THESIS # AVAILABLE POTASSIUM IN COLORADO SOILS Submitted by . ---- Karl R. Stockinger In partial fulfillment of the requirements for the Degree of Master of Science Colorado State College of Agriculture and Mechanic Arts Fort Collins, Colorado May 5, 1941 COLORADO STATE COLLEGE OF A. & M. A. ## COLORADO STATE COLLEGE 378.788 63 OF | AGRICULTURE AND N | ECHANIC ARTS | |--|-----------------------------------| | de en | MAY 5 1941 | | I HEREBY RECOMMEND THAT | T THE THESIS PREPARED UNDER MY | | SUPERVISION BY KARL R | STOCKINGER | | | I IN COLCRADO SOILS" | | ENTITLED | LIN COLUMN SOLLS | | BE ACCEPTED AS FULFILLING THIS PART DEGREE OF MASTER OF SCIENCE | OF THE REQUIREMENTS FOR THE | | MAJORING IN AGRONOMY | • | | credits TEN AND ONE-HALF | In Charge of Thesis | | APPROVED | Head of Department | | Recommendation co | ncurred in | | Committee on Final Examination | Committee on Graduate Work | | Datal Garden | alice Theres | | WELyDe | | | Laver W. Papertson | | | Robert Shitzen | | | | | | | | | | | | This thesis, or any part of it, ma
the consent of the Committee o
Colorado State
of
Agriculture and Me | n Graduate Work of the
College | ### ACKNOWLEDGEMENTS Experiment Station for the laboratory facilities and to The American Potash Institute Inc. for the financial assistance necessary for carrying on the work of this problem. To these organizations he extends his thanks. He also extends thanks to the various individuals who rendered assistance and advice during the progress of the work among whom are Professor Alvin Kezer, Head of the Agronomy Department, Professor Robert Gardner, the major professor directing the study, Professor Robert S. Whitney, Dr. Lindsay A. Brown, and Professor Dale S. Romine. # TABLE OF CONTENTS | | Page | |--|------| | INTRODUCTION | 1 | | HISTORICAL | 2 | | WETHODS | 7 | | Neubauer Method | 8 | | Replaceable And Water Soluble Potassium | 12 | | Other Methods | 14 | | Method of Soil Sampling | 14 | | Recording Data | 14 | | EXPERIMENTAL RESULTS | 14 | | Results of Neubauer Test | 16 | | Chemical Extraction Methods For Available Potash | 20 | | SUMMARY AND CONCLUSIONS | 26 | | APPENDIX | | | Brown, Robinson and Browning Procedure For Determining Potassium | 28 | | Table 1 Available Potassium By The Neubauer, Replaceable and Morgan Methods- | 32 | | Table 2 LaNotte Potassium tests by The American Crystal Sugar Co. Scils | 51 | | BIBLIOGRA PHY | 63 | ### AVAILABLE POTASSIUM IN COLORADO SOILS ### Introduction Potassium is a common constituent of commercial fertilizers and is one of the three most frequently limiting nutrient elements in the soil. Whether or not there is any extensive deficiency of available potassium in the soils of Colorado is a question now attracting the attention of both fertilizer dealers and farmers. There is some experimental as well as theoretical evidence that the soils of the State are relatively well supplied with potassium in a form readily available to plants but the evidence is not sufficient to serve as a basis for fertilizer practices. It is therefore necessary that further study be made of the problem. This is particularly true at the present time because the consumption of mixed fertilizers carrying potash is rapidly increasing. About 1500 tons of mixed fertilizers (20) were sold in Colorado from July 1, 1938, to June 30, 1939. The lack of information regarding the areas where potash is needed and the extent of the need in the state has made it impossible to plan an economical fertilizer program. With the hope of getting an estimate of the percentage of Colorado irrigated soils which are deficient in available potassium, the location of the areas and the approximate average plant-available supply in the soils of the state, a study of these questions was begun in 1939. This thesis is a report of progress on the problem. Because of the extensive area of soils and the complexity of the problem, the solution obtained by this study is obviously approximate and tentative. The study has been limited to the irrigated areas because fertility is believed to be a minor factor under the conditions of extreme moisture shortage on the dry land. #### Historical Very little work has been done on the availability of the potassium in the soils in the semi-arid region of western United States. Headden (4, 5, 6, 7) in reporting results of experiments conducted in Colorado prior to 1930, stated that a carbonic acid solution attacked orthoclase feldspar and liberated large quantities of potassium. He was able to pick out pieces of orthoclase feldspar in the coarser fractions of the soil and concluded that the soils in Colorado are largely made up of feldspar. He also found that the amount of water soluble potassium in the soil was correlated with the amount of carbon dioxide the crop was able to produce. Alfalfa produces the largest amount of carbon dioxide and though it requires a large amount of potassium for growth it doubled the amount of water soluble potassium in the soil as compared to fallow land. From these results it appears that the legumes in the rotation make potassium of the soil more available to subsequent crops. These results also indicate that alfalfa and clover are not likely to suffer from potash deficiency in Colorado soils. In an earlier bulletin Headden (8) reports having applied potassium at the rate of 200 pounds to the acre to a wheat plot. The wheat produced on the plot had a high percentage of yellowberry. This effect was attributed to the nitrogen and potassium being out of balance due to the high potassium content of the soil. In the period from 1921 to 1928 Hurst and Skuderna (9) carried on some fertilizer studies with sugar beets in the Arkansas Valley. They conducted a number of field trials throughout the Valley, using Schreiner's triangle method (9) for determining the fertilizer ratio which would give the best results. The data which they obtained were not subjected to statistical analysis. They inspected the data and arrived at the conclusion that the soils responded to treatment with phosphorus and nitrogen but not to potassium. The experiment was not replicated at any one location but the same treatments were used at different locations. This fact makes it possible to apply statistical methods to the data. The data, when set up in the form of randomized blocks, gave a significant F value. However, a homogeneity test (22) showed that the data were not homogeneous and therefore the generalized standard error could not be used to determine which was the best treatment. In order to find which elements were causing the response to the fertilizer, the separate standard errors of means of the treatments with and without potassium were computed by the author of this thesis. The significance of the difference was determined by means of the standard error of the difference derived from the separate standard errors. Applying this type of analysis to all of the data it was found that potassium depressed the yields somewhat but not significantly. nitrogen increased the yields but not significantly. while phosphorus caused a significant increase in yield. Also, the nitrogen and phosphorus treatments were significantly better than the nitrogen and potassium treatments. The percent sugar was not significantly affected by any treatment. Although these results would appear to indicate that potassium was not deficient in these soils, the experiment was designed in such a way that it could not be shown whether the nitrogen, phosphorus and potassium treatments were better than the nitrogen and phosphorus treatments. Potassium might have given a response with nitrogen and phosphorus by becoming a limiting factor only when the fertility levels of these other factors were increased. Using the LaMotte test on one hundred seventy three soils from the Arkansas and San Luis Valleys, Uhlrich (21) found only 2% of the samples deficient in potassium if the 130 pounds per acreused by Lynes (12) is used as the sufficiency level (See Appendix Table 2). One hundred thirty pounds per acre by the LaMotte method apparently corresponds closely to 30 milligrams per 100 grams by the Neubauer test. Similar results have been obtained in other states of the semi-arid region of the United States. McGeorge (15) determined the amount of available potassium on a number of calcareous soils of Arizona. Although the amount of water soluble potassium present in these soils was very low, the Neubauer values were all high. Apparently the calcium carbonate in the soil repressed the hydrolysis of the potassium compounds but did not affect its availability to plants. The amount of available potassium in the subsoil was much less than that in the surface soil. He also found that the Neubauer values for calcareous soils were higher than those for non-calcareous soils containing the same amount of replaceable potassium. According to a report of the Idaho Experimental Station (10), most of the soils of that state are high in available potassium as determined in the laboratory. The soils are desert soils, similar to the ones found on the western Slope of Colorado. In northern Illinois there are some calcareous soils known as "alkali spots" which are very unproductive. Sears (18) found that the potassium of the soil was anavailable to plants. Increases in yield of corn due to the addition of potassium chloride to these soils amounted to as much as 54 bushels in one case and 40 in another. Haley (2) using buckwheat in pot culture, found that the presence of calcium carbonate made potassium of orthoclase more available to the plants. Harris (3) found that the addition of lime to Delaware soils increased the availability of potassium in some soils but in other soils the availability was decreased.
Apparently the effect of lime on the availability of potassium is dependent on the type of soil. MacIntire (13,14) found in lysimeter studies that lime decreased the solubility of potassium. This is in agreement with McGeorge's observation of calcareous soils. In spite of the apparent exception in Illinois, the general concensus of opinion is that the presence of lime in the soil decreases the solubility of the potassium but increases the availability to plants. This does not necessarily hold true for all soils but appears to be especially true of calcareous soils. The literature tends to indicate that potassium is not likely to be deficient in calcareous soils similar to those generally found in Colorado irrigated sections. Experimental Methods And Materials. A detailed survey of the potash condition in all the irrigated soils is at present prohibitive because of the expense involved. It was therefore necessary in this study to limit the observations to sample farms which are assumed to be representative of the major irrigated areas. In planning the method of studying these sample farms two possible methods presented themselves - the method of fertilizer trials on the farms and a laboratory study of samples from the farms. The first of these methods was eliminated because of the greater expense, leaving the laboratory method as the only alternative. The acceptance of the laboratory method presupposes that suitable laboratory procedures are available or can be devised. The situation regarding laboratory methods leaves much to be desired though methods are available which are capable of yielding valuable information. Of the laboratory tests for available potassium, the rye seedling method devised by Neubauer was selected as the most accurate and was used as the basic procedure but has been supplemented by some of the more rapid tests during the progress of the work. # The Neubauer Method The Neubauer method has been used extensively in Germany where it has been found to give reliable indications of the need for potash fertilizers. The method has also been used in some parts of America, and to a limited extent in Colorado. However, there is some doubt as to whether or not the same Neubauer values used in Germany can be applied to the alkaline calcareous soils of Colorado. For that reason a part of the problem, which is left for later study, is to evaluate the method for Colorado conditions. The Neubauer method, as modified by Rivaz (17) has been followed in general with some further modifications. A description of the method as it is now being used follows: Either Rosen or Cornell 45 Rye seed has been used to produce the seedlings. The seed is carefully selected and divided into lots of 100. The weight of seed is maintained at 3.5 grams or more per hundred seeds. Each lot of seeds is carefully weighed to two places and dusted with Semesan Bel. The seed treatment controls smut and fungus growth. The plants are grown in 10 cm. by 10 cm. glass refrigerator dishes. One hundred grams of soil mixed with fifty grams of quartz sand are placed in each of these dishes and covered with a layer of 175 grams of sand. Seventy grams of water are then added. After standing overnight, one hundred holes are punched in the sand with a marker made by driving one hundred nails in a square block. seeds are placed in the holes and covered with 75 grams of sand. The plants are allowed to grow 17 days in a constant temperature room maintained at 20° C+2° . Figure 1 shows the growing plants and a corner of the constant temperature room. The weight of each dish is checked on alternate days and the dishes are made up to weight with distilled water to take care of evaporation losses. Blanks with 100 grams of sand instead of soil are grown as checks on the amount of potassium in the seed and reagents. At the end of the period of growth the seedlings are harvested. The sand, soil and seedlings are removed from the jars and the seedlings counted for germination. (A count of at least 90 is considered essential for good results). The tops are then cut off and the soil is carefully washed from the roots with tap water. A screen tray with 2 mm. circular openings is placed on the sink to catch any roots, seed coats, or ungerminated seeds which may become detached from the root mass. All of the soil and sand is thoroughly washed from the mass of roots. This is very important as any soil not removed may contain potassium and cause high results. seedlings are allowed to air dry for two days or more. They are then placed in large crucibles and ignited in a furnace for three hours at a controlled temperature of 1050° F. The temperature must not be allowed to become higher or the potassium will be volatilized leading to low result. After cooling, the crucibles Figure 1. Photographs showing some of the equipment used in the potash tests. Upper Left - Rye seedlings ready for harvest. Middle - Furnace and pyrometer used in igniting rye samples. Lower - Equipment used in leaching samples of replaceable potassium. Upper right - A corner of the constant temperature room where the rye seedlings are grown. are taken from the furnace and the contents carefully slaked with water. Five ml. of 5 N HCl are added to each crucible and evaporated to dryness on a 220 volt hot plate plugged into a 110 volt circuit. This serves to put all of the potash into solution and also to dehydrate the silica. The contents of each crucible is taken up with water and 2 ml. of 5 N HCl. After again warming on the hot plate, the entire contents are transferred to a 100 ml. volumetric flask. The flask is made up to volume and filtered through a dry 12.5 cm. No. 2 Whatman filter paper to remove the insoluble residue. ml. of this solution are then made up to fifty ml. and a five ml. aliquot of this is analyzed for potassium by the cobalti-nitrite method of Brown, Robinson and Browning. (1) (See Appendix) aliquot is equal to 1 gram of soil. The potassium found is corrected for the potassium in the seed by subtracting the amount corresponding to a similar weight of seed found in the blank sample. The results are reported as mg. K20 per 100 gms. of soil. # Replaceable and Water Soluble Potassium A short cut method for replaceable and water soluble potassium was devised to obtain a procedure more rapid than the Neubauer method for routine work. The procedure is as follows: Ten grams of soil are leached in a Gooch crucible with 250 ml. of 0.01N Ba Cl₂ solution (PH 6.3) from an inverted volumetric flask which maintains a constant level of the solution (2 to 3 mm. above the soil) This is illustrated in Figure 1. A piece of filter paper holds the soil in the crucible. The leachate is collected in a 400 cc beaker, 5 ml. of 0.5N H2SO4 are added to precipitate the barium ion and the solution is evaporated to dryness. The residue is transferred to a 50 cc volumetric flask, made up to volume with distilled water, and a 5 cc aliquot is analyzed for potassium by the method of Brown, Robinson and Browning. (1). The results are reported in mg. K_2O per 100 grams of soil in order to be comparable with the Neubauer method. Barium chloride was selected because the barium ion is one of the strongest replacing agents and also is very easy to remove from the solution. In small amounts barium does not interfere with the determination of potassium by the cobaltinitrite method. Barium chloride has several advantages over ammonium acetate. Since it is a stronger replacing agent it is possible to use a much more dilute solution and the labor of removing the ammonium ion is eliminated. The method of extraction is continuous with little labor involved in the process. The extraction can be started in the evening and is usually completed by morning. ## Other Methods A number of samples have been tested by the Morgan (16) and LaMotte "quick test" methods (11). The use of these tests has been mainly to get an estimate of their agreement with the Neubauer result. Method Of Soil Sampling A tile spade was used in collecting the soil samples and a composite of four or five locations was made in sampling each field. Two depths were taken, the top six inches and the second foot. The second six inches were not used because this depth included the transition zone between the A and B horizon. # Recording Data The method of recording data is shown on page 15 which shows a duplicate of a sheet in the permanent record book. # Experimental Results. one hundred and seventy six fields were sampled making a total of three hundred and forty two samples including surface and subsoil depths. Of these one hundred seventy six fields have been tested | DateDec15,1939 Field No
Sample.NoG864 Depth.O.G. Acres20. | |---| | Sec16 (Show location | | Owner's Name | | Sampled by:Fred.DLaw | | Analyses | | Neubauer K20 20.4mg/100 Morgan K 100#A.6 in Replaceable K20 23 mg/100gm | | Notes | | | by the Neubauer method, one hundred two by the base replacement method and seventy five by Morgan's sodium acetate procedure. In addition to these tests the Holly Sugar Company cooperated by testing nineteen fields by the LaMotte method and these results are included. ## Results of The Neubauer Tests The results of the Neubauer and base replacement tests are shown in Table 1, Figures 2 and 3, and Appendix Table 1. Figure 2 shows graphically the frequency distribution of the samples studied and the Neubauer range in which all the samples fell. Table 1 shows the average Neubauer and replaceable values and the percent of the Neubauer values below 30 mg. per 100 grams of soil. It is generally conceded that few crops will show potash deficiency at values above 30 milligrams (19), and for that reason this figure has been chosen as a dividing line to separate those soils which appear to have plenty of potash from those which may be deficient. Only 4.0 percent of
the surface soil and 18.6 percent of the subsoil fell below this line as is shown by the tables and the graph. interesting to note that the subsoil and surface soil frequency distribution curves are very similar except that the subsoil values are somewhat lower. Kio Table 1 Available Potassium In Colorado Soils. | Location | No.
Samples | 8 | necuent
mem | men men | Repla | Replaceable mem | Mieubauer
below 50 mgm | ner
Curen | |-----------------------|----------------|----------|----------------|---------|----------|-----------------|---------------------------|--------------| | | | \$
M | æ | £ | 4 | ø | ₩ | B | | Northeastern Colorado | ¥ | 58 | 47.6 | 30.2 | 8.83 | 89.8 | භ | 22 | | Western Slope | 23 | 27 | 49.1 | 33.4 | 40.3 | 20.1 | 3.7 | 14.8 | | Speriden, Myo. | 4 | 7 | 52.4 | 41.1 | 57.7 | 18.1 | 0.0 | 14.0 | | Arkansas Valley | 55 | ଫଡ | 46.7 | 37.9 | 50.1 | 45.1 | 60 | 17.8 | | San Luis Valloy | 88 | 19 | 55.
4. | 47.0 | | | 0.0 | 10.5 | | All Samples | 175 | 167 | 48.4 | 39.6 | 45.8 | 29.0 | 0.4 | 18.6 | | | | | | | | | | | 17 A refers to the surface soil, 0-6 inches, and B to the subsoil, 12-24 inches. ^{**}Average values in mgm K_2 0 per 100 gram soil. Figure 2. Frequency distribution curves showing the percentage of soils falling in various ranges of Heubauer values. The points on the curves are the class centers of groups of 5 milligrams each. obtained by the Beubauer and base replacement metho line represents the subsoil values and the curved line the fit curve by the method of least squares showing Figure 3. The lowest Neubauer value for a top soil was 20 milligrams per 100 grams. Most of the soils which have a top soil with a low value are just on the dividing line between sufficiency and deficiency when 30 mg. per 100 grams is used as the criterion. It would be very desirable to use some field trials on some of the soils which are low in petassium in order to correlate the Neubauer test with field response. Because the project was begun only very recently, there has not been time to de this. The subsoils on the whole are lower in available potash than the top soils. The lowest value obtained for a subsoil sample was 12 mg. per 100 grams. Also the number of samples below the level of sufficiency is much greater in the subsoil group. It would appear from these results that perhaps spots in fields which have been eroded, or have had the top soil removed in leveling the field, may be deficient in potash and may respond to potash fertilization. # Chemical Extraction Methods For Available Potash. A number of chemical extraction methods are in use for the determination of available petash. These can be divided into two classes, those which extract the potash from the soil by successive leachings by a solution containing a base which will replace the potassium absorbed by the clay and those which produce an equilibrium solution with the soil and some solvent. The former of these is commonly referred to as the base exchange method and the latter includes the so called "quick test". Either of these procedures is much less laborious than the Neubauer test and would therefore be preferable if sufficiently accurate. For that reason, a comparison of these procedures and the Neubauer method was made. hundred two surface soils and ninety-five subsoils were tested by both the base exchange and Neubauer method. The best fit curves showing the relation of the results by the Neubauer method and the results by base exchange method were calculated by the method of least squares. These curves are shown in Figure 2. In the case of the surface soil the quadratic curve was found to be significantly better than the linear. The equation found for the surface soil was Y=28.07 + .506X - .00267X2 where Y is the Neubauer and X the replaceable variable. Calculating the predicted values corresponding to the observed values for Y from the equation and correlating them with the observed values gave a correlation coefficient, R, of 0.57. quadratic was not significantly better than the linear curve for the subsoil. The correlation coefficient, r, for this curve was 0.44. The results are shown graphically in Figure 3. The equation for the subsoil curve was found to be Y=.258X+31.8. While no results as low as zero were found by either method, some comparatively low results were found by the base exchange method and it appears that the curves can be extrapolated to near zero exchangeable potash without serious error. Extrapolation to O would Ave 28.07 mgm. Neubauer potash for the surface soil and 31.8 for the subsoil. If any reliance can be placed on the curves in the range as low as zero replaceable potash, a very significant deduction regarding replaceable potash and probably other solution extracts as methods of estimating potash deficiency can be drawn from the curves. This deduction is that in Colorado soils values low as zero by any of the common solution extraction methods may not indicate a deficiency since they correspond to a sufficient Neubauer level. This reasoning is justified from the fact that the removal of potassium from the soil by base exchange methods is more complete than removal in the equilibrium solutions and base exchange methods therefore tend to give higher value. Therefore, if sufficient available potassium by the Neubauer method is indicated at zero replaceable potash the same should held true for the other extraction methods except where a solution is used which is sufficiently active to decompose the potash minerals. and the LaMotte methods is shown in Table 2 for 19 Colorado and Wyoming soils*. The results by the LaMotte and Neubauer methods give a correlation coefficient of .8 but there is not a significant correlation between the Morgan method and either of the others. The number of samples, however, are not sufficient for an accurate comparison. The significance of the regression curves and correlation coefficient were calculated from a covariance analysis and the F test. The 5 percent point was used as the level of significance. The F values found for the surface and subsoil curves in Figure 3 were 25.3 and 32.0 respectively. Values of 3.1 and 3.9 were required for significance. The F value for the correlation coefficients between the Neubauer and La-Motte tests was 60.8 and between the Neubauer and Morgan tests 3.3. The value required for significance in the latter calculations is 4.1. ^{*} The Morgan and LaMotte tests were made by The Holly Sugar Company and were furnished by Mr. Frank Lynes, Agronomist for that company. Table 2. Available Potassium By The Neubauer, Morgan and LaMotte Methods. The potassium is expressed in percent of respective sufficient criteria: LaMotte 130# per acre, Morgan 200# per acre, and Neubauer 29 mg. per 100 grams of soil. | Sample | No. | Depth | LaMotte | Morgan | Neubauer | |--------------|-----|---------|-------------|-------------|-------------| | 56A | | 8 | · 200 | 3 00 | 18 4 | | 56B | | 16 | 169 | 1 50 | 152 | | 57A | | 8 | 153 | 75 | 148 | | 57B | | 16 | 108 | 50 | 9 9 | | 58A | | 8 | 269 | 300 | 238 | | 58B | | 16 | 153 | 50 | 151 | | 59A
59B | | 8
16 | 139
131 | 100 | 160
122 | | 60A | | 8 | 1 31 | 100 | 163 | | 60B | | 16 | 162 | 50 | 137 | | 61A | | 8 | 162 | 3 00 | 218 | | 61B | | 16 | 153 | 7 5 | 176 | | 65A | | 8 | 108 | 75 | 144 | | 65B | | 16 | 131 | 25 | 101 | | 66A | | 8 | 146 | 3 00 | 134 | | 66B | | 16 | 92 | 75 | 143 | | 67A | | 8 | 153 | 300 | 147 | | 67B | | 16 | 153 | 300 | 142 | | 68A | | 8 | 139 | 300 | 139 | | 6 9 B | | 16 | 92 | 100 | 121 | | 69A | | 8 | 185 | 300 | 158 | | 69B | | 16 | 116 | 100 | 120 | | 70A | | 8 | 170 | 100 | 169 | | 70B | | 16 | 116 | 50 | 136 | | 71A | | 8 | 185 | 100 | 143 | | 71B | | 16 | 100 | 50 | 99 | | 72A | | 8 | 153 | 75 | 148 | | 72B | | 16 | 100 | 50 | 108 | | | | | | 00 | 100 | | Sample No. | Depth | LaMotte | Morgan | Neubauer | |------------|-------|---------|------------|----------| | 73A | 8 | 153 | 300 | 144 | | 73B | 16 | 108 | 100 | 111 | | 74A | . 8 | 139 | 150 | 136 | | 74B | 16 | 100 | 75 | 110 | | 75A | 8 | 250 | 300 | 217 | | 75B | 16 | 139 | 300 | 169 | | 76A | 8 | 146 | 300 | 150 | | 76B | 16 | 100 | 7 5 | 134 | | 77A | 8 | 139 | 100 | 130 | | 77B | 16 | 116 | 50 | 106 | From a table prepared by Frank Lynes of the Holly Sugar Company. The Neubauer determinations were made in this laboratory and the LaMotte and Morgan tests by The Holly Sugar Company. ## Summary And Conclusions. In 1939 a study was begun to determine the available potassium in the soils of the major irrigated areas of Colorado. The following methods were used in the study: - 1. The Neubauer ryo seedling method - 2. The base exchange method - 3. Morgan's quick test - 4. The LaMotte quick test During the study 175 surface soils and 167 subsoil samples were tested by the Neubauer method, 102 surface soils and 95 subsoils by the base exchange method, 73 surface soils and 71 subsoil by the Morgan method, and 19 surface soils and 19 subsoil by the LaMotte method. milligrams of K₂O per 100 grams of soil by the Neubauer test is used as the dividing line between sufficient and deficient soils only 4 percent of the surface soils and 19 percent of the subsoils are classed as deficient in available potash. Those falling below the 30 milligram point were only slightly lower and can therefore be classed as only slightly deficient. The average value for all soils tested was 48.4 milligrams for the surface soils and 39.6 for the subsoils. These values by the standards previously established in other parts of the United States and Germany are comparatively high. However, any conclusions regarding the percentage of deficient soils in the state are subject to revision if it is found that the 30 milligram levels are not the best value to be used as a criterion for an estimate of sufficiency. In order to fix a
sufficiency level for the base exchange procedure, it was necessary to plat a curve showing the Neubauer method corresponding to values determined by the base exchange method and use the Neubauer value as a basis for evaluating the base exchange method. On the best fit curve the 30 milligram dividing line fell at near zero replaceable potash, indicating that very low replaceable values should be chosen as the dividing line unless the 30 milligram Neubauer level is too low for Colorado soils. The correlation coefficient for the two methods was .57 for the surface soils and .44 for the subsoils. With the few samples studied, a correlation coefficient of .8 was found between the Neubauer and LaMotte methods. significant correlation was found between the Neubauer and Morgan method but the pairs of samples were too few to justify any conclusions from the results in the last two correlations. APPENDIX Brown, Robinson and Browning Method For Determination of Small Amounts of Potassium. Ind. Eng. Chem., Anal. Ed. 10 652-4 (1938) #### REAGENTS "Precipitating Reagent. Mix together 46.2 grams of sodium cobaltinitrite, 18.9 grams of sodium acetate, 120.0 ml of distilled water, and 18.0 ml. of glacial acetic acid. Prepare this solution 48 hours before using. Keep stoppered and in a cold, dark place. Before using, centrifuge to remove and precipitate. "Ethyl Alcohol. 95 and 70 per cent by volume. "Ceric Sulfate. Dissolve about 9 grams of anhydrous ceric sulfate in 500 ml. of distilled water to which have been added 30 ml. of concentrated sulfuric acid. Make up to 1 liter. This solution which is approximately 0.02 N, may be standardized with sodium oxalate. "Ferrous Ammonium Sulfate. Dissolve 8 grams of FeSO₄(NH₄)₂SO_{4.6}H₂O in 500 ml. of distilled water to which have been added 10 ml. of concentrated sulfuric acid and make up to 1 liter. "Sulfuric Acid. Concentrated sulfuric acid diluted 1 to 1. "Indicator. 0.025 M o-phenanthroline ferrous complex. ### PROCEDURE "To 1.5 ml. of 95 per cent ethyl alcohol in a 15-ml. centrifuge tube add a 5-ml. aliquot of the potassium solution. Mix thoroughly. Add dropwise, with continuous shaking, 2.0 ml. of the precipitating reagent. Allow to stand for at least an hour at about of from 20° to 25° C. Centrifuge for about 10 minutes at about 2000 r. p. m., so that the precipitate is firmly packed in the bottom of the tube. Pour off the supernatant liquid and allow the tube to drain for about 5 minutes. Wash the precipitate with 5 ml. of 70 per cent alcohol. breaking up the bulk of the precipitate by forcing the wash solution in a fine stream from a pipet. Centrifuge for 5 minutes and drain as before. Dry the precipitate for 0.5 hour at 80° to 85° C. to remove all the alcohol. "Add 5 ml. of the ceric sulfate reagent and 1 ml of 1 to 1 sulfuric acid. Heat in a water bath at 90° to 100° C. until all the precipitate is oxidized, as indicated by its disappearance (usually within about 5 minutes). Maintain an excess of ceric sulfate throughout the reaction (5 ml. of 0.02 N ceric sulfate are sufficient for precipitates containing no more than 0.5 mg. of potassium.) Cool to room temperature and titrate the excess ceric sulfate with ferrous ammonium sulfate, using one drop of o-phenanthreline ferrous complex as indicator. The end point is very sharp, the color of the solution changing from pale blue to red. "Calculation. Milligrams of $K_{\pm}ml$. of $Ce(SO_4)_2$ used in exidation of the precipitate x normality of $Ce(SO_4)_2 \times 6.52$." ^{*7.86} for K₂0 Appendix Table 1. Available Potassium By The Neubauer, Replaceable And Morgan Methods. | | Morgan
Lbs. per Acre | 0 | 00 | 150
50 | 200
50 | 150
0 | 150 | 100 | 50 | | |-----------------------|-------------------------|------------------|--------------|------------------|------------------|------------------|-----------------|------------|---------------|-----------------------------| | | | H | | rd . | CV | н | H | H | | | | | Replaceable
mgm/100g | 15
03 | 35
21 | 98
98
87 | 51 | 200 | 88 | ස | ន | of soil. | | - | # 00
80 | | | | | | | | | 00t | | Mortheastern Colorado | Neubauer
mgm/100g | 88
88 | 88 | 67
59 | 57
48 | 2.03
103 | 89 | 52 | 55 | second foot | | ern 0 | | | | | | | | | | 13 13 | | 689 5 | Location
Sec. T.R. | #IO9 | හිටීම | 9.00 M | 69m | 69W | 677W | 677 | 677W | and 1 | | orth | cet | 13 7N | 778 | W. | 73 | 13 | 77 | 77 | 13 | Ę | | | ឝីស៊ | 13 | 13 | 14 | 14 | 14 | 27 | 7 | G | of soil and | | | | | | | | | loam | Loam | Logm | | | | 8 | Pt. Collins loam | Collins loam | Ft. Collins loam | Ft. Collins loam | Ft. Collins loam | fine sandy loam | sandy loam | fine sandy lo | x Inc | | | 1770 | Ins | ins | tns | Ins | Ins | 6 | | 8 | 5 21 | | | Soil | 011 | 1011 | 011 | 110 | 110 | fin | fine | | tol | | | 41 | ٠
نړ | 2. | ئي | ن
ئ | ن
ن پ | Weld | Meld | Weld | 8 to | | | | ē.Z.a | 1224 | lx4 | 24 | 124 | | 35 | | fer | | | No. | 44 | 38 | 36 | 113 | 12A
12B | 194 | 20A | 21A | *A refers to top six inches | | No. | Soil Type | Location
Sec. T.R. | Neubauer
mgm/100g | Replaceable
mgm/100g | Morgan
Lbs.per acre | |--------------------|----------------------------|-----------------------|----------------------|-------------------------|------------------------| | 7 22A
22B | Weld fine sandy loam | 26 7N 67W | 28
21
21 | 28
18 | 00 | | × 23A 23B | Larimer fine sandy
loam | 13 6N 67W | 28 | 139 | 00 | | 24A
> 24B | Weld fine sandy loam | North of Ault | 34
19 | 26
13 | 00 | | 25A
> 25B | Weld fine sandy loam | 25 7N 67W | 24
25
35 | 39
159 | 00 | | 26A
> 26B | Weld fine sandy loam | 27 7N 67W | 88
21
20 | 32 | 00 | | 27A
27B | Terry silty clay loam | 21 8N 69W | 37
28 | 46
30 | 00 | | 28 4
28B | Terry fine sandy loam | 12 8N 68W | 3.4
2.4 | 60
30 | 300
50 | | 29A
29B | Terry slity clay loam | 22 6N 69W | 88
88 | 63
39 | 200 | | 30A
30B | Terry silty clay loam | 3 5N 69W | 55
60 | 58
67 | 50
100 | | #0* | | 5011 | Soil Type | | H | .00
600 | Location
Sec. T.R. | Neubauer
mgm/100g | Replaceable
mgm/100g | Morgan
1ba.per acre | |------------|--------------|------------|-----------------|------|----|------------|-----------------------|-------------------------|---|------------------------| | SIB | Terr | Terry loam | e | | ğ | 8 | 684 | 88 | 104 | 200 | | 32A
32B | C a.s | | olay loam | | 83 | 90
N | 694 | 31 | 33 | တ္သဝ | | SSS
ESS | #eld | fine | sandy | loam | 13 | NG
NG | 6 874 | 3 8 | 4 01 | 00 | | 24v | Cass | rine | sandy | loam | 88 | E | 684 | 53 | 74
26 | 200 | | 35A
35B | Weld | loam | | | 83 | BM | 6 8% | 70
56 | 99 89 | 200 | | 36B
36B | #e1d | fine | sandy | loam | 16 | E | 687 | 84.
44. | 34 | 150
0 | | 378
378 | ()
() | clay | clay loam | | 7 | F | 68W | 28 | 74 | ဝဝ္ဓ | | 288
7 | Weld | loam | | | 27 | 2X | 6 8% | 00 00
18 00
18 00 | 35 | 0 0 | | 39A
39B | Ft.C |)111ng | Ft.Collins clay | loam | 21 | 3M | 69W | 61
75 | 50
50
50
50
50
50
50
50
50
50
50
50
50
5 | 300 | | MO. | Soil Type | Location
Sec. T.R. | Neubauer
mem/100g | Replaceable
mgm/100g | Margan
lbs. per sere | |------------|-------------------------|-----------------------|----------------------|-------------------------|-------------------------| | <u> </u> | Ft. Collins loam | 23 4N 69# | 61
58 | 38 | 200 | | 41A | Larimer fine sandy losm | sen 23 7N 67W | 55
53 | នគ | 600
150 | | 424
423 | Larimer fine sandy losm | em 17 9N 68W | 52
84 | - 3% | 800 | | 434
433 | Berthoud loam | 16 48 60w | 41
85 | 26
17 | 800 | | 44A
44B | Larimer loam | 35 3N 70W | 50
8
8 | 23 | 150
50 | | 454
45B | Berthoud loam | 33 3N 70W | 88
80
80 | 88 | တ္သဝ | | 468
468 | Ft.Collins clay loam | 11 5N 68W | 88 8 | 42 | 150 | | 474
478 | Larimer loam | 35 7N 69n | 8.4.4
0.4. | 15 | 00 | | 484
483 | Ft.Colling loam | 15 5N 68% | 73 | 68
26 | 60 0
150 | | 49A
49B | Ft.Collins clay loam | 32 7N 68W | 8 8 | 81 | 009 | | No. | Soil Type | Location NSec. T. R. n | Neubauer
mgm/100g | Replaceable
mgm/100g | Morgan
1bs.per acre | |--------------|-------------------------|----------------------------|----------------------|-------------------------|------------------------| | 50A
50B | Neville fine sandy loam | 31 8N 69W | 57 | 49.51 | 009 | | 51A
51B | Neville fine sandy loam | 26 GN 70W | 45
36 | 888 | 100 | | 52A
52B | Meville fine sandy loam | 11 SN 70W | 4 28 | 38
15 | 400
0 | | 53A
> 53B | Leporte loam | 18 5N 69W | 51
21 | ာ
သ | 00 | | 63A
63B | Bridgeport silt loam | 17 7N 53W | 72
56 | 135
55 | 009 | | 78A
> 78B | Meville fine sandy loam | Near Spring
Canyon | 33
27 | 7 8 | | | 79A | Loam | Near Parshall,
Colorado | 39 | | | | 82A
82B | Loam
Clay loam | 22 10N 51W | 60
51 | 75
75 | | | 83A
83B | Говш
Говш | 5 10N 50W | 47
38 | 52
49 | : | | No. | Soil Type | Location
Sec. T.R. | Neubauer
mgm/100g | Replaceable mgm/100 | Morgan
Ibs.per acre | |--------------------|------------------------------|-----------------------|----------------------|---------------------|------------------------| | 84A | Clay | 26 9N 52W | 47 | 49 | | | 85A
85B | Clay loam | 21 7N 53W | 53
43 | 96
44 | | | 86A
86B | Clay loam | 11 4N 56W | 4 0
48 | 84
83 | | | 87A
87B | Clay | 11 5S 4W | 50
88 | 74
39 | | | 884
888 | avelly sandy | loam 34 8N 65W | 47
88 | 54 | | | 89 A | Gilcrest gravelly sandy 1 | loam 16 5N 64W | 88
88 | 23
17 | | | 90A
90B | Kuner silty clay loam | 1 4N 64W | 41 |
16
15 | | | 91 A
91B | Gilorest gravelly sandy l | loam 30 4N 66W | 45 | 30
16 | | | 92 A
92B | Gilcrest gravelly sandy loam | .oam 28 5N 65W | 30
32 | 15 | | | 93A
> 93B | Terry fine sandy loam | 12 5N 66W | 88
88
88
88 | | | | що. | Soil Type | Losstion
Sec. T.R. | Neubauer
mga/100g | Replacesble
mgm/100g | Morgan
lbs.per acre | |--------------------|---------------------------|-----------------------|----------------------|-------------------------|------------------------| | 94A
94B | Wold fine sandy loam | 11 5N 64W | 4 4
8 0 | 40
40 | | | 95A
95B | Valentine loamy fine sand | 4 4N 64N | ន្តន | | | | 96 4
96B | Clay loam
Clay loam | 7 10N 48W | SS | 7 4
65 | | | 97A
978 | Loam | 16 118 47W | 24
24
24 | E to | | | 984
983 | Loam | 30 12N 44W | 649 | 125
73 | | | 114A | S11t loam | Rear Dollvue | 22 | | | | 118A
118B | Clay loam | 16 3N 60W | 4.
6. | | | | 119A
11935 | Clay loam | 20 5N 54n | 4
50
50 | | | | 153A
> 133B | Clay | 19 In 63# | 80
80
80 | | | | HO. | | Soil Type | Local | Western Slope
Location | Neubeuer
mm / 000 | Replaceable | Morgan | |-----------------|--------------|--------------|-------|---------------------------|----------------------|----------------------|------------------| | 47 V | Clay Losm | | Hear | Orchard Mesa | 64
27 | 57 | | | & 99 | Clay | | Nort | Near Vincland | 52 | 88
88
88
88 | 0 | | AG
GG | Clay
Clay | | Mear | Mear Palisade | 57 | 85 55
55 55 | 200
200
20 | | NOT BOLD | Sandy | l Loam | Mear | Vineland | 33 | 57
35 | 150 | | 13A
13B | Clay | | Noat | Orchard Mesa | 56
60 | 56
19 | 200
200 | | 14A
14B | Sendy | Loam | Mobil | Palisade | 8 88
83 | 9 P | 800 | | 15A
15B | Clay | Losm | 数の母で | Vineland | 4.4
0.13 | 4 8
8 5 | 150 | | 16A
16B | Clay | Loam
Loam | Hear | Orchard Mesa | 89
4 | 22.52 | 500
500 | | 17A
173 | Clay | Logm | Hoar | Pall sade | ୟ
ଫୁ | 32
32
35 | 800
800 | | 54A
548 | Clay | loam | Meer | Austin | 85
85
85 | | 150 | | No | Soil Type | Location
Sec. T.R. | Neubauer
mgm/100g | Replaceable
mgm/100g | Morgan
1bs. per acre | |--------------------|------------------------------------|-----------------------|----------------------|-------------------------|-------------------------| | 55A
55B | Clay loam | Near Austin | 66
52 | | 200 | | 64A
64B | Clay loam | 13 15S 96W | 58
48 | 22
12 | 150
200 | | 65A
-> 65B | silty clay loam
slity clay | 15 14S 92W | 44 G3
G3 G3 | 35
22 | 150
50 | | 66A
66B | Silt loam
Very fine sandy loam | WI NI IS | 88
88 | 22
13 | 200 | | 67A
67B | Sandy clay loam
Clay loam | 7 50N 10W | 42 | 38
31 | 800 | | 68 A
68B | Clay loam
Silty clay loam | 26 49N 9W | 40
35 | 40
20 | 500
50 | | 69A
69B | Loam
Clay loam | 5 49N 10W | 46
35 | 40
11 | 300
100 | | 70A
70B | Silt loam
Silty clay loam | 18 47N 8W | 8 to | 128 | 200 | | 71A
7 71B | Silt loam
Silty clay loam | 28 1S 1E | 4 G
G G | 98
6 | 50 | | 72A
72B | Silty olay loam
Silty clay loam | 14 14S 92W | 43
31 | 83
80 | 20 | | | No. | Soil Type | Location
Sec. T.R. | Neubauer
mgm/100g | Replaceable
mgm/100g | Morgan
lbs.per acre | |------------|--------------------|------------------------------|------------------------|--|-------------------------|------------------------| | | 73A
73B | Logm
Clay logm | 18 50N 10W | 42
32 | 26 | 00 | | | 74A
74B | Clay loam | 33 IN 1W | 40
32 | 16. | 50 | | | 75A
75B | Loam
Loam | 22 48N 9W | 88
49 | 78
35 | 600
300 | | | 76A
76B | Silty clay loam | 24 IS 1W | 43
39 | 32
18 | 50
150 | | | 777A
777B | Silty clay loam | S SN SW | 38
31 | 32
18 | 50
50 | | | 80A
80B | Loam | Near Woody Creek | 28
22
23 | | | | 1 | 81 A
81B | Silt loam
Silty clay loam | Near Pagosa
Springs | 33
21 | | | | | | | Sheridan, Wyoming | lng | | | | , | 56A
56B | Big Horn Clay | 20 56N 84W | 52
44 | 35
20 | 300
150 | | $ \wedge $ | 57A
57B | Big Horn clay | 20 56N 84W | 84 000000000000000000000000000000000000 | න <u>ි</u> ල | 150
50 | | No. | Soil Type | Location
Sec. T.R. | Neubauer
mgm/100g | Replaceable
mgm/100g | Morgan
lbs.per acre | |--------------------|--------------------------|------------------------------|----------------------|-------------------------|------------------------| | 58 A
58B | Big Horn clay | 21 56N 84W | 68
44 | 69 | 009 | | 59A
59B | Big Horn clay | 16 55N 85W | 46
36 | 33
18 | 200
50 | | 60A
60B | B1g Horn clay | 20 56N 84W | 47 | 25 | 150
0 | | 61A
61B | Bridgeport loam | 30 56N 83W | 63
51 | 843
83 | 600
150 | | 62A
62B | Big Horn clay | 29 56N 84W | 448
44 | 30
15 | 200 | | | | Arkansas Ve | Valley | | | | 183 | Fine sandy loam | From Baca County 37 | 7 37 | 88 | 200 | | 99A
99B | Silty clay loam | South of
Colorado Springs | 40
3 38 | 73 | | | 100A
100B | Sandy loam
Sandy loam | South of
Colorado Springs | 88 8
48 44 | 59
44 | | | 101A
101B | Silty clay loam | East of
Fountain | 4 4
40 | 77
33 | | | No. | Soil Type | Location
Sec. T.R. | Neubauer
mgm/100g | Replaceable mgm/100g | Morgan
lbs.per acre | |---------------|-------------------------------|-----------------------|----------------------|----------------------|------------------------| | 102A
102B | Clay | South of Fountain | 24
54 | ಶಿಜ | | | 103A
103B | Clay
Clay | North of Pueblo | 61
50 | 45
68 | | | 104A
104B | Rocky Ford fine
sandy losm | 3 21S 64W | 40
37 | 69
52 | | | 105A
105B | Rocky Ford loam | 5 213 63W | 51
44 | 29
47 | | | 106A
106B | Rocky Ford loam | 11 21s 63W | 328 | ស
ស
ស | | | 107A
107B | Rocky Ford loam | 9 21s 62W | 9
9
9
9 | 31
66 | | | 108A
108B | Billings clay | 32 20s 62W | 41
37 | 34
67 | | | 109 A
109B | Billings clay | 5 21s 61W | 45 | 44 | | | 110A
110B | Rocky Ford fine
sandy losm | 4 223 60W | ಬ ഗ
ನಿ 44 | 4 G
G G | | | 111A
111B | Ordway clay | 24 21s 56W | 44
88 | ಸ
ಹ
ಕ | | | | No. | | 301. | Soil Type | 8 . | | HØ | Location
Sec. T.R | ron
r.R. | Neubauer
mgm/100g | Replaceable
mgm/100g | Morgan
lbs.per acre | |----------|--------------|-----------------------|--------|------------|------------|---------|----------------|----------------------|-------------|---|-------------------------|------------------------| | V | 112A
112B | Ordway clay loam | clay | loar | æ | • • | 14 2 | 21s 5 | 56W | 85
85 | 61
41 | | | | 113A
113B | Ordway clay loam | clay | loar | 5 | | 15 0 | 218 5 | 56W | 44
32 | 25
25
26 | | | | 121A
121B | 121A Ordway clay loam | clay | loan | æ | | 03
03 | 213 5 | 56W | 4 5 S S S S S S S S S S S S S S S S S S | | | | Δ | 122A
122B | Ordway clay | clay | | | | 4ı
S | 218 5 | 5 6W | 200 | | | | \ | 123A
123B | Ordway clay | clay | | | • | 19 2 | 218 5 | 56W | 43
38 | | | | | 124A
124B | Las | 80 | silty | . | | 26
26
26 | 233 5 | 56W | 4 ይ
8 | | | | | 125A
125B | Laurel fine | fine | sandy | ly loam | | 23 2 | 233 5 | 56W | 47 | | | | Δ | 126A
126B | Rocky Ford clay loam | Ford (| clay | loam | | 8
8
8 | 238 5 | 26W | 51
19 | | | | \sim | 127A
127B | Apishapa | | silty clay | | loam ' | 4 243 | .s 56W | ж | 19 | | | | | 128A
128B | Apishapa | | silty o | clay lo | 10аш 34 | 4 238 | S 56W | MS | 4.5
5.2
5.2
5.2
5.2
5.2
5.2
5.2
5.2
5.2
5 | | | | 2 | | | | 4 | 15 | | | | | | |-------------------------|----------------------|----------------------|--------------------|----------------------|-----------------|-------------------------------|-----------------|----------------------|----------------------|-----------------| | Morgan
1bs.per ace | | | | | | | | | | | | Replaceable
mgn/100g | | | | | | | | | | | | Neubauer
mgm/100g | 57
49 | 51 | 33 S | 65
36 | 37
31 | 3.4
88 | 31
15 | 28
16 | 28
28 | 52
46 | | Location
Sec. T.R. | 34 23S 56W | 27 23S 56W | 28 233 56W | 20 23S 54W | 36 23S 55W | 15 228 59W | 22 223 59W | 32 223 57W | 10 238 57W | 13 238 57W | | Soil Type | Rocky Ford clay loam | Rocky Ford clay loam | Minnequa clay loam | Fort Lyons clay loam | Las Animas Clay | Las Animas silty clay
loam | Rocky Ford loam | Rocky Ford clay loam | Rocky Ford clay loam | Rocky Ford loam | | No. | 129A
129B | 130A
130B | 131A
> 131B | 132A
132B | 134A
134B | 135A
> 135B | 136A
136B | >137A
7 137B | > 138A
> 138B | 139A
139B | | e Morgan
lbs.per acre | | | | | 45 | | | | | | |--------------------------|-----------------|-------------------------|------------------|----------------------------|-------------------------|--------------|----------------------------|-------------------------------|-------------------------|-------------------------------| | Replaceable
mgm/100g | | | | | | | | | | | | Neubauer
mgm/100g | 52
37 | 35 | 46
49 | 52 | 50 | 4.46
4.8 | 44
42
54 | 53
50 | 88
88 | 50 | | iton
T.R. | 57W | 4 6W | 44W | 44W | 46W | 46W | 45W | 45W | 52W | 52W | | Location
Sec. T.R. | 233 | 223 | 238 | 233 | 22S | 222 | 233 | 223 | 228 | 223 | | йŏ | 12 | 27 | 83 | 10am
23 | 22 | 18 | ю | 27 | 31 | 31 | | Soil Type | Rocky Ford loam | Las Animas clay
loam | Manvel silt loam | Prowers fine sandy loam 23 | Les Animas clay
loam | Prowers loam | Prowers loamy fine
sand | Las Animas silty
clay loam | Fort Lyons clay
loam | Rocky Ford
silty
clay loam | | | | | | | | | | | | | | | | | | | 47 | | | | | | |------------------------|---------------------------------|--------------|---------------|--------------|------------------------------|--------------|--------------|--------------|--------------|--------------| | Morgan
lbs.per acre | | | | | | | | | | | | Replaceable mgm/100g | | | | | | | | | | | | Neubauer
mgm/100g | 53
39 | 44
44 | 54
29 | 61
53 | 56
50 | 56
52 | 62
44 | 52
44 | 54
45 | 58
41 | | Location
Sec. T.R. | 33 328 53W | 5 33S 63W | 7 32S 62W | 5 32S 62W | 5 32S 62W | 36 31S 63W | 36 31S 63W | 9 348 61W | 9 32S 62W | 25 32S 62W | | Soil Type | Minnequa clay loam
Clay loam | Clay loam | Clay loam | Clay loam | Silty clay loam
Clay loam | Clay
Clay | Clay | Clay | Clay | Clay
Clay | | No. | 150A
150B | 151A
151B | 152A
>152B | 153A
153B | 154A
154B | 155A
155B | 156A
156B | 157A
157B | 158A
158B | 159A
159B | | Morgan
1bs.psr sere | | | | | | | | | | | | |-------------------------|-------------------|----------------|-----------------|------------------------------|-------------------|--------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------| | Replaceable
mgm/100g | | | | | | | | | , | | | | Neubauer
mgm/100g | 61
55 | 5. 4.
4. 4. | | 88
84 | 3
3
8
8 | 55
86 | 4 8
46 | 54
64 | 56
49 | 39
46 | 60
45 | | Location
Sec. T.R. | 10 34S 62W | 3 34S 52W | San Luis Valley | Experiment farm near Alamosa | Near La Veta | Near La Veta | 19 38N 11E | 11 38N 10E | 1 39N 10E | 7 29N 9E | 18 39W 99W | | Soil Type | Clay loam
Clay | Clay | | Sandy loam
Sandy loam | Loam
Clay loam | Clay loam | Sandy loam
Loamy sand | Sandy loam
Sandy loam | Loamy sand
Loamy sand | Sandy loam
Loamy sand | Loamy sand
Loamy sand | | No. | 160A
160B | 161A
161B | | 120A
120B | 162A
162B | 163A
163B | 1 64 A
164B | 165A
165B | 166 A
166B | 167A
167B | 168A
16 9 B | | Morgan
lbs. per acre | | | e | | | | | | | | |-------------------------|--------------------------|------------|----------------------|--------------------------|--------------|-------------------|------------------------|------------------|------------------|-------------------| | Replaceable
mgm/100g | | | | | | | | | | | | Neubauer
mgm/100g | 55
4 | 55 | 70
58 | 57
57 | ិ
4 ប | 58
49 | 56
51 | 46 | 63
55 | 70
68 | | Location
Sec. T.R. | 18 29N 9E | 18 39N 9E | 18 37N 9E | 35 37N 9E | 7 36N 10E | Near Monte Vista | | Soil Type | Sandy loam
Sandy loam | Sandy loam | Loam
Clay loam | Sandy loam
Sandy loam | Loam
Loam | Loam
Clay loam | Clay loam
Clay loam | Clay loam | Clay loam | Loam
Clay loam | | No. | 169A
169B | 170A | 171 A
171B | 172A
172B | 173A
173B | 174A
174B | 175A
175B | 176A | 177A
177B | 178A
178B | | Ä. | Soil Type | Location
Sec. T.R. | Neubauer
mgm/100g | Replaceable
mgm/100g | Morgan
1bs.per acre | |----------------|------------------------|-----------------------|----------------------|-------------------------|------------------------| | 179A | Loam | Near Monte Vista | 70 | | - | | 1804 | Говш | Near Monte Vista | 58 | | | | 181A
>181B | Silt loam
Silt loam | 14 353 7B | 37 | | | | 182A
> 182B | Silt loam | 11 35S 7E | 758 | | | $\tilde{i}j$ Appendix Table 2. LaMotte Potassium Tests on American Crystal Sugar Company Soils. ## San Luis Valley District | Soil No. | K | - Pou | nds pe | r Acre | | Average | |-------------------------|---------------------|--------------------|------------|------------|-----|---------------------| | 1A
1B | 220
1 4 0 | 180
160 | | | | 200
150 | | 2A
2B | 200
350 | 200
240 | 210 | | | 200
266 | | 3A
3 B | 190
150 | 170
150 | | | | 180
150 | | 4A
4B | 180
220 | 150
145 | 180 | 150 | | 165≥
173 | | 5 A
5B | 325
220 | 210
140 | 220
220 | | | 251
193 | | 6A
6B | 160
210 | 300
200 | 160 | | | 206
205 | | 7A
7B | 160
350 | 170
170 | 170 | | | 165
2 3 0 | | 8A
8B | 260
170 | 350
220 | 180
350 | 260
170 | 160 | 242
227 | | 9A
9B | 200
3 00 | 325
4 00 | 220
160 | 145 | 260 | 248
253 | | 10A
10B | 170
145 | 4 00
180 | 220 | 260 | | 262
162 | | 11A
11B | 190
3 00 | 260
300 | 150 | | | 200
300 | | 12A
12B | 160
220 | 140
145 | 160 | | | 150
175 | | 13A
13B | 150
300 | 160
160 | 300 | | | 155
25 3 | | 14A
14B | 180
175 | 180
180 | | | | 180
177 | | Soil No. | K | - Poun | ds per | Acre | Average | |------------|------------|------------|------------|------|--------------------| | 15A
15B | 220
170 | 160
220 | 190
170 | | 190
186 | | 16A
16B | 180
160 | 160
180 | 160
200 | | 166
180 | | 17A
17B | 180
220 | 180
210 | | | 180
215 | | 18A
18B | 155
180 | 180
140 | | | 167
160 | | 19A
19B | 210
200 | 220
260 | | | 215
230 | | 20A
20B | 280
220 | 180
220 | 150 | | 20 3
220 | | 21A
21B | 220
180 | 140
180 | 190 | | 183
180 | | 22A
22B | 160
180 | 140
130 | | | 150
155 | | 23A
23B | 180
260 | 180
150 | 180
140 | | 180
18 3 | | 24A
24B | 130
210 | 180
180 | | | 155
195 | | 25A
25B | 160
150 | 180
110 | | | 170
130 | | 26A
26B | 375
240 | 200
190 | 145 | 210 | 232
215 | | 27A
27B | 180
400 | 150
160 | 160 | | 165
240 | | 28A
28B | 160
180 | 150
160 | | | 155
170 | | 29A
29B | 170
200 | 155
180 | | | 162
190 | | 30A
30B | 150
160 | 260
160 | 350 | 150 | 227
160 | | Soil No. | K | - Poun | ds per | Acre | Average | |----------------------------|---------------------------|--------------------|------------|------------|--------------------| | 31A
31B | 165
170 | 170
220 | 125 | 160 | 167
168 | | 32 A
32B | 300
180 | 240
210 | | | 270
195 | | | | Upper | Arkans | a s | | | 33A
33B | 180
1 4 0 | 130
160 | 220 | | 176
150 | | 34A
34B | 220
160 | 220
140 | 260
280 | 160 | 233
185 | | 35A
35B | 160
200 | 140
160 | | | 1 50
180 | | 36A
36B | 140
220 | 220
260 | 200 | | 186
240 | | 37A
37 B | 200
170 | 180
160 | 300
260 | 170
220 | 212
202 | | 38A
38 B | 325
3 00 | 190
220 | 210 | | 241
260 | | 39A
39 B | 170
375 | 180
33 0 | | | 175
352 | | 40A
40B | 2 4 0
300 | 210
260 | | | 225
280 | | 41 A
41 B | 220
220 | 325
200 | 220 | | 255
210 | | 42A
42B | 160
150 | 350
220 | 260
220 | | 256
196 | | 43 A
43 B | 260
250 | 260
260 | | | 260
22 5 | | 44 A
44 B | 240
190 | 200
15 0 | | | 220
170 | | 45A
45B | 3 00
210 | 300
240 | 270
210 | | 290
220 | | 46A
46B | 260
3 00 | 200
140 | 260 | | 230
200 | Pueblo | Soil No. | K | - Pour | nds pe | r Acre | | Average | |----------------------------|------------|------------|---------------------|--------|-----|---------------------| | 47A
47B | 180
180 | 220
180 | | | | 200
180 | | 48A
48B | 180
130 | 160
140 | | | | 170
135 | | 49A
49B | 140
190 | 210
220 | | | | 175
205 | | 50A
50B | 180
180 | 260
220 | | | | 220
200 | | 51A
51B | 150
160 | 140
130 | | | | 145
145 | | 52A
52B | 180
140 | 180
160 | | | | 180
150 | | 53A
53B | 190
170 | 170
165 | 220
160 | | | 173
247 | | 54 A
54 B | 190
190 | 220
140 | | | | 205
165 | | 55A
55 B | 160
210 | 160
140 | 160 | | | 160
170 | | 56A
56B | 190
220 | 140
160 | 220
1 3 5 | 160 | | 177
171 | | 57A
57B | 300
220 | 140
160 | 330
220 | | | 256
200 | | 58 %
58B | 220
180 | 210
180 | | | | 21 5
180 | | 59A
59B | 130
220 | 220 | 300 | 160 | | 225
220 | | 60 A
60B | 170
180 | 185 | | | | 170
182 | | 61A
61B | 160
170 | 260
200 | 350 | 170 | | 235
185 | | 62A
62B | 220
160 | 160 | 3 00 | 145 | 350 | 2 3 5
160 | | Soil No. | K - | Pound | s per . | Acre | | Average | |-----------------------------|------------|----------------------------|------------|------|-----|-----------------------------| | 63A
63B | 190
125 | 260
110 | | | | 225
117 | | 6 4A
6 4 B | 165
180 | 260
145 | 375 | 125 | 350 | 255
162 | | 65A
65B | 145
160 | 210
170 | 350 | | | 235
165 | | | | Rocky | Ford | | | | | 66A
66B | 140
160 | 180
200 | | | | 160
180 | | 67A
67B | 180
170 | 200
220 | 210
210 | | | 196
200 | | 68A
68B | 160
190 | 260
130 | 140
220 | 220 | | 186
190 | | 69A
69B | 220
190 | 300
130 | 145 | | | 260
155 | | 70A
70B | 240
180 | 4 00
1 60 | 135 | 120 | 520 | 223
170 | | 71A
71B | 210
140 | 165
160 | 140 | | | 171
150 | | 72A
72B | 260
260 | 175
190 | 180
180 | | | 205
210 | | 73A
73B | 180
260 | 260
200 | 220 | | | 220
230 | | 74A
74B | 260
220 | 150
160 | 260
210 | | | 223
196 | | 75A
75B | 170
210 | 155
220 | | | | 162
215 | | 76A
76B | 140
280 | 180
260 | | | | 160
270 | | 77A
77B | 170
325 | 145
135 | 180 | | | 157
213 | | 78A
78B | 240
200 | 220
170 | | | | 2 3 0
18 5 | |
Soil No. | K | - Poun | ds per | Acre | | Average | |-----------------------------|------------|---------------------|------------|------|-----|------------| | 79A
79B | 260
170 | 140
220 | 220 | | | 206
195 | | 80A
80B | 200
200 | 155
2 4 0 | 190 | | | 185
220 | | 81A
81B | 190
310 | 180
160 | 180 | | | 185
216 | | 82A
82B | 280
160 | 160
150 | 160 | | | 200
155 | | | | Las A | nimas | | | | | 8 3A
8 3 B | 190
230 | 140
300 | | | | 165
265 | | 84A
8 4 B | 170
170 | 220
210 | | | | 195
190 | | 85A
85B | 180
150 | 135
135 | 175 | | | 163
142 | | 86A
86B | 145
180 | 180
140 | | | | 162
160 | | 87A
87B | 160
120 | 125
165 | 135
110 | | | 140
131 | | 88 A
88B | 180
215 | 150
165 | 150 | | | 165
176 | | 89A
89B | 325
190 | 150
165 | 260 | 135 | 220 | 218
177 | | 90 ∦
90B | 220
180 | 180
190 | | | | 200
185 | | 91A
91B | 200
185 | 160
170 | | | | 180
177 | | 92A
92B | 130
220 | 180
135 | 120
180 | 150 | | 143
171 | | 93A
93B | 190
200 | 160
140 | 140 | | | 175
160 | | 94A
94B | 140
120 | 150
260 | 150 | | | 145
176 | | Soil No. | K - 1 | Pounds | per A | cre | Average | |--------------------|------------|---------------------|------------|-----|---------------------| | 9 5A
95B | 200
110 | 180
220 | 160 | | 190
163 | | 96A
96B | 140
125 | 180
180 | 140 | | 160
1 4 8 | | 97A
97B | 180
150 | 220
1 4 0 | | | 200
145 | | 98 A
98B | 220
145 | 170
140 | | | 195
142 | | 99A
99B | 140
160 | 160
135 | | | 150
147 | | 100A
100B | 200
150 | 210
160 | | | 205
155 | | | | Lamar | | | | | 101A
101B | 160
135 | 130
140 | | | 145
137 | | 102A
102B | 160
190 | 160
160 | | 1 | 160
175 | | 103A
103B | 150
140 | 145
200 | 170 | | 147
170 | | 104A
104B | 170
140 | 150
170 | | | 160
15 5 | | 105A
105B | 135
125 | 120
140 | | | 127
132 | | 106A
106B | 150
260 | 150
140 | 140 | | 150
180 | | 107A
107B | 160
140 | 210
160 | | | 185
150 | | 108A
108B | 115
130 | 150
140 | 180 | | 148
135 | | 109A
109B | 190
240 | 140
160 | 120
120 | | 150
17 3 | | Soil No. | K | - Pou | nds per Acre | Average | |----------|-----|-------|--------------|-------------| | 110A | 200 | 165 | | 182 | | 110B | 180 | 160 | | 170 | | 111A | 160 | 135 | | 147 | | 111B | 150 | 200 | | 175 | | 112A | 140 | 190 | | 165 | | 112B | 160 | 135 | | 147 | | 113A | 325 | 300 | 140 | 312 | | 113B | 220 | 160 | | 173 | | 114A | 220 | 280 | | 250 | | 114B | 260 | 200 | | 230 | | 115A | 260 | 240 | 210 | 250 | | 115B | 240 | 160 | | 203 | | 116A | 220 | 220 | | 220 | | 116B | 200 | 200 | | 200 | | 117A | 170 | 220 | 140 | 195 | | 117B | 220 | 130 | | 16 3 | | 118A | 170 | 150 | | 160 | | 118B | 190 | 150 | | 170 | | 119A | 160 | 160 | | 160 | | 119B | 140 | 160 | | 150 | | 120A | 210 | 180 | | 195 | | 120B | 170 | 160 | | 165 | | 121A | 210 | 160 | | 185 | | 121B | 130 | 110 | | 120 | | 122A | 120 | 180 | 260 | 186 | | 122B | 150 | 300 | 260 | 23 6 | | 123A | 200 | 220 | 220 | 186 | | 123B | 120 | 240 | 260 | 233 | | 124A | 165 | 220 | | 192 | | 124B | 220 | 170 | | 195 | | 125A | 180 | 375 | 260 | 271 | | 125B | 160 | 220 | 190 | 190 | | Soil No. | K - Po | unds | per Acre | Average | |---------------|-------------|------|----------|--------------| | 126A | 160 | 220 | 240 | 206 | | 126B | 220 | 260 | | 240 | | 127A | 155 | 180 | | 167 | | 127B | 160 | 150 | | 155 | | 128A | 130 | 140 | 300 260 | 1 3 5 | | 128B | 210 | 135 | | 226 | | 129A | 1 75 | 180 | | 177 | | 129B | 180 | 160 | | 170 | | 130A | 150 | 190 | | 170 | | 130B | 150 | 125 | | 137 | | 131A | 125 | 120 | | 122 | | 131B | 140 | 120 | | 130 | | 132A | 175 | 135 | | 155 | | 132B | 160 | 160 | | 160 | | 133A | 140 | 140 | | 140 | | 133B | 130 | 140 | | 135 | | 13 4A | 170 | 180 | | 175 | | 13 4 B | 160 | 190 | | 175 | | 135A | 140 | 140 | | 140 | | 135B | 100 | 120 | | 110 | | 136A | 160 | 180 | | 170 | | 136B | 140 | 160 | | 150 | | 137A | 160 | 180 | | 170 | | 137B | 160 | 200 | | 180 | | 138A | 160 | 260 | 260 | 226 | | 138B | 180 | 190 | | 185 | | 139A | 150 | 180 | | 165 | | 139B | 180 | 180 | | 180 | Holly Sugar Corporation Colorado Soils | Soil No. | K - | Pounds | per Acre | Average | |---------------|-----|-------------|----------|--------------| | 820 4 | 180 | 125 | 175 | 1 52 | | 8206 | 220 | 140 | | 1 7 8 | | 8198 | 240 | 300 | | 270 | | 8189 | 180 | 180 | | 180 | | 8194 | 180 | 260 | | 220 | | 81 9 0 | 215 | 260 | | 237 | | 8201 | 220 | 220 | | 220 | | 8202 | 180 | 170 | | 175 | | 8182 | 185 | 180 | | 182 | | 8186 | 160 | 180 | | 170 | | 8 197 | 220 | 3 50 | 260 | 276 | | 8 199 | 180 | 1 80 | | 180 | | 8191 | 160 | 160 | | 160 | | 8193 | 105 | 110 | | 107 | | 8187 | 200 | 260 | | 230 | | 8188 | 160 | 210 | | 185 | | 8192 | 200 | 220 | | 210 | | 8185 | 200 | 260 | | 230 | | 8 184 | 220 | 260 | | 240 | | 8 183 | 180 | 140 | | 160 | | 8 230 | 220 | 180 | | 200 | | 8 228 | 160 | 180 | | 170 | | 822 7 | 170 | 210 | | 190 | | 82 23 | 180 | 180 | | 180 | | 82 34 | 180 | 180 | | 180 | | 82 32 | 150 | 145 | | 1 47 | | 8235 | 210 | 160 | | 185 | | 8222 | 325 | 180 | 260 | 255 | | 8224 | 180 | 160 | | 170 | | Soil No. | K | - Poun | ds per Acre | Average | |---------------|-----|-------------|-------------|-------------| | 1829 | 260 | 280 | 180 | 270 | | 82 3 1 | 160 | 260 | | 200 | | 8220 | 260 | 240 | | 250 | | 8236 | 200 | 180 | | 190 | | 8213 | 300 | 190 | 220 | 226 | | 8212 | 180 | 220 | | 200 | | 821 4 | 220 | 210 | 160 | 215 | | 8215 | 300 | 190 | | 216 | | 8216 | 240 | 260 | | 250 | | 8217 | 180 | 230 | | 205 | | 8218 | 220 | 180 | | 200 | | 8219 | 130 | 180 | | 155 | | 8205 | 325 | 110 | 200 | 211 | | 8208 | 200 | 155 | | 177 | | 8209 | 220 | 215 | | 217 | | 8207 | 160 | 130 | | 145 | | 8200 | 160 | 180 | | 170 | | 8221 | 240 | 160 | 160 | 186 | | 8238 | 160 | 220 | | 190 | | 8239 | 150 | 220 | | 185 | | 8106 | 180 | 220 | | 200 | | 8130 | 185 | 190 | | 18 7 | | 8071 | 160 | 210 | | 185 | | 809 4 | 300 | 240 | 220 | 270 | | 8226 | 260 | 140 | | 206 | | 8195 | 150 | 260 | 180 | 196 | | 82 41 | 180 | 125 | | 152 | | 80 95 | 180 | 260 | | 22 0 | | 8107 | 160 | 35 0 | 180 | 230 | | 8180 | 170 | 22 0 | | 195 | ر نوب ن_و پ 7 | Soil No. | K - | Pound | is per Acre | Averag e | |----------|------------|------------|-------------|-----------------| | 8083 | 180
180 | 220
160 | | 200
170 | | 8105 | 260 | 240 | 180 | 250 | | 8102 | 170 | 280 | | 210 | | 8103 | 170 | 180 | 180 | 175 | | 8104 | 220 | 140 | | 180 | ## **BIBLIOGRAPHY** - 1. Brown, D. S., R. R. Robinson and G. M. Browning. Determination of small amounts of potassium. Ind. Eng. Chem. Anal. Ed. 10:652-4. 1938 2. Haley. D. E. Availability of orthoclase for plant nutrition. Soil Sci. 15:167-179. 1923 3. Harris, H. C. Effect of lime on availability and the fixation of potash in soils. Soil Sci. 44:265-275. 1937 4. Headden, W. P. Effect of clover and alfalfa in the rotation. Part I Colo. Exp. Sta. Bull. 319. 1927. 5. Effect of clover and alfalfa in the rotation. Part III Colo. Exp. Sta. Bull. 362. 1930. 6. Effect of clover and alfalfa in the rotation. Part III. Colo. Exp. Sta. Bull. 363. 7. Effect of clover and alfalfa in the rotation. Part IV. Colc. Exp. Sta. Bull. 364. 1930 8. A study of Col rado wheat. Exp. Sta. Bull. 247. 1918 9. Furst, L. A. and A. W. Skuderna. Fertilizer studies with sugar beets in the Arkansas Valley area. Colo. 1921-28. U.S.D.A.Cir. 319. 1934. 10. Idaho Exp. Sta. Science Aids Idaho Farmers. Idaho Staff. Agr. Exp. Sta. Bull. 220 (Annual Report) 1936. 11. LaMotte Chem. Co. Instructions are with the "quick test" kit. - 12. Lynes, F. Soil Studies, A preliminary report of research work on soils. The Holly Sugar Corp. Res. Dept. 1940 (Unpublished Report). - 13. MacIntire, W. H. The liberation of native soil potassium by different calcic and magnesic materials as measured by lysimeter leachings. Soil Sci. 8:337-394. 1919 - 14. MacIntire, W. H., W. M. Shaw and K. B. Sanders. Influence of liming on the availability of potash. Jour. Amer. Soc. Agron. 19:483-505. 1927. - 15. McGeorge, W. T. Potassium in calcareous soils. Ariz. Agr. Exp. Sta. Tech. Bull. 50. 1933. - 16. Morgan, M. F. The universal soil testing system. Conn. Agr. Exp. Sta. Bull. 392. 1937. - 17. Rivaz, C. P. Application of the Neubauer rye seedling method of soil analysis to fertility studies in Ontario. Scien. Agr. 19:210-220 1938. - 18. Seers, O. H. Relation of nitrates in soils to the response of crops to potash fertilization. I Factor contributing to the unproduct-iveness of "Alkali" soils in Illinois. Soil Sci. 30:325345 1930. - 19. Stewart, R. The Mitscherlich, Wiesemann, and Neubauer methods of determining the nutrient content of solls. Imperial Bur. Soil Sci. 25:30. 1932. - 20. Taylor, C. J. Annual Report Fertilizer Section Annual Report of State Commissioner of Agriculture. 1940. - 21. Ulrich, A. LaMotte potassium tests on American Crystal Sugar Co. and Holly Sugar Co. Soils. Calif. Agr. Exp. Sta. (Unpublished Data). الأعراج 22. Weighing, R. M. D. W. Robertson and O. H. Coleman Survival of several alfalfa varieties seeded on irrigated land infested with bacteria wilt. Colo. Exp. Sta. Tech. Bull. 23:4-5 1938 COLORADO STATE COLLEGE OF A. & M. A