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ABSTRACT 
 
 
 

A NONLINEAR SYNTHETIC UNIT HYDROGRAPH METHOD THAT ACCOUNTS FOR  

CHANNEL NETWORK TYPE 
 
 
 

Stormflow hydrographs are commonly estimated using synthetic unit hydrograph (UH) 

methods, particularly for ungauged basins.  Current synthetic UHs either consider very limited 

aspects of basin geometry or require explicit representation of the basin flow paths.  None 

explicitly considers the channel network type (i.e., dendritic, parallel, pinnate, rectangular, and 

trellis).  The goal of this study is to develop and test a nonlinear synthetic UH that explicitly 

accounts for the network type.  The synthetic UH is developed using kinematic wave travel time 

expressions for hillslope and channel points in the basin.  The effects of the network structure are 

then isolated into two random variables whose distributions are estimated based on the network 

type.  The proposed method is applied to ten basins from each classification and compared to 

other related methods.  The results suggest that considering network type improves the estimated 

UHs with the largest improvements seen for dendritic, parallel, and pinnate networks. 
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1. INTRODUCTION 
 
 
 

Many widely-used hydrologic models, such as HEC-HMS (Feldman, 2000) and SWAT 

(Arnold and Fohrer, 2005), represent spatial variability within a watershed using a semi-

distributed approach.  Despite their simplicity, semi-distributed models have been shown to 

exhibit similar performance to fully distributed models (Abu El-Nasr et al., 2005; Haghnegahdar 

et al., 2015; Reed et al., 2004).  In this approach, the basin is divided into sub-basins (or 

hydrologic response units), and within each sub-basin, excess rainfall (or runoff) is generated 

with little consideration of spatial variability.  The excess rainfall is then commonly transformed 

into stormflow at the sub-basin outlet using a unit hydrograph (UH) method, where the UH 

method assumes a linear relationship between the excess rainfall and stormflow.   

In many cases (particularly ungauged basins), a synthetic UH is used.  Commonly-used 

synthetic UHs include the SCS (1972), Snyder (1938), and Clark (1945) methods (see Singh et 

al., 2014 for a recent review of synthetic UHs).  These methods estimate the UH based on 

relatively few physical characteristics of the watershed.  For example, the original SCS/NRCS 

method used a single dimensionless UH for all watersheds (SCS, 1972).  The dimensionless UH 

was then rescaled based on the coordinates of the UH peak, where the coordinates were typically 

calculated using watershed characteristics such as the area, mainstream length, and average 

watershed slope.  More recently, the method was updated so that the dimensionless UH shape 

can vary based on a selected peaking factor (NRCS, 2007). 

Watersheds exhibit differences beyond those directly considered in traditional synthetic 

UH methods.  In particular, they can exhibit very distinct channel network structures depending 

on the geomorphic conditions under which the networks developed.  These differences have led 
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to network classifications such as dendritic, parallel, pinnate, rectangular, and trellis (Fig. 1) 

(Howard, 1967; Mejía and Niemann, 2008; Parvis, 1950; Zernitz, 1932).  Dendritic networks are 

tree-like with channels oriented in many directions and acute angles at confluences.  This 

network type develops when few lithologic or topographic constraints are present (Zernitz, 

1932).  Parallel networks have major channels that are aligned with each other and develop when 

the region has a pre-existing slope (Castelltort et al., 2009; Howard, 1967; Phillips and Schumm, 

1987; Zernitz, 1932).  Pinnate networks tend to be feather-like with a single main channel and 

many smaller channels joining the main channel at acute angles, but the origin of this network 

type is unclear (Jung et al., 2011; Parvis, 1950; Phillips and Schumm, 1987; Zernitz, 1932).  

Rectangular networks have channels with right-angle bends and tributaries that merge at right-

angles.  They form when the channels exploit orthogonal jointing in the bedrock (Howard, 

1967).  Trellis networks resemble a garden trellis with numerous short tributaries joining 

irregular main streams.  This network type develops in fold-and-thrust belts like the Appalachian 

Mountains (Parvis, 1950; Zernitz, 1932).  Channel networks are often classified by visual 

inspection, but quantitative methods have been developed to ensure objectivity.  These methods 

include empirical approaches (Argialas et al., 1988; Hadipriono et al., 1990; Ichoku and 

Chorowicz, 1994) and an approach based on scaling invariance (Mejía and Niemann, 2008).  The 

network classification has also been shown to affect the time of concentration of a watershed.  

For example, Jung et al. (2017) showed differences in relationships between time of 

concentration with bifurcation ratio and maximum hydraulic length of flow path between 

network types. 

Several UH methods have been developed to consider channel network structure, but 

none have explicitly considered network classifications.  The Geomorphic Instantaneous UH 
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estimates the probability density function (PDF) of travel times using Horton’s Ratios, which are 

derived from the network structure (Gupta et al., 1980; Rodríguez-Iturbe and Valdes, 1979).  

This approach has also been generalized to allow a nonlinear relationship between excess rainfall 

and stormflow (Rodríguez‐Iturbe et al., 1982) and to consider the effects of hillslope travel times 

(van der Tak and Bras, 1990).  However, Horton’s ratios were later shown to be insensitive to 

wide variations in network structure (Kirchner, 1993).  Gupta and Waymire (1983) also proposed 

a geomorphic instantaneous UH based on stream links instead of Strahler (1957) stream 

ordering.  Other UH methods explicitly represent the watershed’s flow paths.  For example, the 

modified Clark method in HEC-HMS allows the user to enter a time-area distribution, which 

describes the distribution of travel times to the watershed outlet, but that time-area distribution 

must be determined outside of the modeling framework (Feldman, 2000).  It is usually found 

using a digital elevation model (DEM).  Similarly, spatially distributed travel time (SDTT) 

methods explicitly represent the flow paths in a watershed using a DEM (Du et al., 2009; Lee et 

al., 2008; Maidment, 1993; Muzik, 1996).  Then, they calculate a travel time in each DEM grid 

cell using its physical properties (Du et al., 2009; Zuazo et al., 2014).  The UH is then found 

from the distribution of travel times from the watershed cells to the outlet.  Some SDTT methods 

also overcome the linearity assumption of UH methods because the travel times vary in time (Du 

et al., 2009; Lee and Yen, 1997).  However, SDTT methods operate on the DEM grid and thus 

cannot be implemented within semi-distributed (or lumped) models. 

The objective of this study is to develop and test a nonlinear synthetic UH method that 

accounts for the network type.  The synthetic UH is developed by adapting a SDTT method.  It 

uses kinematic wave theory to derive flood wave travel time expressions for hillslope and 

channel cells of a DEM.  Then, it estimates the required characteristics for each cell (e.g., 
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channel slope and width) using simplifications and empirical relationships that are applied 

throughout the watershed.  This step allows the properties of each cell to be estimated based on 

watershed-wide model parameters.  It also isolates the effects of the flow path network in two 

random variables (one for the hillslopes and one for the channels).  These two random variables 

are then represented using theoretical distributions, and the parameters of those distributions are 

estimated for the five network types.  The resulting synthetic UH is nonlinear and can be 

implemented inside a semi-distributed (or lumped) model if the user provides the model 

parameters and selects one of the five network types. 

The outline of the paper is as follows.  Section 2 presents the analytical framework that is 

used to determine the synthetic UHs.  Section 3 describes the basins that are used to evaluate the 

model for each network type.  Section 4 evaluates the synthetic UH results by comparing them to 

the results of a SDTT method (which explicitly represents that actual flow paths for each basin).  

It also considers whether the network types produce substantial differences in the synthetic UHs.  

Finally, Section 5 summarizes the key conclusions of the study. 

 

  



5 
 

2. MODEL DEVELOPMENT 
 
 
 
2.1 HILLSLOPE TRAVEL TIME DISTRIBUTION 

The flood wave travel time for a hillslope cell is based on an expression derived by Wong 

(1995), who applied the kinematic wave approach to a sloping plane where flow enters from 

upslope and is generated locally by excess rainfall.  If this expression is combined with 

Manning’s equation and written for a hillslope cell at location j, it becomes: 

    
0.6

0.6 0.6, 0.4
, , ,1j

h j j

h j flow j flow j

j

n L
E

S
 

 
       

 
 (1) 

where ,h j  is the travel time for hillslope cell j , ,h jn  is Manning’s roughness coefficient, 
jL  is 

the flow length, 
jS  is the slope, 

jE  is the excess rainfall rate, and ,flow j  is the ratio of the flow 

entering from upslope to the flow that is produced within the plane.   

Gironás et al. (2009) modified this expression for use in a SDTT method.  The excess 

rainfall is allowed to vary in time but is constrained to be homogeneous in space, so it becomes 

iE  where i  is an index for time.  It is assumed that the excess rainfall is produced uniformly 

across the basin’s DEM, so variable source areas are not considered (Dunne and Black, 1970).  

Because the excess rainfall rate varies in time, the travel time varies in time and becomes , ,h i j .  

In reality, ,flow j  also varies in time, but Gironás et al. (2009) made the approximation that 

, ,flow j up jA A  , where ,up jA  is the total area that is upslope of the grid cell and A  is the area of 

the grid cell itself.  This approach assumes that the duration of the storm is long enough for the 

entire upslope area to contribute flow simultaneously to the grid cell.  This assumption has been 

made by others (e.g., Melesse and Graham, 2004; Rodríguez‐Iturbe et al., 1982) and was 
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evaluated in detail by Zuazo et al. (2014), who found it to be a good approximation of full 

kinematic wave routing on hillslopes.  Using these approximations, Eq. (1) becomes: 

 

0.6 0
,

.6 0.6
, 0.4

, ,
,1up jh j j

h i j

j

up j

i

n L A A
E

A AS
 

      
               

  (2) 

Even though every grid cell has the same area A , the length 
jL  can vary between grid cells to 

account for flow paths in the diagonal and cardinal directions of the grid. 

An expression can then be written for the total hillslope travel time ( , ,h i kT ) for flow that 

starts at any cell k in the basin and moves to the basin outlet: 

 
0.6 0.6 0.6

, 0.4

Hillslope

, ,
, , 1uph j j up jj

i

j j

h i k

n L A A
T E

A AS





      
               

   (3) 

where the summation includes all the hillslope cells on the path between cell k  and the basin 

outlet.  Eq. (3) indicates that the hillslope travel time depends on a variety of local 

characteristics.  To simplify the model, three approximations are implemented.  First, variation in 

the local flow length is neglected by replacing 
jL  with L , which is an effective flow length for 

all grid cells.  Assuming that flow directions are equally likely to occur in all cardinal and 

diagonal directions, that effective length is the average of the cardinal and diagonal flow lengths 

of the grid cells (   0.50.5 1 2L A  ).  Second, all hillslope cells are assumed to have the same 

roughness hn , which is frequently assumed when applying similar models (e.g., Gironás et al., 

2009; Robinson and Sivapalan, 1996; Zuazo et al., 2014).  Third, it is assumed that all hillslope 

cells have the same effective slope hS .  In reality, most basins tend to have convex-up hillslopes 

due to slope-dependent transport processes such as rainsplash, bioturbation, and soil creep 

(Gilbert, 1909; Roering et al., 2001; Tucker and Bras, 1998).  However, planar hillslopes are a 
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common assumption in many similar models (e.g., Gironás et al., 2009; Robinson and Sivapalan, 

1996).  Using these approximations, the total hillslope travel time becomes: 

 
0.6 0.6

0.4 0.6 0.3

Hillslope

, ,0.4
, , 1up j up

i h h

j

h i k

j

A A
E n ST L L

A A

 




    

      
     

   (4) 

To simplify the notation, the constant basin properties are collected into a single hillslope 

coefficient 0.6 0.3 0.4
h h hm n S L

  .  In addition, the summation in Eq. (4) is defined as ,sh kA  where the 

subscript k  is included because each location where flow starts k  has a different path to the 

outlet and thus a different value for that summation.  This summation depends on the 

accumulation of area along the hillslope flow paths, so it is closely related to the aggregation of 

the flow network.  Substituting these variables into Eq. (4), it becomes: 

 0.4
,, , i h shh i kkT E m A   (5) 

Eq. (5) describes the hillslope travel time from an arbitrary point k  to the outlet.  For a 

given storm event, flow is expected to begin at all locations in the basin.  Thus, one can consider 

,sh kA as the outcome (for location k ) of a random variable shA .  The variable shA  

probabilistically describes the collection of values of ,sh kA  that occur across the basin.  It is 

assumed that shA  is described by the four-parameter generalized gamma distribution (Harter, 

1967; Stacy and Mihram, 1965).  This assumption is evaluated later in this paper.  The 

generalized gamma distribution applies to non-negative variables, which is consistent with shA , 

and has been widely used to represent UHs (Singh, 1998).  The generalized gamma PDF is 

written as: 

  
 

1

( ) exp
    

        

hh h

h h

kk

h sh h sh h

k

h

h

h

s

k A A
f A





 
  

  (6) 
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where h   0h   is a shape parameter that is primarily associated with the skewness, and hk  

 0hk   is a shape parameter that is primarily associated with the kurtosis.  h  is the location 

parameter and the distribution’s lower bound, and h   0h   is the scale parameter.    

represents the gamma function.  It is assumed that the distribution parameters h , hk , h , and 

h   can be estimated from the network type and maximum upslope area for any hillslope cell 

maxhA .  These assumptions and the nature of any such dependence is examined later. 

 

2.2 CHANNEL TRAVEL TIME DISTRIBUTION 

A very similar approach is used to calculate the travel time distribution for the channels. 

The flood wave travel time in a channel cell is based on an expression derived by Wong (2001), 

who considered a wide rectangular channel where flow enters from both upstream and locally 

under the kinematic wave approximation.  If the Wong (2001) equation is applied to a channel 

cell at location j , it can be written:  

 
0.6 0.6

, ,

0

,

, ,

.6

0.4
,

c j down j up j

down j up

c j

j

j j

j

n Q Q

Q QS
L W
   
  




     

  (7) 

where ,c j  is the travel time in channel cell j , ,c jn  is Manning’s roughness coefficient for the 

cell, 
jW  is the channel width, ,down jQ  is the flow at the downstream end of the cell, and up, jQ  is 

the flow that is contributed to the cell from upstream.  Unlike the hillslope cells, which drain 

relatively small areas, it is unlikely that the entire upstream area simultaneously contributes flow 

to a channel cell for storms with realistic durations.  Following Iacobellis and Fiorentino (2000), 

it is assumed that only some fraction r  of the upstream area contributes flow simultaneously.  
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Thus, , ,up j i up jQ rE A  and  , ,down j i up jQ rE A A   if excess rainfall is again assumed to be 

spatially homogeneous.   

An expression can then be written for the total channel travel time from a cell k in the 

basin to the basin outlet , ,c i jT : 

 
 0.6 0.4 0.6 0.6

, ,
, ,

Channel

, up j upj

c i k j

j

jc j

ij

A A An

r

W
T L

AES

                

 
  (8) 

where the summation includes the channel cells on the path between cell k  and the outlet.  

Several approximations are implemented to simplify Eq. (8).  Local variations in cell 

flow lengths are again neglected by replacing 
jL  with L , and all channel cells are assumed to 

have the same roughness cn , which is a common approach (e.g., Gironás et al., 2009; Zuazo et 

al., 2014).  In addition, the channel slope is assumed to depend on the contributing area 

according to a power function ,( )up jjS b AA    where b  and   are constants that can vary 

between basins (Flint, 1974; Hack, 1957; Sklar and Dietrich, 2013; Tarboton et al., 1989; 

Willgoose et al., 1991).  The coefficient b  is related to the vertical relief of the basin, while   

describes the concavity of the longitudinal profiles of the channels.  The slope-area relationship 

describes the average slope at a given contributing area, but much variation typically occurs 

around this average value (Cohen et al., 2008; Niemann et al., 2001; Tarboton et al., 1989).  In 

addition, deviations from a power function can also occur (Ijjasz-Vasquez and Bras, 1995).  Such 

complexities are neglected here.  Finally, the channel width is also assumed to depend on the 

contributing area according to a power function ,( )
up j

e

j
W d A A   where d  and e are constants 

that can vary between basins.  Such dependence has been observed empirically (Hack, 1957; 

Leopold and Maddock, 1953; Montgomery and Gran, 2001; Wolman, 1955) and has been used 
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in similar models in the past (Snyder et al., 2003).  Using these simplifications in Eq. (8), one 

obtains: 

0.3 0.4
,0.4 0.6 0.4 0.3 0.4 0.3 0.

0.6 0.6
, ,4 0.4

, ,
Channel

1 1
e

up up j uje p j

c i k i c

j

A
T E n r b L

A

AA A
d A

A





    



  
    

 

   
    

      
   (9) 

To simplify the notation, the constants in front of the summation are collected into a 

single channel coefficient 0.4 0.6 0.3 0.4 0.3 0.4 0.4e

c cm r n b d A     , and the summation in Eq. (9) is 

defined as ,sc kA .  This variable describes how area accumulates along the channel flow path and 

is expected to depend on the channel network structure.  Using these definitions, Eq. (10) can be 

written: 

 0.4
,, , i c scc i kk

T E m A   (10) 

 It is assumed that scA  is described by the Johnson special bounded (SB) distribution.  

This assumption is evaluated later.  This distribution is related to the normal distribution, which 

is associated with sums (George and Ramachandran, 2011; Kottegoda, 1987), and ,sc kA  is 

determined by a summation as shown in Eq. (9).  The Johnson SB PDF is written: 

 
  

2
1( ) exp ln
22

scc c c
c c

c

sc

cc c c scsc sc

A
A

AA A
f

   
    

                 
  (11) 

where c  is a shape parameter that primarily controls the skewness, and c   0
c

   is a second 

shape parameter that primarily controls the kurtosis.  c  is the location parameter, and c  

 0
c

   is the scale parameter.  This distribution has lower and upper bounds at c  and c c  , 

respectively.  It is assumed that the parameters c , c , c , and c  can be estimated based on the 
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network type and maximum upstream area for any channel cell maxA .  The nature of any such 

dependence is examined later. 

 

2.3 TOTAL TRAVEL TIME DISTRIBUTION 

The total travel time from an arbitrary point k  to the outlet ( ,i kT ) is the sum of the 

hillslope and channel travel times from that point, so one can write: 

  0.4
, , , , , , ,i k h i k c i k i h sh k c sc kT T T E m A m A      (12) 

If the time-invariant portion of the overall travel time is defined as , ,k h sh k c sc kX m A m A  , then 

the PDF for X  can be determined by a convolution assuming that ,h sh km A  and ,c sc km A  are 

independent.  The hillslope scale is typically similar irrespective of the hillslope’s position in the 

basin (Tucker et al., 2001), so the hillslope and channel travel times from a point to the outlet are 

expected to be independent (Rodríguez-Iturbe and Valdes, 1979).  Because an analytical solution 

for this convolution is not known, the convolution is performed numerically: 

      
, ,

0
h sh k c sc k

n

X m A m A

l

f n X f l X f n X l X


        (13) 

where n  is the number of discrete increments of X  used in the numerical evaluation, X  is the 

size of the increment, and l  is an index for those increments.  Finally, the instantaneous UH 

(IUH) associated with excess rainfall iE  can be found from the PDF for iT , which is: 

   0.4 0.4
1

i

i
T i X

i i

T
f T f

E E 

 
  

 
  (14) 
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The IUH varies in time because iE  varies in time.  UHs and direct runoff hydrographs can then 

be calculated by a convolution of the excess rainfalls and IUHs as described by Gironás et al. 

(2009). 

 In summary, this modeling approach isolates the effect of the drainage network structure 

into the random variables shA  and scA .  The other basin properties are represented by a series of 

constants:  hn , hS , cn , r  ,b , d ,  , and e .  The method also includes two constants that imply 

the spatial resolution of the calculations: L  and A .  These constants transform the PDFs for shA  

and scA  into the time-invariant PDF for X .  Then, the PDF for X  is modified using the time-

varying excess rainfall rate iE  to determine the time-varying PDF for iT , which is the time-

varying IUH for the basin.  

This method is similar to the time-area methods developed by Zoch (1934) and Clark 

(1945) because it uses travel times that are determined from the basin shape.  Those methods 

used simplified watershed geometries, but that approach has since been generalized to use real 

watershed configurations (Kull and Feldman, 1998; Peters and Easton, 1996; Saghafian et al., 

2002).  The proposed model also differs from those methods because the travel times vary in 

time, which produces a time-varying IUH.  The use of time-varying unit hydrographs has also 

been explored by others (Du et al., 2009; Lee et al., 2008; Xia et al., 2005).  Also, those methods 

used a linear reservoir to represent the attenuation of the flood wave by storage in the basin 

(Clark, 1945; Zoch, 1934).  The effects of including a linear reservoir in the proposed synthetic 

UH method will be explored later in this paper. 
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3. APPLICATION TO BASINS 
 
 
 
 The synthetic UH method is evaluated by application to ten basins from each of the five 

classifications.  Nearly all the basins were originally processed by Mejía and Niemann (2008).  

In their collection, however, Buckeye Run, WV (dendritic) and Stony Run, WV (trellis) are sub-

basins of other included basins.  Furthermore, Hill Creek, UT (parallel) does not strongly exhibit 

parallel characteristics.  Thus, these three basins were replaced with Rockcastle Creek, KY 

(dendritic), Penns Creek, PA (trellis), and Mancos River Tributary, CO (parallel).  The new 

basins were selected from regions where the networks had been previously classified (Mejía and 

Niemann, 2008). 

The new basins were processed in the manner used by Mejía and Niemann (2008).  

Specifically, the TauDEM toolbox for ArcGIS was used to fill pits, determine flow directions 

(according to the D8 algorithm), and calculate upslope/upstream areas and slopes (O’Callaghan 

and Mark, 1984; Tarboton, 2003; Tarboton et al., 1991).  To avoid infinite travel times in the 

model, any zero slope was replaced by the lesser of the calculated slope resolution and 0.8 times 

the minimum nonzero slope present in the processed DEM.  Cells containing channels were 

identified using thresholds for contributing area and topographic curvature following 

Montgomery (2001) and Rinaldo et al. (1995).  Montgomery (2001) divided the slope-area plot 

into five geomorphic zones:  hillslopes, valley heads, colluvial channels, bedrock channels, and 

alluvial channels.  They suggested that the initiation points for channels occur in the valley head 

zone, which was identified with an area threshold for each basin.  That threshold also determines 

maxhA .  For a cell to include a channel, its cell must also be concave up (Rinaldo et al., 1995).  

Because the calculation of curvature from a DEM is prone to uncertainty, any cell with a 
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curvature greater than the negative curvature resolution is considered to be concave up (Taylor, 

1997).  In the model, any hillslope cell contains only a planar hillslope, while a channel cell 

includes both a channel (through which the upstream flow is directed) and a hillslope (through 

which any local or upslope flow must pass before entering the channel network).  Thus, all 

excess rainfall must travel over some distance of hillslope before reaching the outlet. 

Basic characteristics for the 50 basins are summarized in Table 1.  The pinnate basins 

tend to be larger than the other types with an average area of 1,014 km2.  The parallel and 

rectangular basins are the smallest with average areas of 217 and 254 km2, respectively.  The 

pinnate basins also have the coarsest DEM resolutions with an average of 76.4 m, while the 

DEM resolutions for the remaining types are on average of 27 m.  Similarly, maxhA  is largest for 

the pinnate basins (on average 23,710 m2) and smallest for the dendritic and parallel basins (on 

average 4,280 and 5,200 m2, respectively). 
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4. RESULTS 
 
 
 
4.1 EVALUATION OF MODEL ASSUMPTIONS 

 We first examine the distributions of shA  and scA  for the basins.  In order to calculate 

scA  for any basin, values must be selected for the width-area exponent e and the slope-area 

exponent   .  e was assigned a typical value of 0.5 for all basins based on Montgomery and Gran 

(2001).    was calculated from the slope-area plot of each basin.  It has averages of 0.43, 0.36, 

0.40, 0.34, 0.39, for the dendritic, parallel, pinnate, rectangular, and trellis basins, respectively.  

Because   might vary with the network type, scA  for a given basin was calculated using that 

basin’s   value. 

Sixteen theoretical distributions were identified as candidates to describe shA  and scA  

based on their general properties (e.g., the existence of a lower bound).  The parameters of the 

distributions were estimated for each basin using the maximum likelihood method (Scholz, 

2006).  The fit of each distribution was then evaluated using the Kolmogorov-Smirnov (K-S) 

statistic, which is the maximum deviation between the cumulative distribution function (CDF) 

determined from the DEMs and the theoretical distribution (D’Agostino and Stephens, 1986; 

Weber et al., 2006).  The K-S statistic is not compared to a critical value in a hypothesis test 

because the observations of shA  and scA  from the DEMs are not independent due to the nested 

structure of the drainage networks.  Thus, they violate the assumptions required to perform such 

a test (D’Agostino and Stephens, 1986; Jogesh Babu and Rao, 2004).   

 The K-S statistics for the top three distributions for shA  and scA  are plotted for all the 

basins in Fig. 2.  The three best-fitting distributions for shA  are the four-parameter generalized 
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gamma, the log-Pearson type III, and the generalized Pareto distributions (Fig. 2a).  On average, 

the generalized gamma distribution fits the observations of shA  best with an average K-S statistic 

of 0.043.  It also has the lowest average K-S statistics for the pinnate and trellis classifications.  

The log Pearson type III has the lowest average K-S statistics for the remaining three 

classifications, but it performs worse for the trellis basins and much worse for the pinnate basins 

than the generalized gamma distribution.  Comparing between classifications, the generalized 

gamma distribution performs best for the dendritic and parallel types and consistently worse for 

the pinnate basins.  It exhibits varying performance for the rectangular and trellis basins, which 

might suggest that the hillslope aggregation patterns are heterogeneous within these 

classifications.   

 The three best-fitting distributions for scA  are the Johnson SB, beta, and generalized 

extreme value distributions (Fig. 2b).  On average, the Johnson SB distribution fits the observed 

distributions of scA  best with an average K-S statistic of 0.021.  The other two distributions have 

greater variability in their K-S statistics and almost always perform worse than the Johnson SB 

distribution.  Comparing between classifications, the Johnson SB distribution is most successful 

for the parallel and pinnate types.  It again exhibits the most variability in performance for the 

rectangular and trellis basins. 

 The left side of Fig. 3 shows histograms of shA  values for a typical basin in each 

classification along with the fitted PDFs.  The shA  histograms have positive skewness and 

exhibit only subtle differences among the five basins (note the small humps in the PDFs for some 

basins).  In all cases, the generalized gamma distribution fits well.  The right side of Fig. 3 shows 

the similar results for scA .  The scA  histograms differ substantially between the five basins.  For 
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the dendritic basin, the scA  histogram has negative skewness.  However, the skewness is 

approximately zero for the parallel and trellis basins and positive for the pinnate basin.  The 

Johnson SB distribution has sufficient flexibility to adapt to these different shapes.   

 We next examine whether the parameters of the generalized gamma distribution for shA

can be estimated from the network classification and the hillslope size maxhA .  For each 

classification, Fig. 4 plots the calibrated distribution parameters against maxhA .  Because maxhA  is 

much larger for the pinnate basins, they are shown in separate graphs on the right side of Fig. 4.  

The shape parameters hk  and h  and the location parameter h  appear to be independent of 

maxhA  and relatively constant within each classification.  However, differences are observed 

between the classifications.  For example, the dendritic basins tend to have lower h  values and 

higher hk   values than the other basins.  Higher hk  values are associated with the humps that 

were observed in Figs. 3a and 3c.  In contrast, the scale parameter h  depends on maxhA  (Fig 4c 

and g), and the relationship can be approximated by a power function.  A power function ensures 

that the relationship goes through the origin as expected.  The relationships between h  and 

maxhA  also exhibit differences between the classifications.  Most notably the pinnate and trellis 

basins have much flatter relationships than the other three types.  The dependence of the shA  

parameters on network type is interesting because the types are based on the channels not the 

hillslopes.  These results suggest a connection between the morphology of the hillslopes and 

channels, either that the flow paths on the hillslopes depend on the channel network structure 

into which they flow or that the hillslope and fluvial processes that determine the hillslope and 

channel flow paths are somehow correlated. 



18 
 

 We next consider whether the parameters of the Johnson SB distribution for scA  can be 

estimated from the network type and the basin size maxA .  For each classification, Fig. 5 plots the 

calibrated distribution parameters against maxA .  The shape parameters c  and c  and location 

parameter c  do not vary with maxA , but differences are observed between the classifications.  

The most notable differences are observed for c  (Fig. 5a), which controls the skewness of the 

scA  distribution.  Dendritic basins have negative c  values, while pinnate basins have positive 

c  values (which corresponds to the differences seen for the typical basins in Fig. 3h and Fig. 

3f).  The skewness also relates to the typical basin shape for each classification (Fig. 1).  For 

example, dendritic basins have an abundance of channel cells far from the basin outlet, which 

leads to an abundance of large scA  values and negative skewness.  Unlike the other distribution 

parameters, the scale parameter c  varies with maxA , and this relationship can be approximated 

with a power function.  The relationship also exhibits differences between classifications.  

Specifically, dendritic, parallel, and rectangular basins have flatter curves than the other two 

types.  

Table 2a provides the average values of hk , h , and h  for each classification (and 

average values for all basins combined).  It also provides the fitted power function that estimates 

h  from maxhA  for each classification (and a fitted power function for all basins combined).  

Table 2b provides equivalent information for c , c , c , and c .  To determine whether the 

distribution parameters differ significantly between the network types, an analysis of variance 

(ANOVA) was employed for the parameters that are independent of maxhA  and maxA .  

Specifically, a one-way ANOVA method was used for unadjusted pairwise comparisons between 
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classifications (Cohen and Cohen, 2008) with a 90% confidence interval (p-value = 0.1).  

Similarly, an analysis of covariance (ANCOVA) was used to determine whether the coefficients 

and exponents of the power functions are significantly different between classifications 

(Maxwell and Delaney, 2004).  This analysis was performed by first taking the logarithms of the 

variables involved and examining whether the intercepts and slopes of the resulting linear 

relationships are different.   

The results of the ANOVA and ANCOVA tests are summarized in Table 3.  If a 

parameter is listed in Table 3, there is a 90% chance that the pair of classifications have different 

mean values for that parameter.  For shA , 9 out of 10 classification pairings have at least one 

parameter that is significantly different (Table 3a).  For scA , 8 out of 10 classification pairings 

have at least one parameter that is significantly different (Table 3b).  Most commonly, that 

parameter is c , which is associated with skewness.  Fewer parameters are significantly different 

for scA  than shA  because the parameters for scA  tend to be more variable within classifications.  

Overall, these results suggest that the distributions for shA  and scA  are different for the five 

network types. 

 To evaluate the reliability of estimating the distribution parameters from the network type 

(as well as maxhA  and maxA ), the K-S statistic is used once more.  Fig. 6 compares the K-S 

statistics for the basins when the distribution parameters are estimated from three different 

methods.  In Method 1, they are calibrated directly from the shA  and scA  distributions for each 

basin (i.e. using values shown in Figs. 4 and 5).  In Method 2, they are estimated from the 

classification (using the results for each classification in Table 2).  In Method 3, they are 

estimated without consideration of the classification (using the results for all basins combined in 
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Table 2).  For shA , 41 of the 50 basins have improved accuracy (lower K-S statistics) when the 

network type is included (comparing Methods 2 and 3).  This improvement occurs across all 

network types (at least 7 of 10 basins exhibit improvement for each network type).  For most 

classifications, the results of Method 2 are very similar to those of Method 1.  In such cases, 

knowledge of the classification is sufficient to capture the distribution of shA  in an individual 

basin.  For the trellis basins, however, the K-S statistics for Method 2 remain more similar to 

those of Method 3, which suggests that information about each basin is more valuable for 

estimating the distribution of shA . 

For scA  34 of the 50 basins have improved accuracy (lower K-S statistics) when the 

network type is included (comparing Methods 2 and 3).  This improvement is greatest for 

dendritic, parallel, and pinnate network types, while rectangular and trellis networks show little 

improvement.  Rectangular and trellis networks can have a wide variety of basin shapes and thus 

a variety of scA  distributions.  The variability within those classifications makes it more difficult 

to estimate the scA  distributions from the classification alone.  Overall, estimating the parameters 

from the network type is more successful for shA  than scA  because the distributions for shA  are 

less variable within each classification. 

 

4.2 EVALUATION OF MODEL RESULTS 

 The synthetic UH method is tested by comparing the IUHs for four cases.  Case 1 

explicitly considers the individual cell slopes and the actual flow paths for each basin.  This 

method is equivalent to a SDTT method and is considered the correct IUH.  Case 2 replaces the 

individual cell slopes with the estimates from hS  and the slope-area relationship, and it replaces 



21 
 

the actual shA  and scA  distributions with the calibrated theoretical distributions.  This case 

evaluates the assumptions that are required to construct a synthetic UH method.  Case 3 

estimates the parameters of the theoretical distributions based on the network classification.  This 

is the classification-based synthetic UH method.  Case 4 estimates the parameters of the 

theoretical distributions irrespective of the network classification.  This case is analogous to 

current synthetic UH methods.   

For this comparison, most of the parameters were set to constant values for all 50 basins 

to reduce confounding effects (Table 4).  The selected Manning’s roughness for the hillslopes hn  

corresponds to short-grass prairie (McCuen et al., 2002).  The roughness for channels cn  

corresponds to a low-slope stream with weeds and stones or a mountain stream with cobbles and 

boulders (Chow, 1959).  The fraction of area contributing flow r  falls within the range for 

humid to arid climates (0.2 to 0.5) (Iacobellis and Fiorentino, 2000).  The width-area coefficient 

d  is a typical value (Montgomery and Gran, 2001).  The b value varies between basins and is 

estimated from each basin’s slope-area plot (as determined from each basin’s DEM).  For Cases 

2 through 4, the average hillslope slope from the DEM of each basin was used for hS .  The 

average values for hS  are 0.21 m/m, 0.26 m/m, 0.08 m/m, 0.19 m/m, and 0.21 m/m for dendritic, 

parallel, pinnate, rectangular, and trellis network types, respectively. 

Fig. 7 compares the IUHs from all four cases for a typical basin in each classification (the 

same basins considered in Figs. 1 and 3).  The observed IUHs (Case 1) exhibit notable 

differences between the classifications.  The IUH for the dendritic basin is negatively skewed, 

the IUH for the pinnate basin is positively skewed, and the IUHs for the other basins are nearly 

symmetrical.  These tendencies are similar to those observed for the scA  distributions for the 
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same basins (Fig. 3) and all the basins (Fig. 4).  For the dendritic basin, when the slopes are 

approximated and the theoretical distribution is used (Case 2), the IUH shifts to the right but 

maintains a similar shape.  This shift occurs because the travel times depend nonlinearly on 

slope.  Thus, using average slope for a given contributing area is not equivalent to using the 

distribution of slopes for that contributing area.  The proposed synthetic UH method (Case 3) 

closely approximates the previous two cases.  This similarity suggests that considering the 

classification alone provides an adequate approximation of the individual basin’s IUH.  The case 

that neglects the classification (Case 4) has nearly zero skew and is a poor match for the 

observed IUH (Case 1).  The other basins exhibit similar results.  Cases 2 and 3 remain close to 

the observed IUH, and Case 4 is usually the poorest approximation. 

 Four metrics are used to quantify the difference in performance between the proposed 

method (Case 3) and the case that neglects classification (Case 4) for all 50 basins (Fig. 8).  The 

first metric is the Root Mean Squared Error (RMSE) (Moriasi et al., 2007; Singh et al., 2005) 

where Case 1 is considered the observed IUH (Fig 8a).  The second metric is the Nash-Sutcliffe 

Coefficient of Efficiency (NSCE) (Nash and Sutcliffe, 1970).  Because larger NSCE values 

indicate better performance (in contrast with the other metrics), Fig 8b instead shows 1 – NSCE 

so that lower values indicate better performance.  The third metric is the absolute error in IUH 

peak value (Fig. 8c), and the fourth metric is the absolute error in the time of the IUH peak (Fig. 

8d).  In Fig. 8, the columns show the average performance for each classification, and black bars 

show the range of performance within each classification.   

 By all four measures, considering network classification greatly improves the average 

performance and reduces the range in performance for parallel and pinnate basins.  For these two 

classifications, considering the network type produces errors that are about half the errors when 
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network type is neglected.  Parallel basins’ average RMSE values considering classification are 

56% lower than average RMSE values when type is neglected.  In addition, the range of RMSE 

values when considering network type is 34% lower than when network type is neglected.  When 

considering network type for pinnate basins, the average RMSE and range of RMSE values are 

47% and 66% lower than neglecting network type respectively.  Considering network 

classification also improves the performance for dendritic basins for three out of the four 

measures (all but the error in the IUH peak value).  However, the improvements for dendritic 

basins are smaller than those for parallel and pinnate basins.  The average RMSE when 

considering network type is 21% lower than neglecting network type for dendritic basins.  Only 

small improvements in performance are observed for rectangular and trellis basins, which 

suggests that basin-specific knowledge is needed to accurately estimate the IUHs for those 

classifications (again due to the diversity of basin shapes that occur within those classifications).  

The average RMSE for rectangular and trellis network types when considering classification is 

lower than neglecting classification by 2% and 4%, respectively. 

 The IUHs presented so far have been derived based on the distribution of travel times, but 

storage delays might also be important.  To examine whether the differences between 

classifications persist when storage effects are included, a linear reservoir is added to the 

calculation of the IUHs.  In this case, the total time to the outlet is the sum of the travel time plus 

the storage delay.  Thus, the IUH can be generated by a convolution of the travel time 

distribution with the storage delay distribution.  For a linear reservoir, the storage delay G has an 

exponential distribution (Chow et al., 1988), which can be written as: 

  
G Ke

f G
K



   (15) 
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where K   is the reservoir time constant.  For this analysis, the reservoir time constant is assumed 

to be 60% of the time of concentration (McCuen et al., 2002).   

The IUHs with storage delays are shown in Fig. 9 for the example basins.  The IUHs are 

now all positively skewed (a similar effect was observed by Rinaldo et al., 1995).  The 

differences between the classifications are smaller than those in Fig. 7 but still evident 

(particularly in the width and height of the IUH peak).  Furthermore, considering the 

classification still provides better estimates of the IUHs than neglecting it.  Fig. 10 shows the 

four performance metrics for all 50 basins when the storage delays are included in the IUH.  The 

same general tendencies are observed with and without the storage delays (Figs. 8 and 10).  

However, the improvement of performance that is achieved by considering network 

classification is somewhat reduced when storage delays are included (note the differences in the 

vertical axes between Figs. 8 and 10). 

 The RMSE in the IUHs from the synthetic method was also calculated when the assumed 

parameter values were varied from those shown in Table 4 (Fig. 11).  Overall, the RMSE 

decreases when the hillslope roughness hn  increases, the channel roughness cn  increases, the 

width-area coefficient d  increases, the slope-area coefficient b  decreases, the fraction of area 

contributing flow r  decreases, the excess rainfall iE  decreases, and the linear reservoir constant 

K  increases.  It remains almost unchanged as the average hillslope slope hS  changes. 
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5. CONCLUSIONS 
 
 
 
 This study developed and tested a nonlinear synthetic UH method that explicitly accounts 

for the network type (dendritic, parallel, pinnate, rectangular, and trellis).  Within this approach, 

the network structure was isolated in two random variables shA  and scA , which characterize the 

flow paths for the hillslopes and channels, respectively.  Based on this analysis, the following 

conclusions can be made: 

1. Among the sixteen theoretical distributions tested, the four-parameter gamma distribution 

best describes the observed distributions of shA  and the Johnson SB distribution best 

describes the observed distributions of scA .  For shA , the shape and location parameters 

of the gamma distribution are independent of the hillslope size maxhA , but the scale 

parameter depends on maxhA .  Similarly, for scA , the shape and location parameters of the 

Johnson SB distribution are independent of the basin size maxA , but the scale parameter 

depends on maxA . 

2. The distributions of shA  are significantly different between the five network 

classifications.  Based on ANOVA and ANCOVA results, 9 out of 10 classification 

pairings have at least one distribution parameter that is significantly different.  Because 

the classifications are determined from the channel network structure, this result suggests 

that the flow paths on the hillslopes (which determine shA ) depend on the type of channel 

network into which they flow.   

3. The distributions of scA  are significantly different between the five classifications.  From 

the ANOVA and ANCOVA results, 8 out of 10 classification pairings have at least one 
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distribution parameter that is significantly different.  The parameter that usually differs 

between classification pairs controls the skewness of the scA  distribution.  Dendritic 

basins have an abundance of locations that are distant from the outlet, which produces an 

abundance of large scA  values and a negative skewness.  In contrast, pinnate basins have 

more locations that are close to the outlet, which produces many small scA  values and 

positive skewness.  The other network types tend to have more symmetrical distributions 

for scA . 

4. The shA  distributions are more accurately estimated based on the network type than the 

scA distributions.  The shA  distributions exhibit relatively small differences between 

classifications but are relatively consistent within classifications, which allows accurate 

estimation of the distribution parameters.  For scA , the differences within classifications 

are greater.  Overall, the network type is more useful for estimating the scA  distribution 

for dendritic, parallel, and pinnate networks, than for rectangular and trellis networks. 

5. The IUHs from a SDTT method without storage delays typically differ between the five 

network classifications.  Much like the scA distributions, the IUHs of dendritic basins are 

negatively skewed, the IUHs for pinnate basins are positively skewed, and the IUHs for 

the other classifications are approximately symmetrical.  When storage delays are 

included, the differences between classifications are smaller but remain present.  These 

differences suggest that the network type can impact the hydrologic response of a 

watershed. 

6. The proposed synthetic UH method, which estimates the shA  and scA  distributions based 

on the network classification, provides better estimates of the SDTT IUHs than a method 
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that neglects classification.  The improved performance occurs both when storage effects 

are neglected and included.  The greatest improvements in performance are observed for 

the parallel and pinnate classifications.  Moderate improvements are also observed for 

dendritic basins, while only small improvements are observed for rectangular and trellis 

basins.  Basins within the parallel and pinnate classifications tend to have very similar 

basin shapes and flow path structures, which makes it easier to estimate their IUHs based 

only on the classification.  Basins within the rectangular and trellis classifications tend to 

be more diverse, so it is more important to explicitly represent an individual basin’s flow 

paths. 

Overall, the results show that the five network classifications have differences in their 

IUHs and that considering network classification provides improved estimates of the IUHs.  The 

classification-based synthetic UH has the potential to be used in semi-distributed models, but 

more testing is required.  Independent validation should be performed by applying the method to 

basins that are not used in the model development.  Testing on smaller basins is also needed.  

The results generated in this study considered large basins, but semi-distributed models often 

consider much smaller sub-basins.  Most distribution parameters in the model are independent of 

basin size and the dependence on basin size was included for the remaining distribution 

parameters, so the method is expected to apply to smaller basins.  However, it should be tested to 

understand the implications on the method’s performance.  Further analyses of the interaction of 

channel network type and hillslope flow paths should also be performed.  In particular, how does 

the role of the channel network type change as the active hillslope processes change?  In 

addition, the assumption that a constant fraction of upstream area contributes flow at each time 

should be further analyzed.  For example, a relationship between this fraction and basin size or 
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grid cell location in the basin could be considered.  The assumption that excess rainfall is 

produced uniformly across the basin could also be changed.  In particular, the differences in 

behavior between channel network types may differ if variable source areas produce the excess 

rainfall. Also, the IUHs from the proposed method were evaluated by comparing to those from a 

SDTT model that explicitly represents the slopes and flow paths with the basin.  Future research 

should evaluate the performance when the method is used to reproduce observed hydrographs.  

Such comparisons would allow testing of other assumptions in the method (e.g., the use of 

kinematic wave theory).  
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6. TABLES 
 
 
Table 1.  Basic characteristics of the 50 basins that are analyzed in this study. 

  Basin Name Outlet Lat. 
(deg) 

Outlet Long. 
(deg) 

DEM 
Resolution (m) 

Basin Area 
(km2) 

Channel 
Threshold (m2) 

D
EN

D
R

IT
IC

 

Bluestone Creek, WV 39.3020 -80.7787 27.2 324 4,400 
Buffalo Creek, WV 40.2509 -80.5976 27.0 419 5,100 
Captina Creek, OH 39.8706 -80.8193 27.0 460 3,600 
Cedar Creek, GA 31.6712 -81.5048 28.5 219 4,900 
Little Saluda River, SC 34.0773 -81.5942 28.1 565 4,700 
Rockcastle Creek, KY 38.0020 -82.5189 27.9 314 3,100 
Tenmile Creek, PA 39.9804 -80.0240 27.0 512 4,400 
Turkey Creek, SC 33.7773 -82.1606 30.0 625 4,500 
Tygarts Creek, KY 38.3926 -82.9601 27.4 291 3,700 
Wheeling Creek, WV 40.0506 -80.6673 27.0 739 4,400 

PA
R

A
LL

EL
 

Albert Creek, WY 41.5065 -110.6095 26.8 439 6,500 
Black Sulphur Creek, CO 39.8676 -108.2931 27.1 266 4,400 
Duck Creek, CO 39.9787 -108.3820 27.0 142 5,100 
Greasewood Creek, CO 40.1301 -108.4126 27.0 61 4,400 
Mancos River Trib., CO 37.0950 -108.5070 28.3 113 5,300 
Piceance Tributary 1, CO 39.8884 -108.3959 27.1 156 3,700 
Piceance Tributary 2, CO 39.8620 -108.2998 27.1 74 5,100 
Sheep Creek, WY 41.5645 -110.6154 26.8 487 5,000 
Willow Creek, UT 39.4223 -109.6293 27.2 350 4,400 
Yellow Creek, CO 39.9654 -108.3898 27.1 85 8,100 

PI
N

N
A

TE
 

Dniester Tributary 1, UKR 47.9145 30.6362 75.9 2,114 23,100 
Dniester Tributary 2, UKR 48.1245 30.0062 75.8 1,356 17,200 
Dniester Tributary 3, UKR 46.3545 28.9412 76.8 1,005 23,600 
Dniester Tributary 4, UKR 46.7937 29.9804 76.4 1,573 29,200 
Dniester Tributary 5, UKR 46.6145 29.2845 76.7 967 21,000 
Dniester Tributary 6, UKR 47.1395 28.9062 76.4 761 23,400 
Nistru Tributary 1, MDA 47.3795 30.5062 76.2 697 29,100 
Nistru Tributary 2, MDA 47.3895 30.5562 76.4 589 23,300 
Nistru Tributary 4, MDA 46.1112 28.6129 76.8 723 23,600 
Nistru Tributary 5, MDA 46.0529 28.7587 76.8 350 23,600 

R
EC

TA
N

G
U

LA
R

 Boquet River, NY 44.2423 -73.4620 26.2 241 8,200 
Boreas River, NY 43.8320 -74.0709 26.3 218 5,500 
Cold River NY 44.1037 -74.3126 26.2 218 8,200 
Hudson River, NY 43.9681 -74.0526 26.3 198 9,000 
Saint Regis River, NY 44.5320 -74.4723 26.1 344 4,800 
Salmon River, NY 44.8673 -74.2970 26.1 495 6,800 
Schroon River, NY 43.9556 -73.7337 26.3 239 8,300 
Summer Brook, NY 44.4076 -74.0837 26.1 147 6,100 
Walker Brook, NY 44.0004 -73.7126 26.2 133 10,300 
W. Br. St. Regis River, NY 44.4387 -74.5912 26.1 304 5,500 

TR
EL

LI
S 

Aughwick Creek, PA 40.2987 -77.8873 27.0 823 7,300 
Cacapon River, WV 39.2533 -78.4549 28.0 865 5,500 
Chestuee Creek, TN 35.2451 -84.6565 27.9 339 3,900 
Evitts Creek, MD 39.6640 -78.7320 27.1 240 6,600 
Jackson River, VA 39.1651 -79.7509 27.4 251 4,500 
Juniata River, PA 40.5070 -77.4381 27.5 539 7,800 
Middle Creek, PA 40.7643 -76.8845 26.8 219 8,600 
Penns Creek, PA 40.85756 -77.4606 27.5 480 8,300 
Peters Run, WV 38.7229 -79.3043 27.3 609 7,500 
Sleepy Creek, WV 39.6206 -78.1459 27.1 294 10,300 
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Table 2.  Estimated parameters for (a) the generalized gamma distribution for shA  and (b) the 
Johnson SB distribution for scA . 
(a) Generalized Gamma Distribution Parameters for shA  
 

h
  

h
k  

h
  

h
  

Dendritic 0.296 3.08 0.103 4.91 0.265
maxhA  

Parallel 0.395 2.35 0.147 5.07 0.261
maxhA  

Pinnate 0.318 2.86 0.474 20.5 0.195
maxhA  

Rectangular 0.410 2.15 0.117 2.72 0.313
maxhA  

Trellis 0.443 2.10 0.102 34.1 0.081
maxhA  

All 0.372 2.51 0.188 0.142 0.588
maxhA  

 
(b) Johnson SB Distribution Parameters for scA  
 c  c  c  c  

Dendritic -0.544 1.002 -1477 3760 0.222
maxA  

Parallel -0.274 0.988 -476 1163 0.376
maxA  

Pinnate 0.332 0.961 -323 1428 0.437
maxA  

Rectangular -0.022 0.988 -307 450 0.568
maxA  

Trellis -0.080 0.899 -378 659 0.520
maxA  

All -0.118 1.36 -592 398 0.601
maxA  
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Table 3.  Distribution parameters that exhibit significant differences between the network 
classifications based on the analysis of variance (ANOVA) and analysis of covariance 
(ANCOVA) tests.  For the scale parameters h  and c , 

h coef   and 
c coef   refer to the 

coefficients and exph   expc   refer to the exponents in the power functions. 
(a) Generalized Gamma Distribution Parameters for shA  

 DEN PAR PIN REC TRE 

DEN  
 , ,

h h h
k    h

  ,
h h

k   ,
h h

k   

PAR   , ,
h h h

k    – 
exp

,
,

h h

h coef h

 
  

 

PIN    , ,
h h h

k    
exp

,
,

h h

h coef h

 
  

 

REC  
    exp,h coef h    

 
(b) Johnson SB Distribution Parameters for scA  

 DEN PAR PIN REC TRE 

DEN  
 ,

c c
   ,

c c
   ,

c c
   ,

c c
   

PAR  
  c

  c
  – 

PIN  
   c

  c
  

REC  
    – 
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Table 4.  Model parameters used in the development of the instantaneous unit hydrographs.  
Parameters that vary are determined from the digital elevation model for each basin. 

Parameter Value Units 
Channel roughness ( cn )  0.05 s/m1/3 
Hillslope roughness ( hn )  0.15 s/m1/3 

Grid cell area ( A )  Varies m2 
Grid cell length ( L )  Varies m 
Slope of hillslopes ( hS )  Varies m/m 
Vertical relief slope factor (b)  Varies m-2θ 
Vertical relief slope exponent ( )  Varies - 
Width factor ( d )  0.02 m1-2e 

Width exponent ( e )  0.5 - 
Fraction of area contributing (r)  0.3 m2/m2 
Excess rainfall ( iE )  25.4 mm/hr 
Linear Reservoir Storage Coefficient  60 % 
Step ( X )  0.1 m 
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7. FIGURES 
 
 
 

 

Figure 1.  A typical channel network from each network classification.  Black dots indicate the 
basin outlets. 
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Figure 2.  K
olm

ogorov-Sm
irnov (K

-S) statistics for the three best fitting distributions for (a) 
sh

A
 

and (b) 
sc

A
. 
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Figure 3.  (a) – (e) Histograms and fitted generalized gamma distributions for shA  for a typical 
basin in each classification, and (f) – (j) histograms and fitted Johnson SB distributions for scA  
for the same basin in each classification.  Basins are the same as those shown in Fig. 1. 
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Figure 4. (a) – (d) Parameters of the generalized gamma distribution for shA  for the dendritic, 
parallel, rectangular, and trellis classifications plotted against the maximum hillslope area hmaxA  
and (e) – (f) parameters of the generalized gamma distribution for shA  for the pinnate 
classification plotted against hmaxA .  The individual points represent the calibrated parameter 
values for each of the 50 basins.  The horizontal lines are the average parameter values for each 
network type in (a) – (c) and (e) – (g).  Calibrated h  values are fitted with a power function in 
(d) and (h). 
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Figure 5. Parameters of the Johnson SB distribution for scA  for all five network classifications 
plotted against the maximum upstream area maxA .  The individual points represent the calibrated 
parameter values for each of the 50 basins.  The horizontal lines are the average parameter values 
for each network type in (a) – (c).  Calibrated c  values are fitted with a power function in (d). 
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Figure 6.  Kolmogorov-Smirnov (K-S) statistics for (a) the generalized gamma distribution for 
shA  and (b) the Johnson SB distribution for scA  when the distribution parameters are estimated 

separately for each network (Method 1), based on the network classification (Method 2), and 
neglecting the network classification (Method 3). 
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Figure 7.  Instantaneous unit hydrographs (IUHs) for a typical basin in each network 
classification when the IUH is determined for the four cases described in the legend.  Basins are 
the same as shown in Fig. 1. 
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Figure 8.  Performance metrics when the instantaneous unit hydrographs (IUHs) are estimated 
by either including or neglecting the network classification.  Column heights indicate the average 
performance and black bars indicate the range of performance for each case. 
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Figure 9. Instantaneous unit hydrographs (IUHs) for a typical basin in each classification when a 
linear reservoir is included in the determination of the IUH. 
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Figure 10.  Performance metrics when the instantaneous unit hydrographs (IUHs) are estimated 
by either including or neglecting network type and a linear reservoir is included.  Column heights 
indicate the average performance and black bars indicate the range of performance for each case. 
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Figure 11.  The root mean squared error (RMSE) of the instantaneous unit hydrographs (IUHs) 
determined from network types as the assumed values of model parameters change.  Dashed 
vertical lines indicate the values used in preceding analyses.  
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