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ABSTRACT 

 

IN VIVO REGULATION OF CHROMATIN DYNAMICS BY SACCHAROMYCES 

CEREVISIAE HISTONE CHAPERONE NAP1  

 

Eukaryotic cells must organize massive amounts of DNA into the 

nucleus. In order to accomplish this, the DNA must be compacted into a highly 

ordered structure known as chromatin. The basic, repeating unit of chromatin is 

the nucleosome, which consists of two copies of each histone (H2A, H2B, H3 

and H4) and organizes 147 base pairs of DNA. Due to its highly compact nature, 

nucleosomes must be removed during gene expression in order for the 

transcription machinery to access the DNA. Shuttling of nucleosomes on and off 

DNA is mediated by a group of proteins known as histone chaperones. 

Importantly, histone chaperones interact with another family of chromatin 

remodeling complexes known as histone acetyltransferases (HATs). Acetylation 

of histones is correlated with the active transcription of genes. The work 

presented here explores the dynamics and kinetics of histone H3 occupancy and 

acetylation of histone H3-K9 and H3-K14 in a wild-type strain and strains deleted 

for three known histone chaperones (Nap1, Vps75 and Asf1) of the yeast 

Saccharomyces cerevisiae at the well characterized galactose inducible genes. 

This data offers insight into the epigenetic regulation of chromatin as well as 

possible mechanisms for the histone chaperones surveyed. 
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CHAPTER 1 INTRODUCTION 
 

1.1 EUKARYOTIC GENE REGULATION AND CHROMATIN STRUCTURE 

Inside the nucleus of eukaryotic cells, DNA and proteins are organized into 

chromatin. The basic level of organization is a histone octamer (two of each 

histone H2A, H2B, H3, and H4), which organizes 147 base pairs of DNA in two 

super-helical turns to create the nucleosome core particle 1. Nucleosomes have a 

large impact on the accessibility of DNA, which influences gene regulation, DNA 

damage repair, and other nuclear functions that require access to DNA. Although 

nucleosomes were characterized as the basic unit of chromatin over 30 years 

ago and their structure is known in detail 1; 2 there is still much to learn about how 

proteins regulate chromatin structure and, ultimately, gene expression. 

Chromatin architectural alterations occur as a result of post-translational 

modifications and/or the addition and removal of histones. Histone 

acetyltransferases (HATS) and histone chaperones are accessory proteins that 

are responsible for regulating these changes in chromatin structure. Histone 

chaperones modify the chromatin structure by assembling or disassembling 

nucleosomes during DNA replication, cell-cycle progression, and gene 

transcription (Table 1.1). HATs acetylate conserved lysine residues by catalyzing 

the addition of an acetyl group to the ε-amino group of histone tails (Table 1.2). It 

is unclear how histone chaperones and HATs modify and mobilize histones, and 

together regulate chromatin structure.  

There are two mechanisms by which histone tail acetylation influences chromatin 

structure. Modifications of lysine residues function either by disrupting histone-

DNA contacts or by influencing the recruitment of chromatin remodeling proteins. 

Chromatin is stabilized by electrostatic interactions between basic histone tails 

and acidic regions on adjacent nucleosomes. The effect of charge neutralization 

is disrupted by histone acetylation. Thus, neutralizing the positive charges of 

lysine residues by acetylation alters the interaction between the histone and the 
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negatively charged DNA backbone. As a result, the compacted chromatin 

(heterochromatin) is destabilized and “relaxed” (euchromatin). Furthermore, the 

exceptional diversity seen within patterns of histone marks at distinct residues 

comprises the histone code.  This hypothesis states that histones are subjected 

to post-translational modifications, which lead to the recruitment of protein 

complexes that regulate chromatin structural states. Interestingly, histone 

acetylation signals for the recruitment of proteins that contain a bromodomain. 

Components of the Swi/Snf (SWItch/Sucrose Non-Fermentable) and RSC 

complexes (Chromatin Structure Remodeling Complex), and many transcription 

co-factors such as Gcn5 and p300 contain bromodomains 3.  

 

1.2 CHROMATIN REGULATORY PROTEINS 
 
HISTONE CHAPERONES MEDIATE HISTONE ASSEMBLY AND DISSASSEMBLY  

The histone chaperone, Nap1 (Nucleosome Assembly Protein 1), promotes 

nucleosome assembly by preventing nonproductive nucleosomal interactions 

between H2A-H2B dimers and DNA, both in vitro and in vivo 4. Nap1 has been 

identified in all eukaryotes and its function is highly conserved 5. Nap1 

disassembles nucleosomes that are acetylated at histone H3-K14 in vitro 6. 

Furthermore, Nap1 regulates cell-cycle progression 7 and nucleosome sliding 

within the nucleus 8, but also functions in the cytoplasm where it assembles the 

septin complex at the bud neck during daughter cell formation 9. Vps75, Vacuolar 

Protein Sorting 75, belongs to the NAP family of histone chaperones and is 

conserved from yeast to humans 10; 11. Vps75 binds H3-H4 tetramer in contrast to 

other Nap1 family members which prefer the H2A-H2B dimer 12 , 13 and can 

assemble nucleosomes in vitro 14.  
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                 TABLE 1.1: YEAST HISTONE CHAPERONES NAP1, VPS75, 
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Asf1, Anti-Silencing Function 1, was initially characterized genetically in budding 

yeast as a suppressor of gene silencing when over-expressed 15. More recently, 

Asf1 has been shown to act as a global chromatin disassembly factor 16. Asf1 

has been implemented in both replication-dependent and replication-independent 

chromatin assembly 17. Chromatin immunoprecipitaiton (ChIP) experiments show 

that Asf1 is involved in transcription-coupled exchange of histone H3 at the 

GAL1, 10 locus 18. Specifically, Asf1 aids in the disassembly of histone H3 during 

active transcription and assembly of H3 during transcription repression. 

Furthermore, Asf1 increases the rate of histone eviction during the induction of 

yeast PHO5 and PHO8 promoters 19.  

 

HISTONE ACETYLTRANSFERASES LINK HISTONE MODIFICATIONS TO GENE EXPRESSION 

HATs are classified into three distinct families GNAT, MYST, and P300/CBP 

(Table 1.2). The GNAT family (Gcn5-related N-acetyltransferases) is a diverse 

family of HATs. Gcn5 is part of the multiple subunit complex, SAGA, which 

functions during transcription 20.  Gcn5 acetylates histones H3 lysine nine (H3-

K9) and H3 lysine 14 (H3-K14) 21; 22. The MYST family is named for its founding 

members MOZ, Ybf2/Sas3, Sas2, and Tip60. The MYST family of HATs 

acetylates H4 and the histone variant Htz1 23; 24. Another HAT family consists of 

CREB binding protein (CBP) and p300, which acetylate histone H3-K9 and H3-

K56 25; 26. One characteristic of many HATs is that they do not function 

independently in vivo. HATs are found in complex with other HATs, co-activators, 

and histone chaperones. Proteins found in complex with HATs are major 

elements specifying HAT substrate preference, and the functions of HATs 

depend primarily on the other protein subunits. For example, Gcn5 alone 

acetylates free histones H3-K14, as part of the SAGA complex with Ada2 and 

Ada3 it acetylates H3-K9, H3-K14, H3-K18 and H3-K23. 27; 28. 

 

HISTONE ACETYLATION AND EVICTION REGULATE GENE EXPRESSION 

Histone acetylation and eviction has been shown to play a regulatory role in 

transcription. In vivo, acetylated nucleosomes are evicted from the promoter and 
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coding region at a rate that correlates with gene transcription 29; 30, whereas 

deacetylated nucleosomes indicate the repressed state of a gene. Like histone 

acetylation, histone exchange influences transcription regulation. Nucleosomes 

are repressive to transcription initiation, as they control the access of regulatory 

proteins to promoter DNA and prevent the assembly of pre-initiation complexes. 

Additionally, nucleosomes must be removed from coding regions to allow the 

passage of RNA polymerase II.  Thus, promoter and coding region chromatin 

disassembly is a globally used mechanism to regulate eukaryotic transcriptional 

induction.  

 

1.3 INDUCIBLE GENE EXPRESSION: THE YEAST GAL GENES 

The galactose inducible genes (GAL1, GAL10, and GAL7) encode the enzymes 

and regulators needed to utilize galactose as a carbon source 31. The GAL genes 

are examples of well-studied genes whose expression is repressed by positioned 

nucleosomes at promoter and coding regions when cells are grown raffinose 

(Fig. 1.1). GAL1 and GAL10 are divergently transcribed and share an upstream 

activating sequence (UAS) containing four binding sites for the activator Gal4 32; 

33; 34. When cells are grown in raffinose, Gal4 is expressed and binds the UAS, 

but the inhibitor Gal80 interacts with the activating region. Addition of galactose 

inactivates Gal80, thereby freeing Gal4 to activate transcription. However, 

nucleosomes that occupy the galactose inducible promoter must be modified and 

displaced for gene activation to occur. It is known that deletion of histone 

chaperone NAP1 plays a direct role in the expression of galactose inducible 

genes in vivo 4. More specifically, cells lacking Nap1 has increased transcription 

activation kinetics that fails to repress as quickly as wild-type cells. We will use 

this inducible gene system to evaluate the changes in histone occupancy and 

acetylation that occur upon gene activation (Fig. 1.2). 

 

1.4 GAPS TO BE FILLED 
A close relationship between histone acetylation and active gene expression is 

established 35. However, the molecular mechanism of how HATs and histone 
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chaperones function together to regulate histone acetylation and histone 

exchange during transcription is unclear. The study of chromatin regulatory 

proteins is a broad and complex field that is still expanding, and although our 

knowledge of these protein complexes has increased in recent years, there is still 

much to learn. Our hypothesis is chromatin is very dynamic and there are 

differences in eviction and acetylation kinetics during active gene transcription. In 

this study, we use a well-established inducible promoter to detect the impact of 

histone chaperones on histone occupancy and acetylation status upon gene 

activation. Acetylated histones H3-K9 and H3-K14 are marks often associated 

with transcription activation and are the key residues of our analysis. Here, we 

show that specific histone chaperones promote histone eviction and influence 

histone acetylation at inactive and active GAL genes in vivo. We also quantify the 

intensity of fluorescence and expression levels of GFP-histone chaperones. This 

should be very informative for future work on determining the sedimentation 

parameters of endogenous histone chaperone-HAT complexes by analytical 

ultracentrifugation with a fluorescence detection system.  
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FIGURE 1.1: DIAGRAM OF THE GAL GENES 
Positions of the coding and promoter sequences for GAL7, GAL10, and GAL1. 
The amplicons used in the chromatin immunoprecipitation assays are labeled 
A-K. 
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FIGURE 1.2: GALACTOSE GENE INDUCTION SYSTEM 
Samples were taken after 0 (T0 ), 10 (T10), 20 (T20), 30 (T30), and 60 
(T60) minutes of growth in galactose. Nucleosomes are evicted from 
promoter and coding regions upon growth in galactose.  
	  



	   10	  

 

 
CHAPTER 2 MATERIALS AND METHODS 

 
2.1 YEAST STRAINS AND MEDIA 

Dr. Erin O’Shea and Dr. Jonathan Weissman at University of California-San 

Francisco generated the S. cerevisiae GFP-histone chaperone fusion proteins 36. 

The GFP fusion proteins are integrated into the yeast chromosome through 

homologous recombination and are expressed from endogenous promoters. The 

deletion mutant strains (∆asf1, ∆vps75, and ∆nap1) and the parental strain 

(BY4741) used in this study were purchased from Open Biosystems. Non-

induced strains were grown in YP media containing 2% raffinose. For galactose 

inductions, cells were first grown in raffinose media, and then washed and 

transferred to YP containing 2% galactose. Cells were collected at different 

induction time points. 

 

2.2 CHROMATIN IMMUNOPRECIPITATION ASSAY 

Chromatin immunoprecipitation (ChIP) assays were performed as described 37,38. 

Cells (50 mL) were grown in raffinose or galactose media at 37°C to OD600 of 

0.8~1.0. Proteins were cross-linked to DNA by 1% formaldehyde for 15 minutes 

with gentle swirling of the media at 5-minute intervals. Glycine was added to a 

final concentration of 1.5M at 25°C to quench the cross-linking reaction. 

Chromatin was sheared by sonication using a Branson W-350 model sonifier (8 

times at 8 sec each on continuous pulse at a microtip power setting of 5). Ten 

percent of the chromatin material used for the immunoprecipitation, which was 

processed as the input after reversing the cross-links and purifying the DNA. 

Chromatin (500 µl) was incubated with 5 µl of anti-H3 (Abcam), 10 µl anti-H3K9 

(Millipore), or 10 µl anti-H3K14 (Millipore) antibodies, rotating overnight at 4°C. 

50 µl of protein-A sepharose beads was incubated with the chromatin material for 

3 hours at room temperature. The beads were collected by centrifugation, and 
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the antigen–antibody complexes were recovered and treated with elution buffer 

(50 mm Tris, 10 mm EDTA, 1% SDS) for 15 minutes at 65°C to elute the 

complexes. Protein–DNA cross-links were reversed by incubation overnight at 

65° C, and the DNA was purified by phenol–chloroform extraction and used for 

quantitative PCR analysis. Samples with no antibody were used as inputs. A 

change in the critical threshold (∆CT) was determined by subtracting input DNA 

(no IP) from the critical threshold (CT) value measured by quantitative PCR. The 

protein occupancy was determined by raising the PCR efficiency to the ∆CT 

value. Quantitative PCR reactions were carried out in a volume of 25 µl using a 

BioRad iCycler, SYBR green fluorescein mix, and specific primers (Supplemental 

Table 1). Standard curves were generated using 10-fold serial dilutions of Input 

DNA. PCR efficiencies ranged from 90 to 100%. 

 

2.3 WESTERN BLOT ASSAY 
Yeast cells were grown in raffinose or galactose (10 ml) media to an OD600 of 

0.8~1.0. Cells were harvested, washed with sterile water, and resuspended in 

150 µl lysis buffer (25 mM Tris Phosphate, pH 7.4 and 2 mM PMSF). Whole-cell 

extracts were prepared by vigorous bead beating. Cellular debris was removed 

by spinning the extracts at 10,000 × g at 4° C for 15 minutes. Protein 

concentrations were determined by the Bradford assay (Bio-Rad). Equal 

concentrations (20 µg/µL) of whole-cell extracts were separated on 15% SDS–

PAGE and transferred to a nitrocellulose membrane. The following antibodies 

were used at the given dilutions: anti-H3 (Upstate, 1:1000), anti-H3K9 (Millipore, 

1:5,000), anti-H3K14 (Millipore, 1:3,000), and anti-GFP (Gift from Jim Bamburg’s 

Lab, 1:1,000) 

 

2.4 FLUORESCENCE ASSAYS 

S. cerevisiae cells expressing photo-activatable GFP-histone chaperone were 

grown in 10 mL of S.D. (synthetic defined) medium to an OD600 of 0.8~1.0. Cells 

were harvested, washed with sterile water, and resuspended in 150 µl lysis buffer 

(25 mM Tris Phosphate, pH 7.4 and 2 mM PMSF). Whole-cell extracts were 
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prepared by vigorous bead beating. Cellular debris was removed by spinning the 

extracts at 10,000 × g at 4° C for 15 minutes. Protein concentrations were 

determined by the Bradford assay (Bio-Rad).  All fluorescent assays were 

performed in a Horiba Jobin Yvon Fluorolog-3 spectrofluorometer. The cells were 

constantly stirred with a magnetic stirrer to establish uniform cell distribution 

during the experiment. Yeast cells were excited with 488 nm wavelength of light 

and peak emission wavelength intensity measured. 

 

2.5 CELL IMAGING 
S. cerevisiae cells expressing photo-activatable GFP-histone chaperone were 

grown in 10 mL S.D. media to an OD600 of 0.8~1.0. Cells were harvested and 

resuspended in 1 mL of 20 mM Tris-Cl ph 7.4 and 125 mM KOAc. Equal volumes 

(1 µL) of yeast cells were fixed to a glass microscope slide using mounting media 

(9 µL) and cover slips were sealed with nail polish. Cells containing GFP-histone 

chaperones were excited by 488 nm wavelengths of light. GFP-histone 

chaperone emission intensities were imaged and quantified using Delta Vision 

Personal DV Imaging System, and Z-stacks at 0.2 µm intervals were taken 

through each cell. 

 

2.6 DATA ANALYSIS 
 
2.6.1 HISTONE H3 OCCUPANCY TABLES 

The ∆CT was determined by subtracting input DNA (no IP) from the critical 

threshold value (CT) measured by quantitative PCR. The PCR efficiency 

determined by quantitative PCR was raised to the ∆CT value to measure the raw 

histone H3 occupancy.  The histone H3 occupancy was calculated by dividing 

the histone H3 raw occupancy values by the telomere histone H3 raw occupancy 

values within each sample. 

 

CT - Input DNA = ∆CT 
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PCR Efficiency ∆CT = Histone H3 Raw Occupancy 

 

(EQUATION 1)  

H3 Histone Occupancy  =    

Histone  H3 Raw Occupancy GAL Amplicon  

       Histone H3 Raw Occupancy Telomere 

 

 

Initial and Minimum Histone H3 Occupancy:  

Normalized occupancy values were multiplied by 10 

 

(EQUATION 2)  
Time Independent Fold Eviction =  

 Initial H3 Occupancy  T0 

Minimum H3 Occupancy Observed 

 

(EQUATION 3) 
 Time Dependent Fold Eviction T20= 

Initial Occupancy  T0 

Histone Occupancy T20 

 

(EQUATION 4) 
 Time Dependent Fold Eviction T30 =  

Initial Occupancy @ T0  

Histone Occupancy @ T30 

 

(EQUATION 5)  

Histone H3 Eviction Rate = 

 

Initial Histone Occupancy - Minimum Histone Occupancy 

TMinimum Histone Occupancy 
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*Normalized eviction rate values were multiplied by 10 

 

Time at Which Half Histone H3 Eviction Occurs (T0 Dependent) 

Maximum histone occupancy values observed at T0 (raffinose) were set to 

100 and additional time points were normalized to this value. The time at 

which half of the maximum eviction occurred was determined by graphing 

the adjusted acetylation occupancy values versus time. A tangent line was 

extrapolated from the half eviction level down to the time at which it 

occurred. 

 

2.6.2 Histone Acetylation Tables 
The ∆CT was determined by subtracting input DNA (no IP) from the critical 

threshold value (CT) measured by quantitative PCR. The PCR efficiency 

determined by quantitative PCR was raised to the ∆CT value to measure the raw 

histone H3 acetylation.  The histone H3 acetylation (K9 and K14) values were 

calculated by dividing the histone H3 raw acetylation values by the telomere 

histone H3 raw acetylation values within each sample. 

 

CT - Input DNA = ∆CT 

PCR Efficiency ∆CT = K9 (K14) Raw Acetylation 

 

(EQUATION 6)  

H3 Histone Acetylation =  

Raw K9 (K14) Acetylation GAL Amplicon / Raw K9 (K14) Acetylation Telomere 

            H3 Occupancy GAL Amplicon / H3 Occupancy Telomere 

 

Initial and Maximum Histone H3-K9/H3 and H3-K14/H3 Histone Acetylation (TO) 

*Normalized histone acetylation levels were multiplied by 10 

 

(EQUATION 7)  
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Time Independent Fold Acetylation = 

Maximum Acetylation Observed 

Initial Acetylation 

 

(EQUATION 8) 
Time Dependent Histone H3 (K9/H3 and K14/H3) Fold Acetylation  T20 =  

Acetylation Value  T20 

Initial Acetylation 

 

(Equation 9)  
Time Dependent Histone H3 (K9/H3 K14/H3) Fold Acetylation T30 = 

Acetylation T30 

Initial Acetylation 

 

(Equation 10) 

 Histone H3-K9/H3 and H3-K14/H3 Acetylation Rate =  

Maximum Acetylation-Initial Acetylation 

          TMaximum Acetylation 

 

Time at Which Half Histone H3 Acetylation (H3-K9/H3 and H3-K14/H3) Occurs  

The maximum acetylation value observed was set to 100 and additional 

time points were normalized to this value. The time at which half of the 

maximum acetylation occurred was determined by graphing the adjusted 

acetylation occupancy values versus time. A tangent line was extrapolated 

from the half eviction level down to the time at which it occurred. 
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CHAPTER 3 HISTONE EVICTION AND MODIFICATIONS AT 
GALACTOSE INDUCIBLE GENES 

3.1 ABSTRACT  
In eukaryotes, the genome is organized in DNA and histones to form chromatin. 

The highly compact nature of chromatin creates a barrier for proteins that require 

access to DNA during replication, transcription, and DNA repair. During 

transcription activation, histones are exchanged from promoter and coding 

regions to allow efficient synthesis of mRNA. Additionally, histone acetylation is 

correlated with active gene transcription. Here, we characterize location-specific 

effects of histone eviction and histone acetylation at galactose inducible genes in 

vivo across time. Our approach is highly sensitive allowing for the determination 

of histone H3 occupancy and acetylation status of key lysine residues on histone 

tails at promoter and coding regions upon gene activation. We show that there 

are significant location specific effects in regard to histone H3 eviction and 

acetylation at promoter and coding regions at galactose inducible genes. 

 

3.2 INTRODUCTION 

The basic level of organization of chromatin is a histone octamer (two of each 

histone H2A, H2B, H3, and H4), which organizes 147 base pairs of DNA in two 

super-helical turns to create the nucleosome core particle 1. Remodeling of 

chromatin plays a key role in the regulation of gene expression through histone 

modifying activities. Histones are acetylated and evicted from promoter regions 

upon transcription activation to allow binding of the pre-initiation complex. 

Additionally, nucleosomes are evicted from coding regions to allow passage of 

RNA polymerase II. However, it is unclear if regions within the genome contain 

varying amounts of histone occupancy and acetylation kinetics that occur upon 

gene activation, and to what extent. Furthermore, it is unknown to what degree 

these histone modifications are altered upon gene activation. Here, we use a 
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well-studied gene expression system to study these types of location specific 

effects of promoter and coding regions. We hypothesize that there will be 

significant differences in histone H3 eviction profiles and acetylation status at 

promoter and coding regions. More specifically, we expect to see decreased 

amounts of histone H3 acetylation at promoter regions compared to coding 

regions due to the fact that active promoter regions need to be highly accessible 

to transcription factors.  The GAL genes are an ideal system to study changes in 

nucleosome occupancy and acetylation upon gene activation because 

nucleosomes are evicted from promoter and coding regions during growth in 

galactose 39. We show that promoter and coding regions contain different 

densities of nucleosomes with varying degrees of histone acetylation that 

contribute to different eviction profiles and acetylation rates at the galactose 

inducible genes in vivo. 

 

3.3 RESULTS 

Transcription by RNA polymerase II on a chromatin template is accompanied by 

dynamic changes in the chromatin structure, such as the eviction or post-

translational modifications of histones. To understand histone mobility and the 

role of acetylation at the galactose inducible genes, chromatin 

immunoprecipitation (ChIP) assays were used to map the occupancy of histone 

H3 and the levels of acetylated histones (H3-K9/H3 and H3-K14/H3).  

 

PROMOTER REGIONS CONTAIN DECREASED LEVELS OF HISTONE H3 AT INACTIVE GAL 

GENES 

First, we wanted to determine the amount of histone H3 present at the GAL 

genes during repressive conditions (growth in raffinose). Histone H3 was cross-

linked to various promoter and coding regions within the GAL genes, which 

allowed the comparison of location-specific variations of histone occupancy. With 

this system, the galactose-inducible genes were analyzed by changing the 

medium from raffinose (off) to galactose (on). In repressive conditions, we 

observed that histone H3 density is comparable across the 3’ end of coding 
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regions at the GAL7, 1, 10 genes (Fig. 3.1). Histone H3 normalized occupancy 

(See equation 1 in Materials and Methods for normalization description) for these 

coding regions ranged from 1.5 to 2.0. We observed a slight decrease in H3 

occupancy at the 5’ end of coding regions of GAL10 and GAL7. As expected, 

there is decreased histone H3 occupancy at promoter regions compared to 

coding regions. Promoter regions at the GAL genes contained histone H3 

occupancy levels of 1.0. The GAL1, 10 and GAL 7 UAS and TATA boxes 

showed a 2-fold decrease in histone H3 occupancy when compared to the 

occupancy found at GAL1 and GAL10 coding regions. 

 

HISTONE H3 IS EVICTED FROM PROMOTER AND CODING REGIONS UPON TRANSCRIPTION 

ACTIVATION  

Next, we wanted to characterize H3 eviction patterns seen within activate GAL 

genes and uncover any location specific differences in H3 eviction parameters 

(rate and fold eviction). Upon galactose induction, histones are evicted from 

promoter and coding regions to allow the binding and passage of RNA 

polymerase II (Fig. 3.2). We observed that the majority of coding regions contain 

greater occupancy of histone H3 than promoter regions during activating 

conditions (10, 20, 30, and 60 minutes of growth in galactose) (Fig 3.3). The 

histone H3 occupancy difference observed between promoter and coding regions 

became more obvious throughout the galactose time course. Thus, promoter 

regions contain less histone H3 than coding regions at active and inactive GAL 

genes. 

 We observed different histone H3 occupancy at amplicons A-K throughout the 

galactose time course that contribute to different eviction profiles and H3 eviction 

rates for the various amplicons (Supplemental Table 2). However, even though 

the rate and fold eviction varies across the GAL locus, histone H3 evicts to 

similar levels at the end of the galactose time course at every amplicon. After 60 

minutes of growth in galactose, amplicons H3 occupancy ranged from 0.05 to 

0.4.  
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FIGURE 3.1: WILD-TYPE PROMOTER REGIONS CONTAIN DECREASED 
LEVELS OF HISTONE H3 OCCUPANCY COMPARED TO CODING REGIONS AT 
GAL GENES 
ChIP analysis of histone H3 were performed in raffinose (T0). Each column 
corresponds to the location of a real-time PCR amplicon. Error bars indicate 
standard deviations from two independent biological replicates and are 
normalized to a telomere control. 
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FIGURE 3.2: HISTONE H3 IS EVICTED FROM PROMOTER AND CODING 
REGIONS UPON TRANSCRIPTION ACTIVATION  
ChIP analyses of histone H3 at galactose inducible promoters and coding 
regions were performed in raffinose (T0 or galactose (T10T20T30T60). (A) 
Normalized histone H3 occupancy (B) Initial normalized histone H3 
occupancy (T0) was set to 100 and additional time points were adjusted to 
this value.   Each study was performed in biological duplicate, and 
normalized to a telomere control. Hatch marks indicate non-linear time on 
the x-axis. 
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FIGURE 3.3: THE GAL GENE PROMOTERS HAVE DECREASED 
LEVELS OF HISTONE H3 OCCUPANCY DURING ACTIVATING 
CONDITIONS 
ChIP analyses of histone H3 occupancy at galactose inducible promoters 
and coding regions were performed after growth in galactose media for (A) 
10 minutes T10 (B) 20 minutes T20 (C) 30 minutes T30 (C) 60 minutes T60 at 
amplicons A-K. Each study was performed in duplicate, and normalized to 
a telomere control. Hatch marks indicate non-linear time on the x-axis. 
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THE GAL GENES HAVE DIFFERENT HISTONE H3 EVICTION PROFILES 

We showed that cells grown in raffinose have histone H3 levels that are 

comparable to coding regions while there is decreased histone H3 occupancy at 

promoter regions. Next, we wanted to determine if there were differences in the 

eviction profiles of amplicons spanning the GAL genes (Fig.3.4). Eviction profiles 

describe histone H3 occupancy over time during growth in galactose containing 

media. Indeed, we observed different degrees of histone H3 eviction at the GAL 

genes. Most coding regions initially have 2 units of histone H3 while promoter 

regions and the GAL 5’ ORF had between 1 and 1.5 units during growth in 

raffinose. After 10 minutes of galactose induction, we observed all amplicons 

were able to evict to 1 unit of histone H3 or less. The first 10 minutes of 

galactose induction appears to be the time at which the most histone H3 is 

evicted from GAL genes. However, this is not true at the GAL7 UAS and the 

GAL10 5’ ORF where there is almost no H3 eviction the first 10 minutes of 

growth in galactose. At the GAL7 UAS, histone H3 evicts the most between 10 

minutes and 20 minutes reaching eviction levels close to zero. The majority of 

the other amplicons that have histone H3 occupancy of 1 unit at 10 minutes and 

take 60 minutes of growth in galactose to evict to zero. Interestingly, we do not 

observe a similar histone H3 eviction profile for the GAL7 UAS and the GAL1, 10 

UAS. At the GAL1, 10 UAS histone H3 evicts to a greater extent during 0-10 

minutes of growth in galactose and takes longer (30 minutes) to reach eviction 

levels found at the GAL7 UAS. 

 

HISTONE H3 EVICTION RATE IS INVERSELY PROPORTIONAL TO TIME IN GALACTOSE 

We calculated the rate of histone H3 eviction at promoter and coding regions 

upon galactose induction using the above data (see equation 5 in Materials and 

Methods Chapter for eviction rate description). Eviction rate was calculated for 

absolute eviction (Initial Occupancy-Lowest Occupancy / Time) and during 0-10 

minutes (Initial Occupancy- Occupancy T10 / 10 minutes), 10-20 minutes 

(Occupancy T10 - Occupancy T20 / 10 minutes), 20- 30 minutes (Occupancy T20 - 

Occupancy T30 / 10 minutes), and 30-60 (Occupancy T30 - Occupancy T60 / 30 
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minutes) minutes of galactose induction (Fig. 3.5).  During the initial 10 minutes 

of galactose induction, we observed eviction rates between 1-2 histone H3 per 

minute evicted. During 10-20 minutes of galactose induction, we observed a 

decrease in eviction rate ranging from 0.5-1.2 histone H3 per minute evicted. 

During 20-30 minutes of galactose induction, we saw another decrease in 

histone H3 eviction across the GAL genes with the maximum rate of H3 eviction 

being 0.7 histone H3 per minute evicted. Finally, between 30 and 60 minutes of 

galactose induction the rate of H3 eviction continued to decrease at the majority 

of amplicons ranging from 0.1-0.7 histone H3 per minute. Interestingly, we 

observed decrease rates of histone H3 eviction occurring at the GAL7 and GAL1, 

10 UAS and 5’ promoter regions whereas coding regions eviction rates tended to 

be higher.  
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FIGURE 3.4: PROMOTER AND CODING REGIONS WITHIN THE GAL 
GENES HAVE DIFFERENT HISTONE H3 EVICTION PROFILES 
 ChIP analyses of histone H3 at galactose inducible promoters and coding 
regions were performed in raffinose (T0 ) or galactose (T10T20T30T60) at 
amplicons A-K. Each study was performed in duplicate, and normalized to a 
telomere control. Hatch marks indicate non-linear time on the x-axis. 
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FIGURE 3.5: HISTONE H3 EVICTION RATE DECREASES WITH TIME IN 
GALACTOSE 
Histone H3 eviction rate (multiplied by 10) was calculated between (A) 0-10 
minutes, (B) 10-20 minutes, (C) 20-30 minutes, and (D) 30-60 minutes from 
normalized ChIP values.  
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PROMOTER REGIONS CONTAIN INCREASED LEVELS OF ACETYLATION DURING LATE 

TRANSCRIPTION 

Acetylation of the histone H3-K14 and H3-K9 by HATs is generally correlated 

with transcriptional activation. We wanted to determine the amounts of histone 

H3-K9/H3 and H3-K14/H3 acetylation at the GAL locus before and after gene 

activation. Before we examined acetylation levels during transcription, we first 

wanted to examine the levels of H3-K9/H3 prior to transcription activation. The 

amount of H3-K9/H3 acetylation was similar at all amplicons (A-K) during 

repressive conditions (Fig. 3.6A). We observed acetylation values ranging from 

0.8-1.6.  Upon transcription activation with the addition of galactose media, we 

observed an increase in H3-K9/H3 acetylation at amplicons A-K that positively 

correlated with time in galactose. After 10 minutes of growth in galactose, histone 

H3-K9/H3 acetylation levels were similar except the GAL7 UAS, which was 2-fold 

higher than the majority of amplicons (Fig. 3.7A). After 20 minutes of growth in 

galactose, we observed decreased acetylation at the 3’ end and increased 

acetylation at promoter regions and the 5’ end of GAL genes. This trend of peak 

acetylation at promoter regions and 5’ end of genes is maintained through 30 and 

60 minutes of growth in galactose. After 60 minutes of induction, acetylation 

levels at promoter regions are significantly higher than coding regions at GAL1, 

10, and 7. The greatest difference in H3-K9/H3 acetylation between promoter 

and coding regions was observed at GAL7 (3-fold difference). 

We observed similar levels of histone H3-K14 acetylation at amplicons A-K 

during repressive conditions (Fig. 3.6 B). Next, we wanted to test location specific 

differences in the amount of H3-K14 acetylation at specific time points throughout 

galactose induction (Fig. 3.7 B). After 10 minutes of galactose induction, we see 

similar amounts of H3-K14/H3 acetylation at promoter and coding regions. After 

20 minutes of growth in galactose, we see decreased levels H3-K14/H3 

acetylation at the outer amplicons (GAL7 ORF and GAL1 ORF). Interestingly 

after 30 and 60 minutes of growth in galactose, we see this similar trend as 

histone H3-K9/H3 acetylation were the 5’ end of the GAL genes contain 

increased acetylation when compared to the 3’ end. 
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FIGURE 3.6:  WILD-TYPE CELLS CONTAIN SIMILAR LEVELS 
OF HISTONE H3-K9 AND H3-K14 ACETYLATION AT GAL 
GENES 
ChIP analyses of acetylated histones (A) H3-K14/H3 and (B) H3-
K9/H3 were performed on wild-type cells. Each column 
corresponds to the location of a real-time PCR amplicon. Error 
bars indicate standard deviations from two independent 
biological replicates. 
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FIGURE 3.7: PROMOTER REGIONS CONTAIN INCREASED LEVELS OF 
HISTONE ACETYLATION AT ACTIVE GAL GENES  
ChIP analyses of histone H3-K9/H3 acetylation at GAL genes were after (A) 
10 minutes  T10 (B) 20 minutes T20 (C) 30 minutes T30 (D) 60 minutes  T60 
minutes of growth in galactose medium. Each study was performed in 
duplicate, and normalized to a telomere control. Error bars indicate standard 
deviations from 2 independent biological replicates. 
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FIGURE 3.8: PROMOTER REGIONS CONTAIN INCREASED LEVELS OF 
HISTONE H3 ACETYLATION AT ACTIVE GAL GENES  
ChIP analyses of histone H3-K14/H3 acetylation at GAL genes were after (A) 10 
minutes T10 (B) 20 minutes T20 (C) 30 minutes T30 (D) 60 minutes  T60 minutes of 
growth in galactose medium. Each study was performed in duplicate, and 
normalized to a telomere control. Error bars indicate standard deviations from 2 
independent biological replicates. 
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PROMOTER REGIONS CONTAIN INCREASED LEVELS OF ACETYLATION AT GAL GENES 

Fold acetylation varied at different amplicons across the GAL genes as well 

(Supplemental Table 6-8). Fold acetylation is defined as the maximum amount of 

acetylation that occurred during the galactose time course divided by the initial 

acetylation (T0) (Equation 2 in Materials and Methods Chapter). We observed an 

increase in absolute fold acetylation (H3-K14/H3 and H3-K9/H3) at promoter 

regions when compared to coding regions at the GAL genes (Fig. 3.8). At the 

GAL1 and GAL7 genes, the UAS exhibited a greater fold H3 acetylation than 

their coding regions. Similarity, the GAL10 TATA box exhibited greater fold 

acetylation than its coding region. Furthermore, we observed differences in 

absolute acetylation rate at different amplicons. Acetylation rate (See equations 

7-10 for histone H3 acetylation rates in Material and Methods Chapter) was 

calculated for absolute acetylation (Maximum Acetylation-Initial Acetylation/ Time 

of Maximum Acetylation) and during 0-10 minutes (Initial Acetylation- Acetylation 

T10 / 10 minutes), 10-20 minutes (Acetylation T10 - Acetylation T20 / 10 minutes), 

20- 30 minutes (Acetylation T20 - Acetylation T30 / 10 minutes), and 30-60 

(Acetylation T30 - Acetylation T60 / 30 minutes) minutes of galactose induction 

(Fig. 3.9). A negative acetylation rate value means that the level of acetylation 

decreased during that time period. We observed that the rate of acetylation 

decreased throughout the galactose time course. During initial galactose 

induction, we see a increased acetylation rate of histone H3-K9 compared to that 

of histone H3-K14. Additionally, acetylation appears to be more concentrated at 

the inner locations at each GAL gene with decreased acetylation at outer GAL 

genes locations. During 10-20 minutes of galactose induction, acetylation rates 

are similar with the exception of H3-K9 and H3-K14 acetylation rates are greater 

at the GAL7 UAS. Interestingly, we observed spikes of H3-K14/H3 acetylation 

rate during 20-30 minutes of galactose induction. Between 30-60 minutes of 

galactose induction there were very low levels of both K9/H3 and K14/H3 

acetylation across the GAL locus. The greatest difference in acetylation rates 

was observed at the two UAS (GAL7 and GAL1, 10). The GAL7 UAS exhibited 

faster absolute acetylation rates for histone H3-K9/H3 and H3-K14/H3 than the   
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FIGURE 3.8: WILD-TYPE PROMOTER REGIONS CONTAIN 
INCREASED LEVELS OF FOLD HISTONE H3 ACETYLATION  
ChIP analyses of histone H3-K9 and H3-K14 acetylation at 
galactose inducible promoters and coding regions were 
performed in raffinose (T0) or galactose (T10T20T30T60). Fold 
acetylation rates were calculated using normalized ChIP data. 
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FIGURE 3.9 HISTONE ACETYLATION RATE DECREASES ACROSS THE 
GAL GENES WITH TIME IN GALACTOSE   
Histone H3 acetylation rates (H3-K9 and H3-K14) were calculated between 
(A) 0-10 minutes, (B) 10-20 minutes, (C) 20-30 minutes and (D) 30-60 
minutes using normalized ChIP acetylation values. 
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FIGURE 3.10: THE GAL7 UAS HAS A HIGHER HISTONE H3 
ACETYLATION RATE THAN THE GAL1, 10 UAS 
Acetylation rate was determined by subtracting initial normalized 
acetylation values (T0) from the maximum normalized acetylation 
value and divided by the time it took for this maximum 
acetylation to occur during the galactose time course. Histone 
acetylation rate were calculated from normalized ChIP values. 
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GAL1, 10 UAS (Fig. 3.10). More specifically, the GAL7 UAS had a 7-fold higher 

acetylation rate of H3-K9/H3 and a 3-fold higher H3-K14/H3 acetylation rate than 

the GAL1, 10 UAS. 

 
3.4 DISCUSSION  
Histone mobilization and histone acetylation have long been associated with 

active gene expression 35. However, the extent of nucleosome disassembly and 

acetylation at the GAL genes has yet to be characterized. Here we show that 

there are varying amounts of histone eviction and acetylation found at different 

regions of the GAL genes.  We hypothesized that the chromatin architecture 

found at promoter regions would be more open and accessible to chromatin 

remodeling factors and transcription machinery than coding regions. Thus, we 

expected to find decreased amounts nucleosomes (H3) and increased 

acetylation present at promoter regions, two characteristics of accessible 

chromatin. Furthermore, since acetylated nucleosomes must be evicted from 

promoter and coding regions upon gene induction, we hypothesized that the GAL 

genes would contain increased acetylation with increased growth in galactose. 

First, we determined the initial histone H3 occupancy found at promoter and 

coding regions during growth in raffinose across the GAL locus (Fig 3.11A). As 

expected, we observed that promoter regions such as the UAS and TATA boxes 

contain decreased amounts of nucleosomes compared to coding regions. The 

UAS has been reported to contain nucleosome free regions and is a binding site 

for proteins that may compete with binding of nucleosomes.  Interestingly, we 

also saw lower histone H3 levels at a 5’ coding region.  We believe that the 

nucleosomes present at promoter regions are very tightly positioned whereas at 

coding regions they are more randomly placed. The decreased amounts of well-

positioned nucleosomes found at promoter regions makes these regions more 

accessible to DNA binding proteins. Promoter regions that contain less 

nucleosome at inactive genes are a plausible mechanism as to how transcription 

could be activated more efficiently. Transcription is a highly dynamic process that 

needs to be turned on and off very rapidly. By having a similar chromatin 
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environment (decreased nucleosomes) at inactive genes and active promoter 

regions makes the transition to active transcription less complex.  

Upon growth in galactose, we observed that histones were evicted from promoter 

and coding regions (3.11 B). However, at each amplicon histone H3 was evicted 

to different levels and at different rates throughout the time course. We observed 

decreased amounts of H3 at active promoters compared to active coding 

regions. The GAL7 UAS, GAL1, 10 UAS, GAL10 and GAL1 TATA boxes all 

contained depleted levels of histone H3 when compared to their respected 

coding regions at active GAL genes. We observed that not only do promoter 

regions have decreased levels of H3 during active conditions; promoters exhibit 

decreased histone H3 eviction rates when compared to coding regions. This is 

most likely due to the fact that promoters bear less H3 to begin with and they do 

not need to evict at the rate of coding regions, which have more H3 to evict upon 

activating conditions.  

Next, we determined that there are similar amounts of histone acetylation (H3-

K9/H3 and H3-K14/H3) at inactive GAL genes (Fig. 3.11A). Upon transcription 

activation we noticed location specific differences in acetylation profiles at coding 

and promoter regions (Fig. 3.11B). There are increased levels of acetylation (H3-

K9/H3 and H3-K14/H3) at promoter regions compared to coding regions at active 

GAL genes. The increased acetylation seen at promoter regions likely causes 

these regions to be more relaxed and open.  

Taken together, we observed fewer nucleosomes present at promoter regions 

that evict slower than those in coding regions at active genes. Additionally, the 

lower levels of histone H3 present at promoter regions are hyper-acetylated 

compared those at coding regions at active GAL genes. These differences 

between acetylation and eviction that we see at promoter and coding regions 

explain how promoter regions and regions close to the promoter seem to create 

a more ideal environment (less compacted) for transcription to be initiated.  
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FIGURE 3.11: PROMOTER REGIONS CONTAIN INCREASED 
NUCLEOSOMES THAT ARE HIGHLY ACETYLATED DURING ACTIVATING 
CONDITIONS AT GAL GENES  
(A) During transcription repression, at the GAL genes there is decreased 
density of nucleosomes found at promoter regions.  Histone acetylation 
levels (H3-K9/H3 and H3-K14/H3) are low but comparable across 
amplicons. The repressor, Gal80, is bound to the active site of Gal4 
preventing transcription. 
(B) During transcription activation, at the GAL genes nucleosomes are 
evicted from promoter and coding regions.  Histone acetylation levels (H3-
K9/H3 and H3-K14/H3) increase upon transcription induction. Upon 
galactose induction, Gal4 is free to activate transcription and the pre-
initiation complex is recruited to the TATA box.  We suspect that various 
chromatin remodelers (HATs, ATP-dependent remodelers, and histone 
chaperones are recruited to the DNA to modify the chromatin structure. 
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CHAPTER 4 NAP1 CONTRIBUTIONS TO HISTONE MODIFICATIONS AT THE 

GAL LOCUS 
 

4.1. ABSTRACT 

The eukaryotic genome is organized into chromatin, containing repeating units of 

nucleosomes whose dynamics greatly influence chromatin architecture. The 

highly compact nature of chromatin creates a barrier for enzymes that require 

access to DNA during replication, transcription, and DNA repair. During 

transcription, histone chaperone-dependent histone exchange occurs at 

promoter and coding regions to allow efficient synthesis of mRNA. Here, we 

analyze the contribution of Nap1 to guided nucleosome assembly and histone 

acetylation at galactose inducible genes in vivo. Our approach is highly sensitive 

and allows comparison of histone occupancy and acetylation status of histones 

upon gene activation. We show that the histone chaperone Nap1 in addition to its 

role in histone assembly, may also function in nucleosome disassembly. We 

propose a plausible model of the mechanism of action of yeast Nap1 role in 

chromatin dynamics at galactose inducible genes.  

 

4.2. INTRODUCTION 
The organization of eukaryotic DNA into chromatin influences many DNA-

associated processes, including transcriptional regulation. Each repeating unit, 

the nucleosome, displays important chemical and structural information that 

dictates chromatin architecture. For example, nucleosomes are disassembled 

from many eukaryotic promoters during transcriptional activation to provide 

access to the general transcription machinery 40. Thus, the way in which 

nucleosomes are exchanged on DNA can impact not only the stability of 

chromatin structure, but also patterns of gene expression. Histone chaperones 

are acidic proteins that bind and exchange specific histones, thereby preventing 

incorrect histone-DNA interactions. Additionally, histone chaperones can 

temporarily remove histones from DNA to allow the passage of RNA polymerase 

during gene transcription 41. Histone acetyltransferases (HAT) are proteins that 
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catalyze the acetylation of histones, which results in important regulatory effects 

on chromatin structure and gene transcription. Here, we determine the effects of 

the deletion NAP1 on histone H3 occupancy and acetylation status at galactose 

inducible genes. The GAL genes bear nucleosomes that occupy promoter and 

coding regions prior to gene activation, and histone mobilization is an important 

aspect of Gal4-dependent gene activation from these promoters 33.  

 

4.3 RESULTS 
 
NAP1 IS NESSECARY FOR NORMAL HISTONE H3 OCCUPANCY AT INACTIVE GAL GENES 

In Chapter 3, initial histone H3 occupancy was measured at amplicons spanning 

the GAL genes during growth in repressive conditions (raffinose media). Next, we 

determine if deletion of NAP1 altered histone H3 occupancy at inactive GAL 

genes (See equation 1 for histone H3 normalized occupancy calculation in 

Materials and Methods Chapter). Using chromatin immmunoprecipitation assays, 

we observed a significant decrease in histone H3 levels at promoter and coding 

regions of the GAL genes during repressive conditions in cells depleted of Nap1 

(Fig. 4.1). To test if this effect is global, H3 levels were assessed from whole cell 

extracts from cells depleted of Nap1. It was observed that global H3 levels are 

comparable to wild-type in repressive and activating conditions (Supplemental 

Fig.1). This evidence suggests that the decreased levels of histone H3 in the 

NAP1 deletion strain are specific to the GAL genes.  Next, we observed histone 

H3 occupancy during activating conditions (growth in galactose). We observed 

that histone H3 levels at GAL genes are comparable to wild-type in cells lacking 

Nap1 (Fig. 4.2). 

 

NAP1 IS NECESSARY FOR NORMAL HISTONE H3 EVICTION UPON TRANSCRIPTION 

ACTIVATION 

As previously described (Chapter 3), nucleosomes are evicted from promoter 

and coding regions when cells are grown in galactose. Next, we determined the 

effect of NAP1 deletion on histone H3 eviction profiles upon galactose induction 
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(Fig. 4.3). We plotted cells lacking Nap1 eviction profiles against wild-type 

eviction profiles (Fig. 4.4). Cells lacking Nap1 were unable to evict during the first 

10 minutes of galactose induction. Interestingly, after 20 minutes of growth in 

galactose, histone H3 occupancy in Nap1 depleted cells similar to wild-type 

histone H3 occupancy.  However, after 60 minutes of growth in galactose histone 

H3 occupancy in the NAP1 deletion strain does not reach that of wild-type levels. 

Interestingly, deletion of NAP1 did not significantly affect the histone H3 eviction 

profiles of two GAL amplicons. We showed that the GAL7 UAS (Chapter 3) did 

not evict to the same extent as the other amplicons from 0-10 minutes of growth 

in galactose. We observed the same result in cells lacking Nap1. Additionally, the 

H3 eviction profile between wild-type cells and cells lacking Nap1 looked identical 

at the GAL7 UAS throughout the rest of the galactose time course. The GAL10 5’ 

ORF is another amplicon whose H3 eviction profile was not altered upon NAP1 

deletion. This region was the only amplicon where H3 evicted during 0-10 

minutes of galactose induction when Nap1 was depleted. Thus, Nap1 does not 

appear to have a role in histone H3 eviction at the GAL7 UAS and GAL10 ’5 

ORF. However, the earlier eviction kinetics of histone H3 at the rest of the GAL 

locus was severely altered upon NAP1 deletion.   
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FIGURE 4.2 CELLS LACKING NAP1 CONTAIN SIMILAR LEVELS OF 
HISTONE H3 OCCUPANCY DURING ACTIVATING CONDITIONS 
ChIP analyses of histone H3 occupancy at galactose inducible promoters 
and coding regions were performed after growth in galactose media for 
wild-type and ∆nap1 cells during (A) 10 minutes T10 (B) 20 minutes T20 (C) 
30 minutes T30 (C) 60 minutes T60 of growth in galactose media at 
amplicons A-K. Each study was performed in duplicate, and normalized to 
a telomere control. Hatch marks indicate non-linear time on the x-axis. 
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FIGURE 4.3: CELLS LACKING NAP1 DISPLAY DELAYED HISTONE 
H3 EVICTION UPON TRANSCRIPTION  
ChIP analyses of histone H3 (anti-H3) at galactose inducible promoters 
and coding regions were performed in raffinose (T0 ) or galactose 
(T10T20T30T60) in cells lacking Nap1. (A) Normalized histone H3 
occupancy (B) Initial normalized histone H3 occupancy (T0) was set to 
100 and additional time points were adjusted to this value.  Each study 
was performed in duplicate, and normalized to a telomere control. 
Hatch marks indicate non-linear time on the x-axis. 
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FIGURE 4.4: CELLS LACKING NAP1 DISPLAY DELAYED H3 EVICTION 
UPON TRANSCRIPTION ACTIVATION  
ChIP analyses of histone H3 (anti-H3) at galactose inducible promoters and 
coding regions were performed in raffinose (T0 ) or galactose (T10T20T30T60) in 
cells lacking Nap1 at amplicons A-K.  Each study was performed in duplicate, 
and normalized to a telomere control. Each study was performed in duplicate, 
and normalized to a telomere control. Hatch marks indicate non-linear time on 
the x-axis. 
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CELLS LACKING Nap1 HAVE DECREASED ABSOLUTE HISTONE H3 EVICTION RATES AT 

GAL GENES 

In the previous chapter, we determined the eviction rate of histone H3 at each 

ChIP amplicon (A-K). The absolute histone H3 eviction rate (Initial Occupancy-

Lowest Occupancy / Time, Equation 5 in Materials and Methods Chapter) range 

observed was between 1.33-4.73 acetylation units/minute. Next, we wanted to 

know if deletion of NAP1 affected the kinetics of histone H3 eviction. We 

observed a decrease in absolute histone H3 eviction rate at the majority of the 

amplicons analyzed in cells lacking Nap1 (Fig. 4.5). The absolute histone H3 

eviction range observed was between 0.66-2.83 H3 units/minute. Interestingly, 

we see an increase in the histone H3 eviction rate in cells lacking Nap1 only at 

the UAS of GAL7 and GAL1, 10. Next, we wanted to see if there were 

differences in acetylation rates at specific times throughout the galactose time 

course (Fig 4.6). During the initial 10 minutes of galactose induction (See 

Equation 7 in Materials and Methods Chapter), we observed a decrease in H3 

eviction across the GAL genes in cells lacking Nap1. Rate of histone H3 eviction 

was not determined between 10-20 minutes of galactose induction because 

histone H3 failed to evict in cells lacking Nap1. Similar to initial H3 eviction, we 

see a decrease in the H3 eviction rate during 20-30 minutes of galactose 

induction (See Equation 8 Materials and Methods).  During 30-60 minutes of 

galactose induction, we saw varying effects of NAP1 deletion on histone H3 

eviction at different amplicons. The majority of amplicons showed similar H3 

eviction rates (GAL7 ORF, GAL10 ORFs, GAL1, 10 UAS, and GAL1 ORF. The 

GAL10 TATA had a decreased histone H3 eviction rate while other amplicons 

such as the GAL1 TATA showed increased H3 eviction rate in cells lacking 

Nap1.  
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FIGURE 4.5: CELLS LACKING NAP1 HAVE DECREASED HISTONE H3 EVICTION 
RATES AT GAL GENES 
Eviction rate was determined by subtracting the minimum histone H3 occupancy from 
the initial H3 occupancy (T0) and divided by the time it took for the minimum H3 
occupancy to occur during the galactose time course. Eviction rate values were 
determine from normalized ChIP values. 
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FIGURE 4.6: CELLS LACKING NAP1 HAVE 
DECREASED H3 EVICTION RATES AT GAL GENES  
Histone H3 Eviction rates were calculated between (A) 0-
10 minutes, (B) 10-20 minutes, (C) 20-30 minutes and (D) 
30-60 minutes using normalized ChIP acetylation values. 
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LOW LEVELS OF H3 FOUND IN CELLS LACKING NAP1 ARE HYPER-ACETYLATED AT 

INACTIVE GAL GENES 

To investigate the in vivo relationship between histone acetyltransferases 

and histone chaperones at the GAL locus; we determined the consequence of 

loss of Nap1 function on histone H3-K9/H3 and H3-K14/H3 acetylation (See 

Equation 6 in Materials and Methods for histone H3 normalization calculation). In 

Chapter 3, we determined the amount of acetylation (H3-K9/H3 and H3-K14/H3) 

that was present in wild-type cells during repressive conditions. Using ChIP 

analysis, we see that the low amounts of H3 present in the NAP1 deletion strain 

at the promoter and coding regions are hyper-acetylated at H3-K9/H3 at inactive 

GAL genes (Fig. 4.7). However, we do not observe an increase in H3-K14/H3 

acetylation at the GAL genes. 

 

CELLS LACKING NAP1 HAVE SIMILAR LEVELS OF ACETYLATION AS WILD-TYPE CELLS 

AT ACTIVE GAL GENES  

Nap1 is needed for normal histone K9-H3 acetylation levels at inactive GAL 

genes. Next, we wanted to determine if Nap1 had an effect on acetylation level at 

active GAL genes (Fig 4.8). We observed that when cells were grown in 

galactose media, cells lacking Nap1 contained similar levels of H3-K9/H3 

acetylation as wild-type cells. However, we did see some amplicons that 

contained higher levels of H3-K14/H3 at active GAL genes. It appears that even 

though Nap1 has an effect on the density of acetylation during repressive 

conditions, it does not play as big of a role of kinetics of acetylation during 

activating conditions. 
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Figure 4.7:  CELLS LACKING NAP1 HAVE INCREASED H3-K9 ACETYLATION 
IN REPRESSIVE CONDITIONS 
ChIP analyses of (A) acetylated histone H3-K9/H3 and (B) histone H3-K14/H3 
were performed on wild-type or Δnap1 cells grown in raffinose. Each column 
corresponds to the location of a real-time PCR amplicon. Error bars indicate 
standard deviations from two independent biological replicates and values were 
normalized to a telomere control. 
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Figure 4.8: CELLS DEPLETED OF Nap1 CONTAIN SIMILAR LEVELS 
OF ACETYLATION AT ACTIVE GAL GENES  
ChIP analyses of histone H3-K9 (A-D) at galactose inducible promoters 
and coding regions were performed in galactose (T10T20T30T60) in cells 
lacking Nap1 at amplicons A-K.  Each study was performed in duplicate, 
and normalized to a telomere control. Error bars indicate standard 
deviations from two independent biological replicates and values were 
normalized to a telomere control. 
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FIGURE 4.8: CELLS DEPLETED OF NAP1 CONTAIN SIMILAR 
 LEVELS OF ACETYLATION AT ACTIVE GAL GENES  
ChIP analyses of histone H3-K14 (E-H) at galactose inducible promoters and  
coding regions were performed in galactose (T10T20T30T60) in cells lacking  
Nap1. Each study was performed in duplicate, and normalized to a telomere  
control. Error bars indicate standard deviations from two independent  
biological replicates and values were normalized to a telomere control. 
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NAP1 IS NECESSARY FOR NORMAL ACETYLATION KINETICS  

Histone H3 acetylation ChIP values were used to calculate the time at which half 

maximum acetylation (H3-K9/H3 and H3-K14/H3) occurred (See Materials and 

Methods for method of determining the time of half maximum histone H3 

acetylation. The highest amount of acetylation observed during galactose media 

was set to 100 and other time values were normalized to this value. A plot was 

constructed of normalized acetylation versus time in galactose. The amount of 

half acetylation was determined by subtracting the starting amount of acetylation 

from the maximum acetylation observed divided in half. This value was added to 

the starting amount of acetylation to determine the amount of half acetylation 

specific to that amplicon. The time at which half acetylation occurred was 

determined by line extrapolation from the half-acetylation value. We observed 

that at the majority of the amplicons cells lacking Nap1 were unable to reach half 

maximum acetylation of K9/H3 as fast as wild-type cells (Fig. 4.9). Interestingly, 

cells lacking Nap1 were able to reach maximum acetylation of H3-K14/H3 faster 

than wild-type cells evident from an increased time at half maximum acetylation 

occurred.  
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FIGURE 4.9: DELETION OF NAP1 HAS A DIFFERENETAL IMPACT ON 
THE KINETICS OF HALF MAXIMUM HISTONE OF HISTONE H3-K9 
AND H3-14 ACETYLATION AT GAL GENES  
An explanation of how the time at which half maximum histone H3 
acetylation occurs was determined is described in the materials and 
methods chapter. Time to reach half maximum histone H3 acetylation 
of (A) H3-K9 and (B) H3-K14 in minutes was plotted for amplicons A-K. 
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4.4 DISCUSSION 
NAP1 IS NESSECARY FOR NORMAL HISTONE H3 OCCUPANCY AT  INACTIVE GAL GENES 

We observed decreased levels of histone H3 at the GAL locus during growth in 

raffinose in cells lacking Nap1. This creates an abnormal chromatin environment 

even before transcription is initiated. Nap1 is necessary to inhibit non-productive 

nucleosome interactions by preventing the littering of H2A/H2B dimers on the 

DNA 4. Our proposed model is that Nap1 is needed to remove the littering of 

H2A/H2B dimers and aid in the assembly of nucleosomes at the GAL genes. 

Upon transcription activation, cells lacking Nap1 failed to evict nucleosomes 

during the initial 10 minutes of galactose induction. It is thought that nucleosomes 

are displaced from promoter regions by chromatin-remodeling complexes. The 

nucleosome remodeling complex SWI/SNF removes promoter nucleosomes in 

an early step in the process of gene induction 42. It is plausible that in the 

absence of Nap1, SWI/SNF is unable to be recruited to the chromatin to evict 

nucleosomes. Here, our model presents Nap1’s role of nucleosome assembly 

during transcription repression (Fig.4.10) and histone eviction (Fig.4.11) during 

transcription activation. At inactive GAL genes, nucleosome density was 

decreased in the absence of Nap1. When Nap1 is present it is responsible for 

assembling the H2A-H2B dimers on the H3-H4 tetramer to form the nucleosome. 

At active GAL genes, histone H3 is not evicted from promoter and coding regions 

in the absence of Nap1. We hypothesize that Nap1 is necessary for the 

recruitment or function of ATP-dependent chromatin remodelers. Alternatively, it 

is possible that Nap1 is independently responsible for initial histone H3 eviction 

at GAL genes. Cells lacking Nap1 contain lower levels of histone H3, which 

contain increased acetylation on histone H3-K9 at inactive GAL genes. These 

results are historically correlated with active genes. The chromatin environment 

in cells lacking Nap1 during repressive conditions seems to already be “open to 

transcription”. Upon transcription activation, we see that histone H3 does not 

evict during the first 10 minutes of growth in galactose. However, this lack of 

eviction does not appear to hamper transcription as cells lacking Nap1 have 
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increased transcription kinetics at the GAL genes 4.  Additionally, we see that 

Nap1 also plays a necessary role in H3 eviction after 20 and 30 minutes in 

galactose. Cells lacking Nap1 never reach the H3 eviction levels of wild-type 

cells. Here we present a model of how Nap1 could function at inactive GAL 

genes to prevent increased acetylation of histone H3-K9. Furthermore, we show 

how Nap1 functions at active GAL genes to insure proper H3 eviction. There are 

two possible mechanisms that explain how Nap1 prevents histone H3-K9 hyper-

acetylation during transcription repression. Nap1 could sequester the HAT and 

prevent it from hyper-acetylating H3-K9. Alternatively, Nap1 could be responsible 

for removing the hyper-acetylated nucleosomes from the chromatin during 

repressive conditions. Thus, determining which mechanism is the correct one, 

and which HAT is responsible for the increased histone H3-K9 acetylation found 

at the GAL genes in the absence of Nap1 is of great interest.  
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FIGURE 4.10: NAP1 IS NECESSARY FOR PREVENTING INCREASED 
ACETYLATION AT INACTIVE GAL GENES  
At inactive GAL genes, Nap1 functions to prevent hyper-acetylation of 
histone H3-K9. NAP1 could be responsible for disassembling 
nucleosomes that are hyper-acetylated. (B) Alternatively, Nap1 could 
be responsible for preventing HATs from over acetylating histone H3-
K9. 
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FIGURE 4.11: Nap1 ASSEMBLES NUCLEOSOMES AT INACTIVE GAL GENES 
AND PLAYS A ROLE IN NUCLEOSOME EVICTION AT ACTIVE GENES  
(A) During transcription repression, Nap1 is responsible for the assembly of 
nucleosomes at GAL promoter and coding regions. 
(B) During transcription activation, Nap1 is needed for the recruitment/function of 
chromatin remodelers for the initial eviction of nucleosomes at GAL promoter and 
coding regions. 
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CHAPTER 5 ASF1 AND VPS75 CONTRIBUTIONS TO HISTONE 

EVICTION AND MODIFICATIONS AT GALACTOSE INDUCIBLE 
PROMOTERS 

 
5.1 ABSTRACT 
Histone eviction from promoter regions is a potential mechanism for 

transcriptional regulation in eukaryotes. We investigated whether the yeast 

histone chaperones, Asf1 and Vps75, mediate histone H3 eviction from the UAS 

and TATA box of the yeast GAL genes upon transcriptional activation. 

Additionally, histone acetylation is often associated with gene activation. Here, 

we explore the contribution of Asf1 and Vps75 on acetylation of histones H3 tails 

at galactose inducible genes.  

 

5.2. INTRODUCTION 
Eukaryotic DNA is organized into chromatin that contains repeating units of 

nucleosomes each consisting of two histone H2A-H2B dimers and one histone 

H3-H4 tetramer around which 147 base pairs of DNA are wrapped. The 

packaging of the DNA by nucleosomes appears to affect all stages of 

transcription including pre-initiation complex (PIC) formation and elongation 43. 

Nucleosomes are repressive to transcription initiation and found at most gene 

promoters. There exist several important methods for relieving this inhibition, 

including post-translational modifications of histones, incorporation of histone 

variants, and the action of chromatin remodelers 44. Histone chaperones are 

required for nucleosome displacement at specific promoters 16; 45; 46 and to a 

lesser extent within coding regions when a gene is activated 47. It is clear from 

ChIP studies that histones are lost at the yeast PHO5 and HSP82 promoters 

upon gene activation and that nucleosomes are reassembled as a gene turns off 
29; 30; 48; 49; 50. Typically, histone acetylation occurs at multiple lysine residues and 
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is usually carried out by a variety of histone acetyltransferase complexes 51. This 

study examines the role of the H3/H4 histone chaperones in chromatin dynamics 

to determine the changes that occur in chromatin during transcription. Histone 

chaperones are proteins that bind histones and mediate chromatin dynamics 52. 

Asf1 is a histone chaperone that plays a role in the assembly and disassembly of 

chromatin associated with silenced genes such as telomeric loci. Asf1 is a highly 

conserved histone chaperone that binds and transfers the H3-H4 histone dimer 
52; 53; 54. Asf1 is required for H3 eviction during transcription elongation, and Asf1 

binds to promoters and coding regions of active genes 18. Nucleosome 

disassembly is mediated by Asf1 at the PHO5 promoter 16, and exchange of 

histone H3 at promoters 55; 56. Vps75 is part of the NAP domain family of histone 

chaperones and can assemble nucleosomes in vitro 12. Additionally, Vps75 acts 

as a potent stimulator of the histone acetyltransferase Rtt109 and is associated 

with higher levels of histone H3 lysine 9 (H3-K9) acetylation 25; 57. Furthermore, 

Vps75 localizes primarily to sites of active transcription and interacts with RNAPII 

and other factors involved in transcription and chromatin function. Although 

histone eviction is necessary for efficient transcription initiation, factors that 

mediate such eviction in vivo have not been identified.  

 

5.3 RESULTS 
VPS75 IS NECESSARY FOR NORMAL HISTONE OCCUPANCY AT INACTIVE GAL GENES 

In Chapter 3, we determined the amount of histone H3 occupancy found at GAL 

promoter regions during growth in raffinose. We wanted to see if deletions of 

histone chaperones, Asf1 and Vps75, would alter H3 occupancy at inactive GAL 

promoters. See Materials and Methods Equation 1 for Histone H3 normalization 

calculation) . We see that Asf1 has similar levels of histone H3 occupancy as 

wild-type cells at the GAL 1,10 UAS and GAL 10 TATA. However, strains lacking 

Vps75 contained a 2-fold decreased in histone H3 density at the inactive GAL 10 

TATA box and GAL1, 10 UAS in comparison to wild-type strains (Fig. 5.1). 

Interestingly, we observed decreased levels of histone H3 occupancy at the 

GAL1, 10 UAS when compared to the GAL10 TATA box.  
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FIGURE 5.1: CELLS LACKING Vps75 EXHIBIT 
DECREASED LEVELS OF HISTONE H3 OCCUPANCY 
AT GAL LOCUS DURING REPRESSIVE CONDITIONS 
ChIP analyses of histone H3 occupancy were 
performed on Wild-Type, Δvps75, or Δasf1 cells grown 
in repressive conditions (raffinose media) at (A) the 
GAL10 TATA Box and the (B) GAL1, 10 UAS. Error 
bars indicate standard deviations from two 
independent biological replicates. 
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HISTONE H3 DOES NOT EVICT UPON GALACTOSE INDUCTION IN CELLS LACKING VPS75 

AT TATA BOX AND UAS 

To determine histone H3 eviction profiles at the GAL promoter, we determined 

H3 occupancy at 0, 30, and 60 minutes after induction with galactose medium in 

wild-type cells, ∆asf1, and ∆vps75 strains. We observed histone H3 eviction in 

wild-type cells at the GAL1, 10 and GAL10 UAS upon galactose induction (Fig. 

5.2). Additionally, we see the same histone H3 eviction at both test amplicons in 

cells lacking Asf1 (Supplemental Table 4 and 5). However, histone H3 is not 

evicted during the first 30 minutes of galactose induction in cells lacking Vps75 at 

both the UAS and TATA box. However, after 60 minutes of growth in galactose 

cells depleted of Vps75 are able to evict to similar levels of that of wild-type cells.  

 

VPS75 IS NECESSARY TO PREVENT HYPER-ACETYLATION AT INACTIVE GAL 1,10 

PROMOTERS  

Next, we explored the effect of histone chaperones deletions, ∆asf1 and ∆vps75, 

on histone acetylation at the GAL10 promoter (TATA box and UAS) (See 

Equation 6 for histone H3 acetylation normalization calculation).  During 

repressive conditions, we observed that cells lacking Vps75 contained significant 

levels of increased histone acetylation of histone H3-K9 and H3-K14 at both the 

TATA box and UAS (Fig. 5.3). Cells lacking Asf1 contained histone H3 

acetylation levels (K9-H3 and K14-H3) that were comparable to wild-type cells. 

CELLS LACKING VPS75 HAVE DECREASED HISTONE ACETYLATION RATES  

Histone acetylation rates (K9/H3 and K14/H3) were determined by subtracting 

the initial acetylation level from the maximum acetylation level observed and 

divided by the time it took to reach maximum acetylation (See equation 7 in 

Materials and Methods Chapters for calculation). In chapter 3, we determined 

acetylation rates for H3-K14 and H3-K9 at the GAL UAS and GAL TATA.  Next, 

we determined if acetylation rate was altered upon histone chaperone deletion 

(Fig. 5.4 and Supplemental Table 10 and 11). We observed that deletion of ASF1 

had no effect on acetylation rate of histones H3-K14/H3 and H3-K9/H3 at the 

GAL10 TATA box. However, the acetylation rate of H3-K14/H3 and H3-K9/H3 
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was significantly decreased in cells lacking Vps75 at the TATA box. At the 

GAL1,10 UAS we see slightly decreased levels of H3-K9/H3 acetylation when 

compared to the GAL10 TATA box. Deletions of histone chaperones, Asf1 and 

Vps75, caused a decrease in the acetylation rate of H3-K9/H3 at the GAL1, 10 

UAS. K14/H3 acetylation rate at the GAL1, 10 UAS was not analyzed because 

the highest amount of acetylation in cells lacking Vps75 was in repressive 

conditions.  

 

5.4 Discussion 
In the ASF1 deletion strain, H3 occupancy during repressive conditions is 

comparable to the wild-type strain at the GAL1, 10 UAS and GAL10 TATA. 

Deletion of ASF1 also had little effect upon the H3-K9/H3 acetylation rates as 

compared to the wild-type. Interestingly, the VPS75 deletion strain showed a 

marked decrease in initial  (repressive conditions) H3 occupancy at the GAL1, 10 

UAS and GAL10 TATA as well as decreased histone eviction rates during 

activating conditions. Also, Δvps75 strains showed aberrant histone H3-K9/14 

acetylation at the TATA and UAS during repressive conditions, but decreased 

acetylation rates at these same residues during activating conditions.  

Taken together, this data suggest that Vps75 plays a role in maintaining proper 

nucleosome density during repressive and activating conditions. Vps75 may also 

be important for preventing increased acetylation of histone H3-K9/H3, 

presumably by sequestering the HAT responsible for acetylating these residues. 

The decreased acetylation rates in activating conditions may be due to the fact 

that the nucleosomes were already hyper-acetylated in raffinose. Asf1 appeared 

to play a much smaller role in maintaining nucleosomal density and histone H3-

K9/H3 acetylation rates at the GAL1, 10 UAS and GAL10 TATA. While deletion 

of this histone chaperone had little effect at these loci, it may play a larger part in 

regulating other genes. 
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FIGURE 5.2: HISTONE H3 DOES NOT 
EVICT UPON GALACTOSE INDUCTION IN 
CELLS LACKING VPS75 AT TATA BOX 
AND UAS 
(A) ChIP analyses of histone H3 occupancy 
were performed on wild-type, Δasf1, or 
Δvps75 cells conditions at (A) the GAL10 
TATA Box and the (B) GAL 1,10 UAS. . 
Error bars indicate standard deviations from 
two independent biological replicates.  
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FIGURE 5.3: CELLS LACKING VPS75 CONTAIN DECREASED LEVELS OF 
HISTONE H3 OCCUPANCY DURING REPRESSIVE CONDITIONS 
ChIP analyses of histone H3 acetylation (H3-K9/H3 and H3-K14/H3) were 
performed on wild-type, Δvps75, or Δasf1 cells grown in repressive conditions at 
(A) the GAL10 TATA Box and the (B) GAL1, 10 UAS. . Error bars indicate 
standard deviations from two independent biological replicates. 
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FIGURE 5.4: DELETION OF VPS75 RESULTS IN DECREASED 
HISTONE ACETYLATION RATES 
Acetylation rate was determined by subtracting initial normalized 
acetylation values (T0) from the maximum normalized acetylation 
value and divided by the time it took for this maximum 
acetylation to occur during the galactose time course. 
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CHAPTER 6 CHARACTERIZATION OF HISTONE CHAPERONE-GFP FUSION 

PROTEINS 
 

6.1 ABSTRACT 
Cells contain discrete complexes of histone chaperones, each of which may 

perform independent biological functions. Often the key indicator of the function 

of a protein is the identification of molecules with which it directly interacts. A 

fluorescence detection system for analytical ultracentrifuge (F-AUC) provides an 

innovative tool for studying macromolecular complexes in solution. Here, two 

methods are used to determine the fluorescent intensity and wavelength 

distribution of the emission spectrum of endogenously expressed GFP-histone 

chaperones fusion proteins. Additionally, this work gives insight into solutions to 

reduce auto-fluorescence found in S. cerevisiae. Thus, utilization of these 

techniques will allow for the accurate detection of GFP-histone chaperones and 

determination of sedimentation parameters. 

 

6.2 INTRODUCTION 
 Yeast histone chaperones are necessary for normal acetylation patterns in vivo 

(Chapter 3). Thus, we expect to find interactions between histone chaperones 

and HATs. Indeed, Vps75 and Asf1 have been shown to co-purify with Rtt109 58; 

59. Additionally, histone chaperones are needed for the exchange of H3/H4 that 

occurs during transcription 55. Therefore, it is likely that histones chaperones are 

found in large complexes with proteins such as SAGA that are required for 

functional interactions. F-AUC will allow for the determination of the solution state 

properties of endogenous histone chaperones that will ultimately give insights 

into the potential complexes in which histone chaperones exist.  

Historically, AUC has played an important role in the characterization of protein 

complexes 60. We have access to one of the few analytical ultracentrifugation 

facilities in the world that possesses a fluorescence detection system. 

Fluorescence detection allows for increased sensitivity of the instrument 

permitting the use of decreased concentrations of sedimenting molecules 
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compared to that required for absorbance-detected sedimentation. Additionally, 

due to the remarkable selectivity of fluorescence detection, it is possible to 

characterize the sedimentation behavior of GFP-labeled proteins in cell lysates 

without further purification. We have obtained strains expressing GFP-tagged 

derivatives of Nap1, Vps75, and Asf1 (Invitrogen). Each histone chaperone-GFP 

strain contains an open reading frame with a C-terminal Aequorea victoria GFP 

(S65T) fusion tag 61. The histone chaperone-GFP fusion proteins are integrated 

into the yeast chromosome through homologous recombination and are 

expressed from endogenous promoters. Most importantly, our GFP fusion 

proteins maintain the normal functions and localizations of the host histone 

chaperones36. Genetically encoded fluorescent proteins are used in a variety of 

applications including live-cell imaging, localization of proteins, and interactions 

between proteins 62; 63; 64. To determine biophysical sedimentation properties of 

endogenous histone chaperones, clarified whole cell extracts of S. cerevisiae 

expressing GFP-Vps75, GPF-Nap1, or GFP-Asf1 will be subjected to 

fluorescence detected sedimentation velocity and sedimentation equilibrium 

measurements. In sedimentation velocity experiments, the movement of solutes 

in high centrifugal fields is used to define the size, shape and interactions of 

macromolecules. Alternatively, sedimentation equilibrium is a thermodynamic 

method where equilibrium concentration gradients at lower centrifugal speeds 

are analyzed to define complex molecule mass, stoichiometry, association 

constants and solution homogeneity. After measuring sedimentation and 

equilibrium parameters of histone chaperone-GFP strains, we will also 

characterize the properties of the chaperones in strains deleted for HATs.  

However, before determining sedimentation and equilibrium velocity profiles for 

our GFP-tagged histone chaperones, it is important to quantify the expression 

levels and measure the parameters of fluorescence of our fusion proteins. Here 

we use two techniques, fluorescence spectroscopy and fluorescence 

microscopy, to characterize the fluorescent intensity and wavelength distribution 

of emission spectrum in yeast cells expressing GFP-histone chaperon fusion 

proteins. 
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6.3 RESULTS 
Western blot analysis revealed the expression levels of histone chaperone-GFP 

fusion proteins and verified the presence of a GFP tag (Fig. 6.1). Both Asf1-GFP 

and Vps75-GFP display slightly decreased levels of expression compared to that 

of Nap1-GFP. One logical explanation for this difference in expression levels is 

that the number of molecules per cell of the histone chaperones is different. 

Global analysis of protein expression in yeast reports the presence of 8070 

molecules per cell of Nap1, 6230 molecules per cell of Asf1, and 3120 molecules 

per cell of Vps75, which parallel relative expression levels shown here 65. Lastly, 

we observed an increase in the molecular weight of Nap1, Asf1, and, Vps75 by 

27 kDa, indicating that our histone chaperones are fused to a GFP tag.  

A spectrofluorometer provides one of the most straightforward techniques to 

measure total fluorescence from a cell population. This technique is a useful way 

to evaluate the GFP spectra in vivo, quantitative GFP signal, and most 

importantly aid in calibration of the F-AUC. The intensity and wavelength 

distribution of the emission spectrum after light excitation was measured by a 

Horiba Jobin Yvon Fluorolog-3 spectrofluorometer. The emission spectrum for 

each of the fluorescent fusion histone chaperones is shown (Fig. 6.2) 

Interestingly, Nap1-GFP and Asf1-GFP display an increased peak florescence 

signal when excited at 488 nm compared to that of Vps75-GFP and the untagged 

(wild-type) strain. The lower florescent signal found in Vps75-GFP fusion proteins 

could be due to the decreased expression levels 

Additionally, fluorescence microscopy was used to visualize the presence and 

examine the intensity of histone chaperone-GFP proteins in vivo (Fig. 6.3). Nap1, 

Vps75, and Asf1 cells display slightly more intense fluorescence than 

background levels (untagged wild-type).  Consistent with the results of the 

spectrofluorometer, wild-type cells contained a high amount of auto-fluorescence. 
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FIGURE 6.1: HISTONE CHAPERONE-GFP FUSION PROTEINS 
(A) 20 µg of whole cell extracts grown containing Nap1-GFP, 
Vps75-GFP, or Asf1-GFP were separated by 15% SDS gel 
electrophoreses, transferred to a nitrocellulose membrane, and 
probed with anti-GFP antibody. (B) Quantification of expression 
levels of GFP-histone chaperone fusion proteins. 
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FIGURE 6.2: EMISSION SPECTRUM OF S. cerevisisae CELLS 
EXPRESSING HISTONE CHAPERONE-GFP FUSION PROTEINS  
Emission spectrum of GFP-fusion proteins and the untagged wild-type (WT) 
was determined by excitation of light at 488 nm wavelength.  
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FIGURE 6.3: SACCHAROMYCES CEREVISIAE HISTONE CHAPERONE-
GFP FUSION PROTEINS 
Fluorescent histone chaperones (B) Nap1-GFP (C) Asf1-GFP and  (D) 
Vps75-GFP tagged on the carboxyl terminus allows for analysis and (E) 
quantification of intensity when illuminated at 488 nm. (A) Wild-Type 
(untagged) cells used as a control. 
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6.5 DISCUSSION 
We employed multiple techniques to measure fluorescence parameters of 

histone chaperone-GFP fusion proteins for the application of studying protein 

interactions in solution using F-AUC. After characterization of the fluorescent 

intensity and wavelength distribution of emission spectrum, we concluded that 

accurate detection of a peak fluorescence molecule would be difficult. The 

detectability of a fluorescent protein is a function of the brightness of the tagged 

protein and the auto-fluorescence within the cell.  
The intrinsic brightness of a fluorescent protein (defined as the product of the 

fluorescent quantum yield and the extinction coefficient) is dependent on the 

sequence of the fusion protein and by the surrounding medium 66. Of great 

importance is the absolute brightness of the fluorescent proteins relative to the 

background fluorescence. Hence, the brighter the endogenous auto-

fluorescence, the brighter a tagged protein must be in order to be detected above 

background. There are naturally occurring fluorescent metabolites found in 

cellular extracts of yeast that share an excitation wavelength comparable to GFP 

and their presence leads to low signal-to-noise ratios. Much of the auto-

fluorescence in yeast is due to flavins, a co enzymatic oxidation-reduction carrier, 

which absorb broadly in the violet–blue range (400–500 nm) and emit in the 

green (530 nm) 67. 

The yeast auto-fluorescence spectrum extends over hundreds of nanometers 

and contributes to loss of contrast and clarity in fluorescence detected 

techniques. Reducing auto-fluorescence (from both the sample and growth 

media) is necessary when using fluorescent proteins that have low fluorescent 

intensity. To reduce auto-fluorescence from the sample of interest, identification 

of the species likely responsible for auto-fluorescence can enable optimization of 

the experimental conditions to reduce its concentration or repress its ability to 

fluoresce.  

Fortunately, multiple solutions are available to overcome the high amounts of 

auto-fluorescence found in yeast. By eliminating the background levels of 

fluorescent molecules, the GFP containing histone chaperones can be accurately 
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monitored and various sedimentation parameters will be determined by F-AUC. 

Unfortunately, auto-fluorescence cannot be completely eliminated. However, 

careful choice of yeast strain and growth conditions can reduce auto-

fluorescence. Cells tend to be less fluorescent in early log phase (OD600≈0.2). 

Rich yeast media are also highly auto-fluorescent and should be avoided. The 

major sources of auto-fluorescence are riboflavin and folic acid; omitting these 

components eliminates the media auto-fluorescence. Fortunately, most S. 

cerevisiae strains synthesize both auto-fluorescence vitamins. Therefore, 

removing these vitamins from the medium does not appear to introduce 

limitations. Cells should be grown in synthetic defined (S.D.) media to minimize 

auto-fluorescence. Affinity chromatography is used to purify and concentrate a 

substance from a mixture, and is an excellent solution to reducing high 

concentrations of intrinsically fluorescent molecules found in crude cell extracts. 

Alternatively, a counter stain, Evans Blue, works well. Evans Blue chemical dye, 

which fluoresces when excited with wavelengths between 470 and 540 nm, has 

an emission peak at 680 nm 68. The advantages are that the Evans Blue 

quenches the amount of naturally fluorescence molecules found in yeast by 

causing a shift in the auto-fluorescence wavelength. 

We have collected preliminary data towards the end goal of characterizing 

endogenous histone chaperone complexes, as they exist in the cell. These 

studies have lead to the quantification of the fluorescent intensity and wavelength 

distribution of emission spectrum of our GFP-tagged histone chaperones. 

Additionally, this work proposes techniques to increase fluorescent signal to 

background ratios for future F-AUC investigations. Most importantly, these 

experiments demonstrate our capability to optimize fluorescence detection in 

order to use a very specialized instrument (one of the few in the world) to collect 

unique, innovative biochemical sedimentation data.  
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CHAPTER 7 FUTURE DIRECTIONS 

 
7.1 SIGNIFICANCE 
Histone chaperones and HATs are fundamental players in the regulation of 

chromatin dynamics and gene expression in vivo. Since the proteins in question 

are highly conserved in both sequence and function in all eukaryotes, 

understanding of the involvement of these complexes in the regulation of gene 

expression will provide significant findings that are directly linked to transcription. 

This is of particularly interest since defects in histone acetyltransferases and 

chaperone function can easily result in the atypical regulation of gene 

transcription and ultimately the onset of human disease (including cancer). A 

greater understanding of the functional regulation of histone chaperones and 

HATs in gene transcription would be advantageous in selecting them for 

treatment of disease. Additionally, by determining that acetylation status of 

histones is vital for the regulation of transcription, allowing or preventing 

acetylation would be an effective therapeutic strategy. Furthermore, a complete 

understanding of histone chaperone-HAT interactions holds for a great potential 

for finding therapeutic intervention targets because errors in protein–protein 

interactions can manifest in human disease. By utilizing several powerful 

techniques, we are in a unique position to characterize the contribution of histone 

acetylation in transcriptional regulatory complexes and to profile the status of a 

specific modification in a unique way. We will examine the diversity of Nap1-HAT 

complexes, their functionality, and how they are regulated. Therefore, the 

identification of multi-protein complexes is a mechanism to better understand 

protein function and cell regulation. Thus, our study will provide new insights into 

the structure of chromatin and its regulation via posttranslational modifications of 

histone tails, which could be of interest to cancer, epigenetics, and drug design.  
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7.2 DISCUSSION 
A complete understanding of the interplay between histone chaperones and HAT 

will reveal how they function together in the cell to regulate chromatin dynamics 

and ultimately gene expression. Our experiments used the well-characterized 

galactose inducible genes GAL1, 10 and GAL7 of S. cerevisiae to study 

nucleosome occupancy before and after transcription initiation and histone 

eviction during gene transcription. We also reported acetylation status and 

acetylation kinetics at these genes before and after transcription initiation. By 

examining these properties in wild-type cells and then comparing them to 

deletion mutants of ∆nap1, ∆vps75, and ∆asf1, we were able to elucidate 

possible roles for the histone chaperones in modifying chromatin structure.  

Here we revealed the density of histone H3 in wild-type cells during repressive 

conditions is lower at promoter regions than coding regions. Interestingly, 

although we noticed different histone H3 eviction profiles at each amplicon, the 

overall patterns were comparable. We also observed higher rates of histone 

eviction at coding regions compared to the upstream regions. This behavior may 

be due to the higher initial density of nucleosomes at the coding regions.  

Because histone acetylation has been implicated as a mark of active 

transcription, we queried the acetylation status at histone H3-K9 and H3-K14 at 

the promoter and coding regions of the GAL genes. In repressive conditions, we 

saw similar acetylation patterns at each amplicon. During transcription, we 

reported increased acetylation at all regions of each amplicon, with higher levels 

of acetylation occurring at promoter regions. Taken together, our data support 

the notions that nucleosome must be evicted for transcription to occur and that 

acetylation of histones is directly linked to gene activation.  

We then observed the effects of deletion of the histone chaperone Nap1 at the 

GAL1, 10 and GAL7 genes. We discovered a large decrease in H3 levels at both 

promoter and coding regions in the ∆nap1 deletion strain. We also noticed a 

diminished ability for this strain to evict H3 as well as lowered eviction rates. 

Interestingly, we saw increased acetylation of histone H3K9 during repressive 

conditions, but decreased acetylation rates at this same residue. It is possible 
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that Nap1 is responsible for removing hyper-acetylated nucleosomes from the 

DNA during repressive conditions as well as recruiting the HAT responsible for 

acetylating histone H3-K9.  

Next, we performed similar experiments in strains deleted for the histone 

chaperones ∆vps75 and ∆asf1. However, here we only profiled the promoter 

regions of our GAL genes. Similar to the Δnap1 strain, Δvps75 showed 

decreased histone H3 occupancy during repressive conditions as well as lowered 

eviction under activating conditions.   We also reported hyper-acetylation of 

histone H3-K9 and H3-K14 in ∆vps75 at inactive GAL1, 10 promoter regions 

coupled again with decreased acetylation rates during transcription. Interestingly, 

deletion of ASF1 seemed to have little effect upon initial histone H3 occupancy or 

eviction. ∆asf1 also had normal histone H3-K9 and H3-K14 acetylation levels at 

inactive promoter regions, but showed decreased acetylation rates at H3-K9 in 

activating conditions. These data suggest possible functional redundancy 

between Nap1 and Vps75, as both knockout mutants showed similar deviations 

from the behavior of the wild-type strain.  
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SUPPLEMENTAL	  TABLE	  1:	  REAL	  TIME	  PCR	  OLIGOMERS	  USED	  FOR	  CHIP	  SAMPLE	  ANALYSIS	  
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SUPPLEMENTAL FIGURE 1: DELETION OF NAP1 HAS A MINIMAL 
AFFECT ON GLOBAL H3 EXPRESSION IN REPRESSIVE CONDITIONS  
(A) 20 µg of whole cell extracts from wild-type (WT) or strain deleted for 
NAP1 (Δnap1) were separated by 15% SDS gel electrophoreses, 
transferred to a nitrocellulose membrane, and probed with anti-H3 
antibody. (B-C) Histone H3 expression levels were normalized to TBP 
levels and quantified.  
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