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ABSTRACT 
 
 
 

SPATIAL AND TEMPORAL VARIABILITY OF SNOW COVER IN THE ANDES 

MOUNTAINS AND ITS INFLUENCE ON STREAMFLOW IN SNOW DOMINANT RIVERS 

 
 
 

The climate is changing, and snowmelt-dominated river basins are particularly sensitive 

to climate warming. In the Andes Mountains in South America climate measurements are sparse 

and unevenly distributed in snow-covered areas. Thus, remote sensing offers opportunities to 

improve understanding of the spatial and temporal snow patterns in this region and explore how 

these patterns relate to climate and hydrologic response. This study uses snow cover data from 

the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to (1) identify snow 

climate regions across the Andes, (2) document trends in snow persistence and their relation to 

precipitation and temperature, and (3) develop statistical streamflow prediction models.  

The second chapter of the study identified five snow climate regions: two tropical and 

three mid-latitude regions. In the tropical regions, snow cover was present only over 5000m on 

both sides of the Andes. In the mid-latitude regions the elevation of the snow line varied with 

latitude, dropping from 4000m to 1000m from 23 to 36°S. In the mid-latitudes, particularly 

where mountain peaks are highest, snow cover accumulates at lower elevations on the west side 

than on the east side of the Andes. The third chapter quantifies trends in annual snow persistence 

(SP) from 2000-2014. In the northern part of the study region, limited snow cover is present, and 

few trends in snow persistence were detected. A large area (70,515 km2) south of 29°S is 

affected by a significant loss of snow cover (2-5 day less day of snow per year). In this latitude 

range, most of the land surface area with snow loss (62%) is on the east side of the Andes. The 
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trends of snow persistence relate to both precipitation and temperature, but the relative 

importance of each parameter changes across elevation and latitude. Precipitation has greater 

relative importance at lower elevations, whereas temperature has greater relative importance at 

higher elevations. 

The final chapter explores the relationship between snow cover patterns and streamflow 

in snow-dominated rivers in the Chilean Andes (29-36° S). Snow covered area is correlated with 

water yield in snowmelt-dominated watersheds, but it is not as useful for water yield forecasts in 

watersheds with more limited snowmelt contributions. The snow cover information was 

combined with climatic variables (temperature and precipitation), and physiographic variables to 

develop statistical models of water yield (WY) and peak flow (PF). The final statistical model 

developed can forecast water year WY and PF in August using precipitation, snow cover, and 

area of watershed as predictors, with r2 values of 0.8 and 0.7 respectively.  

The approaches developed for applying snow cover information from remote sensing 

have led to important new findings about snow patterns in a large latitude range across the Andes 

Mountains. New tools developed for incorporating snow cover information into water yield and 

peak flow forecasts can aid water management under changing climate conditions. 
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CHAPTER 1: INTRODUCTION 

 
 
 

The spatial and seasonal distribution of snow plays an important role in earth systems and 

human activities. More than one-sixth of the Earth’s population depends on glaciers and winter 

seasonal snow packs for their water supply (Barnett et al., 2005; Knowles et al., 2006). At global 

scale, most of the winter seasonal snow is located in the North Hemisphere because of the larger 

land masses at high latitudes relative to the Southern Hemisphere (Foster et al., 2001). However 

in the Southern Hemisphere, snow still has an important role in some regions even though the 

land areas with snow are small compared to those in the Northern Hemisphere at the same 

latitudes. 

The Andes Mountains has the largest snow reservoir outside of Antarctica in the 

Southern Hemisphere (Foster et al., 2009). This mountain range crosses the full length of South 

America across a broad latitude range in the southern hemisphere (Garreaud, 2009), with the 

northernmost extent of the Andes extending into the northern hemisphere. Most of the 

extratropical areas on the west slope of the Andes depend on water reserved as snowpack in 

headwater basins (Bradley et al., 2006; Peduzzi et al., 2010). In the central Andes of Chile (30°–

37°S), snowpack is the primary source for streamflow (Cornwell et al., 2015; Masiokas et al., 

2006). In a warmer world, less precipitation falls as rain rather than snow, and melting snow 

shifts earlier in the spring (Barnett et al., 2005; Knowles et al., 2006; Stewart, 2009). The Andes 

broadly reflect the global signal of warming: glacier retreatment in tropical (Rabatel et al., 2013) 

and extratropical areas (Barry and Seimon, 2000; Borsdorf and Stadel, 2015; Casassa, 2014), 

decreased precipitation across all latitudes (Barry and Seimon, 2000), and increased temperature 
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(Barry and Seimon, 2000). All changes have a strong elevation dependence and high spatial 

variability (Favier et al., 2009). 

Changes in snow have consequences for streamflow production in snowmelt-dominated 

basins (Scherer et al., 2005; Stewart et al., 2005; Vicuña et al., 2010), and losses of snow will 

potentially have negative consequences for Andean water supply (Barry and Seimon, 2000). In 

the central Andes of Chile (30-37°S), river discharges are significantly correlated with the 

regional snowpack records (Masiokas et al., 2006), yet few studies on snowpack and streamflow 

changes have been made in this area compared with other mountain areas (Masiokas et al., 

2006). Additionally, a very sparse network of snow courses and automated snow measuring 

stations (snow pillows) is present in the Andes Mountains (Aravena and Luckman, 2009; 

Cornwell et al., 2015; Masiokas et al., 2006). Even in regions with much more extensive snow 

monitoring, estimation of variability of snowpack characteristics from point measurements is 

difficult in mountainous environments due to high spatial variability (Molotch and Margulis, 

2008). In this context, remote sensing data has great potential for supplying relevant spatial data 

for characterizing spatial and temporal patterns in snow. 

Methods for using satellite remote sensing to map snow cover were developed in the 

1960s, with the spatial and temporal resolution of available data improving over time (Dietz et 

al., 2012). Various remote sensing products have been used to map snow in all continents: Asia 

(Dedieu et al., 2014; Immerzeel et al., 2009) North America (Rango, 2009), South America 

(Foster et al., 2009), and Europe (Dedieu et al., 2014). Remote sensing has been applied to 

identify spatial-temporal trends in snow cover across large areas with inaccessible terrain 

(Immerzeel et al., 2009; Kwon et al., 2009) but in the Andes Mountain this study has not been 

conducted. A comprehensive understanding of the distribution of seasonal snow cover in the 
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Andes Mountains is essential to define a framework for studying snow in the region. The large 

latitudinal and elevation ranges in the Andes Mountains offer the opportunity to study how these 

two variables modulate the snow seasonal distribution. Mountains have complex topography and 

remote sensing can help to understanding how this topographic variability combines with 

precipitation and temperature to affect snow patterns in space and time. 

Finally, snow remote sensing data can also aid in forecasting streamflow and improve 

hydrologic model performance (Parajka and Blöschl, 2008; Steele et al., 2010; Tekeli et al., 

2005). Changes of streamflow in snow-dominated rivers have been attributed to increased 

temperatures and less precipitation (Knowles et al., 2006). However, local runoff varies due to 

the combination of geographic location, latitude, elevation, and meteorological condition. The 

Andes lack the detailed streamflow forecasting models that are available in other snow-

dominated regions such as the western United States and Europe. 

This dissertation develops methods for using remotely sensed snow covered area data to 

link spatial and temporal patterns of snow in the Andes to streamflow. The first part of the study 

(chapter 2) develops a new remote sensing methodology to characterize snow climatology across 

the Andes using snow cover data. This method identifies and maps snow regions across the 

Andes. The second portion of the study (chapter 3) uses the same remotely sensed snow cover 

data to quantify changes in snow cover and their spatial patterns with latitude and elevation and 

to explore how these changes have been affected by climate variables. Finally, the final portion 

of the study (chapter 4) examines how snow cover patterns relate to streamflow and develops a 

statistical model to predict water yield and peak flow in the central Chilean Andes (29-36°S) 

using snow cover data combined with other physiographic and climate variables. 
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CHAPTER 2: A SNOW CLIMATOLOGY OF THE ANDES MOUNTAINS FROM MODIS 

SNOW COVER DATA 

 
 
 

2.1. INTRODUCTION 

 

Snowpack provides a large reservoir of water in snow-dominated river basins. More than 

80% of the population in semi-arid tropical and subtropical regions depends on mountains for 

fresh water (Liniger and Weingartner, 1998). In South America, Peru, Bolivia, Chile, and 

Argentina all depend on snow and/or glacier melt for water supply because rainy seasons are 

short, lasting only a few months (Bradley et al., 2006; Masiokas et al., 2013; Peduzzi et al., 2010; 

Rabatel et al., 2013). The location and duration of snow cover are driven by both precipitation 

and temperature (Barnett et al., 2005), and snow cover in turn affects both the water cycle and 

energy balance (Stewart, 2009). In the Southern Hemisphere, seasonal snow cover is mainly 

confined to southern South America, where extensive winter snow cover may occur (Foster et 

al., 2009). Unfortunately, in this region climate data are sparse and unevenly distributed 

(Aravena and Luckman, 2009). This poor availability of data is particularly true in mountain 

areas (Cortés et al., 2011; Masiokas et al., 2006). Additionally, estimation of variability of 

snowpack characteristic from point measurements is difficult in mountainous environments due 

to high spatial variability and scarce observations (Molotch and Margulis, 2008). Thus, remote 

sensing offers opportunities to improve understanding of snow cover seasonality and how it 

varies through the Andes region. 

Snow water equivalent (SWE) is the key hydrological variable for water supply estimation, 

but remote sensing products used to derive SWE typically have coarse spatial resolution, and 

interpolation of SWE between point monitoring locations can be inaccurate (Fassnacht et al., 
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2012; Molotch and Margulis, 2008). Optical sensors such as Moderate Resolution Imaging 

Spectroradiometer (MODIS) can be useful in providing finer spatio-temporal resolution snow 

covered area (SCA) information. Snow cover patterns and their seasonal variability are useful for 

both forcing and evaluating hydrologic models (Fassnacht et al., 2012; Martinec et al., 2008; 

Sturm, 2013), and patterns of snow cover can help identify climate signals (Barnett et al., 2005; 

Brown and Mote, 2009). The goal of this chapter is to develop a method for characterizing snow 

climatology across the Andes using MODIS snow cover data. There are two specific objectives: 

(1) to identify regions of the Andes where snow accumulates at similar elevations and times of 

year, and (2) to identify snow persistence zones within these regions. 

 

2.2. STUDY SITE 

 

The Andes Mountains span more than 8,000 km from 10º N to 57º S and through seven 

countries (Venezuela, Colombia, Ecuador, Peru, Bolivia, Chile, and Argentina) (Barry, 2008). 

They have an average height of about 4,000 m with several peaks over 6,000 m (Figure 2.1). The 

Andes have a strong effect on atmospheric circulation and contain a wide variety of climates 

defined by Köppen-Geiger classification (Kottek et al., 2006), with sharp contrasts between East 

and West sides. In the upper-level large-scale circulation, there are moderate easterly winds in 

tropical latitudes (±15º) and westerly winds at subtropical/extratropical latitudes (Garreaud, 

2009). In tropical latitudes, austral summer months (DJF) are the wet season because easterly 

winds bring in moist air, and solar heating over the altiplano induces convection (Garreaud, 

2009). In these latitudes, the easterly source of moisture leads to higher precipitation on the 

eastern side of the Andes. In the Equatorial and Tropical Andes (10°N to 17°S) (Barry, 2008), 
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the glacier equilibrium-line altitude (ELA) is above 5,000 m, but the glacier ablation zone 

extends close to 4,600 m (Rabatel et al., 2013). Further south (17°S to 31°S) in the dry Desert 

Andes (Williams and Ferringo, 1998), hyper-arid conditions prevail on the west side primarily 

due to a semi-permanent high pressure cell over the South East Pacific. This in conjunction with 

the inversion layer at about 1,000 m and the coastal topography prevent the inland penetration of 

moist air from the Pacific Ocean (Garreaud and Aceituno, 2007). The east side of the desert area 

(Altiplano region) is dry most of the year except during austral summer (DJF) when an increase 

in the intensity of Bolivian High enhances easterly flow from the lowlands of Amazonia 

(Garreaud et al., 2003). 

In the extratropical Andes, precipitation increases as compared to the Desert Andes, 

particularly during the winter due to westerly air flow from the Pacific. Here the snow line 

elevation decreases strongly with latitude, and there are large glaciers (Barry and Seimon, 2000; 

Vuille and Ammann, 1997; Williams and Ferringo, 1998). South of 40°S precipitation is high as 

a result of strong prevailing westerlies. Prior climate descriptions have divided this area into two 

sub regions separated at 46°S: the northern Lakes Region, with a Mediterranean climate regime, 

and the Patagonian Andes, which has a large concentration of low-elevation glaciers (Barry, 

2008) (Figure 2.1). Snowfall patterns have not yet been mapped in detail for this region, but they 

are indicators of the combined effects of latitude, elevation, and circulation patterns on climate. 

This study uses snow cover information to expand the understanding of spatial and seasonal 

snow patterns across the wide latitudinal range of the Andes. 
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Figure 2.1. Digital Elevation Model (DEM) of the Andes Mountains with external side bars 
showing precipitation patterns and internal side bars showing Andes regions. 

 

2.3. METHODS 

 

2.3.1. Data 

 

All snow cover analyses used data from the MODIS sensor, which is a passive imaging 

spectroradiometer that provides daily imagery of the Earth’s surface and clouds in 36 spectral 

bands by two satellites (Terra and Aqua) (Hall et al., 2002). We used the MODIS - Terra eight-

day 500m binary snow cover products Collection 5 (MOD10A2). The MOD10A2 represents the 
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maximum snow cover and minimum cloud cover during that eight-day period from the daily 

time step product (MOD10A1)(Riggs et al., 2006). The study area is covered by 19 MODIS 

images (tiles). For these tiles, the snow cover was determined every 8 days using the maximum 

MODIS binary snow cover products from 2000 to 2014 (MOD10A2) 

(http://reverb.echo.nasa.gov), giving a total of 12,860 tiles of MOD10A2. 

To address the effect of elevation on snow patterns, a DEM was developed using two 

sources: (1) 600 tiles of Shuttle Radar Topography Mission (SRTM) 90 m spatial resolution 

(http://srtm.csi.cgiar.org), and (2) 579 tiles of Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) 30 m spatial resolution (http://reverb.echo.nasa.gov). The 

SRTM DEM was the primary source of elevation information; however this source had data gaps 

and other errors. Errors were identified and masked by looking for abnormal slope (over 300%) 

in the SRTM DEM. ASTER DEMs were used to fill in the gaps and errors in the SRTM data. In 

cases where both the SRTM and ASTER DEMs had data gaps, a Kernel filter of 10x10 windows 

was run to interpolate values in the gaps. The composite DEM was masked with the boundary of 

the Andes study area (Andes DEM). To examine snow cover patterns by elevation and latitude, 

the Andes DEM was divided into 100 m elevation bands and into latitude bands of 50 km from 

North to South. The continental divide along the Andes was defined using the Watershed Tool 

from ArcGIS to delineate the side (East or West) of drainage, and the study area was further 

divided into West and East Andes. 

MODIS and DEM data were mosaicked and projected into the South American Alber’s 

equal area azimuthal projection. This projection is often used in large scale analysis and shows 

minimal shape distortion to less than 2 percent within 15 degrees from the focal point (Kennedy 
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and Kopp, 1994). The focal point of this projection was set to 70ºW, 25ºS to cover most of the 

study area with low distortion. 

 

2.3.2. Snow climatology analysis 

 

Richer et al. (2013) developed spatiotemporal indices of snow and cloud cover using 

MODIS SCA for a mountain area in the Colorado Front Range, U.S. to define dominant 

tendencies in the location and timing of snow cover. They defined the snow cover index (SCI) 

and cloud cover index (CCI) by the follow equations: 

ܫܥܵ  ൌ ௌ௡ି஼ ∗ ͳͲͲ     Eq. 1 

ܫܥܥ  ൌ ஼௡ ∗ ͳͲͲ      Eq. 2 

 

Where S = number of years which a pixel was classified as snow, n = total number of years, and 

C = number of years in which a pixel was classified as cloud. 

Both indices range from zero (no snow or cloud during all years) to one (presence of snow 

or cloud in all years). This study used SCI time series to identify snow climate regions by 

elevation and timing of snow accumulation. The first step was a pixel-by-pixel analysis to 

calculate the SCI and CCI for each eight-day interval over all years of data (2000-2014) 

following Richer et al. (2013). When the CCI was greater than 30%, the SCI was not calculated, 

and the pixel was masked as “cloud” (Moore et al., 2015). To examine variability in SCI patterns 

by region, the study area was divided into 50 km latitude bands, 100 m elevation bands, and side 
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(west and east) of the Andes Mountains for each 8-day time window. The average SCI and CCI 

were then calculated for each latitude-elevation-side subdivision. These subdivision average SCI 

values were reclassified in 10 equal parts from 0 to 100 (decile categories). As an additional step 

to mask cloud-impaired data, when the average CCI for an elevation interval was more than 

30%, the SCI was not calculated, and this time window/elevation band was masked from the 

analysis (Figure 2.2a). To evaluate annual snow patterns, the snow persistence (SP) was also 

calculated as the average %SCI over the year for each latitude-elevation band (Figure 2.2b). 

Within each latitude band, a snow persistence curve (SPC) was developed as a plot of the change 

in SP with elevation. To determine the rate of change of SP with elevation, we fit a line to the 

curve between 5% and 90% SP. SP values lower than 5% were not used due the asymptotic 

behavior of curve that affected strongly the r2 of linear regression. Higher values than 90% were 

also excluded because they were present in just a few bands and usually represented few pixels at 

high elevation. From these linear fits, we saved the inverse slope value, which indicates how 

sharply the annual average snow persistence changes with increasing elevation. 
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Figure 2.2. Example calculation of (a) 2000-2014 SCI with cloud-impaired areas masked using 
CCI>30%, and (b) 2000-2014 snow persistence curve (SPC) showing linear fit to the curve 
between SP 5-90%. 
 

To address objective 1 and identify regions where snow accumulates at similar elevations 

and times of year, three parameters were extracted from SCI and SP data analysis for each 50 km 

latitude band (east and west): (1) minimum elevation for each SCI decile category (Figure 2.2a), 

(2) slope of the SPC (Figure 2.2b), and (3) day of year of minimum elevation for each SCI decile 

category (Figure 2.2a). 

Using these three spatio-temporal snow cover indices, cluster analysis was used to identify 

regions with similar snow climatology. Spatial patterns were characterized using the minimum 

elevation of SCI=20% and the slope of the SPC. The seasonal patterns were defined by the day 

of minimum elevation for SCI=20%. SCI=20% represents an approximate elevation of the snow 

line in each latitude band, where snow line is defined as the lowest elevation that regularly 

experiences snow cover (>20% of years). SCI 20% was selected for snow line definition and 

cluster analysis due the lower noise than SCI 10% and fewer data gaps relative to higher SCI 

categories. Before running the cluster analysis, all three indices were standardized by subtracting 



12 

of the mean and dividing by the standard deviation. The standardization of data is required so 

that each variable contributes equally in the cluster analysis (Norusis, 2012). The K-means 

clustering analysis was used due the moderate number of data, and different numbers of clusters 

were tested (from 2 to 6) to find the best solution that could be easily interpreted (Abonyi and 

Feil, 2007). The Partitioning Around Medoids (pam) function in the “Cluster” package for R 

software was used due the robust version of K-means (Maechler et al., 2015). Finally, the 

combination of the three cluster analysis outputs (minimum elevation, slope of SPC, and day of 

year of minimum elevation) was used to map regions with similar spatial and seasonal patterns 

of snow cover. 

For objective 2, to identify snow persistence zones, thresholds of SP were used as 

boundaries of snow zones. SP captures the dominant tendency of an area to be snow covered or 

snow-free. Based on Jan 1th through July 3th values of SP, Moore et al. (2015) defined four snow 

zones: little or no snow (<25%), intermittent (25-50%), transitional (50-75%), and persistent 

snow zone (>75%). By their definition, intermittent snow does not persist throughout the winter 

and is not present every winter; transitional snow persists throughout the winter, but the timing 

of spring snow loss is earlier in the spring at lower elevations, and persistent snow lasts 

throughout the winter and spring and exhibits synchronous loss of snow with elevation in the late 

spring. Compared to the western U.S. study area of Moore et al. (2015), the timing of snow 

accumulation in the Andes is different due to the large latitude range and position of most of the 

mountain range in the Southern Hemisphere. Therefore, the current study re-defines the 

thresholds for snow zones based on annual SP rather than partial year and the patterns present in 

the Andes (Figure 2.2): (1) little or no snow (<7%), (2) intermittent snow zone (7-30%), (3) 

seasonal snow zone (30-90%), and (4) permanent snow zone (≥90%). Definitions for zones 1 and 
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2 in this study are the same as in Moore et al. (2015). Zone 3 (seasonal snow zone) encompasses 

the transitional and persistent snow zones defined in Moore et al. (2015), and Zone 4 (permanent 

snow zone) represents areas where snow lasts year-round during most years. 

 

2.4. RESULTS 

 

2.4.1. Cloud masking 

 

Cloud cover had a substantial impact on SCI calculations. Cloud cover was more 

prevalent in the winter and spring in the central part of the study area (from 10°S to 38°S), and 

homogeneously distributed over time in the northern and southern parts of the study area. The 

highest proportion of cloud cover for an individual pixel was more than 95% in wide areas of the 

tropics north of 8°S and in Patagonia south of 39°S. Using the threshold of CCI > 30% to mask 

areas of high cloud cover impairment led to reducing the study area to the area between 8°S and 

39°S (Figure 2.3). Additionally, the area around large salt flats, salares, (20°S), was also masked 

from this study because the high reflectance on the surfaces of some of the salares causes them 

to be misclassified as snow (Riggs et al., 2006). The remaining study area covers around 1.45 

million square kilometers. 
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Figure 2.3. Andes Mountains with maximum 2000-2014 SCI for any 8-day interval in the year. 
Areas with CCI > 30% are masked in black. Areas with latitude bands marked (horizontal lines) 
were used for further data analysis, whereas those to the north and south were excluded due to 
high cloud cover impairment. Areas around salt flats (20°S) were also masked from the study 
area (see polygon surrounding excluded area). 
 

2.4.2. SCI patterns 

 

The spatial-seasonal patterns of SCI reveal dominant features in the snow covered area. 

These patterns are shown as raster plots of the 2000-2014 SCI (with CCI>30% masked) in nine 

selected 50 km bands named by center latitude (number and first letter) and side of the Andes 

Mountains (last letter) (Figure 2.3). For example 9SW is the band centered at 9°S Lat. on the 

West side of the Andes. We present some examples of these plots to illustrate the regional 
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variability (objective 1) and snow zones (objective 2). Each selected band shows an increase of 

SCI with elevation (Figure 2.4), but the seasonality and elevation patterns of SCI differ from 

North to South. The two northern bands are located in the Equatorial and Tropical Andes region 

(Barry, 2008), but the patterns of snow cover are different. The 9SW band has a high elevation 

snow cover, with SCI ≥10% at 4,800 m throughout the year; this indicates that snow accumulates 

during some years at 4,800 m and is rarely observed at lower elevations. SCI values of ≥90% are 

found at 5,800 m in the austral summer, shifting down to 5,200 m during the austral winter 

season (middle year in Southern Hemisphere). These high SCI values indicate snow is present 

nearly every year at these dates and elevations. SP values for the lower elevation boundaries of 

intermittent, seasonal, and permanent snow zones are 4,800, 5,000, and 6,000 m, respectively. A 

little further south, 16S bands (both West and East) show a high elevation snow cover, with SCI 

10% at 4,700 m on both west and east sides and SCI 90% in the west side at 5,300 m. The 

elevation boundaries for intermittent snow zones are equal to those of the 9SW band, but 

seasonal and permanent snow zone boundaries are higher than in the 9SW band (5,400 m and 

5,800 m, respectively). SCI values extend to their lowest elevations during the first 100 days of 

the year in these latitudes, indicating that snow covered area tends to be greatest in the austral 

summer due to the enhanced easterly flow from the lowlands of Amazonia and convection that 

produces the “invierno altiplanico” (plateau winter) (Garreaud et al., 2003) (Figure 2.4). 

The Desert Andes region (Barry and Seimon, 2000; Vuille and Ammann, 1997; Williams 

and Ferringo, 1998) is represented by 27S bands. On the west side the minimum elevation of SCI 

10% decreases from 4,800 m at 16SW to 2,900 m in the 27SW band. On the east side decreasing 

minimum SCI elevation from North to South was also detected, but the difference between 16SE 

and 27SE bands was lower (from 4,800 m to 3,600 m). The lowest elevation for any SCI >10% 
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category occurred during winter months (day of year 160 -200) on both sides of the mountains. 

SP values indicate a lower frequency of snow in the 27S desert bands compared to the tropical 

bands because just intermittent and seasonal snow thresholds are reached. The lower elevation 

boundary of the intermittent snow zone is 3,500 m on the west side and 4,100 m on the east side. 

The seasonal snow threshold on the west side is 5,000 m, and the east side does not have 

seasonal snow, as the maximum SP is 30% (Figure 2.4). 

The extratropical and Lakes Andes regions (Barry and Seimon, 2000; Vuille and Ammann, 

1997; Williams and Ferringo, 1998) are represented by 33S and 38S bands. In this range of 

latitudes, the lower elevations of each SCI category decrease from North to South, and the 

elevation is consistently lower on the west side. SCI 10% decreases from 1,200 m in the 33SW 

band to 300 m in the 38SW band on the west side of the Andes and from 2,700 m to 1,300 m on 

the east side. For 33S bands snow zone boundaries were consistently at lower elevation on the 

west side compared to the east side (1,900 m and 2,800 m for intermittent, 2,800 and 4,700 m for 

seasonal, and 5,200 and 5,300 m for permanent). The 38S bands show similar patterns to the 33S 

bands, but snow zone boundaries were at lower elevations (1,000 m, 1,500 m, and 2,700 m for 

intermittent, seasonal and permanent snow zones on the west side). The east side again had 

higher elevation values for each category (1,600 m and 2,000 m for intermittent and seasonal 

snow zones). The permanent snow zone was not present in this band on the east side. All 33S 

and 38S bands show similar seasonal patterns, with the minimum elevation of SCI 10% during 

winter around day of year 200 (Figure 2.4). 
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Figure 2.4. Raster plots of the 2000-2014 8-day time step SCI for 100 m elevation bands in nine 
50 km latitude bands including 15 years of data. Elevations >5,300 m are excluded for the 16SE 
band, and > 2,600 m for 38SE band due the small (< 1 km2) surface areas of these elevation 
bands. 
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2.4.3. Snow regions 

 

Three parameters were derived to identify regions with similar snow accumulation 

elevations and seasonality. First, the minimum elevations of each SCI decile category were 

defined by taking the lowest elevation across the year using the SCI raster plot (Figure 2.2a) and 

plotting these values for each latitude band in Figure 2.5. 

 

 
Figure 2.5. Minimum elevation of each 2000-2014 SCI decile category by latitude band for (a) 
west and (b) east side of Andes Mountains. (c) Difference between minimum elevations for SCI 
20% (East minus West). 
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In the northern (between 8°S and 23°S) and central (between 25°S and 36°S) regions 

mountain peaks can exceed 6,000 m, and further south the mountain peaks decrease to 3,000 m. 

Cluster analysis of the minimum elevation of SCI = 20% divided the general pattern of minimum 

snow elevation into three main regions: high-stable, middle-variable, and low-stable snow 

elevation (Figure 2.6a). In the west side, the high-stable elevation begins at 8°S. In this region 

snow cover begins to accumulate at 5,000 m (SCI 10%), and high snow cover (SCI 90%) is 

present above 5,500 m. These elevations of snow accumulation are similar between 8-15°S, 

although some bands around 11°S and between 13°S and 14°S do not have enough snow data to 

define SCI per elevation (Figure 2.5). South of 15°S the higher SCI (≥30%) increases a little in 

elevation, but lower SCI (10 and 20%) decreases in elevation. The middle-variable region begins 

at latitude 23°S. In this region, the elevation of all SCI categories decreases with latitude, but 

lower values of SCI (<50%) decrease at a lower rate than higher SCI categories (>50%). South 

of 30°S all categories continue decreasing in elevation at similar rates. In the low stable region 

south of 35°S all SCI categories maintain similar elevations, with only a slight decline in 

elevation with latitude. 

The east side has a similar pattern to the west but with two main differences. The latitude 

boundaries for the high-stable, middle-variable, and low stable regions are further south than on 

the west side (25°S and 37°S). The other main difference between sides is the value of elevation 

for each SCI category. To compare this elevation difference across latitude bands, SCI 20% 

(snow line) is shown in Figure 2.5 (East minus West side snow line elevation). In the northern 

part of the study area (north of 20°S), no difference between west and east sides is evident. South 

of 20°S, the difference between sides increases with latitude to a maximum of 1,700 m at 27 and 

34°S, meaning that the western side of the Andes had 1,700 m lower elevation of snow cover 
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than the east side. South of 34°S, the difference between sides decreases with latitude because 

the height of the mountain range decreases and reduces the orographic effect on precipitation. 

The second parameter used to define snow regions is the inverse slope of the snow 

persistence curve (SPC), which was calculated for each band (Figure 2.2b) to determine the rate 

of change in snow persistence with increasing elevation. Two clusters were defined using the 

inverse slope values (Figure 2.6b): (1) Steep, and (2) Gradual. The steep cluster has an average 

value of 0.069 SP/m and wide range of slope values (std. deviation of 0.025). It is located 

between 8°-22°S on the west side and 10°-24°S on the east side; the north boundary was limited 

by the cloud masked area. The gradual cluster has an average value of 0.025 SP/m and a 

narrower range of slopes (std. deviation of 0.008). This cluster extends from the southern 

boundary of the steep cluster to 39°S, the southern boundary of study area. 

 



21 

 
Figure 2.6. Cluster analyses results over 50 km latitude bands by (a) minimum elevation of SCI 
20%, (b) inverse slope of SPC, and (c) day of year of minimum elevation for SCI 20%. 
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Figure 2.7. Maps of cluster analysis results for 50 km latitude bands by (a) minimum elevation of 
SCI 20%, (b) inverse slope of SPC, and (c) day of year of minimum elevation of SCI 20%. 
 

The third parameter for defining snow regions is the day of the year of lowest elevation of 

SCI 20% (timing minimum elevation). A cluster analysis defined four clusters of minimum 

elevation of SCI 20% (Figure 2.6c). Two clusters were aggregated into one because they have 

similar timing but are geographically separated. In the March group (fall maximum snow), the 

average day of minimum elevation SCI 20% is day 76 (March 17th). This cluster extends from 

11°S to 23°S. In the north this cluster has greater representation in the west side, whereas in the 

southern area the presence of the cluster is more on the east side. The June group (early winter 

maximum snow) cluster includes two areas from 8° to 14°S and 23° to 31°S. The average timing 

of minimum elevation of snow cover was day 163 (June 12th), but the minimum elevation tended 

to occur earlier in the year on the east side than on the west side. Finally, the July cluster (late 
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winter maximum snow) extends from 29°S to 38°S with an average minimum elevation of day 

199 (July 18th). 

The spatial extent of the regions defined by the three snow parameters is illustrated in 

Figure 2.7. Latitude bands with no presence of SCI 20% were excluded from analyses for 

minimum elevation SCI and timing of minimum elevation, and latitude bands that had <3 

elevation bands with snow cover were excluded from the slope SPC analyses. Collectively the 

three region classification parameters show that in tropical latitudes (8°S to 23°S), snow cover is 

found at the highest elevations, with a steep change in SP with elevation and peak snow cover in 

March, except at the northernmost extent of the region. Overlapping of the three cluster maps 

divides this area into two snow regions (Figure 2.8, Table 2.1). The northernmost region, 

Tropical-latitude1, covers 4% of the study area. This region has high snow cover elevation, a 

steep change in snow accumulation with elevation, and austral winter maximum snow cover. The 

region extends from 8°S to 10.5°S on the west side of the Andes and from 11°S to 13.5°S on the 

east side. The next tropical region, Tropical-latitude 2, covers 35% of the study area. This region 

differs from Tropical latitude 1 primarily in the timing of snow cover, which peaks in austral fall. 

The region extends from 11°-21.5°S in the west and from 13.5°-23°S in the east side. 

In mid-latitudes south of the tropics, the snow cover drops in elevation, and the change in 

snow cover with elevation becomes more gradual. These regions all have winter maximum snow 

cover, but the timing of peak snow cover shifts later in the winter further south (Figure 2.7). 

Combining the extent of the cluster zones defined in Figure 2.7, the mid-latitude snow regions 

are separated into three sub-groups (Figure 2.8, Table 2.1). Mid-latitude 1 extends from the 

southern boundary of region 2 to 29°S in the west and to 30.5°S in the east. This region has 

middle elevation snow accumulation and early winter peak snow cover. Mid-latitude 2 extends 
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from the southern boundaries of Mid-latitude 1 to 35.5°S in the west and 36.5°S in the east. This 

region differs from Mid-latitude 1 only in the later timing of peak snow cover. Finally Mid-

latitude 3 extends to 39°S, the southern boundary of the data analysis. It differs from Mid-

latitude 2 in that it has lower elevation of snow accumulation. 

 

Table 2.1. Summary characteristics of five Andes snow climatology regions. SCI numbers give 
areas (km2) of each SP category per region. 

Parameter Tropical-
latitude 1

Tropical-
latitude 2

Mid- 
latitude 1

Mid- 
latitude 2

Mid- 
latitude 3 

Total 

Minimum elevation of 
SCI 20% (m) 

High 
5,010 
± 99

High 
5,032
± 132

Middle 
4,067
± 646

Middle 
2,018
± 725

Low 
977 m 

± 417 m 

 

Inverse slope of SPC 
(SP/m) 

Steep 
0.093 

± 0.023

Steep 
0.061

± 0.020

Gradual 
0.024

± 0.008

Gradual 
0.024

± 0.006

Gradual 
0.031 

± 0.005 

Timing of minimum 
elevation of SCI 20% 

June 
155 

± 12

March 
83

± 41

June 
166

± 21

July 
201

± 13

July 
198 

± 28 
Little or no snow 
(km2) 63,017 483,475 416,721 186,980 125,158 1,275,351
Intermittent (km2) 1,159 17,333 47,651 29,081 23,024 118,248
Seasonal (km2) 664 1,166 7,058 39,555 13,113 61,556
Permanent (km2) 22 71 84 1,110 20 1,307
Total area (km2) 64,863 502,044 471,514 256,727 161,315 1,456,463

 

2.4.4. Snow zones 

 

Analyses of seasonal patterns of SCI and SP across latitudes bands exhibited four distinct 

levels of SP that were used to delineate snow zones. A summary of snow zone areas for each 

snow climatology region is shown in Table 2.1, and a map of the distribution of snow zones 

within each snow climatology region is shown in Figure 2.8. In the study area as a whole, 12% 

of the area has intermittent, seasonal or permanent snow. The intermittent snow zone covers the 

largest area (8%), seasonal snow cover 4% and just 0.8% has permanent snow. The mid-latitude 
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region 1 has the largest area of intermittent snow, which covers 10% of this region and 40% of 

the total intermittent snow zone in the study area. The mid-latitude region 2 has the largest areas 

of seasonal and permanent snow, which represent 16% of this region, 64% of seasonal snow, and 

85% of permanent snow in the study area. 

 



26 

 

Figure 2.8. Distribution of snow zones by snow region. 
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2.5. DISCUSSION 

 

We used MODIS data to document connections between the patterns of spatial and 

seasonal snow cover and climate conditions across the Andes, identify locations of snow lines, 

and quantify rates of changes in snow persistence with elevation. Overall, the snow line elevation 

(SCI 20%) decreased with latitude from 5,000 m at 10°S to 700 m at 38°S. Snow cover extended 

to the lowest elevations during austral winter (JJA) except in tropical latitudes between 12° to 

23°S. The rate of change in snow persistence with elevation has a break point at Tropic of 

Capricorn, with a steep slope north of this limit and a more gradual slope to the South. 

North of 23°S two snow regions are defined: Tropical-latitude 1 (TL1) and Tropical-

latitude 2 (TL2). TL1 exhibits less seasonal variability in snow line elevation (band 9SW in 

Figure 2.4), but there is some evident seasonality in high SCI categories, with a decrease in the 

elevation of high SCI during austral winter (JJA). The slightly greater SCI during JJA is 

inconsistent with seasonal patterns of precipitation in these latitudes. TL1 is located in an outer 

tropic climate zone, which is characterized by low seasonal temperature variability, high solar 

radiation influx all year round, and high seasonality in precipitation (Rabatel et al., 2012). The 

dry season lasts from May to September and wet season from October to March (Garreaud, 

2009; Rabatel et al., 2013). Most of the snow falling during the wet season lasts for a short 

duration (hour to days) due high solar radiation in austral summer (Lejeune et al., 2007; Wagnon 

et al., 2009). Due to this short duration of snow on the ground, brief periods of snow cover in 

TL1 during the wet season may not have been detected during the times of MODIS sensor 

overpass. It is also possible that snow was mis-classified as cloud during the wet season, 

although we have no reason to expect that mis-classifications of snow vs. cloud were greater in 
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this area than elsewhere. It is more likely that cloud cover occurs more regularly, as seen by the 

CCI>30% across most elevations around day 70 and 350 in band 9SW (Figure 2.4), and this may 

alter the SCI due to the short period of observation. During the dry season, although less snow 

falls than in the wet season, any precipitation that falls at high elevation is typically snow, and 

any snowfall occurring in May–August may persist longer due to more limited ablation (Rabatel 

et al., 2012). Therefore, the dry season snow cover peak (day of year 155) probably relates to 

greater persistence of snow, which made it more likely to be detected by MODIS. The timing of 

highest snowline elevation is similar to transient snowlines documented in prior studies in the 

area (Hanshaw and Bookhagen, 2014; Rabatel et al., 2012). 

Tropical-latitude 2 (TL2) is located in the Desert Andes, where the semi-permanent high 

pressure zone in the Pacific is a primary cause of extremely dry conditions on the west side of 

the Andes. This region does have a peak in snow accumulation following the tropical wet season, 

consistent with the timing of maximum positive mass balance of glaciers in the area (Arnaud et 

al. 2001). During the austral summer (DJF), elevated precipitation during the “invierno 

altiplanico” leads to peak snow cover in March between 11-23°S (Garreaud et al., 2003). The 

easterly winds lead to greater precipitation on the east side than the west (Houston and Hartley, 

2003), but this does not create a difference in snow cover elevations on either side of the Andes 

(Figure 2.5c). This lack of difference in snow cover elevation may indicate the presence of snow 

is limited by temperature in the tropics, although prior glacier studies in the region highlight the 

importance of both precipitation and temperature patterns in snow line elevation (Arnaud et al., 

2001). Snow line elevations in this region are similar to those documented in prior glacier-

focused research (Arnaud et al., 2001; Hanshaw and Bookhagen, 2014). These studies have 
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examined longer periods of time than in our MODIS analysis and have found increases in snow 

line elevations over the past several decades. 

South of 23°S, air temperatures cool, leading to a greater rate of decline in snow cover 

elevation with latitude than in the tropics. The dominant wind direction also shifts to westerly, 

and the interaction of orography with the westerly prevailing winds has major consequences for 

snowline elevation and differences in snow on west and east sides of the Andes (Figure 2.5c). In 

this area, the ascending westerlies bring moisture from the Pacific Ocean, and the Andes act as a 

barrier to produce a marked rain/snow shadow (Quintana, 2012b). This leads to substantial 

differences in snow accumulation elevations on the west and east sides of the Andes, suggesting 

that reduced precipitation on the east side leads to higher elevations of snow accumulation. The 

difference between snow line elevations in both sides of the Andes is proportional to the highest 

elevation at certain elevation bands, with a peak difference at around 34°S, where mountains are 

highest, and a decrease further south where the height of the mountains declines (Figure 2.5c). 

Throughout the mid-latitude snow regions, the lowest elevation of the snowline is reached in 

winter, when temperatures are coolest and precipitation is highest in this area. 

These climate regions developed from snow cover provide more details on regional 

differences than previous climatology patterns developed for the Andes area. Prior classifications 

have been based on vegetation and distributions of mean temperatures (annual and monthly) 

(Kottek et al., 2006), precipitation, ecological criteria (Borsdorf and Stadel, 2015), or glacier 

distribution (Williams and Ferringo, 1998). Kottek et al. (2006) updated the climate division 

based on vegetation and temperature to define five main areas at a global scale following the 

Köppen-Geiger approach. Three main Köppen-Geiger climates are present in the Andes 

Mountain (8-39°S) : (1) Desert climate (BW) on the east side of the Andes, and extending to 
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30°S on the west side, (2) Warm temperate climates dry summer (Cs) extending to 30°S on the 

west side, and (3) Polar tundra climate (ET) at the highest elevations. 

The approach presented by Borsdorf and Stadel (2015) defined five areas based on 

vegetation: (1) subtropical-tropical desert that extends from the northern part of the study area to 

28°S on the west side and 35°S on the east side, (2) Mediterranean from 28°S to 36°S just on the 

west side, (3) dry between 35°S and 36°S on the east side, (4) humid-temperate forest from 36°S 

on the west side, and (5) cold forest steppe south of 36°S on the east side. Because it uses 

vegetation as an indicator of climate, this approach integrates the factors that affect vegetation 

patterns such as precipitation, evapotranspiration, state (rain/snow), and other climate variables 

(temperature, radiation, relative humidity). However, the adaptive capacity of vegetation means 

that similar types of vegetation may be present over a range of climate conditions. Additionally, 

in areas where we identified different spatial and seasonal patterns of snow, the vegetation-based 

classification grouped all together as desert. 

Finally, glacier distributions have been the focus of studies in persistent snow zones. 

Williams and Ferringo (1998), define the Dry Andes as extending to 30°S with no difference 

between sides of the Andes. Our snow climatology approach identifies three different regions in 

the same area and provides information on differences between sides of the Andes. Because the 

presence of snow integrates precipitation, temperature, and topography, it is a useful indicator of 

climate patterns. These patterns can be derived directly from remote sensing data, which is 

particularly useful in areas with limited in situ climate monitoring. Snow covered areas do 

include glaciated parts of the region, but the snow-based analysis covers a larger geographic 

extent than glacier-focused classifications. The snow zone analysis defined thresholds for snow 
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zones using data from a wide range of latitudes (8-39°S), so these zone thresholds may be 

transferable to other parts of the world. 

Any spatial analysis must consider the quality of product itself and scales used. The 

MODIS snow product has uncertainties and limitations in the snow definition reported by several 

studies (Arsenault et al., 2014; Hall et al., 2010; Stroeve et al., 2006; Wang et al., 2012). 

Changes in the threshold used in the snow definition algorithms has improved the accuracy of 

the MODIS snow product, but misclassification between cloud and snow still remain (Rittger et 

al., 2013). Our approach of using cloud thresholds to mask areas with high cloud impairment 

likely eliminated the majority of misclassifications. The high frequency of cloud presence was a 

large limitation in wide areas (Northern and Southern Andes). This limitation could be decreased 

by using some cloud removal algorithms in a daily product before calculating snow climate 

indices (Gafurov and Bardossy, 2009; Gao et al., 2010; Gu et al., 2011; Hall et al., 2010).The 

temporal resolution of 8-days used in this study will not capture snow cover variability during a 

quick snow melting season (Rittger et al., 2013), but it is sufficient for identifying seasonal 

patterns (Figure 2.2), except possibly in areas with snow cover that lasts only a few hours and 

may be missed by the satellite overpass. On the other hand, the 8-day maximum product can also 

over-estimate snow persistence in areas with low or intermittent snow if the satellite overpass 

does occur during a brief window of snow cover. The spatial resolution of the MODIS snow 

product (500 m) is acceptable for the regional scale presented in this study, but particularly in 

areas such as TL1 that lack in situ snow observations, added ground observation would be 

helpful for reducing uncertainties in snow cover patterns. Additionally, weather and topographic 

variables such as precipitation, wind, slope, aspect, or shading will affect snow cover patterns at 

finer scales (Richer et al., 2013). Thus a study with finer scale of interest may require additional 
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remote sensing information (e.g. Landsat). The snow indices developed in this study can 

continually be updated with new MODIS data, refined snow cover retrieval algorithms, different 

sources of snow cover data such as fractional snow cover (Salomonson and Appel, 2004) or 

MODSCAG (Painter et al., 2009; Raleigh et al., 2013), and higher frequency snow cover images. 

Use of a fractional product can also be merged with a SWE product to yield bulk snowpack 

estimates (Bales et al., 2008). 

The maps of snow patterns produced in this study have a number of potential applications. 

The current sparse in situ snow monitoring network can be improved by using these maps to 

identify areas that are representative of regional snow patterns and areas with high inter-annual 

variability for new snow stations. The definition of snow zones with 15 years of information 

could be the basis for evaluating snow change or abnormal snow events in the future. From the 

hydrologic perspective, snow cover time series can be used in hydrologic modeling (Parajka and 

Bloschl, 2008), and the snow climatology information can help hydrologists determine how 

stream flows relate to snow melt timing. 

 

2.6. CONCLUSIONS 

 

This study developed a method for mapping the spatial and seasonal variability of snow 

cover in the Andes using MODIS SCA data. Cloud cover reduced the ability to use MODIS 

snow product in the northernmost and southernmost portions of the Andes. The analysis of the 

SCI by bands of latitude (50 km) and elevation (100 m) led to defining five snow climate 

regions. In the tropical latitudes (north of 23°S) two regions were defined (Tropical-latitude 1 

and 2), both with snow cover restricted to the highest elevations and a steep rate of change of 
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snow persistence with elevation. There were minimal differences in the elevation of snow 

accumulation on both sides of the mountains, which suggests that temperature is a primary 

control on snow presence. Although seasonal changes in snow cover were minimal in tropical 

latitudes, snow persistence was slightly greater in the austral winter in Tropical-latitude 1 due to 

lower radiation in this season, whereas tropical-latitude 2 snow region had peak snow cover in 

the fall following the wet season. 

In Mid-latitudes (south of 23°S), snow cover dropped in elevation, and the rate of change 

of snow persistence with elevation was more gradual. Mid-latitude snow regions had peak snow 

cover in the winter, when temperatures were lowest, and precipitation was high. Differences in 

elevations of snow accumulation between sides of the mountains were greatest in Mid-latitude 

region 2, where high mountains lead to a pronounced orographic effect on precipitation. This 

suggests that precipitation had a greater effect on snow accumulation elevation in these latitudes 

than in the tropics, leading to lower snow lines on the west side where precipitation was higher. 

This snow cover approach to analyzing climate patterns provides more details on regional 

differences than previous maps of climate zones in the region, which used mean annual and 

monthly temperatures, precipitation, and ecological criteria, and it helps quantify where and 

when snow accumulates throughout the region. 

Maps of snow zones show that snow cover extent was limited in the tropics and Atacama 

Desert, with the largest areas of seasonal (winter) and permanent snow in Mid-latitude 2 (28-

36°S) as result of higher precipitation than areas further north and higher elevation than 

mountains further south. Seasonal and permanent snow are both important sources of water 

production, and results of this study can help identify watersheds where snowmelt is likely a 

strong contributor to stream flow. Tracking changes in these snow zones over time can help 
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identify geographic variability in the sensitivity of the Andes Mountain snowpack to climate 

change.  
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CHAPTER 3: CHANGES IN THE ANDES MOUNTAINS SNOW COVER FROM MODIS 

DATA 2000-2014. 

 
 
 

3.1. INTRODUCTION 

 
The influence of changing climate on snow cover has been studied across the world 

(Adam et al., 2009; Barnett et al., 2005; Brown and Mote, 2009; Dahe et al., 2006; Masiokas et 

al., 2006). In snow-dominated basins, snowpack provides the largest reservoir of water (Adam et 

al., 2009; Masiokas et al., 2006), which influences stream discharge, affecting erosion, sediment 

transport, hydropower production, and potential water storage (Hall et al., 2012). These basins 

are particularly sensitive to climate change due to both precipitation and temperature changes. At 

global scale, warming temperatures cause decreases in snow cover by increasing the elevation of 

the 0°C isotherm in mountain regions and/or decreasing the fraction of precipitation falling as 

snow (Barnett et al., 2005; Brown and Mote, 2009). The magnitude of this effect decreases with 

increasing elevation (López-Moreno et al., 2009). However, snow cover changes can be difficult 

to predict in areas where the temperature increase is accompanied by increased precipitation 

(Adam et al., 2009; Dahe et al., 2006). Decreases in the duration of snowpack cause negative 

feedbacks due to decrease in albedo, which leads to increased absorption of solar radiation, 

intensification of warming trends, and further reductions in snowpack. In mountain 

environments, the persistence of snow affects the plant growing season and the amount of water 

available for soil moisture (Stewart, 2009). 

In the Southern Hemisphere, seasonal snow cover is primarily confined to southern South 

America, where extensive winter snow cover may occur (Foster et al., 2009). The impacts of 

climate change on snow covered areas in South America have not been studied in detail due to 
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sparse and unevenly distributed climate data. (Aravena and Luckman, 2009; Cortés et al., 2011; 

Masiokas et al., 2006). Masiokas et al. (2012) conducted one of the most extensive snowpack 

temporal trend studies in this region, but the high spatial variability in mountain areas and the 

few stations used (15 stations) limited their ability to draw solid conclusions about snowpack 

trends across the region. Remote sensing offers the opportunity to document snow cover change 

throughout the region in the last 15 years. The primary objectives of this chapter are to (1) 

quantify changes in the snow cover and their spatial patterns with latitude and elevation, and (2) 

explore how these changes relate to climate variables. 

 

3.2. STUDY SITE 

 

The Andes Mountains cross seven countries (Venezuela, Colombia, Ecuador, Peru, 

Bolivia, Chile, and Argentina) along more than 8,000 km (10º N to 57º S) (Figure 2.1) (Barry, 

2008). They represent the highest mountain system out of Asia, the longest in the world, and 

have a strong effect on atmosphere circulation (Llamedo et al., 2016). Local climates vary 

greatly depending on latitude, altitude, and proximity to the sea (Garreaud, 2009). 
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Figure 3.1. Study area (red line) over digital elevation model of the Andes Mountains and 
subdivided into latitudes bands (black line). 
 

Figure 3.2a shows the monthly precipitation patterns in both sides of Andes (see the 

continental divide in Figure 3.1) by latitude using the University of Delaware dataset 2000-2014 

(Matsuura and Willmott, 2015). The overall pattern is an increase in precipitation to the south 

and on the windward of the Andes due to the orographic effect (Garreaud et al., 2009; Quintana, 

2012b). In the northern area (north of 20°S), precipitation is concentrated in the austral summer 
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(DJFM), with higher precipitation on the east side. Areas between 20-30°S have hyper-arid 

conditions with limited precipitation all year on the west side and greater precipitation on the 

east side. During the austral summer, wet episodes tend to occur due to strong upper-level 

easterly winds that enhance moisture transport from Amazonia (Garreaud et al., 2003). South of 

30°S, precipitation has a well-defined annual pattern with a peak of precipitation in austral 

winter (JJA) and higher precipitation on the west side (Quintana, 2012a, b; Valdés-Pineda et al., 

2015a). In these latitudes, air masses come from the west (Pacific), so the west side of the Andes 

receives higher precipitation than the east side (Garreaud, 2009; Matsuura and Willmott, 2015). 

The monthly air temperature from the University of Delaware gridded dataset 2000-2014 

is shown in Figure 3.2b (Matsuura and Willmott, 2015). Lowest temperatures are during austral 

winter (JJA) but there is less seasonal variability in the tropics than in higher latitudes. Mean 

annual temperature decreases from North to South and with increasing elevation. The combined 

precipitation and temperature patterns affect snow cover duration in the region. Snowfall patterns 

have been mapped in detail for this region using remote sensing, but high cloud cover limited 

this mapping to the area between 8°S to 36°S (Saavedra et al., 2016). Figure 3.2c shows the 

monthly average snow covered area between years 2000 and 2014 for each latitude band using 

Moderate Resolution Imaging Spectroradiometer (MODIS) snow product (MOD10A2) across 

the year on both sides of the Andes. Most of the high snow cover (>30%) is south of 24°S. On 

the west side the snow season lasts from around day 110 (April 20th) to 280 (October 7th) 

between 24-33°S. Between 33-35°S the snow season can last all year in high elevation areas. 

South of 36°S, the snow season starts around day 110 but lasts longer into the summer until 

around day 320 (November 16th). The latitude variability of snow cover can be summarized 

using snow persistence (SP), which is the fraction of a year with snow cover. North of 25°S, 
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average snow persistence is lower than 10%, and the snow line (SP=20%) is over 5000 m 

(Saavedra et al., 2016). The snow line decreases in elevation with increase in latitude south of 

25°S with a consistently lower snow line on the west side than on the east side (Barry and 

Seimon, 2000; Saavedra et al., 2016; Vuille and Ammann, 1997; Williams and Ferringo, 1998). 

 

 
Figure 3.2. Mean monthly precipitation (a) and temperature (b) from the University of Delaware 
dataset 2000-2014. Mean fraction of area with snow cover by latitude band calculated from the 
binary 8-day product from MODIS (MOD10A2) 2000-2014 (c), and snow line elevation 
following Saavedra et al. (2016) methodology (d). Grey areas represent latitudes masked due to 
high frequency of cloud cover in snow covered area analysis (>30% time period). 
 

 

 



40 

3.3. METHODS 

 

3.3.1. Data 

 
We used the MODIS eight-day 500m binary snow cover products Collection 5 Level 3. 

MODIS is a passive 36-band spectrometer on board two satellites (Terra and Aqua) (Hall et al., 

2002). One of the spectral bands used to calculate the snow products for the Aqua satellite has 

malfunctioned, so our research is based on Terra products. Because of high cloud impairment in 

daily MODIS snow cover products, we use the eight-day maximum product (MOD10A2), which 

represents the maximum snow cover and minimum cloud during each eight-day interval (Riggs 

et al., 2006). The study area is covered by 7 MODIS images (tiles), which we downloaded for 

the time period from 2000 to 2014 (MOD10A2) (http://reverb.echo.nasa.gov), giving a total of 

5,147 tiles of MOD10A2. 

We collected monthly precipitation and temperature from the University of Delaware 

dataset version 4.01 (UDelv4) with a grid resolution of 0.5° from 2000-2014 (Legates and 

Willmott, 1990) (http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html). For 

the study area, UDelv4 compiled data from ground stations at a monthly time step from several 

sources including Global Historical Climatology Network Monthly, Daily Global Historical 

Climatology Network, Global Synoptic Climatology Network, and Global Surface Summary of 

Day. The monthly averages of station data were interpolated to a 0.5 degree by 0.5 degree 

latitude/longitude grid using the spherical version of Shepard's distance-weighting method 

(Willmott and Robeson, 1995). In addition, station-by-station cross-validation was employed to 

evaluate the spatial interpolation errors (Matsuura and Willmott, 2015). 
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An important source of interannual climate variability in the region is El Niño/Southern 

Oscillation (ENSO). We collected the multivariate ENSO Index (MEI) that is based on the six 

main observed variables over the tropical Pacific 

(http://www.esrl.noaa.gov/psd/enso/mei/table.html). Negative values of the MEI represent the 

cold ENSO phase (La Niña), while positive MEI values represent the warm ENSO phase (El 

Niño) (Wolter and Timlin, 1998). 

We used a digital elevation model (DEM) developed from a combination of Shuttle 

Radar Topographic Mission (SRTM) and Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) elevation data to divide the study area into 100 m elevation 

bands and 50 km latitude bands (Saavedra et al., 2016). The continental divide was defined by 

using the drainage side (East or West) of the Andes determined from the Watershed Tool in 

ArcGIS. All geospatial data were mosaicked and projected into the South American Alber’s 

equal area azimuthal projection to minimize shape distortion (Kennedy and Kopp, 1994). 

 

3.3.2. Analysis 

 

To document snow cover patterns and their changes over time from 2000-2014, we 

calculated the annual snow persistence (SP) for each pixel in the study area as the fraction of the 

images in a year with snow cover (Saavedra et al., 2016). We masked areas with mean annual 

SP<7% to avoid potential misclassifications in MODIS snow products (Figure 3.2a) (Hall et al., 

2002). This threshold excludes the little to no snow zone (SP<7%) as defined in Saavedra et al. 

(2016). For the remaining pixels we used the non-parametric Mann-Kendall analysis to test for 

trends in annual SP (Khaled and Ramachandra, 1998) and quantified the rate of change using the 
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linear Theil-Sen’s slope, which determines the slope as the median of all possible slopes between 

data pairs (Sen, 1968; Theil, 1950). We ran the Mann-Kendall analysis using the “Kendall” 

package for R (McLeod, 2011). Trends were considered significant at a p-value ≤ 0.05. We also 

calculated a standardized Theil-Sen’s slope by dividing the original slope by the mean annual 

SP. This allowed us to compare the rate of SP change (slope) in different snow zones. For each 

year, we estimated the elevation of the snow line using a SP value of 20%, following Saavedra et 

al. (2016) and evaluated the trends in snow line elevation for each latitude band on the west and 

east sides. Finally, we calculated trends in SP for individual months and elevation bands and 

examined how the magnitude of trends varied seasonally and with elevation across the study 

area. We conducted all geo-statistical analyses using statistical computing R software 

(RCoreTeam, 2013). 

To explore how climate variables relate to snow persistence trends we used the 

University of Delaware annual data set (air temperature T, and precipitation P) and the 

Multivariate ENSO Index (MEI). For each of these variables, we ran the same trend analyses 

described for SP. Additionally, we evaluated the linear correlation between each climate variable 

(T, P, MEI) and SP using Pearson’s correlation coefficient (r). We also ran multiple linear 

regressions at a monthly time step to define the proportion of variability of SP explained by each 

climate variable. The strength of these regressions was quantified using the coefficient of 

determination (r2). Finally, we calculated the relative importance of independent variables on 

annual SP using de Lindeman, Merenda and Gold (lmg) approach included in the relative 

importance for linear regression “relaimpo” R package (Groemping and Matthias, 2013). The 

lmg method evaluates the individual contribution of each regressor to the full r2 of the model 
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(Grömping, 2006).We visualized all statistical analyses by pixel mapping and as latitude-

elevation charts. 

 

3.4. RESULTS 

 

3.4.1. Annual snow persistence and snow line trends 

 

The mean annual snow persistence across the Andes Mountains varies with both latitude 

and elevation (Figure 3.3a). The total area with mean annual SP≥7% is 178,330 km2 and is 

distributed in three main zones. The northern area (8-11°S) has just 2% of this snow area (2,992 

km2); latitudes14-16°S contain 9% (16,231 km2) of the snow area, and the remaining snow 

covered areas are all south of 23°S (159,107 km2). Mann-Kendall trend analyses of annual SP 

(Figure 3.3b) shows significant decreasing trends south of 29°S, where 2-5 fewer days of snow 

every year (-1.5 to -0.5 % year) are the most common values. Small areas registered an increase 

of SP (blue range colors in Figure 3.3b) south of 34°S at lower elevations. The standardized 

slope shows the magnitude of the slope normalized by mean annual SP (Figure 3.3c). North of 

34°S the standardized slopes are elevation-dependent on both sides of the mountains, with 

greater changes (more negative trends) at lower elevations. South of 34°S the relative changes in 

SP are greater (more negative) on the east side than on the west side of the Andes. 
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Figure 3.3. Snow pattern of (a) mean annual snow persistence (SP) 2000-2014, (b) Theil-Sen’s 
slope of trend in annual SP from Mann-Kendall test 2000-2014, and (c) standardized slope of SP 
trend (slope/mean SP); pixels are only colored if the trend is significant at p≤0.05 and if SP≥7%; 
the SP threshold excludes areas with little to no snow. 
 

The latitude-elevation band analysis of SP reveals how the pattern of snow varies across 

the region. North of 23°S the snow is confined to over 5000 m, with a steep change of SP with 

elevation. South of 23°S, areas with similar SP values are found at lower elevations with 

increasing latitude. The west side has consistently lower elevation snow than the east side for SP 

values under 90%. For a more detailed description of these patterns see (Saavedra et al., 2016) 

(Figure 3.4a). The trend of annual SP is shown in Figure 3.4b as Sen’s slope values. North of 

19°S, decreasing SP is confined to over 5000 m on both sides of the Andes, and south of 29°S 

areas with declining SP drop in elevation and vary between west and east sides (Figure 3.4b). 
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The west side has a lower elevation of each category of Theil-Sen’s slope compared to the east 

side at the same latitude. The maximum decreases in trend slopes are located at middle-high 

elevations, between 4000-5000 m at 29°S and declining to 3000-4000 m at 36°S for both sides. 

The inset boxes in Figure 3.4b shows the relation between Theil-Sen’s slope and SP for all 

latitude-elevation bands south of 23ºS. In this latitude range, the maximum rates of SP decline 

are in the seasonal snow zone, which is defined as mean annual SP between 30-90% (Saavedra et 

al., 2016). The standardized Theil-Sen’s slope shows greater declines at lower values of SP on 

both sides, except in a few anomalous areas. This means that the greatest absolute declines in SP 

south of 23ºS have been in the seasonal snow zone (Figure 3.4b), whereas the greatest relative 

declines have been in the intermittent snow zone (SP<30%; Figure 3.4c). 
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Figure 3.4. Latitude-elevation band analysis of (a) mean annual SP for 2000-2014 (b), Theil-
Sen’s slope of Mann-Kendall trend in annual SP from 2000-2014, and (c) standardized Theil-
Sen’s slope (slope/mean SP); only areas with significant trends (p≤0.05) and SP≥7% are colored. 
Inset boxes show the relation of SP with Theil-Sen’s slope (b), and standardized Theil-Sen’s 
slope (c) for each latitude-elevation band south of 23°S (grey dashed line) on West (green) and 
East (orange) sides. Within inset plots, vertical dashed gray lines represent thresholds for 
intermittent (I), seasonal (S), and persistent (P) snow zones. Grey areas represent latitudes 
masked due to high frequency of cloud cover in snow covered area analysis (>30% time period). 

 

The amount of area affected by significant changes in snow persistence also shows a 

strong difference between sides of the Andes (Figure 3.5a). South of 29°S the total area with 

slopes lower (more negative) than -0.5 (%/year) is 70,515 km2 with 38% in the west side. The 

most common slopes of decreasing SP are in the range of -2.0 to -0.5 %/year. For areas with the 

steepest declining trends in SP (-3.0 to -2.5 % year), 86% of the affected area is on the east side 

(inset boxes in Figure 3.5a). Trends in snow line elevation were only significant south of 29°S on 
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the west side and south of 30°S on the east side (Figure 3.5b), where the snow line is increasing 

in elevation at a rate of about 10-30 m/year. Rates of increase in snow line elevation are higher 

for the west side than for the east side between 30-32°S, but south of 34°S the east side snow line 

elevation changes are higher and significant compared with a non-significant trend on the west 

side. 

The seasonality of SP change is shown in Figure 3.5c. North of 23°S the greatest changes 

in snow persistence were in early months, during austral summer (DJFM) on both side of the 

Andes. South of 23°S, the largest changes were in late austral winter (JJA) for lower values of 

SP (7<SP<30%), which represent the intermittent snow zone and lower boundary of the seasonal 

snow zone (Figure 3.4a). For middle values of SP (30<SP<70%), which represent the seasonal 

snow zone, the largest changes in snow persistence were during the melting season in austral 

spring (SON). For intermittent and seasonal snow zones, there are no major differences in the 

seasonality of change between west and east sides. Finally at the upper boundary of the seasonal 

snow zone and into the persistent snow zone at the highest values of SP (>70%), the largest 

changes in snow persistence were observed during austral fall (AM) on the west side associated 

with the accumulation season and the austral winter (JJA) on east side. 
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Figure 3.5. Areas with significant change in annual SP by latitude band (a), (b) slope of Mann-
Kendall trend in elevation of snow line (SP=20%), solid symbols have significant trends 
(p≤0.05), and (c) months with the highest significant Sen’s slope from Mann-Kendall trend 
analysis of SP. Inset box in Figure (a) shows percentage of area in each Sen’s slope category for 
West and East sides, and inset box in (c) shows the variability in the range of months with 
greatest SP changes for each latitude-elevation band south of 23°S (dashed grey line) on West 
(green) and East (orange) sides. Within the inset box, vertical dashed gray lines represent 
thresholds for intermittent (I), seasonal (S), and persistent (P) snow zones. Grey areas represent 
latitudes masked due to high frequency of cloud cover in snow covered area analysis (>30% time 
period). 
 

3.4.2. Climate connection 

 

Many parts of the study area had significant trends in annual precipitation and mean 

annual temperature from 2000-2014 (Figure 3.6). Trends in annual precipitation were mostly not 

significant north of 25°S but showed a significant decrease from 2-4 mm/year at 26°S to 15-20 

mm/year at 36°C (Figure 3.6a). The standardized decrease of precipitation (Theil-Sen’s 



49 

slope/mean annual P; Figure 3.6b) is low north of 31°S (1%) and increases to the south, with 

higher values on the east side. This indicates greatest impacts of decreasing precipitation on the 

east side. The seasonality of decreasing P (Figure 3.6c) shows that the austral winter (JJA) is the 

most affected season on the west side, and early austral fall (March) is most affected on the east 

side. 

The temperature shows significant increases north of 16°S on both sides of the Andes in 

the range of 0.08 to 0.16 °C per year (Figure 3.6d). In the west side and latitudes 17-30°S there 

were significant decreasing temperature trends in the range of -0.08 to -0.04°C per year. In most 

of the rest of the study area, temperatures had increasing trends. These trends extended from 31-

35°S on the west side and 26-35°S on the east side. The standardized change of temperature 

(Theil-Sen’s slope / mean annual temperature) shows a homogeneous rate of increase (10%) in 

all of the areas with increasing temperature trends (Figure 3.6e). The seasonality of increase of 

temperature change varies across the region (Figure 3.6f); areas with decreasing temperature 

trends were masked in this plot. North of 15°S the highest increase occurred in June; between 

15-20°S the highest values are usually in winter (June and July), and south of 25ºS, the greatest 

increases are mainly in fall months. 
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Figure 3.6. Theil-Sen’s slope of Mann-Kendall trend from 2000-2014, standardized Theil-Sen’s 
slope, and month of the greatest change (largest increase of temperature or largest decrease of 
precipitation) at an annual time scale for precipitation (a, b, and c) and air temperature (d, e, and 
f); only pixels with significant trends (p≤0.05) are colored. Black polygons highlight selected 
bands used to describe in detail the evolution of temperature, precipitation, and snow from 1960-
2014 (Figure 3.7). 
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Figure 3.7 shows the evolution of MEI in the study time period relative to annual time 

series of snow covered area (SCA), temperature and precipitation in selected latitude bands. The 

years 2000 and 2008 had a strong Niña conditions (-0.87, -0.68, and -0.7 MEI respectively), and 

years 2002 and 2015 had a strong Niño condition (0.62, and 1.26 MEI respectively). These MEI 

patterns do not appear to relate strongly to T, P, or SCA in the selected latitude bands. The band 

in the tropics (Lat15 °S – West, Figure 3.6c.1) had no significant change in precipitation but a 

significant increase in temperature from 2000-2014. The other bands further south both had 

significant decreases in precipitation and snow persistence and increases in temperature. In a 

longer time analysis (1960-2014), all band show an increasing temperature trend, but the trend in 

precipitation is not clear. MEI values show alternating Niña-Niño conditions before 1978 and 

then a high frequency of Niño conditions (MEI>0) between 1978 and 2000. 
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Figure 3.7. Time series of 1960-2014 MEI compared to temperature, precipitation from UDelv4 
dataset and average SCA from MODIS dataset as percentage of whole latitude band (2000-2014) 
for select latitude bands. 
 

Correlations between annual snow persistence and air temperature, precipitation, and 

MEI for each pixel are illustrated in Figure 3.8. Both air temperature and precipitation are 

strongly correlated with SP, but with opposite signs. Air temperature has an inverse relationship 

with SP, whereas precipitation has a direct correlation with SP. MEI has a direct but weak 

correlation with SP. 
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Figure 3.8. Map of Pearson’s correlation coefficient between annual SP and (a) mean annual 
temperature, (b) annual total precipitation, and (c) annual MEI 2000-2014. 
 

The variability in correlation strength between climate variables and SP is shown in 

Figure 3.9. The strongest correlations are located south of 23°S for air temperature and south of 

25°S for precipitation. Significant correlations extend to lower elevations, with stronger 

correlation coefficients on the west side than the east side. Between 30-35°S, the strongest values 

of air temperature correlations with SP are located at middle elevations (3000-4000 m) where 

there are intermediate values of SP (around 50%) (inset boxes in Figure 3.9a). Strongest values 

of precipitation correlations with SP are located at lower elevations (2000-3000 m) on the west 

side where SP is around 30%; this is the boundary between intermittent and seasonal snow zones 

(inset boxes in Figure 3.8b). Correlations between MEI and SP are negative but weak north of 
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23°S at high elevations (over 5000 m). South of 30°S the relation is inversed, with moderate 

positive correlations (0.3-0.4). 

 

 
Figure 3.9. Latitude-elevation band analysis of Pearson’s correlation coefficient (r) between 
annual snow persistence and a) air temperature, b) precipitation, and c) MEI. Inset boxes show 
how the correlation values for latitude-elevation bands south of 23°S (dashed gray line), vary 
with SP in West (green) and East (orange) sides. Within inset boxes, vertical dashed gray lines 
represent thresholds for intermittent (I), seasonal (S), and persistent (P) snow zones. These 
indicate that correlations between air temperature and SP are highest (most negative values) in 
the seasonal snow zone (high SP), whereas correlations between precipitation and SP are highest 
in the intermittent snow zone (low SP). Grey areas represent latitudes masked due to high 
frequency of cloud cover in snow covered area analysis (>30% time period). 
 

Due to the low values of r between MEI and SP, we used just air temperature and 

precipitation to run a Multiple Linear Regression (MLR). Maps of coefficient of determination 

and latitude-elevation band distributions in areas with SP≥7% 2000-2014 are shown in Figures 

3.10a and 3.11a. High values of r2 are present in extended areas south of 25°S, and values 

increase with increasing SP up to 50%. At higher values of SP, r2 values decline (inset box 
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Figure 3.11a). To explore which parameter (air temperature or precipitation) most influences SP 

in each location, we computed the relative importance for the MLR variables (Figure 3.10b and 

2.11b). North of 23°S precipitation has a more important role, and south of this latitude the 

combined effects of air temperature and precipitation change with latitude and elevation. On the 

east side temperature is more important than precipitation at all elevations, whereas on the west 

side precipitation is more important for lower SP (<40%) areas at middle-lower elevations (4000 

m at 25°S down to 2000 m at 35°S). 

 

 
Figure 3.10. Multiple linear regression analysis by pixel (a) showing the coefficient of 
determination (r2) for SP predictions using annual precipitation and mean annual air temperature 
b) relative importance of air temperature and precipitation in the multiple linear regression; blue 
colors indicate greater importance of precipitation, and yellow colors indicate greater importance 
of temperature. Blocky pattern results from coarser resolution climate data compared to snow 
data. 
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Figure 3.11. Latitude-elevation band analysis of. (a) coefficient of determination (r2) for multiple 
linear regression of annual precipitation and mean air temperature over SP 2000-2014, (b) 
relative importance of air temperature (left color bar label) and precipitation (right color bar 
label) in the multiple linear regression. Inset box in a) shows the change in r2 south of 23°S in 
West (green) and East (orange) vs SP values for latitude-elevation bands, indicating temperature 
and precipitation best predict SP in the seasonal snow zone. Inset box in b) shows temperature 
relative importance (left y-axis) and precipitation relative importance (right y-axis). Vertical 
dashed gray lines inside inset boxes represent thresholds for intermittent (I), seasonal (S), and 
persistent (P) snow zones. Grey areas represent latitudes masked due to high frequency of cloud 
cover in snow covered area analysis (>30% time period). 
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3.5. DISCUSSION 

 

3.5.1. Spatial variability in snow persistence trends 

 

We used MODIS snow data to quantify the change in the frequency of snow and its 

connection with climate conditions across the central Andes. North of 25°S, the snow-covered 

areas are small, making it difficult to track trends in SP (Figure 3.3a). This low snow presence is 

probably related to a combination of temperature and precipitation effects. Figure 3.2a shows the 

seasonality in patterns of precipitation, which is concentrated during austral summer 

synchronous with the highest temperatures during the year (Figure 3.2b). Thus, the precipitation 

falls mostly as rain, and snow is limited to elevations over 5000 m (Figure 3.5a). A limited trend 

is SP shown in this area (Figure 3.3b and Figure 3.4a), likely because the variation in SP is more 

related to precipitation than temperature (Figure 3.10b), and no trends in precipitation were 

detected in those areas (Figure 3.6a). 

South of 25°S, we detected a significant decrease of SP (Figure 3.3b). The rates of 

decline vary across the range of elevation and latitudes. Areas with intermittent winter snow 

show a moderate decrease (-0.5 to -1.0 % per year) (inset box Figure 3.4b), with the largest 

decrease during winter (inset box Figure 3.5a). However, these areas have the greatest relative 

rates of snow loss (standardized slope in SP), particularly on the east side. Areas with seasonal 

winter snow show the steepest rate of change (-1.5 % per year) around SP=60%, with the largest 

decreases during spring. These declines in SP in the seasonal snow zone were not as high as 

those in intermittent snow zones when considering the standardized slope of SP. Persistent snow 

areas have moderate decreasing trends, which vary in timing. On the east side the greatest 

decline is during winter and on the west side during fall. 
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Previous studies had shown inconsistent findings related to snow changes for the same 

latitude range where we detected declining snow persistence (30°–37°S). Masiokas et al. (2006) 

showed a positive trend (not significant) of annual maximum snow water equivalent in five 

ground stations located in the same area between years 1951–2005, whereas higher studies focus 

on glaciers found a general decrease in areas of snow/ice during time periods from 1983-2011 

located in elevation range of 1500-5800 m (Cortés et al., 2014), 1955-1997 (Pellicciotti et al., 

2013), and a longer time period over the last 100 years (Masiokas et al., 2009). These 

inconsistencies could relate to: (1) the limited in situ observations used in Masiokas et al. (2006) 

were not representative of the region as a whole, (2) the longer time period covered for Masiokas 

et al. (2006) (54 years) has a different trend than the 2000-2014 time period examined here, and 

(3) generally lower elevations of stations used in Masiokas et al. (2006) (three stations over 3000 

and just one over 3500m) compared with areas that have the largest declines in SP (over 3000m 

at 35°S to over 4000 at 30°S; Figure 3.4b). 

The magnitude of significant decreases in SP south of 25°S ranges from 0.5% to 3.5%, 

which corresponds to 2-13 fewer days with snow per year during the study time (2000-2014). 

Prieto et al. (2001) constructed a series of the annual number of snow days in the Mendoza area 

of Argentina (32.5°S, elevation 750 m) from newspaper weather reports. The study shows a 

strong inverse relationship between temperature and snow occurrence and registered a reduction 

in days with snow between years 1885-2000. The inverse relation between the seasonal snow 

days and temperature has also been documented in other mountainous areas. Wang et al. (2008) 

in Northern Xinjiang (China) showed an inverse association between temperature and snow 

season duration at different elevations. Snow seasons were longer at higher elevation, but the 

relationship between temperature and snow season was weak at the highest elevations (over 
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4000m). This elevation dependence is also present in the San Francisco estuary and its upstream 

watershed (California, USA), where the greatest loss of snowpack was identified in the 1300–

2700 m elevation range (Knowles and Cayan, 2004) in the seasonal snow zone (Moore et al., 

2015). Our work shows a similar pattern south of 23°S where we documented that the elevation 

range of greatest loss in snow persistence is in seasonal snow zones (inset box in Figure 3.4b). 

This area of greatest snow persistence loss has a strong latitude dependence, and it varies in 

elevation from over 4000 m between 28-30°S down to 3000-4000m at 35°S on both sides of the 

mountain range. 

The decreasing trend of snow persistence in the intermittent snow zone affected the trend 

of snow line elevation. The average snow line elevation decreases with latitude from 5000 m at 

10°S to 700 m at 38°S (Saavedra et al., 2016), and it showed a significant increase in elevation of 

10-30 m per year south of 30°S on the east side and between 29-35°S on the west side (Figure 

3.5b). Previous glacier work used an empirical model to reconstruct annually the equilibrium-

line altitude (ELA) in five points of Chilean Andes and documented a significant positive trend 

of the 0°C isotherm has occurred in the northern (24°S) and central (36°S) regions, indicating an 

ELA rise due to regional warming from 1958 to 2006 (Carrasco et al., 2008). Our work does not 

show an increase in snowline in the northern region, probably due to the precipitation 

dependence of snow cover in this area (Saavedra et al., 2016). The climatic factors affecting 

snow lines are likely somewhat different from those that affect glacier ELA, although snowline 

elevation increase has been documented in Andes tropical areas as well over 1961–2012 (Pepin 

et al., 2015). In the central area (32-34°S), Carrasco et al. (2008) found an increase of elevation 

of isotherm 0°C of 23 m/year that is consistent in both magnitude and trend direction with our 

results (Figure 3.5b), probably due to the temperature-dependence of snowline in this area. 
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3.5.2. Climatic causes of snow persistence trends 

 

Trends in SP were greatest south of 23°S, where temperature is increasing while 

precipitation is decreasing (Figure 3.6), suggesting the combined influence of both of these 

variables leads to detectable loss of snow. Similar results were shown by Dedieu et al. (2014) in 

Central Asia using remote sensing data. In a warmer world, less winter precipitation falls as 

snow, and the melting of winter snow occurs earlier in spring (Barnett et al., 2005). Additionally, 

both T and P are modulated by ENSO in the region (Masiokas et al., 2006; Meza, 2013; Santos, 

2006; Valdés-Pineda et al., 2015b; Zamboni et al., 2011). The trends in P and T we detected are 

generally consistent with those found in previous studies (Bradley, 2004; Quintana, 2012a; 

Salzmann et al., 2013; Vuille and Bradley, 2000). However, our results show that SP is only 

weakly correlated with ENSO (quantified by MEI) (Figure 3.8), which is inconsistent with other 

studies (Kluver and Leathers, 2015). This may be explained by the short time period of our 

research (15 years), which is insufficient for capturing the effect of this long-term temporal 

climate modulation. Future work could include other ENSO indices and varying time lags into 

the analysis to explore the influence of ENSO on snow persistence in greater detail. Other 

climate cycles such as the southern annular mode could also be examined to evaluate whether 

they affect the snow trends in the region. 

Because snow persistence varies with elevation, the timing of greatest snow loss is also 

variable. In intermittent snow zones, where snow is not consistently present throughout the year, 

the greatest decreases in SP occur in austral winter. Here, a decline in winter precipitation leads 

to decline in snow and an increase in the elevation of the snow line. Higher up in the seasonal 

snow zone, where snow is present every year, the negative trends in SP are strongest in spring. 

These trends are explained primarily by temperature changes that accelerate the spring loss of 
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snow. The largest absolute changes in snow persistence are found in the seasonal snow zones 

mainly because of the larger amounts of snow in these areas compared with intermittent snow 

zones. Persistent snow zones are at the highest elevations, where temperatures are usually under 

freezing level, so changes in SP at these elevations are not as high as in lower elevation snow 

zones. When rates of SP change are divided by mean annual SP, the intermittent snow areas have 

the greatest declines around 4% on average; seasonal snow areas have values around 3%, and 

permanent snow areas lower than 1% (inset box Figure 3.4c), indicating that the highest 

elevations have experienced minimal changes in snow over the study time period. 

Several studies have suggested that higher elevations are warming faster than lower 

elevations around the world (Liu et al., 2009; Oyler et al., 2015; Pepin et al., 2015), and climate 

models indicate that the largest temperature changes will be at high elevation in South American 

Mountains (Bradley, 2004). However, the available datasets for South America do not include 

high elevation stations, and the spatial resolution of the gridded temperature and precipitation 

products (0.5°) cannot capture the high topographic variability in mountains areas. Use of remote 

sensing could be helpful to incorporate higher spatial resolution information into future studies, 

although the snow cover-based approach may not capture changes in temperature at high 

elevations where snow cover is relatively permanent. Trends identified in this study may also be 

affected by the use of the MODIS 8-day maximum snow product, and future testing could 

evaluate whether these trends are consistent using daily or fractional SCA products. These finer 

resolution products face greater problems with cloud cover, so trend analyses with finer 

resolution products will likely need to incorporate cloud removal algorithms in many areas.  
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3.6. CONCLUSIONS 

 

This work quantifies trends in snow persistence across a large range of latitude (9-36°S) 

and elevation (0-7000m) on both sides of the Andes Mountains from 2000-2014. North of 29°S 

(tropical latitudes and desert Andes), minimal change in SP was registered because the areas 

with snow are small, and there were limited changes in precipitation from 2000-2014. South of 

29°S, significant loss of SP was recorded due to the combination of increased temperature and 

decreased precipitation. 62% of the area with significant SP loss was on the east side of the 

Andes Mountains. The absolute magnitude of these losses is greatest in areas with seasonal 

winter snow, whereas the greatest relative loss of snow persistence is in areas with intermittent 

winter snow, where the snow line has increased in elevation. The relative importance of 

precipitation and temperature to losses in SP varies with latitude and elevation. South of 23°S, 

precipitation has more relative importance at lower elevations than temperature on the west side, 

whereas temperature has greater relative importance at higher elevations and on the east side. 

The connection of SP with both temperature and precipitation are clear across the region, and 

climate modeling studies suggest that the trend of increasing temperature and declining 

precipitation will continue in this area (Bradley, 2004; GCOS, 2003). Loss of snow has 

consequences for streamflow in the region, where many of the rivers have a snowmelt-derived 

regime (Cortés et al., 2011). Improved understanding of the connections between change climate, 

snow, and streamflow production can aid in future water supply planning. 
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CHAPTER 4: STATISTICAL MODEL FOR PREDICTING WATER YIELD AND PEAK 

FLOW IN CHILEAN RIVERS 

 
 
 

4.1. INTRODUCTION 

 

In central Chile (30-37°S), rivers flowing from the west side of the Andes to the Pacific 

Ocean and are the main source of water supply for energy generation, irrigation, and drinking 

water and have great importance for the Chilean economy (Cortés et al., 2011; Vergara et al., 

2007). In this region, runoff comes from winter rains or from snowmelt during spring and early 

summer (Cortés et al., 2011; Masiokas et al., 2013; Pellicciotti et al., 2013; Ragettli et al., 2013). 

Throughout the second half of the 20th century, the Central Andes Mountains experienced 

significant climatic and environmental changes characterized by a persistent warming trend 

(Falvey and Garreaud, 2009), an increase in elevation of the 0ºC isotherm (Vicuña et al., 2010), 

reduced precipitation (Le Quesne et al., 2009; Quintana, 2012a), sustained glacier shrinkage 

(Morales et al., 2012), and increase of drought frequency (Meza, 2013; Squeo et al., 2007). 

Additionally, Masiokas et al. (2006) presented a significant correlation between streamflow and 

snowpack variability on both sides of the central Andes (30°–37°S). In this changing 

environment, water resource management requires predictions of both current and future water 

yield. 

Prediction of water yield is important for water resource planning. The ability to produce 

robust and accurate streamflow forecasts earlier in the season enhances the ability to manage the 

scarce resource (Kennedy et al., 2009). Many streamflow forecasting approaches are statistical 

models that relate predictor variables (climate, geographic) to the streamflow variable of interest. 

Since the early 1900’s the Natural Resources Conservation Service (NRCS) in the United States 
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has produced statistical regression-based forecasts of water yield throughout the western US. 

This forecasts are based on varying combinations of current snowpack, previous soil moisture 

and streamflow, and autumn precipitation (Pagano and Garen, 2006). Hydrologic simulation 

models attempt to represent physical processes that affect streamflow generation. These models 

can also be used to predict water yield. For example, the US NRCS has implemented the 

Precipitation Runoff Modeling System (PRMS) for streamflow forecasts in some basins (Pagano 

et al., 2005). In Chile, the most used hydrologic model is Water Evaluation And Planning 

(WEAP) because of the ease of implementation and few parameter requirements (Cortes, 2010). 

Other models have been used such as SNOW-17, FTXZ, MSND, and TopNet to predict the 

volume of snowmelt runoff (Cartes, 2008; Mendoza, 2010). 

A primary limitation to water yield prediction with both empirical and process-based 

hydrologic models is the availability and accuracy of input data. Ragettli et al. (2013) found that 

accurate simulation of streamflow in both WEAP and Topographic Kinematic Wave 

Approximation and Integration ETH Zurich (TOPKAPI-ETH) models required more information 

on precipitation than was available in a snow-dominated watershed at 33°S in the Andes 

Mountains. In central Chile, estimates of precipitation can be obtained from the Global Climate 

Observing System (GCOS) and Global Historical Climatology Network (GHCN), but these 

products usually underestimate values at high altitudes in central and northern Chile (Falvey and 

Garreaud, 2007; Favier et al., 2009; Rojas, 2005). When these data have been used to calculate 

runoff ratios (flow/precipitation), ratios sometimes exceed 100% in high elevation watersheds 

(Favier et al., 2009), an indication that the precipitation values are likely inaccurate. Inaccuracies 

in these climate data products stem from the quality and distribution of ground-based 

meteorological data used to develop the products. In the Andes mountains, precipitation, 
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temperature, and discharge are poorly observed especially at high elevation (>3000m) and too 

scarce to capture the variability in this high mountain region (Favier et al., 2009). This lack of 

data makes it difficult to predict water yield in the region. 

Remotely sensed data on snow covered area (SCA) may potentially be useful for 

improving streamflow forecasts in this data-sparse region. Previous studies have used SCA to 

force hydrologic models of runoff production (Martinec et al., 2008; Molotch and Meromy, 

2014; Rango et al., 1977). Hall et al. (2012), studied ten years of MODIS snow cover and 30 

years of discharge and show that MODIS snow cover maps were a useful tool to predict 

streamflow in the Wind River Range, west Central Wyoming. Snow cover data are routinely 

used as part of streamflow forecasts in some regions. Given the limitations in available 

precipitation and snowpack data for the region, the main objective of this work is to develop a 

statistical hydrological model to predict water yield and peak flow in the central Chilean Andes 

using available data sources. 

 

4.2. STUDY SITE 

 

The study area is located in the central Chilean Andes between 30-37°S. In this area the 

Andes reach peak elevations over 7000 m at 33°S, with peak elevations decreasing to 4000 m at 

the southern boundary (Figure 4.1a). The regional snow line decreases from north to south from 

4000 m at 29°S to 1900 m at 36°S (Saavedra et al., 2016) (Figure 4.1b). The study area has a 

Mediterranean-type climate, dry summers and wet winters. Temperature has a strong variability 

with elevation. The mean annual temperatures range from 10-20°C in the coastal area and drop 

to less than -10°C at the highest elevations (Figure 4.1c). Annual precipitation above 2500 m 

ranges from less than 500 mm in the north (31°S) to as much as 2000 mm further south at around 
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36°S (Rivera et al., 2000) (Figure 4.1d). Precipitation and streamflow are monitored by the 

“Dirección General de Aguas” (DGA), the Chilean government entity responsible for measuring 

and managing water resources. The study area has 79 streamflow measurements located in the 

headwaters of the all river basins and 215 points of precipitation monitoring. The DGA has 

recorded more than 600 diversion points, and there are 42 documented reservoirs, which are 

mostly located downstream from snow-covered areas (Figure 4.1e). 
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Figure 4.1. Study Area showing the: a) Digital Elevation Model (DEM), b) mean annual 2000-
2014 snow persistence (SP) from (Saavedra et al., 2016), c) mean annual temperature, d) mean 
annual precipitation 2000-2014 from University of Delaware dataset (0.5° gridded), and e) 
ground stations for streamflow (red circles), precipitation (yellow circles), and diversions (black 
circles) from Chilean DGA dataset over major watershed boundaries. 
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4.3. METHODS 

 

4.3.1. Data 

 

Discharge 

We selected flow prediction sites from the stream discharge (Q) stations monitored by the 

DGA, (http://snia.dga.cl/BNAConsultas/reportes). Of these stations, if more than one station was 

located on the same river, we selected the highest elevation streamflow station. To minimize the 

effects of flow modifications on water yield, we also excluded stations with more than five flow 

modifications (reservoirs and diversions) located upstream from the station selected. The 

watersheds selected are in headwater locations, and their high slope, relatively small agriculture 

areas, and low temperature mean that they have little or no human intervention (Cortés et al., 

2011; Mendoza et al., 2014). For each of the selected stations we evaluated the quality of data 

from 2000-2014 at a monthly scale. In Chile, most of the climate and streamflow data are 

affected by gaps in information (Cortés et al., 2011). We discarded stations with more than 10% 

missing data. This led to a total sample size of 29 stream discharge stations (Figure 4.2). 

Streamflow station identification, location, and drainage area are summarized in Table 4.1. 
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Figure 4.2. Location of selected streamflow stations (black circles) over mean annual snow 
persistence (SP) from 2000-2014 (Saavedra et al., 2016). Areas with greater SP are more likely 
to have snowmelt-dominated streamflow. The watersheds contributing to each streamflow 
station are shown in red polygons. These watersheds are located in the headwaters of major 
watersheds (dashed red polygons). 
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Table 4.1. Location and drainage area of streamflow stations used. Cod BNA refers to the 
Chilean identification of streamflow stations. 

id Cod BNA Name lat long Area (ha) 
1 04302001-3 Rio Toro antes junta rio La Laguna -29.97 -70.09 48,842 
2 04301002-6 Rio La Laguna salida embalse La Laguna -30.20 -70.04 56,662 
3 04501001-5 Rio Hurtado en San Agustín -30.46 -70.54 65,761 
4 04520002-7 Canal central Los Molles en Cámara DGA -30.75 -70.62 53,171 
5 04721001-1 Rio Illapel en Las Burras -31.51 -70.81 56,299 
6 04712001-2 Rio Chalinga en La Palmilla -31.70 -70.71 22,634 
7 04704001-9 Rio Cuncumen junta Choapa (Chacay) -31.82 -70.60 21,699 
8 05101001-9 Rio Perdernal en Tejada -32.07 -70.76 8,075 
9 05100001-3 Rio Sobrante en Pinadero -32.23 -70.71 24,174 
10 05200001-7 Rio Alicahue en Colliguay -32.33 -70.74 35,048 
11 05414001-0 Rio Putaendo en reguardo Los Patos -32.50 -70.58 94,609 
12 05406001-7 Rio Colorado en Colorado -32.86 -70.41 83,519 
13 05401003-6 Rio Juncal en Juncal -32.87 -70.17 23,498 
14 05403002-9 Rio Aconcagua en Rio Blanco -32.91 -70.30 40,917 
15 05411001-4 Estero Pocuro en El Sifón -32.92 -70.54 18,221 
16 05735001-6 Canal Colina en Peldehue -33.20 -70.58 22,788 
17 05722001-5 Estero Arrayan en La Montosa -33.33 -70.46 21,637 
18 05721001-k Estero Yerba Locan junta San Francisco -33.34 -70.36 28,252 
19 05706001-8 Rio Olivares antes junta Rio Colorado -33.49 -70.14 54,320 
20 05705001-2 Rio Colorado antes junta Rio Olivares -33.49 -70.13 78,882 
21 06006001-0 Rio Pangal en Pangal -34.25 -70.33 51,869 
22 06013001-9 Rio Claro en Hacienda Las Nieves -34.50 -70.70 24,379 
23 07104002-k Rio Teno después de junta con Claro -35.00 -70.82 85,349 
24 07103001-6 Rio Claro en Los Quenes -35.00 -70.81 35,407 
25 07115001-1 Rio Palos en Junta con Palos -35.28 -71.02 49,706 
26 07112001-5 Rio Colorado en junta con Palos -35.28 -70.99 88,669 
27 07303000-5 Rio Maule en los Banos -35.82 -70.76 117,674 
28 07317005-2 Rio Melado en El Salto -35.88 -71.02 214,072 
29 07350001-k Rio Longavi en la Quiriquina -36.23 -71.46 67,601 

 

From DGA streamflow data we calculated the annual water yield by water year and by 

season for each of the 29 watersheds selected. The Chilean water year starts in April and is 

divided into four seasons: fall includes April and March (AM), winter covers June, July, and 

August (JJA), spring includes September, October, and November (SON), and summer is 

December, January, February, and March (DJFM). We calculated snowmelt-dominance 

categories (SDC) for each watershed as the ratio between spring + summer and annual total 
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water yield: (SON + DJFM)/(annual water yield). We classified the watersheds into four 

categories from 1 to 4 according SDC level (0.3, 0.5, and 0.7). SDC 1 (<0.3) is clearly rain 

dominated; SDC 2 (0.3-0.5) mostly rain dominated; SCD 3 (0.5-0.7) mostly snowmelt 

dominated, and SCD 4 (>0.7) clearly snowmelt dominated (Fritze et al., 2011). 

 

Physiographic characteristics 

For each of the selected watersheds, we compiled information about the physiographic 

characteristics. To delineate the contributing area for each stream discharge station, we used a 

digital elevation model (DEM) developed from a combination of Shuttle Radar Topographic 

Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) elevation data (Saavedra et al., 2016). We used the watershed tool in ArcGIS to define 

the contributing areas from the DEM (Figure 4.2). Additionally, we calculated: centroid latitude 

(°) of the watershed, elevation of station (in meters), watershed mean elevation (in meters), 

maximum elevation of each watershed as the average of the 100 highest pixels (in meters), mean 

aspect, mean slope, northness to capture the influence of aspect and slope in the solar exposure 

as cos(aspect)*sin(slope), and Gravelius's index (Kg), which is as a ratio between perimeter (P) 

and area (A) of watershed, Kg=0.28*P/square root(A)(Bendjoudi and Hubert, 2002). A summary 

of physiographic variables is shown in Table 4.2. 
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Table 4.2. Summary of physiographic parameters for each selected watershed. 

id 

Centroid 
latitude 

(°) 

Station 
elevation 

(m) 

Mean 
elevation

(m) 

Max 
elevation

(m) 
Mean
aspect 

Mean
slope 

Mean 
Northness Kg 

1 -29.85 3,135 4,301 6,193 187 25 -0.41 1.4 
2 -30.25 2,080 3,904 5,954 198 20 -0.32 1.4 
3 -30.53 2,041 3,723 5,543 182 23 -0.39 1.4 
4 -30.69 1,211 3,225 4,727 197 24 -0.39 1.6 
5 -31.42 1,471 3,198 4,722 202 23 -0.36 1.3 
6 -31.65 1,433 2,995 4,430 210 22 -0.32 1.4 
7 -31.76 1,158 3,146 4,370 187 23 -0.38 1.5 
8 -32.07 1,137 2,619 3,674 199 21 -0.33 1.4 
9 -32.21 1,355 2,445 3,450 213 22 -0.31 1.3 

10 -32.30 838 2,404 3,972 199 21 -0.34 1.4 
11 -32.44 2,144 3,637 5,900 183 30 -0.49 1.3 
12 -32.66 1,302 3,433 5,894 187 29 -0.48 1.4 
13 -32.94 1,082 3,265 5,085 195 25 -0.41 1.4 
14 -33.03 1,078 1,995 3,510 206 19 -0.30 1.3 
15 -32.99 1,192 2,901 4,666 196 23 -0.37 1.4 
16 -33.13 1,527 3,753 6,559 194 28 -0.45 1.5 
17 -33.22 1,578 3,695 5,990 181 28 -0.46 1.6 
18 -33.24 1,320 3,144 5,364 213 26 -0.37 1.4 
19 -33.25 1,051 2,515 3,766 188 22 -0.37 1.3 
20 -33.41 900 2,343 3,744 220 20 -0.27 1.4 
21 -34.18 1,464 3,082 5,092 200 29 -0.45 1.4 
22 -34.53 713 2,083 3,693 203 26 -0.41 1.4 
23 -35.06 656 1,852 4,078 194 23 -0.38 1.7 
24 -35.15 654 2,197 3,956 193 25 -0.41 1.5 
25 -35.36 596 2,297 4,077 193 18 -0.30 1.9 
26 -35.43 596 1,976 3,449 184 18 -0.31 1.8 
27 -35.93 961 2,332 3,823 180 19 -0.33 1.7 
28 -36.19 717 1,973 3,618 183 22 -0.37 1.7 
29 -36.31 417 1,393 3,195 195 22 -0.37 1.5 

 

Climate variables 

We characterized the climate of each selected watershed using snow cover, precipitation, 

and temperature. For snow cover, we used the MODIS 500m binary snow cover products 

Collection 5 Level 3 eight-day product (MOD10A2) (Hall et al., 2002). MOD10A2 summarizes 

the maximum snow cover and minimum cloud during each eight-day interval (Riggs et al., 

2006). The study area is covered by 5 MODIS images (tiles), which we downloaded for the time 
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period from 2000 to 2014 (MOD10A2) (http://reverb.echo.nasa.gov). From the MOD10A2 data, 

we calculated the annual snow persistence (SP) for each pixel in the study area as the fraction of 

the images in a year with snow cover (Saavedra et al., 2016). 

We collected monthly temperature (T) and precipitation (P) with a 0.5° grid resolution 

from the University of Delaware dataset version 4.01 (UDelv4) from 2000-2014 

(http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html) (Legates and 

Willmott, 1990). UDelv4 uses ground stations to compute a spherical version of Shepard's 

distance-weighting interpolation method (Willmott and Robeson, 1995). For comparison, we 

collected precipitation data from the 29 closest DGA stations to the streamflow station; usually 

the precipitation data are from the same location as the streamflow data. We also collected the 

Land Surface Temperature (Ts) from MODIS snow product (MOD11A2). 

We summarized all predictor variables in monthly, seasonal, annual, and all period 

(2000-2014) time steps for each watershed. For the gridded variables (SP, T, P, Ts) these values 

represent the average of all pixels in the watershed contributing area. We also computed the 

snow covered area for the watershed (SCA) averaged over each time step. The annual climate 

and streamflow summary for each watershed is shown in Table 4.3. 
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Table 4.3. Summary of mean annual climate variables and water yield for selected watersheds, 
2000-2014. 

Id 

SP 
watershed  

(%) 
SCA 
(ha) 

T 
Udelv4 

(°C) 

Ts 
MODIS

(°C) 

P 
UDelv4
(mm) 

P 
DGA 
(mm) 

Q 
(m3/s) 

 
Q 

(mm) 
1 39.0 19,048  -8.20 18.2 154 112 1.6 88 
2 23.3 13,202  -3.79 18.2 90 87 0.6 40 
3 31.4 20,649  -4.89 13.4 163 134 2.4 113 
4 26.7 14,197  0.32 17.3 179 171 0.7 39 
5 32.2 18,128  2.99 16.7 238 262 0.4 62 
6 27.7 6,270  5.27 17.8 220 255 0.8 108 
7 29.3 6,358  -3.32 15.9 194 239 1.9 108 
8 21.7 1,752  6.22 22.7 233 224 0.8 105 
9 16.4 3,965  7.53 21.2 259 215 0.3 101 
10 19.1 6,694  5.24 22.6 204 232 1.0 88 
11 56.7 53,643  4.67 18.8 489 308 5.6 743 
12 54.8 45,768  -0.26 14.2 489 356 7.1 537 
13 41.8 9,822  4.39 9.6 353 304 4.3 152 
14 11.8 4,828  6.96 10.2 283 283 0.8 130 
15 31.0 5,649  2.60 26.4 260 263 7.0 232 
16 58.0 13,217  -1.60 22.2 427 375 6.4 260 
17 59.8 12,939  -6.08 19.6 427 404 2.8 158 
18 39.0 11,018  -6.08 13.9 476 404 0.9 104 
19 24.4 13,254  -6.08 8.5 476 404 1.4 198 
20 21.3 16,802  0.23 8.3 230 348 1.8 244 
21 53.1 27,542  7.46 11.1 896 803 14.2 864 
22 29.6 7,216  11.09 17.1 537 695 7.4 950 
23 30.1 25,690  3.18 15 1,252 1,029 17.5 1,540 
24 37.8 13,384  4.88 17 1,165 899 54.8 2,013 
25 43.9 21,821  2.69 13 1,051 927 43.0 1,519 
26 36.2 32,098  3.07 15.1 1,051 1,028 27.4 1,720 
27 46.5 54,718  4.22 12.9 1,546 814 58.1 1,608 
28 37.7 80,705  5.66 15.1 1,546 1,231 84.5 1,250 
29 19.5 13,182  9.42 15.6 2,146 1,335 46.8 2,132 
 

4.3.2. Model development 

 

Individual watershed models 

First, we examined how independent climate variables relate to water yield for individual 

watersheds. To do this, we ran a univariate linear regression to relate each independent variable: 
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snow persistence (SP), snow covered area (SCA), mean temperature (T and Ts) (from UDelv4 

and MODIS datasets) and total precipitation (P) (from UDelv4 and DGA datasets) to each 

dependent variable: total water yield (WY) and peak flow (PF) by water year. Each independent 

variable was tested using annual, seasonal (AM, JJA, SON, and DJFM), and monthly values. We 

computed the coefficient of determination (r2) from each univariate linear regression per 

watershed to compare the proportion of WY and PF variance predicted from univariate analysis. 

Next, we ran a multivariate analysis including snow, precipitation, and temperature 

independent variables. We selected the variable with the highest r2 between SP and SCA for 

snow, between MODIS and UDelv4 datasets for T, and between UDelv4 and DGA for P. Then, 

we ran a multivariate regression using annual, seasonal, and monthly independent variables. For 

multivariate analysis, we also developed a cumulative monthly model. This approach begins with 

data from the first month of the each water year (April) to define the baseline forecast (step 1). 

Then we added a consecutive month of climate information and averaged these values with those 

of the previous month to run the multivariate analysis again. This process repeated until March to 

complete the water year (12 steps). 

 

All watersheds model 

Next, we examined how independent variables relate to WY and PF across all watersheds 

together. We first explored the univariate regressions for all independent variables 

(physiographic, streamflow, and climate presented in Table 4.4). Before conducting the 

multivariate analysis for all watersheds, we conducted a cross-correlation analysis between 

independent variables and computed a matrix of correlation coefficients (r). When two variables 

were highly correlated (absolute value of r > 0.6), we selected the one with the highest univariate 
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r2 to include in the multivariate regression model. For both univariate and multivariate analysis, 

we applied climate variables using all period, annual, seasonally, monthly, and cumulative 

monthly values. For the monthly cumulative analysis we computed the relative importance of 

each independent variable to quantify the change in the relative weight of each variable across 

the water year. We followed the relative importance developed by Lindeman, Merenda and Gold 

(lmg) included in the relative importance for linear regression “relaimpo” R package (Groemping 

and Matthias, 2013) to test the individual contribution of each regressor to the full r2 of the 

model (Grömping, 2006). 

 

 

 

 

 

 

 

 

 

 



77 

Table 4.4. Summary of independent variables explored in statistical models of water yield and 
peak flow for all watersheds combined. 

Category Predictor 

Individual
watershed

model 

All 
watershed 

model Units 

Physiography 

Area  x ha 
Station elevation  x m 
Mean elevation  x m 
Max elevation  x m 
Mean aspect  x ° 
Mean slope  x ° 
Mean northness  x  
Centroid Latitude  x °S 
Kg  x  

Streamflow SDC all period  x  

Climate 

Variable Time step    

SP and SCA 

All period  x 
% 

and 
ha 

Annual x x 
Seasonal x x 
Monthly x x 

     

T and Ts* 

All period  x 

°C 
Annual x x 
Seasonal x x 
Monthly x x 

     

P** 

All period  x 

mm 
Annual x x 
Seasonal x x 
Monthly x x 

* MODIS and UDelv4 dataset, ** UDelv4 and DGA dataset 

 

4.4. RESULTS 

 

We selected six example watersheds to illustrate the variability of climate and streamflow 

in the study area (Figure 4.3; for watershed number refer to Figure 4.2). Precipitation has a 

similar seasonal pattern in all watersheds, with the maximum amount around austral winter 

(between April and September). The northern watersheds (1 and 2) also have a second 
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precipitation peak in late spring. The magnitude of precipitation ranges from less than 100 

mm/year in the northern watersheds to 1600 mm/year in the southern watersheds. Temperature is 

highest in austral summer and lowest in austral winter, with a range from -15 to 10°C in the 

northern watershed and from 0-20°C in the southern watersheds. Snow cover is highest in austral 

winter (blue areas in Figure 4.3) and lowest during austral summer (yellow areas in Figure 4.3). 

Some watersheds (2 and 20) have snow present all year at high elevations. The streamflow 

seasonal patterns vary between watersheds selected. Some have peak flow in spring after the 

peak in snow cover and precipitation (watersheds 2 and 20). Other watersheds (1 and 28) have 

both a spring streamflow peak and relatively high flow during the winter. Finally, watersheds 15 

and 29 have peak streamflow during winter. 
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Figure 4.3. Example watersheds illustrating the seasonal patterns of temperature and 
precipitation from University of Delaware dataset, streamflow from DGA record, and snow 
covered area from MODIS snow product divided in four seasons following the Chilean 
hydrologic division. Mean values across all years (2000-2014). 

 

The average monthly streamflow magnitude has a large range from 0.3 to 90 m3/s from 

North to South (Figure 4.4a). When normalized by drainage area, the water yield in mm also has 

a large range from arid (<100 mm/year) to humid conditions (>2000 mm/year) (Figure 4.4b). 

The snow dominance category (SDC) is used to classify the streamflow regime (Figure 4.4c). 

Most of the watersheds have a moderate to strong snow connection. The clearly snowmelt-

dominated watersheds (category 4) are concentrated between 32-34°S, whereas most of the 
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watersheds further north and south are mostly snowmelt dominated (category 3). We calculated 

the runoff ratio (Q/P) from UDelv4 and DGA datasets to evaluate the regional variability in 

runoff export and the quality of precipitation data. The runoff ratio generally increases from 

North to South, and some of the values are greater than one south of 34°S (Figure 4.4d and e). 
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Figure 4.4. a) Annual mean discharge, b) water yield (mm), c) snow dominance category (SDC), 
d) runoff ratio (Q/P) using precipitation data from University Delaware dataset (UDelv4) and e) 
runoff ratio using precipitation from DGA stations. 
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4.4.1. Individual watershed model 

 

The univariate analysis by watershed reveals a seasonal and spatial variability of 

regression performance. To illustrate how snow relates to flow in the individual watersheds 

Figures 4.5 and 3.6 show the geographic distribution for the r2. Per each water year we computed 

the average SCA over the whole watershed in annual and seasonal time scales (SCAannual, 

SCAAM, SCAJJA, SCASON, and SCADJFM) to and related these values to total WY (Mm3) and PF 

(m3/s). SCA has a stronger correlation with water yield volumes than SP because it represents the 

area in the watershed with snow. SCAannual and SCASON correlate strongly with WY and PF. The 

correlation is weaker using SCA input data from the other seasons (SCAAM, SCAJJA, or 

SCADJFM). The relations become weaker in the southernmost watersheds. The other univariate 

analyses between WY, PF, and the other climate variables did not have evident geographic 

patterns (data not shown). 
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Figure 4.5. Coefficient of determination (r2) for predictions of WY for each watershed using 
(SCAannual, SCAAM, SCAJJA, SCASON, and SCADJFM) values. 
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Figure 4.6. Coefficient of determination (r2) for predictions of PF for each watershed using 
annual and seasonal (SCAannual, SCAAM, SCAJJA, SCASON, and SCADJFM) values. 
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To illustrate how each of the climate variables relate to WY and PF, Figure 4.7 shows the 

distribution of r2 using annual and spring (SON) season input values for univariate analysis. 

Watersheds are stratified by either SDC or 2000-2014 mean watershed SP. For these analyses, 

we used P and T from UDelv4 dataset because this dataset has consistently better performance 

(higher r2) than alternative datasets (P from DGA and Ts from MODIS). The univariate 

correlations to WY and PF using SCA (annual and SON season) and T (annual and SON season) 

are affected by the snow dominance category (SDC). Lower values of SDC (<0.6) have lower 

values of r2 (<0.4), indicating that SCA and T are only strongly correlated with WY and PF in 

clearly or mostly snowmelt-dominated watersheds. Annual P is highly correlated with WY in 

some watersheds but not in others. The predictive strength of P has no apparent connection to 

SDC. Spring (SON) precipitation is always poorly correlated with WY and PF. When SCA, T, 

and P are combined in a multivariate analysis, predictions of WY and PF in SDC 2 improve over 

the univariate r2 values, but the predictions of WY and PF for the mostly and clearly snowmelt 

dominated watersheds (SDC 3,4) are only slightly improved over their values using SCA alone. 

 



86 

 

Figure 4.7. Coefficient of determination of (a) water yield predictions and (b) peak flow per 
watershed using snow covered area (SCA), temperature (T), and precipitation (P) separately, and 
a combined linear regression using all input variables combined (SCA+T+P). Each column 
represents a distribution of r2 results by 2000-2014 mean SDC and SCAmean over all time period 
(2000-2014). Each point represents the r2 for an individual watershed; Annual input values are 
shown in circles, and SON season input variables are shown in triangles. 

 

The monthly cumulative analysis illustrates how well water yield and peak flow can be 

forecasted as the water year progresses (Figure 4.8). The time evolution of r2 to predict WY for 

each watershed (Figure 4.8) has an s-curve shape with a steep increase between July and August 

followed by stable values after September. At the beginning of the water year (April), forecasts 

of WY and PF are poor, but these predictions improve as the water year progresses to a 

maximum in September or October, the spring snowmelt season. Averaging in additional months 

of climate information in late spring or summer (November-March) does not improve the WY 
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predictions, and in some cases it decreases the strength of the PF prediction. Watersheds 

classified in SDC 3 tend to have higher r2 values all year, although some watersheds in this 

category are also poorly predicted. Table 4.5 shows the coefficients of determination for each 

watershed with cumulative information at September for the water yield (WY) expressed in 

millions of meter cubic (Mm3) per year, when the temperature is input in Celsius degree (°C), 

precipitation as depth in millimeters (mm), and the SCA in hectares (ha). Table 4.6 shows the 

regression coefficients for peak flow (PF) in meter cubic per second (m3/s) using the same units 

inputs as in the WY regressions. 

 

 

Figure 4.8. Coefficient of determination (r2) to predict water yield and peak flow from 
multivariate regressions using monthly accumulated data of combined variables (SCA+T+P) for 
each watershed. 
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Table 4.5. Water yield (WY) regression coefficients for cumulative months until September. WY 
expressed in Mm3, and the units for input are defined in column labels. 

Watershed Intercept T (°C) P (mm) SCA (ha) r2 
04302001-3 2.28 -0.254 0.110 4.00E-05 0.75 
04301002-6 78.70 9.801 0.423 1.59E-03 0.41 
04501001-5 -42.20 10.010 0.931 2.76E-03 0.82 
04520002-7 -22.92 1.023 0.145 1.05E-03 0.76 
04721001-1 -253.70 0.887 0.844 5.31E-03 0.86 
04712001-2 -37.30 -2.874 0.142 3.45E-03 0.90 
04704001-9 -47.90 -4.880 0.183 1.79E-03 0.84 
05101001-9 -14.46 -0.342 0.080 3.95E-03 0.86 
05100001-3 -57.99 4.310 0.196 3.53E-03 0.89 
05200001-7 -62.18 2.676 0.244 3.43E-03 0.92 
05414001-0 -746.80 114.800 1.040 1.73E-02 0.84 
05406001-7 -934.10 72.290 0.988 1.41E-02 0.82 
05401003-6 -110.30 30.480 0.400 8.98E-03 0.63 
05403002-9 -519.57 67.985 1.208 2.22E-02 0.79 
05411001-4 -63.29 8.044 0.139 6.89E-03 0.86 
05735001-6 -92.54 5.821 0.276 1.00E-02 0.90 
05722001-5 6.52 7.048 0.164 5.20E-03 0.84 
05721001-k -13.93 3.731 0.063 3.40E-03 0.73 
05706001-8 -192.60 17.490 0.328 8.03E-03 0.68 
05705001-2 -181.20 -11.970 1.349 -1.19E-03 0.63 
06006001-0 -617.90 17.240 1.244 4.17E-03 0.81 
06013001-9 68.24 12.783 0.625 -2.64E-02 0.82 
07104002-k -2232.00 79.870 4.229 1.47E-02 0.95 
07103001-6 -536.30 79.910 1.185 9.01E-03 0.87 
07112001-5 -1167.00 87.930 2.771 9.68E-03 0.91 
07115001-1 -477.40 39.360 1.664 -2.21E-03 0.86 
07303000-5 -1648.00 -75.410 3.246 1.82E-02 0.54 
07317005-2 -3162.00 351.900 4.829 5.75E-03 0.75 
07350001-k -2976.00 294.600 2.381 1.34E-02 0.87 
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Table 4.6. Peak flow (PF) regression coefficients for cumulative month until September. PF 
expressed in m3/s, and the units for input are defined in column labels. 

Watershed Intercept T (°C) P (mm) SCA (ha) r2 
04302001-3 -1.04 -0.12 0.0064 4.14E-05 0.61 
04301002-6 -0.80 0.62 0.0651 2.16E-04 0.67 
04501001-5 -8.31 0.66 0.0917 2.34E-04 0.81 
04520002-7 -1.75 -0.11 0.0069 6.32E-05 0.71 
04721001-1 -32.60 -0.09 0.0917 6.74E-04 0.85 
04712001-2 -2.78 -0.17 0.0093 2.25E-04 0.94 
04704001-9 -4.71 -0.18 0.0136 2.31E-04 0.87 
05101001-9 -1.31 -0.07 0.0074 5.00E-04 0.90 
05100001-3 -8.70 1.09 0.0218 3.64E-04 0.90 
05200001-7 -4.64 0.24 0.0190 2.27E-04 0.89 
05414001-0 -103.60 15.06 0.1065 2.39E-03 0.85 
05406001-7 -132.80 10.05 0.1204 2.14E-03 0.75 
05401003-6 -13.32 4.37 0.0637 4.42E-04 0.59 
05403002-9 -63.60 0.70 0.2079 1.25E-03 0.81 
05411001-4 -12.08 2.17 0.0174 8.65E-04 0.68 
05735001-6 -8.19 1.05 0.0257 1.05E-03 0.87 
05722001-5 -1.27 0.63 0.0188 4.90E-04 0.85 
05721001-k -0.79 0.39 0.0070 2.99E-04 0.59 
05706001-8 -5.49 3.22 0.0450 8.73E-04 0.59 
05705001-2 -40.15 -1.48 0.1810 8.18E-05 0.55 
06006001-0 -31.40 0.04 0.1437 -6.46E-04 0.77 
06013001-9 64.51 0.66 0.0834 -8.13E-03 0.84 
07104002-k -291.90 16.44 0.4961 1.82E-03 0.83 
07103001-6 -145.60 47.73 0.3693 -1.38E-03 0.47 
07112001-5 -196.10 8.42 0.2032 3.21E-03 0.56 
07115001-1 -16.83 -0.52 0.1565 -2.00E-03 0.68 
07303000-5 97.00 37.33 0.4012 -2.20E-03 0.44 
07317005-2 -480.40 36.76 0.4093 2.77E-03 0.37 
07350001-k -1007.00 76.76 0.7129 5.97E-03 0.57 

 

4.4.2. All watersheds model 

 

For all watersheds combined, we computed the univariate predictions of WY and PF 

using all period, annual, seasonal and monthly time scale input variables (Table 4.7). Of the 

physiographic variables, area and latitude have the higher r2 values. Of the climatic variables, 

SCA and P give higher r2 values than T and Ts. 
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Table 4.7. Coefficient of determination (r2) for univariate regressions between independent 
variables and WY and PF. Values of r2>0.4 are in red. 

Category Predictor 

 WY PF 
 All 

period Annual SON
All 

period Annual SON

P
hy

si
og

ra
ph

y 

Area  0.64 0.50 0.50 0.43 0.50 0.50 
Station elevation  0.24 0.20 0.20 0.29 0.20 0.20 
Mean elevation  0.29 0.23 0.23 0.39 0.23 0.23 
Max elevation  0.16 0.13 0.13 0.18 0.13 0.13 
Mean aspect  0.15 0.11 0.11 0.11 0.11 0.11 
Mean slope  0.06 0.04 0.04 0.04 0.04 0.04 
Mean northness  0.01 0.00 0.00 0.00 0.00 0.00 
Centroid Latitude  0.60 0.49 0.49 0.62 0.49 0.49 
Kg  0.37 0.19 0.19 0.30 0.30 0.30 

Streamflow SDC all period  0.20 0.08 0.08 0.23 0.08 0.08 

C
li

m
at

e 

SCA MODIS  0.54 0.45 0.49 0.30 0.45 0.49 
SP MODIS  0.07 0.04 0.12 0.04 0.03 0.05 
Ts MODIS  0.06 0.07 0.04 0.07 0.16 0.16 
T UDelv4  0.20 0.09 0.14 0.09 0.26 0.26 
P UDelv4  0.69 0.63 0.86 0.63 0.54 0.54 
P DGA  0.63 0.59 0.81 0.59 0.31 0.31 

 

Before integrating variables into a multivariate regression, we first tested the correlation 

between the possible independent variables (Table 4.8). From Table 4.7 we selected the most 

relevant variables (r2 > 0.4), and from these we compared the correlations between the possible 

predictors; the independent variables that correlated best with WY and PF are highlighted in bold 

in the cross-correlation matrix (Table 4.8). When the absolute value of correlation was greater 

than 0.6 we selected the variable with the greater r2 in the univariate predictions of WY and PF 

(Table 4.7). Following this approach, we selected area, SCA, and P from UDelv4 dataset, ran a 

multivariate regression, and computed the relative importance of each independent variable. 

Table 4.9 summarizes the values of coefficient of regression and r2 for the selected independent 

variables in a multivariate regression at all period, annual, and monthly time scales. Relative 

importance for each selected variable in each model is shown in Table 4.10. Precipitation has 
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always the higher relative importance (44-63%) and SCA the lower (14-28%). For both 

univariate (Table 4.7) and multivariate models, the r2 is greater for WY than for PF for most time 

scales of input variables. Multivariate models best predict WY for the input variables averaged 

over the entire time period (r2 = 0.89), but performance of WY models using annual and spring 

input variables are also strong (r2 = 0.80 for annual and 0.73 for SON season time scales). For PF 

the entire time period has the highest value (r2 = 0.89), whereas annual (r2 = 0.69) and SON 

season (r2 = 0.62) models have poorer performance (Table 4.9). 

 

Table 4.8. Cross-correlation matrix between independent variables (r). Variables that correlate 
best with WY and PF in univariate analysis (Table 4.7) are highlighted in bold. Cross-correlation 
values >0.6 are shown in red.  
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P
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A -.20 -.13 -.03 -.51 -.11 .02 -.43 .51 .06 .31 .16 -.33 .06 .50 .44
St. elev .88 .77 -.14 .36 .04 .72 -.46 .41 .26 .12 -.16 -.56 -.66 -.57
Mn elev .92 -.19 .50 .03 .74 -.32 .67 .47 .21 -.39 -.66 -.71 -.65
Mx elev -.26 .64 .05 .50 -.20 .68 .65 .37 -.59 -.62 -.46 -.42
Mn aspect -.14 -.14 .19 -.37 -.15 -.52 -.38 .55 .27 -.24 -.28
Mn slope -.14 .08 -.31 .56 .65 .42 -.62 -.13 -.13 -.08
Mn northness -.07 .36 -.02 .15 .04 -.14 -.02 .06 .08
Centroid latitude -.56 .28 -.22 -.07 .27 -.49 -.93 -.86
Kg -.12 .29 .12 -.34 .04 .62 .50

SDC all period .67 .27 -.48 -.40 -.43 -.46

C
li

m
at

e 

SCA MODIS  .48 -.92 -.24 .14 .12
SP MODIS -.25 -.07 .05 .00
Ts MODIS  .22 -.26 -.28
T UDelv4  .45 .43
P UDelv4  .94
P DGA  

 



92 

Table 4.9. Equation coefficients for multivariate regression and the r2 of regressions. Area, SCA, 
and P (UDelv4) are independent variables for computing WY in Mm3 and monthly PF in m3/s. 

  Intercept Area (ha) SCA (ha) P (mm) r2 

WY 

All 
period 

-598.7 1.004E-02 -2.487E-03 1.133 0.89 

Annual -608.7 7.179E-03 3.489E-03 1.217 0.80 
SON -418.5 4.799E-03 7.776E-03 5.500 0.73 

PF 

All 
period 

-776.3 1.843E-03 -2.442E-03 0.163 0.89 

Annual -796.6 1.449E-03 -1.619E-03 0.177 0.69 
SON -579.0 1.120E-03 -5.562E-04 0.862 0.62 

 

Table 4.10. Relative importance of each independent variable in the regression analysis for WY 
and PF prediction in all period, annual and SON time scales. 

Category Predictor 

WY  PF 
All 

period Annual SON 
 All 

period Annual SON 
Physiography Area 31 26 28  29 23 25 

Climate 
SCA 23 22 28  17 14 15 
P - UDelv4 46 52 44  54 63 60 

 

Finally, we ran a monthly cumulative multivariate regression using the independent 

variables shown in Table 4.10. We computed the evolution of r2 for each climate variable as a 

univariate regression as compared to the combined multivariate regression that includes area, 

SCA, and P combined (Figure 4.9). As expected, the combined multivariate regression always 

has the best performance compared to independent climate variables. Similar to the individual 

watershed models, the r2 of the multivariate regression increases from the beginning of the water 

year (April) until spring (September), at which point additional months of climate information do 

not improve predictions of WY and PF. The r2 for predicting WY is greater than for PF. The 

physiographic variable (Area) contributes most to the regression early in the water year, but its 

relative importance declines as the water year advances while the importance of SCA and P 

increases. P has greater relative important in PF prediction than WY at any cumulative month. 
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Table 4.11 shows the coefficients of regressions in the first part of the water year (May to 

October) with WY in Mm3 and PF in m3/s. 

 

 

Figure 4.9. Coefficient of determination (r2) to predict water yield and peak flow using monthly 
accumulated data of combined variables and independent SCA and P using all watershed data. 
The combined model uses SCA, P and area as independent variables. Background color shows 
the relative importance of each variable by time. 

 

Table 4.11. Coefficients of regressions for WY (Mm3) and PF (m3/s) predictions using monthly 
cumulative input values between May and October. 

 Month Intercept Area (ha) SCA (ha) P (mm) r2 

WY 

M -524.80 9.55E-03 -1.10E-03 4.62 0.76 
J -592.30 8.35E-03 1.70E-03 2.59 0.79 
J -589.80 7.62E-03 2.24E-03 1.88 0.79 
A -619.70 8.55E-03 6.69E-04 1.55 0.80 
S -604.20 7.35E-03 2.41E-03 1.40 0.80 
O -591.10 6.34E-03 3.85E-03 1.33 0.80 

PF 

M -64.26 1.10E-03 -8.65E-04 0.69 0.65 
J -74.85 1.17E-03 -6.93E-04 0.38 0.67 
J -75.71 1.31E-03 -8.65E-04 0.27 0.68 
A -80.22 1.67E-03 -1.33E-03 0.22 0.69 
S -79.66 1.65E-03 -1.24E-03 0.20 0.69 
O -79.90 1.60E-03 -1.22E-03 0.19 0.69 
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4.5. DISCUSSION 

 

Most of the 29 watersheds selected for analysis in this study are clearly (13) or mostly 

snowmelt dominated (11), with annual water yield increasing along the precipitation gradient from 

north to south. Information on watershed total precipitation may be inaccurate and most likely 

underestimated, as highlighted by the runoff coefficient values greater than 1 (Figure 4.4d). The 

DGA precipitation stations are located mainly in the lower part of the watersheds (Table 4.1), and 

a strong orographic effect has been documented in the north part of the study area (26-32°S) 

(Favier et al., 2009). The UDelv4 interpolations of P use ground stations, which do not include 

sites above 3100 m. This may restrict the ability of the gridded P product for capturing the strong 

orographic effect in this area. Most of the process model used in the area require an improvement 

of the precipitation gradient to improve the accuracy of the models (Falvey and Garreaud, 2007; 

Favier et al., 2009; Ragettli et al., 2013; Rojas, 2005). In contrast, statistical models require that 

data have a good correlation with the target flow, so the absolute magnitude of precipitation across 

the entire watershed is not required (Garen, 2013). This study develops models to predict water 

yield volume and peak flow using the data that are available rather than trying to fill in the gaps in 

missing precipitation data at high elevations. 

 

4.5.1. Individual watershed models 

 

Univariate models of WY (SCA, T, or P) have varying performance in different 

hydrologic regimes (Figure 4.7). Watersheds with SDC<0.6, with limited snowmelt contribution, 

are better represented by annual P, whereas watersheds with greater snowmelt contributions are 

better represented by SCA and T. This division reflects the nature of the streamflow regime 
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because low values of SDC area associated with rain dominance (Fritze et al., 2011), and 

consequently snow has less effect on flow. Higher SDC values are associated with snowmelt 

dominance (Fritze et al., 2011), in which case high SCA and low T relate to the amount of water 

stored in the snowpack. For PF, SCA only reliably predicts PF magnitude (r2>0.4) in the highest 

SDC (SDC>0.75), whereas correlations between SCA and PF are more variable between SDC 

0.6-0.75. This may be because elevations that are transitional between snowmelt and rainfall 

dominance often have peak flows from rainfall or from a mixture of rain and snowmelt (Kampf 

and Lefsky, 2016). Multiple regression models of WY and PF for individual watersheds 

performed better than univariate models but had varying performance. Several watersheds had r2 

values exceeding 0.8, while other models did not perform as well (r2 < 0.4) (Figure 4.7b). These 

multiple regression models do not have any evident stratification by snowmelt dominance 

category. 

The monthly cumulative models are those that would be most likely be useful for 

streamflow forecasting. For these models, performance for WY prediction increases until 

September (Figure 4.8; Table 4.5), indicating that potential streamflow forecast accuracy is 

greatest in September, with no strong need for additional climate information from the remainder 

of the water year. Two of the watershed models have poor predictions even in September (r2< 

0.6; watersheds 2 and 27, last column Table 4.5). Watershed 27 is located in a mostly snowmelt 

dominant regime, but it has a large natural lake (Laguna del Maule) (Figure 4.2). This lake 

represents 6% of the total area of the watershed, and possibly disconnects the direct relation 

between snowmelt processes and streamflow runoff. Watershed 2 does not have any particular 

physiographic or streamflow characteristics that account for the low performance of the model. 

The cumulative monthly PF models (Figure 4.8; Table 4.6) have a similar pattern to the WY 
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models, with model performance increasing until September. Again, two watersheds have r2 

values under 0.4 in September (Watershed 27, and 28). Watershed 27 is the one with the large 

lake that was poorly predicted for SY. Watershed 28 is the largest watershed analyzed (214,072 

ha), and possibly the heterogeneous physiographic characteristics make it difficult to predict PF 

from watershed aggregated climate variables. For the monthly cumulative models, climate 

variables were averaged over all preceding months. Future work should explore alternate 

approaches for accumulating climate information over time to ensure that the model performance 

continues to improve throughout the water year. Additional work is also needed to test these 

models against WY and PF values not used for model development. 

 

4.5.2. All watersheds models 

 

The model for all watersheds together to predict WY was generally more accurate (higher 

r2) in all period (0.89) than annual (0.80) time scale, and the lowest accuracy was for the SON 

season time scale (0.73) (Table 4.9). This variability in performance with the time scale of input 

variables arises because the average over all period hides the inter-annual variability and predicts 

just the climate normal response. The all period time scale helps to make a first estimate of flow 

in ungauged basins, but it is not helpful for predicting the variability between years. The monthly 

cumulative model can be applied in forecasting mode, and it attains similar accuracy to the 

annual prediction with the input variables accumulated until August (Table 4.11). The relative 

importance analysis shows that P (UDelv4) is the most important predictor during any month 

evaluated, but its relative importance declines while the water year advances (Figure 4.9a). SCA 
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increases in importance during the snowmelt season. These patterns are similar for PF 

predictions in all watershed models. 

In some watersheds, individual watershed models perform well, whereas in others they 

do not (Tables 4.5 and 4.6; r2=0.41-0.95). For those with poor performance, future testing could 

examine how well the all watersheds model predicts their flow. Additional work is also needed 

to test the all watersheds models in watersheds or years that were not used in model 

development. After further testing the all watersheds model could also be applied to ungauged 

basins, similar to the applications of regional regression equations in other parts of the world. For 

example, Capesious and Verlin (2009) developed regional regression applied by USGS equations 

for estimating of natural streamflow in Colorado, which also has a mixture of snowmelt and 

rainfall-dominated flow regimes. These regressions were developed within five hydrologic 

regions based on physiographic and climatic characteristics to cluster similar watersheds. Future 

studies could expand on the work here to define hydrologic regions in the central Andes 

Mountains and potential improve the performance of the regional regression equations. Future 

work could also evaluate model performance when including other variables such as land cover, 

additional streamflow variables, and more of the physiographic variables not included in the final 

multivariate models shown here (Brown et al., 2008; Detenbeck et al., 2005; Ffolliott et al., 

1989). 
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4.6. CONCLUSION 

 

The scarcity of hydro-climatic data in the Andes Mountains poses a significant challenge 

for both streamflow forecasting and hydrologic model application. This study develops statistical 

streamflow prediction models that rely on available data from ground stations, GIS products, and 

remotely sensed snow cover. When forecasting streamflow for a single watershed, snow cover is 

most useful in watersheds that are mostly or clearly snowmelt dominated. The possibility to used 

just SCA to forecast streamflow is limited to watersheds with SDC greater than 0.6 for WY and 

greater than 0.75 for PF. Individual watershed models that used combined input variables of 

accumulated monthly precipitation, temperature, and snow cover information can predict annual 

water yield with r2 values ranging from 0.41-0.95 and monthly peak flow with r2 values ranging 

from 0.37-0.94 in September. 

When all watersheds are combined for a single regional predictive model, the most 

important predictors are watershed area, latitude, precipitation, and snow cover. Latitude correlates 

strongly with precipitation, so we developed multivariate models for predicting water yield and 

peak flow in all watersheds using only area, precipitation, and snow covered area. Of these 

variables, precipitation contributes the most to the multivariate regression, whereas the role of 

snow cover is only important in the spring snowmelt season. The monthly cumulative models for 

all watersheds predict WY with an r2 of 0.80 in August or later and PF with an r2 of 0.69 for August 

or later in the season. Models that unify the information from all watersheds help to estimate 

ungauged or poorly gauged watershed within the study area. DGA forecasts WY and PF for 13 

watersheds in the latitude range studied, and our results can be used to expand the number of 

watersheds with streamflow forecasts.  
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CHAPTER 5: CONCLUSIONS 

 
 
 

This study has documented the spatial and temporal variability of snow cover throughout 

the Andes Mountains from 9-36°S using the MODIS snow covered area product (Chapter 1). 

This has allowed more detailed mapping of mountain climate regions than was previously 

possible using only ground measurements and/or coarser resolution gridded climate products. 

The study identified 5 snow regions, stratified primarily by latitude and three snow zones 

(intermittent, seasonal and permanent) that stratify by latitude and elevation. The Andes 

Mountains cause a clear difference in snow elevation between West and East sides, related to the 

strong effect on atmospheric circulation of its high mountains. The results of snow mapping in 

Chapter 2 improve the understanding of seasonal dynamics of snow at a broad scale and 

illustrate where and when snow accumulates throughout the region. The snow persistence 

methodology takes advance of high spatiotemporal resolution from MODIS, and this 

methodology can be extended to other regions to examine patterns in snow as they relate to 

latitude, elevation, and dominant slope aspect at regional or global scales. 

Understanding snow climatology helps in interpreting snowpack trends. The second 

portion of the dissertation (Chapter 3) used snow cover data to analyze the trend of snow cover 

between 9-36°S. This represents the first study to quantify snow cover trends regionally across 

the Andes. Results show that a large area (70,515 km2) south of 29°S is affected by a significant 

loss of snow cover (2-5 fewer days of snow cover per year), and 62% of the area affected by this 

trend is on the east side of the Andes. The loss of snow cover relates to trends of increasing 

temperature and decreasing precipitation, but the relative importance of precipitation and 

temperature to snow cover trends changes across the elevation and latitude range of the affected 
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area. Precipitation has greater relative importance in lower elevations than high elevations and 

greater importance in southern than northern areas. These findings on how climate connects to 

snow cover variability can be used to develop regionally specific management plans for different 

parts of the Andes. Previous research on snow trends in this area had used only point data 

(Masiokas et al., 2006) that probably cannot capture the variability in snow trends throughout the 

region. The findings in this study highlight where snow is most sensitive to changes in 

precipitation and temperature, demonstrating the utility of satellite imagery in spatiotemporal 

studies of snow cover trend and climate connection. The spatially varying effects of temperature 

and precipitation on snow are an active area of research, even in more intensively monitored 

regions. For example Morán-Tejeda et al. (2013) found that temperature is more important for 

snow depth and duration at low elevation, whereas precipitation is more important at high 

elevation in Switzerland. Findings in this research demonstrate how the relative importance of 

these variables varies substantially across latitudes and climates, and patterns identified in one 

region are not necessarily transferable elsewhere. 

If the snow loss trend continues, this has important consequences for water supply in the 

central Andes (30-36°S) due the strong snowmelt-dominance of rivers in this region. Because of 

the limited snow and climate monitoring in high elevation, the final portion of the dissertation 

(Chapter 4) examined whether snow cover information could help to predict water yield and 

peak flow. Results show that using precipitation, snow cover and area of the watershed, it is 

possible to predict water yield (r2 = 0.8) and peak flow (r2 = 0.7) using a monthly cumulative 

approach. The predictions can be applied in late winter (August) before the beginning of the 

growing season. The use of just snow cover as a univariate predictor of water yield is limited to 

mostly or clearly snow dominated watersheds (SDC>0.6). 
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The study area was limited between 9-36°S due the high frequency of clouds present in 

other important snow areas. In the tropical Andes (north of 9°S) warming has a major effect on 

glacier/ice (Lejeune et al., 2007), and increased understanding of snow patterns in this area will 

help to prepare for future climate scenarios. South of 36°S the Northern Patagonia Icefield and 

the Southern Patagonia Icefield represent the largest ice masses of the Southern Hemisphere and 

provide an important source of fresh water (Lopez et al., 2008), so similarly research on snow 

dynamics in these areas is also critical. Several cloud removal algorithms have been developed 

and tested to apply in the MODIS snow products (Hall et al., 2010), and the new collection 6 for 

MODIS snow products released in 2016 incorporated gap-filled cloud and restoration of band 6 

from the Aqua satellite to provide an additional source of snow cover information in the region. 

Test algorithms to remove cloud cover and new sources of snow cover data for the regions can 

be developed to help extend the study areas south of 36°S and north of 9°S. 

Other sources of snow data are available to complement the analyses in this dissertation. 

Chapter 3 delineated areas with decreasing snow persistence trends south of 29°S, and Landsat 

and AVHRR data could potentially be used to extend the time series of the snow cover trend 

analysis and increase the spatial resolution (Landsat). Previous studies in this region used 

Landsat for some specific watershed and glacier analyses (Cortés et al., 2014), and the present 

study can help to define future sites for more detailed local investigations. The large scale 

analysis developed in this chapter defined critical watersheds affected by decreasing snow 

persistence, and this information can be integrated with economic, social, and/or ecological 

metrics to prioritize new monitoring locations to track snowpack in the region. Such monitoring 

sites could help in connecting snow cover patterns to snow water equivalent (SWE) to improve 

our ability to predict water yield. 
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The snow cover patterns and trends can also be connected with other landscape changes 

like fire, drought, soil moisture, and vegetation change. Snow and temperature trends have been 

linked to an increase of wildfire frequency and areas burned in the western USA (Westerling et 

al., 2006), and these types of connections may also be present in the Andes. The increase in 

elevation of the snowline documented in Chapter 3 opens new opportunities for ecohydrological 

research because vegetation and land surface energy budget are both connected to snow 

processes. Earlier melting and later accumulation of snow lengthens the growing season but can 

also limit water availability. Integration of snow cover analysis presented in this study with other 

remote sensing sources such as NDVI or burned areas from MODIS can help connect snow 

patterns with vegetation dynamics (Trujillo et al., 2012). 

Chapter 4 generated streamflow forecasting models for individual watershed where 

streamflow data are available and for all watersheds combined to cover watersheds without 

sufficient streamflow data. The range of coefficients of regression (0.37 – 0.95) for individual 

models suggest that the variables used to develop these models do not capture the local variation 

between watersheds. Additional information as vegetation, soils, geology, land cover, distance 

from ocean, and/or orographic barriers can be evaluated in the future to determine whether they 

help improve model performance. In the study area of Chapter 3 the Coastal Range (Cordillera 

de la Costa) is located west of the Andes Mountain and rises to elevations close to 3000m. This 

barrier can affect westerly air flow to the Andes and could be an important variable affecting 

precipitation and snow patterns as reported in previous study (Daly et al., 2008). Identify 

hydrologic regions in the central Andes Mountains and test regression equations for streamflow 

prediction using additional information can improve the possibility to predict water yield and 

peak flow. 
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Remote sensing offers new opportunities to improve our understanding of landscape 

processes in areas that are poorly monitored. This dissertation proves the feasibility of 

incorporating remotely sensed snow cover data into climate and hydrologic applications across a 

large latitudinal range in the Andes Mountains as a first step to incorporate this data source into 

future work on climate change and water resource planning for the region. The results of this 

work highlight a significant snow decline in watersheds that drain to high population areas in the 

region, where future water security depends on adaptation plans that account for loss of snow. 
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