating a measurement of the ambient atmospheric pressure, temperature and a profile correction factor permits the calibration of velocity at the measurement station from 0.1 - 2.0 m/s to within ± 5 percent and from 2.0 - 4.7 m/s to within ± 3 percent. This calibration nozzle is mounted on two computer controlled rotary tables for precise flow angle calibrations of multi-film probes.

b. TSI Calibrator

The TSI Model 1125 Velocity Calibrator System is designed to calibrate hot wire and hot film sensors over wide ranges of velocities. It is primarily for air but can also be modified for use in water and other fluids. In air the velocity range is from approximately 0.1 m/s to 305 m/s. This wide range can be covered using manometers with a range of 0.5 inch of water to approximately 400 inch of water (30 inch of mercury). The calibrator has been designed to be as simple and flexible as possible, while still maintaining good calibration accuracy.

In using the calibrator for air, the unit can be connected to a shop compressed air line. An On-Off line valve, pressure regulator, needle valve, and a heat exchanger are installed in line with the calibrator. This arrangement gives good control of the velocity through the calibrator. Essentially the same arrangement can be used for calibrating in other gases. Rather than the compressed air line the source can be a tank of bottled gas or other convenient supply.

The accuracy of the system is primarily dependent on the accuracy of the pressure measurement. When using the inside chambers with the exterior nozzle in place, the accuracy is ± 2 percent down to 3 m/s. Below 3 m/s, the accuracy is ± 5 percent down to approximately 0.1 m/s. Below 0.1 m/s, approximately ± 10 percent accuracy can be expected.

c. Pitot Probe

Pitot-static probes are used as a velocity standard during the calibration of the different hot film systems and to provide the reference upwind velocity measurement. The principles of operation of pitot-static probes are described in any fundamental text on fluid mechanics and will not be discussed in detail here. The operational relationship for these probes is $U = (2g_c \Delta P/\rho)^{1/2}$, where U = velocity, $g_c =$ gravitational conversion constant, $\Delta P =$ difference between static and stagnation pressures, and ρ is the air density. ρ is calculated from ideal gas law and ΔP is measured using a Datametrics Electronic Manometer. The pitot-static probe measurements are accurate to within ± 2 percent of the actual velocity.

Single-Hot-Film Probe Measurements

Single-hot-film (TSI 1220 Sensor) measurements are used to document the longitudinal turbulence levels. During calibration the probe voltages are recorded at several velocities covering the range of interest. These voltage-velocity (E,U) pairs are then regressed to the equation $E^2 = A + BU^c$ via a least squares approach for various assumed values of the exponent c. Convergence to the minimum residual error was accelerated by using the secant method to find the best new estimate for the exponent c.

The hot-film-probe is mounted on a vertical traverse and positioned over the measurement location in the wind tunnel. The anemometer's output voltage is digitized and stored within an IBM AT computer. This voltage time series was converted to a velocity time series using the inverse of the calibration equation; $U = [(E^2 - A)/B]^{1/c}$. The velocity time series is then analyzed for pertinent statistical quantities, such as mean velocity and root-mean-square turbulent velocity fluctuations. The computer system moves the velocity probe to a vertical position, acquire the data, then moves on to the next vertical positions, thus obtaining an entire vertical velocity profile automatically.

Error Statement

The calibration curve yields hot film anemometer velocities that were always within 2 percent of the known calibrator velocity. Considering the accumulative effect of calibrator, calibration curve fit and other errors the model velocity time series should be accurate to within 5 percent.

Cross-Film Probe Measurements

Cross-film measurements are used to document longitudinal, lateral and vertical turbulence levels along with cross-component correlations such as Reynolds stresses.

During the calibration of the TSI 1241 X-film probe it is placed at the nozzle of the calibrator with the probe support axis parallel to air flow. In this position the angle

between each sensor and the flow vector is 45°. Thus, the yaw angles for each sensor are 45°. The voltage from each anemometer channel are digitized for several velocities covering the range of interest. These voltage-velocity pairs (E_i , U_i ; i = 1,2), at a fixed angle, are fit to the equation

$$E_{i,j}^{2} = A_{i} + B_{i}'(U_{j})^{ci}$$
; $i = 1,2; j = 1,n$

where $B_i' = B_i (\cos^2 \phi_i + k^2 \sin^2 \phi_i)^{ci/2}$

 ϕ_i = yaw angle between velocity vector and film i

k = yaw factor

n = number of the calibration points

via a least squares fit with the secant method to find the best new estimate of exponent, C ...

Note that if the yaw factor, k, equals zero then a sample cosine law dependence of the heat flux exists. To determine the yaw factor, k, the air velocity is set at a constant value, and the probe is rotated about its third axis so that voltage samples are taken for a wide range of yaw angle variation on both films. These voltage-yaw angle pairs, (E, ϕ_i ; i = 1,2) are regressed to the equation

$$B_{i}' = (E_{i,j}^{2} - A_{i})/U^{ci} = B_{i}(\cos^{2}\phi_{i,i} + k_{i}^{2}\sin^{2}\phi_{i,j})^{ci/2}$$

where i = 1,2 and j = 1,n

via a least squares approach with the secant method to find the best new estimate for the yaw factor, k. A. B. c. and k. for both films are thus obtained. For the reduction algorithm used, k, must be equal for both films and not a function of velocity. Providing that both films have similar aspect ratio, then both k, values should be of similar magnitude; hence, setting them equal does not introduce large errors. Once a value for k is specified then a least squares fit will determine the optimal values for B_i. Once the value of k is determined for a specific probe, it is no longer necessary to perform further angle calibrations.

Given the calibration constants A_i, B_i, and c_i, then the equations

 $E_i^2 = A_i + B_i (V_{effi})^{ci}$; i = 1,2;

where $V_{eff,i} = V(\cos^2 \phi_i + k^2 \sin^2 \phi_i)^{1/2}$; i = 1,2; $V_{eff,i} =$ effective cooling velocity for film i, and V = total velocity vector approaching sensor array

are defined. To take measurements with this calibrated X-film probe, both anemometer signals and the temperature signal are digitized and stored on a disk file within an IBM AT computer. These voltage time series are converted to u and v (or w) velocity time series using the following algorithm proposed by Brunn [1974],

$$\begin{split} u &= (V_{eff,1} + V_{eff,2}) / [2(\cos^2 \alpha + k^2 \sin^2 \alpha)^{1/2}], \\ v &(or w) = (V_{eff,1} - V_{eff,2}) / [(\cos^2 \alpha + k^2 \sin^2 \alpha)^{1/2} A \tan \alpha], \\ where & A &= \cos^2 \alpha (1 - k^2) / [\cos^2 \alpha (1 - k^2) + k^2], \\ &\alpha &= 45^{\circ}, \\ V_{eff,i} &= [E_i^2 - A_i^*) / B_i^*]^{1/ci}, \\ &A_i^* &= A_i T_{factor}, \quad B_i^* &= B_i T_{factor}, \\ &T_{factor} &= (T_{sensor} - T_{environment}) / (T_{sensor} - T_{calibration}). \end{split}$$

Error Statement

The accuracy of X-film velocity measurements and associated reduction algorithms can be estimated by directing different known mean velocity vectors at the probe. Tests at calibration temperature determine that the mean velocity magnitude is generally within ± 5 percent of the calibration value. The error in angle calculation was approximately $\pm 2^{\circ}$ for angular deviations of 15° or less and somewhat larger than this for greater deviations. Considering cumulative effect of calibrator, calibration curve fit and temperature correction errors, the model longitudinal velocity time series should be accurate to within ± 10 percent. The lateral or vertical velocity time series errors are greater than those of the longitudinal component but should be accurate to within ± 15 percent.

Velocity Measurement System

A flow-logic chart of velocity calibration system, velocity measurement system, and the positioning system with the wind tunnel is displayed in C-10 on the following page.

C.4: FLOW VISUALIZATION TECHNIQUES

Smoke Generator System

A visible plume is produced by passing the metered simulant gas through a Rosco Model 8215 Fog/Smoke Machine located outside the wind tunnel and then out of the model stack. The plume is illuminated with high intensity back lighting. The visible plumes for each test are recorded on VHS video cassettes with a Panasonic Omnivision II camera/recorder system. Run number titles are placed on the video cassette with a title generator.

Video Image Analysis System

Digital image processing and computer aided enhancement methods provide a means to modernize and significantly improve the conventional smoke wire technique. The visible behavior of the smoke line is now recorded on by a high-resolution television camera system on VCR tape. The analog images may be transformed into digital arrays, and the images can then be enhanced and manipulated by a computer system.

The hardware components of the FDDL Video Image Processing System (VIPS) are presented in the figure on the following page. The image capturing part of the system includes a SVHS camcorder and a four-head one-half inch tape VCR recorder. These images may be edited into convenient sequences using a dual-monitor, dual-SVHS VCR recorder editing system. Unfortunately, most VCR systems can not be controlled well enough to maintain adequate picture registration when advancing frame-by-frame under computer control [Lee et al., 1988]. Hence, the edited VCR tape must be additionally recorded onto a video disk. Currently this transfer is being accomplished at another laboratory.

Computer control may be used to command a video-disk player to project each individual video frame to a high-resolution video monitor. We use a high-resolution image capturing board installed in a PC-386 compatible microcomputer to digitize the image. A standard NTSC video signal (30 frames/sec) can be digitized with 8-bit precision. The board we use produces an intensity field of 512 x 512 pixels at 256 possible grey levels. Given the image interweaving typical of an NTSC signal the frames can be split to provide images at 60 frames/sec.

Once the video picture is digitized, the image may be enhanced by a) subtracting the background, b) overlaying a coordinate system, c) enhancing front, center, or back edge of the image, or d) assigning colors to different intensity levels. One can also extract edge pixel locations to calculate velocities or combine images to provide animation. Often it is appropriate to print or restore enhanced images. The FDDL VIPS includes hardware to project the image to a RGB or VGA monitor; store the digital image to floppy or hard disks, streaming tapes, optical digital disk, or on network file-servers; or print to a laser printer or color slide maker. Alternatively, a VGA-to-NTSC hardware card can reformulate the signal to record to a conventional VCR or a color video printer.

Figure C-4 Video Image Analysis System

C.5: CONCENTRATION MEASUREMENT DESCRIPTION

The experimental measurements of concentration were performed using a Hewlett Packard gas-chromatograph and a sampling systems designed by Fluid Dynamics and Diffusion Laboratory staff.

Gas Chromatograph

A gas chromatograph (Hewlett-Packard Model 5710A) (GC) with flame ionization detector (FID) operates on the principle that the electrical conductivity of a gas is directly proportional to the concentration of charged particles within the gas. The ions in this case are formed by the burning a mixture of hydrogen and the sample gas in the FID. The ions and electrons formed pass between an electrode gap and decrease the gap resistance. The resulting voltage drop is amplified by an electrometer and passed to a Hewlett-Packard Model 3390A integrator. When no effluent gas is flowing, a carrier gas (nitrogen) flows through the FID. Due to certain impurities in the carrier, some ions and electrons are formed creating a background voltage or zero shift. When the effluent gas enters the FID, the voltage increase above this zero shift is proportional to the degree of ionization or correspondingly the amount of tracer gas present. Since the chromatograph used in this study features a temperature control on the flame and electrometer, there is very low drift of the zero shift. Even given any zero drift, the HP 3390A, which integrates the effluent peak, also subtracts out the zero drift.

The lower limit of measurement is imposed by the instrument sensitivity and the background concentration of tracer within the air in the wind tunnel. Background concentrations are measured and subtracted from all data.

Sampling System

The tracer gas sampling system consists of a series of fifty 30 cc syringes mounted between two circular aluminum plates. A variable-speed motor raises a third plate, which lifts the plunger on all 50 syringes, simultaneously. Computer controlled valves and tubing are connected such that airflow from each tunnel sampling point passes over the top of each designated syringe. When the syringe plunger is raised, a sample from the tunnel is drawn into the syringe container. The sampling procedure consists of flushing (taking and expending a sample) the syringe three times after which the test sample is taken. The draw rate is variable and generally set to be approximately 6 cc/min.

The sampling system is periodically calibrated to insure proper function of each of the valves and tubing assemblies. To calibrate the sampler each intake is connected to a manifold. The manifold, in turn, is connected to a gas cylinder having a known concentration of tracer gas. The gas is turned on, and a valve on the manifold is opened to release the pressure produced in the manifold. The manifold is allowed to flush for about one minute. Normal sampling procedures are carried out during calibration to insure exactly the same procedure is reproduced as when taking a sample from the tunnel. Each sample is then analyzed for tracer gas concentration. Percent error is calculated, and "bad" syringe/tube systems (error > 2 percent) are not used or repaired.

Test Procedure

The test procedure consisted of:

- 1) Setting the proper tunnel wind speed,
- 2) Releasing the metered mixtures of source gas from the plant stack,
- 3) Withdrawing samples of air from the tunnel designated locations, and
- 4) Analyzing the samples with a FID.

The samples were drawn into each syringe over a 200 s (approximate) time period and then consecutively injected into the GC.

The procedure for analyzing the samples from the tunnel is:

- 1) Introduce the sample into the GC which separates the ethane tracer gas from other hydrocarbons,
- 2) The voltage output from the chromatograph FID electrometer is sent to the HP 3390A Integrator,
- the HP 3390A communicates the measured concentration in ppm to an IBM computer for storage, and
- 4) These values, χ_{mes}, along with the response levels for the background χ_{bg} and source χ_{source} are converted into source normalized model concentration by the equation:

$$\chi_{\rm m} = (\chi_{\rm mes} - \chi_{\rm bg}) / (\chi_{\rm source} - \chi_{\rm bg})$$

5) Field equivalent concentration values are related to model values by the equation:

$$\chi_{p} = \frac{\chi_{m}}{\chi_{m} + (1 - \chi_{m}) \left[V(T_{a}/T_{s}) \right]_{m} / \left[V(T_{a}/T_{s}) \right]_{p}}$$

where $V = Q/U_{\rm H}L^2$,

and L is the characteristic length scale. When there is no distortion in the model-field volume flux ratio, V, and the plumes are isothermal this equation reduces to $\chi_p = \chi_m$.

Error Statement

Background concentrations, χ_{bg} , (the result of previous tests within the laboratory), are measured to an accuracy of 20 percent. The larger measured concentrations, χ_{mea} , are accurate to 2 percent. The source gas concentration, χ_{source} , is known to within 10 percent. Thus the source normalized concentration for $\chi_{mea} >> \chi_{bg}$ is accurate to approximately 3 percent. For low concentration values, $\chi_{mea} > \chi_{bg}$, the errors are larger.

Concentration Measurement System

A flow-logic chart of the source gas release, gas sampling, and concentration measurement systems is displayed in C-16 on the following page.

Figure C-5 Concentration Sampling and Measurement System Schematic