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ARMA models mainly because noncausal models are more natural
choices for many applications. In [5], [6] it is indicated that non­
causal processes can be described by descriptor systems. Recursive
processing of I-D and 2-D noncausal systems is reported in [7]. In
[8], 2-D spectrum estimation using noncausal models is presented.
In [9], a technique for modeling and recursive state estimation for
2-D noncausal filters was proposed. Identification and restoration of
images degraded by symmetric noncausal blur is treated in [10].

Perhaps the most natural way of dealing with noncausal discrete
time models is through the descriptor form [5], [6]. The main goal
of this brief is to develop a scheme using descriptor approach to
represent an image modeled by a vector AR process with a noncausal
ROS. The Kronecker canonical form decomposition is then applied
to this descriptor system yielding two subsystems which perform
equivalent to the original system. These subsystems may then be
used to develop a Kalman filter for image restoration applications.

II. MODELING OF IMAGE AND DEGRADATION

PROCESSES IN DESCRIPTOR FORM

Consider an N x N image which is scanned horizontally in
strips of width W. It is assumed that the image is column wide­
sense stationary [4] within each strip. Let Z (k) denote the k-th,
k E [0,N - 1], image vector of size W in the i-th strip, i.e.,

Z(k) = [Z(i-l)W,b Z(i-l)W+l,k'" ZiW_l,k]T

where Zm,n represents the intensity value of the original image at
location (m, n) and the superscript T denotes matrix transposition.
Assume that the image process is modeled by' a minimum variance
representation (MVR) AR noncausal process of order p,

Z(k) =if>J Z(k - p) + ... + if>fZ(k - 1)
(I)

+ if>:lZ(k + 1) + ... + if>:pZ(k + p) + U(k)

where <I>_p, if>-p+l,'" e, are constant W x W autoregressive
parameter matrices. The ROS of this model is shown in Fig. 1.

The vector U(k) is a W x 1 zero mean noise vector driving the AR
process. The necessary and sufficient conditions for the covariance
matrix Qu := E[U(k)UT(k)] to be minimum is that the orthogonal
property, E[U(k -l)ZT(k)] = Quo(l), holds for IE [-p,p]. This
orthogonality principle leads to the following normal equations

pr = Pr-p<I>p+" '+pr-l if>1+pr+l if>-l + .. '+Pr+pif>-p+Quo(r)
(2)

for r = -p, .. ·,-I,O,I, .. ·,p, where pr := E[Z(k - r)ZT(k)]
which can be solved to yield the AR parameter matrices. Note that
p-r = p;.

Fig. 1. ROS of noncausal model.
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I. INTRODUCTION

The problem of image modeling involves fitting an appropriate
autoregressive (AR) or autoregressive moving average (ARMA)
model to the image data. Unlike most I-D signals that are typically
time dependent, images are defined in spatial coordinates and thus
causality is not a rigid requirement for the physical realizability of
the image model. In fact, the region of support (ROS) of an image
model can be causal, semicausal, or noncausalleading to initial value,
initial-boundary value, or boundary-value problems [I], respectively.

In almost all the previous treatments [2]-[4], causal ROS was
mainly used. However, by using causal models, typically close to
half of the adjoining pixels in the ROS were ignored in the process
of modeling. On the other hand, in noncausal modeling, correlational
information is extracted from as many pixels surrounding a given
pixel as possible and thus the correlations of a particular pixel with all
spatially close pixels are reflected in the model. Therefore, one would
expect that noncausal models provide better representation than the
causal ones. This naturally leads to a more accurate filtering operation.

Until very recently image modeling and restoration using noncausal
image and blur modeling was not fully investigated in the literature.
However, recently there has been some interest in noncausal AR and
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Abstract-«The problems of noncausal image modeling and subsequent
image estimation are considered in tbis brief. The noncausal vector
autoregressive (AR) model for the image process is arranged into a
descriptor system. This system is then decomposed into backward and
forward stable subsystems. The resulting subsystems are utilized to derive
a Kalman filter by solvingsome types of discrete time algebraic Liapunov
equations. A numerical example for noncausal image modeling is also
presented.

1057-7130195$04.00 © 1995 IEEE



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 42, NO.8, AUGUST 1995 537

It should be noted that in contrary to the causal AR models which
are driven by white noise process, noncausal MVR models are driven
by colored noise process [1], This can be shown by multiplyisg both
sides of (1) by U(k - I) and taking expectation, which yields

p

E[U(k _l)UT (k)) = Qu{8(/) - L if>;8(l- in·
i=-p
;#0

This implies that U(k) is a colored process since E[U(k ­
I)UT(k)) =j: 0 for I E [-p,p), I =j: O.

where H [H 0 ]. In the state estimation for (7) the
boundary conditions X(O) and X(N - 1) are needed
and can be taken to be [yT(O) ... y(2p)T,Of and
[yT(N-1-2p) .. , y(N-1f,Of where y(0),· .. ,y(2p)
and y(N - 1 - 2p),"" y(N - 1) are the first and last (2p + 1)
columns of the strip under consideration.

To develop state estimator for system (7) it is useful to transform
the system into two stable subsystems using the Kronecker canonical
form as described next.

(9a)

(9b)
Xb(k) = AbXb(k + 1) - Bbw(k)

y(k) = HbXb(k) + vb(k).

Xf(k + 1) = AfXf(k) + Bfw(k)

y(k) = HfXf(k) +vf(k)

and

2) Stable Forward-Backward Decomposition

Descriptor systems in general are not stable. In digital applications
of descriptor systems it is necessary to decompose them into stable
subsystems. This can be established as in the following theorem.

Theorem 1 [10J: Let E, A E lR n x n
, then there are two nonsin-

gular real matrices P and Q such that PEQ = [101 1b] and

PAQ = [AD' I~2] where nl, n2 ~ 0, ni + n2 = n, and Af and

Ab are stable matrices.
Note that if IzE - AI has no zeros on the unit circle, then the

matrices Af and Ab in Theorem 1 are strictly stable. Applying this
decomposition to the system (7) yields

Note that the measurement noise in the forward and backward
subsystems (9a) and (9b) are vf(k) = HbXb(k)+v(k) and vb(k) =
HfXf(k) + v(k), respectively, which are colored.

The following example illustrates how a noncausal vector model
can be decomposed into stable forward-backward subsystems using
the method developed in this paper.

Example: Let us consider a zero-mean stationary image with
autocorrelation function TzU,/) = E[Z;-j,k-1Z;,k] = pljl+111, where
Ipl < 1. This image is to be represented by a first-order noncausal
vector AR model with W = 2. The parameter matrices can be
determined by solving the following normal equations for T =
-1,0,1

Xf(k + 1) = AfXf(k) +Bfw(k)

Xb(k) = AbXb(k + 1) - BbW(k) (8)

y(k) = HfXf(k) + HbXb(k) + v(k)

where [~~i~n := Q-IX(k), [~~] := PB and [Hf Hb]:=

HQ.
This system is equivalent to the following forward and backward

subsystems, respectively, propagating in opposite directions:

pr = pr-I if> I + pr+1 if> I + Qu8(T)
(7)

(6)

(5)

(4a)

EX(k + 1) = AX(k) + Bw(k)

y(k) = HX(k) + v(k)

V(k + 1) = AaV(k) + Baw(k)

U(k) = c,V(k)

where w(k) is a zero mean white vector process and A a , B a and
C; are matrices of appropriate dimensions. Augmenting this system
with system (4a) yields

EX(k + 1) = AX(k) + Bw(k)

Z(k) = CX(k)

where X(k) := [~i~jl A := [~ fJA~al E ,- [~ ~l

B := [;a ] and C := [G 0].

The degradation due to a full-plane blur [9]and additive white
Gaussian noise can be modeled as y(k) = HX(k) + v(k), where
{v (k )} is zero mean white process and H consists of the elements
of the point spread function (PSF) of the full-plane blur. Combining
the image and degradation processes gives the following descriptor
system

1) Descriptor State-Space Model

The noncausal vector AR model in (1) can be transformed into a
descriptor system using the following local state vector

X(k) = [xp(kl, .. ·,xf(k), x5(k), x::I(k), ... ,x::p(k)f (3)

where x;(k) = Z(k - i) for i = -p,'" ,po This state assignment
yields the following "descriptor" or "singular" system [5], [6]

EX(k + 1) = AX(k) + fJU(k)

xo(k) = Z(k) = GX(k)

where (see (4b) below). G = [0 ... 0 Iw 0 ... 0) and
fJ = [0 0 ... 0 Iw ]T. Note that E and A are (2p + l)W x
(2p + l)W matrices with E being singular of rank 2p x W and
fJT and G are W x (2p + l)W matrices. It can be shown [10]
that the vector AR model (1) and the descriptor system (4a) have
the same transfer function matrix. A by-product of this result is that
the pencil zE - A is regular [11], since from (1) the determinant
IzE - AI =j: o. It can be shown that pW zeros of this polynomial
p(z) = IzE - AI = 0 are inside the unit circle while the other pW
zeros are outside the unit circle.

Although U(k) in (4a) is not white, it can be modeled by a finite
dimensional linear system [12] driven by a white process as

E= (~~...~~ .. ::: ...~ ... ~),
o 0 , .. Iw 0
o 0 ... 0 0

A= (.~,.,.~~ ~~ ~ ~.)
o 0 0 Iw

if>J if>J-I -Iw '" if>~p

(4b)
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where pr := E[Z(k-r)ZT (k)] and Z(k) = [Z2i-2,k, Z2i-1,kf, i.e.,

EX(k + 1) = AX(k) + BU(k)

Z(k) = CX(k)

where U(k) = [U2i-2,k,U2i-1,kf. Note that this vector model is
equivalent to two I-D models driven by colored noise. Arranging
this model into a descriptor system gives

1+p2 0
~

1+ 20 P+ _p(l+g2) U(k)
01-p

_p(1+p2)
0 ----r=pr-

Z(k) = [5 0] - [p 0 0 ~]Xb(k)~ Xf(k) + 0 p 0

[~ [lU ¥ ]U(k)Xf(k + 1) = ~]Xf(k)+ ~

r~
o 0 0]

Xb(k) =
P 0 0 -o 0 0 Xb(k + 1)

000

where [1~ ] = Q-1X(k) and

1 0 -p 0 0 0
~ ~

0 1 0 -p 0 0
~ p(1_p2 )

_p2
0 P 0 0 0

Q-1= ~ ~

0
_p2

0 P 0 0
~ ~

1 0 _1+p2 0 1 0p _lU
0 1 0 0 1p

As can be observed, all eigenvalues of the forward and backward
subsystems are at p, (Ipl < 1), with the exception of two eigenvalues
of the backward subsystem which are at the origin of the unit
circle, i.e., deadbeat. In addition, since no approximation is used
in computing P and Q matrices, the subsystems preserve all the
correlational information of the original model.

for the noncausal image model is decomposed into stable forward­
backward subsystems. These matrices are found to be (See second
matrix at the bottom of the page.)

Now, it can easily be checked that P EQ = [12 0] ando Ab

pAQ = [At! 1]. where A f = [~ ~], A b = r~ ~ ~ ~],
o 0 0 0

12 and 14 are 2 x 2 and 4 x 4 identity matrices, respectively. Therefore,
we obtain the following decoupled stable subsystems

(10)

~ ]Z(k+1)+U(k)
~

P1 = po<I> 1 + P2<1>-1

po = P-1 <1>1 + P1 <1>-1 + Qu

P-1 = P-2<1>l + PO<l>-l.

~ ]Z(k-1)+[~
~ 0

Z(k)- [~- 0

where X(k) = [ZT (k - 1), ZT (k), ZT (k + 1)f, (see first matrix

- [0 0 0 0 1 O]T
at the bottom of the page), B = 0 0 0 0 0 1 and

[:~J = [:' }, :; :; j-1 [~ ;,] = 1:p2 [~ !],
p3 p2 P 1 / p 0 1

hence cP1 = cP-1 = ~1. Solving the third equation of (to) for

Qu yields Qu = ~ r~ i 1. As a result, the first order noncausal

vector AR model with tv = ~ has the following form

- [0 0 1 0 0 0]
C=000100'

The generalized eigenvalues which are solutions of I>.E - AI = 0
are found to be >. = p, p, ~, ~, 0, 0, i.e., four eigenvalues are
inside the unit circle while the other two are outside. Using the
procedure in [II] and the results of Theorem I we can define
transformation matrices P and Q such that the descriptor system

Note that the correlation matrices pr are given by pr

[
plrl plr l+1] lrl[1 p] T

plrl+1 plr l = P p 1 and p-r = Pr·

The matrices cP1 and cP-1 are solutions of the following system

[:I ~: ][:~1] = [:r]
from which it follows that

1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0

E=
0 0 1 0 0 0

A=
0 0 0 0 1 0

0 0 0 1 0 0
,

0 0 0 0 0 1
0 0 0 0 0 0 ~ 0 -1 0 ~ 0
0 0 0 0 0 0 0 p 0 -1 0 p

~ ~

1 0 -p 0 1+p2 0
~ ~ ~ 1 0 1 0 0 0

0 1 0 ~ 0 l+p2
~ ~ 0 1 () 1 0 ()

3 2 _P(I+g2)
() 1. 0 0 0q 0 ~ 0 0 p

P= I-p ,Q=
p

3 2 _p(l+p2) 0 () 1. () ()
0 q 0 ~ 0 ----r=pr-

p P
p2 () 1 0 1 0

0 0 0 () lU 0 PIp 0 l () 1 0 1
0 0 0 0 0 lU PI

p
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o ][W(k)]
Gf rlf(k)

where

(17)
Similarly, we can model the process vb(k) by a finite dimensional
linear system of order s,

vb(k) = 1/;[vb(k + 1) + ... + 1/;;vb(k + s) + 'f/b(k) (18)

where 'f/b (k) is a zero mean white noise process with covariance
matrix Qryb. An analogous Yule-Walker system of equations can be
arranged to yield the parameter matrices 1/;1, ... , 1/; s » Once the model
parameters are identified, the following state vector can be defined

Zb(kl = [vb(k)T,Vb(k + ll,'" ,vb(k + s - ll].

(16)
Ff = [·(.·; .':·~-' .. ~l]

o 0 ... 1 0

Gf = [I o... of
Cf=[1 0 .. ·0].

Augmenting systems (9a) and (15) yields

[;:~Z1n] = [~f ;f ][;:~Z?J + [Bd
y(k) = [Hf Cf] [;:~Z?J·

(11)

Even though the above procedure is only applied to the image
model and the effects of colored noise and the degradation processes
are not considered, the general approach of this brief can bs.ntilized
to decompose the complete system (7) into forward and backward
subsystems and then derive the corresponding reduced order Kalman
filters for image restoration applications.

Ill. STATE ESTIMATION FOR FORWARD-BACKWARD SUBSYSTEMS

In this section, we formulate the problem of state estimation for
subsystems (9) into standard reduced order Kalman filters. To achieve
this, state space models for the colored processes v f (k) and Vb (k)
are needed.

We start by obtaining the statistics of the processes v f (k) and
Vb(k) which can be computed using only the statistics of the zero
mean white processes, {w (k)} and {v (k)}, which are assumed to
be known. Let Pf:= E[Xf(k)XJ(k)] and H := E[Xb(k)X';(k)]
be the forward and backward state covariances, respectively. Then,
using the state equation in (9a) and assuming stationarity, it can easily
be shown that Pf is the positive definite solution of the discrete
Liapunov matrix equation Pf = AfPfAl + BfQwBl which is
given by

Vf(k) = cPr Vf(k - 1) + ... + cP~vf(k - q) + rlf(k) (13)

(19)

0] [W(k)]
Gb 'f/b(k)

where

(20)
As can be seen, both systems in (17) and (20) are driven by zero

mean white processes and further there is no measurement noise
in the output equations. Consequently, the state vectors Xf(k) and
Xb(k) must be estimated using standard reduced order estimators. A
treatment of reduced order estimators can be found in [12].

IV. CONCLUSION

The problem of noncausal vector modeling of images is addressed
in this brief. The noncausal vector image model was arranged into
descriptor system which was in tum decomposed into equivalent
stable forward and backward subsystems. These subsystems were
used to design Kalman filters in which the forward state was estimated
with the backward state considered as a colored output noise and
similarly the backward state was estimated with the forward state
regarded as colored output noise. The estimation of the forward and
backward states can then be accomplished using standard reduced
order estimators. A numerical example was given to demonstrate the
decomposition process into stable forward and backward subsystems.

Fb = rtr:~t.J
o 0 ... 1 0

Gb=[1 o... of
Cb=[1 0· .. 0].

Then (18) can be arranged into the following state space system

Zb(k) = FbZb(k + 1) + Gb'f/b(k)

vb(k) = CbZb(k)

(14)

(12)

(15)
Zf(k + 1) = FfZf(k) + Grrlf(k)

vf(k) = CfZf(k)

Once the model parameters are identified, the following state vector
can be defined

where rlf (k) is a zero mean white noise process with covariance
matrix Qryf. The parameters cP1,' .. ,cPq are obtained by solving the
following Yule-Walker system of equations

It can readily be verified that Pib := E[Vb(k)v,; (k + i)] = Qvo(i) +
HfPfA'J'HJ for i = 0,1, .. ·.

Having determined the statistics of v f (k) and Vb (k), we now model
these processes by a q-th and s-th order AR models, respectively.
Thus, for v f (k) we have

where Qw := E[w(k)wT(k)]. The limit of this summation exists as
Af is stable [8]. As a result, we have Pif := E[Vf(k)vJ(k + i)] =
Qvo(i) + HbAtPbH,; for i = 0,1,2,,·.

Similarly using the backward state equation in (9b) yields H =
AbPbA[ +BbQwB';' Again the stability of Ab ensures the existence
of the following solution

Then (13) can be written in the following state space form
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II. DISCRETE ORTHOGONAL POLYNOMIAL
DECONVOLUTION FOR TIME-VARYING LINEAR SYSTEMS

Implementation of DOPD in matrix operator format for time­
invariant systems has been described [10], and will be shown to
extend to linear time-varying systems. A discrete linear time-varying
system may be expressed in matrix operator format as

system into time-invariant segments [3]-[5], and tend to be computa­
tionally intensive due to matrix inversion or the numerical demands of
filter design [3]-[9]. Presented in this communication is the extension
of the discrete orthogonal polynomial deconvolution method [10],
[11] to linear time-varying systems. The stability and robustness
associated with this method in the time-invariant case is demonstrated
to extend to time-varying systems.

(2)

(1)

k = 1,2,3, "', N

When the system function h is time-invariant and symmetrical, B
is block-circulant and self-adjoint (B+ = B). However the adjoint
property as stated in (3) is generally applicable to linear systems
expressible in square matrix form and has no implicit restrictions
regarding causality or temporal characteristics of the transfer function.
The time-varying characteristics of the system are incorporated into
DOPD when the matrix transfer function B and the adjoint operator
B+ are cast. Subsequent DOPD operations proceed in identical
fashion to the time-invariant case [10], but are repeated here to
provide a complete description for the time-varying case.

DOPD is initiated by application of the adjoint operator B+ to
a set of IZ orthonormal basis functions pmk of length N. Hartley
functions, defined by

21l'(m - l)k 21l'(m - l)k
pmk = sin N + cos N

P(m+l)k = sin ( 21l'(m
N-

l)k) + cos ( 21l'(m
N-

l)k)

k = 1, 2, 3, "', N

m = 1, 3, 5, "', IZ - 1 (4)

is satisfied.
The cornerstone of DOPD is the adjoint property of square

matrix multiplication operators. In general, the adjoint operator is the
complex conjugate transpose of the matrix operator B. For strictly
real systems, the adjoint operator, B+ is the transpose of B, and has
the general property that the inner product of any vector x with the
output of the operator B acting on the vector Y is equivalent to the
inner product of Y with the output of the adjoint operator B+ acting
on x (3) [12], [13].

LXk' LBknYn = LYk' LBtnx n
k k,n k k,n

k = 1, 2, 3, "', N

n = 1, 2, 3, "', N. (3)

Where I is a row vector of length N resulting from the multiplication
of the N x N matrix operator B with the column vector O. The matrix
operator B is constructed using the time-varying system transfer
function hkn so that the equation

N

t, = LhknOn
n=l

I. INTRODUCTION

Inverse solution of linear time varying systems is an ill-conditioned
problem which requires constrained or approximate solutions [1],
[2]. Methods of solution may involve reduction of the time-varying
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Discrete Orthogonal Polynomial
Deconvolution for Time-Varying Systems

Abstract-Discrete orthogonal polynomial deconvolution (DOPD) has
been demonstrated to be a robust method for obtaining the inverse
solution for time-invariant systems. In this communication, extension of
the method to time-varying linear systems is explored. The operator-based
nature of DOPD lends itself to application to linear time-varying systems
expressible as an operator matrix. The stability and noise tolerance
characteristics of time-invariant DOPD are demonstrated to apply to
time-varying systems. A priori estimation of the quality of the inverse
solution is possible if the characteristics of noise in the forward solution
can be estimated. For time-varying linear systems having a region of basis
function support approximately congruent to the support region of the
transfer function, and for which there is sufficient a priori knowledge
of the system, DOPD provides an efficient and noise tolerant method of
inverse solution.
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