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ABSTRACT 

QUANTITATIVELY DISTINGUISHING BETWEEN BONE SURFACE MODIFICATIONS 

USING CONFOCAL MICROSCOPY AND SCALE–SENSITIVE FRACTAL ANALYSIS 

The damage found on fossilized bone surfaces resulting from the feeding behavior of 

various prehistoric taphonomic actors (hominins, carnivores, raptors, etc.) in archaeological 

assemblages is a crucial piece of evidence that provides an inferential framework within which 

archaeologists can reconstruct the ecological and behavioral contexts of our hominins ancestors. 

However, these reconstructions are only useful if the bone surface modifications (BSM) can be 

inferentially linked to the specific taphonomic actor which created the mark. The inability to do 

so in a standardized and replicable manner has sparked multidecade-long debates over the actors 

responsible for individual marks and has resulted in drastically different interpretations of site 

formation processes and hominin behavioral ecology.  

Therefore, the goal of this study is to determine whether variations in within-mark fractal 

variables, paired with the micromorphological variables presented in Pante et al. (2017), can aid 

in quantitatively distinguishing between four different taphonomic agents (cut, trample, tooth, 

and percussion marks). To achieve this goal, a sample of 100 experimentally - produced BSM 

were sampled from the existing collection in the 3D imaging and analysis laboratory at Colorado 

State University. Scans of individual marks were acquired using Sensofar`s S-neox 3D scanner, 

while 3D models of the marks were analyzed with the Digital Surf® software. Quadratic 

discriminant and complimentary random forest models were created to identify relationships 

between the measured fractal variables and the taphonomic agents creating BSM. 
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The results of the quadratic discriminant and random forest models classifying all 4 BSM 

agents result in low classification accuracies between 52% - 58%, thereby indicating the 

micromorphological and fractal variables could not be used to accurately identify taphonomic 

agents by their within-mark surface complexity/roughness measurements. However, sub - 

grouping the dataset into models discriminating between only pairs of BSM types (i.e., cutmark 

vs trample mark) increases the classification accuracy of the QDA and random forest models to 

the 60% - 86% range, thereby indicating the micromorphological variables presented in Pante et 

al. (2017), when paired with the fractal variables Smooth – Rough Crossover  (SRC), Area Scale 

Fractal Complexity (Asfc) and the Scale of Max Fractal Complexity (Smfc), can discriminate 

between the known taphonomic agents in the sample with relative accuracy. This study is 

beneficial to the study of archaeological BSM as it aids in our understanding of hominin 

subsistence behavior in prehistoric contexts by continuing the development of an objective and 

standardized method of differentiating feeding traces which provides a platform for more 

scientific, i.e. testable inferences about hominin behavior in archeological sites.  
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CHAPTER I INTRODUCTION 

 

1.1) Research Problem 

Due to cutmarks conspicuous preservation on fossilized bone surfaces, archaeologists 

have studied and used them to infer a wide variety of characteristics and behaviors of our 

Pleistocene ancestors. For instance, the placement, orientation and internal morphology of 

cutmarks on fossilized bone surfaces has been used to infer the relative timing of hominin and 

carnivore access to carcasses (Binford 1981, Blumenschine et al. 1988b, Blumenschine 1995; 

Lupo and O’Connell 2002, Domínguez-Rodrigo and Barba 2007); what kinds of nutrients 

(within or outside bone) remained at the time of caress access (Pobiner et al. 2015; 2018), tool-

use strategies (Merritt, 2016), and in the interpretation of burial practices (Fernandez-Jalvo and 

Andrews, 2011). Therefore, due to cutmarks being a direct result of past behavior by hominins, 

they are foundational components of taphonomic inferential hierarchies used by archaeologists to 

understand hominin behavioral ecology (Blumenschine et al. 1988, Gifford Gonzalez 1991, 

Blumenschine et al. 1994; 1996, Pante et al. 2012; 2014, Merrit et al. 2019).  

However, similarities in appearance between hominin - induced cutmarks and the bone 

surface modifications (BSM) left by other taphonomic forces on fossilized bone surfaces has 

sparked a multidecade-long debate over the actors (carnivore or hominin) responsible for 

individual marks (Binford, 1981; Bunn, 1981, Bunn and Kroll 1986, Njau and Blumenschine 

2006, James and Thompson 2014, Harris et al 2017). Disagreement over the actors responsible 

for fossilized BSM has led to drastically different interpretations of site formation and hominin 

behavioral ecology (Gifford-Gonzalez 1991, James and Thompson 2014). A popular example of 

this disagreement can be found at Olduvai Gorge, Tanzania. Where, after half a century of 
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research there is still no general agreement regarding the involvement of different taphonomic 

actors in the accumulation and modification of the fossil assemblage at FLK Zinjanthropus 

(Binford 1981, Behrensmeyer et al. 1989, Blumenshchine 1995, Domínguez-Rodrigo and Barba 

2007, Pante et al. 2012; 2014).  

These disagreements greatly decrease the inferential potential of BSM by throwing 

serious doubt on our ability to accurately identify the actor responsible for generating the force 

required to produce the BSM, as well as the effector (tooth, stone tool edge, hoove etc.) which 

directly contacts and modifies the surface of the bone. Likewise, Blumenschine et al. (1996) 

noted, if zooarchaeologists cannot come to agreement on the process of identifying BSM, then 

doubt is shed on any results that draw from this method. Indeed, the inability to have confident 

actor/effector identification raises the possibility of an incorrect BSM identification going 

unnoticed in archaeological studies. If such inconsistencies become entrenched within the 

literature, then what we believe we know about hominin evolution may rest upon instances of 

poor, yet unchallenged interpretations (James and Thompson 2014). Therefore, misdiagnosis of 

the cause of fossilized BSM has major implications for the interpretation of the ecological 

context of hominin behavior (Domínguez-Rodrigo et al. 2012, Pante et al. 2011; 2014, Pobiner et 

al. 2015; 2018, Pobiner 2020). Consequently, it is imperative to develop new quantitative and 

objective strategies for distinguishing between the actors and effectors that produce BSM (Bello 

and Soligo 2008, Bello et al. 2009; Bello 2011, Pante et al. 2017, Benito-Calvo 2017). 

Until a few decades ago, methods of identification were largely subjective, relying on 

categorical diagnosis based on the knowledge of individual experts working with fossil and 

experimental collections (Blumenschine et al., 1996). However, it has become increasingly clear 

that such subjective approaches are problematic in cases where mark morphologies have 
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ambiguous characteristics. This issue regarding researcher subjectivity has been addressed 

through the use of confocal microscopy (Archer and Braun, 2013; Pante et al., 2017; Otárolla-

Castillo et al. 2017; Gümrükçu and Pante, 2018) and statistical approaches capable of 

differentiating between BSM actors based on standardized ‘archetype’ marks by using 3D 

scanning equipment, and the statistical evaluation of overlap between mark types using 3D 

morphometrics (Bello et al 2008; 2009; 2011, Boschin and Crezzini 2012, Pante et al. 2017, 

Yrevedra et al 2018, Francisco et al. 2018, Meijer et al. 2019). 3D reconstructions of BSM use 

quantification of the internal mark morphology produced by known actors and effectors to 

identify diagnostic criteria to be applied to the taphonomic interpretation of bone assemblages. 

These approaches provide replicable, quantitative comparison of the shape of individual BSM by 

way of comparison with the archetypes (statistical average) of marks made by different 

processes. This creates a key for identifying BSM by its effector which is less influenced by the 

bias of individual analysts and enables researchers to assign probabilities to the “the goodness of 

fit” between a given mark and its inferred cause.  

Indeed, many 3D micromorphometric methods have found success distinguishing 

between cases where the potential for mimicry is high, i.e., where human and non-human 

processes create similar mark morphology on bone surfaces (Bello 2008; 2011, Pante 2017, 

Courtenay et al. 2017; 2019; 2020, Keevil 2018, Yravedra et al., 2018, Meijar et al. 2018, 

Fransisco et al 2018). Additionally, researchers have used 3D morphometric methods to identify 

the raw material and type of stone tools used in butchering activities (Mwakyoma 2021). With 

this success in discrimination between BSM actors, researchers continue to search for 

measurable parameters which can increase the accuracy of inferential links between the physical 

properties of effectors and the micromorphology of the resultant marks (James and Thompson 
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2014, Thompson et al. 2017, Harris et al. 2017). Toward this end, we investigate fractal 

parameters, as described by Brown et al. 2018, as a new method for characterizing and 

distinguishing BSM through the measurement of  within-mark surface complexity and 

roughness.  

Fractals were developed by mathematician Benoit Mandelbrot as a new branch of 

mathematics able to describe complex forms in nature. He states fractals are a group of irregular, 

complex shapes which occur naturally, but which possess the characteristics of self-similarity 

and scale invariance (Mandelbrot 1977, 1982). Self-similarity here is defined as a shapes ability 

to be broken down into smaller pieces of itself (therefore decreasing in size and scale) and still 

retain its shape. Fractal shapes are scale-invariant because, unlike Euclidean shapes, fractals have 

no natural size. Therefore, Fractals are mathematically and visually the same at all scales. Due to 

fractals scale-invariant and self-similar properties, there is a statistical equivalence between 

small-scale and large-scale changes in fractal patterns. Likewise, Benoit noted the description of 

fractal shapes and patterns allows for the measurement of complex surfaces at multiple scales 

(where statistical measures are preserved across scales). Indeed, the fractal dimension has been 

found to be a useful parameter to describe physical surfaces, and furthermore, that eroding 

processes in nature generate surfaces with fractal properties (Unger et al. 2003, Scott et al. 2005, 

Brown 2005, Brown et al. 2018). 

 This ability to mathematically describe and document irregular shapes at multiple scales 

can be of great value to archaeologists studying the surfaces of archaeological materials. 

Archaeologists have applied the concept of fractals and the use of fractal dimension 

measurements to understand complex, non-linear relationships in the past. For example, Scale-

Sensitive Fractal Analysis (SSFA) has been used to successfully document different kinds of 
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worn surfaces on stone and bone tools (Stemp et al 2008, Stemp et al. 2009, Stemp et al. 2010, 

Stemp et al.  2014, Evans and Donahue 2008, Lesnik 2011,Watson and Gleason 2016), as well as 

document dietary habits from teeth microwear (Ungar et al. 2003; Scott et al 2005, Krueger 

2015, Ranjitkar et al. 2017, Unger and Berger 2018). The results of these studies make clear 

SSFA provides measurement of topological phenomena like surface complexity, i.e. an object’s 

surface irregularity which changes with the size of the scale being measured.  Importantly, 

surface complexity is considered a scale that is useful for differentiating surface types (Brown 

2005, Brown et al. 2018). Therefore, due to the characteristics of fractals, they are appropriate to 

mathematically describe and document the complexity of BSM - damaged bone surfaces because 

bone microtopography necessitates quantitative descriptors well-suited to irregular surfaces. 

Fractal geometry is employed in this study as a means to accurately capture and distinguish the 

complex surfaces of experimentally generated BSM.   

1.2) Goals and Objectives of Study 

 The goal of this thesis is to use high-resolution 3D scanning and SSFA to aid in 

identification and classification of various taphonomic agenrts by discriminating with 

measurable statistical confidence between the 3D morphologies and surface complexity 

measurements of experimentally generated BSMs. Specifically, we use subtle differences in 

surface complexity between cut, trample, tooth and percussion marks to establish stronger causal 

links between the micromorphological characteristics of BSMs and hominin butchery behaviors 

in the past. Understanding how and when early homo used stone tools for meat procurement has 

been argued to be significant in understanding the early evolution of our genus. Indeed, inferred 

dietary shifts in fossil hominins have been hailed by paleoanthropologists as key milestones in 

human evolution. For instance, the consumption of meat and marrow from mammal carcasses is 
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argued to have possibly enabled the emergence of adaptations associated with our genus. These 

include: an increase in average brain and body size, heightened social group cohesion and 

organization, wider geographical range, and smaller teeth and jaws (Aiello and Wells 2002, 

Milton 1999; 2003, Antón and Snodgrass 2012, Wrangham 2017). Therefore, to make more 

accurate inferences when investigating hominin subsistence behavior, this study has the 

following objectives.  

 The objective of this study is to apply discriminate modeling and SSFA to an 

experimentally generated BSM sample in order to better classify BSM agents and more 

accurately differentiate between them. This is accomplished by applying quadratic discriminate 

analysis (QDA) on the experimental BSM sample. Here, QDA uses variation in the surface 

roughness and complexity of the mark to discriminate (classify) between four different 

taphonomic agents (cutmark, trample, toothmark, percussion) in the dataset. The surface texture 

variables considered are: smooth-rough crossover (src), area-scale fractal complexity (Asfc), and 

scale of max complexity (smfc). The variable for fractal complexity (Asfc) is probably most 

informative in this study because it measures how the surface roughness changes with the 

changing scale of observation and is a variable unique to SSFA. It is hoped this provides a 

method for surface characterization appropriate for assessing BSM effector-related differences in 

mark surface roughness (surface complexity). Since the sample is of known actors and agents, 

results from this study will help in diagnosing hominin and non-hominin activity with future 

application to archaeological contexts. 

1.3) Research Question 

 To achieve the objective, this study seeks to answer the following question: Which, if any 

of the fractal parameters diagnosed from 3D optical metrology can be used to classify 



 

7 

 

experimentally - produced BSM by taphonomic effector (cut, trample, tooth and percussion 

marks)? This question can be investigated by looking at quantitative properties of the BSM in 

this study and by removing highly correlated variables until only the uncorrelated, fractal 

variables describing surface roughness and complexity remain for analysis. Next, the use of 

QDA provides information regarding the ability of the fractal variables to describe and 

differentiate between the four BSM groupings.  

1.4) Research Hypothesis 

Based on the posed research questions, the study therefore hypothesizes (H1), that fractal 

measurements of mark surface roughness diagnosed from 3D optical profilometry are reflective 

of the taphonomic agents creating BSM and therefore, SSFA can be used to discriminate 

between BSM types. This means that for (H1) to be validated, this study must refute alternate 

hypothesis (Ho) that the fractal measurements diagnosed from 3D optical profilometer are not 

reflective of the known BSM agents and therefore are not useful in BSM agent discrimination.  
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CHAPTER 2 THEORETICAL BACKGROUND & LITERATURE REVIEW 

 

This study aims to enhance our understanding of prehistoric hominin butchery by 

studying the relationship between the taphonomic actors (carnivore, hominin, herding mammels) 

creating bone surface modification (BSM) and the fractal dimensions of the marks they inflict 

upon bone surfaces. The acronym BSM is used here to refer to the damage found on bone 

surfaces that are inflicted by either anthropogenic or nonanthropogenic actors.  This thesis uses 

uniformitarianism and middle-range theoretical approaches to accomplish its stated goals (both 

terms are defined below).  

This chapter provides an overview of the theoretical assumptions underlying the study, a 

history of methods used for BSM identification and interpretation, and the applications of using 

Scale-Sensitive Fractal Analysis (SSFA) combined with Laser Scanning Confocal Microscopy 

(LSCM) to identify and classify worn surfaces from archaeological contexts. 

2.1) THEORETICAL BACKGROUND 

This thesis is grounded in the theoretical principles of uniformitarianism. As defined by 

Charles Lyell (1830), uniformitarianism assumes that the physical laws governing natural 

processes (erosion, gravity, etc.) remain the same regardless of temporal or spatial context. The 

permanence of physical processes implies that the past and present causes of events are similar 

and produce the same observable effects. This stability of cause and effect allows geologists and 

archaeologists to feel justified in their claims that prehistoric phenomena can be explained 

through the past operation of presently observable processes (Gould 1965). Uniformitarian 

assumptions are supported by many examples in which the past-present inferential link appears 

to be strong (Gifford-Gonzalez 1991). For example, when a volcano erupts, it spews out lava 

which turns into basalt after cooling. Assuming geological processes have been relatively the 
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same throughout space and time, we can conclude that every time basalt is present in geologic 

strata, it is formed from the cooling of lava (Philpotts and Ague 2009). Therefore, the assumption 

of uniformitarian is crucial to the generation of knowledge in the historical sciences (Wylie 

1985). Indeed, zooarchaeologists and taphonomists have long acknowledged that their work rests 

on the assumption that bone and other animal tissues have responded to stresses the same in the 

past as today. However, there is a real danger of misapplication of uniformitarian assumptions 

and analogies (Wylie 1985). The most common cited mistake is the use of substantive 

uniformitarianism instead of methodological uniformitarianism.  

Substantive uniformitarianism assumes phenomena change at constant rates throughout 

time: i.e. change is usually gradual and there are no great fluctuations in the rate of natural 

processes. Secondly, substantive uniformitarianism assumes a uniformity of state across time and 

space where change is evenly distributed throughout the universe. This assumption implies that 

physical processes on earth and elsewhere are always working at the same speeds (Gould 1965). 

However, this assumption was discredited by Stephen Jay Gould's, in his 1965 work, Is 

Uniformitarianism Necessary?. In it, he argues the assumption of a constant rate of change is an 

unwarranted constraint on scientific inquiry because it restricts physical processes in the past to 

those of the present. Indeed, substantive uniformitarian assumptions have often been found to be 

false.  

Conversely, methodological uniformitarianism assumes only a uniformity of natural law 

where natural and geological processes have behaved similarly in all temporal and spatial 

contexts. This constancy of natural laws is a necessary assumption for all scientists to 

meaningfully study the unobservable past. Secondly, methodological uniformitarianism assumes 

the uniformity of process across time and space. This means the natural processes at work today 
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are at work in all spatial and temporal contexts. For that reason, the past is best explained by 

processes currently at work, but the rate of those processes can fluctuate (Gould 1965).  

Therefore, this study uses methodological uniformitarianism as a baseline assumption so 

that observations of physical processes in the present can be used as analogies for similar events 

in the past. Since this study uses experimentally - created samples by Muttart et al. (2017), 

Keevil et al. (2018), Orlikoff et al. (2018) and Tolley et al. (2018), we therefore assume the 

processes used in the present to create these experimental BSM samples are justifiably similar to 

the contexts which created cutmarks in archaeological assemblages. These assumptions allow us 

to create a foundation for identifying and isolating the behaviors of prehistoric hominins in the 

archaeological record. However, these hominin behavioral and environmental reconstructions are 

often restricted due to the difficulty in assigning a single behavior to the resulting mark 

morphology (Gifford Gonzalez, 1991).  

Consequently, the aim of this thesis is to identify replicable, causal connections between 

BSM surface complexity and taphonomic agents by using a middle-range theoretical framework. 

The middle-range theoretical approach relies on the creation of analogies between observations 

of current phenomena and similar behaviors in the past (Binford 1981, Gifford-Gonzalez 1991). 

Here, analogies are used to make inferential relationships more comprehensible by comparing 

them to something more familiar and better understood. The relationship between past and 

present phenomena is tested through experimental archaeology, where direct cause and effect 

connections between a particular behavior and its resulting trace in the archaeological record are 

tested (Binford 1981). For instance, we observe phenomena like BSM on fossilized bone 

surfaces. Using the middle-range theoretical approach, we can try to recreate these marks in the 

present day in the hope that understanding the context of mark creation will shed light on their 
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creation in the past. Therefore, based on our knowledge of the present-day world, we chose a 

modern counterpart to use as an analogy for prehistoric phenomena. A comparison of the 

experimental and archaeological BSM either does or does not support the analogous relationship 

between past and present mark creation contexts.  

Taking this a step further, Gifford-Gonzalez (1991) developed a hierarchical system of 

relational analogies which use experimentally tested causal relationships to inferentially connect 

a trace to its causal actor. The effector (carnivore tooth, stone tool edge, hoove) is connected to 

the causal agent (immediate physical causes like stone tool grinding on bone surface), then the 

actor creating the trace (carnivore, hominin, raptor) and finally to its broader behavioral and 

ecological contexts (Gifford-Gonzalez, 1991). This relational approach provides a logical chain 

connecting a mark to the behavioral context within which it was created. Most importantly, this 

approach limits the possibility of creating unsupported interpretations of prehistoric hominin 

behavior by misinterpreting trace marks. This study utilizes these perspectives by modeling the 

measurable fractal features of BSM experimentally created by known actors in the present to 

shed light on prehistoric hominin butchery.   

2.2) History of BSM Studies  

The study of diet as a causal force of adaptation in hominin evolution has long been a 

core research area in archaeology and paleoanthropology. This makes sense considering diet is a 

fundamental aspect of any organism’s ecological niche. What animals eat has been found to 

underly many of the behavioral and ecological differences observed in living species, including, 

but not excluded to, group size and structure, locomotion and mating strategies (Fleagle, 1999, 

Unger and Sponheimer 2011). Diet is, therefore, important for understanding the physical 

adaptations and evolutionary history of any organism. BSM on fossilized bone surfaces are the 
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most direct method in use to understand the diet of our hominin ancestors. Anthropogenic BSMs 

include; cutmarks from hominins butchering animals (Bunn 1981, Blumenschine et al. 1996) and 

hammerstone percussion marks (Blumenschine and Selvagio 1988) while non-anthropogenic 

BSMs include carnivore toothmarks (Blumenschine 1988, Blumenschine 1995), trampling marks 

(Dominguez-Rodrigo et al. 2009, Courtney et al. 2019; 2020), bioerosion marks (Dominguez- 

Rodrigo & Barba 2006, Blumenschine et al. 2006), and fluvial erosion (Griffith et al. 2016, 

Gumruku and Pante 2018).  

Due to the preservation of anthropogenic BSMs (mainly cutmarks) on fossilized bone 

surfaces, archaeologists have studied and used them to infer a wide variety of characteristics and 

behaviors of our Pleistocene ancestors. Cutmarks on fossilized bone surfaces can indicate the 

defleshing, skinning, or disarticulation of a mammal which serves as direct evidence of carcass 

access and processing by hominins (Blumenschine et al. 1994, Blumenschine et al. 1996). The 

location and frequency of cutmarks on different skeletal parts have been used to make inferences 

regarding hominin timing and access to carcasses nutrients (Bunn 1981, Shipman & Rose, 

1983a; 1983b, Bunn and Kroll 1986, Blumenschine 1988;1995). For example, a fossilized bone 

with a higher cutmark frequency (and with marks located on prime meat locations) relative to 

carnivore toothmarks is argued to indicate that hominins had earlier access than carnivores to 

that particular carcass. Whereas lower frequencies of cutmark to carnivore toothmarks may 

indicate hominins had late access to carcasses and were mostly acquiring meat scraps and bone 

marrow after carnivores consumed the meatiest portions (Blumenschine 1995, Dominguez 

Rodrigo & Barba 2006, Dominguez-Rodrigo et al. 2010). 

Archaeologists have used BSM to understand past hominin butchery behavior for more 

than 150 years. Early comparisons of experimental and fossil collection BSM were made by 



 

13 

 

Lartet (1860) and Desnoyers (1863a). In these cases, BSM was mainly studied as evidence of 

human cohabitation with now-extinct animals, thereby challenging the established narrative of 

biblical literalism which had been used to explain human history. While Lartet and Desnoyers 

were mainly concerned with comparisons between experimental and fossil cutmarks, Henri-

Martin (1907) attempted to differentiate between anthropogenic and non-anthropogenic 

processes creating BSM.  Following these pioneering efforts, archaeologists began basing their 

inferences concerning past butchery strategies on archaeological skeletal part representation, 

completeness, and the presence or absence of BSM (James and Thompson 2014). Additionally, 

ethnographic observations of animal butchery by contemporary indigenous peoples came into 

use as a basis for inferring different butchery activities, (i.e. defleshing, dismembering, and 

carcass part preference) from cutmark anatomical distribution on fossilized bones (Brain 1967, 

Binford 1981), however, the use of indigenous peoples as an analog for the behavior of extinct 

hominins has since been understood as both ethically problematic and misleading (Lupo & 

O`Connell 2002). 

It wasn’t until the latter half of the 20th century that archaeologists began to explore the 

mechanical principles employed by hominins and other taphonomic actors in modifying bone 

surfaces. Emphasis shifted toward trying to understand how marks get onto bones and the 

different processes that affect mark morphology. During the 1980s and 90s, BSMs began to be 

used to gauge the extent to which different taphonomic actors contributed to site formation in 

archaeological fossil assemblages (Bunn 1981, Binford 1981, Brain 1983, Blumenschine 1995). 

This period of investigation led to a critical revaluation of how to identify the actors (the 

biological or nonbiological origin of the mark) and effectors (carnivore tooth, stone tool edge, 

hoove) creating surface marks (Potts and Shipman 1981; Shipman 1984; Gifford-Gonzalez 1991, 
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James and Thompson 2014).  Indeed, through the use of both naturalistic and experimental 

observations complemented with statistical modeling, specialists realized many archaeological 

BSM thought to be anthropogenic were instead caused by carnivore teeth, suggesting a high 

level of carnivore involvement in archaeological assemblages (Binford 1981, Blumenschine 

1988, Blumenschine and Silvagio 1988). This discovery cast serious doubt on earlier 

interpretations of fossilized cutmarks as evidence for hominins hunting (and gaining early access 

to carcass nutrients) on African landscapes. Instead, many argued for inferring late access 

(scavenging)  by hominins (Binford 1981, Blumenschine 1988; 1995) in which small-bodied, 

pre-H. erectus hominins were not able to hunt large ungulates and instead gained access to 

ungulate carcasses after the larger carnivores had their fill. Another important perspective was 

added through the analysis and characterization of cutmarks themselves. This process of 

classifying BSM by taphonomic actors led to specialists taking into consideration the possible 

cutmark mimicry produced by non-anthropogenic phenomena such as mammal herd trampling, 

animal gnawing or the distorting effects of diagenesis (Binford 1981; Shipman 1981; 1984, 

Domínguez-Rodrigo et al. 2009, James and Thompson 2014). 

Indeed, the increased importance of BSMs and the knowledge of cutmark mimicry has 

led to the realization that problems could arise if marks are misidentified (Behrensmeyer et al. 

1989, Gifford-Gonzalez 1991, Blumenschine et al. 1996). This potential for misinterpretation has 

cast doubt on many archaeological sites being of anthropogenic origin because what is being 

called butchery marks could actually be caused by natural processes. This uncertainty has 

sparked debates about the appropriate methodology for identifying anthropogenic marks and 

how to differentiate them from non-anthropogenic marks (Gifford Gonzalez 1991). These 

concerns have also prompted an even more intensive shift toward actualistic and experimental 
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approaches in understanding how BSMs are created (Blumenschine and Selvaggio 1988, 

Blumenschine 1995, Blumenschine et al. 1996). These more experimental approaches focus on 

inferentially linking the morphologies of marks created by different actor–effector–trace 

combinations (Gifford-Gonzalez 1991). Unfortunately, the large quantity of experimental 

research over the past few decades has been unable to bring about a consensus regarding how to 

differentiate anthropogenic from non-anthropogenic BSM. However, it should come as no 

surprise that BSM causes such contention among experts. BSM on fossilized bone surfaces are 

frequently subjected to multiple taphonomic processes following initial burial and abandonment 

(Olsen and Shipman 1988; Blumenschine et al. 2006, Domínguez-Rodrigo et al. 2009, Pante et 

al. 2012). Additionally, marks on bone surfaces are one of the most morphologically variable 

traces in the archaeological record. In any given fossil assemblage with BSM there are always 

some marks that overlap in morphology with a mark made by hominins (Domínguez Rodrigo et 

al. 2009). Sometimes this mimicry can make analysis challenging, and at other times completely 

impossible.  

2.3) History of Approaches for BSM Identification and Differentiation 

Consequently, due to the significance of cutmarks to our understanding of hominin 

evolution and diet, it is of the utmost importance to develop new quantitative and reproducible 

strategies for distinguishing between the actors and effectors which produce BSM (Bello and 

Soligo 2008, Bello et al. 2009; Bello et al. 2011, Pante et al. 2017, Benito-Calvo 2017). Toward 

this end, researchers have developed a variety of methods and technologies to characterize BSM. 

These methods range from the use of the naked eye and expert knowledge (Bunn 1981, 

Blumenschine et al. 1996), 3D micro photogrammetry (Mate-Gonzalez et al. 2015, Courtney et 
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al. 2018) to 3D confocal microscopy (Bello et al. 2008; 2011, Braun et al. 2016; Pante et al. 

2017, Courtenay et al. 2019; 2020).   

 Until a few decades ago, methods of identification were largely subjective, relying on 

categorical diagnosis based on the knowledge of individual experts working with fossil and 

experimental collections (Blumenschine et al. 1996, James and Thompson 2014). This method 

entails using handheld lenses and low-power microscopes to look for qualitative traits related to 

mark morphology which distinguishes BSM by taphonomic actor (Potts & Shipman, 1981, 

Shipman & Rose 1984, Blumenschine 1995, Blumenschine et al. 1996). For example, the cross 

section of a cutmark visually appears ‘V-shaped’ while carnivore toothmarks are described as 

looking more ‘U-shaped’. Blumenschine et al. (1996) demonstrated the accuracy of this method 

by performing blind tests of inter-analyst accuracy. The results showed experts correctly 

differentiated taphonomic actors by BSM morphology in 99% of cases and even students with 

fewer than three hours of training can correctly differentiate between experimentally generated 

BSM at rates greater than 86%. However, there has been a distinct lack of agreement among 

experts regarding how to macroscopically identify BSM. Thereby limiting the replicability and 

comparability of results between studies using this method (James and Thompson 2014). Indeed, 

macroscopic examination coupled with expert knowledge has been criticized for its inadequacies 

in solving issues where mark morphologies have ambiguous characteristics.  

2.3.1) Scanning Electron Microscope (SEM)  

Starting in the early 1980`s many researchers used Scanning Electron Microscopes 

(SEM) to overcome the limitations of macroscopic trace mark analysis. SEM provides high-

resolution images of surface topography and texture, thereby allowing microscopic analysis of 

BSM morphology (Potts and Shipman 1981; Shipman 1981; Shipman and Rose 1983a). The use 
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of SEM has led to the discovery of qualitative differences between BSM types, for example, 

Potts and Shipman (1981) noted that cutmarks tend to have internal striations while carnivore 

toothmarks tend to lack these striations. Olsen and Shipman (1988) used SEM to successfully 

investigate and develop micromorphological criteria to distinguish stone from metal tools in 

prehistoric contexts. Indeed, SEM does provide benefits in BSM identification over 

macroanalysis, namely continuous magnification over a large range, high-resolution images, and 

the capability to make high-quality microphotographs of marks (Fisher 1995). However, SEM 

also has several downsides when analyzing BSM, including only being able to analyze 3D BSM 

using 2-D images, is destructive for artifacts, high operating costs (expensive equipment), the 

time needed to set up and take each photo and tends to have high interobserver inaccuracy (Bello 

and Soligo, Bello et al. 2008, Bello et al. 2011, Boschin and Crezzini 2012). These issues have 

prompted analysts to look for other methods that have less interobserver error and are better able 

to measure quantitative characteristics of trace marks.  

2.3.2) Digital Micro-photogrammetry  

Micro-photogrammetry is a relatively recent technique used by researchers trying to 

quantitatively relate the micromorphological features of BSM to the taphonomic actor 

responsible for its creation (Maté-González et al. 2015; 2016, Yravedra et al. 2018). Micro-

photogrammetry is a more cost-effective alternative to SEM, providing a quicker method of 

capturing and characterizing the morphology of trace marks (Courtney et al. 2018). This method 

analyzes BSM by first capturing a large number of photographs of a mark from multiple angles 

in order to produce a high-resolution 3D model of the BSM. Once the photographs are compiled 

into a 3D reconstruction, quantifiable measurements, such as mark width, opening angle of mark, 

opening, mark depth and angle of the tool impact can be recorded (Maté-González et al. 2015; 
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2016). These measurements are analyzed and classified by taphonomic actor using statistical 

methods involving the use of experimental datasets, where variations in the measurements of 

BSM micromorphology are used to discriminate cutmarks from the trace marks of other 

taphonomic actors. Mate-Gonzalez et al. 2016 successfully used this method to differentiate 

between the cutmarks left by stone tools made from flint, copper and quartzite with roughly 70% 

accuracy.  

However, micro photogrammetry has been shown to have a number of issues when 

modeling BSM micromorphology. Like SEM, photogrammetry has been criticized for a lack of 

inter-observer studies testing the replicability of micro-photogrammetric measurements and 

results. The problem of reproducibility is magnified by the need to take numerous inexact 

measurements, which introduces bias into the analysis because different researchers can measure 

the same mark but have different results due to the imprecision of the data collection process 

(Maté-Gonzalez et al. 2015). Additionally, research has shown that profile measurements can 

vary between multiple cross-sections of single mark depending on the position in the mark where 

the researcher decides to take the profile (Maté-González et al. 2015, Keevil et al. 2018). 

Furthermore, the average time used to analyze a single cutmark is roughly an hour, much longer 

compared to the methodological alternatives. Consequently, more objective and reproducible 

methods of capturing and classifying BSM are needed.  

2.3.3) 3D Optical Profilometry  

SEM and photogrammetry have recently been complemented by BSM studies using 

white-light non-contact confocal profilometers. This technology provides high-resolution 3D 

images of bone surfaces where micro-topographic features can be quantitatively measured, 

which was unobtainable using SEM. The 3D reconstructions of BSM use quantification of the 



 

19 

 

internal mark morphology produced by known actors and effectors to identify diagnostic criteria 

to be applied to the taphonomic interpretation of bone assemblages. Indeed, 3D Optical 

Profilometry provides replicable, quantitative comparisons of the shape of individual BSM by 

way of comparison with the archetypes (statistical average) of marks made by different 

processes. This creates a key for identifying BSM by its effector which is less influenced by the 

bias of individual analysts and enables researchers to assign probabilities to the “the goodness of 

fit” between a given mark and its inferred cause (Bello et al. 2008; 2009; 2011). This approach is 

argued to be better at BSM identification than the other methods listed above, especially 

considering 2D approaches exclude vast portions of bone mark morphologies (Otárola-Castillo et 

al. 2018).  

Likewise, many 3D micro morphometric studies have found success distinguishing 

between cases where anthropogenic and non-human processes create similar mark morphology 

on bone surfaces (Bello 2008; 2011, Pante 2017, Courtenay et al. 2017; 2019; 2020, Keevil 

2018, Yravedra et al., 2018, Meijar et al. 2018, Fransisco et al 2020). Bello & Soligo (2008) 

were the first to produce 3D reconstructions of cutmark micromorphology. They developed their 

methodology to discriminate between experimentally created cutmarks based on tool type 

(effectors) through the use of measurements of cutmark cross-sectional shape, shoulder heights 

along mark, sharpness and depth of the mark (Bello & Soligo 2008). Next, Bello et al. (2009) 

applied this approach to archaeological butchery marks made by handaxes and to cutmarks on 

human teeth. Their analysis revealed that differences in the micromorphological characteristics 

of cutmarks can be attributed to different butchery activities (dismembering or filleting). 

Additionally, they found differences between experimental and fossil cutmarks. Fossil marks are 

generally broader and deeper, which the authors suggest is an indication of the greater muscle 
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strength of archaic hominins relative to anatomically modern humans. Boschin & Crezzini 

(2012) built upon this previous work by conducting a 3D microscopic analysis of BSM using 

morphometric measurements taken from the mark (depth, breadth, angles) as quantitative criteria 

for identifying the effector tools used to create cutmarks. Additionally, they tested the 

archaeological value of 3D microscopy experiments by also using cutmarks found on pigs from 

an Iron Age archaeological site alongside their experimental sample. Their analysis of these 

metrological measurements showed 83% accuracy in determining tool type for experimental 

marks and 59% accuracy of fossil cutmarks. Their results imply that fossilized cutmarks may be 

harder to classify due to post-depositional changes caused by diagenesis. Yravedra et al. 2018 

used 3D confocal microscopy to differentiate percussion marks produced with modified 

hammerstones and carnivore tooth pits. They found that 70% of their sample of percussion 

marks could be statistically differentiated from carnivore toothmarks. However, they also found 

that 30% of the percussion marks were likely to be mistaken for carnivore toothmarks, thereby 

demonstrating that more work is needed for higher accuracy rates. Courtney et al. 2019 and 

Courtney et al. 2020 use 3D digital microscopy to provide a detailed characterization of 

trampling marks through their micro-morphology. Through this methodology, they defined two 

new categories of trample marks that they called scratch and graze trampling marks. These 

studies demonstrate the effectiveness of 3D confocal microscopy in classifying BSM by 

taphonomic actor and providing a greater degree of quantitative comparison and reproducibility 

which other methods of BSM characterization lack.  

However, critics of 3D profilometric microscopy have raised concerns regarding 

reproducibility between analysts, because while many specialists use the same equipment, they 

used different variables to characterize BSM. This lack of standardized methodology prevents 
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any meaningful patterns in the micromorphological characteristics of BSM from being identified. 

Fortunately, Pante et al. (2017) overcame the replicability issue by creating a standardized 

approach using measurement of the micromorphological features (such as surface area, volume, 

depth, length, etc.) for diagnosing BSM actors and effectors. The replicability of this method was 

demonstrated through inter-observer experiments where there was no inter-observer error among 

analysts (Pante et al. 2017, Keevil et al. 2018). Additionally, this protocol can distinguish 

cutmark from carnivore toothmarks with 97.5% accuracy (Pante et al. 2017), toothmarks can be 

classified by carnivore taxa (Muttart et al. 2017), the effects of fluvial abrasion on cutmark 

micromorphology has been described (Gumrukcu & Pante, 2018), and cutmarks have been 

successfully classified by raw material and tool type used in butchery (Keevil 2018, Mwakyoma 

2021). With this success in discrimination between BSM actors, researchers continue to search 

for measurable parameters which can increase the accuracy of inferential links between the 

physical properties of effectors and the micromorphology of the resultant marks (James and 

Thompson 2014, Thompson et al. 2017, Harris et al. 2017). Toward this end, we investigate 

fractal parameters, as described by Brown et al. 2018, as a new method for characterizing and 

distinguishing BSM through the measurement of within-mark surface complexity.  

2.4) A History of Fractals and Archaeology 

To study the complex surfaces of BSMs, we turn to fractal analysis to better identify and 

differentiate actors. Fractals were developed by mathematician Benoit Mandelbrot as a new 

branch of mathematics able to describe complex, rough forms in nature. Mandelbrot states 

fractals are a group of irregular, complex shapes or patterns which occur naturally, but which 

possess the characteristics of self-similarity and scale invariance (Mandelbrot 1977, 1982). Self-

similarity means a fractal shape looks the same visually and mathematically at any scale.  For 
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example, a fern is composed of branches that look like smaller versions of the larger tree and 

those branches in turn are made of smaller but structurally identical leaves.  Fractal shapes are 

scale-invariant because, unlike regular, euclidean shapes, fractals have no natural size. And can 

be, at least mathematically, visually the same at any scale.  In other words, if a fractal shape is 

examined at any scale it will resemble the whole in a statistical sense; therefore, there is a 

statistical equivalence between small-scale and large-scale changes in fractal patterns and this 

allows for the measurement of complex surfaces at multiple scales. Therefore, measuring the 

fractal dimension of a surface is a measure of its geometric complexity with changing of scale, 

which is calculated as the number of fractal shapes we observe as the size of observation 

decreases, therefore, the more geometric shapes, the more complex a surface is. Therefore, due 

to its self-similar and scale invariant characteristics, the fractal dimension is a useful parameter 

to distinguish different eroding processes on various surfaces, because effectors (stone tool, 

tooth, hoove) are made of different materials, which  generate surfaces with distinguishable 

surface complexies.   

However, it is important to note that fractals can only be used as models for natural 

shapes because natural objects usually lack several characteristics that define fractals (i.e. infinite 

length and self-similarity at all scales). Additionally, although ideal mathematical fractals have 

the property of scale-invariance over all possible scales, real-world fractals are usually scale-free 

over only a finite range of scales (Jelenik et al. 2005). How large this range needs to be so that an 

object can be called a fractal is a matter of debate (Brown 2005).  

The third important aspect of fractals is the “fractal dimension”, commonly symbolized 

as “D” and mathematically described as: a = 1 sD. The fractal dimension quantifies the 

complexity (variation in length, area, volume and height) with changes in the size of the 



 

23 

 

measuring scale (Brown 2005). In the equation above,  “a” is the number of self-similar “pieces,” 

s is the scaling factor of the pieces to the whole, and “D” is the dimension that we want to 

calculate (Jelenik et al. 2005). This equation can be better visualized by returning to the fern 

example, as the size of the ferns branches shrinks, the number of fractals or self-similar pieces,  

“a”, increases. The fractal dimension, “D”, tells us how many new branches we will observe as 

the size of the branches get smaller.  

In contrast to Euclidean dimensions which are measured as integers (0= point, 1 = a line, 

2 = a plane etc.), most fractals are measured as fractions. The larger the fractal dimension, the 

more a fractal object fills up the space surrounding it. For example, a fern with a fractal 

dimension of 2.1 is a sparse tree with a few thin branches which isn’t taking up much space. 

However, a fern with a fractal dimension of 2.5 is much denser and has many more branches. A 

fern with a fractal dimension of 2.9 has a large number of dense branches filling up space and 

capturing sunlight.  

2.5) Scale-Sensitive Fractal Analysis 

 
Therefore, the fractal dimension “D” tells us important information about the type of 

processes that generate patterns on metrological surfaces. Likewise, Benoit noted the description 

of fractal shapes and patterns allows for the measurement of complex surfaces at multiple scales 

(where statistical measures are preserved across scales). Indeed, the fractal dimension has been 

found to be a useful parameter to describe physical surfaces, and furthermore, eroding processes 

in nature generate surfaces with fractal properties (Unger et al. 2003, Scott et al. 2005, Brown 

2005, Brown et al. 2018). This ability to mathematically describe and document irregular 

surfaces at multiple scales is extremely valuable for a number of different fields, including 

Archaeology, Tribology, Engineering and Electrochemistry. Additionally, and importantly for 
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this study, many archaeological phenomena have fractal characteristics. This is to be expected 

because fractal patterns have been shown to be common in many kinds of natural, cultural, and 

social data (Brown 2005, Brown et al. 2018).  

Scale Sensitive Fractal Analysis (SSFA) calculates the fractal dimension from the slope 

of a log-log plot where a geometric property is measured versus the scale used for measurement. 

The topography of the surface is considered fractal with respect to the scale when the slope of 

the graph varies (Brown et al. 2018). SSFA also provides a number of informative parameters 

which characterize the surface being studied. In this thesis we use the fractal parameters SRC 

(smooth-rough crossover), Asfc (Area scale fractal complexity) and smfc (max complexity). The 

SRC is the point at which the surface that appears Euclidean and smooth at larger scales, 

becomes rough at smaller scales and is best described using fractal geometry. The SRC has been 

shown to vary between different topographies (Hyde et al 2014) and can discriminate wear 

patterns generated by different abrasive forces on a statistical basis. The Asfc is calculated in the 

section of the log-log plot that has the greatest complexity, i.e. corresponding to the two orders 

of magnitude in scale where the negative slope is the steepest (Brown et al. 2018).  Asfc uses 

repeated area measurements of constructed triangular tiles on the surface at different scales and 

makes them “relative” by dividing those totaled areas against the scan area. The logs of relative 

area measurements are plotted against the log of the scale used, and the value for the steepest 

part of the curve (multiplied by −1,000) is calculated. Asfc is therefore a good indicator of 

surface complexity, with higher values generally indicating greater degrees of pitting and peaks 

in a surface. 
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2.5.1) Scale Sensitive Fractal Analysis of Use-Wear on Stone Tools  

Archaeologists have used the concept of fractals and fractal dimension measurements to 

successfully document different kinds of worn surfaces on stone and bone tools (Stemp et al 

2008, Stemp et al. 2009, Stemp et al. 2010, Lesnik 2011, Stemp et al. 2014, Evans and Donahue 

2008, Watson and Gleason 2016). The use of SSFA for discrimination between use-wear 

patterns on stone tools is a product of microscopic use-wear analysis which was developed in the 

mid-twentieth century to identify the used portions of tools and the types of materials being 

worked upon by the tool edge. Use wear is the microscopic scratches, pits and polish found on 

stone tool surfaces after repeated use (Keeley 1980). Like BSM studies, the identification of use-

wear on stone tool edges in archaeological contexts is based on middle-range theory, where tools 

created in experimental contexts are used for identification and wear classification in 

archaeological contexts. Also, like BSM studies, there have been issues regarding the lack of 

reliability of optical microscopy combined with expert knowledge for identifying and classifying 

wear on tool edges (Stemp et al. 2008). Furthermore, discriminating use-wear with expert 

analysis relies upon various qualitative approaches by different analysts which lack 

reproducibility and objectivity (Keeley, 1980). This has led archaeologists to devise other, less 

qualitative methods to study stone tool use wear. The most successful of these methods has been 

the characterization of tool edges using SSFA.  

The first experiment using SSFA to quantify stone tool use-wear was performed by 

Stemp and Stemp (2001).  Profiles of used and unused chert and obsidian stone tools were 

measured using a laser profilometer. Discrimination of used and unused surfaces occurred at 

different scales of measurement. Next, Stemp and Stemp (2003) used SSFA and laser 

profilometry to differentiate chalk flakes used to saw different materials (pottery and wood) from 
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the same surfaces before use. Following the encouraging results of these experiments, they 

performed additional tests trying to discriminate more chalk flakes used on even more materials 

(shell, wood, hide and antler). The chalk flakes were classified using the fractal variable Relative 

Area. RelA calculates the change in area with respect to the scale measured. Likewise, Álvarez et 

al.  (2012) used SSFA to differentiate between use-wear on experimental stone flakes used to 

scrape bone, hide, and wood. Stemp et al. (2013) increased the accuracy of this methodology 

using the parameter Asfc (area scale fractal complexity) to classify the used and unused regions 

of four Mistassini quartzite scrapers by their surface complexity. Through the use of Asfc, they 

accurately classified the worn surfaces above the 95% confidence level at coarse scales. These 

experiments show the effectiveness of SSFA in classifying worn surfaces from unused surfaces 

and allows diagnosis of the effectors used by people in the past.  

Lesnik (2011) was among the first to use SSFA and laser scanning confocal microscopy 

to study worn surfaces of bone tools from archaeological contexts. She used artifacts excavated 

from Swartkrans, South Africa (1.8–1.0 million years old), to determine their potential use by 

early hominins for digging into termite mounds for food. Lesnik (2011) found that Asfc 

demonstrated significant statistical differences in surface complexity between bone tools used for 

different digging tasks. Additionally, they found significant differences between the Swartskrans 

artifacts and the experimentally created stone tools in variation of Asfc, with the experimental 

tools having lower complexity values. These experiments demonstrate the potential application 

of SSFA to mathematically describe and discriminate surface wear on stone and bone tools to 

determine tool function and support inferences regarding past hominin subsistence behavior. 
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2.5.2) Scale Sensitive Fractal Analysis and Tooth-Microwear Studies 

Similar to use-wear and BSM studies, microwear on teeth has been used to infer 

prehistoric hominin behavior, and researchers have been using SSFA to create more empirical, 

reproducible dietary classifications (Ungar et al. 2003, Scott et al. 2005, Krueger 2015, Ranjitkar 

et al. 2017, Unger and Berger 2018). As defined by Schmidt (2010), dental wear is the loss of 

hard tissue on the enamel surface to abrasion from ingested food. Microwear are the scratches 

and pits which can only be detected microscopically and numerous studies of microwear on 

primate teeth have been conducted (Grine 1981, Teaford and Walker 1984; Ungar and Grine 

1991). Microwear is universal across animal species whether the comparisons are between 

primates that masticate tough versus hard foods, or between carnivores that specialize on meat. 

For example, the orangutan, which generally uses its incisors to prepare food before 

consumption, shows more scratches on its incisors than does the gibbon which does not use its 

incisors as much (Ungar 1994). Knowledge of microwear analysis has greatly benefited studies 

of extinct hominin diet and have been refined through controlled experimental studies on live 

animals, where diets can be monitored to observe the relationship between diet and microwear 

on teeth surfaces. Such studies have documented the rate of microwear formation as well as 

elucidate the potential role of non-food items in producing wear. 

 Early microwear studies were qualitative in nature, researchers mainly used their expert 

knowledge and light microscopy to make inferences regarding diet (Merceron 2010). In the late 

1970`s, analysts began using SEM which produces high - resolution images with a depth of field 

more appropriate for microwear analysis (Walker et al. 1978). Walker (1980) and Grine (1981) 

used SEM to show there is a range of microwear patterns present in both living and fossil 

species. However, as mentioned above, SEM suffers from disadvantages. There is information 
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loss when representing a 3D surface in two dimensions. Additionally, there is high interobserver 

error (5-10%) due to differences in the angle needed between the electron beam and tooth 

surface, so researchers scanning a tooth at even slightly different orientations get different 

measurements from the SEM images (Grine 2002). These issues have prompted researchers to 

use SSFA to quantitatively characterize tooth surfaces. Indeed, recent interdisciplinary research 

has led to the realization that teeth function at multiple scales and therefore should be studied 

from multiple scales. This realization has in turn led to the development of combining laser 

scanning confocal microscopy (LSCM) with SSFA to perform dental topographic analysis. This 

approach has proven more effective than SEM at quantifying and classifying microwear, being 

free of observer error and based on the automated quantification of 3D surfaces (Merceron 

2010).  

Dental microwear texture analysis (DMTA) uses confocal white-light profiler and SSFA 

to generate large samples of microwear surfaces and repeatable measurements (Scott et al. 2005, 

Merceron et al. 2010). This method relies on three-dimensional coordinates collected at high 

resolution from microwear surfaces identified by the investigator together with quantitative 

variables describing surface textures using principles from fractal geometry (Scott et al. 2006). 

Therefore, it increases the power to resolve and classify differences in microwear between 

species and allows for direct comparisons of results between observers. Indeed, metrological 

techniques provide more precise and repeatable ways of characterizing microwear surfaces than 

counting and measuring individual scratches and pits.  

Ungar et al. (2003) were the first to pair scanning confocal microscopy with SSFA to 

measure tooth surface anisotropy and area scale fractal complexity (Asfc) to differentiate 

between grazer and browser diets. Grazers were found to have high anisotropy values, while 
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browsers exhibited high values for asfc. Scott et al. 2005 improved upon previous research by 

using dental microwear texture parameters (asfc, epLsar, heterogeneity of asfc and texture fill 

volume) to study differences in dental microwear texture and diet between hominins and other 

primates. They found that dental microwear textures vary significantly with diet. Additionally, 

they found that Asfc describes the fractal complexity of microwear surfaces and has been 

associated with food hardness. Years later, Scott et al. 2012 would cement the advantages of this 

strategy by using SSFA to discern differences in dietary and behavioral strategies of fossil. Their 

microwear texture analysis indicates that Australopithecus africanus microwear is more 

anisotropic (directional patterns in the enamel surface), but also has a less complex surface than 

the contemporaneous Paranthropus robustus. This latter species has more complex and variable 

microwear surfaces than A. africanus. This suggests that A. africanus ate more tough foods and 

P. robustus consumed more hard and brittle items, but that both had variable and overlapping 

diets. Scott et al. (2012) demonstrate SSFA combined with LSCM does not suffer from the low 

repeatability and observer biases of SEM.  Namely, scanners are easier to use and cost less than 

SEMs. Additionally, SSFA ensures both accurate characterization of microwear surface texture, 

and repeatability in quantification.  

These case studies demonstrate the effectiveness of the combining LSCM and SSFA in 

distinguishing experimental and archaeological tooth wear by diet and making testable 

inferences regarding the behavior of our hominin ancestors. The results of these studies make 

clear SSFA is an appropriate methodology for BSM differentiation by identifying which 

measured variables of a surface, and at what scales, are the most relevant at telling topographies 

apart (Brown 2005, Brown et al. 2018). Therefore, due to the characteristics of fractals, they are 

appropriate to mathematically describe and document the complexity of BSM - damaged bone 
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surfaces because bone microtopography necessitates quantitative descriptors well-suited to 

irregular surfaces.  
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CHAPTER 3 METHODS & MATERIALS  

 

 

This study uses 3D-optical metrology protocols described by Pante et al. (2017) for the 

systematic collection and processing of micro-morphological data. This data is an experimentally 

created sample of 100 Bone Surface Modifications (BSM) consisting of 25 cut, trample, tooth 

and percussion marks respectively.  This sample was generated to test the viability of  Scale-

Sensitive Fractal Analysis (SSFA) as a means to accurately capture and distinguish between 

BSM types based on measurements of within-mark surface complexity.   This research hopes to 

aid in the identification of butchery activity on fossilized bone surfaces from archaeological 

contexts. 

3.1) Experimental Sample 

To test whether SSFA can classify BSM type based on measurements of within-mark 

surface complexity, a sample of 100 experimentally produced BSM were sampled from the 

existing collection in the 3D imaging and analysis laboratory at Colorado State University. 

Bones with BSM of known taphonomic actors were used from several past projects; cutmarks 

were taken from Keevil et al. (2018), trample marks from Orlikoff et al. (2018), toothmarks from 

Muttart et al. (2017) and percussion marks from Tolley et al. (2018). Keevil et al. 2018 created 

their experimental cutmark sample by designing a cutting machine that allowed for the control of 

the applied force and impact angle relative to the bone surfaces. All bones in their sample were 

cut on a maximum of 2 useable surfaces 5 times per bone (Keevil et al. 2018). Orlikoff et al. 

(2018) created the trample marked bone sample by directing cattle to walk over long bone 

fragments scattered in sandy sediment within a confined area. Muttart et al. 2017 created the 

experimental toothmark sample by conducting feeding observations of grey wolves (Canis 
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lupus) at a rehabilitation sanctuary for wolves in Colorado, USA. The Grey Wolves were fed 

moderately fleshed bones twice a week on days of fasting. The bones were collected 20-24 hours 

after initial feeding. Tolley et al. (2018) produced the experimental percussion-marked bones 

using a hammerstone-on-anvil technique and controlled for animal species, bone type and 

hammerstone raw material.  

Individual marks were circled on photographs of the complete bones (see figure 1 below). 

Marks that were scanned from the same mold were labeled with the same ID name and number 

but with unique mark letters “A, B, C”. For example, a mold comprising of three scanned marks 

would be labeled as CM1 Mark A, CM1 Mark B, and CM1 Mark C. This signifies that each 

mark is from the same scanned surface but should be measured separately (see Appendix A). No 

more than three marks were taken from a single mold to limit the bias of a single lab specimen.   

 

Figure 1: Example image of how BSM were identified and catalogued in the experimental sample. 
Here, the toothmark is circled on the anterior surface of the rib in order to more easily locate the 
mark during scanning.  
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3.2) Surface Molding 

After initial identification and cataloguing, each bone specimen would be lightly rinsed 

under a running water faucet to remove any debris on the surface. All 100 marks were molded 

using AccuTrans® silicone red and white mold to accurately copy the bone surface topography 

and BSM morphology.  Due to the red mold leaving residue on bone surfaces, I switched to only 

using white mold for this study. It is highly recommended that all future studies using 

AccuTrans® molding and 3D confocal microscopy use the white mold as it has higher 

reflectivity which expedites the scanning process and does not leave mold residue on the bone 

surface which hinders future research. The finished molds were closely examined using a 

Sensofar s-neox white-light confocal profilometer to determine the quality of the molded surface. 

If the mold was found to accurately copy the bone surface and modifications without bubbles or 

other surface defects, then it would be scanned for marks. However, if a mold was found to 

contain defects, then the molding process would be repeated until the mold was found to 

accurately copy the bone surface without defects.  

 

3.3) 3D Optical Metrology 

A total of 100 cut, trample, tooth and percussion marks from 61 experimentally damaged 

bones were scanned following Pante et al’s. (2017) protocol for BSM diagnosis. This detailed 

methodology makes the data in this study replicable and comparable to other BSM studies using 

similar methodology. All 3D data was collected using a Sensofar s-neox white-light confocal 

profilometer equipped with a 5x objective.  
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First, a molded mark is placed in a position that aligns the mark with its` longest axis 

perpendicular to the axis of the scanner. All molds were manually oriented and levelled in the x, 

y and z axes using foam bone holders and “puddy sand” to make the marks flat underneath the 

objective.  Once a mark was located with the optical lens and scanned, then each subsequent 

mark was chosen based on proximity to the previous mark. In many instances, multiple marks 

were scanned together on a single mold. In these cases, the longest mark was oriented 

perpendicular to the x-axis, however the orientation of other marks on the mold were often 

slanted in relation to the direction at which profiles were collected.  

3.4) Processing of 3D BSM Scans 

Once scanning was completed, the 3D BSM models would be exported from the 

Sensoview® software to Digital Surf® software to take metrological measurements of the 3D 

scans. The first step for processing the 3D models in the Digital Surf® software is to use the 

‘operator’ tab called “Remove Outliers” (see fig. 2 below). The ‘Remove Outliers’ function 

removes outlying peaks or holes in the 3D model to create a “topographic layer”. Next, the 

operator called “Fill in Non-Measured Points” was applied to the BSM studiables. This 

algorithm fills any missing points that were not captured during the scanning process. This 

function was only used in rare cases where data points were not captured due to side wall angles 

being greater than 87 degrees. Next, the 3D model was mirrored on its z-axis to better replicate 

the original surface. This is necessary because molds copy a reverse image of the original bone 

surface, and therefore to mirror the scanned mold surface on the z-axis provides an accurate 

right-side up 3D Model. The operator named “remove form” was used next to take out the 

influence of the shape of the bone on the actual shape of the mark. The “remove form” operator 

excludes the mark itself from the levelling algorithm which produces a 3D studiable containing a 
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flat and unmodified BSM. The operator “threshold” is then applied which defines the height and 

depth of the mark’s profile. Then, the 3D models are manually rotated on the y-axis to a vertical 

position to ensure accuracy of measurements. This was done because slanted marks have been 

shown to reduce the accuracy of metrological measurements (Pante et al. 2017). Lastly, the area 

of the mark was extracted from the vertically positioned 3D studiable by closely tracing the BSM 

on the 3D model using an operator named “extract area”. The marks were carefully outlined by 

tracing the edge identified by the first change in color signifying a change in depth leading into 

the mark.  

 

 

Figure 2: Top Left image shows a 3D cut mark model after initially importing it into the Digital Surf® software. The 
top right image shows the same 3D model after “remove form”. Bottom left image shows the mark after being 
rotated to a vertical position. The bottom right image shows the final product of the 3D process, an extracted 
cutmark. The color scales on right of both images indicate depths. The color white indicating a shallow surface and 
black indicating a deep surface.  
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3.5) Measurements of the 3D BSM Models 

The detailed outline by Pante et al. (2017) was used to digitally analyze all scanned BSM 

models. Marks were processed and measured using Digital Surf Software ®. After processing the 

3D mark models in Digital Surf ®, the software collects height, spatial and functional 

measurements from each mark which are displayed in a parameter table (see table 1 below).   

Table 1: Height, Spatial and Functional Parameters: ISO 25178-2: 2012.  

Parameter Name Symbol Definition 

The Root Mean Square 
Height 

Sq The value of the ordinate datapoints (how up or down a data point is) 
within a scale-defined area. Is equivalent to the standard deviation of 
heights. 

Skewness Ssk A measurement of the asymmetry of the height distribution on a bell 
curve. The sign Ssk indicates the presence of many of peaks (Ssk > 
0) or many pits (Ssk < 0) on the surface.  

Kurtosis Sku Indicates whether or not there are very high peaks and deep valleys  
on a surface. The Sku sign indicates the presence (Sku>3.00) or 
absence (Sku<3.00) of peaks and valleys making up the texture. If 
the surface heights are normally distributed (on a bell curve) 
then Ssk is 0.00 and Sku is 3.00 

The Maximum Peak Height 
 

Sp The highest peak height within a defined surface area.  

The Maximum Pit Height 
 

Sv Absolute value of the height of the largest pit within the defined area.  

The maximum height Sz A variable quantifying the sum of the tallest peak height and the 
deepest pit depth within the area of measurement.  

Arithmetical Mean Height 
(Average Roughness of 
Surface within Defined 

Area) 

Sa This variable measures the absolute value of the difference in height 
of each point on a surface compared to the arithmetical mean of 
heights on that surface. Is often used to measure surface roughness.  

Texture Direction of the 
Scale-Limited Surface 

Std A measure of the angular direction of the dominant texture pattern on 
a surface and the orientation of that pattern.  Std is defined relative to 
the Y axis. Therefore, a surface with a dominant texture pattern 
oriented along the Y axis has a Std of 0 deg.  
 
 

Peak Extreme Height Sxp Quantifies the difference in height between the average surface 
height and the peaks on a surface after outliers are removed.   

Material Volume Vm An indication of the volume of material comprising a surface. Is 
measured from a height corresponding to the material ratio to the 
highest peak on the surface.  

Void Volume Vv  The volume of space on a surface at a height corresponding to an 
arbitrary material ratio (between 0-100%) and the lowest pit.  

Peak Material Volume of 
the Scale-Limited Surface 

Vmp  The volume of space on a surface at a height corresponding to an 
arbitrary material ratio (between 0-100%) and the highest peak.  
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Core Material Volume of 
the Scale-Limited Surface 

Vmc The difference in volume of material comprising the surface between 
heights corresponding to the arbitrary material ratio values of  “p” 
and “q”.  

Core Void Volume of the 
Scale-Limited Surface 

Vvc  The volume of space bounded by the texture at heights 
corresponding to the material ratio values of  “10%” and “80%”.  

Dale Void Volume of the 
Scale-Limited Surface 

Vvv The volume of space on a surface from a plane at a height 
corresponding to an arbitrary material ratio to the lowest pit. This 
valley is called a “dale” or the region around a pit where all 
downward paths end at the pit.  
 

 

Next, fractal measurements were taken using the “Scale Sensitive Fractal Analysis” 

operator in the “studies” function in Digital Surf®. This operation provides measurements of 

each individual marks fractal complexity (asfc), scale of max complexity (smfc), fractal 

dimension (das) and smooth-rough crossover (src) (see table 2 below for definitions).  

Table 2: Scale-Sensitive Fractal Analysis Parameters: ISO 25178-2:2012 
Parameter Name Symbol Definition 

Smooth-Rough Crossover 
Threshold 

SRC threshold Value of relative area or volume used to determine the 
smooth-rough crossover scale. Starting from the largest 
scales, working towards the smallest, the first relative 
area or volume to exceed the threshold is used to 
determine the SRC. 
 

Smooth-Rough Crossover SRC The scale encountered going from relatively larger 
scales where the surface appears to be smooth to smaller 
scales where the surface appears to be rough.  
When the scales used for observation are large and the 
surface appears smooth, the fractal dimension will 
measure similar to the Euclidean dimension. However, 
when the scales used for measurements are sufficiently 
small and the surface appears rough, the fractal 
dimension exceeds the Euclidian dimension. SRC is 
often used in studies determining surface friction and 
contact.  
 
 

Regression Coefficient R² This variable is used to gauge the accuracy of the fractal 
complexity value. A high value means the fractal 
complexity value is accurate while a low value indicates 
an inaccurate complexity value.  

Area-Scale Fractal 
Complexity (Fractal 

Complexity) 
 
 
 
 

Asfc A measure of self-similarity at each scale of 
observation. Is measured as a function of the slope of 
the relative lengths or areas over some portion of the 
scale of analysis, or as one minus the slope of the 
length- scale plot. Large asfc values are an indication of 
higher complexity or roughness of the surface at scales 
somewhere below the SRC. 
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Fractal Dimension Das This variable provides a statistical index of surface 
complexity comparing how detail in a fractal pattern 
changes with the scale at which it is measured.The 
fractal dimension is an indication for how a fractal 
pattern scales differently from the topographical space 
around it. In Scale-Sensitive Fractal Analysis, the fractal 
dimension is calculated from the slope of a log-log 
graph calculating geometric property versus scale.  
The fractal dimension usually exceeds the Euclidian 
dimension and is measured as a fraction between the 
numbers 2 and 3 for a surface.  

 
 

Scale of Max Complexity Smfc The scale at which the surface exhibits its highest 
complexity. After the scale with the surface complexity 
is reached, then the complexity declines. A high Smfc 
value indicates a surface dominated by high peaks and 
deep valleys at small scales.  

 

To improve classification accuracy, more measurements were collected from the 

processed studiables following the protocol set forth by Pante et al. 2017. These measurements 

include the projected surface area of the mark, maximum depth of the mark, mean depth of the 

mark, volume of the mark and maximum length and width of the mark (see table 3 below for 

definitions). Maximum length and maximum width of the marks were recorded using the 

“distance” tool in the Digital Surf ® software. Maximum length is measured as the distance from 

each end on the longest part of the mark. Likewise, maximum width is measured as the distance 

between ends on the widest part of the mark. If the mark was curved in shape, then the length 

and width could be measured in incremental segments. These segments are drawn and then 

added together to get the total length or width measurement. Next, volume of the mark, projected 

surface area, maximum depth and mean depth are recorded using the “volume of a hole” function 

in the Digital Surf ® software. To acquire these measurements, the processed marks are traced 

along the edge which can be identified by a change in color indicating a change in depth leading 

into the mark. Once tracing the outline of the mark is completed, the measurements are 

automatically provided by the software.  
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   Table 3: Volume of a Hole Parameters: Pante et al. 2017 
Parameter Definition 

Projected Surface Area A 2-D measurement providing the size of the mark 
Maximum Depth Measures the deepest part of the mark relative to the defined plane. 

Mean Depth 3D measurement of the average depth across the mark relative to the defined plane. 
Volume of Hole A 3-D measurement providing the amount of bone displaced by the mark 

Maximum Length The distance from end-to-end on the longest part of the mark. 
Maximum Width The distance from end-to-end of the widest part of the mark. 

 

3.6) Statistical Analysis 

Statistical analyses were performed using Microsoft Excel, R Studio version 4.0.2 and 

JMP statistical software v13, as well as R packages (MASS), (caret), (corrplot), (rstatix) and 

(randomForest).  

3.6.1) Data Exploration 

The experimentally created BSM used in this analysis were grouped into four categories 

(cutmark, trample, toothmark, percussion) based on the taphonomic agent that created each 

mark. Histograms were used to identify whether each recorded variable was normally distributed 

for all BSM groups. These histograms were created using the hist() function in R Studio version 

4.0.2 statistical software. The histograms of almost all measured variables indicated non-normal 

distributions. The only variable with a normal distribution across all BSM types was ssk (see 

Appendix B). Therefore, when distribution normality was an assumption of analysis all non-

normally distributed variables were log - transformed to normal distributions using the log() 

function in rstudio. Logarithm transformations remove the skewness present in data so that 

statistical analysis results are not misleading due to non-normal distribution in the dataset 

(Metcalf and Casey 2016).  

Next, a correlation matrix was created to ensure the variables were not highly correlated 

and reporting an incorrect accuracy in discriminant analysis. Correlation refers to the degree of 
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linear dependence between any two random variables in a dataset. Researchers usually want to 

remove correlated variables from analysis because they are redundant and can be better 

expressed with less correlated parameters. A correlation matrix is a table of correlation 

coefficients for a dataset which determines whether a linear relationship exists between the 

variables. The relationship is provided by the coefficients, which indicates the direction (positive 

vs negative) and the strength of the relationship between variables in the dataset. This 

relationship is expressed as a range of values between the values of -1 and 1. The value -1 

indicates a non-linear (negative) relationship, whereas 1 is a positive linear relationship and 0 

is in-between neither positive nor negative linear interdependency. However, a value of 0 does 

not mean the variables are completely independent of one another (Ferré 2009). Two variables, 

SRC Threshold and Das, were removed from analysis due to their complete collinearity with 

other variables.   

This study uses Spearman correlation instead of Pearson correlation due to the outliers 

present in the dataset and the lack of linear relationship between variables (see figure. 3 

below), which go against the assumptions of Pearson correlation (Myers and Well 2003). 

Pearson and Spearman correlation measure different aspects of variable relationships. Pearson 

correlation evaluates the linear relationship between two variables while Spearman analyzes how 

variables  increase or decrease together (Rebekić et al. 2015).  
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 Figure 3: Scatter Plots displaying the non-linear relationships and outliers between variables. Due to the 
non-linear relationship visualized in the plots above this study uses the nonparametric Spearman correlation for 
assessing relationships between variables.  

 Next, variables were selected for discriminant analysis by performing a predictor 

screening test in JMP statistical software v13. Predictor screening analysis examines the 

contribution of each variable for classifying BSM types. The predictor screening test does this by 

using a bootstrap forest model of 100 decision trees to select potentially important variables for 

distinguishing and classifying the 4 BSM types (cutmark, trample, toothmark, percussion). The 

contributions of each variable to the bootstrap forest model are then ranked from highest to 

lowest. The predictor variables with higher contributions are likely to be important for BSM 

group prediction, while those with low contribution are likely not useful. The resulting table 

visualizes the proportion of the variation in the response attributed to each variable. However, 

the predictor screening test involves a degree of randomness, so variable contributions can be 
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differ slightly every time the test is rerun (SAS Institute 2016). Interestingly, the predictor 

screening test shows the fractal variable asfc as one of the top 3 most important variables for 

differentiating BSM types. However, other fractal variables such as smfc and SRC are less 

important for BSM classification according to the predictor test. Prior to performing the predictor 

screening test the variables y-max and R² were removed from analysis due to being insignificant 

in classification of BSM types. Additionally, the variables std and ssk were removed from 

analysis due to their lack of utility in classifying BSM types. The decision to remove std and ssk 

was made after observing classification power increase when either variable was excluded from 

discriminant analysis.  

3.6.2) Multivariate Analysis- Quadratic Discriminate Analysis 

This study uses multivariate QDA models to identify and classify the taphonomic agents 

creating BSM using variations in cut mark micromorphology and surface complexity.  QDA 

models the likelihood of each class of variables as normal distribution and uses the posterior 

probabilities to assign the class of each datapoint (Srivastava et al. 2007). QDA was the preferred 

statistical method because there is a lack of homogenous covariance across groups within this 

dataset and QDA explicitly works with classification problems where equal covariance is not 

assumed in the data.  Unequal covariance matrices can be assumed due to well-known fact that 

the various kinds of BSM types vary differently with regards to their morphological 

characteristics (length, width etc.). For example, the length of cutmarks varies more than the 

length of toothmarks due to the manner of mark creation and the prevalence of meat on the bone 

at time of butchery.  Therefore, we could assume unequal covariance matrices between BSM 

types and use QDA for BSM classification. Data analyses in this study was performed using the 

“qda” function in RStudio v4.0.2. Seven QDA models were created from this analysis. These 
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consist of one model categorizing all four BSM types together and the other six models classify 

between only two BSM types, i.e. “cutmark vs toothmark”, “trample vs percussion” etc.  

After creating the QDA models, Leave One Out Cross-Validation (LOOCV) was 

performed to test each model's ability to predict new data that was not used in its creation. 

LOOCV is used in studies where the goal is prediction, and one wants to estimate 

how accurately a predictive model performs in practice with “real world” data. This helps 

identify problems regarding overfitting or selection bias and gives insight into how well the 

model classifies with an independent dataset of unknown data. LOOCV uses all but one of the 

observations vectors in the sample to decide the function for classification. Then, that 

classification function is used to predict the omitted observation’s vectors group membership. 

This process is repeated for each datapoint so that each observation is classified by a function of 

the other observations (Molinero et al. 2005). To perform LOOCV in RStudio, the command 

CV=TRUE was coded into the qda() function. The command CV=TRUE automatically returns 

results for the models cross-validation by LOOCV.  

3.6.3) Analysis Using Machine Learning: Random Forest 

Next, Random Forest Machine Learning was performed to better identify classificatory 

patterns in the data. This method was preferred because machine learning uses statistical learning 

to identify boundaries between groups and therefore classify them. Random Forest creates 

multiple decision trees. Decision trees look at one variable at a time using if-then statements 

(forks) to define the patterns in the data. Forks split the data tree into two branches based on a 

value called the split point. The forest assigns each datapoint a BSM classification based on 

which taphonomic category received the most votes. The random forest outputs an out-of-bag 
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(OOB) error estimate for each random forest model. OOB is an estimate of the error rate that the 

random forest uses for new data from the same distribution. The estimate of error is calculated as 

the number of misclassified marks in the model divided by the total number of classifications 

(Genuer, & Poggi 2020).  

The resulting output in R Studio provides the number of trees constructed (500), the 

percentage of trees that correctly classified the data sampled (error rate) and a confusion matrix 

visualizing how accurately the tree managed to categorize by BSM type based on the measured 

variables. To perform Random Forest in RStudio, the package (randomForest) was installed and  

the  “randomForest()” function is used. As with QDA, a total of seven models were created. One 

model categorizes all four BSM types together and the other six classify between only two BSM 

types, i.e. “cutmark vs toothmark”). Cross-validation was not performed for the random forest 

models as there is no need for cross-validation to get an unbiased estimate of the training set 

error. This estimate is performed automatically by the random forest algorithm since each tree is 

created with the unused out-of-bag sample from the original data and checked against these data 

points not used in the creation of the decision trees (Genuer, & Poggi 2020). 
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CHAPTER 4 RESULTS 

 

 

4.1) Data Normalization: Histograms 

Histograms were created to identify whether each of the 28 recorded variables were 

normally distributed across all BSM groups. Assessing distribution skewness is important 

because many types of statistical analyses require normally distributed data (data points clustered 

around the mean) to provide accurate results. These histograms were created using the hist() 

function in R Studio version 4.0.2 statistical software. The histograms of almost all measured 

variables indicated non-normal distributions. The only variable with a normal distribution across 

all BSM types is ssk (see Appendix B). Therefore, when distribution normality was an 

assumption of analysis all non-normally distributed variables were log - transformed to normal 

distributions using the log() function in RStudio. 

4.2) Correlation Matrix 

Next, a correlation matrix of the dataset was created to remove all highly correlated 

variables. The correlation matrix created for all measured variables indicates complete 

interdependence between variables Das and Asfc, as well as between SRC Threshold and Y-max 

(see figure 4 below).  The collinearity between Das and Asfc is logical considering Asfc is 

calculated on the same log-log plot as the fractal dimension and Asfc is the section of the slope 

that has the greatest fractal complexity (Brown et al. 2018). Therefore, due to their complete 

codependence with other fractal variables, SRC threshold and Das were removed from analysis 

(see table 4 below).  
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Figure 4: Correlation Matrix of all measured variables. The scale shows the relationship between the colors 
and the degree of correlation between variables. Blue circles indicate a positive collinear relationship and red circles 
a negative relationship. The darker the circle color, the stronger the collinearity.  

 

Table 4: This table displays the strength of the correlation between each variable in relation to Das and 
SRC Threshold. The instances of 100% correlation between variables are highlighted.  

Variable Das SRC Threshold 
Sq 0.65570957 0.75440744 
Ssk 0.11452745 0.09304530 
Sku -0.23643564 -0.26966697 
Sp 0.65960996 0.75764776 
Sv 0.54250225 0.64231623 
Sz 0.60981698 0.71030303 
Sa 0.66601860 0.76400840 
Std 0.12010801 0.13438944 
Sxp 0.57501350 0.66843084 
Vm 0.65554155 0.74280228 
Vv 0.69478548 0.79024302 

Vmp 0.65554155 0.74280228 
Vmc 0.65406541 0.75402340 
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Vvc 0.70923492 0.80314431 
Vvv 0.53846985 0.61827783 

Y_Max 0.97875788 1.00000000 
SRC Threshold 0.97875788 1.00000000 

SRC 0.23087909 0.36592859 
R² -0.35673567 -0.25900990 

Asfc 1.00000000 0.97875788 
Das 1.00000000 0.97875788 

Smfc 0.47661109 0.49519501 
Surface Area -0.08523252 0.01572157 

Volume of Mark 0.26457846 0.37662166 
Maximum Depth 0.56585659 0.66809481 
Maximum Length -0.38085809 -0.36747675 
Maximum Width 0.14555056 0.27721572 

Mean Depth 0.65356136 0.75452745 
 

 

4.3) Variable Selection: Predictor Screening Test 

After removing redundant variables, a predictor screening test was performed to assess 

the importance of each variable for classifying the 4 BSM types (cutmark, trample, toothmark, 

percussion). However, before screening the predictors, the variables y-max, R², std and ssk were 

removed from analysis due to their lack of utility in classification of the BSM types. Once those 

variables were removed, the remaining 22 measurements were further reduced to 11 for   

discriminant analysis by performing predictor screening test in the JMP statistical software. 

Predictor screening analysis examines the contribution of each variable for classifying the BSM 

types. The predictor variables with higher contributions are likely to be important for BSM group 

prediction, while those with low contributions are likely not useful. The resulting table visualizes 

the proportion of the variation in the response attributed to each variable (see figure 5 below). 

Using the proportion of variance as a guide for classification importance, the top 11 variables 

were chosen for discriminant analysis: Maximum Width, Maximum Length, Sp, Asfc, Vmc, 
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Surface Area, Sku, Smfc, Sq, Volume of the mark and SRC. Together these variables make up 

83% of the proportion of variation present in the BSM type groupings.  

bsm_type 

Predictor Contribution Portion  Rank 

Max W Log 24.3916 0.1887  1 

Max L Log 15.9591 0.1235  2 

Sp log 15.5977 0.1207  3 

Asfc Log 12.0094 0.0929  4 

Vmc Log 8.9603 0.0693  5 

Surf Area Log 6.9342 0.0537  6 

Sku log 6.6165 0.0512  7 

Smfc Log 4.6080 0.0357  8 

Sq log 4.5857 0.0355  9 

Volume Log 4.4475 0.0344  10 

SRC Log 3.2678 0.0253  11 

Vm Log 3.1024 0.0240  12 

Sz Log 2.9196 0.0226  13 

Mean D Log 2.8370 0.0220  14 

Sv log 2.8163 0.0218  15 

Vv Log 1.9914 0.0154  16 

Max D Log 1.7223 0.0133  17 

Vvc Log 1.6571 0.0128  18 

Vvv Log 1.3998 0.0108  19 

Sxp Log 1.3297 0.0103  20 

Vmp Log 1.1482 0.0089  21 

Sa Log 0.9379 0.0073  22 

Figure 5: Predictor Screening Table for “BSM Type”. The table visualizes the proportion of the variation in the 
response attributed to each variable. 

 

4.4) Multivariate Analyses Results: Quadratic Discriminant Analyses (QDA) 

Seven different quadratic discriminant models were made using Rstudio v4.0.2. These 

models were created by categorizing the scanned BSM data points into various sub - groupings, 

based on the mark agent (cutmark, trample, toothmark, percussion). Of the seven models created, 

one model discriminates between all four BSM types together and the other six models test the 

discriminatory accuracy between two BSM types each, i.e. “cutmark vs toothmark”, “trample vs 

percussion”, etc. Posterior probabilities are the resulting discriminant scores indicating the 

probability of classifying each mark into one of 4 BSM types based on the variable’s 
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measurements. The BSM type with the largest discriminant score will be the prediction for a 

given mark (Srivastava et al. 2007).  

The results of the LOOCV for all QDA models are displayed below. The accuracy 

percentages indicate the effectiveness of the models in classifying new data not present in the 

original dataset (Molinaro et al. 2005). The confusion matrices created by these seven 

discriminant models recorded a wide range of classification accuracies, depending on how the 

BSM data was subcategorized. Using the fractal and surface roughness variables, discriminant 

model accuracies ranged between 58% when all 4 BSM types are compared to 86% classification 

accuracy when comparing cutmark vs toothmarks and cutmarks vs percussion (see table 5 

below). 

        Table 5: Classification accuracy of all QDA models.  

Model Percent Accurate Classification  

All 4 BSM Types 58% 

Cutmark vs Trample 78% 

Cutmark vs Toothmark 86% 

Cutmark vs Percussion 86% 

Trample vs Toothmark 74% 

Trample vs Percussion 76% 

Toothmark vs Percussion 60% 
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Discriminant Method: Quadratic   

Classification:             BSM_Type                                         

 

Figure 6: QDA Canonical plot showing classification of the 4 BSM types (cutmarks, trample, toothmarks, 
percussion)  

 

 The largest QDA model classifying the scanned BSM of all four taphonomic agents 

together (cutmark, trample, toothmark and percussion) has 58% accuracy in correctly classifying 

the scanned marks by the measured variables with a mean posterior probability of 89.59%. 

Cutmarks have the highest classification accuracy in this model.  A majority of the misclassified 

cutmarks were identified as toothmarks while a a smaller amount were misclassified as trample.  

Similar to cutmarks, the incorrectly categorized trample marks were mainly categorized as 
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toothmarks, however, similar numbers of trample marks were also misclassified as percussion 

and cutmarks. The model struggled to differentiate tooth from percussion marks, with a vast 

majority of toothmark misclassifications attributed to percussion marks. Likewise, a large 

majority of misclassified percussion marks were labeled as toothmarks. Therefore, it appears this 

model struggles to differentiate tooth and percussion marks based on the measured variables (see 

table 6 below).  

Next, the QDA model classifying scanned BSM of cutmarks and trample marks has an 

accuracy of 78% in correctly classifying scanned marks by their measured variables with a mean 

posterior probability of 95.86% (see table 7 below). Thirdly, the QDA model classifying cut and 

toothmarks has the highest classification accuracy of 86% with a mean posterior probability of 

96.78%. Interestingly, this model was able to correctly classify all 25 toothmarks when 

compared to trample marks (see table 8 below). The fourth QDA model classifies cutmarks and 

percussion marks also has an accuracy of 86% with a mean posterior probability of 97.4% for 

correct classifications. Very few of either BSM type were misclassified (see table 9 below). The 

fifth QDA model classifying trample and toothmarks has an accuracy of 74% in correctly 

classifying scanned marks by their measured variables and has a mean posterior probability of 

91.7% for correct classifications. While many trample marks were misclassified as toothmarks in 

this model, toothmarks were rarely misclassified as trample marks (see table 10 below). The 

sixth QDA model classifying scanned BSM of trample and percussion marks has a classification 

accuracy of 76% with a mean posterior probability of 96.7 for correct classifications (see table 

11 below). The final QDA model classifies the scanned BSM of tooth and percussion marks with 

an accuracy of 60% and a mean posterior probability of 93.6 for correct classifications. This 
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model has a lower classification accuracy due to the inability of any of the measured variables, 

except asfc, to differentiate between tooth and percussion marks (see table 12 below).  

Table 6:  All BSM Types Compared 

Actual Predicted Count 

BSM Type Cutmark Trample Toothmark Percussion 

Cut 17 3 5 0 
Trample 3 13 5 4 

Tooth Mark 0 3 15 7 
Percussion 0 5 7 13 

 

Table 7: Cutmark vs Trample            Table 8: Cutmark vs Tooth Mark 

Actual Predicted Count 

 BSM Type Cutmark Trample 

Cutmark 20 5 
Trample 6 19 

           

            

Table 9: Cutmark vs Percussion Marks           Table 10: Trample vs Tooth Marks 

Actual Predicted Count 

BSM Type Cutmark Percussion 

Cutmark 20 5 
Percussion 2 23 

  

Table 11: Trample vs Percussion           Table 12: Toothmarks vs Percussion  

Actual Predicted Count 

BSM Type Trample Percussion 

Trample 20 5 
Percussion 7 18 

  

 

4.5) Random Forest Analysis Results 

Next, seven random forest models were created to compliment the QDA results and 

better discriminate between the BSM by their surface complexity and roughness measurements. 

As with QDA, the random forest models were developed by categorizing the scanned BSM data 

points into sub - groupings based on different combinations of the four taphonomic agents 

Actual Predicted Count 

BSM Type Cutmark Toothmark 

Cutmark 18 7 
Toothmark 0 25 

Actual Predicted Count 

BSM Type Trample Toothmark 

Trample 16 9 
Toothmark 4 21 

Actual Predicted Count 

BSM Type Toothmark Percussion 

Toothmark 17 8 
Percussion 12 13 
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(cutmarks, trample, toothmarks, percussion). The confusion matrices created by these seven 

random forest models record a wide range of classification accuracies, depending on how the 

BSM data was subcategorized. Random Forest model error rates ranged from 48% when all 4 

BSM types are compared to 14% classification accuracy when discriminating between cutmarks 

and percussion as well as between trample and percussion marks (see table 13 below).  

Table 13: This table shows the out-of-bag (OOB) error estimate for each random 
forest model. OOB is an estimate of the error rate that this training approach uses for new 
data from the same distribution. The estimate of error is calculated as the number of 
misclassified marks in the model divided by the total number of classifications (Genuer, 
& Poggi 2020).  

 

Model OOB Estimate Of 
Error Rate 

All BSM Types 48% 

Cutmark vs Trample 42% 
Cutmark vs Toothmark 20% 
Cutmark vs Percussion 14% 

Trample vs Toothmark 26% 

Trample vs Percussion 14% 

Toothmark vs Percussion 28% 
 

 

The largest random forest model classifying the scanned BSM of all four taphonomic 

agents (cutmark, trample, toothmark and percussion) has 48% classification error in classifying 

the scanned marks by their measured variables. The model performed poorly classifying 

cutmarks, being unable to differentiate trample and cutmarks. Conversely, this random forest 

model was able to accurately classify most percussion marks. Similar to the QDA results, the 

model struggles to differentiate percussion and toothmarks, with toothmarks being the BSM type 

most confused for percussion.  Likewise, the model misclassified toothmarks as percussion 



 

54 

 

marks more than any other BSM type. Lastly, of the trample marks misclassified by this model, a 

majority were incorrectly identified as cutmarks (see table 14 below). Indeed, cut and trample 

marks have been shown to be difficult to differentiate in other similar studies.  

 

Figure 7: This plot indicates the percentage of error in classification for all four different BSM types (colored) and 
out-of-bag sample average (black) over the course of the 500 decision trees in the random forest model.  

 

Next, the relative importance of each variable in classifying the data in the random forest  

is evaluated using the importance() function of the randomForest package in R studio. The 

importance() function results in the mean decrease in Gini coefficient. This is a measure of how 

each variable contributes to the uniformity of the decision trees in the random forests. The higher 

the value of the mean decrease Gini score (MDG), the higher the importance of the variable in 

the model (Genuer, & Poggi 2020). For example, in this random forest model, the variable sp is 

the most important in classification (MDG = 9.01), followed by Maximum Length (MDG = 

8.86), then the fractal variable asfc is ranked third in importance (MDG = 8.60), then maximum 
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width (MDG = 8.34), vmc (MDG = 7.07), surface area (MDG = 6.01), sq (MDG = 5.89), volume 

of the mark (MDG = 5.58), sku (MDG = 5.29), smfc (MDG = 5.16) and src in last with a Mean 

Gini Decrease of 4.42.  

Secondly, the random Forest model classifying the scanned BSM of cut and trample 

marks has a classification error rate of 42% in classifying the scanned marks by their measured 

variables (see table 15 below). Therefore, this random forest model is 20% less accurate than the 

QDA in distinguishing between cut and trample marks. For the cutmark vs trample random 

forest model, the variable maximum length is the most important in classification (MDG =3.27), 

followed closely by asfc (MDG = 3.21), then sp (MDG = 2.84), smfc (MDG = 2.17), Maximum 

Width (MDG = 2.13), sku (MDG = 2.03), sq (MDG = 1.96), Volume of mark (MDG = 1.92), 

surface area (MDG = 1.89), vmc (MDG = 1.78) and the least important variable in classification 

being SRC (MDG = 1.28).  

Thirdly, the random forest model classifying scanned BSM of cut and toothmarks has a 

low classification error rate of 20% in correctly classifying scanned marks by their measured 

variables (see table 16 below). Therefore, this random forest model provides a very similar 

classification accuracy to that provided by the QDA model classifying cut and toothmarks. For 

the cutmark vs toothmark random forest model, the variable maximum width is by far the most 

important in classification (MDG =7.18), followed by sq (MDG = 2.58), then Maximum Length 

(MDG = 2.57), vmc (MDG = 2.28), SRC (MDG = 2.19), sp (MDG = 1.71), Volume of the mark 

(MDG = 1.66), surface area (MDG = 1.29), asfc (MDG = 1.20), smfc (MDG = 0.97) and the 

least important variable in classification being sku (MDG = 0.85).  

Fourthly, the random forest model classifying cut and percussion marks has the lowest 

average classification error of 14%. Therefore, this random forest model provides the exact same 
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classification accuracy as the cutmark vs percussion QDA model. For the cutmark vs percussion 

random forest model, the variable maximum length is the most important in classification (MDG 

=4.90), followed by sp (MDG = 3.54), then vmc (MDG = 3.51), sq (MDG = 2.69), maximum 

width (MDG = 2.48), asfc (MDG = 2.12), SRC (MDG = 1.78), surface area (MDG = 0.96), smfc 

(MDG = 0.95), volume of the mark (MDG = 0.91) and the least important variable in 

classification being sku (MDG = 0.67).  

The fifth random forest model classifies between trample and toothmarks and has an 

average classification error rate of 26% in correctly classifying scanned marks by their measured 

variables (see table 18 below). Yet again, this QDA model provides the exact same results as its 

QDA counterpart (see above). For the trample vs toothmark random forest model, the variable 

volume of the mark is the most important in classification (MDG =4.41), followed by maximum 

width (MDG = 3.91), then vmc (MDG = 2.66), surface area (MDG = 2.54), sq (MDG = 2), sp 

(MDG = 1.92), asfc (MDG = 1.90), maximum length (MDG = 1.39), smfc (MDG = 1.364), sku 

(MDG = 1.360) and the least important variable in classification being SRC (MDG = 1.07).  

Next,  random forest model differentiating between trample and percussion marks has an 

accuracy error rate of 14% (see table 19 below). Therefore, this random forest model provides a 

10% increase in classification accuracy compared to the trample vs percussion mark QDA 

model. For the trample vs percussion random forest model, the variable sp is the most important 

in classification (MDG =5.58), followed by asfc (MDG = 3.50), then vmc (MDG = 3.28), sq 

(MDG = 2.57), maximum width (MDG = 2.13), maximum length (MDG = 1.69), sku (MDG = 

1.59), volume of the mark (MDG = 1.27), SRC (MDG = 1.11), smfc (MDG = 0.93) and the least 

important variable in classification being surface area (MDG = 0.86).  
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Lastly, the random forest model classifying between tooth and percussion marks has an 

error rate of 28% in correctly classifying scanned marks by the 11 variable measurements (see 

table 20 below). Therefore, this random forest model provides a 12% increase in classification 

accuracy compared to the toothmark vs percussion mark QDA model. This result is remarkable 

considering the difficulty usually encountered with distinguishing between tooth and percussion 

marks. For the toothmark vs percussion random forest model, the fractal variable asfc is by far 

the most important in classification (MDG = 5.09), followed by maximum length (MDG = 3.66), 

then surface area (MDG = 2.69), sp (MDG = 2.41), SRC (MDG = 2.01), smfc (MDG = 1.61), 

maximum width (MDG = 1.60), volume of the mark (MDG = 1.59), sq (MDG = 1.43), vmc 

(MDG = 1.21) and the least important variable in classification being sku (MDG = 1.20).  

 Table 14: Random Forest Model: All BSM Types Compared 

BSM Type Cutmark Percussion Toothmark Trample Error% 

Cutmark 9 2 4 10 0.64 
Percussion 2 19 3 1 0.24 
Toothmark 3 6 12 4 0.52 

Trample 7 4 2 12 0.52 
 

Table 15: Cutmark vs Trample          Table 16: Cutmark vs Toothmark  

BSM Type Cutmark Trample Error% 
Cutmark 14 11 0.44 
Trample 10 15 0.40 

 

 

Table 17: Cutmark vs Percussion          Table 18: Trample vs Toothmarks 

BSM Type Cutmark Percussion Error% 
Cutmark 21 4 0.16 

Percussion 3 22 0.12 
 

 

Table 19:  Trample vs Percussion           Table 20: Toothmarks vs Percussion 
BSM Type Trample Percussion Error% 

Trample 21 4 0.16 
Percussion 3 22 0.12 

 

BSM Type Cutmark Tooth Error% 
Cutmark 22 3 0.12 

Toothmark 7 18 0.28 

BSM Type Trample Tooth Error% 
Trample 18 7 0.28 

Tooth 6 19 0.24 

BSM Type Tooth Percussion Error% 
Toothmark 19 6 0.24 
Percussion 8 17 0.32 
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CHAPTER 5 DISCUSSION  

 

 

Our ability to inferentially link feeding traces found on fossil bones to specific 

taphonomic actors is critical to reconstructing the ecological and behavioral contexts of hominins 

in archaeological sites (Domínguez-Rodrigo et al. 2012, Pante et al. 2012; 2014, Pobiner et al. 

2015; 2018, Pobiner 2020). The use of optical profilometry and high-resolution 3D scanning 

provides a reliable method for identifying the presence of specific taphonomic actors from their 

feeding traces. This thesis seeks to contribute to this body of work by building upon the 

replicable protocol for collecting and processing metrological data set forth by Pante et al. (2017) 

to identify within-mark fractal characteristics of BSM with which to discriminate between 

taphonomic agents. Future research building upon this dataset could further enhance our 

reconstructions of hominin behavioral ecology during the early Pleistocene when the 

introduction of butchered meat into the hominin diet probably caused biological and behavioral 

adaptions in the genus Homo (Aiello and Wells 2002, Milton 1999; 2003, Antón and Snodgrass 

2012, Wrangham 2017).   

5.1) Interpretation of Results: Multivariate Discriminant Analysis  

The relationship between the fractal parameters and the taphonomic agents creating BSM 

was tested by computing the 100 scanned marks into a QDA model and classifying each mark 

into one of the 4 taphonomic groupings (cutmark, trample, toothmark, percussion) based on the 

11 measured variables. This quadratic discriminant model can classify the BSM type of the 

experimental marks with 58% accuracy. With this low classification accuracy, the results of the 

discriminant model classifying all 4 BSM types do not support H1, which states the fractal 

measurements of mark surface complexity are reflective of the agents creating BSM. Therefore, 
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the “All 4” QDA model supports the null hypothesis (Ho), which states the fractal variables are 

not reflective of the known BSM agents and therefore are not useful in BSM agent classification.  

Examination of the confusion matrix for the discriminate model comparing all 4 BSM 

types (table 4 in the previous chapter) indicates the model struggles to differentiate trample, 

tooth, and percussion marks, but can adeptly distinguish between cut and percussion marks. 

 Most of the incorrect classifications for each BSM grouping are attributed to toothmarks. The 

significant overlap between the Grey Wolf and Lion toothmarks with the other 3 taphonomic 

agents could indicate a high degree of variability in the micromorphology and fractal 

measurements of sampled toothmarks. It is possible the Grey Wolf and Lion toothmarks have a 

large degree of overlap with other taphonomic agents because they produce small tooth pits and 

scratches that can be easily misclassified as percussion and trample marks.  

Sub - grouping the dataset into models discriminating between only pairs of BSM types 

effectively increases the 58% accuracy of the “All 4” QDA model to the 60% - 86% range. The 

increased classification accuracy with the smaller sub - grouped models is probably a result of 

the relative ease of discriminating between only 2 BSM types compared to 4. Additionally, the 

improved classification accuracy of the paired BSM models may indicate the fractal variables are 

best used for BSM discrimination when comparing only two BSM types at a time. Nevertheless, 

the higher accuracies resulting from sub - grouped discriminate models do indicate that the 

metrological measurements used in Pante et al. (2017), when paired with the 3 fractal variables 

Asfc, SRC and Smfc can distinguish between BSM types with average levels of accuracy. 

Therefore, when sub - grouped into pairs, the results support H1.  

The sub - grouped QDA model comparing cut and trample marks by their fractal and 

micromorphological variables provides a classification accuracy of 78%. While not an 
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impressive degree of accuracy, this result is promising when considering these two BSM types 

have been difficult to distinguish in previous studies. In fact, this result is complementary to 

those of Orlikoff et al. (2018), who used 3D microscopy paired with multivariate discriminate 

analysis to acquire an 80% classification accuracy between trample and cutmarks. Conversely, 

while sub - grouping BSM agents to pairwise comparisons does provide a much higher level of 

accuracy compared to the “All 4” model, the data still shows a degree of overlap between cut and 

trample marks (see table 5 in the previous chapter). Examination of the confusion matrix for the 

cut vs trample mark QDA model in the previous chapter indicates the misclassifications could be 

due to the inherent difficulty in differentiating cut from trample marks as both taphonomic agents 

produce long striations on bone surfaces.  

Thirdly, the sub - grouped QDA model comparing cutmarks and carnivore toothmarks by 

their fractal and micromorphological variables provides a classification accuracy of 86% (see 

table 6 in previous chapter). This is an excellent result. As the ability to distinguish between 

these two taphonomic agents by their feeding traces is crucial to understanding hominin behavior 

and carcass acquisition sequences in archaeological sites (Blumenschine & Pobiner 2007). 

However, the results of the cutmark vs toothmark discriminant model are relatively low 

compared to the results of Pante et al. (2017). They use 3D profilometric methods and 

multivariate analyses to discriminate between cutmarks and mammalian carnivore toothmarks 

with 97.5% accuracy. The 11.5% drop in classification accuracy between this thesis and Pante et 

al. (2017) could be due to several factors. Namely, this study did not use the mark profile 

measurements used by Pante et al. (2017) and subsequent studies (Muttart 2017, Keevil 2018, 

Mwakyoma 2021). The profile measurements measure the deepest part of the mark because it 

reflects the greatest amount of force applied to the bone surface, which correlates with 
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taphonomic actor. Most importantly, the profile measurements provide even more useful 

variables with which to distinguish BSM types, including mark depth, area, width, roughness 

(Ra), opening angle and floor radius (Pante et al. 2017). Therefore, it is possible that overall 

classification accuracies could be improved with the inclusion of the profile measurements.  

The sub - grouped QDA model comparing cutmarks and hammerstone percussion marks 

also provides a classification accuracy of 86%. This is another excellent result. Indeed, 

examination of the confusion matrix for the cutmark vs percussion mark model (see table 7 in 

previous chapter) indicates the discriminant model is very adept at classifying between these two 

BSM types. This adequate classification accuracy may be due to the drastic differences in 

morphology between cut and percussion marks. Percussion marks usually occur as pits or 

grooves pressed into a bone's surface by protrusions on the hammerstone’s surface 

(Blumenschine 1988). Whereas cutmarks are usually longer, thin striations running across the 

bone surface. Given the presence of prehistoric hammerstone breakage of long bones in 

archaeological contexts, the high degree of separation between cut and percussion marks is 

crucial for accurately identifying the biological agents responsible for bone modifications.  

The 5th and 6th QDA models compare trample to toothmarks and trample to percussion 

marks by their fractal and micromorphological variables. Both discriminant models produce 

relatively average classification accuracies of 74% and 76% respectively (see tables 8 & 9 in the 

previous chapter). The similarity of these results, as well as the similar classification accuracy 

acquired in the cutmark vs trample model (78%) indicate the 11 variables are able to distinguish 

trample marks from other 3 BSM types an average of 76% of the time when sub - grouped. The 

~24% overlap between trample marks and cut, tooth and percussion marks may be due to the 

inherent variation of trample marks in their fractal and micromorphological measurements. This 
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overlap could be mitigated with a larger sample size capturing the wider range of variation 

inherent to each BSM type, thereby aiding in the diagnostic identification and classification of 

each BSM type.  

Lastly, the QDA model comparing toothmarks and hammerstone percussion marks by 

their fractal and micromorphological variables has the lowest classification accuracy of any of 

the sub - grouped discriminant models at 60%. This low result is disconcerting, but these two 

taphonomic agents have been difficult to differentiate in past studies. For instance, Yravedra et 

al. (2018) used 3D confocal microscopy and multivariate analysis to differentiate hammerstone 

percussion marks and carnivore tooth pits with a classification accuracy of 70%. The 10% 

difference in classification accuracy between this thesis and Yravedra et al. (2018) is probably 

due to the different variables used for agent classification between studies. For this thesis, 

percussion marks were measured using numeric variables (i.e. max length, max width, mean 

depth etc.). Whereas Yravedra et al. (2018) measured percussion marks using 17 coordinate 

landmarks on the exterior and interior surfaces of toothmark and percussion pits. These 

landmarks contain size and shape information of the pit in the form of Cartesian coordinates. 

Ultimately, the low classification accuracies acquired between this thesis and Yravedra et al. 

2018 could be an indication that carnivores produce small tooth pits and scratches that can be 

easily misclassified as percussion marks.  

The classification accuracies reported by the cutmark vs toothmark, cutmark vs 

percussion mark and tooth vs percussion mark discriminant models are comparable to other 

taphonomic studies trying to identify and differentiate BSM types by their micromorphological 

measurements. For example, Blumenschine et al. (1996) use a hand lens and low-power 

microscope to qualitatively differentiate cutmarks from tooth and hammerstone percussion 
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marks. This method provided a 99% classification accuracy when experts are diagnosing a BSM 

type of known origin. Even novices with less than 3 hours of training were able to correctly 

classify BSM types with an accuracy of 86%, the highest classification accuracy produced by 

this study. However, the results of Blumenschine et al. (1996) are qualitative and therefore not 

analogous to this thesis. Reexamination of the replicability and accuracy of using a hand lens to 

model mark morphology found that qualitative descriptions are subjective to the researcher and 

tend to lead to disagreement between researchers (Njau and Blumenschine 2006, James and 

Thompson 2014, Harris et al 2017). Nevertheless, there is a reduction in model accuracy 

reported in this thesis compared to the Bumenschine et al. (1996) study. However, regardless of 

the reduction in model accuracy in this thesis compared to Blumenschine et al. (1996), the 

methodology presented in this study is more objective and replicable even among non-experts. 

Additionally, the relatively higher classification accuracy of the paired QDA and random forest 

models indicates the fractal variables added to the micromorphological measurements already 

presented in Pante et al. (2017) can aid in correct BSM identification for previously difficult 

taphonomic agent comparisons such as cut vs trample marks.   

5.2) Random Forest Analysis 

The random forest models made to complement the discriminant analysis show similar 

results when classifying the scanned marks by their micromorphological and fractal variables. 

Indeed, the random forest model comparing all four BSM types has a high classification error 

rate of 48%, which, like the “All 4” QDA model does not support H1, but does support the null 

hypothesis (Ho). Examination of the confusion matrix for the random forest model comparing all 

4 BSM types (see table 12 in the previous chapter) indicates random forest analysis has more 

difficulty than the comparable “all 4” QDA model in using the measured variables to classify 
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trample and tooth marks. For instance, the “All 4” random forest model is 4% and 12% 

respectively less accurate in distinguishing trample and tooth marks by their measured variables. 

Additionally, the “all 4” random forest model is 32% less accurate when classifying cutmarks. 

This significant drop in accuracy appears to be due to the random forest models’ inability to 

distinguish cutmarks from trample marks (62.5% of cutmark misclassifications are misattributed 

to trample marks). However, the “All 4” random forest model can distinguish percussion marks 

from the other three BSM types with much greater accuracy (31% increase) than the “all 4” 

QDA model. This drastic classification increase between statistical methods is peculiar but is 

probably just due to the different calculations each type of analysis entails.  

The inability of random forest machine learning to distinguish between cut and trample 

marks carries over to the sub - grouped models. Indeed, the only model to show a significant 

drop in classification accuracy from QDA to random forest analysis is the cutmark vs trample 

mark random forest model which resulted in a 42% error rate for classification. As stated above, 

this high classification error rate could be due to the inherent difficulty in differentiating cut from 

trample marks. Therefore, the higher classification error indicates that the random forest model is 

not as adept at distinguishing cut and trample marks as the parallel discriminant models.  

Regardless, most of the sub - grouped random forest models result in classification 

accuracies which support the results of the sub - grouped QDA models. For instance, when BSM 

types are sub - grouped into models classifying marks between only two BSM groupings at a 

time, the classification error decreases to the 28% – 14% range (excluding the cutmark vs 

trample model). Indeed, the classification accuracy/error rate is exactly the same between the 

QDA and random forest models comparing cut vs percussion marks (both 86% accurate) and 

trample vs toothmarks (both 74% accurate). Additionally, both random forest analysis and QDA 
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show small classification disagreement (within 6%) for the models comparing all 4 BSM types 

(QDA =58% accuracy, RF = 52% accuracy) and cut vs toothmark models (QDA = 86%, RF= 

80% accurate). The strikingly similar classification accuracies between the QDA and random 

forest models are encouraging, as it verifies the veracity of the QDA results which generally 

support H1.  

Lastly, the trample vs percussion mark and tooth vs percussion mark random forest 

models show a significant difference (>10%)  with their QDA counterparts.  In both cases, the 

random forest shows a higher degree of competence in classifying the BSM by the 11 

micromorphological and fractal variables. It is likely the large increase in classification accuracy 

is due to the random forest being more adept at classifying percussion marks. Interestingly, the 

results of the tooth vs percussion mark random forest model are even more similar to the results 

of Yravedra et al. (2018) than the sub - grouped QDA model. As stated above, they found that 

70% of their sample of percussion marks could be statistically differentiated from carnivore 

toothmarks. This accuracy may be relatively average, but it is comparable to the 72% accuracy in 

distinguishing tooth from percussion marks in the random forest model of this study. Ultimately, 

the sub - grouped random forest machine learning models classifying experimental marks by 

their 11 measured variables agrees with the QDA results and mostly supports H1. 

5.3) Limitations of Study 

This study relied on the ability of multivariate discriminant and random forest machine 

learning models to classify BSM into specific taphonomic groupings by their 

micromorphological and fractal measurements. The accuracy levels achieved by the discriminant 

and random forest models were relatively average, and low compared to Blumenschine et al. 

(1996) and Pante et al. (2017). Efforts to achieve higher classification accuracies were hampered 
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by a few factors, namely the sample size of the dataset, (maybe) the use of molds, and the 

magnification used to measure within-mark fractality. Indeed, the models in the study had a 

small sample size (n=100 and n=50 for paired models), which is inadequate to train a statistical 

classifier. Likewise, the use of molds may have influenced the accurate identification of 

taphonomic effectors from trace mark morphology and fractal measurements. All 100 

experimental BSM of known origin were molded to expedite the scanning process. Molds speed 

up data collection by having a much less reflective surface compared to bone. Less surface 

reflectivity requires fewer scanning attempts to acquire a competent scan. Fortunately, the 

replication of BSM micromorphology using molding has previously been shown to provide an 

accurate representation of the original surface and resulting marks (Bello 2011). Furthermore, 

using the quantitative scanning methodology outlined by Pante et al. (2017), Muttart (2017) 

compared the morphology of BSM on the original bone surface to its molded copy and found no 

statistical differences. Therefore, it is safe to assume that molded BSM provides an accurate 

representation of the marks and does not influence the classifications of the feeding traces in this 

thesis. Lastly, the use of 3 marks from each bone specimen may have biased the sample, future 

BSM studies should only collect a single mark from each bone specimen to completely eliminate 

bias from a single bone specimen.  

 However, the critical limitation of this study is the use of 5x magnification during data 

collection. A 5x objective on the s-neox was used because increasing the objective means 

drastically increasing the scan time per mark and it isn’t feasible to scan an entire mark at higher 

magnifications. Additionally, 5x objective was used so the results of this thesis can be 

comparable to other studies in the 3D imaging and analysis laboratory at Colorado State 

University which also used a 5x objective. However, when comparing the results of this thesis to 
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analogous studies using SSFA to differentiate diet from microwear or behavior from stone tool 

use wear, it is clear other authors used much higher magnifications between 10x and 200x to 

distinguish surfaces by their fractal measurements (Stemp & Stemp 2001; 2003, Ungar et al. 

2003, Scott et al. 2005, Stemp et al. 2008, Stemp et al. 2009, Stemp et al. 2010, Merceron et al. 

2010, Lesnik 2011, Scott 2012, Stemp et al. 2013; 2014, Krueger 2015, Watson & Gleason 2016, 

Ranjitkar et al. 2017). The reasons for using the higher magnifications are usually given as 

needed to reach the scales at which the fractal dimension is active and thus where surfaces can be 

differentiated using fractal variables. Therefore, it is likely that the 5x objective used in this 

study is too low a magnification to adequately detect the fractal dimension and thereby 

differentiate BSM types by their fractal measurements.  

This conclusion is supported by the fact that while ideal mathematical fractals display 

scale-free properties over all possible scales, real-world fractals are scale-free only over a limited 

range of scales (Jeslnik 2005, Brown 2005). For instance, Stemp et al. 2013 found that accurate 

discrimination of microwear on the surface of quartzite scrapers depends on the scale being used 

for analysis. They use two different objectives (50x and 100x) to distinguish between two types 

of quartzite scrapers used on fresh and dry deer hide. Fresh hide scrapers were discriminated 

from the dry hide scrapers at lower magnifications (50x), whereas the unused surfaces of the 

scrapers made from different types of quartzite were successfully discriminated with 100x 

magnification. Therefore, indicating the fractal behavior of stone tools were material and use-

dependent. Furthermore, Stemp et al. (2013) state the ability to discriminate between the 

quartzite scrapers becomes increasingly possible as the scale of measurement decreases (and 

magnification increases). At the finest scales (10−1 μm2), surface roughness can be 

discriminated with measurable differences between tools used on dry hide when compared to 
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those used on fresh hide, as well as for each of the two quartzite tools used on the same contact 

material.  

Therefore, it is possible that higher classification accuracies could be obtained by 

increasing the magnification used for data collection. However, increasing the objective presents 

more methodological problems. Namely, raising the objective from 5x to 20x or higher would 

exponentially increase the time needed to scan the entirety of each individual mark. Unlike 

analogous studies of stone tool use-wear and teeth microwear, which only scan a relatively small, 

contained area of a tooth or stone tool, 3D BSM studies require scans of entire marks which are 

considerably larger in size and require more time to completely scan at high magnifications. It 

may be possible to bypass this issue by taking a single fractal measurement from a single part of 

each mark, however, there is the prospect that different parts of the same mark have different 

readings for the same fractal measurement, thereby making comparisons of fractal measurements 

between multiple marks very difficult. These questions can only be answered with future 

research and experimentation.  

5.4) Future Research Prospects 

Based on the limitations of this thesis and the results obtained, there are many related 

areas of study that require further investigation to provide a methodology that produces more 

accurate classifications of BSM agents. Methodologically, optical profilometry has the potential 

to develop into a more reliable quantitative method for studying BSMs. Its potential in 

diagnosing tool effectors from trace marks can even be applied to taphonomic studies of fossil 

assemblages in sites where there are no associated artifacts or known taphonomic agents such as 

Dikika, Ethiopia (McPherron et al. 2011). To achieve a higher degree of classification accuracy, 

there is a need for further inter-analyst studies dedicated to improving optical profilometry 
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measurement and analysis protocols (Pante et al. 2017). Additionally, the creation of a much 

larger experimental BSM database would provide an adequate dataset to train a statistical 

classifier. Lastly, for SSFA to be successfully used to classify BSM types, a higher objective is 

probably needed, however, this would require more time devoted to data collection on the part of 

the researcher to scan each mark. While this method could be laboriously time-consuming, it 

could lead to a more informed understanding of early hominin subsistence strategies.  
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CHAPTER 6 CONCLUSION 

 

This thesis describes the first study to use confocal microscopy paired with Scale-

Sensitive Fractal Analysis (SSFA) to differentiate bone surface modifications (BSM) by their 

micromorphological and fractal measurements. The methodology used in this study expands 

upon previous work by Pante et al. (2017) which quantitatively characterizes BSM 

micromorphology according to a replicable protocol. The results provide detailed information 

regarding the relationship between within–mark surface complexity and the taphonomic agents 

creating the marks. Ultimately, the full potential of pairing SSFA and 3D microscopy to classify 

BSM agents can only be realized through future research building upon this dataset. Further 

development of the methodology used in this study could provide a more accurate identification 

of taphonomic agents from their resulting feeding traces in archaeological contexts. Creating 

stronger inferential connections between the marks found on fossilized bone surfaces to the 

taphonomic actors creating said marks would provide a more holistic understanding of the 

behavioral and ecological context within which our hominin ancestors operated when acquiring 

carcass resources. This study internalized this perspective by modeling the measurable fractal 

features of BSM experimentally created by known actors in the present to shed light on 

analogous prehistoric hominin butchery behavior.   

Although this study was limited by sample size and the scale of observation, the results of 

both the QDA and random forest models demonstrate 3D microscopy paired with SSFA can be 

applicable to the identification of taphonomic effectors from their feeding traces. However, the 

degree of accuracy provided by this methodology depends upon the manner in which the BSM 

types are sub - grouped and compared. For instance, the quadratic discriminant and random 

forest model classifying cut, tooth, trample and percussion marks together results in low 
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classification accuracies between 52% - 58%, therefore supporting the null hypothesis (Ho). 

Conversely, sub - grouping the dataset into models discriminating between only pairs of BSM 

types (i.e., cutmark vs trample mark) increases the classification accuracy of the QDA and 

random forest models to the 60% - 86% range. The improved classification accuracy of the 

paired BSM models may indicate comparisons between feeding traces of different taphonomic 

agents should only be conducted between two BSM types at a time. Nevertheless, the higher 

accuracies resulting from sub - grouped discriminate and random forest models indicate the 

metrological measurements used in Pante et al. (2017), when paired with the 3 fractal variables 

asfc, SRC and smfc can distinguish between BSM types with average to high levels of accuracy. 

Therefore, when sub - grouped into pairs, the QDA and random forest results support H1, which 

states the fractal measurements of mark surface complexity are reflective of the actors creating 

BSM.  

This thesis creates a new avenue for understanding the subsistence strategies of early 

hominins through the development of a new method for distinguishing hominin from non-

hominin taphonomic traces. Indeed, the ability to distinguish hominin-induced cutmarks from 

other taphonomic traces is the foundational component of taphonomic inferential hierarchies 

used by archaeologists to understand hominin behavioral ecology (Blumenschine et al. 1988, 

Gifford Gonzalez 1991, Blumenschine et al. 1994; 1996, Pante et al. 2012; 2014, Merrit et al. 

2019). The confusion resulting from qualitative mark mimicry has been addressed through the 

use of confocal microscopy (Archer and Braun, 2013; Pante et al., 2017; Otárolla-Castillo et al. 

2017; Gümrükçu and Pante, 2018) and statistical approaches capable of differentiating between 

BSM actors based on standardized ‘archetype’ marks by using 3D scanning equipment, and the 

statistical evaluation of overlap between mark types using 3D morphometrics (Bello et al 2008; 
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2009; 2011, Boschin and Crezzini 2012, Pante et al. 2017, Yrevedra et al 2018, Meijer et al. 

2019, Francisco et al. 2020). This thesis has striven to build upon this body of work by utilizing 

the ability of fractals to mathematically describe and document irregular shapes at multiple 

scales to distinguish taphonomic agents. Indeed, even with the low 5x objective, the fractal 

variables assisted in discriminating between taphonomic agents (particularly cutmarks and 

trample marks), therefore highlighting the applicability of using high-resolution scanning to 

accurately model and interpret the fractal and micromorphological features of BSM. This point is 

crucial because developing an objective and standardized method of differentiating feeding 

traces provides a platform for more scientific, i.e. testable assumptions about hominin behavior 

in archeological sites.  

Future research should seek to expand upon this research by increasing the sample size of 

all BSM types to where the dataset can be considered a statistical classifier. Additionally, future 

studies using SSFA to distinguish BSM types should increase the objective used for data 

collection to the 20x-100x range where within-mark fractal characteristics can distinguish 

between the worn surfaces of BSM left by different taphonomic agents. These measures would 

provide higher accuracies in agent classification and allows for a more holistic understanding of 

how and when early homo used stone tools for meat procurement. This dietary shift toward 

partial carnivory is considered by many paleoanthropologists as a key milestone in human 

evolution due to possibly enabling the emergence of adaptations associated with our genus 

(Aiello and Wells 2002, Milton 1999; 2003, Antón and Snodgrass 2012, Wrangham 2017). 

Therefore, this thesis strove to make a small contribution to our understanding of hominin 

behavioral and biological evolution.  
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APPENDIX A- TABLE OF EXPERIMENTSL BSM SAMPLE 

 

Picture ID Bone BSM Type Mark Position Location 

1 CM1 Femur Cutmark Anterior Midshaft KTBM 2 (KW - 02) 

2 CM2 Femur Cutmark Medial Midshaft KTBM 2 (KW - 02) 

3 CM3 MarkA Radius Cutmark Anterior/Distal KTBM 2 (KW - 02) 

3 CM3 MarkB Radius Cutmark Anterior/Distal KTBM 2 (KW - 02) 

3 CM3 MarkC Radius Cutmark Anterior/Distal KTBM 2 (KW - 02) 

4 CM4 Ulna Cutmark Anterior/Proximal KTBM 2 (KW - 02) 

5 CM5 Humerus Cutmark Medial/Proximal KTBM 2 (KW - 02) 

6 CM6 Tibia Cutmark Medio-proximal midshaft KTBM 2 (KW - 02) 

9 CM9 Femur Cutmark Medio - Proximal midshaft KTBM 2 (KW - 02) 

12 CM12 MarkA Radius Cutmark Anterior Midshaft KTBM 2 (KW - 02) 

12 CM12 MarkB Radius Cutmark Anterior Midshaft KTBM 2 (KW - 02) 

13 CM13 Humerus Cutmark Dorsal and Distal KTBM 2 (KW - 02) 

15 CM15 Femur Cutmark Located Medially on Shaft KPTBM1 

16 CM16 Long Bone Frag. Cutmark NA TLK MA Thesis Cutmarks 2 

17 CM17 MarkA Long Bone Frag. Cutmark NA TLK MA Thesis Cutmarks 2 

17 CM17 MarkB Long Bone Frag. Cutmark NA TLK MA Thesis Cutmarks 2 

17 CM17 MarkC Long Bone Frag. Cutmark NA TLK MA Thesis Cutmarks 2 

18 CM18 Long Bone Frag. Cutmark NA TLK MA Thesis Cutmarks 2 

19 CM19 MarkA Long Bone Frag. Cutmark NA TLK MA Thesis Cutmarks 2 

19 CM19 MarkB Long Bone Frag. Cutmark NA TLK MA Thesis Cutmarks 2 

20 CM20 MarkA Long Bone Frag. Cutmark NA TLK MA Thesis Cutmarks 2 

20 CM20 MarkB Long Bone Frag. Cutmark NA TLK MA Thesis Cutmarks 2 

20 CM20 MarkC Long Bone Frag. Cutmark NA TLK MA Thesis Cutmarks 2 

21 CM21 Long Bone Frag. Cutmark NA TLK MA Thesis Cutmarks 2 

25 CM25 Long Bone Frag. Cutmark NA TLK MA Thesis Cutmarks 2 

29.5 TRM4 MarkA Long Bone Frag. Trample NA ERO-R1 

29.5 TRM4 MarkB Long Bone Frag. Trample NA ERO-R1 

29 TRM4 MarkC Long Bone Frag. Trample NA ERO Sand 13 - 34 

30 TRM5 MarkA Long Bone Frag. Trample NA ERO Sand 13 - 34 

30 TRM5 MarkB Long Bone Frag. Trample NA ERO Sand 13 - 34 

32 TRM7 MarkA Long Bone Frag. Trample NA ERO Sand 13 - 34 

32 TRM7 MarkB Long Bone Frag. Trample NA ERO Sand 13 - 34 

32 TRM7 MarkC Long Bone Frag. Trample NA ERO Sand 13 - 34 

34 TRM9 MarkA Long Bone Frag. Trample NA ERO Sand 13 - 34 

34 TRM9 MarkB Long Bone Frag. Trample NA ERO Sand 13 - 34 

34 TRM9 Mark C Long Bone Frag. Trample NA ERO Sand 13 - 34 
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38 TRM13 MarkA Long Bone Frag. Trample NA ERO Gravel 12 

38 TRM13 MarkB Long Bone Frag. Trample NA ERO Gravel 12 

39 TRM14 MarkA Long Bone Frag. Trample NA ERO Gravel 12 

39 TRM14 MarkB Long Bone Frag. Trample NA ERO Gravel 12 

40 TRM15 MarkA Long Bone Frag. Trample NA ERO Gravel 12 

40.5 TRM15 MarkB Long Bone Frag. Trample NA ERO-R1 

43 TRM18 MarkA Long Bone Frag. Trample NA ERO-R1 

43 TRM18 MarkB Long Bone Frag. Trample NA ERO-R1 

43 TRM18 MarkC Long Bone Frag. Trample NA ERO-R1 

44 TRM19 Long Bone Frag. Trample NA ERO-R1 

45 TRM20 Long Bone Frag. Trample NA ERO Gravel 12 

47 TRM22 Long Bone Frag. Trample NA ERO Gravel 12 

48 TRM22 Long Bone Frag. Trample NA ERO-R1 

50 TRM25 Long Bone Frag. Trample NA ERO R1 

53 TOM3 MarkA Humerus Toothmark Anterior Midshaft MVM SHTM 

53 TOM3 MarkB Humerus Toothmark Anterior Midshaft MVM SHTM 

54 TOM4 Femur Toothmark Anterior Midshaft MVM SHTM 

55 TOM5 MarkA Long Bone Frag. Toothmark NA MVM SHTM 

55 TOM5 MarkB Long Bone Frag. Toothmark NA MVM SHTM 

55 TOM5 MarkC Long Bone Frag. Toothmark NA MVM SHTM 

62 TOM12 Humerus Toothmark Face of Humeral Head MG Wolf 

63 TOM13 Humerus Toothmark Anterior/ Proximal Epiohyses MG Wolf 

64 TOM14 MarkA Rib Toothmark Dorsal/Distal Surface MG Wolf 

64 TOM14 MarkB Rib Toothmark Dorsal/Distal Surface MG Wolf 

65 TOM15 Rib Toothmark Anterior/Distal MG Wolf 

67 TOM17 MarkA Rib Toothmark Dorsal/Distal Surface MG Wolf 

67 TOM17 MarkB Rib Toothmark Dorsal/Distal Surface MG Wolf 

67 TOM17 MarkC Rib Toothmark Dorsal/Distal Surface MG Wolf 

68 TOM18 Rib Toothmark Anterior/Distal MG Wolf 

69 TOM19 Rib Toothmark Dorsal/Medial MG Wolf 

70 TOM20 MarkA Rib Toothmark Anterior face/ Medial MG Wolf 

70 TOM20 MarkB Rib Toothmark Anterior face/ Medial MG Wolf 

70 TOM20 MarkC Rib Toothmark Anterior face/ Medial MG Wolf 

71 TOM21 Rib Toothmark Anterior/Distal MG Wolf 

74 TOM24 MarkA Rib Frag. Toothmark Dorsal Face MG Wolf 

74 TOM24 MarkB Rib Frag. Toothmark Dorsal Face MG Wolf 

75 TOM25 Rib Frag. Toothmark NA MG Wolf 

75 TOM25 Rib Frag. Toothmark NA MG Wolf 

75 TOM25 Rib Frag. Toothmark NA MG Wolf 

76 PM1 Long Bone Frag. Percussion NA AMT 35 - L6, L7 

77 PM2 MarkA Long Bone Frag. Percussion Anterior face/ Near Head AMT 35 - L6, L7 
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77 PM2 MarkB Long Bone Frag. Percussion Anterior face/ Near Head AMT 35 - L6,L7 

80 PM5 Long Bone Frag. Percussion NA AMT 37 - 6 

82 PM7 MarkA Long Bone Frag. Percussion NA AMT 35 - L6,L7 

82 PM7 MarkB Long Bone Frag. Percussion NA AMT 35 - L6,L7 

84 PM9 MarkA Long Bone Frag. Percussion NA AMT 37 - L6 

84 PM9 MarkB Long Bone Frag. Percussion NA AMT  37 - L6 

84 PM9 MarkC Long Bone Frag. Percussion NA AMT 37 - L6 

86 PM11 MarkA Long Bone Frag. Percussion NA AMT 35 - 3 

86 PM11 MarkC Long Bone Frag. Percussion NA AMT 35 - 3 

87 PM12 Long Bone Frag. Percussion NA AMT 37 - L3,L4 

88 PM13 MarkA Long Bone Frag. Percussion Anterior Midshaft AMT 37 - L3,L4 

88 PM13 MarkB Long Bone Frag. Percussion Anterior Midshaft AMT 37 - L3,L4 

88 PM13 MarkC Long Bone Frag. Percussion Anterior Midshaft AMT 37 - L3,L4 

90 PM15 Long Bone Frag. Percussion NA AMT 37 - L3,L4 

91 PM16 Long Bone Frag. Percussion Anterior Midshaft AMT 35 - L5 

92 PM17 Long Bone Frag. Percussion NA AMT 35 - L5 

93 PM18 MarkA Long Bone Frag. Percussion NA AMT 35 - L5 

93 PM18 MarkB Long Bone Frag. Percussion NA AMT 35 - L5 

94 PM19 Long Bone Frag. Percussion NA AMT 35 - L5 

96 PM21 MarkA Long Bone Frag. Percussion NA AMT 37 - L5 

96 PM21 MarkC Long Bone Frag. Percussion NA AMT 37 - L5 

98 PM23 MarkA Long Bone Frag. Percussion Along fracture Edge AMT 35 - L3 

98 PM23 MarkB Long Bone Frag. Percussion Along fracture Edge AMT 35 - L3 
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APPENDIX B - HISTOGRAM DISTRIBUTIONS OF UNIVARIATE BSM DATA 

 

 

Figure B.1) Histogram of Sq measurements across all BSM types. 
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Figure B.2) Histogram of Ssk measurements across all BSM types. 

 

 

Figure B.3) Histogram of Sku measurements across all BSM types. 
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Figure B.4) Histogram of Sp measurements across all BSM types. 

 

Figure B.5) Histogram of Sv measurements across all BSM types. 

 

 

Figure B.6) Histogram of Sz measurements across all BSM types. 
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Figure B.7) Histogram of Sa measurements across all BSM types. 

 

 

Figure B.8) Histogram of Std measurements across all BSM types. 
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Figure B.9) Histogram of Sxp measurements across all BSM types. 

 

 

Figure B.10) Histogram of Vm measurements across all BSM types. 
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Figure B.11) Histogram of Vv measurements across all BSM types. 

 

 

Figure B.12) Histogram of Vmp measurements across all BSM types. 
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Figure B.13) Histogram of Vmc measurements across all BSM types. 

 

 

Figure B.14) Histogram of Vvc measurements across all BSM types. 
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Figure B.15) Histogram of Vvv measurements across all BSM types. 

 

 

Figure B.16) Histogram of Y Max measurements across all BSM types. 
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Figure B.17) Histogram of SRC Threshold measurements across all BSM types. 

 

 

Figure B.18) Histogram of SRC measurements across all BSM types. 

 



 

96 

 

 

Figure B.19) Histogram of R-Squared measurements across all BSM types. 

 

 

Figure B.20) Histogram of Asfc measurements across all BSM types. 
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Figure B.21) Histogram of Das measurements across all BSM types. 

 

 

Figure B.22) Histogram of Smfc measurements across all BSM types. 
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Figure B.23) Histogram of Surface Area (3D) measurements across all BSM types. 

 

 

Figure B.24) Histogram of Volume of Mark (3D) measurements across all BSM types. 
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Figure B.25) Histogram of Max Depth (3D) measurements across all BSM types. 

 

 

Figure B.26) Histogram of Max Width (3D) measurements across all BSM types. 
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Figure B.27) Histogram of Mean Depth (3D) measurements across all BSM types. 

 

 

Figure B.28) Histogram of Max Length (3D) measurements across all BSM types. 

 


