
THESIS

AUTOMATIC DETERMINATION OF MAY/MUST SET USAGE IN

DATA-FLOW ANALYSIS

Submitted by

Andrew Stone

Department of Computer Science

In partial ful�llment of the requirements

for the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2009

ii

COLORADO STATE UNIVERSITY

May 6, 2009

WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER

OUR SUPERVISION BY ANDREW STONE ENTITLED AUTOMATIC DE-

TERMINATION OF MAY/MUST SET USAGE IN DATA-FLOW ANALYSIS

BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DE-

GREE OF MASTER OF SCIENCE.

Committee on Graduate Work

Committee Member (Sanjay Rajopadhye)

Committee Member (Jiangguo Liu)

Adviser (Michelle Strout)

Department Chair (Darrell Whitley)

ii

ABSTRACT OF THESIS

AUTOMATIC DETERMINATION OF MAY/MUST SET USAGE IN

DATA-FLOW ANALYSIS

Data-�ow analysis is a common technique for gathering program information for

use in performance improving transformations such as register allocation, dead-

code elimination, common subexpression elimination, and scheduling. Current

tools for generating data-�ow analysis implementations enable analysis details to

be speci�ed orthogonally to the solution algorithm, but still require implementa-

tion details regarding the may and must use and de�nition sets that occur due

to the e�ects of pointers, side e�ects, arrays, and user-de�ned structures. This

thesis presents the Data-Flow Analysis Generator tool (DFAGen), which enables

analysis writers to generate pointer, aggregate, and side-e�ect cognizant analyz-

ers for separable and nonseparable data-�ow analyses, from a speci�cation that

assumes only scalars. By hiding the compiler-speci�c details behind prede�ned

set de�nitions, the analysis speci�cations for the DFAGen tool are typically less

than ten lines long and similar to those in standard compiler textbooks. The two

main contributions of this work are the automatic determination of when to use

the may or must variant of a prede�ned set reference in the analysis speci�cation,

and the design of the analysis speci�cation language so that data-�ow problem and

compiler framework implementation details are speci�ed orthogonally.

iii

Andrew Stone
Department of Computer Science
Colorado State University
Fort Collins, CO 80523
Summer 2009

iv

ACKNOWLEDGEMENTS

Foremost, I would like to thank my advisor, Prof. Michelle Strout. During the

past four years, as both an undergraduate and a graduate student, I have learned a

lot from Michelle. Her guidance, advice, support, and encouragement have helped

me conduct research, complete this thesis, and gain a better understanding of what

research, academics, and computer science is.

I would also like to thank Shweta Behere for her research contributions with

DFAGen, and Lisa Knebl for her editorial suggestions while I was writing a related

journal paper.

Thanks also go to my family, friends, and fellow graduate students � they have

certainly made the past few years pleasant, fun, humorous, and memorable.

v

TABLE OF CONTENTS

1 Introduction 1

1.1 The Problem . 1

1.2 Introduction to Data-Flow Analysis . 2

1.3 The Data-Flow Analysis Generator Tool and May/Must Analysis . . . 4

1.4 Thesis Organization . 6

2 Background 8

2.1 Data-Flow Frameworks . 8

2.2 May/Must Issues . 10

3 Using the DFAGen Tool 14

3.1 Architecture . 14

3.2 The Class of Expressible Analyses . 16

3.3 DFAGen Analysis Speci�cation Language 18

3.4 Prede�ned Set De�nitions . 20

3.5 Type Mappings . 23

3.6 Targeting DFAGen for use in a Compiler Infrastructure 25

3.7 Invocation and Use . 27

4 The DFAGen Tool Implementation 30

4.1 Type Inference and Checking . 31

4.2 May/Must Analysis . 34

4.2.1 Establishing Ordering of Set Expression Operators 37

vi

4.2.2 Establishing Ordering of Set Conditional Operators 40

4.2.3 Establishing Ordering of Boolean Operators 41

4.2.4 Normalization Pass: Handling the Equality Operator 42

4.2.5 Non Locally-Separable Analyses and May/Must 42

4.2.6 Examples of May/Must Analysis . 43

4.3 Code Generation . 45

5 Evaluation 47

5.1 Ease of Analysis Speci�cation . 48

5.2 Performance Evaluation . 51

6 Related Work 53

6.1 Software Frameworks . 53

6.2 Generator Tools . 55

7 Future Work and Conclusions 58

7.1 Limitations and Possible Future Work 58

7.2 Concluding Remarks . 60

vii

Chapter 1

Introduction

Compile-time program analysis is the process of gathering information about pro-

grams to e�ectively derive a static approximation of their runtime behavior. This

information can be used to optimize programs, aid debugging, verify behavior, and

detect potential parallelism. Data-�ow analysis is a commonly used technique to

perform compile-time analysis.

1.1 The Problem

A number of tools have been introduced that ease the process of implementing data-

�ow analyzers. These tools enable an orthogonality between analysis speci�cation

and the algorithm used to determine a solution [10, 12, 14, 19, 20, 22, 28, 38,

39, 42, 43]. However, they still require implementation details regarding when to

use the may versus the must variants of variable-de�nition and variable-use sets.

May and must variants occur due to the e�ects of pointers, side e�ects, arrays, and

user-de�ned structures. Such details make analysis speci�cations more verbose and

complex than what is typically seen in compilers textbooks [9, 11, 13]. De�nitions

of analyses in these textbooks are often written assuming that analyzed programs

consist only of scalars, and have no pointers. The scalar assumption eliminates

the requirement to determine when to use may versus must information. However,

1

• in[s] =
⋃
out[p]

p∈pred[s]

• out[s] = gen[s] ∪ (in[s]− kill[s])

• gen[s] = s , if defs[s] 6= ∅

• kill[s] = all t such that defs[t] ⊆ defs[s]

Figure 1.1: Data-�ow equations for reaching de�nitions, where s, p, and t are
program statements, in[s] is the data-�ow set of de�nition statements that reach
statement s, pred[s] is the set of statements that immediately proceed s in the
control-�ow graph, and defs[s] is the set of variables assigned at statement s.

most real world programs consist of more than just scalars, which the analysis

implementation must handle for correctness.

1.2 Introduction to Data-Flow Analysis

Gary Kildall introduced the technique of data-�ow analysis in 1973 [25]. This

technique computes sets of facts, at each program point, that are guaranteed to

be true for all possible executions of the program. Compiler textbooks usually

describe data-�ow analysis in terms of data-�ow equations [9, 11, 13], such as

those in Figure 1.1.

Solving a data-�ow problem is done by determining a solution such that all

data-�ow equations are satis�ed. Figure 1.1 shows a speci�cation of reaching

de�nitions using such equations. Reaching de�nitions is a compile-time program

analysis, which determines, at each program point, the set of variable de�nitions

that may have occurred without any intervening writes. For each statement s, in

the analyzed program, there is an associated in and out data-�ow set (for reaching

de�nitions these sets contain statements). A solution to this data-�ow analysis

problem is an assignment of data-�ow values to all in and out sets, such that

they satisfy the equations. Figure 1.2 shows a control-�ow graph for an example

2

S1: x = 3
in = {}

out = {S1}

S2: y = q*r
in = {S1}

out = {S1, S2}

S4: q = 5*x
in = {S1, S2}

out = {S1, S2, S4}

S5: x = 6
in = {S1, S2}

out = {S2, S5}

S6: print x
in = {S1, S2, S4, S5}

out = {S1, S2, S4, S5}

in[S2] out[S1]=
out[S2] {S2} ∪ in[S2] - {}=

in[S3] out[S2]=
out[S3] {} ∪ in[S3] - {}=

in[S1] = {}
out[S1] {S1} ∪ in[S1] - {S1, S5}=

in[S5] = out[S3]
out[S5] = {S5} ∪ in[S5] - {S1, S5}

in[S6] = out[S4] ∪ out[s5]
out[S6] = {} ∪ in[S6] - {}

S3: if(cond)
in = {S1, S2}

out = {S1, S2}

in[S4] = out[S3]

out[S4] = {S4} ∪ in[S4] - {}

Figure 1.2: Solutions to in and out data-�ow equations for reaching de�nitions.

program, and what in and out data-�ow equations evaluate to when reaching

de�nitions is applied (the equations in Figure 1.1).

Reaching de�nitions results are useful for determining when simple constant

propagation transformations can safely be applied. For example, in Figure 1.2, an

optimizer will be unable to replace the use of variable x at statement S6 with its

de�nition since multiple de�nitions of the variable reach the statement. However,

in contrast, the use of variable x at statement S4 could be replaced by its de�nition

3

int a, b;

int *p;

S1 if(input() > 100) {

S2 p = &a;

S3 } else {

S4 p = &b;

}

S5 *p = b * 2;

Figure 1.3: We can only say what may be de�ned at statement S5, but we can
state what must be used.

to 3 in S1. Further optimization would be able to collapse this expression (5*3)

into 15, thus evaluating the expression at compile time rather than runtime.

Another common data-�ow analysis is Liveness, which determines the set of

variables at each program point that have previously been de�ned and may be

used in the future. Liveness is useful for detecting uninitialized variables and gen-

erating program dependence graphs [16]. It is also used for dead code elimination

and register allocation. Other program optimizations that use data-�ow analysis

results include busy-code motion, loop invariant code-motion, partial dead-code

elimination, assignment motion, and strength reduction [9]. In addition to opti-

mization, data-�ow analyses are used in program slicers and debugging tools [40].

1.3 The Data-Flow Analysis Generator Tool and

May/Must Analysis

This work describes a tool we designed and implemented, DFAGen - the Data-�ow

Analysis Generator, that is able to generate data-�ow analysis implementations

from succinct descriptions written in a declarative domain-speci�c data-�ow anal-

ysis language. The DFAGen analysis speci�cation language is able to maintain

an �analysis for scalars only" abstraction, white still generating analyzers that are

cognizant of the may and must e�ects of pointers, aggregates, and side-e�ects.

4

This is possible due to the may/must analysis algorithm DFAGen uses to auto-

matically resolves when to use may versus must variable-de�ne and variable-use

information. Speci�cation of analyses are separated from may and must details

by hiding compiler-speci�c details behind prede�ned set de�nitions and type map-

pings. These techniques enable DFAGen analysis speci�cations to be less than ten

lines long and similar to those in standard compiler textbooks.

The issue of when to use may versus must information arises, in part, due

to statements containing dereferences to pointers, function calls, and/or the use

of aggregate data structures such as arrays or user-de�ned types. Such language

features result in there being two variants of the statement-speci�c def and use

sets, one for may de�nitions or uses and another for must de�nitions or uses. For

example, in Figure 1.3, the maydef set for statement S5 is {a, b}, the mustdef set

is the empty set, the mayuse set is {b}, and the mustuse set is {b}. The di�erence

between the maydef and mustdef set occurs because of multiple possible paths of

control �ow and pointer dereferencing.

Figure 1.4 shows a speci�cation of reaching de�nitions that incorporates may

and must information. Compiler textbooks do not typically present speci�cations

with information incorporated like this. Since existing data-�ow analysis imple-

mentation tools do not resolve this issue automatically users of such tools are

responsible for determining when the may and must variants should be used in the

analysis speci�cation. Chapter 2.2 discusses the issue of may/must sets in more

detail.

The speci�c contributions of this work are as follows:

• DFAGen automatically generates unidirectional, intraprocedural data-�ow

analysis implementations from succinct descriptions. These descriptions do

not indicate whether sets refer to their may or must variant, and thus main-

5

• in[s] =
⋃
out[p]

p∈pred[s]

• out[s] = maygen[s] ∪ (in[s]−mustkill[s])

• maygen[s] = s , if maydef[s] 6= ∅

• mustkill[s] = all t such that maydef[t] ⊆ mustdef[s]

Figure 1.4: Data-�ow equations for reaching de�nitions that are cognizant of may
and must de�nitions due to aliasing, side-e�ects, and/or aggregates.

tain a �data-�ow analysis for scalars" abstraction. DFAGen is able to auto-

matically determine which variant to use by performing an analysis called

may/must analysis. We will explain how we derived this analysis by exam-

ining how operators a�ect when may versus must information is required.

We also discuss how our current implementation can be extended for new

operators.

• The DFAGen speci�cation language was designed so that data-�ow problem

speci�cation and compiler-framework implementation details are speci�ed

orthogonally. Due to the hiding of compiler infrastructure details in the

prede�ned set de�nitions, type mappings, and implementation template �les,

a single analysis speci�cation could be used to generate an analysis across a

wide variety of compilers.

1.4 Thesis Organization

The remaining chapters give background material, document the DFAGen tool and

its contributions, and evaluate it. Speci�cally, this thesis is organized as follows:

• Chapter 2 discusses background material related to data-�ow analysis, which

will be useful in understanding the rest of the thesis and its contributions.

6

It reviews the concept of a data-�ow framework and how such a framework

enables the speci�cation of an analysis problem and its solution. It also

gives several examples of may/must issues that arise in modern languages,

and how these issues complicate implementing data-�ow analyses.

• Chapter 3 documents the DFAGen tool's architecture and speci�cation lan-

guage. It describes how this language enables a speci�cation where analysis,

compiler, and language speci�c concerns are speci�ed orthogonally. This

chapter also describes how DFAGen can be retargeted to output analyzers

for various compiler infrastructures. Finally, the chapter describes how the

tool is invoked from the command line, and how currently generated analyz-

ers incorporate into the OpenAnalysis framework.

• Chapter 4 describes in detail the phases DFAGen undergoes to compile a

data-�ow analyzer from a speci�cation. It also describes the algorithm DFA-

Gen uses to determine may/must set usage and describes how this algorithm

is derived.

• Chapter 5 evaluates a prototype implementation of DFAGen by comparing

the size and performance of DFAGen generated analyses against handwritten

versions.

• Chapter 6 describes other data-�ow analysis frameworks and generator tools

and qualitatively compares them to the DFAGen tool.

• Chapter 7 discusses the limitations of our current implementation of DFA-

Gen, proposes methods of overcoming these limitations, and ends with some

concluding remarks.

7

Chapter 2

Background

The DFAGen analysis speci�cation language is based on lattice theoretic frame-

works. Specifying analysis in terms of such a framework is useful because it ensures

that an answer will be converged upon. This chapter reviews these frameworks and

examines may/must issues, which can complicate implementing analyzers from the

formalizations that these frameworks impose.

2.1 Data-Flow Frameworks

One advantage of lattice theoretic frameworks is that they enable a separation

of concerns between the logic for a speci�c analysis and the solution algorithm

and proof of convergence. The analysis is speci�ed as a mathematical structure.

Generic solution algorithms exist that can solve any analysis de�ned by such a

structure. In a lattice theoretic framework an analysis is de�ned as a set of transfer

functions, a set of initial values, a direction (either forward or backward), and a

lattice of �ow values [9, 25, 30].

A lattice is a set of values and a meet operator. The meet operator is a binary

relation over the values in that lattice, and satis�es the closure, commutativity, and

associativity properties. Lattices de�ned a partial ordering among the �ow-values.

Transfer functions are used to compute sets of data-�ow values at each state-

8

• in[s] =
⋃
out[p]

p∈pred[s]

• out[s] = gen[s] ∪ (in[s]− kill[s])

• gen[s] = s , if defs[s] 6= ∅

• kill[s] = all t such that defs[t] ⊆ defs[s]

Figure 2.1: Data-�ow equations for reaching de�nition. This �gure is the same as
Figure 1.1.

ment. Analysis results are the resulting sets these functions produce. In a forward

analysis these sets are called out sets, in a backward analysis these are called

in sets. For many analyses the transfer function computes in or out sets using

statement-speci�c gen and kill information, and a meet set. Statement speci�c

gen and kill information is computed using gen and kill functions, which are

parameterized with the statement, and sometimes the meet set at that statement.

In a forward analysis meet sets are in sets, in a backward analysis they are out

sets. Meet sets are computed by meet operators, which combine the data-�ow sets

of the previous or successive nodes (depending on whether the analysis is forward

or backward).

The example in Figure 2.1 shows a lattice theoretic de�nition of reaching de�-

nitions analysis. The analysis direction is forward and the meet operator is union

(as can be seen in the de�nition of in). If the transfer function can be cleanly

broken into statement-speci�c sets, such as def, then most of the implementation

work is focused in writing code that generates those sets for each statement type.

The lattice theoretic formalization has been leveraged by a number of tools,

which ease the implementation of data-�ow analyses [10, 12, 14, 19, 20, 22, 28, 38,

39, 42, 43]. Chapter 6 describes many of these tools in more detail.

9

int a, b, c;

int *pointsToOne;

int *pointsToTwo;

S1 a = ...

S2 b = ...

S3 pointsToOne = &a;

S4 if(a < b) {

S5 pointsToTwo = &a;

} else {

S6 pointsToTwo = &b;

}

S7 *pointsToOne = ...;

S8 *pointsToTwo = ...;

Figure 2.2: May/must issues that arise because of pointer aliasing.

2.2 May/Must Issues

Analysis implementation can be complicated, even when lattice theoretic de�ni-

tions of the analysis exist. Lattice theoretic de�nitions do not always explicitly

specify how may and must variable-de�nition and variable-use information should

be used in transfer functions. One of the important contributions of this work

is the automatic determination of when to use such information. To aid in un-

derstanding why may and must information arises, this chapter describes three

examples that demonstrate may/must behavior due to pointers, side e�ects, and

aggregates.

Figure 2.2 is a C program that contains aliasing due to pointer variables. We

can mentally analyze this program and claim that the de�nition at statement

S7 must be to the variable a, since at statement S3, the variable pointsToOne

is assigned the address of a, and this assignment is not later overwritten. We

can also assert a slightly weaker claim that the de�nition at statement S8 may

either be to variable a or to variable b. This claim is weaker because control-�ow

ambiguity forces us to consider the possibility of either de�nition of pointer variable

10

int a;

int *passedToFunc;

S1 a = 1;

S2 passedToFunc = &a;

S3 foo(passedToFunc);

S4 if(*passedToFunc) {

S5 ...

} else {

S6 ...

}

Figure 2.3: May/must issues that arise because of side-e�ects.

pointsToTwo (at statements S5 and S6). For any statement that de�nes or uses

variables we can ask two questions: 1) what variables must be de�ned (or used)

when executing this statement, and 2) what variables may be de�ned (or used)

when executing this statement. Many data-�ow analyses will require answers to

one or both of these questions at all program points. For example, to determine

what de�nitions to kill reaching de�nitions requires the must de�nitions at each

statement. A reaching de�nitions analyzer determining what to kill at statement

S8 will be unable to kill the de�nitions from statements S1 and S2 since it has no

must de�nition to the variables de�ned at these statements. On the other hand,

since the pointer variable pointsToOne must point at variable a, statement S7 will

be able to kill the de�nition of variable a (in statement S1).

Figure 2.3 shows how may/must issues can arise due to side-e�ects. It may be

the case that the value of the variable a is modi�ed by the call to the function foo at

S3, since its address is passed. Since the value of a may be changed, a conservative

assumption is that the variable used at statement S4 may be a. On the other hand,

if a particularly good side-e�ect analysis were run, it might recognize that under

no execution of the function foo will the value being pointed at by its argument

change. In which case the only de�nition of the variable a to reach S4 would be

11

struct tuple {int val1, int val2};

int *tuplePtr1, *tuplePtr2,

*tuplePtrWhole;

S1 tuple pairA(10, 20);

S2 tuple pairB(10, 20);

S3 tuplePtr1 = &pairA.val1;

S4 if(rand() > .5) {

S5 tuplePtr2 = &pairA.val2;

} else {

S6 tuplePtr2 = &pairB.val2;

}

S7 tuplePtrWhole = &tuple;

S8 *tuplePtr1 = ...;

S9 *tuplePtr2 = ...;

S10 *tuplePtrWhole = ...;

Figure 2.4: May/must issues that arise because of aggregates.

from S1. Given this fact, and that the assignment at S1 sets a to 1, an optimizer

could safely remove the false branch of the if statement.

Figure 2.4 illustrates may/must behavior that arises due to aggregates. The

variables tuplePtr1 and tuplePtr2 point to individual elements of a larger tuple

structure. At statement S8 the variable that must be de�ned is the individual

element pairA.val1. However, at statement S9 the variable that is de�ned may

be one of {pairA.val1, pairB.val2}. On statement S7 the variables that must

be de�ned are all the elements in pair and thus the must set is {pairA.val1,

pairA.val2}.

May and must behavior is not limited to may and must variable use and de�ni-

tion. Unresolved control �ow within a single statement can bring about may/must

behavior for expression generation. For example in the C statement: a = ((b ==

test) ? c : d), c and d are may expressions while the assignment is a must

expression. Aliasing due to pointers can also a�ect expression generation. The

12

may/must sets of expressions generated by the syntax: *x + *y, is dependent

on what *x and *y may and must point to. Analyses such as available expres-

sions require information about what expressions may and must be generated at a

statement.

An early edition of the dragon book [8], which is a compiler textbook, has a

section describing how data-�ow analyses can be implemented so as to make use of

pointer information. However, this book does not describe how to automatically

dertermine when may or must variants should be used within the implementation

of transfer functions. The goal of may/must analysis is to do this.

13

Chapter 3

Using the DFAGen Tool

Algorithmically determining when to use may versus must information in a trans-

fer function necessitates a formal speci�cation of the transfer functions. Transfer

functions in DFAGen are de�ned using DFAGen's domain speci�c data-�ow analy-

sis language. This chapter describes this language and the tool which uses it. This

chapter also describes how the DFAGen tool can be targeted to generate code for

various compiler infrastructures.

Speci�cally, this chapter 1) describes the DFAGen tool's architecture, 2) elab-

orates on the class of data-�ow problems expressible within DFAGen, 3) presents

the analysis speci�cation language, 4) illustrates how prede�ned sets enable exten-

sibility and reuse between analysis speci�cations, 5) describes type mappings, 6)

discusses how the DFAGen tool is targeted for use within a compiler infrastructure,

and 7) describes how the tool is invoked from the command line.

3.1 Architecture

Figure 3.1 illustrates DFAGen's input, output, and phases. The DFAGen tool

is passed a set of input �les that contain analysis speci�cations, prede�ned set

de�nitions, and type mappings. The code generation component uses template

�les to guide code generation. The generated code is a set of source �les intended

14

Parsing
Type inference
and checking

May/must
analysis

Analysis implementation

Compiler infrastructure

1

2

Template Files

1 Abstract Syntax Tree

GEN/KILL ASTs annotated with may/must tagging3

GEN/KILL ASTs annotated with type information2

3

DFAGen ToolInput files

Code
Generation

Analysis specifications

Predefined set
definitions

Type mappings

Figure 3.1: Architecture of DFAGen: Input �les are passed to the tool, the tool
undergoes a series of phases, transforming an abstraction of the analysis (labeled
on the edges), to eventually output a series of source �les that can be linked against
a compiler infrastructure to include the analysis. The code generation phase uses
template �les to direct its output.

Speci�cation ⇒ Structure∗

Structure ⇒ AnalysisSpec
Prede�nedSetDef
TypeMapping

Figure 3.2: Grammar for input �les. The grammars for the AnalysisSpec, Pre-
de�nedSetDef, and TypeMapping nonterminals are illustrated in Figures 3.3, 3.6,
and 3.9.

to be linked with a compiler infrastructure.

The speci�cation for each of these entities: analysis speci�cations, prede�ned

set de�nitions, and type mappings, are represented separately entities in the DFA-

Gen input language. Figure 3.2 shows the grammar for this language. Di�erent

users will be concerned with di�erent structures. We envision three types of DFA-

Gen tool users:

1. Analysis writers will want to use DFAGen to specify data-�ow analyses.

DFAGen is structured so that the analysis speci�cation is not tied to a

15

particular compiler infrastructure. Users who write analyses need to know

DFAGen's analysis speci�cation language, outlined in Chapter 3.3, but do

not necessarily need to know the details regarding type mappings or how

prede�ned sets are de�ned, provided these structures have previously been

de�ned.

2. Compiler writers will want to retarget DFAGen so that it is able to generate

data-�ow analyses for use within their compiler infrastructure. Currently,

we target the tool to the OpenAnalysis toolkit [37]; however, by changing

template �les as outlined in Chapter 3.6, the tool can be retargeted to work

with other compiler infrastructures.

3. Some users may already have DFAGen targeted to generate code for use with

their compiler, but will need to create new prede�ned set de�nitions and type

mappings to specify new analyses. Chapter 3.4 describes prede�ned sets in

more detail; Chapter 3.5 describes type mappings.

3.2 The Class of Expressible Analyses

Currently, the DFAGen tool generates unidirectional, intraprocedural data-�ow

analyzers for analyses that satisfy certain constraints. These constraints are that

the data-�ow value lattice is of �nite height (although in�nite width is allowed),

the domain of the data-�ow values must contain sets of atomic data-�ow facts, the

meet operation is restricted to union or intersection, and the transfer function is

in one of the following formats:

• out[s] = f(s, in) = gen[s]∪(in−kill[s]) for forward, locally separable analyses

• in[s] = f(s, out) = gen[s] ∪ (out − kill[s]) for backward, locally separable

analyses

16

• out = f(s, in) = gen[s, in]∪(in−kill[s, in]) for forward, nonlocally separable

analyses

• in = f(s, out) = gen[s, out] ∪ (out − kill[s, out]) for backward, nonlocally

separable analyses

where the gen and kill sets can be expressed as a set expression consisting of

prede�ned sets, set operations, sets de�ned with set builder notation, and the in

or out set.

Atomic data-�ow facts are facts that do not intersect with any other data-�ow

facts. For example, when the universal set of data-�ow facts is the domain of

variables, there can be no variable that represents the aggregate of several other

variables in that domain. To represent an aggregate structure, a data-�ow set must

either consist of several elements that represent disjoint substructures, or contain

a single element representing the whole aggregate structure. This condition is

required to enable the use of set operations in the meet and transfer functions.

This condition has an impact on what pointer analysis, or alias analysis algorithms,

can be used to create the may and must variants of prede�ned sets. For example,

pointer analysis algorithms that result in the mapping of memory references to

possibly overlapping location abstractions [41] do not satisfy the condition.

The assumed transfer function formats enable the speci�cation of both sepa-

rable [32] and nonseparable [34] analyses. Separable analyses are also called in-

dependent attribute analyses [29]. Nonseparable analyses are those that have gen

and kill sets de�ned in terms of the in or out parameter passed to f .

Common examples of locally separable problems are liveness, reaching de�ni-

tions, and available expressions. Examples of nonseparable analyses are constant

propagation and vary and useful analysis [21, 26]. Vary and useful analysis are

used by activity analysis, an analysis used by automatic di�erentiation software

17

AnalysisSpec ⇒ Analysis : id
meet :

(union | intersection)
flowtype :

(id | id isbounded)
direction :

(forward |backward)
style : (may |must)
(gen[id] : |gen[id, id] :) Set
(kill[id] : |kill[id, id] :) Set
initial : Set

Set ⇒ id[id] |BuildSet |Expr | emptySet
Expr ⇒ Expr Op Expr | Set
Cond ⇒ Expr CondOp Cond |Expr

Op ⇒ union | intersection |difference |
CondOp ⇒ and |or | subset | superset |

equal |not equal |proper subset |
proper superset

BuildSet ⇒ {id : Cond}

Figure 3.3: Grammar for analysis, gen, and kill set de�nition.

to determine what variables contribute to the evaluation of a dependent variable,

given a set of independent variables. Constant propagation is an example of a

nonseparable analysis, but it is an analysis that the speci�cation language in the

DFAGen tool is unable to express. Constant propagation is not expressible because

its transfer function speci�cation requires the evaluation of an expression based on

the incoming data-�ow set.

3.3 DFAGen Analysis Speci�cation Language

When the DFAGen tool is invoked, it is passed one or more �les. Each �le contains

one or more analysis speci�cation(s), prede�ned set de�nitions, and type mappings.

This section presents the analysis speci�cations.

Figure 3.3 shows the grammar for analysis speci�cation. The analysis spec-

18

Analysis: ReachingDefinitions

meet: union

flowvalue: stmt

direction: forward

style: may

gen{s]:

{s | defs[s] != empty}

kill[s]:

{t | defs[t] <= defs{s]}

Figure 3.4: DFAGen speci�cation for reaching de�nitions. Note that <= is inter-
preted as a subset operator.

i�cation includes a set of properties, input values, and transfer functions. The

properties include the meet operation, data-�ow value element type, analysis di-

rection, and analysis style (may or must), and optionally whether there is a bound

on the number of possible data-�ow values. If there is such a bound, then for anal-

ysis e�ciency, generated implementations will use bit-vector sets to implement the

data-�ow sets.

The initial prede�ned set indicates how to populate the out/in set for the

entry/exit node in a forward/backward analysis, which is required for many non-

separable analyses. If no initial value is speci�ed then the empty set is used as a

default.

Transfer functions are speci�ed by assigning the gen and kill properties to

set expressions consisting of prede�ned set references and set operations. Set op-

erations include union, intersection, difference, and set constructors that

build sets consisting of all elements where a conditional expression holds. Condi-

tional expressions are speci�ed in terms of conditional operations such as subset,

properSubset, ==, and logical operators such as and, or, and not.

Figure 3.4 shows an example speci�cation for reaching de�nitions. Note how

similar this speci�cation is to those seen in compiler textbooks. Each property

19

Analysis: Vary

meet: union

flowvalue: variable

direction: forward

style: may

gen[s, IN]:

{x | (x in defs[s]) and

(IN intersect uses[s]) != empty}

kill[s]:

defs[s]

initial: independents

Figure 3.5: Vary analysis, a nonlocally separable analysis.

is speci�ed with a simple keyword, for example, the meet operation for reach-

ing de�nitions is speci�ed with the union keyword. In the example, the gen[s]

and kill[s] expressions reference the prede�ned set defs[s], which is the set of

de�nitions generated at statement s.

Figure 3.5 shows an example speci�cation for vary analysis. Vary analysis is

nonlocally separable and as such the gen equation is parameterized by the incom-

ing set (i.e. in set for this analysis). Note that due to the use of the initial

property in the speci�cation, the out set for the entry node in the control-�ow

graph will be set to the prede�ned set independents. The independents set is the

set of input variables that the vary analysis should use when determining transitive

dependence.

3.4 Prede�ned Set De�nitions

Prede�ned sets map program entities such as statements, expressions, or variables

to may and must sets of other program entities that are atomic. The may and must

sets for a prede�ned-set are called its variants. These sets are prede�ned in the

sense that they are computed before applying the iterative solver on the data-�ow

20

Prede�nedSetDef⇒

predefined : id[id]
description : line
argument : id id
CalculatedSet | ImportedSet

CalculatedSet⇒

calculates :
(id | set of id) , id, id

maycode :
code

end
mustcode :

code
end

ImportedSet⇒ imports :
(id | set of id) , (id |none), (id |none)

Figure 3.6: Grammar for prede�ned set de�nition. The �rst id in the argument
property speci�es the type of element, the second speci�es the identi�er of a vari-
able used to index variables in the set. The �rst and second id's in the calculates
and imports properties specify a data-�ow value type, the third and fourth are
identi�ers for variables in the implementation where the may and must variants
should be stored. For the calculates property these may be set to none which spec-
i�es that there is not a may or not a must variant. The code sections under the
maycode/mustcode properties assign values to these variables respectively. The
non-terminal value line (in the description property) is any text up to a newline.

predefined: vary[s]

description: Results from vary analysis

argument: stmt s

imports: setof variable, mayVary, none

Figure 3.7: Prede�ned set de�nition to import results from vary analysis

analysis equations. When a prede�ned set is referenced in a data-�ow equation,

DFAGen is able to determine whether to use the may or must variant in the gener-

ated code by performing may/must analysis. Prede�ned sets are used to abstract

compiler infrastructure speci�c details away from the compiler-agnostic analysis

21

speci�cation. Figure 3.6 shows the grammar for how users de�ne prede�ned sets

in DFAGen.

There are two types of prede�ned sets: imported sets and calculated sets.

Imported sets are passed to the analysis before it is invoked. When an analysis

makes use of an imported set, it is the responsibility of the user invoking the

analysis to construct and pass the set in.

Imported sets are useful for passing the results of one analysis (including a

DFAGen generated analysis) to another. For example activity analysis makes use

of the results of vary analysis and useful analysis. Figure 3.7 shows a prede�ned set

de�nition for the imported set vary. This de�nition does not supply an identi�er

for the must variant of the set, since this is the case the set vary will not have a

must variant.

predefined: defs[s]

description: Set of variables defined at a given statement.

argument: stmt s

calculates: set of var, mStmt2MayDefMap, mStmt2MustDefMap

maycode:

/* C++ code that generates a map (mStmt2MayDefMap) of

statements to may definitions */

mustcode:

/* C++ code that generates a map (mStmt2MustDefMap) of

statements to must definitions */

end

Figure 3.8: Prede�ned set de�nition for defs[s].

Constructed sets, for a particular speci�cation, are computed by the generated

analyzer. The analyzer uses the code speci�ed in the maycode and mustcode prop-

erties of the prede�ned set de�nition. The code in these properties are compiler

speci�c and have access to the alias and side-e�ect analysis results that will be

passed to the analyzer. The C code commented out in Figure 3.8 uses this in-

22

TypeMapping ⇒ type : id
impl_type : line
dumpcode :

code
end

Figure 3.9: Grammar for type mappings.

formation to generate may and must def and use sets for all statements in the

program. Speci�cally, the code uses must point-to and may point-to information

from the alias analysis results to build the may and must sets.

Common prede�ned sets include �variables de�ned at statement� (defs[s]),

�variables used at statement� (uses[s]), and �expressions generated in a state-

ment� (exprs[s]).

3.5 Type Mappings

Type mappings map the types in the analysis speci�cation language to implemen-

tation types in the compiler infrastructure. Speci�cation types are used to specify

the flowvalue property in analysis speci�cations, the type of the argument for

prede�ned sets, and the type of the prede�ned set itself, which is speci�ed as the

calculates property in a prede�ned set de�nition. Implementation types are the

types used in generated code. For example, a speci�cation type such as variable

would map to an implementation type that is the class or structure the targeted

infrastructure uses to represent variables.

The following example shows a type mapping for variables in our current pro-

totype of the DFAGen tool:

type: var

impl_type: Alias::AliasTag

dumpcode:

iter->current().dump(os, *mIR, aliasResults);

end

23

Table 3.1: Macros recognized by DFAGen code generator. Language speci�c
macros currently output C++ code. Targeting these macros to a di�erent lan-
guage requires modifying the code-generator.

Language independent macros
Macro Description

NAME name of the analysis
SMALL name of the analysis in lower-case letters
MEET meet operator (union or intersect)
FLOWTYPE �ow-type of the analysis
DIRECTION direction of the analysis (forward/backward)
STYLE style of the analysis (may/must)

Language speci�c macros
Macro Description

GENSETCODE code to calculate the gen set for a given state-
ment

KILLSETCODE code to calculate the kill set for a given state-
ment

PREDEF_SET_DECLS code to declare variables that will contain pre-
de�ned sets

INPUT_SET_PARAMS code that lists the input sets that are passed
into the analysis as parameters

PREDEF_SET_CODE code to calculate the values included in a pre-
de�ned set

DUMPCODE code to output the current state of the analysis
CONTAINER type of container to store data-�ow values in
ITERATOR type of iterator object to traverse objects in a

container of data-�ow values
ACCESS returns `.' (quotes not included) if the data-�ow

type is not of a pointer type otherwise returns
-> (C++ arrow token)

The grammar for type mappings is quite simple and is given in Figure 3.9. The

dumpcode property speci�es compiler speci�c code for outputting an instance of

the implementation type.

24

3.6 Targeting DFAGen for use in a Compiler In-

frastructure

Our prototype of the DFAGen tool currently generates source �les to be inte-

grated with the OpenAnalysis framework � a toolkit for writing representation-

independent analyses [37]. Analyses generated by DFAGen can be used within the

Open64 or ROSE [31] compiler frameworks. However, DFAGen o�ers a mechanism

for retargeting generated analyzers so that the operate within other compiler in-

frastructures. Retargeting involves modifying the code snippets within prede�ned

set de�nitions, type mappings, and the code generation phase of the DFAGen

tool. All other phases in DFAGen (parsing, type checking, may/must analysis) are

independent and can be directly reused with other compiler infrastructures.

To make updating the code generation phase of the DFAGen tool easier, the

tool has been designed so that the infrastructure-speci�c pieces are factored out

into external template �les. Retargeting is then possible by modifying these easily

identi�able components.

Template �les are text �les that direct the code generation process. The tem-

plate �les are written in the same language as the generated analyzers, except they

include a header and contain macros that indicate where analysis-speci�c sections

of code should be inserted.

Since DFAGen currently outputs analyzers for integration with C++, it expects

template �les to have an extension of: {.c, .cpp, .h, .hpp, .C, .H, .cc, .hh, .cxx,

.hxx}, additional extensions can be added by modifying a variable in the code

generator. For each template �le, the code generator will output a source �le.

The header of a template �le is in the format:

template: id

directory: id

begin

25

where id is a string of text, specifying the value of the property, terminated by

a new-line character. The template: property speci�es the name of the associated

�le to generate. The directory: property speci�es what directory the generate

�le should be output to. This directory will be relative to the path that DFAGen

is invoked from.

After the begin token, the remainder of the �le consists of source code. The

code generator will output a copy of this code but �nd and replace special sections

of text, called template macros.

Template macros are always formatted as a keyword in all capital letters, pre-

�xed by a double quote and period and su�xed by a period and double quote 1.

For example: �.NAME.", is a macro that the code generator recognizes and will re-

place with the name of the analysis. Macros can be used anywhere in the template

�le, including its header. Table 3.1 shows the macros that DFAGen recognizes.

The GENSETCODE and KILLSETCODE macros are replaced with code that cal-

culates the set of generated and set of killed data-�ow values for a statement,

respectively. DFAGen does not currently provide a way for users to write their

own macros, because the actions performed to replace macros are written directly

into DFAGen's code generator. Users can change or add macros by modifying

DFAGen's source code. This will likely be necessary if the output analyzer is to

be in a language other than C++.

In summary, DFAGen can be retargeted for use with di�erent compiler in-

frastructures through clearly identi�ed code modi�cations in the prede�ned set

1Double quotes are used because most IDEs and source-code editors for code will syntax

highlight quoted text making it more apparent.

26

include: basic.dfa

analysis: ReachingDefs

meet: union

direction: forward

flowtype: stmt

style: may

gen[s]: { s | defs[s] !=empty }

kill[s]: { t | defs[t] <= defs[s] }

Figure 3.10: DFAGen speci�cation �le for reaching de�nitions. The include direc-
tive at the top of the �le refers to a �le (included with DFAGen) where the def

prede�ned set and stmt type mapping are de�ned.

de�nitions, type mappings, and code generation template �les.

3.7 Invocation and Use

This section describes how the DFAGen tool is executed from the command line

and overviews how generated analyzers integrate with the OpenAnalysis toolkit.

The current prototype of the tool is invoked on a command line as follows:

dfagen.py <filename>

where �lename is some speci�cation �le (typically ending in .dfa). Figure 3.10

gives an example of such a �le. The tool parses and analyzes speci�cations and if

there are no errors outputs source �les containing the generated analyzer.

When errors do occur an appropriate error message is output to stderr. Er-

rors fall into four categories: 1) syntax errors, 2) speci�cation errors, 3) typing

error, and 4) may/must errors. Syntax errors occur when input �les do not follow

the grammars in Figures 3.2, 3.3, 3.6, or 3.9. Speci�cations errors occur when

a required property of an analysis speci�cation, prede�ned set de�nition, or type

mapping is missing or duplicated, for example, if the user speci�es an analysis and

27

forgets to supply a direction. Typing errors occur when the left and right operand

types of an operation do not agree. May/must errors occur when may/must anal-

ysis determines that the variant required for a set reference is not one that is

supplied. For example, in a non-locally separable analysis the set x for the gen[s,

x] and kill[s, x] equations is always a may set if the style of the analysis is may

and a must set if the style of the analysis is must. If may/must analysis determines

that a reference to x is a reference to a variant that does not match the analysis's

style then this is an error and is reported as such.

When the provided speci�cation �le contains no errors, generated analyzer

source �les will be output to the directory the tool was invoked from. In order for

these �les to be of any use they must be integrated with the compiler for which

DFAGen was targeted. This typically involves adding these �les to the compiler's

build system and recompiling it. This is the case for our current targeting to the

OpenAnalysis toolkit.

Our targeting has generated analyzers follow the design philosophy of Open-

Analysis (OA). Like other OA analyses DFAGen generated analyses consist of 1)

a manager class that performs the analysis, 2) a results class that contains the

results of the analysis, 3) and IR interface class that contains queries a compiler

infrastructure dependent implementation must satisfy. Generated manager classes

have a method that when called performs the analysis. This method is passed a

program's control �ow graph, alias analysis results, and interprocedural side-e�ect

analysis results.

OpenAnalysis uses analysis-speci�c IR interface classes to ensure that analyses

are representation independent. That is the analysis does not directly examine or

manipulate a program's intermediate representation (IR). An intermediate repre-

sentation is a data-structures that a compiler constructs to internally represent a

28

program.

When the manager classes requires information from an intermediate repre-

sentation it makes calls to the methods of an IR interface implementation object.

IR interface implementations are classes that derive from IR interfaces and �ll in

the behavior of the functions that IR interfaces declare but do not de�ne. The

OpenAnalysis toolkit does not supply IR interface implementations, rather it is

the responsibility of a compiler writer who wishes to use an OA analysis to write

these. Currently there are two projects that have such classes to interface com-

pilers to OpenAnalysis: UseOA-Rose, which integrates OpenAnalysis with the

ROSE compiler, and UseOA-Open64 which likewise integrates OpenAnalysis with

the Open64 compiler. We have only used DFAGen generated analyzers with the

UseOA-ROSE package.

More detail about OpenAnalysis and UseOA-Rose can be found by looking at

their documentation and websites [37, 3]. The DFAGen website [1] includes links

to these projects. A README supplied with the DFAGen tool describes, in detail,

how to compile a DFAGen generated analysis with OpenAnalysis and how to use

this analysis within the UseOA-Rose package.

29

Chapter 4

The DFAGen Tool Implementation

The previous chapter presented how to use the DFAGEn tool in terms of its input

and output, as well as how the output can be targeted to work with various compiler

infrastructures. This chapter elaborates on the internals of the tool as illustrated

in the four phases in Figure 3.1. We summarize these four phases as follows:

• Parsing: DFAGen constructs an abstract syntax tree containing the analysis

speci�cations, prede�ned set de�nitions, and type mappings.

• Type inference and checking: Based on the declared data-�ow set types

for the prede�ned sets, DFAGen infers the type of the gen and kill set

speci�cations and ensures that the inferred type matches the declared type

for the analysis. The type information is also used to determine the domain

of possible values in a set builder.

• May/must analysis: DFAGen automatically determines may/must prede-

�ned set usage in the gen and kill equations. The inference of may/must is

possible due to DFAGen's declarative, set-based speci�cation language, and

its simple semantics.

• Code generation: DFAGen generates the data-�ow analysis implementation

30

for use in the target infrastructure. For the current prototype this infras-

tructure is OpenAnalysis [37] combined with ROSE [4].

The parsing stage is straightforward. The following sections describe the type

inference and checking phase, the may/must analysis phase, and the code genera-

tion phase in detail.

4.1 Type Inference and Checking

The type inference and checking phase determines the domain of values to iterate

over when constructing a set speci�ed with set builder notation and ensures that

the speci�ed data-�ow equations use the speci�cation language types consistently.

The current DFAGen speci�cation language prototype includes the following types:

statements, expressions, variables, and sets of these types. The possible types

can be extended by passing new type implementation mappings to DFAGen (see

Chapter 3.5). The speci�cation language currently assumes that only one type

of data-�ow information is being propagated and that type is declared in the

speci�cation with the flowvalue label. The parsing phase of DFAGen generates

an Abstract Syntax Tree (AST) for the whole analysis speci�cation including the

gen and kill equations. All leaf nodes in the AST are guaranteed to be references

to either prede�ned sets or the empty set. We can directly infer the types for

prede�ned set reference nodes from their de�nitions, and the empty set is assumed

to have the same type as any set for which it is involved in an operation. The type

for the gen and kill sets are inferred with a bottom-up pass on the abstract syntax

tree representation of the data-�ow analysis and checked against the speci�ed �ow-

value type. Type checks are also performed on the operands to all of the set and

Boolean operations. Figure 4.1 shows the results of applying type inference on the

example in Figure 4.2.

31

Figure 4.1: Set element type checking for reaching de�nitions. The type checker
propagates type information from the leaves up the tree.

include: basic.dfa

analysis: ReachingDefs

meet: union

direction: forward

flowtype: stmt

style: may

gen[s]: { s | defs[s] !=empty }

kill[s]: { t | defs[t] <= defs[s] }

Figure 4.2: DFAGen speci�cation �le for reaching de�nitions. The include direc-
tive at the top of the �le refers to a �le (included with DFAGen) where the def

prede�ned set and stmt type mapping are de�ned.

Another important motivation for type inference is to determine the domain

of values on which to check the set builder notation condition. Figure 4.3 shows

an example speci�cation where DFAGen must determine the domain of values

the variable x should take when testing the condition (x in def[s]) and (IN &

uses[s]) != empty. The general approach is to determine the type of the set-

builder index and also determine whether the set-builder index is bound to the

32

Analysis: Vary

meet: union

flowvalue: variable

direction: forward

style: may

gen[s, IN]:

{x | (x in defs[s]) and

(IN intersect uses[s]) != empty}

kill[s]:

defs[s]

initial: independents

Figure 4.3: Vary analysis, a nonlocally separable analysis.

context of the speci�cation or is a free variable. The set-builder index could play

three possible roles. The the following examples provide examples of each role:

1. gen[s] = {s | defs[s] != empty}

2. gen[s] = {x | x in defs[s] and ...}

3. kill[s] = {t | defs[t] <= defs[s]}

In the �rst example, the set-builder index s represents the statement itself,

which is implied by the use of s as the parameter to the gen set. If the condition

(e.g., defs[s] != empty) evaluates to true then gen[s] will be assigned to a set

consisting only of the statement s, otherwise it will be assigned to the empty

set. In the second example, the domain of the variable x is inferred to be the set

defs[s] due to the in expression. In the third example, the set builder index t

is not bound to the current statement or to a speci�c set with the use of the in

operation and, therefore, the set builder index is a free variable. In this case the

domain of t can be assumed to be the set of all statements. However, since the

current DFAGen implementation uses a transfer function, where the kill[s] set

33

items are removed from the set of incoming values, the code generator only needs

to iterate over the incoming values.

4.2 May/Must Analysis

Once the type checking phase is �nished, may/must analysis occurs. May/must

analysis determines whether the may or must variant of a prede�ned set reference

should be used. May/must analysis is one of the main contributions of this research.

May/must analysis traverses the gen and kill equation abstract syntax trees in

a top-down manner tagging nodes as either upper or lower bounded. A node tagged

as upper / lower requires its child nodes be tagged in a manner such that the

generated code will produce the largest/smallest possible value upon completion

of the operation. The largest and smallest possible values depend on the partial

ordering induced by the lattice for the operators type. For example, if the operator

returns a Boolean type, then false is partially ordered before, or smaller, than

true. This is because a set constructor will return a larger set if its condition

conservatively favors true. For operations that return sets, may/must analysis uses

the subset equal operator to induce a partial ordering (i.e., a lower bound indicates

the smallest possible set and an upper bound indicates the largest possible set). A

reference to a prede�ned set tagged as upper/lower indicates that the may/must

implementation variant should be used in the generated implementation.

The may/must analysis tags the root nodes in gen and kill equation ASTs

based on the style of the speci�ed data-�ow analysis (may or must) and the meet

operator as shown in Table 4.1. The may/must data-�ow analysis assumes that

the transfer function should return as conservatively large/small a set as possible,

thus the node for the gen equation is tagged upper/lower, and the node for the

kill equation is tagged lower/upper. Given this initial assignment of upper and

34

Algorithm MayMust(n, s, eqtn)

Input: n - Root node of gen/kill equation AST

s - Specifies whether the analysis is

`may' or `must'

m - Specifies the meet operator of the

analysis

Postcondition: All set reference nodes are

tagged `may' or `must'

MayMustRecur(n, I[s, m, type(n)])

Algorithm MayMustRecur(n)

Input: n - Subtree node

Let b be the bound on this node (upper of lower)

if n is a set reference node then

tag the reference `may' if b is `upper'

tag the reference `must' if b is `lower'

else

if n is an operator node then

tag children according to values in P[n, b]

else

tag children as b

endif

recursively call MayMustRecur on children

endif

}

Figure 4.4: Psuedocode for the may/must analysis algorithm. I is Table 4.1, which
speci�es the initial bound for the analysis. P is Table 4.2, which speci�es how
to propagate upper/lower tags. Table I is indexed by an analysis style and meet
operator. Table P is indexed by a node type and whether the node is lower or
upper.

35

Table 4.1: In our current implementation of DFAGen the root nodes of the gen

and kill equation ASTs are assigned values from this table.
Meet Style gen kill

union may upper lower
intersection must upper lower

Table 4.2: May/must analysis tagging values. Each row shows an operator and
based on that operator's tag, how the operands are tagged during may/must anal-
ysis. The operator's tag is shown in the two main columns.

Upper bound Lower bound

lhs rhs lhs rhs
di�erence upper lower lower upper
union upper upper lower lower

intersection upper upper lower lower

subset lower upper upper lower
superset upper lower lower upper

proper subset lower upper upper lower
proper superset upper lower lower upper

not equal to empty set upper - lower -

and upper upper lower lower
or upper upper lower lower
not lower - upper -

lower tags to the root nodes of the gen[s] and kill[s] ASTs, the remainder of

the may/must analysis can be implemented using a recursive algorithm that visits

the gen and kill tree nodes in a pre-order traversal and tags nodes by looking

up values in a table. While at a given node, the determination of tags for the

child nodes is based on the current node's tag and the operation the current node

represents. Figure 4.4 shows this algorithm. Table 4.2 shows how upper and lower

bound tags are propagated to left and right children for various set operations (i.e.,

rows) based on how the node for that set operation is tagged (i.e., columns).

To derive the contents of Table 4.2, we show how a partial ordering can be de-

termined for the output of most operators in the DFAGen speci�cation language

36

given all possible assignments of upper and lower to its operands. When a partial

ordering of operator output does not result in a single minimal and single maximal

tagging, then it is necessary to replace the subtree for that operator with a equiva-

lent expression that includes operators where such an ordering is possible. If users

would like to add operators to the speci�cation language, a similar determination

of how to tag that operator's children would be necessary.

We classify the operators in the DFAGen speci�cation language into three cat-

egories:

1. Set expression operators: set× set→ set

2. Set conditional operators: set× set→ bool

3. Boolean conditional operators: bool × bool→ bool

The set expression operators are those in the Op production of the grammar in

Figure 3.3, the conditional and Boolean conditional operators are in the CondOp

production. The next three sections establish partial orderings for the output of

these operators.

4.2.1 Establishing Ordering of Set Expression Operators

Set expression operators have sets or set expressions as both their left and right

operand. May/must analysis tags these operands as either upper or lower. There

are four permutations of upper/lower tags that can be assigned to a binary opera-

tor's operands. We establish partial orderings of these permutations and organize

them into one lattice per operator. These lattices have unique top and bottom

permutations, which when applied to the operator node's children will generate

the upper and lower bound sets respectively.

37

au ∩ bu

al ∩ bu au ∩ bl

al ∩ bl

al ⊂ bu

al ⊂ bl au ⊂ bu

au ⊂ bl u

ua ∧ bu

al ∧ bu au ∧ bl

al ∧ bl

au − bl

al − bl au − bu

al − bu

au ∪ bu

al ∪ bu au ∪ bl

al ∪ bl

au ⊃ bl

al ⊃ bl au ⊃ bu

al ⊃ b

au ∨ bu

al ∨ bu au ∨ bl

al ∨ bl

Figure 4.5: Lattices ordering how children of DFAGen speci�cation language op-
erators are tagged. Each lattice corresponds to an operator in the speci�cation
language, a and b represent left and right operands for each operator, and the
subscripts l and u correspond to whether the operand is tagged as lower or upper.

We use the notation that the left side of an operator is either some lower bound

set al, or some upper bound set au, and that the right side is either some lower

bound set bl or some upper bound set bu. We establish lattices for the di�erence,

union, and intersection operators. The lattices are shown graphically in Figure 4.5.

In the following proofs the partial ordering operator (represented as ≤) is subset

equals.

First we examine di�erence. Given two sets u and l, where u is an upper bound

set and l is a lower bound set such that l ≤ u, we know the following relationships

38

hold for any set x:

x− u ≤ x− l (4.1)

l − x ≤ u− x (4.2)

The left child operand for the di�erence operator can be either al or au, where

al ≤ au. A similar relationship holds for the right child operand, bl ≤ bu. Based on

those relationships and Equations 4.1 and 4.2, the partial ordering in Equations 4.3

and 4.4 holds between the four possible operand variants for the di�erence operator.

al − bu ≤ au − bu ≤ au − bl (4.3)

al − bu ≤ al − bl ≤ au − bl (4.4)

Now we will establish an ordering on union and intersection. Given two sets u

and l where u is an upper bound set and l is a lower bound set such that l ≤ u,

we know that given any set x:

(x ∪ l) ≤ (x ∪ u) (4.5)

(l ∪ x) ≤ (u ∪ x) (4.6)

The same holds true for intersection:

(x ∩ l) ≤ (x ∩ u) (4.7)

(l ∩ x) ≤ (u ∩ x) (4.8)

Similar to di�erence we establish a partial ordering for union and intersection.

The ordering for union is:

(al ∪ bl) ≤ (al ∪ bu) ≤ (au ∪ bu) (4.9)

39

(al ∪ bl) ≤ (au ∪ bl) ≤ (au ∪ bu) (4.10)

The ordering for intersection is the same.

4.2.2 Establishing Ordering of Set Conditional Operators

Conditional operators are used within the context of set-builder expressions. The

upper bound of a set-builder expression occurs when the condition is evaluated

true as many times as possible, the lower-bound occurs when the condition is

evaluated as false as many times as possible. The set conditional operators

include subset, superset, proper subset, and proper superset, and are shown

in the CondOp production of Figure 3.3.

Similar to the set operators, we establish a partial ordering on all possible

lower/upper permutations for the left and right operands for conditional opera-

tors. The result of a set conditional operator is a Boolean value. We order these

values as false ≤ true.

To show the lattice for the subset operator requires showing that the following

hold:

(au ⊆ bl) ≤ (al ⊆ bl) ≤ (al ⊆ bu) (4.11)

(au ⊆ bl) ≤ (au ⊆ bu) ≤ (al ⊆ bu) (4.12)

To see that these equations do indeed hold note that since al ⊆ au, we know

that given some set x:

(au ⊆ x)⇒ (al ⊆ x) (4.13)

(x ⊆ bl)⇒ (x ⊆ bu) (4.14)

40

It is the case that (au ⊆ x) ≤ (al ⊆ x). This is the case because the only

possible way for it not to hold would be if (au ⊆ x) = true and (al ⊆ x) = false,

which would contradict Equation 4.13.

It is also the case that (x ⊆ bl) ≤ (x ⊆ bu). The only way for this not to

hold would be if (x ⊆ bl) = true and (x ⊆ bu) = false, which would contradict

Equation 4.14.

Given these facts its simple to see that Equations 4.11 and 4.12 hold.

Similar proofs can be developed for the superset, proper subset, proper superset

operators.

4.2.3 Establishing Ordering of Boolean Operators

Boolean operators are those whose left and right operands are of type bool and

whose resulting value is a bool. In DFAGen the Boolean operators are and, or,

and not. Similar to set conditional operators they are found within set-builder

AST nodes.

Let l be the result of a conditional expression tagged lower and u be the result

of the same expression tagged upper. Note that if l is true, then u must also be

true.

We assume the following orderings: false ≤ true and l ≤ u, and that:

(x and l) ≤ (x and u) (4.15)

(l and x) ≤ (u and x) (4.16)

The same holds true for the or operator:

(x or l) ≤ (x or u) (4.17)

(l or x) ≤ (u or x) (4.18)

41

Note the similarly of these facts to those used to prove the lattices for set union

and intersection. A similar process is used to prove the Figure 4.5 lattices for the

and and or operators.

4.2.4 Normalization Pass: Handling the Equality Operator

Not all operators in Figure 3.3 are analyzable for lower / upper tagging. However,

they can be normalized into equivalent expressions that may be analyzed. The set

equality and set inequality conditional operators are such operators. Prior to run-

ning may/must analysis a normalization pass of the AST occurs where all instances

of the expression (x == y) are translated into the equivalent expression: (x <= y

and y <= x). Similarly all instances of the expression (x! = y) are translated into

equivalent expression: (not (x <= y and y <= x)).

4.2.5 Non Locally-Separable Analyses and May/Must

May/must variants are calculated for all prede�ned sets, however, prede�ned sets

are not the only set structures that may appear in a gen or kill equation. Non

locally-separable analyses have gen or kill equations that are parameterized by an

incoming set. Whether the incoming set is a set of data-�ow values that must

be true or may be true is determined by the style of the analysis. It is an error

when may/must analysis tags an incoming set with a value opposite that of the

analysis's style. For, example, in a may data-�ow analysis the following de�nition

would be illegal:

gen[s, IN] = defs[s] - IN

since the set IN would be tagged must and a may analysis propagates may sets.

42

Figure 4.6: Typing prede�ned sets as may or must for reaching de�nitions.
May/must analysis propagates information from the root down.

4.2.6 Examples of May/Must Analysis

In this subsection we illustrate and describe the results of may/must analysis on the

transfer functions for two analyses: reaching de�nitions analysis and vary analysis.

Figure 4.6 illustrates how may/must analysis occurs for reaching de�nitions

(speci�ed in Figure 3.4) using the algorithm in Figure 4.4. The algorithm MayMust

is invoked on the gen and kill nodes and is passed the analysis style and the

meet operator. For reaching de�nitions the analysis style is may, and the meet

operator is union. The MayMust algorithm refers to the the values in Table 4.1 to

determine what to set the gen or kill nodes as based on these parameters. In this

example the gen set node is tagged as upper and the kill set node is tagged as

lower. The MayMust algorithm then applies the MayMustRecur algorithm on the

gen or kill child node. Algorithm MayMustRecur recursively applies itself in order

to traverse the nodes of the AST in a top-down fashion. Children of gen, kill,

and buildset nodes directly inherent the tagging value of their parents. Thus

43

Figure 4.7: Typing prede�ned sets as may or must for vary analysis.

the upper tagging of gen propagates to the buildset node and to the !=empty

operator node. Table 4.2 dictates how children of operator nodes are tagged based

o� of what the operator node is tagged as. Thus the PredefSet node in the gen

AST is tagged as upper. When set reference nodes are reached we can determine

whether the reference is to a may or must variant based on how its tagged. The

set has type may if it has an upper bound and has a type must if it has a lower

bound. Thus, the defs[s] prede�ned set reference for the gen AST has type may.

Figure 4.7 illustrates the results of may/must analysis when applied to the

transfer functions of vary analysis, which was speci�ed in Figure 3.5. Like in the

previous example the meet operator is union and the analysis style is may. A

44

major di�erence between this example and the previous is that the gen equation

refers to the incoming set IN. There is only one variant for incoming sets: the style

of the analysis. May/must analysis concludes that the references to the incoming

sets are references to the may variant, so the analysis is legal. Had the analysis

concluded otherwise there would have been an error in the speci�cation.

4.3 Code Generation

The �nal task the DFAGen tool must perform is code generation. As previously

described in Chapter 3.6 the code generator is directed by template �les. The

generator reads these �les, then outputs their contents to a generated source �le,

replacing the macros as needed. Properties speci�ed in the header of the template

�le determine the �lename for the outputted source �le as well as what directory

it will be stored in.

The PREDEF_SET_CODEmacro speci�es where the code generator will insert code

to calculate prede�ned sets. The inserted code is supplied by the user, from the

values of the maycode and mustcode properties of prede�ned set de�nitions. The

GENSETCODE and KILLSETCODEmacros specify where the gen and kill sets are to be

calculated. When one of these macros is encountered the code generator traverses

the appropriate AST in a top down fashion outputting lines of code for each node.

For every node that represents an operation (both set and boolean operations), a

temporary is instantiated, and the results of performing the operation are stored

in this temporary. Build sets iterate over a series of values, evaluate a condition,

and store the iterated value into a temporary set when the condition holds. The

values to iterate over is determined by the type inference phase.

With the current template �les including with DFAGen, constructed data-�ow

analyzers follow an iterative approach to solving data-�ow equations. That is the

45

program's control-�ow graph is traversed, and the data-�ow equations for each

visited node are evaluated, iteratively, until an answer is converged upon. The

iterative solution algorithm is part of the OpenAnalysis toolkit for which DFAGen

is currently targeted [37]. The generated analyzer takes previously generated alias

analysis results, and a control-�ow graph, as parameters. If the data-�ow type was

speci�ed as bounded, a size bound is also passed in.

The �les output by DFAGen are the analyzer's source code �les, and are meant

to be incorporated into the some compiler or compiler infrastructure (currently the

OpenAnalysis toolkit).

46

Chapter 5

Evaluation

The automatic generation of data-�ow analysis implementations entails trade-o�s

between 1) the ease of analysis speci�cation, 2) the expressibility of the speci�-

cation language, and 3) the performance of the generated implementation. The

DFAGen tool emphasizes the ease of analysis speci�cation. The ease of analysis

comes at the cost of reduced analysis expressibility. We qualitatively and experi-

mentally evaluate the DFAGen tool with respect to these three criteria.

The two experimental measures we use are source lines of code for analysis

speci�cations and execution time for the application of some data-�ow analyses to

benchmarks. We compare the lines of source code necessary to specify an analysis

with DFAGen versus the number of lines of source code (SLOC) in a previously

written, and equivalent, analysis that was created without using DFAGen. The cor-

relation between source code size and ease of implementation is imperfect, but we

combine the SLOC results with qualitative discussions about ease of use. Another

measurement compares the running times of previously written analyses against

the DFAGen generated analyzers. This measurement aims to support the claim

that DFAGen need not sacri�ce performance for ease of implementation.

47

Table 5.1: Lines of code in manual and DFAGen generated analyses.

Analysis Manual Automatic Spec Predef set Ratio of
SLOC SLOC SLOC SLOC manual:spec

Liveness 394 798 7 98 56
Reaching de�nitions 402 433 7 98 57

Vary - 482 8 106 -
Useful - 482 8 106 -

5.1 Ease of Analysis Speci�cation

We assume that there is a rough correlation between ease of use and the number

of source lines of code (SLOC) required to write a data-�ow analysis speci�cation.

Our hypothesis is that the SLOC required to specify a data-�ow analysis to DFA-

Gen is an order of magnitude smaller than the SLOC required to implement the

data-�ow analysis in the OpenAnalysis data-�ow analysis framework.

Table 5.1 presents the results of our measurements. The �Manual SLOC� col-

umn shows the SLOC for pre-existing, hand-written implementations of the live-

ness and reaching de�nitions analyses. The �Automatic SLOC� column shows the

SLOC in the data-�ow analysis implementations generated by the DFAGen tool.

We show the lines-of-code for DFAGen generated vary and useful analyses, but

since there are no previously written versions of these analyses for us to compare

against, we do not give manual SLOC numbers for these.

The implementations generated by the tool are not meant to be further modi-

�ed by the user, therefore their SLOC is not relevant to ease of use. The column

�Prede�ned set SLOC" refers to how many lines of C++ code are used to specify

the must-def, may-def, must-use, and may-use prede�ned set structures. Since

many analyses will only use the prede�ned sets included with DFAGen, and since

prede�ned sets can be shared across multiple analyses, we hypothesize that pre-

de�ned set SLOC will not play a large role in most analysis speci�cations. For

48

completeness, the SLOC for the prede�ned sets are included in the comparison of

the DFAGen tool versus a hand-coded implementation. The �Speci�cation SLOC�

column shows the SLOC in DFAGen speci�cation �le for each analysis. It is pos-

sible that a user would only need to write these seven or so lines of code to specify

a data-�ow analysis.

These results support our ease of use hypothesis because the values in the

�Speci�cation SLOC� column are more than an order of magnitude smaller than

the values in the �Manual SLOC� column. We explicitly give the ratio of the manual

SLOC to the speci�cation SLOC in the �Ratio of manual SLOC and speci�cation

SLOC� column. If we include the prede�ned set SLOC in the SLOC for DFAGen,

the ratio decreases to between 3 and 4, which indicates only a three-fold reduction

in SLOC.

Qualitatively, the strictness of the speci�cation language in DFAGen enables

users to specify data-�ow analyses using well-known set building semantics and

with the assumption that the language being analyzed contains only scalar vari-

ables. The scalar variable assumption in the speci�cation language semantics is

supported by the may/must analysis that automatically determines whether the

must or may variant of a prede�ned set should be used at each of the instantiations

of that prede�ned set in the gen and kill set speci�cations. The simple semantics of

the DFAGen speci�cation language provide support for the claim that a signi�cant

reduction in SLOC aids ease of use.

One of the motivations for creating the DFAGen tool was to enable developers

of the OpenAD automatic di�erentiation tool [2], to use it to generate data-�ow

analyses for automatic di�erentiation (such as vary and useful analysis). The de-

velopers of this tool should not have to worry about the details of analysis. Rather,

they should focus on expressing analyses to derive the necessary information in a

49

Table 5.2: Evaluations with SPEC C benchmarks.

Liveness time Reaching defs time
Benchmark SLOC automatic manual ratio automatic manual ratio

470.lbm 904 0.37 0.28 1.32 0.48 0.30 1.60
429.mcf 1,574 0.71 0.57 1.25 0.90 0.58 1.55

462.libquantum 2,605 1.21 0.99 1.22 1.14 0.73 1.56
401.bzip2 5,731 12.51 11.95 1.05 52.07 43.01 1.21
458.sjeng 10,544 9.32 8.60 1.08 16.46 11.28 1.46
456.hmmer 20,658 18.52 15.43 1.20 24.58 16.53 1.49

function to compute its derivative. DFAGen aims to make this possible.

Our threats to validity with respect to evaluating the ease of analysis speci�ca-

tion include the use of only one data-�ow analysis framework and the speci�cation

of only four analyses. It is possible that other data-�ow analysis frameworks would

require fewer lines of code to specify the code snippets in the prede�ned set de�-

nitions and type mappings. It is also possible that handwritten implementations

in other frameworks could be signi�cantly shorter.

A second hypothesis is that the execution time of an automatically generated

data-�ow analysis implementation is comparable with the hand-written data-�ow

analysis. We experimentally compare the execution time of the automatically

generated analysis implementations with handwritten implementations to examine

the validity of these hypotheses.

Table 5.2 shows the time to execute the manually implemented liveness and

reaching de�nitions analyzers on a number of benchmarks coming from the 2006

SPEC suite, and the time to analyze these benchmarks with DFAGen generated

analyzers. Currently, generated analyses take about 50% longer to execute on

these benchmarks than manual implementations.

50

5.2 Performance Evaluation

We believe that the 50% performance di�erence is due to implementation issues

that can be solved in future versions of the tool, and not due to an inherent

overhead due to the extra level of abstraction. By incorporating some simple

optimizations into the code generation phase of the DFAGen tool matching the

performance of the hand-written code is possible. For example, when the def and

use prede�ned sets are calculated, the generated code iterates over the analyzed

procedure twice: once for the def set and once for the use set. This could be

optimized by collapsing both of these calculations into a single loop.

Another ine�ciency is due to a number of temporary sets being generated to

store intermediate results. For example, in our current implementation each time

a transfer function is applied it constructs a gen set for the current statement

then copies that gen set into the return set. Time could be saved by storing the

generated values directly into the return set. We have done some preliminary

experimentation with hand optimizations to the generated transfer functions, and

have found we can match the performance of hand-written analyses within 5%

for some example benchmarks. These optimizations could be easily automated by

leveraging the structure of the transfer functions.

Our threats to validity with respect to evaluating the performance of the au-

tomatically generated analyses are that 1) we only evaluate the performance of

liveness and reaching de�nitions analysis, 2) the manual versions of these analyses

run faster, and 3) there are a number of optimizations such as interval analysis [43],

which have not been applied to either the hand-written or DFAGen generated anal-

yses.

The performance evaluations were done on an Intel(R) Pentium(R) Core Duo

2 CPU with 2.83 GHz processors. We used the March 2009 alpha release of the

51

DFAGen tool [1] with OpenAnalysis subversion revision 904 [3], UseOA-ROSE

subversion revision 354 [7], the compiler infrastructure ROSE version 0.9.4a [4],

and the 2006 SPEC benchmarks [6]. The source lines of code metric was determined

using the SLOCCount tool [5].

The alias analysis used to determine may/must set variants was FIAlias [33],

which is a �ow-insensitive, context-insensitive, uni�cation-based analysis similar

to Steensgaard [35]. The analysis is �eld sensitive, but arrays are treated as single

entities. Precision of alias analysis has a direct e�ect on the precision of analysis

results. DFAGen is able to operate with the results of any alias analysis, provided

these results can be encoded into prede�ned sets. Thus, a change in alias analysis

may require changes in the defs[s] and uses[s] prede�ned set de�nitions, but not a

change in the analysis speci�cation.

52

Chapter 6

Related Work

This section describes related tools, which like DFAGen, attempt to make it easier

for developers to create e�cient data-�ow analyzers. We classify these tools into

two major categories: frameworks and generator tools. The next two sections

review these categories, and list examples of tools in these categories, respectively.

6.1 Software Frameworks

The rationale for creating software frameworks is to to provide a re-usable method

for creating software subsystems. The frameworks described in this section are

software libraries, which include algorithms to solve data-�ow problems. The

frameworks leverage lattice theoretic frameworks.

Dwyer and Clark [14] describe a framework that enables the user to build data-

�ow analyzers where the solution method (e.g. iterative, interval, etc.) is expressed

orthogonally to the data-�ow problem. DFAGen also enables users to specify

analyses orthogonally to the solution method. In DFAGen the solution method

is embedded within template �les, changing the method is a matter of changing

these �les. Our current protoype has only been used to generated analyzers that

use an iterative solution method. Dwyer and Clark's framework was also designed

to ease the composition of analysis. Composition of analyses is combining two or

53

more analyses into a single analysis. Although DFAGen provides a method for

integrating the results of one analysis into another, it provides no mechanism to

combine analyses.

Another framework is included in the SUIF compiler system [22]. In this frame-

work data-�ow problems are de�ned by constructing a class that derives from a

bit-vector data-�ow problem class. Properties of the analysis are described by

de�ning variables and overloading various methods of the base class. The prop-

erties that must be de�ned include analysis direction, analysis con�uence rule,

and functions that determine gen and kill sets. Dwyer and Clark's framework

also requires a transfer function de�ned in terms of gen and kill, as does DFA-

Gen. Dwyer and Clark's con�uence rule property is analogous to DFAGen's meet

property, and like DFAGen it can either correspond to the set operation union or

intersection.

Chapter 3.7 described how DFAGen is targeted to work with the OpenAnalysis

toolkit. One advantage of this targeting is the OpenAnalysis includes a framework

for writing data-�ow analyses [37]. OpenAnalysis di�ers from Dwyer and Clark's

and the SUIF frameworks in that it does not enforce a transfer function de�ned in

terms of gen and kill equations. In OpenAnalysis's framework the user supplies

a transfer function that determines the out set for a node when given the node and

its in set. However, DFAGen itself requires users to supply transfer functions in

terms of gen and kill.

Although DFAGen currently leverages OpenAnalysis's data-�ow analysis

framework, it is not necessary for DFAGen to make use of an existing framework.

Template �les could be used to direct the code-generator to construct analyzers

from scratch. However, in the interest of following the frequently quoted software

maxim of not reinventing the wheel, we have chosen to leverage existing work.

54

Doing so enables us to inherit the relative advantages or disadvantages of the

leveraged framework.

Many other data-�ow analysis frameworks exist, including one written for Vor-

tex compiler [12], FIAT [20, 19], and Wizard++ [38]. Common themes across

frameworks are that they require analysis directions, transfer functions, and meet

operators. These common characteristics are due to the lattice theoretic basis of

these tools [9, 25, 30].

6.2 Generator Tools

Another type of tool that makes creating data-�ow analyzers easier is generators.

The approach of using generators has had a lot of success in easing the process of

producing compiler frontends [23, 15]. Tools like YACC [23] enable developers to

construct parsers from speci�cations of context free grammars. These speci�cations

allow developers to disregard the speci�cs of the generated parsing algorithm, and

thus eases the process of parser implementation. The success of generator tools

with compiler frontends has helped to motivate using a similar approach to building

other phases of the compilation process. With program analyzers generator tools

are not passed context free grammars but rather analysis descriptions based on

the mathematically de�ned lattice theoretic framework.

One tool for generating analyzers from speci�cation �les is Sharlit [39]. Sharlit

was designed with extensibility and modularity in mind. In particular, it aims to

reduce the complexity of analyzing on two-level control �ow graphs. Analysis on

such graphs complicates the nature of implementing data-�ow analyzers, because

they require implementors to understand the analysis and its data structures on two

levels: statements and basic blocks. The motivation for using two level control-�ow

graphs is that they often improve analysis speed and memory requirements. Sharlit

55

obtains greater analysis speed and improved memory requirements by performing

interval analysis, which collapses control �ow graphs while updating data-�ow

equations so that solving them will still lead to a conservatively correct analysis

result. DFAGen does not perform interval analysis, although it may be possible

to extend DFAGen to do so by modifying its template �les. However, unlike

DFAGen, Sharlit does not specify transfer functions declaratively, and is unable to

automatically determine how to use may/must information in transfer functions.

Another generator tool is AG (Analyzer Generator), by Zeng et al. [43]. This

tool synthesizes data-�ow analysis phases for Microsoft's Phoenix compiler frame-

work. Like DFAGen, the authors focus on intra-procedural analysis. The unique

feature of AG is that it includes a method that allows developers to incorporate use-

ful sets of information into objects representing program instructions by extending

these objects classes without directly modifying them. These sets of information

serve a similar purpose as DFAGen's prede�ned sets. Unlike DFAGen, AG provides

no mechanism for determining when to use may versus must information.

Similar to DFAGen, the Program Analyzer Generator (PAG) [10, 27] separates

speci�cation into a few speci�cation sub-languages. One such language is DATLA,

which is used to specify data-�ow value lattices. The possible data types for the

data-�ow set is much more expansive than what can be expressed in this initial

prototype of DFAgen. PAG users express transfer functions with a fully func-

tional language called FULA. This approach provides more �exibility in terms of

specifying the transfer function when compared to the limited set builder notation

provided by DFAgen. The main di�erence however is that in PAG a user must de-

termine how transfer functions will be a�ected by pointer aliasing and side-e�ects.

DFAgen on the other hand seeks to automate this di�culty.

Guyer and Lin [17, 18] present a data-�ow analysis generator and annotation

56

language for specifying domain-speci�c analyses that can accurately summarize

the e�ect of library function calls with the help of library writer annotations.

Their system de�nes a set of data-�ow types including container types such as

set-of<T>. Their system also includes a declarative language for specifying the

domain-speci�c transfer functions and side-e�ect information for calls to library

routines. They enable pessimistic versus optimistic descriptions of data-�ow set

types, but that only determines the meet operator as being intersection or union.

Appropriate usage of may versus must information in the transfer function appears

to still be the responsibility of the tool user.

Z1 [42] is a tool for constructing analyzers that are based on abstract interpre-

tation. Z1 requires descriptions of the lattice of data-�ow values. The descriptions

enable a parameterization of lattice height, which enables generated analyses to

use smaller of taller lattices as the user sees �t. Taller lattices lead to more accu-

rate results, smaller lattices lead to faster convergence. Thus, the user is able to

strike a balance between accuracy and speed. DFAGen does not have a mecha-

nism for users to describe the lattice of data-�ow values used. Rather it is assumed

that sets of data-�ow values are partially ordered by the subset/superset relation

(depending on direction).

A recurring theme of these tools is that they do not automatically determine

when to use may versus must information in transfer functions. In this respect

DFAGen is unique. There are many techniques used by these other tools that

DFAGen does not leverage but would be useful additions, such as interval analysis,

or a language for describing data-�ow value lattices.

57

Chapter 7

Future Work and Conclusions

This chapter describes the applicability and limitations of may/must analysis be-

yond the examples used to evaluate the DFAGen tool. It also discusses possibilities

for extending the prototype DFAGen implementation. Finally, it ends with some

concluding remarks.

7.1 Limitations and Possible Future Work

One limitation used in the current may/must analysis presentation is the require-

ment that the transfer functions be of a speci�c form that uses gen and kill sets.

This is a limitation that was useful for the initial implementation and does provide

the opportunity for some simple optimizations for the generated transfer function

code, but the limitation is not strictly necessary. For example, the determination

of whether the gen and kill sets should be tagged as upper bound or lower bound

(see Table 4.1) can be derived by applying the may/must algorithm to the full

transfer function, gen ∪ (X − kill).

An apparent limitation to the may/must analysis is the inability to handle the

data-�ow analysis constant propagation. It is unclear how to expose the evaluation

of expressions in a statement as a prede�ned set for the statement.

The current DFAGen prototype does not enable sets of tuples, but that is only

58

a limitation of the implementation.

In terms of the iterative data-�ow solving algorithm, there are a number of

ways our current prototype of the DFAGen tool could be extended. For one, the

current framework focuses on unidirectional analyses. Previous work has indicated

that not all analyses can be translated from a bidirectional analyses to a set of

unidirectional analyses [24]. Analyses more recent than PRE have been formulated

as bidirectional data-�ow analyses [36]. The speci�cation language can be extended

to enable bidirectional analyses as long as the data-�ow analysis framework that

DFAGen targets is capable of solving such analyses. As with transfer functions that

reference intermediate data-�ow results, may/must analysis will still be relevant

in the bidirectional analysis context but more from the standpoint of checking for

appropriate usage of interdependent analysis results.

A second limitation to the iterative solving algorithm is that DFAGen cur-

rently targets the intraprocedural (also known as global analyses) data-�ow analy-

sis framework in OpenAnalysis. Interprocedural analyses propagate data-�ow facts

across procedure call parameter bindings, possibly leading to more precise results.

To change our prototype to handle interprocedural analyses, the generated data-

�ow analysis algorithm would have to change, however we hypothesize that the

data-�ow speci�cation language would not need to be extended and may/must

analysis would still apply.

A third way the DFAGen prototype could be improved is to use a data-�ow

framework with a worklist based iterative algorithm. The current iterative solving

algorithm visits all nodes in the control-�ow graph until reaching convergence.

One of the novelties of DFAGen is that due to its declarative speci�cation

of data-�ow analyses it is able to easily analyze these speci�cations. We have

leveraged this ability in order to automatically determine when to use may versus

59

must information in transfer functions, but analysis of data-�ow speci�cations may

be useful in other contexts. For example, it might be useful to aid in composing

or optimizing transfer functions.

In conclusion, must/may analysis is actually quite capable of being applicable to

analyses beyond the relatively limited set that the DFAGen prototype can handle.

The theoretical limitations of must/may analysis are due to the reliance on the

transfer function being expressible in terms of prede�ned sets, intermediate data-

�ow analysis results, and the in or out sets. This limitation a�ects our ability

to express constant propagation that uses the propagated constant to variable

assignments to evaluate expressions.

7.2 Concluding Remarks

Implementing data-�ow analyzers, even within the context of a data-�ow analysis

frameworks or generator tool, is complicated by the need for the transfer function

to handle the may and must variable de�nition and use information that arises

due to pointers, side-e�ects, and aggregates. May/must analysis, which has been

prototyped in the DFAGen tool, enables the automatic generation of data-�ow

analysis transfer functions that are cognizant of these language features while hid-

ing the complexity from the user who is able to write an analysis speci�cation

that assumes only scalars. May/must analysis is made possible by constraints

placed on the transfer function speci�cations, such as the use of prede�ned sets

with atomic elements. These constraints prevent expressing the data-�ow anal-

ysis constant propagation with full constant folding, but do allow other locally

nonseparable analyses such as constant propagation with no constant folding, the

domain-speci�c analyses vary and useful (used within the context of automatic dif-

ferentiation tools), and any of the locally separable analyses. Experimental results

60

with the DFAGen tool prototype indicate that the source lines of code required

for specifying the analysis are an order of magnitude less than writing the analysis

using an example data-�ow analysis framework. Performance results of the im-

plemented analyses indicate that the code currently being generated is about 50%

slower than hand-written code, but more e�cient code generation is possible.

61

REFERENCES

[1] Dfagen website.
http://www.cs.colostate.edu/~stonea/dfagen/.

[2] Openad website.
http://www.mcs.anl.gov/OpenAD/.

[3] Openanalysis website.
http://developer.berlios.de/projects/openanalysis/.

[4] Rose compiler website.
http://rosecompiler.org/.

[5] Sloccount tool website.
http://www.dwheeler.com/sloccount/.

[6] Spec benchmarks website.
http://www.spec.org/.

[7] Useoa-rose website.
http://developer.berlios.de/projects/useoa-rose/.

[8] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Je�rey D. Ullman. Compilers:
Principles, Techniques, and Tools. [First Edition]. Addison Wesley, 1986.

[9] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Je�rey D. Ullman. Compilers:
Principles, Techniques, and Tools, second edition. Pearson Addison Wesley,
2007.

[10] Martin Alt and Florian Martin. Generation of e�cient interprocedural ana-
lyzers with PAG. In Static Analysis Symposium, pages 33�50, 1995.

[11] Andrew W. Appel and Jens Palsberg. Modern Compiler Implementation in
Java, second edition. Cambridge University Press, 2002.

[12] Craig Chambers, Je�rey Dean, David Grove, and David Grove. Frameworks
for intra- and interprocedural data�ow analysis, 1996.

62

[13] Keith D. Cooper and Linda Torczon. Engineering a Compiler. Elsevier, 2004.

[14] Matthew B. Dwyer and Lori A. Clarke. A �exible architecture for building
data �ow analyzers. In Proceedings of the 18th International Conference on
Software Engineering, pages 554�564. IEEE Computer Society Press, 1996.

[15] Étienne Gagnon. Sablecc, an object-oriented compiler framework. Master's
thesis, McGill University, Montreal, 1998.

[16] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program depen-
dence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems, 9(3):319�349, July 1987.

[17] Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing
software libraries. In 2nd Conference on Domain Speci�c Languages, October
1999.

[18] Samuel Z. Guyer and Calvin Lin. Optimizing the use of high performance
software libraries. In In Languages and Compilers for Parallel Computing,
volume LNCS 2017, 2000.

[19] Mary Hall, John Mellor-crummey, Rene Rodriguez, Mary W. Hall, John M.
Mellor-crummey, Alan Carle, and Alan Carle. Fiat: a framework for interpro-
cedural analysis and transformation. In In Proceedings of the Sixth Workshop
on Languages and Compilers for Parallel Computing, pages 522�545. Springer-
Verlag, 1993.

[20] Mary W. Hall, John M. Mellor-Crummey, Alan Carle, and Rene G. Rodriguez.
Fiat: A framework for interprocedural analysis and transformation. Technical
report, Rice University CRPC-TR95522-S, 1995.

[21] Laurent Hascoet, Uwe Naumann, and Valerie Pascual. "to be recorded" anal-
ysis in reverse-mode automatic di�erentiation. Future Generation Computer
Systems, 21(8), 2004.

[22] G. Holloway and A. Dimock. The machine-suif bit-vector data-�ow analysis
library, 1998.

[23] S. C. Johnson. Yacc - yet another compiler compiler. Technical Report 39,
AT&T Bell Laboratories, Murray Hill, NJ, 1975.

[24] Uday P. Khedker and Dhananjay M. Dhamdhere. Bidirectional data �ow
analysis: myths and reality. ACM SIGPLAN Notices, 34:47�57, 1999.

[25] G. A. Kildall. A uni�ed approach to global program optimization. In ACM
Symposium on Principles of Programming Languages, pages 194�206, October
1973.

63

[26] Barbara Kreaseck, Luis Ramos, Scott Easterday, Michelle Strout, and Paul
Hovland. Hybrid static/dynamic activity analysis. In In Proceedings of the
3rd International Workshop on Automatic Di�erentiation Tools and Applica-
tions (ADTA'04), May 2006.

[27] Florian Martin. PAG � an e�cient program analyzer generator. International
Journal on Software Tools for Technology Transfer, 2(1):46�67, 1998.

[28] Leon Moonen. A generic architecture for data �ow analysis to support reverse
engineering. In the 2nd International Workshop on the theory and Practice of
Algebraic Speci�cations (ASF+SDF'97), 1997.

[29] Steven S. Muchnick. Advanced compiler design and implementation. Morgan
Kaufmann Publishers, 2929 Campus Drive, Suite 260, San Mateo, CA 94403,
USA, 1997.

[30] Flemming Nielson, Hanne Riis Nielson, and Chris Hanken. Principles of Pro-
gram Analysis, chapter 2. Springer, 2005.

[31] Daniel Quinlan, Brian Miller, Bobby Philip, and Markus Schordan. Treat-
ing a user-de�ned parallel library as a domain-speci�c language. In the 16th
International Parallel and Distributed Processing Symposium (IPDS, IPPS,
SPDP), pages 105�104, 1997.

[32] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural
data�ow analysis via graph reachability. In POPL '95: Proceedings of the
22nd ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 49�61, New York, NY, USA, 1995. ACM Press.

[33] Barbara G. Ryder, William A. Landi, Philip A. Stocks, Sean Zhang, and Rita
Altucher. A schema for interprocedural modi�cation side-e�ect analysis with
pointer aliasing. ACM Trans. Program. Lang. Syst., 23(2):105�186, 2001.

[34] Y.N. Srikant, Priti Shankar, and Uday P. Khedker. The Compiler Design
Handbook, chapter 2. CRC Press, 2003.

[35] Bjarne Steensgaard. Points-to analysis in almost linear time. In POPL '96:
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 32�41, New York, NY, USA, 1996. ACM.

[36] Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. Bitwidth anal-
ysis with application to silicon compilation. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation
(PLDI), pages 108�120, 2000.

64

[37] Michelle Mills Strout, John Mellor-Crummey, and Paul Hovland.
Representation-independent program analysis. In Proceedings of The Sixth
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering (PASTE), September 5-6 2005.

[38] Peiyi Tang and John N. Zigman. Data-�ow analysis framework in wizard++.
Technical Report SC-MC-9605, University of Southern Queensland, 1996.

[39] Steven W.K. Tjiang and John L. Hennessy. Sharlit�a tool for building opti-
mizers. In The ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), 1992.

[40] Mark Weiser. Program slicing. IEEE Transactions on Software Engineering,
SE-10, (4), pages 352�357, 1984.

[41] Robert P. Wilson and Monica S. Lam. E�cient context-sensitive pointer anal-
ysis for c programs. In Proceedings of the ACM SIGPLAN 1995 conference on
Programming language design and implementation, pages 1�12. ACM Press,
1995.

[42] Kwangkeun Yi and Luddy Harrison. Z1: A data �ow analyzer generator. In
Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 1993.

[43] Jia Zeng, Chuck Mitchell, and Stephen A. Edwards. A domain-speci�c lan-
guage for generating data�ow analyzers. Electronic Notes in Theoretical Com-
puter Science, 164(2):103�119, 2006.

65

