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ABSTRACT
This short-term (10-d) incubation experiment established the rates

of nitrogen (N) transformations occurring in sludge-amended and
nonamended soil. Utilizing a nitrification block (C2H2) with
("NHiJjSb* first-order rate constants were calculated for N im-
mobilization, amntonification, nitrification, and denitrification. These
rate constants were compared to values obtained after a long-term
(87-wk) incubation performed on soils sampled from the same field
plots. The short-term rates of ammonification were still higher than
the controls 4 yr after the last sludge addition. Sludge applications
over an 8-yr period (180 Mg ha~' yr'1) reduced soil nitrification
potential compared to the controls when spiked with "N. Denitri-
fication did not cause a significant loss of N during either a short-
or long-term incubation period. The microbial biomass in the sludge-
amended soil contained more N, which resulted in a microbial C/N
ratio of approximately 4:1 vs. 5:1 for the controls. Initial (short-
term) N immobilization rate constants were 0.43 for the sludge-
amended and 0.35 for the nonamended soil.

the use of 15N in conjunction with the chloroform fu-
migation incubation method (CFIM), the flux of N
into soil microbial biomass can be measured (Jenkin-
son and Powlson, 1976; Voroney and Paul, 1984). An
estimate of the denitrification rate can also be ob-
tained by measuring the increase in N2O over a short-
time period when C2H2 is used to inhibit nitrous oxide
reductase (Smith et al., 1978).

The purpose of this work was to evaluate the effects
of sludge on long-term N processes utilizing a short-
term N transformation study. The objectives were to:
(i) measure microbial-N and determine the short-term
flux of N into the soil microbial biomass; (ii) estimate
soil ammonification and nitrification rates; (iii) deter-
mine if N mineralization (net ammonification) con-
stant (k) is indeed constant; and (iv) determine the
significance of denitrification during aerobic incuba-
tions.

SOIL MICROORGANISMS function as organic "micro-
processors" of the terrestrial ecosystem by facili-

tating the nutrient flow and decomposition of organic
residues. Currently, there is a need to improve the
integration of data concerning these microbes and the
soil N processes they control.

The hub of N transformation in soil is the NHJ
pool, for it lies at the crossroads of three major N
processes: nitrification, ammonification and immo-
bilization. Soil N mineralization rate, a measurement
of gross ammonification minus immobilization, has
traditionally been determined by the accumulation of
inorganic N, mainly NO^. However, acetylene (C2H2),
which inhibits nitrifying bacteria such as Nitroso-
monas spp., can be employed to determine the am-
monification rate by measuring the accumulation of
ammonium. Acetylene also allows for the determi-
nation of N uptake by the microbial biomass in the
absence of the competing nitrification reaction. With
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MATERIALS AND METHODS
Field Study

The 2.4- by 3.0-m plots are located on the Oxford Tract
at the Univ. of California, Berkeley. The Tierra loam soil
had an original CEC of 20.1 cmpl kg"1 and a pH of 5.4. A
municipal sludge (Oakland) was incorporated into triplicate
plots annually (180 Mg ha"1 yr"1) for 8 yr with no addition
in the subsequent 4 yr. A crop of barley was grown on the
site each of the 12 yr of the study. The sludge was anaerob-
ically digested for 20 d then vacuum-filtered. When applied
to the field, the sludge was a wetcake slurry that contained
25% solids (Williams et al., 1984).

Short-Term Laboratory Incubation Study
Surface soils (0-15 cm) from two control (check) and two

sludge-amended plots were collected 4.5 yr after the last
sludge application. The field moist soils were sieved (<4
mm) and bulked into either check or sludge-treated samples.
These soil samples (20-g oven-dry weight) were mixed with
20 g of Ottawa sand (0.59-0.42 mm) to aid filtration. La-
beled (15NH4)2SO4 (70.5 atom % 15N excess) solution was
then applied with a syringe at a rate of 20.8 mg (14N + 15N)-
N kg"1 soil to each soil/sand sample. Water was added to
bring the soil-sand mixture up to —100 kPa water potential
(60% water-holding capacity). The soil-sand mixtures were
placed into 236-mL Mason jars fitted with a gas sampling
septum.
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Half of the jars were injected with C2H2 (30 cm3) to inhibit
both nitrification and nitrous oxide reductase. Measure-
ments of N2O were taken 1, 3, 5, and 24 h after injection of
C2H2 (5 mpl nr3) on a Varian Model 3700 gas chromato-
graph (Varian, Palo Alto, CA) equipped with a "Ni electron
capture detector (ECD) (Smith et al, 1978; Strauss, 1983).

Triplicated soil samples, with and without the nitrification
block (15 cm3 C2H2), were then incubated for an additional
2 or 9 d at 25 °C. The N pool sizes were measured at 0, 3
and 10 d in an attempt to frame the most important changes
in N uptake and nitrification. At the end of the incubation,
the soils were shaken for 30 min with 75 mL of 0.5 MKC1
and extracted to determine inprganic-N content. The soils
were rinsed with 25 mL of deionized water, in an attempt
to remove excess salt, and were then vacuum-filtered back
to -lOOkPa.

Half of the samples were fumigated with CHC13 for 24 h
and allowed to incubate at 25 °C for an additional 10 d to
determine microbial biomass C from the evolved CO2 ac-
cording to Jenkinson and Powlson (1976). The CO2 evolved
from the nonfumigated soils was not subtracted from the
fumigated samples because an appropriate control for bio-
mass C has yet to be determined (Voroney and Paul, 1984).
To determine biomass N, the soils were extracted 10 d after
fumigation with 75 mL of 2.0 M KC1 and measured for
inorganic N (Voroney and Paul, 1984). Also at this time the
microbial N extract was measured for 15N content to deter-
mine the N immobilization rate.

Soil extracts were also performed on soils immediately
after the addition of (15NH4)2SO4 to determine the recovery
efficiency of the labeled N and the standing pool sizes of
inorganic N. The efficiency of recovery of the added
15NHJ was found to be 91.3% in the sludge-amended soil.

Total NHJ-N and NO^-N in the KC1 extracts were de-
termined by steam distillation followed by autotitration on
a Fisher Model 381 (Fisher Scientific, Pittsburg, PA) using
0.0128 M H2SO4. The following sequence was followed to
avoid cross contamination of the isotope ratio measure-
ments during steam distillation:

1. 25 mL of 5% acetic acid was distilled then discarded;
2. 25 mL of 90% ethyl alcohol was distilled then dis-

carded;
3. 80 mL of 0.5 M KC1 extract was distilled with MgO;
4. 40 mL of distillate was collected in a glass beaker with

5mLof2%H3BO3;
5. step 1 and 2 were repeated;
6. Devarda's alloy was added to the 0.5 M KC1 extract in

step 3 distilled again and the 40 mL of distillate was
collected in 5 mL of 2% H3BO3;

7. the 2.0 M KC1 extracts were analyzed similarly, except
that MgO and Devarda's alloy were added together and
distilled only once to determine combined NH4-N and
NOl-N content;

8. the samples were acidified with 2 mL of 0.04 M H2SO4
and dried in a 60 °C oven that was flushed with acid-
scrubbed air; and

9. the samples were transferred to test tubes with succes-
sive washings of methanol and water. The samples were
again dried then sent to Los Alamos for 15N mass spec-
trometric analysis (Hauck, 1982).

RESULTS AND DISCUSSION
Biomass Nitrogen

More N was found in the sludge-amended biomass
than in the check biomass, reflecting the higher avail-
ability of inorganic N in the sludge-amended soil (Fig.
1). The C/N ratio of the microbial biomass was lower
in the sludge-amended soils, averaging 3.9 vs. 4.8 for
the checks. These biomass C/N ratios are lower than

those reported by Anderson and Domsch (1980) but
are consistent with the ratios of Voroney and Paul
(1984). The low microbial C/N ratios suggest that the
immobilized N conserved in the microbial biomass
could allow for inorganic N to be released slowly over
time as the microbial C/N ratio increases and the gen-
eral microbial biomass decreases.

After a long-term incubation (initiated 87 wk ear-
lier), the C/N ratio of the microbial biomass of the
check soil rose to 6.2 and in sludge-amended soil to
5.7 (Boyle, 1986). A decline in sludge microbial bio-
mass C from 409 to 260 mg kg~' was also observed in
the field during this time (Boyle and Paul, 1989).

The short-term immobilization of 15NH4 and
'"NHJ into the microbial biomass of both soils is de-
picted in Fig. 2. The immobilization of N was greater
in the check soil in the presence of C2H2 than when
nitrification was allowed to proceed, which is consist-
ent with results of Nishio et al. (1985). Nitrification
seemed to be competing with N immobilization in the
check soil, and in the sludge-amended soil after 3 d.

Inorganic Nitrogen
The distribution of soil N among the biomass and

inorganic pools is depicted in Fig. 3 and 4. In both
soil treatments, the size of the NHJ pool increased
from day 3 to day 10 with the nitrification block. The
increase can be attributed to the mineralization of or-
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Fig. 1. The microbial biomass C and N after the short-term incu-
bation as compared to a long-term incubation (Boyle and Paul,
1989). (Error bars represent the standard error of the mean).
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Fig. 2. The short-term uptake of N (I4NHJ + 15NHJ) into the soil
microbial biomass.
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Fig. 3. The N pool sizes of the check soil with and without acetylene
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Fig. 5. The short-term production of NHJ (with C2H2) and NOj
(without C2H2).

ganic N to NHJ. Without the C2H2, the NHJ pool size
decreased significantly in both soils between 0 and 10
d.

The NOi analysis of the 0.5 M KC1 solution indi-
cates that the C2H2 block was more effective for the
check soil, in which there was little change in NO3
present after 10 d, than for the sludge-treated soil in
which the NO5 concentration was as high with the
C2H2 block as without the block (Fig. 3 and 4). The
sludge-treated soil had initially (day 0) higher concen-
tration of NOj than the check soil which may have
obscured the response of the block. However, the ef-
fectiveness of the nitrification block was confirmed by
the paucity of 15NC>3 found in the presence of C2H2.
Reliable 15NO5 results could not be obtained from the
check soil, which contained a small unlabeled NOi
pool, because the high 15N enrichment of this pool
approached or exceeded the detection limit of the mass
spectrometer (approx. 30%).

The term "mineralization" includes both ammon-
ification and nitrification processes, however in most
soils the limiting step is the conversion of organic N
to NHJ. The 10-d increase in net production by both
these processes is depicted in Fig. 5 (accumulation —
initial concentration). The NHJ production in soils
treated with C2H2 is represented by the solid lines.
Both soils displayed a net negative production of
NHJ at day 3 which demonstrated the initial domi-
nant effect of immobilization.

The dashed lines in Fig. 5 represent "potential" ni-
trification because both soils were spiked with 20.8 mg

ODAY 3 DAY 10 DAY 3 DAY 10 DAY
Fig. 4. The N pool sizes of the sludge-amended soil with and without

acetylene at 3 and 10 d.
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Fig. 6. The production of N2O-N (with C2H2) at day 1 and after 87
wk of incubation.

NHJ-N kg"1 soil. The reduction in nitrification poten-
tial in the sludge-amended soil could be due to the
lower pH (pH 4.9 vs. 5.6 for the check soil), greater
metal content (422 mg Zn kg"1 soil vs. 114 mg kg-1

for the check) or a combination of the two.
It has been suggested that denitrification is a major

cause for the loss of N in some aerobic incubations
(Ryan et al., 1973). Lindemann and Cardenas (1984)
reported up to 65% of mineraUzed-N lost in sludge-
treated soils through denitrification. These authors at-
tributed the nonlinear increase of NOs production with
increased sludge additions to be due in part to deni-
trification. The data presented here (Fig. 6) does not
support this route as a significant loss of N during
aerobic incubation in these soils. Denitrification as de-
termined by N2O accumulation with C2H2 block was
essentially zero for the check soil, while the sludge-
amended soil produced 68 jug N kg"1 in the first 24 h
of the short-term incubation (Fig. 6). Because deni-
trification was measured by the amount of N2O pro-
duced from the NOi soil pool (each point represents
an average of eight measurements), the low initial
NO5 pool size of the short-term check soil (0.5 mg N
kg"1) could have caused the low rates. However, for
the long-term 87-wk incubation, both the check and
sludge-soil were naturally enriched with higher levels
of NO^ (approximately 30 and 70 mg N kg"1, respec-
tively), but neither soil produced an increase in N2O
levels in the 24-h period. These results suggest that
the low production of N2O was due to factors other



BOYLE & PAUL: NITROGEN TRANSFORMATIONS IN SOILS WITH SEWAGE SLUDGE 743

Table 1. The comparison of first-order rate constants for four soil
N transformations.

Immobilization
without C2H2

Ammonification
net
gross

Nitrification
potential

Denitrification

Short-term
Check

0.64
0.35

t
0.03

0.69
0.00

(10 d)

Sludge
/...——!.-

0.42
0.43

0.06
0.10

0.18
0.04

Long-term (87 wk)
Check Sludge

') ——————————
0.26 0.24
NO* ND

0.01 0.02
ND ND

ND ND
0.00 0.00

t = between 0 and 10 d the net ammonification rate remain less than zero,
but between 3 and 10 d the rate was 0.19 (0.12 for the sludge soil).

$ ND = not determined.

than low NOi content, possibly the scarcity of anaer-
obic sites or available C.

Nitrogen Transformation Rates
Because first-order kinetics have been successfully

used to characterize soil N processes (Stanford and
Smith, 1972; Myrold and Tiedje, 1986), first-order rate
constants (k) for N transformations during the short
incubation period (10-d) and the constants obtained
from the long-term (87 wk) incubation sampled a year
and a half earlier from the same field plots (Boyle and
Paul, 1989) were calculated and are presented in Table
1.

Nitrogen immobilization rates were calculated from
0- to 3-d incorporation of ''NHJ into the microbial
biomass (Voroney and Paul, 1984). The k value was
found to be slightly greater for the check soil than the
sludge-soil if nitrification was blocked by C2H2 (Table
1). The lower k value for the check soil in the absence
of C2H2 corresponds to the lower N content in the
microbial biomass (Fig. 1). After 87 wk, the value of
k decreased to about 0.25 wk"1 for both soils (Table
1).

The check soil exhibited a lower NHJ production
than the sludge soil (Fig. 5), in fact after 10 d this soil
did not attain its initial (0-d) NHJ pool size. For both
check and sludge-amended soil, the net and gross am-
monification rate constants were determined between
day 0 and day 10. The gross ammonification rate was
determined by adding the immobilization uptake of
N to the net production of NHJ. To determine short-
term ammonification rate, the initial pool size has to
be indirectly measured because it represents the por-
tion of the organic N that is potentially mineralizable.
An estimate of this short-term potentially mineraliz-
able N pool size was calculated by fractionating the
long-term (87-wk) incubation data into two pools
(Boyle and Paul, 1989). The short-term (10-d) net am-
monification rate constants were similar to the k val-
ues obtained from curve splitting the long-term data
into an 11-wk pool (Boyle and Paul, 1989). These short-
term ammonification k values are also similar to the
mineralization values reported by Myrold and Tiedje
(1986). After 87-wk, the ammonification constants
were significantly lower (Table 1) indicating that or-
ganic N mineralization should be characterized as
having more than one first-order rate constant.

The nitrification potential rate constant was greater
for the check soil than for the sludge-amended soil
(Table 1). The check rate of nitrification was deter-
mined by 3-d (14N + 15N) NOi accumulation while
the sludge nitrification was calculated by the less var-
iable 15NOj data.

The term "production rate" represents the initial
pool size minus the change in pool size over the 3-d
incubation due to a particular N transformation [pro-
duction rate = N^ai) (1 — £"**)]• F°r N immobili-
zation, the production rate indicates the amount of
decay of the NHJ reservoir due to microbial accu-
mulation. Microbial immobilization of NHJ was higher
in the check soil than the sludge-amended soil only if
nitrification was blocked. The production rate of
NHJ from organic N (with C2H2) was greater in the
sludge-amended than the check soil which did not dis-
play a positive rate between 0 and 10 d. The potential
for the production of NOi from the spiked NHJ pool
was lower in the sludge-treated soil than the check.
Although it was noted that overall production of
NOi is greater in these sludge-amended soils than the
checks (Boyle and Paul, 1989), this is assumed to be
due to the greater production of NHJ from a larger
organic N fraction, and not due to a greater rate in
the nonlimiting nitrification step. The rate of denitri-
fication and the production of N2O production was
initially greater in the sludge-amended soil, but this
would represent less than 0.5 mg N kg"1 lost from the
soil per week, which is minimal compared to NOi
production.

SUMMARY
Previous applications of sludge (4 yr earlier) in-

creased the short-term (10-d) soil ammonification rate.
The rate constant for ammonification (N mineral-

ization) decreased between 10 d and 87 wk of incu-
bation, indicating a need for more than one miner-
alization constant.

Eight years of sludge application (a total of 1440 Mg
sludge ha"1) decreased soil nitrification potential.

Denitrification was not found to be a significant loss
of inorganic N from these soils during either a short
or long-term incubation.

The initial short-term N immobilization rate con-
stant was slightly higher (without C2H2) in the sludge-
amended than the check soil.

The sludge-amended soil had a lower biomass C/N
ratio than the check soil. Excess storage of N in mi-
crobial cells in the sludge-amended soil could provide
a means of retaining N in the elastic labile fraction
over an extended period of time (at least 4 yr).
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