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ABSTRACT 

 

EVALUATION OF A NOVEL WILDLIFE TELEMETRY DEVICE WITH DATA TRANSFER 

CAPABILITIES 

 

The construction of low-cost, advanced GPS telemetry systems for wildlife tracking is 

growing in popularity, especially systems that can communicate with each other to track contacts 

and, more recently, transfer data. This novel function represents a step forward from current 

technology because it allows researchers to retrieve data from collars that have been damaged or 

lost. It also elucidates broad networks of interactions between individuals to monitor disease 

spread and social preference. I tested the communication and data transfer capabilities of a low-

cost, custom-built GPS telemetry collar with an on-board wireless sensor network. I performed 

several trials using captive bighorn sheep to measure how data transfer reliability is impacted by 

the bodily obstruction of an animal, and to determine the accuracy of logged contacts. I present 

the results of these trials, which show that data transfer is adversely affected by the placement of 

the collar around the sheeps’ necks, but that the contact accuracy remains uncompromised. Once 

refined, this technology could represent a significant improvement over currently-available 

telemetry devices, and may offer novel insight into previously unobserved ecological 

phenomena. 
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SUMMARY 

Traditional, location-centric wildlife telemetry is useful for collecting spatial and temporal 

information on where animals spend their time. Recently, telemetry companies and independent 

developers have introduced a wide variety of non-location-centric telemetry devices, including 

biologgers, activity loggers, animal-mounted cameras, proximity loggers, and delay-tolerant 

data-relaying capabilities. We will refer to these devices as state-centric, because they allow 

observations of the state of individuals and their interactions with the environment and other 

individuals. State-centric devices can be used apart from, or in conjunction with location-centric 

telemetry to monitor physiological condition, to reveal social networks, and to observe fine-scale 

habitat choices. Here we review these new state-centric technologies, giving a brief explanation 

of how each device functions, for what it is used, and how it has contributed to the field of 

ecology. We discuss some sources of error in state-centric technology, propose possible 

improvements, and suggest future directions.
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Wildlife telemetry is a rapidly-evolving field. Manufacturers frequently introduce devices with 

new functions and improvements in data-collecting capabilities. Traditional telemetry devices 

were generally location-centric, allowing for observation of an animal’s spatial location at a 

specific time. Location-centric technology has benefited wildlife biologists and ecologists since 

the first very high frequency (VHF) devices were developed in the 1950s and 60s (LeMunyan et 

al. 1959, Cochran and Lord 1963). The introduction of radio telemetry allowed researchers to 

collect unprecedented amounts of data at a previously unattainable level of precision. It was the 

first time scientists could track the movements of individuals and populations across inaccessible 

tracts of land, locate feeding and breeding grounds, and determine home range without invasive 

behavioral observation or extrapolation from presence-absence data (Dunn and Gipson 1977, 

Craighead 1982, Wanless et al. 1988, Thompson and Miller 1990). 

The commercial introduction of GPS technology in 1991 improved positional accuracy 

and eliminated several types of bias, especially after the dissolution of selective availability in 

2000 (Rodgers et al. 1996, Lawler 2000). This technology allowed scientists to monitor animal 

locations within at least ±10m precision, at any time of day, without the need to take receivers 

into the field (Rodgers et al. 1996, Beyer and Haufler 2004, Cadahia et al. 2007, Hansen and 

Riggs 2008). Furthermore, combining GPS data with the Argos data collection and relay system 

(operated by the United States National Oceanic and Atmospheric Administration and the French 

Centre National d’Etudes Spatiales) provided scientists with the opportunity to match animal 

locations to specific habitat types and topographical information in situ(Schwartz and Arthur 

1999, Jay and Garner 2002). 

Hebblewhite and Haydon (2010) point out that while such location-centric data can 

elucidate broad-scale habitat choice and movement, it cannot easily be extrapolated to describe 
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an animal’s condition or its feeding and social behaviors at a specific point in time. To do this, 

researchers need fine-scale, qualitative data to accompany spatial and temporal information. 

Telemetry companies and researchers have answered the call for such data by introducing a suite 

of non-location-centric telemetry devices including biotelemetry, activity loggers, and proximity 

loggers. These new technologies provide information about body condition, activity levels, 

feeding behavior, and social networks. Because these devices focus on the individual and its 

state, we will refer to this technology as state-centric. In this review, we briefly describe these 

devices, and explain how their use offers a unique insight into several recurring ecological 

themes. 

ADVANCES IN STATE-CENTRIC TELEMETRY 

State-centric telemetry has offered insight into the everyday behaviors and activities of a wide 

variety of species. Previously, this information was gathered by direct observation in the wild, 

observations on captive animals, or by remote camera traps. Now individuals can be fitted with 

telemetry collars and/or tags, which can be deployed for months or even years, and require little 

to no human interference post-deployment. Collecting fine-scale information on the health, 

activity, and social interactions of wildlife is necessary for scientists to determine not just where 

animals are spending their time, but why. State-centric telemetry allows researchers to gather 

information on individual condition, where animals are most and least active, what they are 

choosing to eat, with whom they are competing, from whom they are fleeing, and where they are 

coming into contact most or least often. 

Monitoring Animal Condition 

Knowledge of animal states originated with devices that could detect whether an animal was 

alive or was likely dead. The best example of this is the mortality logger available on most VHF 



4 

 

and GPS devices. Mortality loggers were originally designed such that a thermistor would sense 

the body temperature of an individual, allowing scientists to determine if an animal’s lack of 

movement was behavioral or if it was dead (Stoddart 1970). Currently-available devices rely on 

movement to determine mortality (Steigers and Flinders 1980).Knowing the location of an 

animal carcass allows researchers to collect tissue samples from the deceased animal as soon as 

possible, thus increasing the probability that the cause of death can be determined (Houseknecht 

1970).  

Manufacturers expanded upon this idea by developing biotelemetry devices (or biologgers) that 

measured external temperature and pressure, body temperature, and heart rate (Kooyman et al. 

1971, Weimerskirch et al. 1995, Woakes et al. 1995, Handrich et al. 1997). These devices can be 

used to gather information about an animal’s health and energy expenditure, its environment, or 

both (Fryer et al. 1966, Wilson et al. 2002, Brown-Brandl et al. 2003). For example, temperature-

sensitive radio transmitters have long been used to monitor phenomena such as the sheltering 

behavior and resulting body temperature fluctuations of reptiles (Huey et al. 1989), the 

overwintering metabolic strategies of ungulates (Arnold et al. 2004), and the body temperature 

and foraging strategies of birds in response to ambient temperature (Krijgsveld et al. 2003).  

Biologgers have also been popular with aquatic ecologists, because they allow researchers to 

gather information about an ecosystem that is otherwise difficult to observe. This is especially 

true for arctic birds and mammals. Some of the first pressure-sensitive biologgers were used to 

observe the diving depths of seals (DeVries and Wohlschlag 1964) and penguins (Kooyman et 

al. 1971) as they moved beneath thick ice shelves. 
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Observing Animal Activities 

A more recent development is the wildlife activity logger, which uses an accelerometer to track 

the 2- or 3-dimensional movements of individuals at a particular location (Wilson et al. 2006, 

Shepard et al. 2008).These devices are particularly useful for monitoring when animals are most 

and least active. They can also be used to signal for telemetry devices to enter a “sleep mode,” 

which saves battery life and storage space (Laerhoven et al. 2006). Activity loggers may exhibit 

some error in determining the specific type of movement based upon the level of activity (i.e. 

activity levels might be equal for feeding, running, or fighting), although recent technology and 

modeling techniques have demonstrated greater reliability (Scheibe et al. 1998, Naylor and Kie 

2004, Shepard et al. 2008). On the other hand, animal-mounted cameras can accurately record 

specific behaviors, but do not have a 360 degree view, and are also limited by lack of light, 

memory space, and energy expenditure (Beringer et al. 2004, Zhihai et al. 2008,Moll et al. 2009).  

Despite some shortcomings, which we expand upon later, both of these technologies have 

been especially helpful for elucidating previously unobserved behavioral phenomena, such as 

what time of day animals are most likely to forage, and how they manage their energetic budgets 

(Coulombe et al. 2006, Krone et al. 2009, Horn et al. 2011). Activity loggers are commonly used 

to track the diving angle, buoyancy, and acceleration of deep-diving sea birds, offering insight 

into energy expenditure and prey capture strategies (Yoda et al. 1999, Watanuki et al. 2003). 

Moe et al. (2007) used combination GPS and activity-logging technology to determine the diel 

behavior of bears, and to reveal which habitat types they preferred when foraging. Hetem et al. 

(2011) used activity loggers to determine how the activity levels of oryx and gazelles change 

seasonally. These types of studies have also been performed using smaller, more elusive species 

such as reptiles and birds as animal subjects (Kerr et al. 2004, Phalan et al. 2007, Kerr et al. 
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2008). They represent an especially important tool for monitoring the activity patterns of species 

in habitats with unpredictable climate, variable light-dark cycles, or high impact due to global 

climate change. 

Animal-mounted cameras allow researchers to take snapshots or video footage of animals 

interacting with their habitat without invasive and biased observation. Most devices attach to the 

animal such that they offer a unique look into what animals are seeing in the field (Moll et al. 

2007, Bluff and Rutz 2008). This is useful for determining exactly what an animal is eating, as 

well as which predators and competitors an animal most frequently faces. Arthur et al. (2007) 

used animal-borne imaging devices to monitor the foraging habits of green turtles, thus offering 

valuable insight into the risks of toxic cyanobacterium to aquatic animals. Beringer et al. (2004) 

used a wireless video camera to determine the exact food choices of captive deer (Figure 1.1). 

Not only were they able to detect some unexpected resources, but they were also able to capture 

mutual grooming, breeding, and bedding behavior that would go unobserved with traditional 

telemetry equipment. Researchers can also use this technology to pinpoint how species interact 

with each other to capture prey. Takahashi et al. (2004) used animal-mounted digital cameras 

with built-in pressure sensors to log the aquatic social behavior of penguins. Their devices took 

over 10,000 photographs, from which they were able to determine average swimming group size, 

and whether group size changed during foraging. Parrish et al. (2008) observed that aquatic 

predators such as sharks and snappers take advantage of the monk seal’s prey-flushing abilities, 

thus elucidating a previously unobserved competitive interaction. This has broad ecological 

applications, because for many species terrestrial behaviors have been well-studied, but aquatic 

behaviors remain a mystery.  
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Observing Animal Interactions 

Some of the newest and most exciting technology focuses on monitoring wildlife social 

networks. Proximity loggers allow researchers to monitor the frequency and duration of contacts 

between two individuals using an ultra high frequency (UHF) radio signal along with a 

traditional VHF signal. These devices log the identification code of each individual, the time of 

the contact, and how long the two individuals were within contact range (Prange et al. 2006). 

Contact information is valuable for exposing the reproductive and social behaviors of elusive 

species, finding possible pathways for disease spread, and tracking possible predation events.  

Proximity loggers have the potential to alter previous assertions about animal social 

groups. For example, Prange et al. (2011) used proximity loggers to determine the social 

structure of a suburban raccoon population, and found that social pairings were common, and 

that the proportion of male-female social groups and male-male social groups varied seasonally. 

This contrasts with previous assertions that raccoons are a solitary, territorial species. Similarly, 

Marsh et al. (2011) used proximity loggers to elucidate the social behaviors of invasive rabbits. 

They found high individual heterogeneity and weaker social bonds than would be expected from 

previous observational and genetic data. This technology will soon be available for aquatic 

applications. Guttridge et al. (2010) used sharks to test the functionality of ultrasonic proximity 

loggers. Although their prototype devices had a high failure rate (4/5 devices lost data in one 

trial), the data they did retrieve were able to accurately log contacts among their cohort of sharks. 

An improved version of these ultrasonic proximity loggers would provide valuable information 

about the group characteristics and social behaviors of aquatic animals. 

Proximity loggers have also made recent contributions to the field of wildlife 

epidemiology. Traditional telemetry has always been useful in determining the broad-scale 



8 

 

behaviors of potentially susceptible individuals. In recent years, state-centric telemetry has 

supplemented this spatial-temporal information, and provided deeper insight into the spread of 

disease across wildlife populations. Elucidating complex wildlife social networks is crucial for 

modeling pathways of disease spread.  Proximity loggers have been useful for closely monitoring 

contacts between individuals that would otherwise be undetectable. For example, Hamede et al. 

(2009) used proximity loggers to determine the contact network structure in a population of 

Tasmanian devils. This information is vital, since Tasmanian devil facial tumor disease is a 

widespread, deadly cancer that is spread via direct contact, particularly biting. They found that, 

unlike human social networks, the Tasmanian devil social network is not particularly aggregated, 

although it does differ between mating and non-mating seasons. These data suggest that targeting 

a particular age or sex class of Tasmanian devil for culling or quarantine would be a limited 

strategy. 

 Proximity loggers have also offered insight into interspecific disease spread. Bohm et al. 

(2009) collared badgers and cattle in order to find high-risk individuals for the transmission of 

bovine tuberculosis. They found that several badgers were coming into contact with cattle, 

leading researchers to conclude that direct inter-species contacts are not as rare as previously 

thought. Meanwhile, Ji et al. (2005) offer a different theory for the indirect transmission of 

bovine tuberculosis based upon the proximity-logged contact rates of possum populations.  

Proximity loggers are useful in determining the habitat use and territory overlap of one or 

more species. Joint habitat use, or the likelihood that two intra- or inter-specific individuals are 

occupying the same habitat, is one way to measure intraspecific interaction and possible 

competition or predation events. Joint habitat use is beneficial for knowing how social groups 

vary environmentally, where competition is most likely to occur, and which habitats are most 
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likely to facilitate predation (Maitz and Dickman 2001, Kjær et al. 2008, Valeix et al. 2009). 

Previously, researchers would use mark-recapture techniques or combine traditional spatial-

temporal telemetry data with remote sensing data to model the joint habitat use under varying 

seasonal or environmental conditions (Schauber et al. 2007). Proximity loggers now monitor 

when two or more tagged individuals come into contact without a significant temporal lag. When 

combined with traditional telemetry, this allows researchers to know when and where animals 

are most likely to come into contact with one another, without having to extrapolate or account 

for temporal staggering of data. 

More sophisticated contact-logging technology combines proximity-logging technology 

with the data-transfer capabilities of a delay-tolerant network (DTN). A DTN is a type of 

intermittently connected network that is ideal for use in an ecological setting due to its 

disruption-tolerant structure (Zhang 2006). Although state-centric telemetry that incorporates this 

technology is not yet commercially available, it has been tested in a variety of scenarios, 

including zebras (Juang et al. 2002) and reindeer (Dopico et al. 2011). We tested our own in-

house constructed system using captive bighorn sheep (Davis et al. 2012). This new technology 

functions similarly to proximity loggers, but offers a more complete data set due to its data-

forwarding capabilities (Figure1.2). Furthermore, data-transfer enables data collection in the 

field and prevents data loss. In general, an accurate representation of a population’s social 

network requires saturation with proximity-logging devices (Borgatti et al. 2006, Prange 2006). 

Since device failure and data loss are common technical problems (up to 33% of devices fail to 

log data in some cases), data sets can be compromised, even if the number of devices initially 

deployed does represent a statistically appropriate sample size (Ji et al. 2005, Prange et al. 2006). 

The incorporation of delay-tolerant networks with data-transferring capabilities remedies this 
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problem by transferring data from one device to another, eventually funneling it to a target 

device or base station (Martonosi 2006). This means that even if a device stops working mid-

study, the “lost” data can still be recovered from another source. If these devices were to be 

refined for commercial distribution,  they would offer a clearer picture of wildlife social 

networks, which would benefit wildlife epidemiology, and the field of ecology as a whole. 

LIMITS IN TECHNOLOGY 

As would be expected, there are several limitations and inherent errors that may occur with the 

use of state-centric telemetry. Even if state-centric data are used in conjunction with accurate 

spatial-temporal information, an ecologist or manager may still need to use observational, 

experimental, or theoretic methods to understand the system of interest. It is the researcher’s 

responsibility to omit erroneous data points, recognize sources of bias, and analyze and interpret 

data correctly. Furthermore, electronics are inherently error-prone, and telemetry devices are no 

exception. Each kind of device has its own limits to how much data can be collected, and how 

much information can be gleaned from these data.  

Activity loggers are able to accurately determine when animals are moving or resting, but 

they often cannot discern between specific movements (Robert et al. 2009). Accuracy levels vary 

widely between (or even within) studies, but seem to have improved in recent years, with some 

studies able to correctly identify movements with up to 93% accuracy (Naylor and Kie 2004, 

Moreau et al. 2009, Heurich et al. 2011). This is most likely due to the calibration of 

accelerometers using captive individuals. Despite improvements in both accelerometer 

technology and behavior models, scientists should supplement telemetry data with behavioral 

observation whenever possible, or at least incorporate error into their behavioral analysis to 

account for the probability that specific behaviors will be incorrectly categorized. This is not 
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always realistic, since researchers often do not have access to captive individuals to calibrate 

their devices. Another option is to attach an accelerometer to a specific body part of interest. For 

instance, Naito et al. (2010) used mandible accelerometers to monitor the feeding behavior of 

seals, although there was still some ambiguity in their data since they had to make assumptions 

about differences in movement between vocalization events and feeding events.  

Another way to record behavior and resource selection is via animal-mounted cameras, 

which face inherent limitation in storage space and view-range. While cameras offer fine-scale 

insight into occurrences at specific locations, their lifespan does not match that of a traditional 

telemetry device. Video cameras can last in the field up to 2 weeks, and digital cameras are 

dependent upon the number of pictures that can be taken and the amount of time between photos 

(Beringer et al. 2004, Takahashi et al. 2004). This means that devices either need to be re-

deployed, or deployments need to be staggered throughout the field season to obtain an unbiased 

data set. Events caught on camera are also dependent upon the view range of the camera. Such 

imperfect detection has been demonstrated in camera traps and remotely-controlled video 

surveillance equipment (MacNulty et al. 2008, Tobler et al. 2008). 

Proximity loggers are some of the newest telemetry devices on the market, and as such, 

they have been prone to error. Earlier studies experienced high error rates due to faulty data 

storage, clock malfunction, false or un-marked contacts, and inconsistent data (Prange et al. 

2006, Hamede et al. 2009). Recent devices have been more successful, with error rates as low as 

3% (Marsh et al. 2010, Marsh et al. 2011). Data loss is harmful to the integrity of a contact 

network study, because contact networks are less reliable when a population is not saturated with 

proximity loggers (Prange et al. 2011). More specifically, the robustness of inference about the 
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structure and centrality of a contact network decreases as the number of tagged individuals (or 

logged contacts between individuals) decreases (Borgatti et al. 2006, Figure1.3).  

It is difficult to tag every individual in a target population due to financial constraints, 

rarity, trap-shyness, or underestimation of total population size, so it is essential that researchers 

collect viable data from as many devices as possible. Such instances of data loss can be remedied 

with the use of wireless sensor networks. Although this technology is not yet commercially 

available, several different devices have been developed and tested independently with varied 

success. One of the most extensively-tested devices is ZebraNet, a wildlife telemetry device 

using a delay-tolerant network structure, which was recently developed by electrical engineers at 

Princeton University, and deployed on Zebras in Kenya. Although there have been several 

successful deployments, the development team has experienced reduction in contact range due to 

environmental stochasticity and problems related to limited energy availability (Zhang et al. 

2004. Martonosi et al. 2006). Early experiences with our own DTN-based system, WildSense, 

have offered similar challenges including data loss due to malfunctioning devices, limited data 

storage due to energy constraints, and muddled contact data during data transfer (Davis et al. 

unpublished data). These are issues that need to be addressed before such a system will be 

available on the market. 

CONCLUSION 

 State-centric telemetry is rapidly increasing in popularity because it offers a unique 

insight into the reproductive, social, and feeding behaviors of wildlife at a fine scale. While using 

this technology offers clear advantages, scientists and managers must still be wary of several 

areas of concern. First, like any piece of electronics equipment, these telemetry devices are 

inherently subject to error. Ecologists need to be cautious of faulty or incomplete data. Some 
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applications rely on specific movements or environmental conditions, so ecologists should be 

sure to choose a device that is particularly suited to the species of interest, or to calibrate the 

device (particularly activity loggers and proximity loggers) when possible. Second, even the best 

technology cannot make up for poor study design. Because some of these devices are newer on 

the market, they may be subject to unpredictable data loss. Ecologists should take this into 

account when planning sample size and study location. Finally, the use of sophisticated 

technology is not our only option as scientists, and an ecologist can never fully understand or 

appreciate an ecosystem with quantitative data alone. We agree with Hebblewhite and Haydon 

(2010), who assert that a true ecologist does not divorce him or herself from the field.  

 The information required to elucidate an ecological process depends on the subject and 

breadth of a study. State-centric telemetry could (and should) be used in conjunction with a 

variety of ecological methods to gather needed information. For example, video footage of 

herbivory events could be linked with measures of plant abundance and diversity to obtain a 

clearer picture of how food choice affects community structure. Proximity loggers could be used 

alongside laboratory tests to determine how social connectivity is related to disease transfer 

within and between social groups. Furthermore, state-centric data represents a valuable 

accompaniment to ecological models and theory. These systems have a wide variety of uses, and 

they play an important role in elucidating ecological processes. 

Telemetry is continuously improving. Manufacturers are extending battery life and data 

storage, reducing the amount of data lost, and introducing novel functions. We believe that state-

centric technology such as biologgers, activity loggers, and proximity loggers will continue to 

improve in reliability and their breadth of applications, and will offer exceptional insight into 
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ecosystem processes, especially when used in conjunction with location-centric telemetry and 

other ecological methods.   
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Figure 1.1. Beringer et al. (2004) equipped a male white-tailed deer with an antler-mounted 

video system in order to observe fine-scale feeding, grooming, bedding, and reproductive 

behaviors. 
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Figure 1.2. Dopico et al. (2011) tested a delay tolerant network incorporating GPS and 

proximity-logging capabilities. They chose to use a hierarchical architecture in which data were 

transferred to base stations, and only primary nodes were responsible for acquiring GPS data.  
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Figure 1.3. Network structure from the Hawthorne Bank Wiring Room study (Rothlisberger and 

Dickson 1939) used as an example by Borgatti et al. 2006. The network exhibits a single link 

between two otherwise separate networks. This fragile network structure demonstrates the need 

for saturation of an entire population with proximity-logging devices, and the need to collect as 

much data from these devices as possible in order to avoid an false “break” in the network. 
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SUMMARY 

The construction of low-cost, advanced GPS telemetry systems for wildlife tracking is growing 

in popularity, especially systems that can communicate with each other to track contacts or 

transfer data. We tested the communication and data transfer capabilities of a low-cost, custom-

built GPS telemetry system with an on-board wireless sensor network (i.e. WildSense) using 
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people and captive bighorn sheep as an experimental model. We tested data transfer capabilities 

at several transmission strengths and with several types of obstruction. Under conditions of high 

transmission strength and low obstruction, a log logistic decay curve was the best model for data 

transfer success. This is consistent with data transfer patterns previously found under controlled 

conditions. Contrastingly, under conditions of low transmission strength and high obstruction, 

data transfer was less reliable, and was best represented by a linear model. Obstruction resulting 

from animal position adversely affected the communication abilities of our system, with bighorn 

sheep lowering baseline data transfer success to less than 50% at low transmission strengths. 

Obstruction also affected the optimum distance of data transfer for each transmission strength, 

but bighorn sheep had less of an impact than did humans. Obstruction adversely affected 

maximum distance of data transfer for each transmission strength, but bighorn sheep and humans 

did not differ in their effects. Wireless sensor node manufacturers recommend an ideal 

communications distance for each possible transmission strength, but we suggest that scientists 

fine-tune the communications systems of their in-house constructed GPS telemetry systems 

using human or preferably animal subjects in order to ensure proper communications in the field.  
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Remote tracking systems and telemetry represent important pieces of technology for observing 

wildlife populations and communities with minimal human interference. Global Positioning 

System (GPS)-based technology has emerged as a particularly useful way to observe wildlife 

because location data can be obtained over a 24-hour period, in all weather conditions, and with 

a level of accuracy usually within ± 10 m (Beyer and Haufler 1994, Rodgers et al. 1996, Cadahia 

et al. 2007, Hansen and Riggs 2008). GPS telemetry has rapidly improved during the last decade. 

Positional accuracy increased immensely with the dissolution of selective availability in May, 

2000 (Lawler 2000). Available functions have expanded to include activity-monitoring 

programs, and contact-monitoring capabilities (Coulombe et al. 2006, Prange et al. 2006). 

Unfortunately, commercially-produced GPS-tracking systems often cost thousands of dollars 

each, which can limit sample size, thereby compromising the ability of investigators to obtain 

reliable inferences (Girard et al. 2002). As a result of such limitations, low-cost systems 

produced in-house are becoming a favorable option (Clark et al. 2006). Manual assembly of 

GPS-tracking systems also allows for implementation of specific functions that are not yet 

available from commercial sources, such as data transfer components through use of wireless 

sensor networks (WSN). 

WSNs use a collection of wireless sensor nodes to create an interconnected system for 

data transfer that can ferry data from source to target using two or more transfer events (Yick et 

al. 2008). WSNs for application in wildlife tracking use delay-tolerant networking, which relies 

on mobile nodes that do not communicate continuously, but rely on several discrete incidences 

of data transfer (Zhao and Guibas 2004, Shah et al. 2010). The primary benefit of this technology 

is that it prevents data loss due to damaged or dysfunctional equipment. In commercially-

available communicating systems, contacts are logged but data is not transferred between collars. 
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Thus, if data from two or more collars are lost, entire contact networks can be broken. Wildlife 

tracking networks using a WSN prevent this loss because data can be recovered from another 

collar in the network. Communication between GPS units for tracking purposes via distributed 

WSNs is becoming a popular idea, and several of these mobile networks have already been 

implemented (Liu et al. 2004, Huang et al. 2005, Jiang et al. 2009).  

The sensor nodes adapted for wildlife tracking mobile networks use radio and GPS 

devices that are not crafted specifically for wildlife research. In conditions of low movement, 

data (packet) transfer decreases in an erratic, but generally sigmoid fashion with increasing 

distance (Anastasi et al. 2007). This pattern holds true at lower transmission strengths, with the 

maximum transmission distance decreasing with transmission strength (Klingbeil and Wark 

2008). When movement and physical obstruction are added as sources of stochasticity, as would 

be the case with wildlife applications, these patterns of packet loss can change substantially 

(Woo and Culler 2003, Ekici et al. 2006). As such, the mobile network should be adjusted to take 

into account obstruction caused by the body mass of a subject wild animal. 

 Due to fiscal constraints or the lack of animal subjects for testing, researchers 

constructing a network of GPS tracking units might opt to test their data transfer system using 

human subjects, or with an object mimicking the shape of the animal of interest (such as a 

hunting target). In terms of data transfer success, communications distance, and noise, such tests 

may not result in equivalent measurements to what would actually occur when the collar is 

placed on the animal. On the other hand, testing a WSN on a human subject before use in the 

field may still be a better option than not testing the system’s communications abilities at all. 

Previous research on sensor networks used for monitoring human subjects have found 

detrimental levels of data loss due to bodily obstruction (Zasowski et al. 2003); however a 
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comparison of the varying effects of obstruction source on WSN data transfer systems with 

respect to wildlife telemetry has not yet been rigorously tested. This information is important, 

because it affects the quality of data obtained by researchers in the field. Maximizing the amount 

of data transfer and the quality of data obtained is necessary in order to paint a clearer picture of 

interactions between individuals and populations. We believe the results of this experiment will 

serve as an example for the testing of other in-house mobile networks. 

The purpose of our study was to examine the success rate of data (packet) transfer when 

communication attempts were made between two sensor nodes in a WSN constructed 

specifically for wildlife tracking (i.e WildSense). We used maximum likelihood estimation and 

model averaging to model packet transfer versus distance for 5 different radio frequency (RF) 

transmission strengths. In order to determine how physical obstruction might affect the pattern of 

packet transfer, we also examined 3 separate obstruction treatments: unobstructed, human 

obstructed and bighorn sheep obstructed. We used these models to determine the maximum 

possible packet transfer, optimum transfer distance (distance of 90% data transfer), and 

maximum transfer distance (distance of 10% data transfer) for each of the 5 transmission 

strength and 3 obstruction treatments. These values were examined in order to determine if there 

were individual or interactive effects of treatment groups on the estimated parameters.  

We hypothesized that the data for packet transfer success rate versus distance would 

follow a sigmoid pattern, which would be best represented by a 3-parameter log logistic model 

due to the proportional nature of the data. We predicted that a decrease in transmission strength 

would negatively impact optimum transfer distance and maximum transfer distance, but would 

not affect the maximum packet transfer success rate. We expected that obstruction, from either 

human or sheep, would significantly decrease the maximum packet transfer success rate, 
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optimum transfer distance, and maximum transfer distance of packet transfer. We also 

hypothesized that, due to their greater mass and unpredictable movement, the sheep would result 

in greater depreciation of these three variables than humans.  

STUDY AREA 

We performed unobstructed and human obstructed trials at the University of Colorado 

Department of Electrical, Computer, and Energy Engineering in Boulder, Colorado, USA. We 

ran these tests outside in an academic quadrangle (40° 0’N, 105° 15’W) with little canopy cover. 

We performed sheep body-block trials at the Colorado Division of Wildlife’s Foothills Wildlife 

Research Facility (FWRF) in Fort Collins, Colorado, USA (40° 35’N, 105° 10’W). This facility 

is located on open, slightly rolling pasture, approximately 7 km west of the city of Fort Collins. 

There is little overhead interference due to canopy cover. 

METHODS 

Equipment 

We assembled the prototype WildSense GPS devices used in this experiment from a MICAz 

MRP2400 2.4 GHz radio board and MTS420 sensor node. A MIB520mote interface board was 

the base station (Crossbow® Technology Inc., Milpitas, CA, USA).  Sensor nodes measure 

approximately 6 x 3.5 x 2 cm, including two AA batteries. We used MOTE-VIEW client 

software to acquire communications data and MOTE-CONFIG client software to program RF 

transmission strengths into our sensor nodes. Our wireless sensor devices came with 8 pre-set RF 

power setting options. We chose to test 5 of these transmission strengths to estimate 

communication distances that would be most helpful for wildlife managers: -25 dBm, -15 dBm, -

10 dBm, -5 dBm, and 0 dBm.  
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We used 2 sensor nodes for this experiment (node 11 and node 13), and 1 base station 

(base 2). Our base station was connected via USB port to a Dell™ laptop computer running 

MOTE-VIEW, which saved a running count of packets transferred.  We tested sensor nodes in a 

protective casing consisting of a weatherproof polycarbonate electronics enclosure measuring 

approximately 11 x 8 x 6 cm. We lined the interior of the enclosure with foam padding to 

prevent damage to the sensor nodes due to shaking and bumping. The enclosure was attached to 

a prototype collar made from two sheets of leather strapping sewn together. The collar could be 

adjusted to fit the sheeps’ necks via 2 rows of holes punched along the length of the strapping. 

Collars were fastened with a double-bolt closure. The complete product weighed approximately 

0.450 kg. 

Data Collection 

For each of the 5 different power levels, we tested 3 different obstruction types: unobstructed, 

human obstructed and bighorn sheep obstructed. We performed unobstructed and human 

obstructed trials at the University of Colorado Department of Electrical, Computer, and Energy 

Engineering on 23 July 2010 from 1000 to 1500 MST and 30 July 2010 from 1000 to 1500 MST. 

For testing without obstruction, we placed the base station and laptop computer on a stool. This 

represented the receiving station. We then set the two sensor nodes within their protective 

enclosures on a separate stool at a set distance from the receiving station. We set both nodes to 

the same transmission strength, and we made sure to leave enough space in between nodes to 

prevent interference. We turned on each sensor node and allowed both nodes to transfer 

approximately 300 packets, after which we switched off the node, stored the data as a *.csv file, 

and moved the nodes to the next distance. We performed trials at 4-6 different distances for each 

transmission strength (-25 dBm: 1 m, 1.5 m, 2 m, 2.5 m, 3 m, 4 m; -15 dBm: 10 m, 15 m, 20 m, 
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25 m; -10 dBm: 9 m, 18 m, 24 m, 30 m; -5 dBm: 9 m, 18 m, 24 m, 30 m, 39 m, 41 m; 0 dBm: 9 

m, 18 m, 27 m, 36 m, 45 m).  

For testing with human obstruction, we set up the receiving station as described above. 

Instead of placing the sensor nodes on a stool, we created a physical barrier by holding the sensor 

nodes to our necks. This was meant to imitate the positioning of the enclosure on a wildlife 

tracking collar. We staggered our positions at different distances to help prevent double 

obstruction. We turned on each sensor node, and allowed both nodes to transfer approximately 

300 packets, after which we switched off the node, stored the data as a *.csv file, and repeated 

the packet transfer at different distances. Similarly to the unobstructed trials, we tested 4-6 

different distances for each transmission strength (-25 dBm: 1 m, 1.5 m, 2 m, 2.5 m, 3 m, 4 m; -

15 dBm: 1.5 m, 3 m, 3.5 m, 4 m; -10 dBm: 1.5 m, 3 m, 6 m, 9 m; -5 dBm: 3 m, 4.5 m, 7.5 m, 9 

m; 0 dBm: 6 m, 9 m, 10.5 m, 12 m, 13.5 m, 15 m). 

We performed obstruction trials with tame bighorn sheep at the Colorado Division of 

Wildlife’s Foothills Wildlife Research Facility on 6 August  2010 and 13 August 2010 from 800 

to 1000 MST. We attached the enclosures to the sheep with a collar similar to one that might be 

used in a field study with free-range bighorn sheep. We tethered sheep at set distances facing 

away from the receiving station, allowing the nodes to transfer approximately 200 packets before 

moving the sheep to a different distance. We minimized the amount of time sheep had to sit still, 

and did not switch the nodes on and off between separate distance trials in order to prevent stress 

from handling. We used two sheep at a time, each with a node set to a different transmission 

setting, in order to minimize handling time. We tested 4-5 distances for each transmission 

strength (-25 dBm: 1.5 m, 3 m, 4.5 m, 6 m; -15 dBm: 3 m, 4.5 m, 6 m, 9 m, 12 m; -10 dBm: 1.5 

m, 3 m, 4.5 m, 6 m; -5 dBm: 6 m, 12 m, 18 m, 24 m; 0 dBm: 7.5 m , 15 m, 22.5 m, 27.5 m, 30 
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m). All testing using live animals was approved by Colorado Division of Wildlife ACUC 

protocol #04-2010. 

To ensure that there were no functional differences between our two sensor nodes, we ran 

a one-way analysis of variance (ANOVA) to test whether the packet transfer success rate 

differed between the two nodes and an analysis of covariance (ANCOVA) with distance as a 

covariate. We ran a separate one-way ANOVA to examine packet transfer success rate through 

time (up to 7 data splits with split 1 representing the earliest time period) in order to determine if 

the sensor nodes had a “warm up” period after being switched on. These analyses were 

performed using SAS version 9.2 (SAS Institute, Inc., Cary, NC, USA).  

Model Selection and Parameter Optimization 

We compared five candidate models as a framework for examining the relationship between 

distance and transmission strength. Three of these models are commonly-used, sigmoid growth 

functions that exhibit a wide range of flexibility. 

The Gompertz function is a sigmoid function with the formula: 

  ƒ(x) = ������
         (1) 

 Where a represents the upper asymptote (maximum packet transfer success rate), b 

determines displacement along the x axis (location of maximum signal deterioration), and c 

represents the growth rate (rate of signal deterioration). 

 The generalized logistic function, or Richards function, is an asymmetric sigmoid 

function similar to the Gompertz equation, except it introduces a fourth parameter for curve 

lopsidedness: 

  ƒ(x) = 
�

�	
���
�������/�       (2) 
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 In this equation, A represents the maximum packet transfer success rate, B represents the 

rate of signal deterioration, M represents the location of maximum signal deterioration, and Q 

represents curve lopsidedness. By adding this fourth parameter, the model goes beyond the 

assumption that the amount of signal deterioration is linear with distance.  

 The log logistic function is characterized by the equation: 

  ƒ(x) = 
���

��
 ��         (3) 

It is a form of the simple logistic equation in which the random variable (in this case, 

packet transfer success rate) must be non-negative. As such, it is useful for evaluating proportion 

data. K represents the maximum packet transfer success rate, α represents the scale of the curve 

along the x axis, and β represents the shape parameter of the curve. 

 We also chose to examine the reliability of two simpler, parametric equations in 

predicting the distribution of the data.  

 A linear model: 

  ƒ(x) = ��
 �	�         (4) 

Where γ0 represents the maximum packet transfer success rate and γ1 represents the rate 

of signal deterioration. 

A parabolic model: 

ƒ(x) = �� �  �	� �  ����       (5) 

Where γ0 represents the maximum packet transfer success rate, γ1 determines the location 

of maximum signal deterioration, and γ2 determines the rate of signal deterioration. 

Choosing the appropriate model for each of the 15 treatment groups was important for 

increasing our understanding of how data are transferred within our particular network, and for 

estimating correct values for three network quality parameters: maximum possible data transfer, 
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optimum distance of data transfer, and maximum distance of data transfer. We performed 

maximum likelihood estimation and model selection in R version 2.10.1 (R development core 

team, 2006) to optimize parameters and determine the best fit candidate model for each of our 15 

treatment groups. Likelihood is the probability of observing the data conditional on the values of 

the model parameters. For our maximum likelihood estimation process, we chose to use the sum 

of negative log likelihoods, where models with more negative log likelihood values exhibit 

greater lack of fit. We obtained the sum of log likelihoods using a normally distributed maximum 

likelihood estimator. The results obtained using this type of estimator were comparable to those 

obtained using a lognormal likelihood estimator, so we found no reason to use a distribution 

other than the normal. 

We ran a maximum likelihood analysis for each of the 5 models using data organized as 

the proportion of successful packet transfers out of the number of attempted packet transfers. 

Proportion values were calculated for splits of 50 packets each. We used Akaike’s Information 

Criterion (AIC) to determine the best fit model for each of the 15 treatment groups based on the 

maximized likelihood values (Akaike 1973). We used a second order derivative, AICc, with a 

bias correction term for small sample size (Burnham and Anderson 2002). The model with the 

lowest AICc value was the best fit model out of our set of 5 candidate models.  

We used model averaging (Burnham and Anderson 2002) to find the maximum possible 

packet transfer, optimum transfer distance, and maximum transfer distance for each treatment 

group. We organized data into 3 randomized testing sets containing approximately 75% of the 

data for each treatment group. We ran each testing set through the model selection process as 

described above. From AICc values of each of the 5 models, we derived the ∆AIC, which we 

used to derive the Akaike weight. We then found the weighted average of the parameter 
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estimates. The end result was three estimates of the model averaged parameters for each of the 

15 treatment groups.  

Evaluating Treatment Effects 

 To determine how transmission strength and obstruction affected maximum possible 

packet transfer, optimum transfer distance, and maximum transfer distance, we ran a two-way 

ANOVA in SAS. We tested transmission strength and obstruction as individual factors. We also 

examined a transmission-by-obstruction interaction model in order to determine if the effects of 

obstruction varied with transmission strength.  

RESULTS 

The two sensor nodes did not differ in their ability to transfer packets, even when taking into 

account distance as a covariate (F1,402 = 2.07, P = 0.1508; F3,400 = 0.37, P = 0.5426). We did find 

a “warm up” effect, with packet transfer success increasing through time (F6,397 = 5.75, P< 

0.0001, Table 2.1).  This pattern of increasing packet transfer success through time did not differ 

between nodes (F13,390 = 0.30, P = 0.9376). 

 When taking into account all data points and all 15 interactive treatment groups, the log 

logistic model was the best fit candidate model for 8/15 treatment groups, the linear model best 

represented 6/15 treatment groups, and the parabolic model best represented 1/15 treatment 

groups (Table 2.2). The Gompertz model and Richards function were not the best-fit models for 

any of the treatment groups. For obstruction treatments averaged over transmission strength, the 

log logistic model was the best fit candidate model for the unobstructed treatment group, while 

the linear model best represented the human and sheep obstructed treatment groups (Figure2.1). 

Both transmission strength and obstruction affected maximum possible packet transfer. 

Transmission strength had an effect on maximum possible packet transfer, with transmission  
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strengths -15 and -25 dBm being lower than transmission strengths 0 and -5, but neither 

treatment group within each pair differing from one another (F14,30 = 11.44, P< 0.0001, means ± 

SE: 0 dBm, 84.18 ± 2.69 %; -5 dBm, 85.33 ± 2.69 %; -10 dBm, 62.89 ± 2.69 %; -15 dBm, 75.26 

± 2.69 %; -25 dBm, 73.94 ± 2.69 %). Transmission strength -10 had the lowest possible packet 

transfer success out of all other transmission strengths. Obstruction also affected maximum 

possible packet transfer (F14,30 = 103.25, P < 0.0001, means ± SE: unobstructed, 97.16 ± 2.08 %; 

human obstructed, 76.93 ± 2.08 %; sheep obstructed 54.88 ± 2.08 %). Unobstructed treatments 

had a maximum success rate of roughly 100%. Treatments with human obstruction were lower, 

followed by sheep obstruction. There was an interaction effect such that obstruction affected 

maximum possible packet transfer differently at different transmission strengths (F14,30 = 14.09, 

P< 0.0001; Figure2.2).  

Optimum transfer distance generally decreased with transmission strength, except from 0 

to -5 dBm, where it increased (F14,30 = 254.16, P< 0.0001,  means ± SE: 0 dBm, 11.79 ± 0.39 m; 

-5 dBm, 19.11 ± 0.39 m; -10 dBm, 13.02 ± 0.39 m; -15 dBm, 9.01 ± 0.39 m; -25 dBm, 2.16 ± 

0.39 m). Unobstructed treatments had the highest optimum transfer distance, followed by 

treatments with sheep obstruction and human obstruction (F14,30 = 1692.08, P< 0.0001,  means ± 

SE: unobstructed, 24.96 ± 0.30 m; human obstructed, 1.54 ± 0.30 m; sheep obstructed 6.56 ± 

0.30 m). There was an interaction effect in that obstruction affected optimum transfer distance 

differently at different transmission strengths (F14,30 = 116.16, P< 0.0001; Figure2.3). 

Maximum transfer distance decreased steadily with transmission strength (F14,30 = 364.18, 

P< 0.0001, means ± SE: 0 dBm, 37.12 ± 0.65 m; -5 dBm, 24.28 ± 0.65 m; -10 dBm, 20.94 ± 0.65 

m; -15 dBm, 11.40 ± 0.65 m; -25 dBm, 5.03 ± 0.65 m). There was an obstruction effect such that 

both human and sheep obstruction lowered the maximum transfer distance, but the  
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human and sheep obstructed groups did not differ from one another (F14,30 = 544.66, P< 0.0001, 

means ± SE: unobstructed, 33.26 ± 0.50 m; human obstructed, 12.72 ± 0.50 m; sheep obstructed 

13.28 ± 0.50 m; P = 0.4293). There was an interaction effect such that without obstruction, the 

amount of decrease in maximum transfer distance with decreasing transmission strength was 

greater than with obstruction (F14,30 = 42.44, P< 0.0001; Figure2.4).  

DISCUSSION 

Our first goal in testing the communications system of WildSense was to determine if a general 

model could elucidate patterns of packet transfer success rate by distance under varying 

transmission strength and obstruction conditions. As predicted, the log logistic function best 

represented the sigmoid distribution of the data for the majority of treatment groups, especially 

unobstructed treatment groups. However, in sub-optimum conditions of physical obstruction, 

data exhibited greater variation (i.e. did not follow a clear sigmoid distribution), and a linear 

model offered a more appropriate fit. These results indicate that packet transfer is less 

predictable under sub-optimum conditions, such as those presented by an animal body.  

Both transmissions strength and obstruction had a substantial impact on the ability of 

WildSense to transfer data between nodes. Maximum possible packet transfer (as estimated by 

weighted averaging of model parameters) was almost 100% for all transmission strengths in 

situations of minimal physical obstruction. This is consistent with the expectation that WSNs be 

constructed to achieve 100% packet transfer success under optimum conditions (Lal et al. 2004). 

Human and sheep obstruction did not have the same effect on maximum possible packet transfer. 

Nodes that were obstructed by sheep body mass had consistently lower estimated maximum 

possible packet transfer than nodes that were obstructed by human body mass. Nodes that 

experienced human obstruction experienced a dip in packet transfer at -10 dBm, but then  
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returned to higher packet transfer success at -15 and -25 dBm. The reason for this dip in packet 

transfer is unclear, although this data set exhibited higher variance, which may have contributed 

to error in parameter estimation. For bighorn sheep, our results indicate that choosing a higher 

power level of 0 or -5 dBm would be optimal, as these power levels offer the greatest potential 

for packet transfer success. 

The estimated optimum distance of packet transfer, or the distance at which 90% packet 

transfer occurred, decreased with decreasing transmission strength, except from 0 to -5 dBm, 

where it increased significantly. This unexpected increase held true for both unobstructed and 

sheep obstructed treatment groups. We could find no explanation in the literature for why the 

optimum distance of packet transfer would be greater for a lower transmission strength, unless 

the answer lies in an unmeasured source of stochasticity such as wind or interference from other 

physical sources. Unobstructed treatment groups had the greatest optimum distance of packet 

transfer, followed by sheep and human obstructed groups. This is consistent with the available 

literature, which shows that physical blocking by biomass from plants and animals can cause 

unpredictable dampening of packet transfer success at shorter distances (Darr and Zhao 2008, Li 

et al. 2010).Even while restrained by a tether, the sheep still moved unpredictably, while our 

human subjects consistently stood still. Accidental pivoting of the sheep towards the receiving 

station would result in a less obstructed communication path, which could have contributed to 

the greater distance at which data could be reliably transferred.  

Estimated maximum distance of data transfer, or the distance at which 10% packet 

transfer occurred, decreased consistently with decreasing transmission strength across all 

obstruction treatment groups. This, along with the shortening of optimum distance of data 

transfer with decreasing transmission strength (described above), is consistent with findings 
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presented by Son et al. (2004). Unobstructed groups could transmit data the furthest, but human 

obstructed and sheep obstructed treatment groups did not differ from one another. These results 

indicate that, even when obstructed by the body of an animal, our mobile network still has the 

potential to transfer data at distances of 5-30 m.  

Choice of which transmission strength to use depends on the territory size of the 

population of interest and the scale of the study. In a closed environment, such as a paddock, a 

lower transmission strength might be appropriate, while in a large-scale study taking place across 

several square kilometers, a higher transmission strength might be necessary. The type of study 

also plays a clear role in tuning a WSN for wildlife tracking. Researchers who are interested in 

close contact (as for disease transfer) might choose to limit sensor node communication to a 

couple of meters, but researchers studying home range overlap might need to allow 

communication across much higher distances. What our testing clearly shows is that tuning a 

WSN to transfer data based on a manufacturer’s estimated communications distances could 

result in significant miscalculation of wireless data transfer capabilities, thereby compromising 

the integrity of a study. Wherever possible, scientists who are building their own WSN for use in 

a wildlife tracking setting should fine tune their devices, ideally with the subject animal of 

interest. If such an opportunity is unavailable, tests using human subjects may suffice, but are not 

guaranteed to yield the same calculated contact distances.  

Our research brings to light the importance of testing the functionality of a WSN before 

deployment in a field setting, but our results should not be extrapolated to other low-cost 

systems. Variance in equipment, such as the brand of the GPS and communications devices, the 

actual configuration and materials of the collar, battery power, link quality, and deployment 

environment will affect packet transfer in various ways (Fanimokun and Frolik 2003, Lal et al. 
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2004, Park et al. 2005). Researchers who plan to construct their own low-cost WSNs should take 

these differences into account when performing their own testing, and should choose a 

transmission strength based on the needs of their research interests. To date, a fully functional, 

long-term GPS tracking system that incorporates a data transfer network has not been 

successfully deployed, but we believe a system such as WildSense is the next logical step in the 

advancement of wildlife telemetry.  

MANAGEMENT IMPLICATIONS 

In-house construction of low-cost telemetry systems is now common, despite the advancement of 

GPS technology into more sophisticated realms. The results of our study should serve as an 

example for scientists who plan to construct their own mobile networks for use in a wildlife 

tracking scenario. The effects of physical obstruction on the functioning of our sensor nodes 

clearly altered the effectiveness of data transfer. This demonstrates the importance of fine-tuning 

equipment, preferably using animal subjects if it is an available option.  
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Figure 2.1. A comparison of data distribution between two treatment groups. The top data set is 

from a high-strength treatment group with no physical interference, and is best represented by 

the log logistic model. The bottom data set is from a lower-strength treatment group with 

obstruction, and is best represented by a linear model. 
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Figure 2.2. Transmission strength-by-obstruction interaction effect for mean maximum possible 

% packet transfer. Error bars represent one standard error. 

  



 

Figure 2.3. Transmission strength

of data transfer. Error bars represent one standard error.
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trength-by-obstruction interaction effect for mean optimum distance 

of data transfer. Error bars represent one standard error. 

obstruction interaction effect for mean optimum distance 



 

Figure 2.4. Transmission strength

of data transfer. Error bars represent one standard error
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Transmission strength-by-obstruction interaction effect for mean maximum distance 

of data transfer. Error bars represent one standard error. 

obstruction interaction effect for mean maximum distance 
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Table 2.1. Least squares means and standard errors of packet transfer success rates through time, 

where split 1 represents the earliest set of 50 attempted packet transfers and split 7 represents the 

latest. 

Split LS Mean Standard Error 

1 59.63 3.46 

2 64.19 3.67 

3 70.05 3.88 

4 79.04 4.34 

5 86.50 4.78 

6 81.00 8.61 

7 100.00 13.01 
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Table 2.2. Number of data points (n), best candidate model, number of free parameters (K), 

model variance (Var), log likelihood (LL), and AIC values (AICc), for all 15 treatment groups. 

Treatment n Model K Var LL AICc 

0 dBm Unobstructed 58 Parametric 3 12.89 230.56 467.56 

0 dBm Human 22 Linear 2 17.34 93.98 192.98 

0 dBm Sheep 13 Linear 2 15.04 53.69 112.58 

-5 dBm Unobstructed 65 Log Logistic 3 8.99 234.99 476.38 

-5 dBm Human 16 Linear 2 21.80 72.01 148.95 

-5 dBm Sheep 10 Log Logistic 3 13.23 40.01 90.03 

-10 dBm Unobstructed 44 Log Logistic 3 1.55 81.67 169.95 

-10 dBm Human 10 Log Logistic 3 17.47 42.80 95.59 

-10 dBm Sheep 12 Linear 2 21.59 53.89 113.12 

-15 dBm Unobstructed 30 Log Logistic 3 3.63 81.26 169.44 

-15 dBm Human 8 Linear 2 15.60 33.33 73.06 

-15 dBm Sheep 14 Log Logistic 3 3.86 38.79 85.98 

-25 dBm Unobstructed 89 Log Logistic 3 9.98 330.99 668.27 

-25 dBm Human 8 Log Logistic 3 12.22 27.46 68.91 

-25 dBm Sheep 6 Linear 2 9.37 18.28 46.56 
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SUMMARY 

Telemetry has become a fundamentally important tool for studying animal movements. 

Traditional telemetry systems have provided time-specific information on locations of 

individuals; however, recent deployments in instruments allow for the tracking of networks of 

interactions among individuals, providing some insight into who is contacting whom and when. 

Currently, these devices rely on very high frequency (VHF) radio technology, and cannot 
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precisely gauge where contacts occurred and how far apart they occurred within the pre-set 

contact threshold. The high rate of data loss from contact-logging devices, and even traditional 

telemetry devices that are lost or damaged in the field, poses another obstacle to monitoring 

wildlife social networks. We have developed a prototype contact-logging GPS collar that offers 

greater spatial resolution of contact data, and reduces probability of data loss. In this study, we 

used captive bighorn sheep (Ovis canadensis) to test the GPS capabilities, contact rates, and 

contact distance error of our prototype collars. The GPS fix success rate of our collars was 

greater than 95%. The  collars were communicating with each other about 98% of the time, and 

communication was reciprocated 9% of the time because the animals were observed in small 

paddocks. Contact distance error was 9.5 m, which is what would be expected taking into 

account a baseline GPS spatial error of ±5 m in open environment. The high GPS fix success, 

low GPS error, and ability to log accurate contacts with low contact distance error by our 

prototype collars suggest that the implementation of GPS with contact-logging technology has 

the potential to improve upon currently-available contact network data.  
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Wildlife telemetry has become the tool of choice for monitoring the spatial and temporal 

locations of individuals in their environment. Technology based on global positioning systems 

(GPS) is particularly popular because data are obtained non-invasively and provide a continuous 

record of locations at all times of day and in all weather conditions (Beyer and Haufler 1994, 

Rodgers et al. 1996, Cadahia et al. 2007). Since the dissolution of selective availability in May, 

2000, the positional accuracy of GPS telemetry systems has also improved (Lawler 2000). 

Individuals can now be tracked with a positional accuracy generally within ± 10 m depending on 

environment (D’Eon et al. 2002, Hansen and Riggs 2008). These attributes make GPS devices 

particularly sought-after, despite the expensive per-unit costs of utilizing such technology.  

 Although GPS can be easily used to elucidate individual movements through landscapes, 

using raw GPS data (i.e. latitude, longitude, and GMT date/time) to observe interactions among 

individuals is more difficult. Kjær et al. (2007) plotted GPS points using ArcView 3.2 and used a 

joint utilization distribution and compositional analysis to estimate contact rates of white-tailed 

deer in different land-cover types. Similarly, Schauber et al. (2007) estimated direct and indirect 

contact rates among white-tailed deer using pairwise measures of proximity. These methods 

yield valuable insight, but they depend on complicated mathematics, recently updated remote 

sensing data, a designated overlap zone that is subject to the positional accuracy of GPS data, 

and GPS data that are temporally in-sync between individuals. This dependence limits their 

utility. 

 Commercial manufacturers have recently developed proximity data loggers that can 

record contacts between individuals. These data loggers use a pulse-controlled ultra high 

frequency (UHF) transmitter with a specific pulse rate to transmit a communications beacon. 

When two loggers come within a user-defined detection distance, each logger records the date, 
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time, and duration of the contact. These devices are valuable tools for determining which 

individuals are contacting each other, but they cannot log the locations of all contacts because 

they rely on very high frequency (VHF) rather than GPS technology (Ji et al. 2005, Prange et al. 

2006, Hamede et al. 2009). Researchers can only verify location data of those contacts that are 

triangulated in the field.  

 To date, there is little data in the scientific literature on the success rate, contact error, and 

contact distance accuracy of these commercially available devices. Ji et al. (2005) put proximity 

loggers on possums, and were able to retrieve data off of 66% of their loggers. As would be 

expected, some of these data were confounded by damage, limited battery life, or memory 

constraints. Hamede et al. (2009) were able to recover complete data sets from 27 out of 46 

devices when they used proximity loggers on Tasmanian devils, with much of the lost data 

occurring due to damage and memory constraints. Due to the elusive nature of the species of 

interest, neither study could visually verify contact error (whether or not contacts were actually 

occurring). Prange et al. (2006) ran extensive laboratory and field tests using raccoons, and 

found that their commercial collars recorded accurate contacts and contact durations, but logged 

false or “phantom” contacts in group-contact situations. These studies demonstrate that currently 

available technology can obtain contact data at a high temporal resolution, but stands to benefit 

from improved spatial resolution. Adding location data using GPS technology would be 

particularly useful, because it would allow researchers to determine the environment in which the 

contact occurred, and would enable a more accurate estimation of contact distance. Elevated 

rates of data loss (>30%) also suggest the need for improved data retrieval capabilities. 

 To address the need for increased spatial resolution and hardier data storage in contact-

logging telemetry, we propose the use of next-generation GPS technology with the integration of 
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a delay-tolerant network (DTN). DTNs are a type of wireless sensor network that rely on a 

“store-and-forward” message transfer system. Data are ferried between individual “nodes”, 

which eliminates the need for constant connectivity (Fall 2003, Shah and Kosta 2010). This type 

of data transfer is ideal for wildlife telemetry, because contact between individuals may happen 

intermittently and asymmetrically, and field conditions are often too harsh to support 

continuously-connected wireless internet. Incorporating a DTN with currently-available GPS 

technology will improve wildlife telemetry in several ways. 1) Data can be ferried to a set 

destination such as a base station or “listening” node. 2) Data redundancy in the on-board storage 

systems allows researchers to retrieve data from a lost or damaged node off of a node that is still 

intact. 3) Networks of data transfer can be analyzed in conjunction with single contact logs to 

elucidate contact networks.  

We have developed a prototype wildlife telemetry collar (called “WildSense”) that 

incorporates DTN-based technology, GPS, and contact-logging capabilities, which we intend to 

use in the field. Each collar is comprised of a GPS chip, which is connected to a wireless sensor 

node. The sensor node can act as either a communicating (sending) or recipient (receiving) 

device in the data transfer process (Fig. 3.1). We expect that our experiences with this prototype 

will demonstrate how such next-generation technology can elucidate contact networks for vital 

applications in disease transfer, territory overlap, competition, and predation events. As such, it 

is crucial that our system can accurately portray contact distances between two individuals, and 

maintain levels of data redundancy that allow researchers to obtain at least some of the data 

logged by lost or damaged collars.  

The purpose of this study was to test the GPS functioning, data transfer capabilities, and 

contact error of our prototype WildSense GPS devices in a simulated field setting. To 



59 

 

accomplish this, we ran several trials using captive bighorn sheep in an enclosed pen. We 

analyzed the means and standard errors for each measure of functionality, and compared these 

values between different power levels and duty cycles. We expected that the GPS fix success rate 

of our collars would be high (greater than 95%) given the open environment in which we tested, 

and the results of past experimentation. We also expected that unintentional data duplication 

from repeated satellite fixes would be low (less than 5%) based on how we initially thought the 

GPS devices were programmed to communicate with the satellites. For communication 

capabilities, we expected that the sheep would be in contact most of the time due to the social 

nature of the bighorn sheep and the communications range of the devices as compared to the size 

of the pen. We predicted that the higher power nodes would communicate more often than the 

lower power nodes due to their broader communications range. Finally, we predicted that contact 

distance error would be a function of both spatial and temporal imprecision, but would ideally be 

less than ± 10 m. 

STUDY AREA 

We performed simulated field testing at the Colorado Division of Wildlife’s Foothills Wildlife 

Research Facility (FWRF) in Fort Collins, Colorado, USA (40° 35’N, 105° 10’W). This facility 

is located on open, slightly rolling pasture, approximately 7 km west of the city of Fort Collins. 

There is little overhead interference due to canopy cover. 

METHODS 

Equipment 

We assembled the prototype WildSense GPS devices used in this experiment from a MICAz 

MRP2400 2.4 GHz radio board and MTS420 sensor node (Crossbow® Technology Inc., 

Milpitas, CA, USA).  Sensor nodes measure approximately 6 x 3.5 x 2 cm, including two AA 
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batteries. We used MOTE-VIEWclient software (Crossbow® Technology Inc., Milpitas, CA, 

USA)to acquire communications data and MOTE-CONFIG client software to program RF 

transmission strengths into our sensor nodes.  

We tested sensor nodes in a protective casing consisting of a weatherproof polycarbonate 

electronics enclosure measuring approximately 11 x 8 x 6 cm. We lined the interior of the 

enclosure with foam padding to prevent damage to the sensor nodes due to shaking and bumping. 

We attached the enclosure to a prototype collar made from two sheets of leather strapping sewn 

together. The collar could be adjusted to fit the sheeps’ necks via 2 rows of holes punched along 

the length of the strapping. Collars were fastened with a double-bolt closure. The complete 

product weighed approximately 0.450 kg. 

Data Collection 

We put GPS devices on 4 separate captive bighorn sheep to test collar functioning. The study 

area was a 25 x 75 m pen at the FWRF, in which we marked a 5 m grid system using bright 

orange spray paint. We mounted Panasonic® SDR-H85 video camcorders on the north and south 

ends of the pen in order to visually record contacts. Sheep were allowed to roam freely within the 

pen, and did not leave the study area during the course of the experiment. 

We performed three study trials: a 1-day trial, a 2-day trial, and a 4-day trial. The first 

day of each trial began at 800 MST, and the last day of each trial ended at 1600 MST.  For the 1-

day trial, we used a 30 minute writing interval, during which 10 minutes were spent 

communicating with the GPS satellites and transferring data (awake), and the other 20 minutes 

were devoted to transferring data only (sleep). For the 2-day and 4-day trials, we used a 1 hour 

writing interval in which 10 minutes were spent awake and the other 50 minutes were spent in 
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the sleep cycle. While in awake mode, nodes made GPS fix attempts roughly once a minute, and 

sent out communications beacons roughly once every two seconds.  

During each trial, we set two devices to a (high) power level of 0 dBm, and the other two 

were set to a (medium) power level of -5 dBm. Our choice of power level was based on previous 

testing, which showed that the -5 dBm power level was optimum for use in a wildlife setting 

(Davis et al., unpublished data). Preliminary models of communications distance by power level 

under conditions of bodily obstruction found a maximum communications distance of roughly 30 

m for the 0 dBm power level and 15 m for the -5 dBm power level, so these were the 

communications distances we expected to see during all trials. 

We did not enable multi-hop data transfer capabilities for this experiment, opting to focus 

only on single-hop data transfer. This means that data were only transferred from the 

communicating node to the recipient node (a single data transfer event) rather than across all 

available nodes over the course of the experiment (multiple data transfer events). Each collar 

recorded the communicating node ID, the recipient node ID, the contact “count,” the time and 

date of the contact, the latitude, and the longitude of the individual wearing the device. For visual 

observations, we took roughly four hours of video footage per day during each trial. These 

occurred either in the morning (roughly 800 MST to 1200 MST) or the afternoon (roughly 1200 

MST to 1600 MST).  

Statistical Analysis 

We used GPS fix success rate and duplicated data points from unintentional, simultaneous GPS 

fixes as a measure of GPS functioning. We calculated the GPS fix success rate as the percentage 

of GPS logs with successful satellite fixes out of the total number of data points. We calculated 

the percentage of duplicated data points as the number of duplicated GPS logs (identical date, 
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time, and location) out of the total number of GPS logs. We calculated the means and standard 

deviations averaged over the entire experiment. We also ran a logistic regression model to test 

whether there were differences in GPS functioning between trials or power levels. 

 To test the contact marking and data transfer capabilities, we measured the average 

percentage of time in contact, the average percentage of reciprocated data transfer, the distance 

of reciprocated versus non-reciprocated data transfer, and the contact error. The percentage of 

time in contact was calculated as the number of contact logs with a valid recipient node ID out of 

the total number of contact logs. We defined an instance of reciprocated data transfer as a contact 

log for which the recipient node ID and communicating node ID were identical on both collars. 

Reciprocal data transfer events were necessary to determine an accurate contact distance. For 

each contact log, we calculated the distance between the communicating and recipient node 

using the Haversine formula: 

� � �� � !∆#$%
� & � cos�*�+	� , cos�*�+�� , �� � !∆#-./

� &    (1) 

0 � 2 , �20+� ��√�, 5�1 7 ���       (2) 

8 � 9 , 0          (3) 

We used these distances to analyze the difference between reciprocated and non-reciprocated 

data transfer. We calculated the means and standard deviations of these variables averaged over 

the entire experiment, and ran a logistic regression model to test whether there were differences 

in percent time in contact or percent reciprocated data transfer between trials or power levels. We 

used a one-way ANOVA with Tukey’s HSD post-hoc analysis to test whether distance of 

reciprocated data transfer and non-reciprocated data transfer differed between trials or power 

levels. 
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Finally, we used these distance calculations to estimate contact error, or the difference 

between a GPS-logged distance and a visually-observed distance. After sorting contacts, we 

randomly selected 200 reciprocal contacts that occurred within the timespan for which we had 

video footage. We ran a paired Student’s t-test to determine whether the observed distances 

between individuals differed from GPS-recorded distances between individuals. All statistical 

analyses were performed using R version 2.10.1 (R development core team, 2006). 

RESULTS 

The mean GPS fix success rate over all trials and power levels was 95.46 ± 10.25%. Fix success 

differed between trials (X2= 1726.1, df=2, P<0.001; Fig. 3.2), with 2 and 4-day trials having 

greater fix success than the 1-day trial (P<0.01). Fix success also differed between power levels 

(X2=1365.9, df=1, P<0.001; Fig. 3.2), with the 0 dBm power level having lower fix success than 

the -5 dBm power level. 

 The mean percentage of unintentionally duplicated data was 98.03 ± 2.03%. Duplicated 

data differed between trials (X2= 58.2, df=2, P<0.001), with the 4-day trial having more 

duplicates than the 1-day trial (P<0.01). Duplicated data transfer also differed between power 

levels (X2=45.7, df=1, P<0.001). Nodes set to 0 dBm had slightly less data duplication than 

nodes set to -5 dBm. These differences were biologically meaningless, since data duplication 

was unacceptably high in all trials and for all power levels. 

 Overall, the average percentage of time individuals were in contact with at least one other 

individual was 98.05 ± 2.46%. This contact rate differed between trials (X2= 24.5, df=2, 

P<0.001, means ± SE: 1-day, 98.7 ± 2.3%; 2-day, 98.5 ± 0.6%; 4-day, 97.1 ± 3.8%), with the 

sheep making less contact during the 4-day trial than the 1-day trial (P<0.01). Time in contact 

also differed between communicating node power levels (X2= 24.5, df=2, P<0.001, means ± SE: 



64 

 

0 dBm, 97.5 ± 3.0% ; -5 dBm, 98.8 ± 1.7%). Recipient node power level had an effect on how 

likely a node was to be contacted, but this effect differed between trials. During the 1-day trial, 

the higher power 0 dBm nodes were less likely to be contacted (X2= 897.2, df=1, P<0.001; Fig. 

3.3); however, during the 2-day and 4-day trials, the higher power 0 dBm nodes were more likely 

to be contacted (X2= 714.2, df=1, P<0.001; X2= 317.1, df=1, P<0.001; Fig. 3.3).  

 The mean percentage of reciprocated communication was 9.20 ± 9.07%. Reciprocated 

communication differed between trials (X2= 549.8, df=2, P<0.001; Fig. 3.4), with reciprocal 

contacts occurring less frequently during the 2-day trial (P<0.01), but power level did not have 

an effect on the amount of reciprocal contacts. Reciprocated communication occurred at an 

average distance of 8.42 ± 14.01 m, with higher power nodes generally having a greater distance 

of reciprocated communication (F1,1118=53.573, P<0.001; means ± SE: 0 dBm, 11.8 ± 18.8 m; -5 

dBm, 5.75 ±7.43 m). The distance between reciprocal contacts did not differ from the distance 

between non-reciprocal contacts. 

 On average, visual contact distances differed 5.10 ± 13.74 m from GPS-recorded contact 

distances, or 9.44 ± 11.16 m when absolute differences were taken into account (Fig. 3.5). While 

this value is significantly different from 0 (t = 2.922, df = 61, P = 0.005), our expected contact 

error of ±5 m was well within the calculated confidence intervals (95% CI: 1.61, 8.59). 

DISCUSSION 

The basic functioning of our GPS devices met or exceeded requirements for use in the field. The 

GPS fix success rate for our collars was over 95%, which is comparable to commercially 

available systems under conditions of minimal habitat complexity (Frair et al. 2004, Hansen and 

Riggs 2008). We found a slightly decreased fix success for the 1-day trial and the 0 dBm power 

level, but this was due to an outlier node that had less than 60% communications success with 
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the satellites. We were able to remedy this with reprogramming, and had no further issues with 

this node during later trials.  

 Duplicated data was over 98%, but we were expecting data duplication levels of less than 

5%. Data duplication statistically differed between trials and power levels, but these differences 

were not substantial enough to improve the functioning of the collars. After further investigation, 

we found that the GPS nodes had been programmed to make four communications attempts for 

each GPS data point, so most GPS points were quadrupled. This programming error has been 

remedied for ongoing studies, and it will be necessary to reanalyze data duplication with further 

testing. 

 The contact logging and data transfer capabilities of our collars also met the standards we 

set according to the functionality of proximity-logging devices that are already on the market. 

For all trials, bighorn sheep were in contact with each other almost 100% of the time. Bighorn 

sheep exhibit herding behavior, especially among family groups (Geist 1971, Festa-Bianchet 

1991), and the potential contact area of the nodes covered much of the 25m x 75m pen. The 

furthest distance that -5 dBm nodes have been observed to communicate under conditions of 

animal obstruction is roughly 15 m (Davis et al. unpublished data). This 30 m diameter accounts 

for almost half of the study area (707 m2 out of 1875 m2), so even if our captive bighorn sheep 

were moving randomly within the pen, we would expect nodes to be in contact with at least one 

other node for the majority of the time. Likewise, the broader communications range of the 0 

dBm nodes as compared to the -5 dBm nodes most likely explains why the higher power nodes 

were contacted more frequently on the 2 and 4-day trials (Klingbeil and Wark 2008). 

Because the bighorn sheep were in contact with at least one other individual for the 

majority of the trial time, we had ample data to analyze the accuracy of GPS-logged contact 
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distances, but we could not effectively analyze contact error per se due to lack of un-logged, 

“true” contacts. In order to determine where, when, and how far apart contacts occurred within 

the study area, we needed to evaluate reciprocal contacts, as these were the only logged contacts 

for which the GPS data of both communicating nodes were available. Given that we deployed 4 

nodes, node A had a 1/3 probability of contacting node B at any given time (P(A)=0.33) and vice 

versa (P(B)=0.33). If we assume that each node was always in contact with one other node, then 

the probability that both node A was contacting node B and node B was contacting node A is 

P(A and B) = P(A)*P(B), or 0.11. The expected 11% reciprocal communication rate is well 

within the confidence intervals of our 9.2% reciprocal communication rate.  

Reciprocal contact distances averaged about 8.5 m apart, but differed between power 

levels. Because the higher power levels have a broader communications range (Klingbeil and 

Wark 2008), reciprocal contacts between 0 dBm nodes averaged roughly 6 m greater distance 

than reciprocal contacts between -5 dBm nodes (11.8 vs. 5.75 m). Reciprocal contact distances 

did not differ from non-reciprocal contact distances, which suggests that contact “preference” 

between nodes is regulated by who requests to transfer data first, not who is closer in Euclidian 

distance. This is consistent with the use of a collision avoidance protocol in DTNs, which 

determines how nodes interact to avoid data collisions mid-transfer (Veres et al. 2001). When 

two nodes first come into contact in an idle network, one node sends a Request To Send (RTS) 

message, to which the receiving node will respond with a Clear To Send (CTS) response. If 

nodes A and B both send an RTS to node C at the same time, a data collision may occur. In this 

situation, nodes A and B use a random countdown timer to determine how long until the next 

RTS can be sent. If node A randomly selects a shorter countdown time, node A will be more 

likely to receive the CTS from node C. Therefore, communication between nodes is determined 
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by who can send the fastest RTS (i.e., who comes into contact range first), or who randomly 

selects the shorter countdown timer.  

After sorting and randomly selecting 200 reciprocal contacts, we were able to match GPS 

date and time to compare GPS-logged contacts to visually observed contacts for 62 time stamps. 

We calculated the difference between GPS and visually-observed contacts, and found a 9.44 m 

contact distance error. This is remarkably close to the baseline GPS location error (at least ± 5 m) 

that would be expected in an open environment (D’Eon et al. 2002, Cain et al. 2005). This 

suggests that, even with a time lapse of 30 seconds-1 minute between two collars’ GPS data, our 

contact distance error is contingent upon baseline GPS location error rather than other sources of 

uncertainty.  

Overall, the GPS component of our prototype is functioning at the same level as 

commercial systems, as has been illustrated by our high fix success rate and low contact distance 

error. These positive results, along with our devices’ consistent contact-logging capabilities, 

imply that WildSense will soon be ready to test in the field. Nevertheless, there are still some 

challenges that must be overcome before field deployment is feasible. In order to simplify our 

analysis of the contact error, we did not use the multihop data transfer (data ferrying) function in 

this study. We have yet to test these capabilities in a simulated field setting, and expect that the 

data redundancy offered by the multihop data transfer will add further complexity to the 

accuracy of the data and the data structure. Furthermore, in a field setting our GPS fix schedule 

will be much more intermittent, which may introduce temporal error into our measurements of 

contact distance. It still remains unclear how much data loss can actually be prevented when the 

multihop DTN function is turned on. More field testing needs to be completed before we can 

confidently claim that prototype devices such as ours represent a marked improvement over 
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currently available technology, but the results of this study indicate that we are headed in the 

right direction. 

Wildlife telemetry has made great strides in technological advancement in the last few 

decades. Our prototype WildSense collars have demonstrated that scientists now have the option 

to incorporate spatially-accurate GPS data into preexisting contact-logging devices, and that this 

technology may offer deeper insight into the spatial and temporal properties of wildlife contact 

networks. Furthermore, we expect that by adding DTN capabilities, we will be able to prevent 

the loss of valuable contact data. Contact-logging telemetry devices represent an important piece 

of the puzzle in deciphering population and community dynamics, and by adding GPS and DTN 

technology to currently-existing equipment, we surmise that scientists will be able to analyze 

wildlife contact networks with greater breadth and clarity. 

MANAGEMENT IMPLICATIONS 

Contact-logging telemetry devices are gaining popularity because they offer deeper insight into 

wildlife social networks. Although commercially-available devices can capture accurate 

snapshots of who is contacting whom and when, they cannot precisely gauge where these 

contacts occurred and how far apart they occurred within the pre-set contact threshold. 

Commercially available collars also seem to have a high rate of data loss – in some cases more 

than 33%. We have developed a prototype contact-logging GPS collar with DTN capabilities, 

which we believe offers greater spatial resolution of contact data, and may prevent data loss. The 

results of our preliminary testing show that our devices have high GPS fix success, low GPS 

error, and the capacity to log accurate contacts with low contact distance error. While there is 

still room for improvement, these results suggest that such next generation technology has great 

potential for improving upon currently available contact network data.   
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Figure 3.1. Network architecture of “WildSense”, including collars with GPS and wireless 

sensor nodes, base stations, and direct data upload. 

  



 

Figure 3.2. The nodes’ ability to communicate with GPS satellites differed between trials (left) 

and power levels (right). Bars represent standard errors.
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. The nodes’ ability to communicate with GPS satellites differed between trials (left) 

and power levels (right). Bars represent standard errors. 
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Figure 3.3. A node’s likelihood of being contacted depended on its power level setting, with 

high-power nodes being contacted more often. This was not the case during the 1-day trial, 

where lower-power nodes were contacted more often. Bars represent standard errors. 
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Figure 3.4. Percentage of reciprocal contacts by trial and power level. Reciprocal contacts 

occurred less frequently during the 2 day trial, but were not affected by power level. Bars 

represent standard errors. 
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Figure 3.5. Contact distance error is represented as the distance between GPS contact distance 

(closed circles) and observed or “true” contact distance (open circles). This figure demonstrates 

several types of contact error, including GPS malfunction (~50 m difference), GPS rounding 

error (~10 m difference), and observational error (~5 m difference). 
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GLOSSARY 

 

Activity Logger: A wildlife telemetry device uses an accelerometer to track the 2- or 3-
dimensional movements of individuals at a particular location. 

Biologger: A wildlife telemetry device used to gather information about an animal’s health and 
energy expenditure, and/or its environment. 

Base Station: A wireless node installed at a fixed location to collect data in the field. 

Communicating Node: The node requesting to send data in a reciprocally communicating pair. 

Contact Distance Error: The difference between the true contact distance and the GPS-logged 
contact distance of a communicating pair of nodes. 

Contact Error:Includes erroneously-logged contacts, or true contacts that are not picked up by the 
delay tolerant network. See also Contact Distance Error. 

Delay Tolerant Network:A wireless network that uses “store-and-forward” architecture to 
transfer data under conditions of interrupted connectivity. 

Fix Success Rate:The likelihood of obtaining a GPS fix with 3 or more satellites. 

General Positioning System (GPS):A satellite-based navigation system that provides location and 
time information. 

Maximum Distance of Data Transfer: The maximum distance that data can be transferred 
between two nodes for a given power level. See also Power Level. 

Maximum Possible Data Transfer: The maximum amount of data that can be transferred between 
two nodes, assuming some level of packet loss. See also Packet Loss. 

Multihop Data Transfer:Data transfer across multiple nodes to enable data redundancy, or to 
funnel data to a specific node or base station. 

Optimum Distance of Data Transfer:The furthest distance apart two nodes can communicate at a 
specific power level before more than 10% of packets are lost. See also Packet Loss, 
Power Level. 

Packet Loss: The amount of data (packets) lost during a data transfer event. 

Power Level:See Transmission Strength. 

Proximity Logger: A wildlife telemetry device used to monitor the frequency and duration of 
contacts between two or more individuals. 



78 

 

Recipient Node: The node receiving data in a reciprocally communicating pair. 

Reciprocal Contact: A contact in which two nodes are transferring data to each other at the same 
time. 

Sensor Node: A piece of a wireless sensor network used to gather information and communicate 
with other nodes in the network. 

State-Centric Telemetry: Wildlife telemetry that can be used to monitor physiological condition, 
to reveal social networks, and to observe fine-scale habitat choices. Includes biologgers, 
activity loggers, animal-mounted cameras, and proximity loggers. 

Telemetry:Technology that allows measurements to be made at a distance. 

Transmission Strength: The magnitude of the electric field generated by a wireless antenna.  

Wireless Sensor Network:A type of delay tolerant network that consists of communicating 
sensor nodes used to monitor physical or environmental conditions. 


