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ABSTRACT 

 
 

 

FACTOR DEPENDENT ARCHAEAL TRANSCRIPTION TERMINATION 

 
 

 

RNA polymerase activity is regulated by nascent RNA sequences, DNA template 

sequences and conserved transcription factors. Transcription factors regulate the activities of 

RNA polymerase (RNAP) at each stage of the transcription cycle: initiation, elongation, and 

termination.  Many basal transcription factors with common ancestry are employed in eukaryotic 

and archaeal systems that directly bind to RNAP and influence intramolecular movements of 

RNAP and modulate DNA or RNA interactions. We describe and employ a flexible methodology 

to directly probe and quantify the binding of transcription factors to the archaeal RNAP in vivo.  

We demonstrate that binding of the conserved and essential archaeal transcription factor TFE to 

the archaeal RNAP is directed, in part, by interactions with the RpoE subunit of RNAP.  As the 

surfaces involved are conserved in many eukaryotic and archaeal systems, the identified TFE-

RNAP interactions are likely conserved in archaeal-eukaryal systems and represent an 

important point of contact that can influence the efficiency of transcription initiation.  

 While many studies in archaea have focused on elucidating the mechanism of 

transcription initiation and elongation, studies on termination were slower to emerge. 

Transcription factors promoting initiation and elongation have been characterized in each 

Domain but transcription termination factors have only been identified in bacteria and eukarya. 

Here we characterize the first archaeal termination factor (termed Eta) capable of disrupting the 

transcription elongation complex, detail the rate of and requirements for Eta-mediated 

transcription termination and describe a role for Eta in transcription termination in vivo. Eta-

mediated transcription termination is energy-dependent, requires upstream DNA sequences and 

disrupts transcription elongation complexes to release the nascent RNA to solution. Deletion of 

TK0566 (encoding Eta) is possible, but results in slow growth and renders cells sensitive to 
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DNA damaging agents. Structure-function studies reveal that the N-terminal domain of Eta is 

not necessary for Eta-mediated termination in vitro, but Thermococcus kodakarensis cells 

lacking the N-terminal domain exhibit slow growth compared to parental strains. We report the 

first crystal structure of Eta that will undoubtedly lead to further structure-function analyses. The 

results obtained argue that the mechanisms employed by termination factors in archaea, 

eukarya, and bacteria to disrupt the transcription elongation complex may be conserved and 

that Eta stimulates release of stalled or arrested transcription elongation complexes. 
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CHAPTER 1 
 
 
 

INTRODUCTION1 
 
 
 

1.1 Archaeal Transcription Regulation 
 

RNA polymerase (RNAP) is a well-conserved, multi-subunit essential enzyme that 

transcribes DNA to generate RNA in all cells. Although RNA synthesis is carried out by RNAP, 

the activities of RNAP during each phase of transcription are subject to basal and regulatory 

transcription factors. Substantial differences in transcription regulatory strategies exist in the 

three Domains: Bacteria, Archaea, and Eukarya.  Only a single transcription factor (NusG or 

Spt5) is universally conserved (1, 2), and the roles of many archaeal-encoded factors have not 

been evaluated.  Archaea are reliant on a transcription apparatus that is homologous to the 

eukaryotic transcription machinery; similarities include additional RNAP subunits that form a 

discrete subdomain of RNAP (3, 4), as well as basal transcription factors that direct transcription 

initiation and elongation (5–10).  The shared homology of archaeal-eukaryotic transcription 

components aligns with the shared ancestry of Archaea and Eukarya, and this homology often 

is exclusive of Bacteria (Table 1.1).   

The archaeal transcription apparatus is most commonly summarized as a simplified version 

of the eukaryotic machinery.  In some respects this is true, as homologs of only a few eukaryotic 

transcription factors are encoded in archaeal genomes and archaeal transcription in vitro can be  

supported by just a handful of transcription factors (8, 11). However, much regulatory activity in 

eukaryotes is devoted to post-translational modifications of chromatin, RNAP, and transcription  

                                                        

1 Chapter One, an introduction to this dissertation was published under: Gehring AM, Walker 
JE, Santangelo TJ (2016) Transcription Regulation in Archaea. J Bacteriol. Parts of the review 
have been omitted or expanded where appropriate.  
 
Santangelo TJ, Gehring AM, and I conceived the content and co-wrote this manuscript. 
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Adapted from F. Werner. (2012).  Eta 

Table 1.1. Evolutionary conservation of RNAP subunits and transcription factors. Table 1.1. Evolutionary conservation of RNAP subunits and transcription 
factors.
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factors, and this complexity seemingly does not transfer to the Archaea where few post-

translational modifications or chromatin-imposed regulation events are currently known.  The 

ostensible simplicity of archaeal transcription is under constant revision as more detailed 

examinations of archaeal-encoded factors become possible through increasingly sophisticated 

in vivo and in vitro techniques.  

 

1.2 The Archaeal Transcription Cycle  

Transcription is highly regulated, and the transcription cycle is typically demarcated into 

three phases: initiation, elongation, and termination (Figure 1.1) (12–16). An abbreviated and 

overall introduction to this cycle is presented first, with sections below detailing the activities of 

RNAP and associated factors during each stage of transcription. Briefly, archaeal transcription 

initiation requires that RNAP be directed to promoter sequences defined by the binding of TATA 

binding protein (TBP) and transcription factor B (TFB). TBP, TFB, and RNAP are sufficient to 

generate a single-stranded section of DNA (the transcription bubble) and feed the template 

strand into the bipartite active center of RNAP (7, 10, 17). RNAP can initiate transcript synthesis 

de novo, and continued synthesis then competes with favorable promoter and initiation factor 

contacts until promoter escape can be achieved. Release of RNAP from the initiating factors 

classically defines the end of initiation, although in reality no clear boundary separates the last 

stages of initiation from the early stages of elongation. Although TFB and TBP are necessary 

and sufficient to permit promoter-directed transcription initiation, a third conserved factor, 

transcription factor E (TFE), can also assist in transcription initiation and leaves the promoter 

with RNAP during the early stages of transcript elongation (18–20). Transition to a stable, long-

lived elongation complex is believed to involve internal rearrangements of RNAP. This transition 

involves the exchange of initiation factors for stably bound elongation factors that monitor RNA 

synthesis for accuracy, respond to regulatory DNA sequences, react to regulatory inputs of 

more transiently associated transcription factors, and influence processivity of RNAP (21). 
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Figure 1.1. The archaeal transcription cycle. A. The euryarchaeal RNA polymerase crystal 
structure from Thermococcus kodakarensis (PDB ID no. 4QIW) is shown in surface 
representation. The clamp and stalk domains are highlighted. A simplified cartoon structure of 
RNA polymerase is shown below this in light green; the bipartite active site and RNA exit 
channel are highlighted in dark green. B. Steps in the transcription cycle. (i) RNAP is recruited 
to the promoter by transcription factors TFB, TFE, and TBP during transcription initiation. (ii) 
RNAP escapes the promoter, and early elongation begins with TFE bound to RNAP. (iii) TFE is 
replaced by elongation factor Spt5 during elongation. (iv) Factor-dependent termination occurs 
in archaea and is mediated by Eta (blue). A second termination factor (brown) is likely encoded 
in archaeal genomes but remains to be identified. (v) Intrinsic termination sequences are 
characterized by a run of T's on the nontemplate strand. (vi) The transcript is released, and 
RNAP is recycled for another round of transcription. 
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Elongation is, in general, very stable, but specific sequences can lower the overall energy of the 

transcription elongation complex, permitting either spontaneous intrinsic or factor-assisted 

termination (22–24). An archaeal transcription termination factor, termed Eta, recognizes 

arrested RNAPs to mediate transcription termination (16). Transcription termination results in 

release of both the transcript and RNAP from the DNA template. 

 

1.3 Regulation of Transcription Initiation 

TBP and TFB are the only transcription factors required for in vitro transcription under 

optimized conditions, and TFE has been shown to assist promoter opening when conditions are 

suboptimal (Figure 1.1B; panel i) (19). In vivo studies have shown that Archaea must retain at 

least one gene encoding TBP and one gene encoding TFB, although many archaeal species 

encode multiple TBP and TFB isoforms (6, 11, 25–28). Some differences in promoter sequence 

preferences and protein pairing have been noted in TBP-TFB isoform pairs (29–33), but these 

minor differences are not on par with the clear but not always radical promoter sequence 

differences noted for alternative σ factors in bacterial transcription (34). TFE also appears 

essential, and it is currently unclear if this essentiality is due to necessary activities during 

transcription initiation or some other role in the transcription cycle (35, 36). 

All three of the aforementioned transcription factors have close eukaryotic homologs: 

archaeal TBPs are nearly identical to eukaryotic TBPs (37); archaeal TFB proteins are 

homologous to eukaryotic transcription factor IIB (TFIIB) proteins (38), with homology also seen 

with the Pol III initiation factor BRF1 (39) and Pol I initiation factor Rrn7/TAF1B (40); and 

archaeal TFE proteins are homologous to the N-terminal half of the eukaryotic alpha subunit of 

TFIIE, or TFIIEα, and very recent evidence identified a separate homolog in some lineages to 

the eukaryotic beta subunit, TFIIEβ (20). TBP is needed to recognize the TATA box, bend the 

DNA, and recruit TFB; its role had therefore been deemed equivalent to the role of eukaryotic 

TBPs (10, 38). Total internal-reflection fluorescence–fluorescence resonance energy transfer 
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measurements now detail differences in the activities of archaeal and eukaryotic TBPs, despite 

the nearly identical three-dimensional folds of these factors (6, 41). In some cases, archaeal 

TBPs require the co-binding of TFB to stably bind and bend the promoter DNA (42–44). It is 

speculated that different promoter sequences may be regulated by different TFB-TBP pairs 

based on the interdependence, or lack thereof, of cooperative DNA bending for establishing a 

stable platform for RNAP recruitment. Recent studies suggest that select isoforms of TFB and 

TBP can result in differences in transcription output, but further studies will be needed to 

determine if these effects on such preliminary steps of transcription initiation are a direct mode 

of regulation resulting in phenotypic differences (30, 45). 

In contrast to eukaryotic transcription, archaeal promoter opening is not an energy-

dependent process (7). Therefore, TBP and TFB alone are capable of assisting RNAP in the 

formation of the transcription bubble. In all Archaea, TFB is responsible for stabilizing the TBP-

bound DNA complex and, together, this bipartite protein platform recruits RNAP (46), but how 

these molecular interactions melt the DNA is still unresolved. Reconstructions and analyses of 

open complexes using archaeal components reveal an overall architecture of the open promoter 

complex and provide the first placement of the nontemplate strand within the complex (46). TBP 

and TFB are located closer to RNAP than would be the case for eukaryotic promoters, and this 

proximity may provide more intimate contacts that collectively provide the energy to open the 

promoter DNA. The tight network of interactions in the archaeal open complex may torsionally 

strain the DNA, and melting is likely to relieve this strain and result in open complex formation. 

Several new insights into TFE activity and evolution have been recently described. The 

archaeal TFE had previously been characterized as a monomer and as a homologue of the 

alpha subunit of eukaryotic TFIIE, termed TFIIEα (19, 47, 48). Eukaryotic TFIIE is a 

heterodimeric complex of TFIIEα and TFIIEβ, but archaeal genomes had previously only been 

shown to encode a homologue of the alpha subunit (49, 50). Eukaryotic RNAPs differ in their 

requirements for initiation, with RNAP III incorporating homologues of several RNAP II initiation 
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factors as core components of RNAP III (51–53). Comparisons of the RNAP III subunit hRCP39 

revealed a well-conserved archaeal homolog (termed TFEβ) that directly and extensively 

interacts with TFE (now named TFEα) (20). Although TFEβ is not conserved in all Archaea, 

TFEβ is essential for some Crenarchaea. In vitro, TFEα-TFEβ complexes are effective in 

binding RNAP, stabilizing open complex formation, and stimulating total transcriptional output 

(20). 

The mechanism of TFE recruitment to the initiation complex and its activities during initiation 

has been partially resolved. TFEα simultaneously binds TBP, RNAP, and downstream DNA and 

remains bound to RNAP during promoter escape and early elongation (Figure 1.1B; panel ii). 

TFE has been shown to stimulate transcription at noncanonical promoter sequences and at 

reduced temperatures in vitro (18, 19, 48, 54). Several studies have identified critical 

interactions between TFE and the preinitiation complex that have furthered our understanding of 

TFE function during initiation (2, 18, 54). TFEα consists of two domains: a winged helix (WH) 

domain and a zinc ribbon domain (55, 56); TFEβ contains a conserved WH domain and an FeS 

domain (20). The WH domain of TFEα contacts the upstream, nontemplate strand of DNA and 

helps form the open promoter complex through an unknown mechanism (18, 46). Several 

studies have shown that the presence of the RNAP stalk domain—unique to archaeoeukaryotic 

RNAPs and comprised of two subunits, RpoE and RpoF in archaea and Rpo4 and Rpo7 in 

eukaryotes—is essential for the full activity of TFEα (10, 54, 57). The predicted interaction 

between TFEα and the stalk domain was bolstered by copurification of TFEα with intact RNAP 

and the loss of TFEα from RNAP preparations wherein the stalk domain was missing (36). A 

structure-function study identified critical interactions between TFEα and RpoE of the stalk 

domain (35). TFE may have an essential role in modulating intramolecular movements of RNAP 

during the transcription cycle, most notably movements of the clamp domain. Interaction of 

TFEα with both the stalk and clamp domains of RNAP during transcription initiation may retain 

the clamp domain in an open complex conformation necessary for initiation and elongation.  
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Replacement of TFE by the elongation factors Spt4/5 during early elongation may alter clamp 

positioning and further stabilize the elongation complex (58). 

 

1.4 Regulation of Transcription Elongation 

As transcription transitions from initiation to elongation, RNAP undergoes a 

conformational change accompanied by the replacement of initiation factors with elongation 

factors (2, 58–61). It is plausible that the emerging nascent transcript stimulates the swap of 

regulatory factors and initiates the intramolecular movements that result in stable elongation 

complex formation (10, 62, 63). Very few transcription elongation factors have been 

bioinformatically identified within archaeal genomes, and it is probable that archaeon-specific 

factors await discovery. It is worth noting what is seemingly not encoded in archaeal genomes, 

given that so much of archaeal and eukaryotic transcription machinery is shared. Archaeal 

genomes do not appear to encode any coactivator complexes or megacomplexes for chromatin 

modification or rearrangements. There does not appear to be machinery for regulated 

posttranslational modifications of the archaeal transcription apparatus nor of chromatin, with the 

exception of acetylation/deacetylation of the small chromatin-associated protein Alba (64, 65). 

Furthermore, archaeal transcripts are not capped, do not require nuclear export, and, with the 

exception of self-splicing introns, lack introns; thus, factors responsible for these activities are 

similarly lacking from archaeal genomes (66–68). 

Transcription elongation factors have various roles, including increasing processivity and 

fidelity of RNAP and/or increasing genome stability. Only three archaeal elongation factors have 

been experimentally studied: transcription factor S (TFS) (69, 70) and the aforementioned 

universally conserved elongation factor Spt5, often with a conserved binding partner Spt4 

(Spt4/5) (Figure 1.1B; panel iii) (1, 71, 72). TFS, with homology to the C-terminal domain of 

eukaryotic TFIIS and functionally analogous to GreA/GreB in Bacteria (8, 73–75), can stimulate 
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endonucleolytic cleavage of the RNA from backtracked RNAP complexes (69, 70, 76).  Several 

recent studies have shed light on the roles of Spt5 during elongation (58, 77, 78).  

Archaeal Spt5, homologous to bacterially encoded NusG, consists of two domains: the 

NusG N-terminal (NGN) domain and a single C-terminal Kyrpides-Ouzounis-Woese (KOW) 

domain with affinity for single-stranded RNA (71, 72, 77); eukaryotic Spt5 typically contain three 

to six repeats of the C-terminal KOW domain (9, 79, 80). Critical, direct molecular interactions 

between Spt5 and RNAP have been identified in both Bacteria and Archaea, and the 

conservation of RNAP and Spt5 infers that these same interactions are used in Eukarya. Briefly, 

a hydrophobic depression on the NGN domain interacts with the mobile clamp domain of RNAP, 

with additional interactions between the NGN domain and RNAP jaw domain likely fixing the 

location of the clamp domain in a closed configuration (81). Spt5 interaction with RNAP is not 

necessary for productive and processive elongation in vitro, but the interaction does increase 

the total output of transcription systems (1). It is plausible that Spt5 increases elongation rates 

and processivity, as NusG in Escherichia coli does, and it is further possible that the increased 

efficiency of transcription results from the stabilization of the clamp domain that in turn stabilizes 

the DNA-RNA hybrid in place during transcription elongation (82–84). The NGN domain also 

contacts the upstream strands of DNA, offering protection from backtracking, and, by inference, 

may reduce pausing of the transcription elongation complex (78, 85, 86). It is of importance to 

note that NusG/Spt5 can have a positive and/or negative effect on elongation rates and pause 

events of RNAP. In Thermus thermophilus, NusG slows down RNA elongation rather than 

increases elongation rates (87). In Bacillus subtilis, sequence-specific interactions of the NGN 

and nontemplate DNA strand within the paused transcription bubble stabilize the pause event in 

the trp operon (88). Furthermore, evidence has shown that Spt4/5 induces pauses during early 

elongation of Pol I but promotes elongation downstream (89). Although NusG can elicit opposite 

roles on transcription elongation, the NusG-RNAP binding sites remain well conserved across 

various species. Archaeal and eukaryotic genomes often encode an additional elongation factor, 



  10 

Spt4 (annotated as RpoE″/RpoE2 in Archaea). Spt4 forms a complex with Spt5 and stabilizes 

the Spt5-RNAP interaction (9, 72). Spt4 does not appear to be essential; however, the affinity of 

Spt5 for RNAP decreases in the absence of Spt4 in vitro (1). 

The primary interacting partners (e.g., RNAP and Spt4) of the Spt5-NGN domain have 

been established in molecular detail; however, no specific interacting partners of the KOW 

domain have been identified in archaea. It is possible that the affinity of the KOW domain for 

RNA leads to nonspecific interactions with the emerging transcript; however, it is tempting to 

speculate greater involvement of the KOW domain based on the known activities of the C-

terminus of bacterial NusG (Figure 1.2) (90). Bacterial NusG facilitates elongation or termination 

depending on its binding partner (82, 83, 91–94). Studies suggest, the bacterial NusG KOW 

domain interacts with the S10 ribosomal subunit (NusE) during elongation, thereby coupling the 

leading ribosome with the transcription apparatus (93, 94). In contrast, a recent study suggested 

the leading ribosome interacts directly with RNAP thus speculating that Spt5 is not essential for 

the coupling of transcription and translation (95). Spt5 may transiently interact with the S10 

ribosomal subunit before the ribosome contacts RNAP.  Nonetheless, when Spt5 is not bound 

to the leading ribosome or the leading ribosome lags substantially behind RNAP, the bacterial 

NusG-KOW domain can be bound by and stimulate the activity of the transcription termination 

factor Rho (92, 96, 97). Archaeal transcription and translation are similarly coupled (98, 99), and 

it is reasonable to venture that archaeal Spt5 may have a role in linking the archaeal 

transcription and translation apparatuses and also potentially interact with termination factor(s). 

The archaeal transcription termination factor Eta is not responsible for polarity and by extension 

is not responsible for global 3’ end transcript formation (16). Archaeal genomes likely encode a 

second termination factor that is responsible for polarity that remains to be identified.  
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Figure 1.2. Coupling and uncoupling of transcription and translation. Transcription and 
translation are coupled in bacteria and archaea and it is hypothesized that Spt5 (purple) is the 
coupling factor that binds to both RNAP (green) and the leading ribosome (black). When 
transcription and translation become uncoupled a termination factor, termed Rho in bacteria, 
binds to the Spt5-KOW domain to mediate transcription termination.  
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1.5 Intramolecular Rearrangements of RNA Polymerase May Increase Processivity 

The archaeal and three eukaryotic RNAPs can be reduced in complexity to three large 

domains: the core, the mobile clamp, and the stalk (Fig 1.1A) (60, 100). The archaeoeukaryotic 

stalk, absent from bacterial RNAP, is used by a host of archaeal and eukaryotic transcription 

factors to bind and regulate the activities of RNAP. Increasing evidence from biochemical, 

biophysical, and in vivo approaches indicate that transcription factor binding often stimulates 

intramolecular movements of RNAP that appear necessary for transitions between phases of 

the transcription cycle (2, 78, 101, 102). 

Hinge-like movement of the mobile clamp domain has been demonstrated for the 

bacterial RNAP (59). The movements of the mobile clamp are sufficiently large enough to open 

the main channel of RNAP, such that double-stranded DNA can easily enter and exit when the 

clamp is open, whereas double-stranded DNA—or the RNA-DNA hybrid—would be trapped 

inside RNAP when the clamp is closed. The bacterial RNAP clamp is open during initiation but 

remains closed during processive elongation (59), leading to a simple model of encapsulation of 

the nucleic acids to explain the dramatic stability of the elongation complex. It is logical to 

propose mechanistic actions of transcription factors that may modulate the clamp positioning 

with respect to the core and stalk domains of RNAP and thus alter the stability and transitions of 

RNAP throughout the transcription cycle. TFE is predicted to make contacts with both the clamp 

and stalk domain of RNAP, thereby fixing the clamp into the open conformation critical for 

initiation (41, 54, 102, 103). In Chapter 2, we identify the critical residues in the stalk domain of 

RNAP responsible for the interaction between TFE and the stalk domain of RNAP during 

initiation (35). As transcription transitions into the elongation phase, RNA emerges from the 

enzyme and interacts with the stalk domain (63), where a predicted steric clash occurs between 

the RNA and the TFE, likely driving TFE to disengage from RNAP. The disengagement of TFE 

allows for Spt5 to bind to the clamp and core domains of RNAP and lock the clamp in the closed 

position, thus ensuring processivity during elongation (77). 



  13 

RNAP clamp movement is predicted to be universal; however, both the archaeal and the 

eukaryotic RNAP contain additional subunits, including the stalk domain (100, 104), and 

previous structural data predicted that the stalk domain would sterically limit or abolish major 

movements of the clamp domain. Recent crystallographic evidence of the complete 

euryarchaeal RNAP demonstrated that the clamp is able to open without a steric clash with the 

stalk domain through a coordinated swing and rotation movement of both the clamp and stalk 

domains (60). This evidence supports the bacterial mechanism of the clamp opening and 

closing during initiation/termination or elongation, respectively, thus supporting a universal 

model of clamp movement. 

 

1.6 Regulation of Transcription Termination 

Transcription termination occurs when the transcription elongation complex becomes 

sufficiently unstable and fails to maintain contact between RNAP and the encapsulated nucleic 

acids. The stability of the transcription elongation complex is derived from (i) contacts between 

RNAP and the RNA-DNA hybrid, (ii) contacts between RNAP and single-stranded RNA in the 

exit channel, (iii) contacts between RNAP and the downstream DNA, and (iv) the base pairing of 

the RNA-DNA hybrid (105–112). The first and last of these contacts are most likely to be altered 

during the termination process. Transcription through specific DNA sequences can result in 

stronger or weaker base pairing within the RNA-DNA hybrid, and contacts between RNAP and 

the nucleic acids are most easily modified by movements of the clamp domain that relieve 

movements of the hybrid with respect to the core of RNAP (113–115). Release of the nascent 

RNA may be possible through continued translocation in the absence of RNA synthesis, or the 

RNA-DNA hybrid could be released in bulk if the clamp domain transitions from a closed to an 

open position. The gene-dense nature of many archaeal genomes necessitates timely 

termination of transcription to prevent aberrant transcription of neighboring genes. There are 
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two mechanisms of termination across all domains: intrinsic termination and factor-dependent 

termination (Figure 1.1B; panel iv, v, & vi and Figure 1.3). 

Intrinsic transcription termination is driven primarily by weak base pairing within the 

RNA-DNA hybrid and occurs independent of the activity of transcription factors (Figure 1.3A) 

(105, 116). Intrinsic transcription termination has been established in all three domains, with 

some differences in sequence and structural requirements (22, 117–121). The archaeal RNAP, 

like eukaryotic RNAP III, is sensitive to intrinsic termination (23, 122, 123). Eukaryotic RNAP I 

and RNAP II do respond to DNA sequence context in the form of pauses and arrests but rarely 

release the transcript at such positions (124–126). Archaeal intrinsic termination is 

characterized by a run of 5 to 10 thymidine residues in the nontemplate strand, encoding a 

poly(U) run at the 3′ end of the nascent RNA (22, 23). The weak rU:dA RNA-DNA hybrid at or 

near the positions of termination is seemingly insufficiently energy rich to maintain the stability of 

the elongation complex; RNAP III similarly spontaneously dissociates upon transcription of 

poly(T) nontemplate tracts. 

Transcription factors involved in initiation and elongation have been characterized in all 

domains, while until my thesis work, transcription termination factor(s) had only been 

characterized in Bacteria and Eukarya (Figure 1.3B) (16, 127–130). By inference, from known 

termination factors that are employed in bacterial and eukaryotic systems, it was easily argued 

that protein factors are encoded in archaeal genomes that have the capacity to direct 

transcription termination. Bioinformatic analyses revealed some potential targets that our lab 

has partially evaluated, but there are no easily identified homologues of known eukaryotic or 

bacterial termination factors. Two well-studied transcription bacterial termination factors, Rho 

and Mfd, lack clear homologues in archaeal genomes, but there are hints that analogous 

activities may be present in archaeal species (99, 131–137).  
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Figure 1.3. Archaeal intrinsic and factor-dependent termination. A. Intrinsic termination is 
characterized by a run of 5-10 thymidines in the non-template DNA strand. When RNAP 
transcribes through the intrinsic termination sequence the weakened RNA:DNA hybrid causes 
transcription termination. B. Eta (blue) is a novel, euryarchaeal transcription termination factor 
that binds upstream of the transcription elongation complex to promote termination. It is 
predicted that archaeal genomes encode a second termination factor (brown) that is responsible 
for polarity but this factor remains to be identified. In general, factor dependent termination is 
dependent on ATP-hydrolysis to apply force to the transcription elongation complex and 
mediate transcription termination.  
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The bacterial transcription termination factor Mfd removes RNAP from sites of DNA 

damage and initiates transcription-coupled DNA repair (133, 135, 137). Recently, transcription 

coupled DNA repair (TCR) was described in euryarchaea (131), and there is evidence that the 

archaeal RNAP halts synthesis and forms long-lived complexes at the site of lesions in DNA in 

vitro (132). This data suggests that mechanisms and presumably a transcription termination 

factor is encoded in euryarchaeal genomes to remove RNAP from the site of damage. The 

second bacterial termination factor Rho is a homohexamer helicase that represses phage 

transcription and mediates polar repression of downstream genes when transcription and 

translation become uncoupled (i.e., polarity) (24, 121, 138). Archaea demonstrate polar 

repression of downstream genes in the absence of continued translation, and it is likely that a 

factor or factors mediate polarity in archaea (99).  

To investigate analogous activities to Rho or Mfd a biochemical grind and find was 

employed and a novel archaeal transcription termination factor, termed Eta, was characterized 

(16). Briefly, Eta binds to the upstream DNA of the TEC to release the nascent transcript and 

RNAP into solution. Eta recognizes paused/arrested RNAP and Eta-mediated termination is 

non-competitive with transcription elongation rates. Our studies provide strong evidence that Eta 

is analogous in function to the bacterial termination factor Mfd and is likely responsible for 

transcription-coupled DNA repair. Eta is not responsible for polar repression (i.e., polarity) and 

by extension is not responsible for global 3’ end transcript formation (16). Archaeal genomes 

likely encode a second termination factor that is responsible for polarity that remains to be 

identified. In Chapter 3, we characterize Eta-mediated transcription termination, detail the rate of 

and requirements for Eta-mediated transcription termination and describe a role for Eta in 

transcription termination in vivo (16). In Chapter 4, we report the first crystal structure of Eta and 

employ Eta structure-function analyses. We continue to probe the mechanism of Eta as well as 

further investigate the role of Eta in transcription coupled DNA repair.  
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In the future, it is critical to identify and characterize the termination factor(s) responsible 

for polarity. It is tempting to use the bacterial model of NusG-Rho interactions to conjure a 

similar picture for Spt5 (homologous to NusG) interactions with an archaeal transcription 

termination factor (96, 134, 138, 139). In chapter 5, we identify several potential candidates that 

we predict are responsible for archaeal polarity. Future studies will continue to provide insight 

into archaeal polarity and mechanistic insights into transcription termination. 

 

1.7 Chromatin architecture affects the transcription cycle 

Archaea employ two seemingly distinct mechanisms to compact, wrap, and condense 

their genomes to fit within the cell (140).  Most euryarchaeal species are polyploid and encode 

histone proteins that dominate chromatin architecture; archaeal histones mimic the core 

eukaryotic histone-fold (141–145).  In contrast, most crenarchaeal species are diploid and are 

reliant on small, basic nucleoid proteins to organize their genomes (140, 146).  Condensation 

demands organization of the genome and offers regulatory opportunities by controlling the 

accessibility of promoter sequences, the introduction of local superhelicities that may promote or 

inhibit promoter opening, and the potential for the introduction of chromatin-based obstacles to 

transcription elongation.  The overall role of genome architecture with respect to archaeal 

transcription is an emerging area with several recent studies highlighting the breadth of 

influences genome architecture can have on transcription output at the organismal level. 

Archaeal histone-based chromatin is composed of nucleosome particles that wrap and 

condense the genome.  The best-described complexes are homo- or hetero-histone tetramers, 

homologous to the H3/H4 tetramer in eukaryotes, that associate with ~60 bp of double-stranded 

DNA.  Archaeal histones share similar biases with eukaryotic nucleosomes for flexible DNA 

sequences and are, in general, absent from the core promoters of archaeal genes (147, 148).  

Archaeal histone proteins share the same core-fold as eukaryotic histones, but most lack the 

extensions from this fold (i.e. tails) that are highly modified and essential for proper nucleosome 
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dynamics in eukaryotes (149).  Higher order structure has been demonstrated in T. 

kodakarensis in the form of dynamic histone polymers that have the ability to wrap up to 180 bp 

(150). Recently, the archaeal histone based chromatin crystal structure from Methanothermus 

fervidus was solved (151). The structure showed DNA wraps around an extended polymer, 

formed by archaeal histone homodimers, in a quasi-continuous superhelix with the same 

geometry as DNA in the eukaryotic nucleosome.  

Archaeal nucleosomes present a surmountable barrier to the progression of the 

transcription elongation complex, although traversion does slow the elongation complex (152). 

The lack of known modifications to archaeal histones, and the lack of known machinery for the 

repositioning or movement of archaeal nucleosomes suggests that transcription elongation 

complexes simply traverse the nucleosomes and that chromatin organization spontaneously 

reforms when the histones gain access to preferred binding positions following RNAPs 

departure.  This mechanism of elongation through the histones is similar to the mechanism of 

Pol III in eukaryotes (153–155). 

The activities or stimulatory effects of archaeal elongation factors on transcription 

through archaeal histone-based chromatin remain to be explored; the substantial pausing and 

delayed progress of RNAP on chromatinized-templates suggests that elongation factors will 

accelerate progress of the transcription elongation complex. Any role of chromatin architecture 

in transcription termination is similarly unexplored.  Topology of naked DNA templates does 

influence the positions and efficiencies of intrinsic terminators, suggesting that chromatin-

templates may also influence termination patterns.  Nucleosomes are not only depleted from 

promoter regions, but also from predicted termination regions, suggesting a potential regulatory 

role for chromatin architecture on termination of transcription (147, 148).  
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1.8 Thesis Rationale 

Exploration of archaeal transcription and regulation continues to yield a bounty of 

evolutionary, biophysical, and mechanistic details of transcription mechanisms that are often 

applicable to all extant life.  The ability to reconstitute the complete archaeal transcription 

apparatus permits biophysical studies not possible with eukaryotic components and the 

simplicity and explicit homology of many factors provides meaningful insight into the 

mechanistic roles of individual factors and even specific domains and residues of archaeal 

transcription components.  The development and recent advances in genetic techniques for 

more archaeal species is now offering complementary in vivo studies to probe regulatory 

strategies and rationally manipulate protein interfaces and activities in the cell. My thesis work 

took advantage of both in vitro and in vivo studies to detail the TFE-RNAP molecular 

interactions (see Chapter 2) (35), to mechanistically characterize a novel archaeal transcription 

termination factor (see Chapter 3 and Chapter 4) (16), and to identify additional archaeal 

transcription termination factors (see Chapter 5).  
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CHAPTER 2 
 
 
 

ANALYSES OF IN VIVO INTERACTIONS BETWEEN TRANSCRIPTION FACTORS AND THE 
ARCHAEAL RNA POLYMERASE2 

 

 

 
2.1 Introduction 

Transcription is a highly regulated and orchestrated process in each Domain. Chemical 

and structural transitions of RNA polymerase are often directed by conserved and essential 

transcription factors (1–4). The transcription systems employed in Archaea mimic those 

employed in eukaryotes, and although component complexity is reduced, the archaeal RNA 

polymerase is highly conserved both in overall structure and regulatory capacity to 

eukaryotic RNA polymerase II (Pol II) (5–8). All currently available archaeal genomes encode a 

single but multi-subunit RNA polymerase (RNAP) (9) that is regulated by conserved 

transcription factors to ensure proper transcription initiation, elongation, and termination (2, 4, 

10–14). Details of transcription mechanisms and regulation in the archaeal domain have lagged 

behind the knowledge of eukaryotic and bacterial systems, at least in part, due to the previous 

lack of genetic techniques. However, in recent years, several recombinant archaeal systems 

have been established, and genetic techniques for archaeal systems have evolved to permit 

rational manipulation of transcription systems in vivo. Tractable transcription systems from both 

of the dominantly studied and heavily populated archaeal phylums (the crenarcheota and 

euryarcheota) are available (15–25). The hyperthermophilic marine euryarchaeon 

Thermococcus kodakarensis has both a robust genetic system and a highly purified in vitro 

                                                        

2 The work in this chapter was previously published under: Walker JE, Santangelo TJ (2015) 
Analyses of in vivo interactions between transcription factors and the archaeal RNA 
polymerase. Methods.  Here I have written the contents of that work to focus on my 
contributions and findings important to our following studies.  
 
Santangelo TJ, and I conceived the content, co-wrote the manuscript and contributed in 
experimental design, data collection, analysis, and interpretation.  
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transcription system (17, 22, 25, 26). The atomic resolution structure of 11-subunit RNAP 

from T. kodakarensis was recently solved at 3.5 Å (Figure 2.1) (5). This is the first 

structural analysis of the euryarchaeal RNAP and the first structure wherein the RNAP 

clamp domain is in an open configuration. The newly solved crystal structure provides a 

wealth of information that can be used to probe RNAP activities and structural-based 

hypotheses. 

Three transcription initiation factors are seemingly essential in archaeal organisms: 

TATA-binding protein (TBP; homologous to the eukaryotic TBP), transcription factor B (TFB; 

homologous to eukaryotic transcription factor IIB), and TFE (homologous to eukaryotic 

TFIIEα) (6, 12, 27, 28). TFE is dispensable during in vitro transcription assays; however, all 

attempts to genetically remove TFE from the genome have, to date, been unsuccessful 

arguing for essential in vivo activities (22, 23, 29). TFE binds to the non-template strand of 

DNA and promotes DNA melting to assist formation of the open-promoter complex (30, 31). 

Previous studies have also revealed that TFE interacts directly with both RNAP and TBP 

(32). 

The mechanistic activities of the conserved transcription factors are only partially 

known. Identification of binding sites and defined protein-protein contact surfaces is critical 

to further establish the mechanistic details of transcription factors.  There are several clues 

to sites of important molecular interactions between TFE and RNAP. Biochemical assays 

suggest that TFE binds both the RpoE subunit (also termed Rpo7, although conventional 

nomenclature for archaeal RNAP subunits will be used hereafter) and the RpoA subunit 

coiled-coil domain of RNAP (Figure 2.1) (29, 33, 34). More specifically, the N-terminal winged-

helix (WH) domain of TFE binds the RpoA subunit coiled-coil domain of RNAP while the zinc-

ribbon (ZR) C-terminal domain of TFE is predicted to bind the stalk domain comprised of RpoE 

and RpoF (33, 35).  
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Figure 2.1. Atomic structure of the archaeal RNA polymerase. The T. kodakarensis RNA 
polymerase structure (PDB ID: 4QIW) in a surface representation. Note the clamp domain is in 
the open conformation and each RNAP subunit is shown in a different color. TFE is shown in 
rose bound to the clamp (grey) and stalk (blue and green) domains of RNAP.

Clamp 

Stalk 
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 While several studies have suggested that TFE binds directly to RPoE the molecular 

surfaces involved have not been identified. It was of interest to further investigate these molecular 

interactions, and this article provides details of a structure-function analysis of the role of RpoE in 

retention of TFE. The principles outlined within can easily be adapted to permit in vivo analysis 

of any predicted or known molecular interactions with the archaeal RNAP. 

 

2.2 Results 
 

Genetic techniques in T. kodakarensis. 

Genetic techniques available to probe and explore the physiology, metabolism, and 

regulation of several archaeal lineages have exploded over the past ten years (17–21, 25, 

26, 36–38). The natural competence and facile genetic system available for T. 

kodakarensis is consistently employed to probe the composition, activities, and interplay of 

the information processing systems (17, 26). Any gene in the T. kodakarensis genome can 

be markerlessly affinity tagged, deleted (only non-essential genes), and/or modified to 

encode mutational protein variants permitting detailed dissections of protein activities in 

vivo. Furthermore, autonomously replicating expression plasmids can be retained in T. 

kodakarensis allowing for ectopic expression of a WT or a mutational-variant protein (25, 

39). 

 

Genomic manipulations to RNAP subunits. 

T. kodakarensis strains have been constructed wherein the gene encoding for a 

single subunit of RNAP (rpoL) was modified to encode a protein with a His6 or His6-HA 

affinity tag (6, 29). Through tagging a single subunit of RNAP, the entire, in vivo assembled 

RNAP complex can be purified from cells using a single column purification. Interestingly,  

when purifying T. kodakarensis RNAP TFE co-purifies in a sub-stoichiometric manner (29).  
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Co-purification is independent of the affinity-tag employed, and co-purification of TFE 

continues after several chromatography steps.  

 

Plasmid expressed RNAP subunits. 

T. kodakarensis does not contain endogenous plasmids. This limitation hindered 

progress in many arenas, and thus an expression vector was constructed by combining 

sequences from several origins to generate a shuttle vector that could autonomously 

replicate in both T. kodakarensis and E. coli. Briefly, the full sequence of a naturally 

occurring plasmid (pTN1) from a related Thermococcale species, Thermococcus nautilus 

(Tn), was fused with a common E. coli cloning vector (pCR2.1-Topo). The resultant fusion 

vector was further modified by inclusion of sequences encoding selectable markers that 

could be employed to force retention of the plasmid in select T. kodakarensis strains 

(Figure 2.2A) (25, 40). 

The flexible movement of this shuttle vector between species permits 

researchers to clone and modify plasmid-encoded sequences in E. coli, then immediately 

transfer the desired plasmid to T. kodakarensis. The transformed plasmid often encodes a 

modified T. kodakarensis gene resulting in the establishment of a T. kodakarensis strain 

that is merodiploid; that is, the cells will contain both an endogenous genomic and 

ectopically-expressed copy of the gene of choice. Construction of merodiploid strains is a 

convenient methodology that allows for manipulation of essential genes in T. kodakarensis 

without the need to alter the genomic copy of the essential factor. Each of the 11-subunits 

of T. kodakarensis RNAP has been individually cloned into a pLC70-based vector under a 

constitutive promoter, PhmtB, that drives high level expression of the subunit-encoding gene. 
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Figure 2.2. Plasmid expressed RNAP variants. A. A shuttle vector that can autonomously 
replicate in both E. coli and T. kodakarensis has been constructed with rpoE under control of a 
constitutive promoter, PhmtB. B. T. kodakarensis RNAP as a surface model with the exception of 
the coiled-coil domain shown in a ribbon model. The core of RNAP is shown in gray, RpoF is 
shown in green, and RpoE is shown in blue. The hydrophobic patch of RpoE is highlighted in 
yellow (Y95, F98, L107). Residues S150-R157 of RpoE are highlighted in red. PDB ID: 4QIW. 
C. Description of the plasmids employed and the mutational variants encoded.

A.!

C.!

B.!
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Plasmids encoding modified RpoE subunits. 

 
Our immediate goal was to identify and mutationally alter the proposed surface(s) of 

RpoE that directly interact with TFE. We predicted that any TFE-RpoE interactions would 

be conserved across many species, and thus we modeled conserved and surface 

exposed residues of many RNAPs focusing on the solvent exposed surfaces of RpoE. 

This modeling revealed two immediate targets that were conserved and solvent exposed. 

A hydrophobic solvent exposed patch on RpoE (residues Y95, F98, and L107) was 

identified, and we predicted that this surface might represent an important point of contact 

between RNAP and TFE. A second conserved loop region was identified on RpoE and 

these residues (S150-R157) were similarly predicted to contribute to the TFE-RpoE 

interaction surface (Figure 2.2B). We rationalized that mutation of these surfaces may 

affect the stability of the TFE-RpoE interaction, and thus the overall affinity and co-

purification of TFE with RNAP. We therefore generated a plasmid (pJW1) expressing full-

length rpoE modified to encode a protein with a C-terminal His6-tag (Figure 2.2C). Site-

directed mutagenesis was employed to delete the nucleic acid sequences encoding for 

S150-R157 of RpoE, resulting in pJW2. A third vector, pJW3, was constructed wherein the 

sequences encoding for the solvent exposed hydrophobic patch of RpoE were altered to 

encode for glutamic acids (Y95E, F98E, and L107E). 

 

Analysis of co-purification of TFE with the variant RpoE-RNAP variants. 

TS517 strains carrying pJW1, pJW2, and pJW3 all yield obvious large quantities of 

RNAP holoenzyme from clarified cell lysates and the resultant RNAP complex remained intact 

through many chromatographic separations. Excess and non-RNAP incorporated RpoE was not 

visualized under any circumstances and this was anticipated given that RpoE is unlikely to 

stably fold and remain soluble or intact in the absence of its binding partner, RpoF. TFE was 

visible as a co-purification partner in RNAP preparations from TS517 carrying pJW1-3 and was 
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easily identified based on the migration of the protein during SDS-PAGE (Figure 2.3A). In 

contrast, TS517 carrying the empty vector pLC70 did not yield identifiable quantities of RNAP 

following any chromatographic purification; TFE could also not be identified in any bound 

fractions from such purifications. The relative stoichiometry of TFE and RNAP within each 

preparation was quantified following a combination of Ni2+-affinity and MonoQ purification (see 

below; steps 1-11 of protein purification protocol). To analyze the amount of TFE co-purifying 

with RNAP, 7.5 µg of each protein preparation was resolved via SDS-PAGE and SYPRO Ruby 

stained according to the manufacturer’s instructions. The stained gel was digitized using a 

Typhoon scanner and the relative staining of protein bands was quantified using ImageJ 

software. Specifically, the staining intensity of TFE was quantified within each preparation and 

normalized to the staining intensity of the easily identified largest subunit of T. kodakarensis 

RNAP, RpoB. The amount of TFE co-purifying with WT RpoE-RNAP in T. kodakarensis TS517 

with pJW1 was set as a value of 100%. 

A two-fold decrease in co-purification of TFE with RNAP was observed for TS517 pJW2 

(ΔS150-R157) as well as TS517 pJW3 (Y95E, F98E, and L107E) when compared to TS517 

pJW1 (WT) (Figure 2.3B). This decrease was repeatedly observed in multiple RNAP 

preparations from each strain, and the results obtained argue that both mutational variants of 

RpoE hinder stable interactions of TFE and RpoE in the context of the fully formed RNAP 

complex. Further purification of RNAP (steps 12-17 of protein purification protocol) was 

employed to determine if TFE would continue to co-purify with WT RNAP and the variant 

RNAPs as conditions became more selective. Size exclusion chromatography followed by 

heparin affinity chromatography separated the remaining non-specifically bound proteins from 

RNAP. To analyze the amount of TFE co-purifying with this more highly purified form of RNAP, 

7.5 µg of each RNAP variant was resolved and quantified as before. A two-fold decrease was 

observed in co-purification of TFE in TS517 pJW3. An unanticipated loss of the stalk domain of 
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Figure 2.3. RpoE variants reduce co-purification of TFE with RNAP. A. SYPRO Ruby 
staining after SDS-PAGE of aliquots of RNAP (7.5 µg) purified from T. kodakarensis strain 
TS517 containing the vectors shown above the gel. Lane 1 contains size standards in kDa. 
Lanes 2-4 contain final purifications of RNAP from strains containing pJW1-3 respectively. An 
identical purification scheme from TS517 with the empty vector pLC70 is shown in lane 5 to 
demonstrate that RNAP purification is only possible based on the His6-tag on RpoE. RNAP 
subunits are labeled to the right of the gel. B. Quantification of the normalized amount of TFE 
co-purifying with RNAP in the initial purification, denoted as a solid bar to the left, and final 
purification, denoted as a lined bar to the right. TFE was normalized to 100% in the T. 

kodakarensis strain encoding for the WT RNAP variant (pJW1), the amount of TFE co-purifying 
with RNAP in the mutant RNAP variants was normalized to WT RNAP. pJW2 denotes the RpoE 
variant wherein S150-R157 were deleted. pJW3 denotes the RpoE variant wherein the 
hydrophobic patch was disrupted.  
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RNAP (along with TFE) from the bulk of the RNAP purified from TS517 pJW2 following size 

exclusion and heparin affinity chromatography hindered accurate measurements of TFE-RNAP 

ratios (Figure 2.3B). A ten-fold decrease was observed in co- purification of TFE with RNAP; 

however, this loss reflects both a weakened co- purification of TFE with RNAP, as well as an 

unexpected decrease in the abundance of the stalk domain with respect to the remaining RNAP 

subunits. RpoE residues S150-R157 were not anticipated to directly interact with the core 

subunits of RNAP, but it is possible that misfolding or altered interactions between RpoE and 

RpoF in this variant could lower the affinity of the stalk domain in general for the core of RNAP. 

This result is supported by other studies wherein the RNAP stalk domain is required for 

association and/or activity of TFE (29, 33, 41).  

 

2.3 Discussion 

 

In this article, we describe a method to directly probe and quantify the binding of a 

conserved and essential transcription factor, TFE, to RNAP in vivo. In vivo structure-function 

analyses of transcription factor binding provide insight into mechanistic details that underlie 

regulation of RNAP. Structure-function analyses are often limited to in vitro assays; however, we 

describe a protocol that facilitates the investigation of transcription factor binding to RNAP in 

vivo. Furthermore, considerations specific to obtaining T. kodakarensis biomass, purifying 

RNAP, and final analysis of data were addressed. 

 

2.4 Methods 
 
Protocol for transformation and selection of plasmids into T. kodakarensis. 

Transformation of T. kodakarensis differs significantly from more routine 

transformations of aerobic bacteria and yeasts. As such, care must be taken to ensure that 

anaerobic conditions are maintained at all times. We typically perform all manipulations 

within an anaerobic chamber maintained with an atmosphere of 95% nitrogen and 5% 
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hydrogen. The metabolism of T. kodakarensis also produces large quantities of pressured 

gases, typically H2 and H2S, and these explosive and toxic gases should always be 

properly and safely vented. 

1. Anaerobically and sterilely inoculate 100 ml of anaerobic medium, typically an artificial 

sea water base supplemented with tryptone, yeast extract, and sulfur (ASW-YT-S) with 

1 ml of a saturated overnight culture of TS517. Incubate the inoculated culture at 85°C for 

~12 hours until cells have reached and remained in stationary phase for approximately 2 

hours. 

2. Anaerobically harvest the 100 ml culture and resuspend the cells in 3 ml of 0.8X ASW. 

Allow cells to rest, anaerobically, at 4˚C for ~30 minutes 

3. Split the cell suspension into ~200 µl aliquots and add ~3 µg of plasmid DNA for each 

transformation. Chill the cells at 4˚C for ~60 minutes. Heat shock the cell- DNA mixture for 45 

seconds at 85°C, then rapidly reduce the temperature of the transformation by immediately 

chilling the tube to 4˚C for minimally 5 minutes. 

4. Carefully spread the resultant cell mixture onto gel-rite solidified solid media containing 

only a 19 amino acid mixture (-trp) as a nutrient source. The lack of tryptophan in the media 

inhibits the growth of all tryptophan auxotrophic cells. However, the reintroduction of a complete 

tryptophan biosynthetic pathway by means of plasmid-encoded proteins capable of catalyzing 

the terminal steps in tryptophan biosynthesis restores prototrophic cells. Place the dry, inverted 

plates in a sealed anaerobic vessel fitted with a GasPak  (BD; 260678) at 85°C for ~4 days. The 

anaerobic vessel should not be artificially pressured with gases before incubation, and care 

should be taken to safely vent temperature- and microbiological-induced pressurized gases 

when opening the anaerobic vessel. 

5. Identify initial colonies resultant from transformation. T. kodakarensis colonies are nearly 

colorless, rise only slightly above the plane of the surface of the medium, and typically reach a 
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maximum diameter of only ~2 mm, although colony morphology is often irregular. Proper 

identification of colonies is non-trivial given the propensity of defects in the solid-medium to 

mimic small colonies. T. kodakarensis colonies are often identifiable by halos of  reduced  

opacity in the solid medium, and occasionally by dark centers. Presumptive colonies are lifted 

from the medium (typically with a sterile pipette tip), resuspended, and serial 

diluted in 0.8X ASW. Several dilutions are necessary to yield single colonies in step 6 

(below), as a typical T. kodakarensis colony contains ~106 cells. 

6. Aliquots of serial diluted colonies are applied as small spots to gel-rite solidified media 

containing 13 µM mevinolin. This second round of selective pressure eliminates all cells not 

carrying the desired plasmid construct and ensures clonal populations of cells for subsequent 

studies. Colonies should be allowed to form (as above) on ASW-YT-S based medium 

containing 13 µM mevinolin for ~48 hours at 85˚C in a sealed anaerobic vessel fitted with a 

GasPak. 

7. Discrete single colonies resultant after two days growth on gel-rite solidified ASW-YT-S 

+ 13µM mevinolin media can be lifted and used to inoculate ~10 ml liquid cultures of ASW-

YT-S + 13µM mevinolin medium. It is critical to ensure that the desired plasmid is retained in the 

clonal culture by physically purifying the plasmid to verify its presence as a plasmid. At a 

frequency of approximately just 1%, plasmid sequences can be randomly incorporated into the 

T. kodakarensis genome. After anaerobically inoculating and sealing the culture, incubate the 

culture at 85˚C for ~24 hours to permit growth to stationary phase. 

 

T. kodakarensis plasmid prep protocol. 

1. Anaerobically and sterilely remove ~5 ml of culture medium from the serum vial, and 

aerobically harvest the cell mass at room temperature via centrifugation. Discard supernatant 

and resuspend the cell pellet in 500 µl 100 mM Tris-HCl pH7.5, 50 mM EDTA, and 4 M NaCl. 
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2. Add 25 µL 20% SDS and mix well by vortexing to solubilize the cellular membranes. 

4. Add 20 µL freshly prepared 5 M NaOH and mix well by vortexing to fully lyse the cells. 

Incubate ~3 minutes at room temperature (RT). 

5. Add 400 µL 3 M potassium acetate pH 4.8, mix gently by inverting tube, and allow 

lysate to coagulate at RT for 1-2 minutes. 

6. Centrifuge at 15,000 rpm for ~10 minutes at RT to clear the cellular debris from the solution. 

7. Carefully remove the resultant clarified cellular lysate to new tube. Add one- tenth 

volume 3 M sodium-acetate pH 5.2, then seven-tenths volume 100% isopropanol to the 

solution. Mix thoroughly, then spin at ~15,000 rpm in a bench top centrifuge to pellet the 

nucleic acids. Discard the supernatant and air dry the resulting pellet. Resuspend the pellet 

of nucleic acids in ~20 µl 10 mM Tris-HCl pH 8.0. 

8. Transform ~3 µl of recovered plasmid DNA into a 50 µL aliquot of XL1-blue competent 

cells. Plate on LB-AMP and incubate at 37°C overnight. Recovery of AmpR-colonies from the 

transformation is used to verify plasmid recovery and maintenance in the original T. 

kodakarensis culture. Plasmid recovery from E. coli using established techniques followed by 

sequencing is used to verify retention of the desired mutational variants in the original T. 

kodakarensis cultures. 

 

Preparation of gel-rite solidified media. 

The optimal growth temperature of T. kodakarensis is 85˚C. These temperatures 

demand use of glass petri-plates and specialized agars that retain solid-form at elevated 

temperatures.  The use of gel-rite, which activates and solidifies within ~30 seconds upon 

exposure to divalent cations, in an artificial sea water based medium necessitates an 

accurate and rapidly deployed mechanism to yield anaerobic, solid media for genetic 

manipulations. Preparation of solid-medium with only a pure amino-acid based nutrient source: 
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Combine 50 ml 2X ASW and 500 µl of 200X trace minerals in a 100 ml glass serum bottle and 

seal bottle (bottle #1) with a temperature resistant septum and crimped aluminum ring. Also 

combine 50 ml 18 mega-ohm purified water and 1.0 g gelrite in a 100 ml glass serum bottle and 

seal bottle (bottle #2) with a temperature resistant septum and crimped aluminum ring. 

Autoclave both bottles at 121˚C for 20 minutes and slowly exhaust the chamber using a liquid 

cycle. When internal autoclave temperature reaches ~95˚C, remove the contents and rapidly 

transfer the heated materials inside an anaerobic chamber.  Carefully open bottle #1, add 5.0 ml 

20X 19-AA mixture, 100 µl 1000X vitamin mixture, and 200 µL 500X polysulfides solution. 

Carefully open bottle #2, add the entirety of bottle #1 into bottle #2, gently swirl, and 

quickly dispense the contents into four glass plates (~25 ml/plate). The media will solidify 

fully in ~30 seconds following the mixture of bottles #1 and #2. 

Preparation of solid-medium with a rich nutrient source: Combine 50 ml 2X ASW, 500µL 

2000X trace minerals, 0.5 g yeast extract, and 0.5 g tryptone in a 100 ml glass serum bottle 

and seal bottle (bottle 1) with a temperature resistant septum and crimped aluminum ring. 

Also combine 50 ml 18 mega-ohm purified water and 1.0 g gelrite in a 100 ml glass serum 

bottle and seal bottle (bottle #2) with a temperature resistant septum and crimped aluminum 

ring. Autoclave both bottles at 121˚C for 20 minutes and slowly exhaust the chamber using a 

liquid  cycle. When internal autoclave temperature reaches ~95˚C, remove the contents and 

rapidly transfer the heated materials inside an anaerobic chamber. Carefully open bottle #1, 

and add 100 µl 1000X vitamin mixture and 200 µL 500X polysulfides solution. When desired, 

mevinolin should be added here. Carefully open bottle #2, add the entirety of bottle #1 into 

bottle #2, gently swirl, and quickly dispense the contents into four glass plates (~25 ml/plate). 

 

 

 

 



  47 

Biomass of T. kodakarensis for protein purification of RNAP variants. 

T. kodakarensis is able to use elemental sulfur (S˚) and/or protons as a terminal electron 

acceptor, thereby generating H2S or H2 respectively during growth. A recent transcriptomics 

study revealed that the abundance of transcripts encoding T. kodakarensis TFE (TK2024) was 

most abundant when the cultures were supplied with both S˚ and grown glycolytically in the 

presence of pyruvate. Liquid cultures of TS517 carrying pLC70, pJW1, pJW2, and pJW3 were 

therefore grown in ASW-YT-S˚-pyruvate supplemented with 13 µM mevinolin and harvested at 

mid-exponential growth phase at an OD600 of ~0.4. 

 

Protocol for growth of liquid T. kodakarensis cultures and collection of biomass. 

1. Liquid medium is composed of 1X artificial sea water (ASW) supplemented with 0.5% (w/v) 

tryptone, 0.5% (w/v) yeast extract, 0.5% (w/v) pyruvate and 1X trace mineral solution. Media is 

prepared using boiled, 18 mega-ohm water to reduce overall O2 content. 1.2 L of media is 

autoclaved (20 minutes, 121˚C, with a liquid exhaust cycle) in septum sealed 2 L pyrex vessels. 

Care should be taken not to exceed this ratio to ensure vessel integrity under high internal 

pressures. Always autoclave media in a secondary explosion proof container and employ 

necessary safety equipment. 

2. Transfer vessels containing sterilized medium within an anaerobic chamber, sterilely add 2.0 

g/L of finely pulverized elemental sulfur (flowers of sulfur). Mevinolin is added to 13 µM [final]. 

Add 1 mL/L of 1000X vitamin mixture (recipe available in 3.1.3. below). Inoculate media with an 

appropriate amount of T. kodakarensis culture (1:100). 

3. Incubate sealed vessel at 85˚C until an OD600 ~ 0.4 is achieved. 

4. Harvest biomass (aerobically, 5000 x g) and discard supernatant.  

5. Store pellets at -80˚C. 
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Protein purification and co-isolation of TFE with RNAP. 

Purification of in vivo assembled RNAP containing ectopically expressed and affinity 

tagged RpoE, in WT and mutationally varied forms from pJW1, pJW2, and pJW3, should permit 

co-purification of TFE. If the introduced variants disrupt TFE interaction with RpoE in the context 

of RNAP holoenzyme, a discrepancy in the yields of TFE co-purifying with RNAP is anticipated. 

Ni2+-affinity chromatography is employed for an initial purification of RNAP away from crude cell 

lysate.  T. kodakarensis encodes several protein complexes with a natural affinity for the Ni2+-

charged affinity matrix, only through more exhaustive chromatographic purifications is highly 

purified RNAP recovered. 

 

Protocol for RNAP purification.  

1. Resuspend biomass (3 mL per gram) in 25 mM Tris-HCl pH 8.0, 1 M NaCl, 10% (v/v) 

glycerol and lyse by repeated freeze/thawing (-80˚C to 85˚C). Sonicate until all viscosity is lost 

signaling complete shearing of the nucleic acids. 

2. Clarify lysate by centrifugation (15,000 x g). Discard pelleted debris. 

3. Slowly add sufficient 30% 8K PEG in 2 M KCl to achieve a final concentration of 6% 8K 

PEG. Stir for ~1 hour at 4°C to precipitate nucleic acids. Clarify lysate by centrifugation (15,000 

x g). Discard pelleted debris. 

4. Load the clarified supernatant over a 5 mL Ni2+-charged Hi-Trap chelating column (pre-

equilibrated with 25 mM Tris-HCl pH 8.0 containing 1 M NaCl and 10% (v/v) glycerol) attached 

to a chromatography system. Discard flowthrough. 

5. Wash the column with minimally 20 column volumes (CV) 25 mM Tris-HCl pH 8.0 containing 

1 M NaCl and 10% (v/v) glycerol. Continue to flush the column with 25 mM Tris-HCl pH 8.0 

containing 1 M NaCl and 10% (v/v) glycerol if substantial protein elution can be detected by 

monitoring the UV absorbance of the eluant. Elute the bound proteins, including RNAP, with a 
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~30 CV linear gradient from 25 ml Tris-HCl pH 8.0 containing 1 M NaCl and 10% (v/v) glycerol 

to 25 ml Tris-HCl pH 8.0 containing 0.1M NaCl, 10% (v/v) glycerol, and 100 mM imidazole. 

6. Collect 1-2 ml fractions during the elution. 10 µl of peak fractions (identified via UV 

absorbance) are combined with 2 µl 6X SDS-loading buffer and boiled for 3 minutes then 

separated using 10% discontinuous SDS-PAGE. 

7. Fractions containing RNAP (molecular weight ~380,000 Kd; 11 subunits) should be 

identified by SDS-PAGE and coomassie staining. 

8. Fractions containing RNAP should be pooled, diluted with 25 mM Tris-HCl pH 8.0, 0.1 mM 

EDTA, 10 mM MgCl2, 10% (v/v) glycerol until the conductivity of the sample is below the 

conductivity of 25 mM Tris-HCl pH 8.0, 0.1 mM EDTA, 10 mM MgCl2, 200mM KCl, 10% (v/v) 

glycerol. The diluted sample should be loaded onto and resolved through a 1 ml Mono Q 

column. Discard flowthrough. The column should be washed with minimally 20 CV 25 mM Tris-

HCl pH 8.0, 0.1 mM EDTA, 10 mM MgCl2, 10% (v/v) glycerol containing 200 mM KCl, then 

bound proteins should be eluted with a linear gradient of 200 mM to 400 mM KCl in 25 mM Tris- 

HCl pH 8.0, 10 mM MgCl2, 10% (v/v) glycerol. 

9. Collect 1-2 ml fractions during the elution. 10 µl of peak fractions (identified via UV 

absorbance) are combined with 2 µl 6X SDS-loading buffer and boiled for 3 minutes. 

11. Fractions containing RNAP (molecular weight ~380000 Kd; 11 subunits) should be 

identified by SDS-PAGE and coomassie staining. 

12. Fractions containing RNAP should be pooled and concentrated to < 1 ml using 100 kDa 

molecular-weight cut-off centrifugal concentrators. Concentrated material should be loaded onto 

and resolved through a Superdex 200 16/60 column equilibrated with 20 mM Tris-HCl pH 8.0, 

0.1 mM EDTA, 100 mM NaCl at 0.2 ml/min. 

13. Collect 1-2 ml fractions during the elution. 10 µl of peak fractions (identified via UV 

absorbance) are combined with 2 µl 6X SDS-loading buffer and boiled for 3 minutes. 
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14. Fractions containing RNAP (molecular weight ~380000 Kd; 11 subunits) should be 

identified by SDS-PAGE and coomassie staining. Pool appropriate fractions. 

15. Fractions containing RNAP should be pooled and loaded onto a 1 ml heparin column 

equilibrated with 200 mM Tris-HCl pH 8.0, 100 mM NaCl. Bound proteins should be isocratically 

eluted with 200 mM Tris-HCl pH 8.0 and 1M NaCl. 

16. Collect 1 mL fractions during the elution. 10 µl of peak fractions (identified via UV 

absorbance) are combined with 2 µl 6X SDS-loading buffer and boiled for 3 minutes. Fractions 

containing RNAP (molecular weight ~380,000 Kd; 11 subunits) should be identified by SDS-

PAGE and coomassie staining. Fractions containing RNAP should be identified by SDS-PAGE 

and coomassie staining. These fractions should be pooled. Secure samples in 100kD dialysis 

tubing and dialyze samples (twice, for at least 6 hours) against minimally 1000-volumes protein 

storage buffer. Recover purified protein from the dialysis tube and store at -20˚C.
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CHAPTER 3 
 
 
 

FACTOR-DEPENDENT ARCHAEAL TRANSCRIPTION TERMINATION3 
 
 
 

3.1 Introduction 
 

Each stage of transcription offers regulatory potential and increasing evidence supports 

that post-initiation transcription regulation may dominate in many instances (1–6).  Although 

processive, transcription elongation is not uniform and regulated pausing through interactions 

with DNA- or nascent RNA-sequences, or through the action of conserved global and gene-

specific regulators influences the elongation of RNA polymerase (RNAP) (6–20).  Archaeal 

transcription is reliant on initiation factors with eukaryotic homology, but their access to promoter 

sequences is often limited or facilitated by bacterial-like transcription factors. In contrast, 

archaeal transcription elongation is seemingly regulated by universal or archaea-eukaryotic 

specific homologous factors (2, 21–33). 

The ultimate control of transcription elongation is provided by factors and sequences that 

can disrupt the normally extremely-stable transcription elongation complex (TEC) to terminate 

transcription and release the nascent transcript and RNAP from the DNA template (3, 34–47).  

The archaeal RNAP is sensitive to intrinsic transcription termination.  DNA sequences encoding 

poly-U rich sequences are sufficient to disrupt the archaeal TEC both in vivo and in vitro, and 

although surrounding sequence context can influence intrinsic transcription termination 

efficiency, there is no requirement for RNA structure for intrinsic termination (38, 41, 46, 48).  

Bioinformatic analyses of archaeal genomes reveals that many genes are organized into 

                                                        

3 The work in this chapter was published under: Walker JE, Luyties O, Santangelo TJ (2017) 
Factor-dependent archaeal transcription termination. Proc Natl Acad Sci.  
 
Santangelo TJ and I conceived the content, co-wrote the manuscript, contributed in 
experimental design and data interpretation. Santangelo TJ, Luyties O, and I contributed in data 
collection and analysis. 
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operons and further that approximately one-half of genes and operons have sequences near 

their 3’-end that are consistent with intrinsic termination signals (46, 49–51).  The absence of 

consensus intrinsic termination signals for many genes is concerning given the gene dense 

nature of many archaeal genomes.  The genome of Thermococcus kodakarensis is >92% 

coding and the average intergenic space (after accounting for genes in operons) is only ~50 bp 

(52).  In the absence of an intrinsic termination sequence, the stability of the TEC would be 

predicted to easily permit continued elongation from one gene to the next and thus remove the 

normal regulation imposed on expression of downstream sequences. 

Intrinsic transcription termination has been demonstrated in all life, but protein factors 

that can disrupt the TEC have only been characterized for bacteria and eukarya. Insufficient 

intrinsic termination sequences for each gene and operon, combined with the observation that 

polar repression of gene expression occurs in the absence of coupled transcription and 

translation (i.e. polarity), as well as the recent description of transcription coupled DNA repair 

(TCR) in euryarchaea argued strongly that factor(s) were encoded in archaeal genomes that 

would be capable of disrupting TECs (52, 53).  Bioinformatic analyses of archaeal genomes 

have identified some genes with homology to eukaryotic factors involved in RNA 3’-end 

formation (including cleavage and polyadenylation specificity factor subunits), but, to date, no 

biochemical activities have been described from archaeal cells that can disrupt the archaeal 

TEC. Importantly, these analyses have not identified any obvious homologues of the well-

characterized bacterial termination factors Rho (54) or Mfd (55) although our studies predict that 

analogous activities are present in archaea cells. 

We established a biochemical assay, using a robust in vitro transcription system 

dependent on purified RNAP and basal initiation factors from the model hyperthermophilic 

archaea Thermococcus kodakarensis to purify the first archaeal-encoded activity that can 

disrupt the TEC (38, 56).  Our assay is dependent on the disruption of stalled archaeal TECs 

that are normally extremely stable and remain intact even when challenged with the strong 
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replicative minichromosome maintenance (MCM) helicase (57). The factor so purified, in native 

or recombinant form, requires ATP-hydrolysis to disrupt the stalled TEC and release both RNAP 

and the nascent transcript to solution.  The encoding gene, TK0566, is universally conserved in 

known euryarchaeal genomes, and thus the termination factor was named Eta for Euryarchaeal 

Termination Activity (58, 59). 

Eta is annotated as a DEAD-box RNA helicase (58, 60), but our analysis demonstrates 

that Eta does not require access to the nascent transcript but does require upstream DNA 

sequences to disrupt the archaeal TEC. Eta-mediated termination is not competitive with 

standard elongation rates, arguing that Eta targets stalled or arrested elongation complexes. 

Although conserved, deletion of TK0566 (encoding Eta) from the genome of T. kodakarensis 

was possible. Deletion of Eta does not influence polarity, suggestive of at least one additional 

termination factor in T. kodakarensis, but does render the cells sensitive to DNA damaging 

agents. The nucleic acid requirements, slow rate of termination and the sensitivity of strains 

lacking Eta to mutagens suggests that Eta may function analogously to the bacterial 

transcription-repair coupling factor Mfd. The combined in vitro and in vivo characterization of Eta 

demonstrates that factor-dependent transcription termination is employed in all extant life and 

reveals similarities in TEC stability and susceptibility to factor-dependent termination. 

 

3.2 Results 

Identification of a Euryarchaeal Transcription Termination Activity (Eta). 

Our purified in vitro transcription system from T. kodakarensis permits promoter-directed 

transcription initiation on DNA templates attached to a solid-support, allowing stable TECs to be 

generated at defined template positions by nucleotide deprivation (Figure 3.1A) (56, 61). TECs 

are resistant to repeated washing and 32P-labeled nascent transcripts are detected in the bound 

or pellet fraction. Any RNAs released by dissociation of the TEC can be recovered from the 

supernatant fraction, and thus the integrity of TECs can be monitored by the distribution of  
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Figure 3.1. Identification of an archaeal termination factor. A. DNA templates contain a 
biotin moiety (blue B), a strong promoter, PhmtB, a 376bp G-less cassette, and permit elongation 
to produce a full-length transcript of +450. B. Stalled TECs at the end of a G-less cassette 
(TEC+376) were incubated with cell lysate to identify termination factors. C. Active fractions were 
identified as those that did not produce +450 transcripts when supplemented with lysate and 
ATP. D. Proteins identified via Mass Spectrometry in purified active fractions. 
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transcripts between the pellet and supernatant fractions.  Washed, NTP-starved TECs can also 

be stimulated to resume elongation upon NTP addition, and the ability to resume elongation can 

be used to assess the stability of the TEC (Figure 3.1B). 

Washed TECs stalled at the end of a 376 nt G-less cassette (TEC+376) (Figure 3.1A) 

were incubated with partially purified T. kodakarensis lysates to permit any termination factors 

present an opportunity to act on the stalled TEC.  Previous studies demonstrated the resistance 

of stalled TECs to the activities of purified strong helicases (57), suggesting that only legitimate 

transcription termination factors would act to disrupt the stalled TECs. Reactions were then 

supplemented with all four NTPs to determine if the TEC could resume transcription and 

generate a run-off transcript of 450 nt (Figure 3.1B).  Fractionated lysates were defined as   

‘active’ if the TECs incubated with these fractions were unable to resume elongation upon NTP 

addition (Figure 3.1C).  Given that all known transcription termination factors are energy-

dependent enzymes, an additional constraint, namely ATP-dependence of presumptive 

termination activity, was added to define ‘active’ fractions. 

Despite complicating RNase contamination, several activities were chromatographically 

identified in T. kodakarensis lysates that were designated “active” fractions, implying the 

presence of multiple termination factors or the association of a single termination factor in 

differentially separate complexes. The complexity of the active fraction was refined by repeated 

chromatographic separations until only a few proteins were present.  Separation by SDS-PAGE, 

followed by excision and mass spectrometry of the dominant bands identified the major proteins 

present in this purified active fraction. Of the four abundant factors, the ~96 kDa product of 

TK0566 was the dominant factor deemed responsible for the apparent ATP-dependent 

transcription termination activity (Figure 3.1D).  
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Eta is an energy-dependent transcription termination factor. 

The failure of TECs to resume elongation upon NTP addition (Figure 3.1C) was 

suggestive but not definitive evidence of a transcription termination factor.  To eliminate 

concerns of any additional or unidentified factor being responsible for the presumed termination 

activity, the protein product of TK0566 (832 aa; termed Eta; Figure 3.2A) was recombinantly 

expressed and purified (Figure 3.2B). To demonstrate that Eta is a bona fide termination factor 

recombinant Eta was added to in vitro transcription assays containing stalled, washed TECs+58. 

TECs were stalled by NTP-deprivation on biotin-labeled DNA templates attached to streptavidin-

coated paramagnetic particles (Figure 3.2C). This solid-support permits washing and separation 

of pellet and supernatant fractions to monitor dissociation of the TEC. In the absence of Eta, or 

in the presence of Eta but in the absence of an energy source, just 4-8% of TECs+58 dissociate 

and release transcripts to solution (Figure 3.2D).  In contrast, addition of Eta resulted in ATP-

dependent release of RNA transcripts to solution (Figure 3.2D) resulting from dissociation of 

nearly half of all TECs. ATP and dATP both support Eta-mediated transcription termination, and 

dATP is used throughout to avoid supplying RNAP with ATP.  

 

Eta-mediated transcription termination is dependent on ATP hydrolysis. 

Eta is a superfamily II helicase family member and is annotated as a DEAD/DEAH box 

RNA helicase (59). Conserved Walker A and B motifs that are responsible for the binding and 

hydrolysis of ATP, respectively are easily identified in the central P-loop NTPase domain of Eta 

(Figure 3.2A). The N-terminus of Eta (residues 1-193) is less conserved and appears to contain 

a Zn-finger motif. The Walker B motif consensus sequence ‘hhhhDE’, contains an aspartate (D) 

residue that coordinates Mg2+ and a glutamate (E) that is essential for the NTP hydrolysis (62, 

63). 

 

 



  61 

 

Figure 3.2. Eta is an energy-dependent transcription termination factor. A. Representation 
of Eta highlighting the N-terminal domain (green), the P-loop NTPase domain (gray), and the 
Walker A and B motifs (blue and orange, respectively). B. Recombinant Eta and Eta variants 
(EtaD344A/E345A and EtaΔ1-193) were purified for use during in vitro transcription. C. DNA templates 
contain a biotin moiety, PhmtB, a 58 bp C-less cassette, and permit elongation to produce full-
length +128 transcripts. D. Eta requires ATP or dATP to mediate transcription termination. E. 
Eta requires dATP hydrolysis to mediate transcription termination. F. EtaΔ1-193 retains 
termination activity in vitro.  
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To determine if Eta-mediated transcript release is dependent on ATP-binding and 

hydrolysis ATP was replaced with ADP and the non-hydrolysable analog AMP-PNP but Eta 

could not stimulate RNA release to the supernatant in the presence of either co-factor (Figure 

3.2E). An Eta variant (EtaD344A+E345A; Figure 3.2B), wherein two critical Walker B residues were   

replaced by alanine (D344A + E345A), cannot stimulate transcription termination above 

background levels (Figure 3.2E). Near homogenous preparations of full-length Eta and 

EtaD344A+E345A were possible, but laborious. Deletion of the less conserved N-terminus (aa 1-193) 

resulted in a protein that chromatographed more uniformly and retained full termination activity 

in vitro (Figure 3.2F). 

 

Eta-mediated transcription termination is relatively slow and is not competitive with 

transcription elongation at physiological NTP concentrations. 

Addition of Eta to stalled TECs results in a near linear but slow rate of transcript release 

to solution (Figure 3.3A and 3.3B) when dATP is provided. Transcription elongation and known 

mechanisms of factor-dependent transcription termination are in competition in vivo and in vitro. 

Eta was added to stalled or slowly elongating TECs to monitor the ability of Eta to release 

transcripts from active TECs (Figure 3.3C). When TECs were generated, washed, and 

incubated in the absence of NTPs, most TECs remained intact but backtracked and shortened 

their nascent transcripts, presumably by a combination of endonucleolytic cleavage and reverse 

catalysis (Figure 3.3C, lanes 3&4). TECs could be maintained in the forward position by 

supplementing wash- and incubation-buffers with 10 µM ATP, GTP and UTP (Figure 3.3C, 

lanes 1&2). Addition of all four NTPs, at increasing concentrations, lead to release of the TECs 

from the C-less cassette and continued elongation to generate full-length +128 nt transcripts. 

Elongation to +128 was limited by sequences that direct pausing near ~+70 at very low NTP 

concentrations. With the exception of full-length +128 transcript, minimal transcript release to 

solution was observed in the absence of Eta addition. 
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Figure 3.3. Eta mediates termination of stalled or slowly elongating TECs. A. Eta mediates 
the slow release of transcripts from stalled TECs+58. B. Quantification from A. C. Eta-mediated 
termination limits backtracking and is only competitive with transcription elongation at low NTP 
concentrations. M, labled ssDNA marker to provide an approximation of RNA lengths.  
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In contrast addition of Eta to stalled or very slowly elongating TECs resulted in 

substantial transcript release to solution (Figure 3.3C, lanes 13-20). Eta released most stalled 

TECs to solution (Figure 3.3C, lanes 13 & 14), and addition of Eta limited the percentage of 

TECs that backtracked and shortened their nascent transcripts (Figure. 3.3C, lanes 15 & 16) 

suggestive that Eta keeps RNAP in the forward configuration and/or pushes forward 

backtracked complexes. Eta-mediated termination was most efficient for TECs that retained +58 

transcripts and presumably reflect fully forward isomerization variants of the TEC (Figure. 3.3C, 

lanes 15 & 16). Eta was also capable of disrupting TECs stalled for long intervals at the low 

concentration NTP-dependent pause at ~+70 (Figure 3.3C, lanes 17-22), but as the interval of 

the pause was shortened by increasing NTP concentrations, the ability of Eta to direct 

transcription termination was compromised. At just 80 µM NTPs, Eta-mediated termination was 

non-competitive with elongation, with the exception of a small percentage of TEC+58 that likely 

failed to elongate quickly. Eta-mediated termination therefore appears too slow to result in the 

governance of coupled-transcription translation that is necessary for polarity. 

 

Eta interacts with RNAP in vivo. 

Genetic techniques were employed to generate a strain of T. kodakarensis wherein 

sequences encoding affinity- and epitope-tags were appended to the N-terminus of TK0566 

(64). The resultant strain produced full-length, N-terminally tagged Eta from the natural TK0566 

locus under normal regulatory control. Cell lysis, followed by gentle nickel-affinity purifications of 

complexes containing His6-tagged Eta were performed, and the identity of co-purifying partners 

revealed by mass spectrometry (Table 3.1). Several subunits of RNA polymerase were 

identified, supporting Eta-RNAP interactions in vivo. Several large helicases, an ATPase and 

NusA were also identified as Eta partners, suggesting that Eta may mediate interactions that 

facilitate events in addition to termination of TECs. 
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Gene Annotation MASCOT Molecular Weight, kDa 

TK0566 DEAH box RNA helicase 47,546 96 

TK1314 ATPase 6,035 50 

TK1015 Large-helicase related protein 1,093 106 

TK1332 RNA helicase Ski2-like protein 5,483 129 

TK1083 RNAP subunit beta 1,268 127 

TK1081 RNAP subunit A’’ 216 44 

TK1079 NusA 192 16 

TK1503 RNAP subunit D 144 29 

TK1499 RNAP subunit N 123 8 

TK1082 RNAP subunit alpha 111 103 

6
Table 3.1. Proteins copurifying with His

6
-Eta from cellular lysates.   
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Eta-mediated termination requires access to upstream DNA sequences. 

Despite the ability to identify RNAP in purifications of His6-Eta from T. kodakarensis cell 

lysates, Eta does not retain long-lived associations with RNAP in solution (Figure 3.4).  Eta 

likely targets TECs through association with upstream or downstream DNA sequences or 

through the nascent transcript. To address the requirements for upstream DNA sequences in 

Eta-mediated transcription termination, stalled TECs were generated on templates that 

contained recognition sequences for the Ssp1 restriction endonuclease within the C-less 

cassette (Figure 3.5A and 3.5B). TECs were stable during the Ssp1 digestions, and monitoring 

radiolabeled DNA before and after cleavage demonstrated digestion of each template and 

release of the TEC to solution (Figure 3.5B). Stalling TECs by NTP-deprivation at +58 on 

template #1 allowed Ssp1 digestion at +18, thus retaining at least a full turn of accessible 

upstream DNA on the TECs that were released to solution. In contrast, Ssp1 digestion of 

template #2 at +37 resulted in release of TECs with minimal upstream sequences, as the 

footprint of TECs likely extends to approximately ~+40. Digestion of templates containing the 

+37 Ssp1-site were less efficient at releasing TECs to solution than the digestion at +18 in the 

presence of a TEC+58 (Figure 3.5B; lanes 7, 8, 15 & 16). The decrease in digestion efficiency is 

most likely due to RNAP obstructing access of Ssp1 to this RNAP-proximal site.  

Radiolabeling the nascent transcripts in Ssp1-released TECs allowed the ability of Eta to 

disrupt the TECs to be inferred from the ability of the TECs to elongate upon addition of NTPs 

(Figure 3.4C). Ssp1 digestion was necessary to release any significant TECs to solution (Figure 

3.5C; lane 2 vs 4 & 6 vs 8), and in the absence of Eta, resumed elongation upon NTP addition 

was readily evident by extension of the RNA to generate +128 nt transcripts (Figure 3.5 lanes 3 

& 8). On the template with Ssp1-site 1, digestion produced TECs in solution (Figure 3.5; lane 4) 

that were largely not extended when Eta was present (Figure 3.5; lane 5), suggestive of Eta-

mediated transcription termination being active under such conditions. 
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Figure 3.4. Eta and RNAP did not form long-lived interactions. A pull-down experiment was 
employed using a Nickel resin and only RNAP-his6 (positive control), only Eta (negative control) 
and RNAP-his6 + Eta. The portion of the sample that did not stick to the resin is indicated as 
‘flow-through’ and the portion of the sample that eluted when a high imidazole buffer was added 
is indicated as ‘elution’. Samples were resolved on an SDS-PAGE with a marker shown in kDa. 
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Figure 3.5. Eta-mediated termination requires upstream DNA sequences. A. DNA 
templates are identical except for the Ssp1-recognition sequences at positions +18 (Site 1) and 
+37 (Site 2) respectively. B. Ssp1 digestion releases stalled TECs+58 to solution. DNA templates 
were radiolabeled at the 5’ position of the template strand (red dot). C. Upstream DNA is 
required for Eta-mediated transcription termination in vitro.  
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In contrast, Ssp1-digestion of DNA templates containing site 2 produced TECs in solution 

(Figure 3.5; lane 9) largely were elongated to +128 (Figure 3.5; lane 10). Suggesting that Eta-

mediated termination was not active when upstream DNA sequences were removed from the 

TECs.  

To address requirements for downstream DNA for Eta-mediated transcription 

termination, TECs+58 were assembled on templates that contained minimal accessible 

downstream DNA (Figure 3.6A; upper panel). By use of short templates that would only permit 

elongation to generate TEC+80, essentially all downstream DNA sequences would be predicted 

to be enveloped by the TEC and not solvent accessible. Eta-mediated termination was efficient 

on such templates (Figure 3.6A; lower panel) suggestive that Eta-mediated transcription 

termination does not require downstream DNA sequences.  

Any requirements for or use of RNA transcripts to target TECs for Eta-mediated 

transcription termination were tested in two complementary formats.  First, (Figure 3.6B), 

TECs+20 were generated by NTP deprivation to limit the extent of enzyme-accessible transcript 

sequences. Approximately half of such TECs were unstable at high temperature, but Eta-

mediated transcription termination was still active, releasing nearly all transcripts to solution 

under such conditions (Figure 3.6B). 

Given the spontaneous instability of TECs with short transcripts, we were concerned that 

such complexes may not represent TECs that have fully transitioned from initiation to 

elongation. To more accurately determine the requirements for any enzyme-accessible 

transcript sequences for Eta-mediated transcription termination, we generated TECs+58, then 

added RNaseIf (an RNA endonuclease that cleaves at all RNA dinucleotide bonds) to cleave 

enzyme-accessible RNA to a minimum (Figure 3.6C). Generating stable TEC+58 (lanes 1 & 2) 

permitted 37˚C RNaseIf digestions (Figure 3.6C; lanes 3 & 4) that yielded stable TECs that 

contained a range of shortened, but RNAP-associated transcripts of just ~18-25 nucleotides on 

average.  
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Figure 3.6. Enzyme-accessible downstream DNA nor nascent RNA is required for 

effective Eta-mediated termination. A. Downstream DNA is dispensable for Eta-mediated 
termination. B. Enzyme-accessible RNA sequences are not required for effective Eta-mediated 
termination. C. RNase If digestion of stable TEC+58 eliminates enzyme accessible RNA but does 
not block Eta-mediated termination. 
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Challenging such complexes at physiological temperatures (85˚C, Figure 3.6C; lanes 5 & 6) 

resulted in minimal disassociation of TECs containing ~18-25 nt transcripts. Addition of Eta, 

however, resulted in release of the bulk of these complexes to solution  

Previous evidence shows that RNAP subunits E and F (i.e., the stalk domain) interact 

with the nascent RNA (65–69). Furthermore, it has been established that the deletion of the 

stalk domain has no effect on promoter-dependent transcription initiation, abortive transcript 

synthesis, transcript elongation or termination (69).  We hypothesized that RNase treatment 

using a RNAP variant deleted for the stalk domain would allow for more RNA to be exposed to 

solution and thus cleaved by RNase If. The experiment described above was repeated using a 

RNAPΔstalk variant (Figure 3.6C; lanes 9-16). Surprisingly, RNase If left an identical footprint in 

the presence and absence of the RNAP stalk domain. Challenging TEC+58 complexes at 

physiological temperatures (85˚C, Figure 3.6C; lanes 13 & 14) resulted in minimal 

disassociation of TECs containing ~18-25 nt transcripts. Addition of Eta, however, resulted in 

release of the bulk of these complexes to solution. The ability of Eta to drive release of 

transcripts from TECs with minimal enzyme-accessible RNA in the presence and absence of the 

RNAP stalk domain suggests that Eta-mediated termination is not reliant on RNA transcript 

sequences or the stalk domain of RNAP to mediate termination. 

 

Eta is non-essential but deletion impacts growth of T. kodakarensis. 

T. kodakarensis readily incorporates exogenous DNA into the genome permitting rapid 

and facile strain construction (70). Non-replicative plasmid sequences can be targeted via 

sequence homology and temporarily inserted, then excised from the genome to delete or modify 

a specific locus.  Established genetic techniques (71, 72) were employed to markerlessly delete 

the entirety of the TK0566 coding sequence from the T. kodakarensis genome (Figure 3.7A), 

and to introduce allelic changes to TK0566 such that a D344A + E345A variant Eta was 

encoded. Diagnostic PCRs (Figure 3.7B) using genomic DNA isolated from parental and 
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Figure 3.7. Eta is non-essential, is not responsible for polarity in vivo, but loss of Eta 
limits growth and increases DNA damage susceptibility. A. A map of the T. kodakarensis 

genome highlighting TK0566 and surrounding sequences. Primer binding positions 1-6 are 
designated by arrows. B. Diagnostic PCRs confirm deletion of TK0566 sequences. C. Deletion 
or inactivation of Eta hinders growth rate and final cell densities. The curves and errors shown 
represent means and standard averages of triplicate technical repeats of triplicate biological 
samples.  D. Western blots using anti-Eta antibodies confirm that deletion of TK0566 eliminates 
production of Eta in vivo. E. Semi-quantitative western blots using anti-Eta antibodies suggest 
that Eta is present in low concentrations in vivo. F. Eta is not responsible for polarity in vivo. The 
presence or absence of the nonsense codon in PF1848 is noted and the percent β-glycosidase 
activity is reported as the mean and standard average of triplicate technical repeats of triplicate 
biological samples. G. Deletion of Eta increases sensitivity to DNA damaging agents.  
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deletion stains confirmed excision of the TK0566 sequence from the natural locus and the 

absence of an amplicon resultant from primers complementary to TK0566 sequences eliminated 

concerns of genomic rearrangements or deletion of TK0566 from only some of the many 

genomes retained in T. kodakarensis cells (73). Amplification with primer pairs adjacent to 

TK0566 sequences (#1 and #5) result in ~3.8 Kbp and just ~1.2 Kbp amplicons from parental 

(TS559) and ΔTK0566 genomic DNA preparations, respectively.  Amplifications with primer 

pairs complementary to TK0566 sequences (#2 and #4), or with one primer complementary to 

TK0566 and one adjacent primer (#3 and #6) were successful only from TS559 genomic DNA 

preparations (Figure 3.7B). 

Deletion or inactivation of Eta slows and limits growth of T. kodakarensis (Figure 3.7C). 

Western blots using anti-Eta antibodies confirm loss of Eta in ΔTK0566 strains (Figure 3.7D). 

Semi-quantitative Western blots (Figure 3.7E), comparing the signal from purified Eta to the Eta-

signal present in the lysates of total T. kodakarensis cells, suggests that Eta is normally present 

at low (~50 copies per cell) levels compared to RNAP levels (~2,000-3,000 copies per cell). 

 

Eta is not responsible for polarity. 

Transcription and translation are tightly coupled in archaea and bacteria (74–76). 

Disrupting the normally tight association of transcription and translation results in polar 

repression of downstream expression due to premature factor-driven transcription termination 

(52, 77, 78). The bacterial termination factor Rho is responsible for polarity, but there are no 

Rho homolgous encoded in archaeal genomes. To determine if Eta is the factor responsible for 

polarity in T. kodakarensis we compared repression of expression of a downstream gene in an 

operon with non-sense codons introduced into an upstream gene in the same operon in strains 

with and without TK0566 (Eta) (Figure 3.7F). Activity from the downstream reporter gene was 

substantially reduced by introduction of nonsense codons into the upstream coding but the 
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degree of reduction was not changed by the presence or absence of Eta. These results indicate 

that Eta-mediated termination is unlikely to direct polarity and that another factor is encoded in 

T. kodakarensis that can disrupt the TEC. 

 

Deletion of TK0566 (Eta) increases sensitivity to DNA damaging agents. 

The requirements for Eta-mediated transcription termination – energy-dependence, a 

static or slowly elongating TEC, access to upstream DNA sequences and no requirements for 

downstream DNA or RNA sequences – are reminiscent of the only other prokaryotic factor 

capable of disrupting the TEC, namely Mfd. Mfd initiates RNAP removal and transcription-

coupled DNA repair (TCR) in Bacteria and cells deleted for mfd exhibit a mild phenotype to 

some DNA damaging agents (79, 80). Although TCR has not yet been investigated in T. 

kodakarensis, recent support for TCR in related euryarchaea has been provided (53), and thus 

we accessed the potential for Eta to influence DNA repair by challenging parental and Eta-

deleted strains of T. kodakarensis to common DNA damaging agents. Exposure to UV light 

limited the growth of both strains, but the strain deleted for Eta was substantially (at least an 

order of magnitude) more sensitive to UV exposure than the parental strain (Figure 3.7G, top 

panels). Introduction of the heterocyclic mutagen 4-nitroquinoline 1-oxide (4NQO) similarly limits 

cellular growth, and again the strain deleted for TK0566 is at least an order of magnitude more 

sensitive than the parental strain (Figure 3.7G, bottom panels). 

 

3.3 Discussion 

Processive transcription necessitates an extremely stable transcription elongation 

complex.  Biochemical and structural studies demonstrate that the overall stability of the TEC is 

composite, with inputs from RNAP-DNA, DNA-RNA, and RNAP-RNA interactions collectively 

stabilizing the elongation complex.  DNA sequences, and the encoded RNA sequences and 

structures that form within or adjacent to RNAP can disrupt these contacts and destabilize the 
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TEC driving transcription termination.  Intrinsic termination sequences often suffice to separate 

independent genes and operons by blocking continued downstream transcription, but not all 

termination events can be initiated via DNA sequence alone.  Scenarios arise in all life where 

the stable TEC may halt transcription at any position, most likely in response to protein 

roadblocks or DNA damage, and these arrested TECs must be removed for additional rounds of 

transcription to occur and to maintain genome stability.  In bacteria and archaea, transcription 

and translation are normally coupled and the uncoupling of these apparatuses offers regulatory 

potential that is exploited by factors (e.g. Rho in bacteria), that disrupt the TEC and thus limit 

downstream expression. 

We demonstrate, for the first time, archaeal factor-dependent transcription termination 

and characterize a novel bona fide archaeal transcription termination factor in vivo and in vitro.  

We purified this biochemical activity directly from cell lysates and then demonstrated that a 

single protein, now termed Eta, drives TEC disassembly and release of RNA to solution. Our 

results confirm that factor-dependent transcription termination is conserved in all life, and that 

the factors capable of disrupting the TEC are all energy-dependent (5, 36, 81–83). 

Factor-mediated disruption of the TEC in bacteria and eukarya is discriminatory to 

ensure that functional TECs are generally not prematurely terminated. Eta-mediated termination 

results in release of the nascent transcript from stalled or slow elongating TECs to solution, but 

does so slowly. Eta-mediated termination is not competitive with standard RNAP elongation 

rates thus functional archaeal TECs are unlikely to be targeted for disruption. In contrast, Eta 

likely targets RNAPs that are translocationally blocked at sites of DNA damage or that are 

arrested due to chromatin or other protein roadblocks.  

Deletion of TK0566 (encoding Eta) or introduction of mutations that encode inactive 

variants of Eta to the T. kodakarensis genome is possible and results in strains with slow-growth 

and DNA damage-sensitive phenotypes. Strains lacking Eta permitted investigation of the role 

of Eta in polar repression of transcription. The low abundance and slow activity of Eta were not 
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supportive of a general governance role in RNA 3’-end formation as is true for Rho in Bacteria, 

and we demonstrate that polar-repression occurs to the same extent in strains lacking Eta-

mediated termination. The presence of additional “termination active” fractions suggests T. 

kodakarensis encodes additional transcription termination factors and these presumptive 

transcription termination activities remain to be identified. The increased sensitivity of strains 

lacking Eta to DNA damage is suggestive of a potential role for Eta in recognition and removal 

of TECs stalled at DNA lesions. The presence of transcription coupled DNA repair (TCR) in T. 

kodakarensis and any role for Eta in archaeal TCR remains to be determined. 

Several models have been proposed for factor-dependent transcription termination and 

our results suggest that Eta follows a similar mechanism of termination as Mfd (Figure 3.8). Eta 

likely binds to the upstream DNA of stalled TECs and, using ATP-hydrolysis, translocates along 

the DNA pushing RNAP forward. In the absence of continued synthesis, RNAP is 

hypertranslocated and/or the transcription bubble collapses, resulting in disassociation of the 

TEC and transcription termination. 

The conservation of Eta in most archaeal-lineages argues that factor-mediated 

termination is commonplace in archaeal regulatory strategies. Evidence of additional termination 

factors likely encoded in T. kodakarensis is further supportive of post-initiation regulation 

strategies underlying archaeal transcription regulation. Continued insight into the mechanism of 

Eta-mediated transcription termination should provide insight into shared aspects of TEC 

stability and highlight susceptibilities of the TEC that can be exploited for regulatory control.  

In the future, it is necessary to further characterize the mechanism of Eta mediated 

termination and in Chapter 4 we begin to do such. In addition, it is critical to elucidate the role of 

Eta in vivo. We hypothesize that Eta is involved in transcription-coupled DNA repair and 

removes RNAPs that are paused/arrested at DNA lesions and potentially recruits DNA repair 

factors. Additional work is now being done to investigate the role of Eta in TCR but this work is 

outside the scope of this thesis. 
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Figure 3.8. Model of Eta-mediated transcription termination. Eta recognizes RNAP arrested 
at the site of a DNA lesion (yellow). Eta binds to the upstream DNA and uses ATP hydrolysis to 
push RNAP forward causing transcription bubble collapse and promoting transcription 
termination.
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The identification of Eta arose from a unique screening that used T. kodakarensis whole 

cell lysate and an in vitro transcription termination assay. This screening identified Eta and 

although other termination factors were not identified during the screening (due to high RNase 

activity) it was clear that there were other termination activities present. In addition, we have 

shown that Eta is not responsible for polarity and global 3’ end formation of RNA transcripts. 

This data strongly suggests that archaeal genomes encode a second transcription termination 

factor. Through the combination of bioinformatics, a high-throughput ATPase assay, and 

protein-protein binding assays we attempt to characterize additional termination factor(s) 

responsible for global 3’ end formation of RNA transcripts. The aforementioned studies are 

outlined in Chapter 5 of this thesis.  

   

3.5 Methods 

Strains and Plasmids. 

All of the T. kodakarensis strains used in this study were constructed by the same 

plasmid transformation, homologous recombination, and selection procedures as described 

previously (71). pQE-80L-Eta was generated to overexpress TK0566 (encoding for Eta). 

Plasmid variants (termed pQE-80L-EtaD344A/E345A and pQE-80L-Eta∆1-193) were generated via site-

directed mutagenesis (Agilent) to overexpress the Eta variant. 

 

Protein purifications. 

RNAP, TBP, and TFB were purified as described in ref (56). rEtaWt, rEtaD344A/E345A, and 

rEta∆1-193 were purified from Rosetta2 (DE3) cells carrying pQE-80L-Eta, pQE-80L-EtaD344A/E345A, 

or pQE-80L-Eta∆1-193 respectively, grown in LB medium supplemented with 34 µg/ml 

chloramphenicol and 40 µg/mL of ampicillin. Eta-expression was induced by addition of 0.5 mM 

final concentration IPTG and cultures were grown overnight (~16 hrs) at 17°C. Biomass was 

harvested, resuspended and sonicated in lysis buffer (25 mM Tris-HCl pH 6.8, 10% glycerol 
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(v/v), 0.1 mM EDTA, 100 mM NaCl, 1mM β-ME). Eta was partially purified from clarified cell 

lysate by heat treatment at 85°C for 20 minutes, followed by passage and fractionation of the 

cleared supernatant through three separate chromatographic columns (S-sepharose, heparin, 

and MonoQ; GE Healthcare). An identical purification was done for the EtaD344A/E345A and rEta∆1-

193 variants. Etawt and variant-Eta preparations were dialyzed into storage buffer (20 mM Tris-

HCl pH 8.0, 0.1 mM EDTA, 100 mM KCl, 50% glycerol) and quantified by Bradford assays (84).  

 

Biochemical Identification of Transcription Termination Activities in T. kodakarensis 

lysates.  

Biomass was recovered from T. kodakarensis strain TS413 (rpoL-HA-his6) grown at 

85°C to mid-exponential phase (OD600≅ 0.5). Cells were resuspended and sonicated in lysis 

buffer (25 mM Tris-HCl pH 8.0, 1 M NaCl, 10% (v/v) glycerol). Clarified cell lysate was loaded to 

a Ni2+-charged matrix. Flow-through was collected, diluted with 3 volumes of 25 mM Tris-HCl pH 

8.0, 10 mM MgCl2, 0.1 mM EDTA and loaded to a heparin column. The column was washed 

with the same buffer containing 160 mM NaCl and a linear gradient over 50 mL to a final 

concentration of 1 M NaCl was employed followed by an isocratic gradient to a final 

concentration of 2 M NaCl. Fractions collected were used during the in vitro transcription 

termination assay and deemed active or inactive (see in vitro transcription section below). Active 

fractions were pooled and diluted with 25 mM Tris-HCl pH 8.8, 10 mM MgCl2 to reduce 

conductivity and loaded to a Q-sepharose column. Fractions were eluted with a linear gradient 

over 80mL to a final concentration of 400 mM NaCl followed by an isocratic gradient to a 

concentration of 1 M NaCl. Active fractions were identified, pool, concentrated and loaded to a 

Superdex 200 column in 25 mM Tris-HCl pH 6.8, 10% glycerol. Active fractions were identified, 

pooled and loaded on a MonoS column. The sample was eluted over 25 mL to a final 

concentration of 1 M NaCl. Active fractions were identified, pooled and loaded to a MonoQ 

column. The column was washed with 5 mM NaCl and a linear gradient over 35 mL to a 
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concentration of 500 mM NaCl was employed followed by a 10 mL linear gradient with to a 

concentration of 1 M NaCl. Active fractions were identified and resolved on a 15% discontinuous 

SDS-PAGE, and four abundant proteins were identified using mass spectrometry.  

 

In vitro transcription.  

Plasmids pJW21, pJW29, pJW30 and pJW32 were generated by inserting a gblock 

(IDT) containing the PhmtB promoter and a 128 bp full-length cassette into the pQE-80L vector. 

The DNA templates used during in vitro transcription were amplified from plasmids using 

standard molecular biology followed by purification of the linear, biotinylated templates 

(Agencourt AMPure XP; Beckman Coulter).  

 

In vitro transcription reactions were generally carried out as previously described (56). 

Briefly, a linear DNA template containing a biotin moiety generated by PCR amplification (10 

nM), T. kodakarensis RNAP (40 nM), transcription factor B (80 nM), TATA-binding protein (80 

nM), and ApC (1.5 µM) were mixed to form a transcription buffer (final concentrations, 20 mM 

Tris-HCl pH 8.0, 5 mM MgCl2, 5 mM DTT, and 250 mM KCl).  

Figure 3.1C: To obtain stalled elongation complexes, starting NTPs (200 µM ATP, 200 

µM UTP, 10 µM CTP, and 10 µCi [α-32P]-CTP, 3,000Ci/mmol) were added to the reactions that 

were incubated at 85°C for 5 minutes. TEC+376 complexes were captured with streptavidin-

coated magnetic beads (Promega) and washed three times in wash buffer (20 mM Tris–HCl pH 

8.0, 0.1 mM EDTA, 250 mM KCl, 4 mM MgCl2, 20 µg/ml BSA). TEC+376 complexes were 

resuspended in 250 mM KCl, 20 mM Tris-HCl pH 8.0, 10 mM MgCl2, 2 mM DTT, then incubated 

at 85˚C -/+ 5 mM ATP in the presence or absence of partially purified lysates from T. 

kodakarensis. After 5 minutes, rNTPs (each rNTP at a final concentration of 200 µM) were 

added to the reaction and incubation at 85°C was continued for another 10 minutes. 5 reaction 

volumes of 1.2X STOP buffer (0.6 M Tris-HCl pH 8.0, 12 mM EDTA) containing 7 µg tRNA 
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(total) was added to the reaction which was then subjected to an equal volume 

phenol/chloroform/isoamyl alcohol (25:24:1, by vol) extraction. Radiolabeled RNA transcripts 

were precipitated from the aqueous phase with alcohol. Templates and RNA transcripts were 

separated on 10%, 12%, 15%, or 20% denaturing polyacrylamide gels containing 8M urea 

(National Diagnostic Urea Gel). Radiolabeled RNA was detected using phosphorimaging (GE 

Healthcare) and analyzed using GE Imagequant Software 5.2.  

Figure 3.2, Figure 3.3A and Figure 3.5A: To obtain stalled elongation complexes, 

starting NTPs (200 µM ATP, 200 µM GTP, 10 µM UTP, and 10 µCi [α-32P]-UTP) were added to 

the reactions and incubated at 85°C for 5 minutes. TECs +58 were captured with Ni2+-coated 

magnetic beads and washed three times in wash buffer then resuspended in a modified 

transcription buffer containing low concentrations of ATP, GTP, and UTP (20 mM Tris-HCl pH 8, 

250 mM KCl, 10 mM MgCl2, 2 mM DTT, 10 µM ATP, 10 µM GTP, and 10 µM UTP). 10 µL 

aliquouts were combined with equal volume reactions containing 15 mM Tris-HCl pH 8, 5 mM 

MgCl2, 2 mM DTT, +/- 4 mM energy source (dATP, AMP-PNP, or ADP), +/- 500 nM purified Eta 

or Eta-variant. Reactions were incubated at 85°C for 5 minutes (or in Figure 3.3A for 0, 1, 3, and 

5 minutes), and then streptavidin-coated magnetic beads were used to separate reactions into 

pellet and supernatant fractions. Pellet and supernatant fractions were incubated with STOP 

buffer, extracted, and RNA transcripts purified as above. RNA transcripts were quantified using 

GE Imagequant Software 5.2. Release was calculated by quantifying transcripts in the 

supernatant divided by transcripts quantified in the supernatant and pellet.   

Figure 3.3C: Washed TECs+58 were generated as above, then 10 µl aliquots were 

combined with equal volume reactions containing 15 mM Tris-HCl pH 8, 5 mM MgCl2, 2 mM 

DTT, 4 mM dATP, and +/- 500 nM Eta. Reactions in lanes 1&2 and lanes 13&14 were 

supplemented with 10µM each of UTP, GTP, ATP. The concentrations of NTPs provided to 

allow elongation to +128 during 7 minutes of incubation at 85˚C is listed in the Figureure. 

Streptavidin-coated magnetic beads were used to separate reactions into pellet and supernatant 
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fractions. Pellet and supernatant fractions were incubated with STOP buffer, extracted, and 

RNA transcripts purified and analyzed as above. 

Figure 3.4B: Washed TECs+58 were generated on 32P-labeled, biotinylated templates as 

above, then TEC+58 complexes were resuspended in digestion buffer (1X NEB Buffer 2.1, +/- 8U 

Ssp1-HF) and incubated at 37°C for 30 minutes. Streptavidin-coated magnetic beads were used 

to separate reactions into pellet and supernatant fractions. Pellet and supernatant fractions were 

incubated with STOP buffer, extracted, and DNA templates and RNA transcripts purified and 

analyzed as above. 

Figure 3.4C: Washed TECs+58 were generated on 32P-labeled, biotinylated templates as 

above, then TEC+58 complexes were resuspended in digestion buffer (1X NEB Buffer 2.1, +/- 8U 

Ssp1-HF) and incubated at 37°C for 30 minutes. Streptavidin-coated magnetic beads were used 

to separate reactions into pellet and supernatant fractions, and the pellet fraction was discarded. 

TEC +58 complexes retained in the supernatant were captured with Ni2+-coated magnetic beads 

and washed two times in wash buffer then resuspended in a modified transcription buffer 

containing low concentrations of ATP, GTP, and UTP (20 mM Tris-HCl pH 8, 250 mM KCl, 10 

mM MgCl2, 2 mM DTT, 10 µM ATP, 10 µM GTP, and 10 µM UTP, 4 mM dATP, +/- 500 nM Eta).  

Reactions were incubated at 85°C for 7 minutes followed by the addition of rNTPS (each rNTP 

at a final concentration of 200µM) to the reaction and incubation was extended at 85°C for 5 

additional minutes. 5 volumes of 1.2X STOP buffer containing 7 µg tRNA (total) was added, the 

reactions were extracted, RNA transcripts purified and analyzed as above.  

Figure 3.5B: To obtain stalled elongation complexes, starting NTPs (200 µM ATP, 200 

µM GTP, 10 µM UTP, and 10 µCi [α-32P]-UTP) were added to the reactions and incubated at 

85°C for 5 minutes. TEC +20 complexes were captured with Ni2+-coated magnetic beads and 

washed three times in wash buffer then resuspended in a modified transcription buffer 

containing low concentrations of ATP, GTP, and UTP (20 mM Tris-HCl pH 8, 250 mM KCl, 10 

mM MgCl2, 2 mM DTT, 10 µM ATP, 10 µM GTP, and 10 µM UTP). 10 µL aliquouts were 
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combined with equal volume reactions containing 15 mM Tris-HCl pH 8, 5 mM MgCl2, 2 mM 

DTT, 4 mM dATP, +/- 500 nM purified Eta. Reactions were incubated at 85°C for 5 minutes, and 

then streptavidin-coated magnetic beads were used to separate reactions into pellet and 

supernatant fractions. Pellet and supernatant fractions were incubated with STOP buffer, 

extracted, and RNA transcripts purified and analyzed as above. 

Figure 3.5C: To obtain stalled elongation complexes, starting NTPs (200 µM ATP, 200 

µM GTP, 10 µM UTP, and 10 µCi [α-32P]-UTP) were added to the reactions and incubated at 

85°C for 5 minutes with RNAPWt or RNAPΔstalk. TECs +58 were captured with Ni2+-coated magnetic 

beads and washed three times in wash buffer then resuspended in RNase buffer (1X NEB 

Buffer 2, +/- 8U RNase If). Reactions were incubated at 37°C for ten minutes and washed two 

times in wash buffer and resuspended in transcription buffer (20 mM Tris-HCl pH 8, 250 mM 

KCl, 10 mM MgCl2, 2 mM DTT, 4 mM dATP, +/- 500 nM Eta). Some of the reactions were 

incubated at 85°C for 7 minutes and then streptavidin-coated magnetic beads were used to 

separate all reactions into pellet and supernatant fractions. Pellet and supernatant fractions 

were incubated with STOP buffer, extracted, and RNA transcripts purified and analyzed as 

above. 

 

Western blots. 

rEta was used as antigen to prepare polyclonal antibodies in rabbits at Cocalico 

Biologicals, Inc. In Figure 5D, 15 µg of mid-log clarified cell lysate from T. kodakarensis strains 

TS559 and ΔTK0566 were resolved via SDS-PAGE, transferred to PVDF, and probed with 

primary anti-Eta antibodies followed by secondary anti-rabbit IgG-alkaline-phosphatase 

conjugates (Promega). In Figure 5E, the specified amounts of purified Eta or extracts from lysed 

strain TS559 T. kodakarensis are listed. These proteins were resolved via SDS-PAGE, 

transferred to PVDF, and probed with primary anti-Eta antibodies followed by secondary anti-

rabbit IgG-HRP conjugates (Promega). 
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Polarity assay. 

Plasmids and strains generated for the polarity assay were constructed as previously 

described except the parental strain was TS559 or ΔTK0566 (52). β-glycosidase activity was 

measured for each strain as previously described (52). Percent activity was calculated by 

comparing activities of identical strains (TS559 or ΔTK0566) with and without stop codons in 

PF1848. 

 

DNA damage assays.  

UV irradiation assays: T. kodakarensis strains TS559 (parental) and ΔTK0566 were 

grown to mid-exponential phase (OD600 nm = 0.6) in ASW-YT-pyruvate media containing 

agmatine (71). ~1 x 108
 cells were anaerobically harvested, collected via centrifugation, and 

resuspended in 100 µL of 0.8X ASW. Washed cells were serially diluted with 0.8X ASW and 

spotted (in duplicate) onto ASW-YT plates that were allowed to dry for 5 minutes. A portable, 

254 nm UV lamp was used to provide a dose of 25 J/m2 to one plate, then both plates were 

incubated under anaerobic conditions at 85˚C for 18 hrs to permit colony growth. Cells were 

visualized by transferring the resultant colonies to PVDF followed by staining with Coomassie 

Brilliant Blue. 

4-Nitroquinoline 1-oxide (4NQO) sensitivity assays: T. kodakarensis strains TS559 

(parental) and ΔTK0566 were grown to mid-exponential phase (OD600 nm = 0.6) in ASW-YT-

pyruvate media containing agmatine (71). ~1 x 108
 cells were anaerobically harvested, collected 

via centrifugation, and resuspended in 100 µL of 0.8X ASW. Washed cells were serially diluted 

with 0.8X ASW and spotted (in duplicate) onto ASW-YT plates lacking or containing 10 µM 

4NQO. Plates were incubated at 85°C for 18h and the cells were visualized by transferring to 

PVDF followed by staining with Coomassie Brilliant Blue.   
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Isolation of His6-Eta containing complexes and MS-identification of binding partners.  

 T. kodakarensis cells were harvested by centrifugation from 5 L cultures grown to mid-

exponential phase at 85°C in ASW-YT medium supplemented with 5 g sodium pyruvate/L. The 

cells were resuspended in 30 ml of buffer A (25 mM Tris-HCl pH 8, 500 mM NaCl, 10 mM 

imidazole, 10% glycerol) and lysed by sonication. Clarified lysate was loaded onto a 1-ml 

HiTRAP chelating column (GE Healthcare) preequilibrated with NiSO4. The column was washed 

with buffer A, and proteins were eluted using a linear imidazole gradient from buffer A to 60% 

buffer B (25 mM Tris-HCl pH 8, 100 mM NaCl, 150 mM imidazole, 10% glycerol). Fractions that 

contained the tagged protein were identified by Western blotting, pooled, and dialyzed against 

buffer C (10 mM Tris-HCl pH 8). The pooled samples were lyophilized and resuspended in 

10mM Tris-HCl pH 8. 

The proteins were identified by 1D SDS-PAGE fractionation followed by LC/MSMS at the 

Ohio State University mass spectrometry facility. A MASCOT score of >100 was considered 

meaningful. To obtain such a score, a minimum of two unique peptide fragments usually had to 

be identified from the same protein. Protein isolation and mass spectrometry analyses of lysates 

from T. kodakarensis TS559 were also undertaken. From these controls, several 

T. kodakarensis proteins were identified that bound and eluted from the Ni2+-charged matrix in 

the absence of a His6-tagged protein. The proteins identified in the Eta sample that had 

MASCOT scores of >100 and were not also present in the control samples are listed 

in Table 3.1. 

 

In vitro RNAP-Eta binding study. 

8 µg of purified RNA polymerase, 8 µg of recombinant Eta, and 8 µg of both RNAP & Eta 

were resuspended in Buffer A (25m M Tris-HCl pH 8, 250 mM NaCl, and 10% glycerol) to a final 

volume of 50 µL. The protein(s) were incubated at 85°C for 10 minutes and loaded to Ni-NTA 

magnetic beads (Qiagen). Samples were washed three times with 250µL of Buffer A and eluted 
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three times with 50µL Buffer B (25 mM Tris-HCl pH 8, 100 mM NaCl, 10% glycerol, 500 mM 

imidiazole). Samples were resolved on a 4-20% SDS-PAGE (Biorad).
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CHAPTER 4 
 
 
 

STRUCTURAL STUDIES OF ETA4 
 
 
 

4.1 Introduction 

 Helicases and translocases are conserved in all Domains and are necessary for a 

diverse array of critical cellular processes (1–4). Helicases and translocases both bind DNA 

and/or RNA to remodel nucleic acids or nucleic acid-protein complexes. All known transcription 

termination factors are helicases or translocases that are able to remodel nucleic acid 

complexes (i.e., mediate transcription termination) through the binding and hydrolysis of ATP 

(5–8). The structures of bacterial and eukaryotic transcription termination factors are known (9–

12); however, the structure for archaeal transcription termination factors remains elusive. 

Resolving structures of transcription factors opens a plethora of structure-function studies that 

provide invaluable mechanistic details of transcription regulation.      

Recently, a novel archaeal transcription termination factor, Eta was characterized in the 

euryarchaeal organism Thermococcus kodakarensis (8). Similar to other known termination 

factors, Eta is annotated as a helicase and the mechanism of Eta-mediated termination has 

been partially resolved (1, 8). Briefly, Eta-mediates transcription termination through binding the 

upstream DNA of the transcription elongation complex (TEC) and in an ATP-dependent manner 

releases the RNA transcript and RNAP into solution. Eta is non-competitive with transcription 

elongation rates and thus is only able to mediate transcription termination on paused or stalled 

RNAPs. Cells deleted for eta exhibit hypersensitivity to DNA damaging agents when compared 

to parental strains. Mechanistically and phenotypically, Eta is very similar to the bacterial 

                                                        

4 The work in this chapter is in preparation for submission.  
 
Santangelo TJ, Murakami KS, Mohammad ZQ, Luyties O, and I conceived the content and 
contributed in experimental design, data interpretation, collection and analysis. 
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transcription-repair coupling factor Mfd. We predict that similar to Mfd, Eta plays a role in 

transcription-coupled DNA repair (TCR) in euryarchaea. We are continuing to elucidate the in 

vivo role of Eta; however, many mechanistic questions of Eta-mediated termination still 

remained unanswered.  

In collaboration with the Murakami Lab at Pennsylvania State University, we resolved 

the crystal structure of Eta and by extension the first crystal structure of an archaeal 

transcription termination factor. Here we report the archaeal crystal structure of Eta at 4 Å 

resolution (Figure 4.1). Our results provide further evidence that Eta has several domains that 

are homologous to the bacterial transcription-repair coupling factor Mfd. After analysis of the Eta 

crystal-structure we employed several structure-function studies that provide information on the 

domains of Eta responsible for transcription termination.   

 

4.2 Results & Discussion 

T. kodakarensis Eta purification and crystallization.  

 Eta and a helicase from Pyrococcus furiosus, termed Hjm (Holiday junction migration), 

share 33% sequence identity. Eta and Hjm are not true homologs and the N-terminal region of 

Eta (residues 1-193) shares no sequence identity to Hjm. Nonetheless, the crystal structure for 

Hjm was previously solved (13) and due to the high sequence identity we did not anticipate 

problems with crystallizing Eta. Eta crystals were successfully formed; however, during the 

crystallization screening process protein aggregation was observed frequently. Attempts to 

resolve the crystal structure of full-length Eta were unsuccessful. After repeated unsuccessful 

attempts we predicted that the observed aggregation was due to the non-conserved N-terminal 

domain of Eta misfolding in E. coli.  

To determine if an N-terminal deletion variant would reduce aggregation, an Eta variant 

was constructed wherein the first 193aa were deleted (Eta
 
∆1-193). Attempts to resolve the crystal 

structure of Eta
 
∆1-193 were successful and the first crystal structure of Eta was resolved at 4 Å  
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Figure 4.1. Eta crystal structure. A. Linear representation of Eta highlighting the N-terminal 
domain (orange), translocase domain 1 (TD1; blue), translocase domain 2 (TD2; yellow), and 
the C-terminal domain (green). B. The crystal structure of Eta at 4 Å resolution highlighting 
domains using the same color scheme as in A. The translocase domains (TD), Walker A and B 
motifs, and the ATP binding site are shown.  
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resolution (Figure 4.1). The crystal structure of Eta
 
∆1-193 contains two translocase domains and 

a less conserved C-terminal domain (Figure 4.1). The translocase domains are predicted to be 

involved in binding to the DNA to mediate transcription termination and the N-terminal domain 

could be involved in binding RNAP to mediate transcription termination. Although, the crystal 

structure of the N-terminal domain was not resolved the N-terminal domain contains ‘CXXC’ 

motif characteristic of a Zn2+ finger motif and thus we predict the N-terminal domain to be a Zn2+ 

finger motif. The crystal structure of Eta allows for a wealth of structure-function studies to 

further elucidate the mechanism of Eta mediated termination.  

 

Eta structure-function studies.  

 Previously, we showed that an Eta variant deleted for residues 1-193 (Eta
 
∆1-193/EtaM2) 

retained full termination activity in vitro (8). To determine if residues 1-193 have a role in vivo a 

T. kodakarensis strain was constructed wherein the first 579 nt of eta were deleted.  Deletion of 

the complete locus or deletion of just the N-terminal domain of Eta resulted in slowed and 

limited growth when compared to the parental strain TS559 (Figure 4.2A). Although the N-

terminal region is not required for Eta-mediated transcription termination, the N-terminal region 

is likely involved in a critical role in vivo and may potentially be involved in recruiting DNA repair 

factors. 

 From the Eta crystal structure, the C-terminal domain (residues 573-832) do not fold into 

a highly conserved domain. To determine if the C-terminal domain is necessary for Eta-

mediated termination two Eta variants (EtaM3 and EtaM4) (Figure 4.2B; upper panel) were 

purified and tested for termination activity. Both Eta variants showed no termination activity 

(Figure 4.2B; lower panel) and thus we conclude that the C-terminal domain of Eta is essential 

for Eta-mediated termination. The C-terminal domain may be necessary for binding to RNAP 

and/or the DNA and follow up studies are needed to describe the role of the C-terminus of Eta.
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Figure 4.2.Eta structure-function studies. A. Deletion of full-length Eta or residues 1-193 of 
Eta hinders growth rate and final cell densities. The curves and errors shown represent means 
and standard averages of triplicate technical repeats of triplicate biological samples. B. Linear 
representation of Eta and Eta variants shown in C. C. EtaM3 and EtaM4 do not retain termination 
activity in vitro.  
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Eta structurally resembles Mfd.      

 Eta shares many similarities to the bacterial transcription-repair coupling factor Mfd 

(Figure 4.3). For example, both eta and mfd are dispensable to cells; however, the deletion of 

both genes renders cells hypersentivitve to DNA damaging agents (8, 14). Structurally, both Eta 

and Mfd are annotated as superfamily II helicases. They both contain translocase domains and 

an ATP binding site with the highly conserved Walker A & B motifs that are responsible for the 

binding and hydrolysis of ATP. Mechanistically, both Eta and Mfd recognize paused/arrested 

RNAP and bind to the upstream edge of DNA to mediate transcription termination (15). The 

RNAP interacting domain (RID) has been elucidated for Mfd and is shown in orange in the 

model (Figure 4.3); however, the RID of Eta remains to be identified.  

 

4.3 Future Directions 

 Our collaborators are currently optimizing crystallization parameters of Eta
 
∆1-193 in 

attempts to resolve the Eta crystal structure at 1-2 Å resolution. Once this data has been 

acquired we plan to publish the Eta crystal structure as well as additional structure-function 

studies.  

 To further investigate the function of Eta numerous variants have been purified. 

Currently, we are targeting two portions of a conserved winged-helix domain in the translocase 

domain 2 portion of Eta. An archaeal helicase Hel308, with some structural similarities to Eta, is 

predicted to be involved in DNA replication and contains a conserved winged-helix domain. 

Studies with the helicase Hel308 determined that the winged-helix domains were critical for the 

binding to dsDNA (16). Based of this data, we predicted that the winged-helix domain of Eta 

may also be essential for binding to dsDNA. For one Eta variant we deleted the entire winged-

helix domain (EtaM5; deleted for residues 531-651). For the other Eta variant we only partially 

deleted the winged-helix domain (residues EtaM6; deleted for residues 630-642) (Figure 4.4).
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Figure 4.3. Eta resembles Mfd. Structural similarities between Eta and the bacterial 
transcription coupling repair factor Mfd. The Mfd RNAP interacting domain (RID) is shown in 
orange.  
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Figure 4.4 Eta variants. Linear representation of Eta and Eta variants. The portions of the 
winged-helix domain deleted for each variant (EtaM5 and EtaM6) are highlighted in purple.
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The Eta variants have been purified and in the near future will be analyzed for termination 

activity and tested for the ability to bind to dsDNA in the absence of the TEC. In addition to 

testing the activity of Eta variants in vitro we plan to construct appropriate T. kodakarensis 

strains encoding for Eta variants.  

 A structure of the TEC in complex with a transcription termination factor has not been 

resolved in any Domain. In collaboration with Katsuhiko Murakami we plan to resolve the first 

Cyro-EM structure of the TEC in complex with a termination factor (Eta). Our lab has a 

procedure in hand to acquire large amounts of Eta in complex with the TEC that can be used for 

Cyro-EM studies. Solving the structure of Eta in complex with the TEC would provide great 

insight into Eta domains binding to RNAP and/or DNA and will further our understanding of the 

mechanism of Eta-mediated termination. Continued structure-function studies as well as Cyro-

EM studies to resolve the Eta-TEC structure will undoubtedly have a broad impact for both the 

transcription community as well as the DNA repair community.  

 

4.4 Methods 

Purification and crystallization of Eta. 

 Eta and Eta variants (EtaWt, Eta
 
∆1-193, Eta∆665-832, Eta∆1-193&∆665-832) were purified as 

previously described in (8).  

A selenomethionine (SeMet) substituted Eta
 
∆1-193 complex was prepared by suppression 

of methionine biosynthesis during culture growth followed by an identical purification scheme as 

referenced previously. Both native EtaWt and SeMet-labeled Eta
 
∆1-193 were concentrated to 

10mg/mL with buffer (0.1M Tris, pH 8, 4M NaCl and 4% ethylene glycol) for crystallization. 

Crystals were acquired using the “hanging drop” method at room temperature (22ºC). The 

crystals were flash frozen by liquid nitrogen. To acquire the phase information native crystals 

from EtaWt were soaked in 2mM TaBr harvested, and then flash frozen in liquid nitrogen.  
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Structure determination of Eta. 

The X-ray crystallographic datasets were obtained from two different crystal sets a) 

native crystals soaked in Tantalum bromide (TaBr) cluster, b) Seleno-methionine (SeMet) 

labeled Eta
 
∆1-193. TaBr cluster is utilized for the preparation of heavy-atom derivatives for 

structure determination of biological macromolecules by X-ray analysis. The cluster is an 

electron-rich compound that brings significant changes in crystal diffraction required for phase 

calculation in single and multiple isomorphous replacement (SIR and MIR) experiments and in 

anomalous dispersion (SAD and MAD) experiments.  Both SAD/MAD and SIR/MIR approaches 

using SeMet and TaBr.  

The datasets were collected at the Macromolecular Diffraction at the Cornell High 

Energy Synchrotron Source (MacCHESS) F1 beamline (Cornell University, Ithaca, NY), and the 

data was processed by HKL2000. The anomalous peaks from SeMet Eta
 
∆1-193 and TaBr EtaWt 

were used for molecular replacement followed by rigid body and positional refinements with 

non-crystallographic symmetry by using the program Phenix. The resulting maps contained 

additional electron densities, which allowed the structure to be built in using Coot. 

 

In vitro Transcription. 

 In vitro transcription termination assays were carried out as previously described in (8). 
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CHAPTER 5 
 
 
 

TRANSCRIPTION AND TRANSLATION ARE COUPLED IN ARCHAEA5 
 
 
 

5.1 Introduction 

 Bacteria and Archaea lack a nuclear membrane, thus permitting the transcription and 

translation apparatuses to have access to each other and functionally interact (1, 2). Translation 

initiates before transcription is complete, and ribosome binding to nascent transcripts is normally 

essential for completion of transcription (3–5). Disrupting the normally-tight association of 

ribosomes and RNAP, and thus exposure of nascent transcripts to solution, results in polar 

repression of downstream transcription (3, 6). Coupling of the translation and transcription 

apparatuses is an essential process and increases genome stability and regulates genome-wide 

gene expression (3, 7–11). Coupling limits RNA polymerase (RNAP) backtracking and prevents 

premature transcription termination (3, 7, 11–13). When transcription initiates aberrantly, or 

when translation lags or is halted due to a premature nonsense codon, the lack of coupling 

signals factors to terminate transcription (Figure 5.1). In addition the rate of transcription 

elongation is regulated by the rate of translation elongation (2, 5, 7, 12). 

 Decades of research in the bacterial community has shown that the RNAP-bound, tightly 

associated elongation factor NusG (homologous to Spt5 in Archaea) makes direct contact with 

the ribosomal protein S10 and that this molecular interaction is the basis of coupling the 

transcription and translation apparatuses (14–16). In the absence of an S10-NusG interaction, 

RNAP and the trailing ribosome can become disengaged, and when sufficient (~70nt) RNA is 

exposed to solution then the transcription termination factor Rho will access the exposed RNA 

and mediate transcription termination, resulting in polarity (17–19).  

                                                        

5 Santangelo TJ, and I conceived the content and contributed in experimental design. Lynch ER, 
Selena J and I contributed in experimental data interpretation, collection, and analysis. 
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NusG is composed of two domains: a NusG N-terminal domain (NGN) and a Kyprides-

Ouzounis-Woese (KOW) C-terminal domain (Figure 5.1) (20, 21). The NGN domain binds 

RNAP while the KOW domain binds the S10 ribosomal subunit. In addition to the role in 

coupling, NusG generally stimulates transcription elongation rates, increases RNAP 

processivity, and stimulates Rho-dependent transcription termination (9, 22–25). A recent cryo-

EM structure provides an alternative, NusG-S10 independent mechanism of transcription and 

translation coupling, but this “expressome” structure has not yet been biologically challenged to 

determine whether it represents a natural alternative to the NusG-S10 mediated-coupling (26). 

 Due to coupling of transcription and translation and the conservation of the NusG/Spt5 in 

Bacteria and Archaea, we hypothesized that archaeal organisms use the same interaction (Spt5 

& S10) to couple the transcription and translation apparatuses. We also predicted that archaeal 

Spt5 may interact with the transcription termination factor(s) responsible for polarity. 

Bioinformatic analysis shows no obvious homolog of a Rho like factor encoded in archaeal 

genomes but we predicted there are Rho analogues encoded in archaeal genomes. Our studies 

sought to identify and further characterize the binding partners of Spt5 in the hopes of further 

characterizing the coupling of transcription and translation, as well as to identify any archaeal-

encoded polarity factor(s).  

 As an alternative approach, we also used bioinformatics to search for other potential 

transcription termination factors. There are no eukaryotic or bacterial transcription termination 

factors encoded in archaeal genomes, but there is a homologue of the eukaryotic Cleavage and 

Polyadenylation Specificity Factor (CPSF) encoded in archaeal genomes. In eukaryotes, CPSF 

is part of a complex that is responsible for RNA cleavage at the poly-A site encoded in mRNA 

(27). Cleavage of the mRNA permits the transcription termination factor Xrn2 to mediate 

transcription termination of RNA polymerase II (Pol II) (28–30). We predicted that CPSF may 

have a role in transcription termination in Archaea and further that CPSF might be involved in 
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Figure 5.1. Coupling and uncoupling of transcription and translation. Transcription and 
translation are coupled in Bacteria and Archaea and it is hypothesized that Spt5 (purple) is the 
coupling factor that binds to both RNAP (green) and the leading ribosome (black). When 
transcription and translation become uncoupled a termination factor, termed Rho in bacteria, 
binds to the Spt5-KOW domain to mediate transcription termination.   
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global 3’ end formation of RNA transcripts. CPSF contains no conserved domains predicted to 

bind or hydrolyze ATP, and given that all known transcription termination factors require ATP 

hydrolysis to stimulate termination (31–33), it is unlikely that CPSF is the sole factor involved in 

transcription termination. Instead, our studies of CPSF were aimed at identifying binding 

partners in the hopes of isolating additional factors responsible for transcription termination. 

Here we begin to characterize the in vitro activity of CPSF from T. kodakarensis. 

 
5.2 Results and Discussion 

 

Isolation of His6-Spt5 containing complexes. 

 To determine interaction partners of Spt5 – and hopefully identify potential coupling and 

polarity factors – we used an in vivo pull-down to isolate Spt5 directly from whole cells under 

mild conditions. Established genetic techniques (34, 35) were employed to generate a strain of 

T. kodakarensis wherein sequences encoding affinity- and epitope-tags were appended to the 

C-terminus of TK1419 (encoding Spt5) (36). The resultant strain produced full-length, C-

terminally tagged Spt5 from the natural TK1419 locus under normal regulatory control. Cell 

lysis, followed by gentle nickel-affinity purifications of complexes containing His6-tagged Spt5 

were performed, and the identity of co-purifying partners revealed by mass spectrometry (Table 

5.1). Several subunits of RNA polymerase and the archaea-eukarya conserved elongation 

factor Spt4 were identified, supporting the well-established Spt4-Spt5-RNAP interactions in vivo. 

Interestingly, the S10 ribosomal subunit (TK0307) was identified thus adumbrating a role of 

Spt5-S10 interactions in the coupling of transcription and translation.  In attempts to identify an 

uncoupling factor (i.e., termination factor) we searched for helicase and ATPase enzymes that 

were identified. An ATPase (TK2042) was identified and is highly conserved in euryarchaea. 

Although a pull-down is suggestive of Spt5 interacting partners, it is not conclusive evidence of 

Spt5 directly interacting with the identified proteins. Follow up studies were done specifically 

with S10 to determine if Spt5 and S10 are directly interacting. 
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Gene Annotation MASCOT 

TK1419 Spt5 40,970 

TK1736 DNA directed RNA polymerase subunit F 31,862 

TK1083 DNA directed RNA polymerase subunit beta 4,321 

TK1082 DNA directed RNA polymerase subunit alpha 1,875 

TK1081 DNA directed RNA polymerase subunit A’’ 890 

TK2042 ATPase 772 

TK1698 Spt4 696 

TK1769 Transcriptional Regulator 680 

TK1503 DNA directed RNA polymerase subunit D 678 

TK0137 Nucleic-acid binding protein 533 

TK0883 hypothetical protein 310 

TK0307 30S ribosomal protein S10 280 

Table 5.1. Proteins copurifying with His6-Spt5 from cellular lysates.   Table 5.1. Proteins copurifying with His
6
-Eta from cellular lysates.   
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Characterization of the Spt5-S10 interaction. 

The bacterial NusG-NGN domain interacts with RNAP and the NusG-KOW domain 

interacts with the S10 ribosomal subunit. We predicted that Archaea coupling also might be 

reliant on Spt5 interacting with RNAP and the S10 ribosomal subunit. To determine if Spt5 

interacts with the S10 ribosomal subunit we employed a binding assay using purified 

components. To ensure our assay worked properly we also investigated the well-established 

Spt4-Spt5 interaction.  

Transcription elongation factors Spt5, Spt5 variants and Spt4-his6 and the ribosomal 

subunit S10-his6 were expressed recombinantly and purified for use during a nickel-resin based 

in vitro binding assay. The nickel-resin binding assay is reliant on only one of the proteins of 

interest containing an affinity his6 tag that binds to the nickel slurry and the other protein of 

interest containing no affinity tag. Spt4-his6 was used as a positive control as it is well 

established in the literature that Spt5 and Spt4 interact (23, 37–39). Our results corroborate this 

data as Spt4-his6 and Spt5 co-eluted (Figure 5.2A).  

To determine if Spt5 and S10-his6 interact, we used the same assay as described 

above. We concluded that Spt5 and S10-his6 did not interact as only S10-his6 was present in 

the elutions (data not shown). Previously, it was shown that Spt5 can auto-inhibit itself through 

the NGN domain interacting with the KOW domain (40, 41). To ensure that the NGN domain 

was not auto-inhibiting the KOW-domain from interacting with S10 an Spt5 variant was 

constructed (Spt5-KOW) wherein the NGN domain was removed. Disappointingly, Spt5-KOW 

and S10-his6 still did not interact and only S10-his6 was present in the elutions (Figure 5.2B). 

We conclude that Spt5-KOW and S10 most likely do not interact in vivo and perhaps Spt5-KOW 

interacts with another subunit of the ribosome to couple transcription and translation. Based off 

these results, archaeal coupling does not follow the classic model of bacterial coupling. Very 

recent cyro-EM evidence from the bacterial community suggests RNAP and the ribosome 
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Figure 5.2. Spt5 interacts with Spt4 but not S10. A. A pull-down experiment was employed 
with Spt5 (17kDa) and Spt4-his6 (7kDa). The portion of the sample that did not stick to the resin 
is indicated as ‘flow-through’ and the portion of the sample that eluted when a high imidazole 
buffer was added is indicated as ‘elution’. Samples were resolved on an SDS-PAGE with a 
marker shown in kDa. B. A pull-down experiment was employed with Spt5-KOW (7kDa) and 
S10-his6 (12kDa). The portion of the sample that did not stick to the resin is indicated as ‘flow-
through’ and the portion of the sample that eluted when a high imidazole buffer was added is 
indicated as ‘elution’. Samples were resolved on an SDS-PAGE.
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directly interact to facilitate coupling and Spt5 may not be required for coupling (26). This model 

has not been validated in vivo and thus the classic model of Spt5-S10 coupling is still largely 

accepted in the field. The archaeal RNAP and ribosome may directly interact to facilitate 

coupling or Spt5 may interact with a different subunit of the ribosome to facilitate coupling. 

Follow up studies now need to be employed to determine the mechanism of transcription and 

translation coupling in Archaea.  

 

Characterization of potential transcription termination factors. 

  An ATPase (TK2042) was identified during the Spt5 in vivo pull-down and we are now 

targeting this ATPase to determine if it has a role in transcription termination. We have 

recombinantly purified the ATPase and future studies will focus on characterization of the 

ATPase in the well-defined in vitro transcription termination assay (33). Current efforts are 

focused on determining if the ATPase (encoded by TK2042) is able to release the nascent 

transcript and RNAP into solution thus defining the ATPase as a bone fide transcription 

termination factor. Ongoing efforts are attempting to knock-out TK2042 from the T. 

kodakarensis genome to determine if the ATPase encoded has a critical role.  

Attempts to delete the TK1428 locus (encoding for CPSF) from the T. kodakarensis 

genome have not been successful, hinting at an essential role for CPSF. To determine if purified 

CPSF affected transcription elongation or stimulated transcription termination, we recombinantly 

expressed and purified CPSF. Preliminary in vitro transcription assays with CPSF demonstrate 

a cleavage activity associated with CPSF addition, but no obvious termination activity. A DNA 

template was used such that a long RNA transcript would be produced to satisfy any RNA 

length or sequence requirements CPSF may have (Figure 5.3A). A “failure-to-chase” assay was 

used in preliminary studies wherein TECs+376 were formed, washed, and then incubated +/- an 

energy source (dATP) and +/- CPSF. After incubation, addition of all four rNTPs permits intact 

TECs+376 to restart transcription and elongate to the end of the template, resulting in full-length
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Figure 5.3. CPSF has RNA cleavage activity. A. DNA templates contain a biotin moiety (blue 
B), a strong promoter, PhmtB, a 376bp G-less cassette, and permit elongation to produce a full-
length transcript of +450. B. Stalled TECs at the end of a G-less cassette (TEC+376) were 
incubated in the presence or absence of an energy source (dATP) and +/- CPSF. CPSF RNA 
cleavage activity is observed ~150nt in both the presence and absence of dATP.  
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(+450 nt) transcripts. We predicted that in the absence of CPSF all TECs+376 would resume 

elongation and transcribe a full-length transcript, and if CPSF had termination activity then only 

some of the TECs+376 would be able to resume elongation. Our results show that ~50% of 

complexes were unable to transcribe full-length transcripts in the absence of CPSF. We were 

surprised by this result as previous assays using a shorter DNA template showed that nearly 

100% of complexes are able to form full-length transcripts under the same conditions. 

Nonetheless, when CPSF is present in reactions RNA cleavage is observed in both the absence 

and presence of an energy source dATP at around ~150nt. (Figure 5.3B). Despite RNA 

cleavage activity, we are unable to provide evidence that isolated CPSF has a role in directly 

mediating transcription termination.  

Preliminary results from an in vitro transcription termination assay where RNA transcript 

release into solution is observed reveal that CPSF most likely does not have a direct role in 

transcription termination (data not shown). We are currently optimizing assay conditions to 

determine if CPSF is responsible for transcription termination or if the role of CPSF is 

exclusively to cleave the RNA. Future studies will further characterize the activities of CPSF as 

well as determine the in vivo binding partners of CPSF. 

 

5.3 Methods 

Isolation of His6-Spt5 complexes and MS identification of binding partners.  

T. kodakarensis cells were harvested by centrifugation from 5-L cultures grown to mid-

exponential phase at 85 °C in ASW-YT medium supplemented with 5 g of sodium pyruvate/L. 

The cells were resuspended in 30 mL of Buffer A (25 mM Tris·HCl pH 8, 500 mM NaCl, 10 mM 

imidazole, and 10% glycerol) and lysed by sonication. Clarified lysate was loaded onto a 1-mL 

HiTRAP chelating column (GE Healthcare) preequilibrated with NiSO4. The column was washed 

with Buffer A, and proteins were eluted using a linear imidazole gradient from Buffer A to 60% 

Buffer B (25 mM Tris·HCl pH 8, 100 mM NaCl, 150 mM imidazole, and 10% glycerol). Fractions 
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that contained the tagged protein were identified by Western blot analysis, pooled, and dialyzed 

against Buffer C (10 mM Tris·HCl pH 8). The pooled samples were lyophilized and resuspended 

in 10 mM Tris·HCl pH 8. The proteins were identified by 1D SDS/PAGE fractionation followed 

by LC/MSMS at the Ohio State University MS facility. A MASCOT score of > 100 was 

considered meaningful. To obtain such a score, a minimum of two unique peptide fragments 

usually had to be identified from the same protein. Protein isolation and MS analyses of lysates 

from T. kodakarensis TS559 (parental strain) were also undertaken. From these controls, 

several T. kodakarensis proteins that bound and eluted from the Ni2+-charged matrix in the 

absence of a His6-tagged protein were identified. The proteins identified in the Spt5 sample that 

had a MASCOT score >100 and were not also present in the control samples are listed in Table 

5.1. 

 

Protein purifications. 

 The pQE-80L plasmids encoding Spt5 (pTS317), Spt5-KOW (pJW19), Spt4 –his6 

(pTS542), CPSF-his6 (pAKL1), ATPase-his6 (TK2042; pOL1) and S10-his6 (pJW12) were 

transformed into E. coli Rosetta 2 cells. Cells were grown at 37˚C until an OD600 of 0.5-0.7 was 

reached. The cells were induced with 0.4mM isopropyl-β-D-thiogalactopyranoside and 

incubated at 37˚C for three hours. Cell biomass was collected after induction and lysed using 

sonication. Cell lysate was heat treated at 75˚C to denature most of the E. coli proteins while the 

thermostable recombinant proteins remained folded.  

Heat-treated cell-lysate for Spt4, CPSF, ATPase (TK2042) and S10 was loaded onto a 

1-mL HiTRAP chelating column (GE Healthcare) preequilibrated with NiSO4. The column was 

washed with 20 column volumes (CV) in lysis buffer (25mM Tris-HCl pH 8.0, 10% glycerol (v/v), 

and 1M NaCl). Proteins were eluted over a linear gradient in Buffer B (25mM Tris-HCl pH 8.0, 

10% glycerol (v/v), 0.1M NaCl, and 250mM imidazole). Purified proteins were dialyzed into 

storage buffer (25mM Tris-HCl pH 8.0, 1mM EDTA, 200mM KCl, 50% glycerol, and 1mM β-Me).  
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Heat treated cell-lysate for Spt5 and Spt5-KOW was loaded to an anion exchange 

column. The column was washed with 20CV lysis buffer (25 mM Tris-HCL pH 8.0, 10 mM 

MgCl2, and 0.1 mM EDTA). Proteins were eluted via a linear gradient with elution buffer (1 M 

KCl, 25 mM Tris-HCl pH 8.0, 10 mM MgCl2, and 0.1 mM EDTA. Purified proteins were dialyzed 

into storage buffer (25mM Tris-HCl pH 8.0, 1mM EDTA, 200mM KCl, 50% glycerol, and 1mM β-

Me) and stored at -20˚C. 

 

In vitro binding studies. 

 8µg of each purified protein (Spt4-his6, Spt5, Spt5-KOW, S10 ribosomal subunit) were 

resuspendend in Buffer A (25 mM Tris HCl pH 8, 250 mM NaCl, and 10% glycerol) to a final 

volume of 50 µL. The proteins were incubated at 85°C for 10 minutes and loaded to Ni-NTA 

magnetic beads (Qiagen). Samples were washed two times with 250 µL Buffer A and then 

eluted two times with Buffer B (25 mM Tris HCl pH 8, 100 mM NaCl, 10% glycerol, and 500 mM 

imidazole). Samples were resolved on a 4-20% SDS-PAGE (Bio-Rad). 

 

In vitro transcription. 

In vitro transcription assays were carried out as previously described (33). 
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