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ABSTRACT

EVALUATION OF A NOVEL WILDLIFE TELEMETRY DEVICE WITH DATA TRANSFER

CAPABILITIES

The construction of low-cost, advanced GPS telemetry systems for wildtifertg is
growing in popularity, especially systems that can communicate withotfaehto track contacts
and, more recently, transfer data. This novel function represents a step forwacdirfirent
technology because it allows researchers to retrieve data from dodiahate been damaged or
lost. It also elucidates broad networks of interactions between individuals to moseaseli
spread and social preference. | tested the communication and data tapafelities of a low-
cost, custom-built GPS telemetry collar with an on-board wireless sensarke performed
several trials using captive bighorn sheep to measure how data transbdityasampacted by
the bodily obstruction of an animal, and to determine the accuracy of logged corpeetent
the results of these trials, which show that data transfer is adversetgdffy the placement of
the collar around the sheeps’ necks, but that the contact accuracy remains unccedpfonas
refined, this technology could represent a significant improvement over cuagatlgble
telemetry devices, and may offer novel insight into previously unobserved ecblogica

phenomena.
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SUMMARY

Traditional, location-centric wildlife telemetry is useful for cotlag spatial and temporal

information on where animals spend their time. Recently, telemetry com@ardendependent

developers have introduced a wide variety of non-location-centric teledesfiges, including

biologgers, activity loggers, animal-mounted cameras, proximity loggers, Eydtdierant

data-relaying capabilities. We will refer to these devices as-stattric, because they allow

observations of the state of individuals and their interactions with the environment and othe

individuals. State-centric devices can be used apart from, or in conjunction witbrecatitric

telemetry to monitor physiological condition, to reveal social networks, and toveldsee-scale

habitat choices. Here we review these new state-centric technolyigieg,a brief explanation

of how each device functions, for what it is used, and how it has contributed to the field of

ecology. We discuss some sources of error in state-centric technology, gropsibée

improvements, and suggest future directions.



Wildlife telemetry is a rapidly-evolving field. Manufacturers frequeirityoduce devices with
new functions and improvements in data-collecting capabilities. Traditioraieély devices
were generally location-centric, allowing for observation of an animp#isad location at a
specific time. Location-centric technology has benefited wildlife bisteg@nd ecologists since
the first very high frequency (VHF) devices were developed in the 1950s and 60s (LeMtinya
al. 1959, Cochran and Lord 1963). The introduction of radio telemetry allowed reseaychers t
collect unprecedented amounts of data at a previously unattainable level abprécigas the
first time scientists could track the movements of individuals and populations ax@ossssible
tracts of land, locate feeding and breeding grounds, and determine home rthoge iwasive
behavioral observation or extrapolation from presence-absence data (Dunn and Gipson 1977,
Craighead 1982, Wanless et al. 1988, Thompson and Miller 1990).

The commercial introduction of GPS technology in 1991 improved positional accuracy
and eliminated several types of bias, especially after the dissolution diveete@ilability in
2000 (Rodgers et al. 1996, Lawler 2000). This technology allowed scientists to monitak anim
locations within at least £10m precision, at any time of day, without the need todakers
into the field (Rodgers et al. 1996, Beyer and Haufler 2004, Cadahia et al. 2007, Hansen and
Riggs 2008). Furthermore, combining GPS data with the Argos data collectionangyskem
(operated by the United States National Oceanic and Atmospheric Adntiorsarad the French
Centre National d’Etudes Spatiales) provided scientists with the opportunigt¢b amimal
locations to specific habitat types and topographical informatisiiu(Schwartz and Arthur
1999, Jay and Garner 2002).

Hebblewhite and Haydon (2010) point out that while such location-centric data can

elucidate broad-scale habitat choice and movement, it cannot easilydpokated to describe



an animal’s condition or its feeding and social behaviors at a specific pamieinTto do this,
researchers need fine-scale, qualitative data to accompany spatiahpndatenformation.
Telemetry companies and researchers have answered the call for suphidataducing a suite
of non-location-centric telemetry devices including biotelemetnyyicloggers, and proximity
loggers. These new technologies provide information about body condition, actreity; le
feeding behavior, and social networks. Because these devices focus on the indnddisal a
state, we will refer to this technology as state-centric. In this rewevbriefly describe these
devices, and explain how their use offers a unique insight into several recurringjeadol
themes.

ADVANCESIN STATE-CENTRIC TELEMETRY

State-centric telemetry has offered insight into the everyday behawvidractivities of a wide
variety of species. Previously, this information was gathered by direct otisenvethe wild,
observations on captive animals, or by remote camera traps. Now individuals ctedbitit
telemetry collars and/or tags, which can be deployed for months or evenayearsquire little
to no human interference post-deployment. Collecting fine-scale information orattie he
activity, and social interactions of wildlife is necessary for scientistietermine not just where
animals are spending their time, but why. State-centric telemetrysalesgarchers to gather
information on individual condition, where animals are most and least active, whar¢hey
choosing to eat, with whom they are competing, from whom they are fleeing, arelthéye are
coming into contact most or least often.

Monitoring Animal Condition

Knowledge of animal states originated with devices that could detect wiaethermal was

alive or was likely dead. The best example of this is the mortality loggeabladn most VHF



and GPS devices. Mortality loggers were originally designed such thatadtee would sense

the body temperature of an individual, allowing scientists to determine if aalaiatk of
movement was behavioral or if it was dead (Stoddart 1970). Currently-availablesdeahcon
movement to determine mortality (Steigers and Flinders 1980).Knowing thsioo&an

animal carcass allows researchers to collect tissue samples frdectased animal as soon as
possible, thus increasing the probability that the cause of death can be detéHouseknecht
1970).

Manufacturers expanded upon this idea by developing biotelemetry devices (or bl diggate
measured external temperature and pressure, body temperature, and hgabyatan et al.

1971, Weimerskirch et al. 1995, Woakes et al. 1995, Handrich et al. 1997). These devices can be
used to gather information about an animal’s health and energy expenditure, its environment
both (Fryer et al. 1966, Wilson et al. 2002, Brown-Brandl et al. 2003). For example, tenggeratur
sensitive radio transmitters have long been used to monitor phenomena such as thmgyshelte
behavior and resulting body temperature fluctuations of reptiles (Hueyl®88l), the

overwintering metabolic strategies of ungulates (Arnold et al. 2004), and thédnoplgrature

and foraging strategies of birds in response to ambient temperaturesyElggt al. 2003).
Biologgers have also been popular with aquatic ecologists, because they alloshersdar

gather information about an ecosystem that is otherwise difficult to obsérgas Especially

true for arctic birds and mammals. Some of the first pressure-sensitivgdeot were used to
observe the diving depths of seals (DeVries and Wohlschlag 1964) and penguins (Kebyma

al. 1971) as they moved beneath thick ice shelves.



Observing Animal Activities

A more recent development is the wildlife activity logger, which uses ateame®eter to track

the 2- or 3-dimensional movements of individuals at a particular location (Wilsdn2€106,

Shepard et al. 2008).These devices are particularly useful for monitoring miheaisaare most

and least active. They can also be used to signal for telemetry devices to*sletep anode,”

which saves battery life and storage space (Laerhoven et al. 2006). Activity loggyeexhibit

some error in determining the specific type of movement based upon the level of éativi

activity levels might be equal for feeding, running, or fighting), although réeenhology and

modeling techniques have demonstrated greater reliability (Scheabel 808, Naylor and Kie

2004, Shepard et al. 2008). On the other hand, animal-mounted cameras can accurately record

specific behaviors, but do not have a 360 degree view, and are also limited by lack of light,

memory space, and energy expenditure (Beringer et al. 2004, Zhihai et al. @0@8All 2009).
Despite some shortcomings, which we expand upon later, both of these technologies have

been especially helpful for elucidating previously unobserved behavioral phenomenras such

what time of day animals are most likely to forage, and how they manage theitiertmrggets

(Coulombe et al. 2006, Krone et al. 2009, Horn et al. 2011). Activity loggers are commonly used

to track the diving angle, buoyancy, and acceleration of deep-diving sea fedagahsight

into energy expenditure and prey capture strategies (Yoda et al. 1999, Watanuki et al. 2003)

Moe et al. (2007) used combination GPS and activity-logging technology to detehmiielt

behavior of bears, and to reveal which habitat types they preferred when foréefienn et al.

(2011) used activity loggers to determine how the activity levels of oryx aetlegehange

seasonally. These types of studies have also been performed using smadlelusioe species

such as reptiles and birds as animal subjects (Kerr et al. 2004, Phalan et al. 2087alKerr



2008). They represent an especially important tool for monitoring the activigynmtf species
in habitats with unpredictable climate, variable light-dark cycles, or high indpadio global
climate change.

Animal-mounted cameras allow researchers to take snapshots or video footageats ani
interacting with their habitat without invasive and biased observation. Most si@tteeh to the
animal such that they offer a unique look into what animals are seeing in the fiele{(slol
2007, Bluff and Rutz 2008). This is useful for determining exactly what an aninairig,eas
well as which predators and competitors an animal most frequently faces. Ahu2807)
used animal-borne imaging devices to monitor the foraging habits of grees, tilmiie offering
valuable insight into the risks of toxic cyanobacterium to aquatic animals. Beeingle (2004)
used a wireless video camera to determine the exact food choices of captivegieerl(1).

Not only were they able to detect some unexpected resources, but they were dtsoagiilae
mutual grooming, breeding, and bedding behavior that would go unobserved with traditional
telemetry equipment. Researchers can also use this technology to pinpoint he® ispeEct

with each other to capture prey. Takahashi et al. (2004) used animal-mounted aligéae

with built-in pressure sensors to log the aquatic social behavior of penguirnsddviees took

over 10,000 photographs, from which they were able to determine average swimmingzgoup s
and whether group size changed during foraging. Parrish et al. (2008) observed that aquati
predators such as sharks and snappers take advantage of the monk seal’s prefiilisiesg

thus elucidating a previously unobserved competitive interaction. This has broagieadol
applications, because for many species terrestrial behaviors have bestdved, but aquatic

behaviors remain a mystery.



Observing Animal Interactions
Some of the newest and most exciting technology focuses on monitoring wildide soc
networks. Proximity loggers allow researchers to monitor the frequency andwfacontacts
between two individuals using an ultra high frequency (UHF) radio signal alohgwi
traditional VHF signal. These devices log the identification code of eachdudl, the time of
the contact, and how long the two individuals were within contact range (Prang2C£i&)|
Contact information is valuable for exposing the reproductive and social behavioravd elus
species, finding possible pathways for disease spread, and tracking possiblerpesesits.

Proximity loggers have the potential to alter previous assertions about animahbl soc
groups. For example, Prange et al. (2011) used proximity loggers to detdrengoeial
structure of a suburban raccoon population, and found that social pairings were common, and
that the proportion of male-female social groups and male-male social growgosseasonally.
This contrasts with previous assertions that raccoons are a solitargritdrsppecies. Similarly,
Marsh et al. (2011) used proximity loggers to elucidate the social behaviors aiVexabbits.
They found high individual heterogeneity and weaker social bonds than would be expmeuted fr
previous observational and genetic data. This technology will soon be available tor aqua
applications. Guttridge et al. (2010) used sharks to test the functionality of ultrpsmximity
loggers. Although their prototype devices had a high failure rate (4/5 devicdatiash one
trial), the data they did retrieve were able to accurately log contacisgatheir cohort of sharks.
An improved version of these ultrasonic proximity loggers would provide valuable informat
about the group characteristics and social behaviors of aquatic animals.

Proximity loggers have also made recent contributions to the field of wildlife

epidemiology. Traditional telemetry has always been useful in deternthrertgyoad-scale



behaviors of potentially susceptible individuals. In recent years, statécdelgmetry has
supplemented this spatial-temporal information, and provided deeper insight into tldecdprea
disease across wildlife populations. Elucidating complex wildlife socialarks is crucial for
modeling pathways of disease spread. Proximity loggers have been usefudédy mionitoring
contacts between individuals that would otherwise be undetectable. For exampldettamle
(2009) used proximity loggers to determine the contact network structure in a jwopofat
Tasmanian devils. This information is vital, since Tasmanian devil facial tdisegise is a
widespread, deadly cancer that is spread via direct contact, particularty bitey found that,
unlike human social networks, the Tasmanian devil social network is not parti@adgrisgated,
although it does differ between mating and non-mating seasons. These data saggegeting
a particular age or sex class of Tasmanian devil for culling or quarardurid e a limited
strategy.

Proximity loggers have also offered insight into interspecific disgasad. Bohm et al.
(2009) collared badgers and cattle in order to find high-risk individuals for thenissnen of
bovine tuberculosis. They found that several badgers were coming into contacittigth c
leading researchers to conclude that direct inter-species contacts agerare as previously
thought. Meanwhile, Ji et al. (2005) offer a different theory for the indiretdnression of
bovine tuberculosis based upon the proximity-logged contact rates of possum populations.

Proximity loggers are useful in determining the habitat use and teroxenap of one or
more species. Joint habitat use, or the likelihood that two intra- or inter-spedificiuals are
occupying the same habitat, is one way to measure intraspecific irderactl possible
competition or predation events. Joint habitat use is beneficial for knowing hoWwgocips

vary environmentally, where competition is most likely to occur, and which hahitataost



likely to facilitate predation (Maitz and Dickman 2001, Kjeer et al. 2008, Valeix 20@9).
Previously, researchers would use mark-recapture techniques or combinentxbsipatial-
temporal telemetry data with remote sensing data to model the jointthedgitander varying
seasonal or environmental conditions (Schauber et al. 2007). Proximity loggers now monitor
when two or more tagged individuals come into contact without a significant temguprVihen
combined with traditional telemetry, this allows researchers to know whenteerd animals

are most likely to come into contact with one another, without having to extrapoéateocnint

for temporal staggering of data.

More sophisticated contact-logging technology combines proximity-loggoigmblogy
with the data-transfer capabilities of a delay-tolerant network (DTNDTA is a type of
intermittently connected network that is ideal for use in an ecologit¢aigsdtie to its
disruption-tolerant structure (Zhang 2006). Although state-centric t&lgthat incorporates this
technology is not yet commercially available, it has been tested inegyvafiscenarios,
including zebras (Juang et al. 2002) and reindeer (Dopico et al. 2011). We tested our own in-
house constructed system using captive bighorn sheep (Davis et al. 2012). This new tgchnolog
functions similarly to proximity loggers, but offers a more complete @atdue to its data-
forwarding capabilities (Figurel.2). Furthermore, data-transféesnadata collection in the
field and prevents data loss. In general, an accurate representation of aguopatial
network requires saturation with proximity-logging devices (Borgatti et al. 2086g€12006).
Since device failure and data loss are common technical problems (up to 33% of theMoe
log data in some cases), data sets can be compromised, even if the number oinitealiges
deployed does represent a statistically appropriate sample sizel (205 Prange et al. 2006).

The incorporation of delay-tolerant networks with data-transferring capegoremedies this



problem by transferring data from one device to another, eventually funndling iarget

device or base station (Martonosi 2006). This means that even if a device stops waidking mi
study, the “lost” data can still be recovered from another source. If theseslewgre to be
refined for commercial distribution, they would offer a clearer pictuteilofife social

networks, which would benefit wildlife epidemiology, and the field of ecology asodew
LIMITSIN TECHNOLOGY

As would be expected, there are several limitations and inherent errarsaghatcur with the
use of state-centric telemetry. Even if state-centric data are usacjumction with accurate
spatial-temporal information, an ecologist or manager may still need to ssaitmal,
experimental, or theoretic methods to understand the system of intereste Ites¢archer’s
responsibility to omit erroneous data points, recognize sources of bias, and andlyzeraret
data correctly. Furthermore, electronics are inherently error-prone,lantetey devices are no
exception. Each kind of device has its own limits to how much data can be collected, and how
much information can be gleaned from these data.

Activity loggers are able to accurately determine when animal®aveng or resting, but
they often cannot discern between specific movements (Robert et al. 2009). Adevetsyary
widely between (or even within) studies, but seem to have improved in reces)twitla some
studies able to correctly identify movements with up to 93% accuracy (Naylorie2d64,
Moreau et al. 2009, Heurich et al. 2011). This is most likely due to the calibration of
accelerometers using captive individuals. Despite improvements in boteracceder
technology and behavior models, scientists should supplement telemetry tdiahvaivioral
observation whenever possible, or at least incorporate error into their beharnayais to

account for the probability that specific behaviors will be incorrectiygmaized. This is not

10



always realistic, since researchers often do not have access to captinkiaislito calibrate
their devices. Another option is to attach an accelerometer to a specific bbdyipterest. For
instance, Naito et al. (2010) used mandible accelerometers to monitor the testhngr of
seals, although there was still some ambiguity in their data since they hakietagsamptions
about differences in movement between vocalization events and feeding events.

Another way to record behavior and resource selection is via animal-mounted ¢cameras
which face inherent limitation in storage space and view-range. While caofienaine-scale
insight into occurrences at specific locations, their lifespan does not matci shimaditional
telemetry device. Video cameras can last in the field up to 2 weeks, and digikahsaare
dependent upon the number of pictures that can be taken and the amount of time between photos
(Beringer et al. 2004, Takahashi et al. 2004). This means that devices either need to be re
deployed, or deployments need to be staggered throughout the field season to obtain an unbiased
data set. Events caught on camera are also dependent upon the view range of thé&aamer
imperfect detection has been demonstrated in camera traps and remoteljecbvitieo
surveillance equipment (MacNulty et al. 2008, Tobler et al. 2008).

Proximity loggers are some of the newest telemetry devices on the naadkeais such,
they have been prone to error. Earlier studies experienced high erratuatesfaulty data
storage, clock malfunction, false or un-marked contacts, and inconsistent datge(Er al.

2006, Hamede et al. 2009). Recent devices have been more successful, with srasrloateas
3% (Marsh et al. 2010, Marsh et al. 2011). Data loss is harmful to the integritpatagtc
network study, because contact networks are less reliable when a population tisratedsaith

proximity loggers (Prange et al. 2011). More specifically, the robustness @noéabout the

11



structure and centrality of a contact network decreases as the number dfitaggduals (or
logged contacts between individuals) decreases (Borgatti et al. 2006, Figurel.3).

It is difficult to tag every individual in a target population due to financial canstra
rarity, trap-shyness, or underestimation of total population size, so it igiak#®at researchers
collect viable data from as many devices as possible. Such instances ofdatal be remedied
with the use of wireless sensor networks. Although this technology is not yet caatiyerc
available, several different devices have been developed and tested indepevittertyied
success. One of the most extensively-tested devices is ZebraNaedlife valemetry device
using a delay-tolerant network structure, which was recently developedchycaleengineers at
Princeton University, and deployed on Zebras in Kenya. Although there have beah seve
successful deployments, the development team has experienced reduction in @ogéagte to
environmental stochasticity and problems related to limited energy avaiébiang et al.

2004. Martonosi et al. 2006). Early experiences with our own DTN-based system, WeldSens
have offered similar challenges including data loss due to malfunctioning ddvices] data
storage due to energy constraints, and muddled contact data during data travi$est(8l.
unpublished data). These are issues that need to be addressed before such a system will be
available on the market.

CONCLUSION

State-centric telemetry is rapidly increasing in popularity becawuders a unique
insight into the reproductive, social, and feeding behaviors of wildlife at a fahe $hile using
this technology offers clear advantages, scientists and managers rhostvgtity of several
areas of concern. First, like any piece of electronics equipment, thesettgldevices are

inherently subject to error. Ecologists need to be cautious of faulty or incerdplet Some

12



applications rely on specific movements or environmental conditions, so ecologistsisihoul
sure to choose a device that is particularly suited to the species of intetestaldrrate the
device (particularly activity loggers and proximity loggers) when possdeond, even the best
technology cannot make up for poor study design. Because some of these devieasamn
the market, they may be subject to unpredictable data loss. Ecologists shotihistake
account when planning sample size and study location. Finally, the use of sajgdistica
technology is not our only option as scientists, and an ecologist can never fullytamdiers
appreciate an ecosystem with quantitative data alone. We agree withwiatébnd Haydon
(2010), who assert that a true ecologist does not divorce him or herself fromdhe fie

The information required to elucidate an ecological process depends on the subject a
breadth of a study. State-centric telemetry could (and should) be used in conjunittian wi
variety of ecological methods to gather needed information. For example, videgefobta
herbivory events could be linked with measures of plant abundance and diversity to obtain a
clearer picture of how food choice affects community structure. Proximitgtegmuld be used
alongside laboratory tests to determine how social connectivity is retatiésease transfer
within and between social groups. Furthermore, state-centric data represahiable
accompaniment to ecological models and theory. These systems have a wige¥ages, and
they play an important role in elucidating ecological processes.

Telemetry is continuously improving. Manufacturers are extending baifeegnid data
storage, reducing the amount of data lost, and introducing novel functions. We belietagdhat s
centric technology such as biologgers, activity loggers, and proximity loggecentinue to

improve in reliability and their breadth of applications, and will offer exoaptiinsight into
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ecosystem processes, especially when used in conjunction with locatian-etnetry and

other ecological methods.

14



Figure 1.1. Beringer et al. (2004) equipped a male white-tailed deer with an antler-mounted
video system in order to observe fine-scale feeding, grooming, bedding, and repeoduct

behaviors.
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'_ _-_I Secondary Node
E_:ﬁ Primary Node
Base Station
Figure 1.2. Dopico et al. (2011) tested a delay tolerant network incorporating GPS and
proximity-logging capabilities. They chose to use a hierarchical aotbre in which data were

transferred to base stations, and only primary nodes were responsible for acgB&imugta.
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Figure 1.3. Network structure from the Hawthorne Bank Wiring Room study (Rothlisbarge
Dickson 1939) used as an example by Borgatti et al. 2006. The network exhibits &érdingle
between two otherwise separate networks. This fragile network structnomsieates the need
for saturation of an entire population with proximity-logging devices, and the needetct esl

much data from these devices as possible in order to avoid an false “break” in the network.
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SUMMARY

The construction of low-cost, advanced GPS telemetry systems for wildkfertg is growing
in popularity, especially systems that can communicate with each otih@ckaontacts or
transfer data. We tested the communication and data transfer capabiktiesveost, custom-

built GPS telemetry system with an on-board wireless sensor network (d&ense) using
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people and captive bighorn sheep as an experimental model. We tested datacapabfkties
at several transmission strengths and with several types of obstructiom.codndiions of high
transmission strength and low obstruction, a log logistic decay curve was ttineodes for data
transfer success. This is consistent with data transfer patterns prg¥oousl under controlled
conditions. Contrastingly, under conditions of low transmission strength and high obstruction,
data transfer was less reliable, and was best represented by a linearGbsttektion resulting
from animal position adversely affected the communication abilities of ounsysigh bighorn
sheep lowering baseline data transfer success to less than 50% at lowssianssirengths.
Obstruction also affected the optimum distance of data transfer for eachisisina strength,
but bighorn sheep had less of an impact than did humans. Obstruction adversely affected
maximum distance of data transfer for each transmission strength, but bigeepnasid humans
did not differ in their effects. Wireless sensor node manufacturers recommendlan ide
communications distance for each possible transmission strength, but we suggestithiats
fine-tune the communications systems of their in-house constructed GP&titglsystems

using human or preferably animal subjects in order to ensure proper communiceatiengeld.
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Remote tracking systems and telemetry represent important piecelsrafltgyy for observing
wildlife populations and communities with minimal human interference. Global taad
System (GPS)-based technology has emerged as a particularly usetol @bserve wildlife
because location data can be obtained over a 24-hour period, in all weather conditionts, and w
a level of accuracy usually within £ 10 m (Beyer and Haufler 1994, Rodgersl888l Cadahia
et al. 2007, Hansen and Riggs 2008). GPS telemetry has rapidly improved duringdbedéds.
Positional accuracy increased immensely with the dissolution of selagaiability in May,
2000 (Lawler 2000). Available functions have expanded to include activity-monitoring
programs, and contact-monitoring capabilities (Coulombe et al. 2006, Prange et al. 2006)
Unfortunately, commercially-produced GPS-tracking systems oftenrmastdands of dollars
each, which can limit sample size, thereby compromising the ability of igatss to obtain
reliable inferences (Girard et al. 2002). As a result of such limitations,detsgstems
produced in-house are becoming a favorable option (Clark et al. 2006). Manual assembly of
GPS-tracking systems also allows for implementation of specific imscthat are not yet
available from commercial sources, such as data transfer components throofjviusless
sensor networks (WSN).

WSNs use a collection of wireless sensor nodes to create an interconndetadeys
data transfer that can ferry data from source to target using two or mafetravents (Yick et
al. 2008). WSNs for application in wildlife tracking use delay-tolerant netwarlwhgeh relies
on mobile nodes that do not communicate continuously, but rely on several discrete incidences
of data transfer (Zhao and Guibas 2004, Shah et al. 2010). The primary benefit of this tgchnolog
is that it prevents data loss due to damaged or dysfunctional equipment. In contynercial

available communicating systems, contacts are logged but data is not teahisétween collars.
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Thus, if data from two or more collars are lost, entire contact networks can be braokiife W
tracking networks using a WSN prevent this loss because data can be kémraranother
collar in the network. Communication between GPS units for tracking purposes viautkstri
WSNs is becoming a popular idea, and several of these mobile networks have already bee
implemented (Liu et al. 2004, Huang et al. 2005, Jiang et al. 2009).

The sensor nodes adapted for wildlife tracking mobile networks use radio and GPS
devices that are not crafted specifically for wildlife research. In dondibf low movement,
data (packet) transfer decreases in an erratic, but generally signiomhfasth increasing
distance (Anastasi et al. 2007). This pattern holds true at lower transmissiayilst, with the
maximum transmission distance decreasing with transmission strerigigb@l and Wark
2008). When movement and physical obstruction are added as sources of stochastioiild as
be the case with wildlife applications, these patterns of packet loss can chistgatsally
(Woo and Culler 2003, Ekici et al. 2006). As such, the mobile network should be adjusted to take
into account obstruction caused by the body mass of a subject wild animal.

Due to fiscal constraints or the lack of animal subjects for testing, cbsesr
constructing a network of GPS tracking units might opt to test their data trapsfiem using
human subjects, or with an object mimicking the shape of the animal of interesagsaich
hunting target). In terms of data transfer success, communications éjstadmoise, such tests
may not result in equivalent measurements to what would actually occur when déinéscoll
placed on the animal. On the other hand, testing a WSN on a human subject before use in the
field may still be a better option than not testing the system’s commuamsatbilities at all.
Previous research on sensor networks used for monitoring human subjects have found

detrimental levels of data loss due to bodily obstruction (Zasowski et al. 2003); h@vever
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comparison of the varying effects of obstruction source on WSN data transfensysth
respect to wildlife telemetry has not yet been rigorously tested. Thignation is important,
because it affects the quality of data obtained by researchers in théfi@alimizing the amount
of data transfer and the quality of data obtained is necessary in order to peareamicture of
interactions between individuals and populations. We believe the results of thisnexpeavill
serve as an example for the testing of other in-house mobile networks.

The purpose of our study was to examine the success rate of data (packet)whesf
communication attempts were made between two sensor nodes in a WSN constructed
specifically for wildlife tracking (i.e WildSense). We used maximikelihood estimation and
model averaging to model packet transfer versus distance for 5 differentreagiency (RF)
transmission strengths. In order to determine how physical obstruction mightlaéeattern of
packet transfer, we also examined 3 separate obstruction treatments: urexhstuogn
obstructed and bighorn sheep obstructed. We used these models to determine the maximum
possible packet transfer, optimum transfer distance (distance of 90% dédtx)ransl
maximum transfer distance (distance of 10% data transfer) for etioh Btransmission
strength and 3 obstruction treatments. These values were examined in ordemtindat there
were individual or interactive effects of treatment groups on the estipatacheters.

We hypothesized that the data for packet transfer success rate versus aistadc
follow a sigmoid pattern, which would be best represented by a 3-parametayikig Imodel
due to the proportional nature of the data. We predicted that a decrease in transstrssgth
would negatively impact optimum transfer distance and maximum transf@anckstbut would
not affect the maximum packet transfer success rate. We expected thattms from either

human or sheep, would significantly decrease the maximum packet transfes satees
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optimum transfer distance, and maximum transfer distance of packet transt@sd/Ne
hypothesized that, due to their greater mass and unpredictable movement, the sheegsutould r
in greater depreciation of these three variables than humans.

STUDY AREA

We performed unobstructed and human obstructed trials at the University of Colorado
Department of Electrical, Computer, and Energy Engineering in Boulder, ColoradoVWSA
ran these tests outside in an academic quadrandgl@’'¥4,01L05 15’'W) with little canopy cover.
We performed sheep body-block trials at the Colorado Division of Wildlife's Fooihiildlife
Research Facility (FWRF) in Fort Collins, Colorado, USA°@®N, 105 10°'W). This facility

is located on open, slightly rolling pasture, approximately 7 km west of thefdtyrt Collins.
There is little overhead interference due to canopy cover.

METHODS

Equipment

We assembled the prototype WildSense GPS devices used in this experiment fiGAza M
MRP2400 2.4 GHz radio board and MTS420 sensor node. A MIB520mote interface board was
the base station (Crossbow® Technology Inc., Milpitas, CA, USA). Sensor nodeséneas
approximately 6 x 3.5 x 2 cm, including two AA batteries. We used MOTE-VIEW client
software to acquire communications data and MOTE-CONFIG client softovaregram RF
transmission strengths into our sensor nodes. Our wireless sensor devieegttaBpre-set RF
power setting options. We chose to test 5 of these transmission strengthmateesti
communication distances that would be most helpful for wildlife managers: -25 dBmBm, -

10 dBm, -5 dBm, and 0 dBm.
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We used 2 sensor nodes for this experiment (node 11 and node 13), and 1 base station
(base 2). Our base station was connected via USB port to a Dell™ laptop computer running
MOTE-VIEW, which saved a running count of packets transferred. We tested sensanreodes
protective casing consisting of a weatherproof polycarbonate electroniosweraneasuring
approximately 11 x 8 x 6 cm. We lined the interior of the enclosure with foam padding
prevent damage to the sensor nodes due to shaking and bumping. The enclosure was attached to
a prototype collar made from two sheets of leather strapping sewn togétheolEr could be
adjusted to fit the sheeps’ necks via 2 rows of holes punched along the length of thegstrappin
Collars were fastened with a double-bolt closure. The complete product wepgiredimately
0.450 kg.
Data Collection
For each of the 5 different power levels, we tested 3 different obstructia typebstructed,
human obstructed and bighorn sheep obstructed. We performed unobstructed and human
obstructed trials at the University of Colorado Department of ElectricalpG@m and Energy
Engineering on 23 July 2010 from 1000 to 1500 MST and 30 July 2010 from 1000 to 1500 MST.
For testing without obstruction, we placed the base station and laptop computer on a stool. This
represented the receiving station. We then set the two sensor nodes within theivgrotect
enclosures on a separate stool at a set distance from the receivorg ®¥&tiset both nodes to
the same transmission strength, and we made sure to leave enough spacemrmte® to
prevent interference. We turned on each sensor node and allowed both nodes to transfer
approximately 300 packets, after which we switched off the node, stored the datasv file,
and moved the nodes to the next distance. We performed trials at 4-6 different distaeaeb

transmission strength (-25dBm: 1 m, 1.5m, 2 m, 2.5 m, 3 m, 4 m; -15 dBm: 10 m, 15 m, 20 m,
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25m;-10dBm:9m, 18 m, 24 m, 30 m; -5dBm: 9m, 18 m, 24 m, 30 m, 39 m, 41 m; 0 dBm: 9
m, 18 m, 27 m, 36 m, 45 m).

For testing with human obstruction, we set up the receiving station as deéstde.
Instead of placing the sensor nodes on a stool, we created a physical barridirgythel sensor
nodes to our necks. This was meant to imitate the positioning of the enclosure on a wildlif
tracking collar. We staggered our positions at different distances to help prevent double
obstruction. We turned on each sensor node, and allowed both nodes to transfer approximately
300 packets, after which we switched off the node, stored the data as a *.csv file, atetirepe
the packet transfer at different distances. Similarly to the unobstruetisd we tested 4-6
different distances for each transmission strength (-25 dBm: 1 m, 1.5m, 2 m, 2.5 m, 3m, 4 m;
15dBm:1.5m,3m,3.5m,4m;-10dBm:1.5m,3m,6m,9m;-5dBm:3m,4.5m,7.5m, 9
m; 0 dBm: 6 m, 9 m, 10.5m, 12 m, 13.5 m, 15 m).

We performed obstruction trials with tame bighorn sheep at the Colorado Division of
Wildlife’s Foothills Wildlife Research Facility on 6 August 2010 and 13 August 2@t0 &0
to 1000 MST. We attached the enclosures to the sheep with a collar similar to onglhdtemi
used in a field study with free-range bighorn sheep. We tethered sheep at se¢slifstaing
away from the receiving station, allowing the nodes to transfer approkyraate packets before
moving the sheep to a different distance. We minimized the amount of time sheep hatilito sit
and did not switch the nodes on and off between separate distance trials in order to fpesgent s
from handling. We used two sheep at a time, each with a node set to a differentsgamsmi
setting, in order to minimize handling time. We tested 4-5 distances for aasmission
strength (-25dBm: 1.5m,3 m,45m, 6 m; -15dBm:3 m,45m,6 m,9m, 12 m; -10 dBm: 1.5

m3m,45m,6m;-5dBm:6m, 12m, 18 m, 24 m; 0 dBm: 7.5m, 15 m, 22.5m, 27.5 m, 30
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m). All testing using live animals was approved by Colorado Division of WildIG&&
protocol #04-2010.

To ensure that there were no functional differences between our two sensor nodes, we ran
a one-way analysis of variance (ANOVA) to test whether the packet trauskeess rate
differed between the two nodes and an analysis of covariance (ANCOMAdlisiance as a
covariate. We ran a separate one-way ANOVA to examine packet transfessuate through
time (up to 7 data splits with split 1 representing the earliest time period) mtomietermine if
the sensor nodes had a “warm up” period after being switched on. These analgses wer
performed using SAS version 9.2 (SAS Institute, Inc., Cary, NC, USA).
Model Selection and Parameter Optimization
We compared five candidate models as a framework for examining the relgtibaskeen
distance and transmission strength. Three of these models are commonlygnseid, growth
functions that exhibit a wide range of flexibility.

The Gompertz function is a sigmoid function with the formula:

f6) = ae”” 1)

Wherea represents the upper asymptote (maximum packet transfer success rate),
determines displacement along the x axis (location of maximum signal cetienprandc
represents the growth rate (rate of signal deterioration).

The generalized logistic function, or Richards function, is an asymmetrioisigm
function similar to the Gompertz equation, except it introduces a fourth paranretenfe

lopsidedness:

_ A
f(X) - (1+Qe_B(x_M))1/Q (2)
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In this equationA represents the maximum packet transfer succes8regpresents the
rate of signal deterioratiol represents the location of maximum signal deteriorationQand
represents curve lopsidedness. By adding this fourth parameter, the model goelstbey
assumption that the amount of signal deterioration is linear with distance.

The log logistic function is characterized by the equation:

KxB
aB+ xB

f6) = 3)

It is a form of the simple logistic equation in which the random variable (indbes c
packet transfer success rate) must be non-negative. As such, it is usetalldi@ating proportion
data.K represents the maximum packet transfer success.nagresents the scale of the curve
along the x axis, an@lrepresents the shape parameter of the curve.

We also chose to examine the reliability of two simpler, parametricieqsat
predicting the distribution of the data.

A linear model:

f®) =Yos ¥1X (4)

Wherey, represents the maximum packet transfer success raje r@ptdesents the rate
of signal deterioration.

A parabolic model:

fF)=vo + vix + yox° )

Wherey, represents the maximum packet transfer succesgrdttermines the location
of maximum signal deterioration, apgldetermines the rate of signal deterioration.

Choosing the appropriate model for each of the 15 treatment groups was important for

increasing our understanding of how data are transferred within our partiethaork, and for

estimating correct values for three network quality parametersmmaxipossible data transfer,
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optimum distance of data transfer, and maximum distance of data transfenfuvepe

maximum likelihood estimation and model selection in R version 2.10.1 (R development core
team, 2006) to optimize parameters and determine the best fit candidate medehfof our 15
treatment groups. Likelihood is the probability of observing the data conditiona¢ aalues of
the model parameters. For our maximum likelihood estimation process, we choséhte sism

of negative log likelihoods, where models with more negative log likelihood vathéste

greater lack of fit. We obtained the sum of log likelihoods using a normally distlilbogximum
likelihood estimator. The results obtained using this type of estimatorcaemgarable to those
obtained using a lognormal likelihood estimator, so we found no reason to use a distribution
other than the normal.

We ran a maximum likelihood analysis for each of the 5 models using data organized as
the proportion of successful packet transfers out of the number of attempted packetsra
Proportion values were calculated for splits of 50 packets each. We used Akaikeaisalidn
Criterion (AIC) to determine the best fit model for each of the 15 treatment doaspd on the
maximized likelihood values (Akaike 1973). We used a second order derivative witiCa
bias correction term for small sample size (Burnham and Anderson 2002). The modeéwith t
lowest AIC; value was the best fit model out of our set of 5 candidate models.

We used model averaging (Burnham and Anderson 2002) to find the maximum possible
packet transfer, optimum transfer distance, and maximum transfer distapeetidreatment
group. We organized data into 3 randomized testing sets containing approximatelytig% of
data for each treatment group. We ran each testing set through the modelsptecess as
described above. From A{@alues of each of the 5 models, we derivedMA&C, which we

used to derive the Akaike weight. We then found the weighted average of the parameter
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estimates. The end result was three estimates of the model averageet@aréor each of the
15 treatment groups.
Evaluating Treatment Effects

To determine how transmission strength and obstruction affected maximum possible
packet transfer, optimum transfer distance, and maximum transfer distan@a & two-way
ANOVA in SAS. We tested transmission strength and obstruction as individuakfasteralso
examined a transmission-by-obstruction interaction model in order to detefmmeeffects of
obstruction varied with transmission strength.

RESULTS

The two sensor nodes did not differ in their ability to transfer packets, even akiem into
account distance as a covariategz= 2.07,P = 0.1508; k 400= 0.37,P = 0.5426). We did find
a “warm up” effect, with packet transfer success increasing through Egy;= 5.75,P<
0.0001, Table 2.1). This pattern of increasing packet transfer success throughl thoedififer
between nodes (k390= 0.30,P = 0.9376).

When taking into account all data points and all 15 interactive treatment groujog) the |
logistic model was the best fit candidate model for 8/15 treatment groups, therioedelrbest
represented 6/15 treatment groups, and the parabolic model best represented i treat
groups (Table 2.2). The Gompertz model and Richards function were not the best-fi faodel
any of the treatment groups. For obstruction treatments averaged overssamsstrength, the
log logistic model was the best fit candidate model for the unobstructed tneafroep, while
the linear model best represented the human and sheep obstructed treatment guae@s1(fi

Both transmission strength and obstruction affected maximum possible packirtra

Transmission strength had an effect on maximum possible packet transferamsthigision
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strengths -15 and -25 dBm being lower than transmission strengths 0 and -5, but neither
treatment group within each pair differing from one anothegysE 11.44,P< 0.0001, means *
SE: 0 dBm, 84.18 + 2.69 %; -5 dBm, 85.33 + 2.69 %; -10 dBm, 62.89 + 2.69 %; -15 dBm, 75.26
+ 2.69 %; -25 dBm, 73.94 £ 2.69 %). Transmission strength -10 had the lowest possible packet
transfer success out of all other transmission strengths. Obstructioffet$éedamaximum
possible packet transfer;¢gzo= 103.25P < 0.0001, means + SE: unobstructed, 97.16 + 2.08 %;
human obstructed, 76.93 £ 2.08 %; sheep obstructed 54.88 + 2.QBébstructed treatments
had a maximum success rate of roughly 100%. Treatments with human obstructicowweere |
followed by sheep obstruction. There was an interaction effect such that obstaffgcted
maximum possible packet transfer differently at different transomsgrengths (& z0= 14.09,
P< 0.0001; Figure2.2).

Optimum transfer distance generally decreased with transmission Bfrexcgpt from O
to -5 dBm, where it increased; o= 254.16,P< 0.0001, means + SE: 0 dBm, 11.79 + 0.39 m;
-5dBm, 19.11 + 0.39 m; -10 dBm, 13.02 = 0.39 m; -15 dBm, 9.01 £ 0.39 m; -25 dBm, 2.16 +
0.39 m). Unobstructed treatments had the highest optimum transfer distance, followed by
treatments with sheep obstruction and human obstructigg,eF1692.08 P< 0.0001, means +
SE: unobstructed, 24.96 + 0.30 m; human obstructed, 1.54 = 0.30 m; sheep obstructed 6.56 +
0.30 m). There was an interaction effect in that obstruction affected optimurfertrdistance
differently at different transmission strengthss(f= 116.16,P< 0.0001; Figure2.3).

Maximum transfer distance decreased steadily with transmissiogtstig 4 30= 364.18,
P< 0.0001, means + SE: 0 dBm, 37.12 + 0.65 m; -5 dBm, 24.28 + 0.65 m; -10 dBm, 20.94 + 0.65
m; -15 dBm, 11.40 = 0.65 m; -25 dBm, 5.03 = 0.65 m). There was an obstruction effect such that

both human and sheep obstruction lowered the maximum transfer distance, but the
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human and sheep obstructed groups did not differ from one anothgy«544.66,P< 0.0001,
means = SE: unobstructed, 33.26 + 0.50 m; human obstructed, 12.72 + 0.50 m; sheep obstructed
13.28 £ 0.50 mP = 0.4293). There was an interaction effect such that without obstruction, the
amount of decrease in maximum transfer distance with decreasing traoemtssngth was
greater than with obstruction@=o= 42.44,P< 0.0001; Figure2.4).
DISCUSSION
Ouir first goal in testing the communications system of WildSense was todetef a general
model could elucidate patterns of packet transfer success rate by distanmceanyidg
transmission strength and obstruction conditions. As predicted, the log logmstioh best
represented the sigmoid distribution of the data for the majority of treatmoermisy especially
unobstructed treatment groups. However, in sub-optimum conditions of physical obstructi
data exhibited greater variation (i.e. did not follow a clear sigmoid distribyaad)a linear
model offered a more appropriate fit. These results indicate that paclsé¢tiariess
predictable under sub-optimum conditions, such as those presented by an animal body.
Both transmissions strength and obstruction had a substantial impact on the ability of
WildSense to transfer data between nodes. Maximum possible packet trans&in{ated by
weighted averaging of model parameters) was almost 100% for all trarsnessingths in
situations of minimal physical obstruction. This is consistent with the eatpecthat WSNs be
constructed to achieve 100% packet transfer success under optimum conditions ([241Get)al
Human and sheep obstruction did not have the same effect on maximum possible packet transf
Nodes that were obstructed by sheep body mass had consistently lower dstimataum
possible packet transfer than nodes that were obstructed by human body mass. Nodes that

experienced human obstruction experienced a dip in packet transfer at -10 dBm, but then
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returned to higher packet transfer success at -15 and -25 dBm. The reasandiprithpacket
transfer is unclear, although this data set exhibited higher variancé, nvhichave contributed
to error in parameter estimation. For bighorn sheep, our results indicate that clacoigingr
power level of 0 or -5 dBm would be optimal, as these power levels offer the greatasapot
for packet transfer success.

The estimated optimum distance of packet transfer, or the distance at which 90% packe
transfer occurred, decreased with decreasing transmission strengibt, fexa O to -5 dBm,
where it increased significantly. This unexpected increase held true fourmtstructed and
sheep obstructed treatment groups. We could find no explanation in the literaturg fbewh
optimum distance of packet transfer would be greater for a lower transmigsiagtls, unless
the answer lies in an unmeasured source of stochasticity such as wind orein¢erfeom other
physical sources. Unobstructed treatment groups had the greatest optimaoedis{zacket
transfer, followed by sheep and human obstructed groups. This is consistent withl#idéeava
literature, which shows that physical blocking by biomass from plants and acenatsuse
unpredictable dampening of packet transfer success at shorter distancesm@@&rao 2008, Li
et al. 2010).Even while restrained by a tether, the sheep still moved unpredictaleyguw
human subjects consistently stood still. Accidental pivoting of the sheep towardseiveng
station would result in a less obstructed communication path, which could have contributed to
the greater distance at which data could be reliably transferred.

Estimated maximum distance of data transfer, or the distance at which 1K86 pac
transfer occurred, decreased consistently with decreasing tramsnassingth across all
obstruction treatment groups. This, along with the shortening of optimum distarate of d

transfer with decreasing transmission strength (described above), ig@onsith findings
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presented by Son et al. (2004). Unobstructed groups could transmit data the furthest, but huma
obstructed and sheep obstructed treatment groups did not differ from one another. Tlisse res
indicate that, even when obstructed by the body of an animal, our mobile network shi# has t
potential to transfer data at distances of 5-30 m.

Choice of which transmission strength to use depends on the territory size of the
population of interest and the scale of the study. In a closed environment, such as a paddock, a
lower transmission strength might be appropriate, while in a large-sitaly taking place across
several square kilometers, a higher transmission strength might beangc&bse type of study
also plays a clear role in tuning a WSN for wildlife tracking. Reseaschieo are interested in
close contact (as for disease transfer) might choose to limit sensor node coatimiino a
couple of meters, but researchers studying home range overlap might need to allow
communication across much higher distances. What our testing clearly shbatstusming a
WSN to transfer data based on a manufacturer’s estimated communicationedistarnd
result in significant miscalculation of wireless data transfer capesbjlthereby compromising
the integrity of a study. Wherever possible, scientists who are buildingthei¥WSN for use in
a wildlife tracking setting should fine tune their devices, ideally witrsthgect animal of
interest. If such an opportunity is unavailable, tests using human subjects fieay but are not
guaranteed to yield the same calculated contact distances.

Our research brings to light the importance of testing the functionality &M béfore
deployment in a field setting, but our results should not be extrapolated to other low-cost
systems. Variance in equipment, such as the brand of the GPS and communicationstlevices
actual configuration and materials of the collar, battery power, link quaiidydeployment

environment will affect packet transfer in various ways (Fanimokun and Frolik 2808t &l.
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2004, Park et al. 2005). Researchers who plan to construct their own low-cost WSNs should take
these differences into account when performing their own testing, and should choose a
transmission strength based on the needs of their research interests. Toutllgtiijrectional,
long-term GPS tracking system that incorporates a data transfer ké@sonot been
successfully deployed, but we believe a system such as WildSense is tlugicakstep in the
advancement of wildlife telemetry.

MANAGEMENT IMPLICATIONS

In-house construction of low-cost telemetry systems is now common, despitivémeement of
GPS technology into more sophisticated realms. The results of our study should serve a
example for scientists who plan to construct their own mobile networks for use mligewil
tracking scenario. The effects of physical obstruction on the functioning ofrsorseodes
clearly altered the effectiveness of data transfer. This demonshatesgortance of fine-tuning

equipment, preferably using animal subjects if it is an available option.
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Figure 2.1. A comparison of data distribution between two treatment groups. The top data set is
from a high-strength treatment group with no physical interference, and repessented by
the log logistic model. The bottom data set is from a lower-strength getigroup with

obstruction, and is best represented by a linear model.
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Table2.1. Least squares means and standard errors of packet transfer succds®otagiegime,

where split 1 represents the earliest set of 50 attempted packet s@msfeplit 7 represents the

latest.
Split LSMean Standard Error
1 59.63 3.46
2 64.19 3.67
3 70.05 3.88
4 79.04 4.34
5 86.50 4.78
6 81.00 8.61
7 100.00 13.01
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Table 2.2. Number of data points (n), best candidate model, number of free paramgters (

model varianceMar), log likelihood (L), and AIC valuesAIC,), for all 15 treatment groups.

Treatment n Model K Var LL AlCc

0 dBm Unobstructed 58 Parametric 3 12.89 230.56 467.56
0 dBm Human 22 Linear 2 17.34 93.98 192.98

0 dBm Sheep 13 Linear 2 15.04 53.69 112.58

-5 dBm Unobstructed 65 Log Logistic 3 8.99 234.99 476.38
-5 dBm Human 16 Linear 2 21.80 72.01 148.95

-5 dBm Sheep 10 Log Logistic 3 13.23 40.01 90.03
-10 dBm Unobstructed 44  LogLogistic 3 155 81.67 169.95
-10 dBm Human 10 Log Logistic 3 17.47 42.80 95.59
-10 dBm Sheep 12 Linear 2 21.59 53.89 113.12
-15 dBm Unobstructed 30 Log Logistic 3 3.63 81.26 169.44
-15 dBm Human 8 Linear 2 15.60 33.33 73.06
-15 dBm Sheep 14 Log Logistic 3 3.86 38.79 85.98
-25 dBm Unobstructed 89 Log Logistic 3 9.98 330.99 668.27
-25 dBm Human 8 Log Logistic 3 12.22 27.46 68.91
-25 dBm Sheep 6 Linear 2 9.37 18.28 46.56
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SUMMARY

Telemetry has become a fundamentally important tool for studying ammadments.

Traditional telemetry systems have provided time-specific information otidnsaf

individuals; however, recent deployments in instruments allow for the trackinguadnketof

interactions among individuals, providing some insight into who is contacting whom and when.

Currently, these devices rely on very high frequency (VHF) radio technologgaandt
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precisely gauge where contacts occurred and how far apart they occuhiedivé pre-set
contact threshold. The high rate of data loss from contact-logging devices, artcheiteonal
telemetry devices that are lost or damaged in the field, poses another obstami@édang
wildlife social networks. We have developed a prototype contact-logging GR&thal offers
greater spatial resolution of contact data, and reduces probability of data ks study, we
used captive bighorn shedgps canadensis) to test the GPS capabilities, contact rates, and
contact distance error of our prototype collars. The GPS fix succesd aatecollars was
greater than 95%. The collars were communicating with each other about 98%roktrentd
communication was reciprocated 9% of the time because the animals wervedlsamall
paddocks. Contact distance error was 9.5 m, which is what would be expected taking into
account a baseline GPS spatial error of £5 m in open environment. The high GPS 8s,succe
low GPS error, and ability to log accurate contacts with low contact distaroreby our
prototype collars suggest that the implementation of GPS with contact-loggmpkegy has

the potential to improve upon currently-available contact network data.
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Wildlife telemetry has become the tool of choice for monitoring the spatiakamubtal
locations of individuals in their environment. Technology based on global positioning system
(GPS) is particularly popular because data are obtained non-invasively and prawidewocs
record of locations at all times of day and in all weather conditions (BegeHaufler 1994,
Rodgers et al. 1996, Cadahia et al. 2007). Since the dissolution of selective layaridday,
2000, the positional accuracy of GPS telemetry systems has also improveer (2200).
Individuals can now be tracked with a positional accuracy generally within £ 10 mdilegen
environment (D’Eon et al. 2002, Hansen and Riggs 2008). These attributes make GPS devices
particularly sought-after, despite the expensive per-unit costs of utifarigtechnology.

Although GPS can be easily used to elucidate individual movements through landscapes,
using raw GPS data (i.e. latitude, longitude, and GMT date/time) to observetintesamong
individuals is more difficult. Kjeer et al. (2007) plotted GPS points using ArcView 3.2 addause
joint utilization distribution and compositional analysis to estimate contas o&twhite-tailed
deer in different land-cover types. Similarly, Schauber et al. (2007) éstirdasect and indirect
contact rates among white-tailed deer using pairwise measures of pyoXinese methods
yield valuable insight, but they depend on complicated mathematics, recentigdipeiaote
sensing data, a designated overlap zone that is subject to the positional accGiRR8ydata,
and GPS data that are temporally in-sync between individuals. This dependétsciadimn
utility.

Commercial manufacturers have recently developed proximity data Idggersan
record contacts between individuals. These data loggers use a pulse-contralleiultr
frequency (UHF) transmitter with a specific pulse rate to transnutrainications beacon.

When two loggers come within a user-defined detection distance, each loggés thealate,

56



time, and duration of the contact. These devices are valuable tools for deternfirihg w
individuals are contacting each other, but they cannot log the locations of all contacisebe
they rely on very high frequency (VHF) rather than GPS technology (Ji et al. 2005, Erahge
2006, Hamede et al. 2009). Researchers can only verify location data of thosts ¢cbatane
triangulated in the field.

To date, there is little data in the scientific literature on the sucagssontact error, and
contact distance accuracy of these commercially available deviceal.Jj2€05) put proximity
loggers on possums, and were able to retrieve data off of 66% of their loggers. As would be
expected, some of these data were confounded by damage, limited batteryidgeany
constraints. Hamede et al. (2009) were able to recover complete data sets froraf2i6out
devices when they used proximity loggers on Tasmanian devils, with much of the lost data
occurring due to damage and memory constraints. Due to the elusive nature ofidseddpec
interest, neither study could visually verify contact error (whether oramdacts were actually
occurring). Prange et al. (2006) ran extensive laboratory and field tegggastoons, and
found that their commercial collars recorded accurate contacts and contdondulait logged
false or “phantom” contacts in group-contact situations. These studies denedtihstraurrently
available technology can obtain contact data at a high temporal resolutioanolst t® benefit
from improved spatial resolution. Adding location data using GPS technology would be
particularly useful, because it would allow researchers to determine tinerenent in which the
contact occurred, and would enable a more accurate estimation of contact didesatedE
rates of data loss (>30%) also suggest the need for improved data retriebditiespa

To address the need for increased spatial resolution and hardier data storagein cont

logging telemetry, we propose the use of next-generation GPS technologienitkegration of
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a delay-tolerant network (DTN). DTNs are a type of wireless sensoorietiat rely on a
“store-and-forward” message transfer system. Data are ferriegd@individual “nodes”,
which eliminates the need for constant connectivity (Fall 2003, Shah and Kosta 2010)pd his t
of data transfer is ideal for wildlife telemetry, because contact betwdetiduals may happen
intermittently and asymmetrically, and field conditions are often too harsinpiport
continuously-connected wireless internet. Incorporating a DTN witletlyravailable GPS
technology will improve wildlife telemetry in several ways. 1) Data loa ferried to a set
destination such as a base station or “listening” node. 2) Data redundancy in thedostdrage
systems allows researchers to retrieve data from a lost or damaged node redflefthat is still
intact. 3) Networks of data transfer can be analyzed in conjunction with songhect logs to
elucidate contact networks.

We have developed a prototype wildlife telemetry collar (called “WildSgisat
incorporates DTN-based technology, GPS, and contact-logging capspilitich we intend to
use in the field. Each collar is comprised of a GPS chip, which is connected tbeasviensor
node. The sensor node can act as either a communicating (sending) or recgeenh@e
device in the data transfer process (Fig. 3.1). We expect that our experighcsswirototype
will demonstrate how such next-generation technology can elucidate contamtksecfov vital
applications in disease transfer, territory overlap, competition, and predatios. &&stich, it
is crucial that our system can accurately portray contact distancebdweindividuals, and
maintain levels of data redundancy that allow researchers to obtain at leasif4bmdata
logged by lost or damaged collars.

The purpose of this study was to test the GPS functioning, data transfer dapabitid

contact error of our prototype WildSense GPS devices in a simulated fiehd) s€ti
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accomplish this, we ran several trials using captive bighorn sheep in an enclose@ pen. W
analyzed the means and standard errors for each measure of functionality, aneédonesa
values between different power levels and duty cycles. We expected tke $kex success rate
of our collars would be high (greater than 95%) given the open environment in whichede tes
and the results of past experimentation. We also expected that unintentional datidopli

from repeated satellite fixes would be low (less than 5%) based on how wéyithaight the
GPS devices were programmed to communicate with the satellites. For coltouanic
capabilities, we expected that the sheep would be in contact most of the time dusotiahe
nature of the bighorn sheep and the communications range of the devices as compasggzkto the
of the pen. We predicted that the higher power nodes would communicate more often than the
lower power nodes due to their broader communications range. Finally, we predittzmhthet
distance error would be a function of both spatial and temporal imprecision, but would iéeally
less than £ 10 m.

STUDY AREA

We performed simulated field testing at the Colorado Division of Wildlife's ik®wVildlife
Research Facility (FWRF) in Fort Collins, Colorado, USA°@®N, 105 10°'W). This facility

is located on open, slightly rolling pasture, approximately 7 km west of thefdtyrt Collins.
There is little overhead interference due to canopy cover.

METHODS

Equipment

We assembled the prototype WildSense GPS devices used in this experiment fiGAza M
MRP2400 2.4 GHz radio board and MTS420 sensor node (Crossbow® Technology Inc.,

Milpitas, CA, USA). Sensor nodes measure approximately 6 x 3.5 x 2 cm, including two AA
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batteries. We used MOTE-VIEWCclient software (Crossbow® Technology Inipitds, CA,
USA)to acquire communications data and MOTE-CONFIG client softwaregrgn RF
transmission strengths into our sensor nodes.

We tested sensor nodes in a protective casing consisting of a weatherpyoafljmriate
electronics enclosure measuring approximately 11 x 8 x 6 cm. We linedeheri of the
enclosure with foam padding to prevent damage to the sensor nodes due to shaking and bumping.
We attached the enclosure to a prototype collar made from two sheets ofd&aihy@ng sewn
together. The collar could be adjusted to fit the sheeps’ necks via 2 rows of holes pundped alon
the length of the strapping. Collars were fastened with a double-bolt closureompkete
product weighed approximately 0.450 kg.
Data Collection
We put GPS devices on 4 separate captive bighorn sheep to test collar functioning.yhe stud
area was a 25 x 75 m pen at the FWRF, in which we marked a 5 m grid system uking brig
orange spray paint. We mounted Panasonic® SDR-H85 video camcorders on the north and south
ends of the pen in order to visually record contacts. Sheep were allowed to roawitteelthe
pen, and did not leave the study area during the course of the experiment.

We performed three study trials: a 1-day trial, a 2-day trial, and a 4tdiayhe first
day of each trial began at 800 MST, and the last day of each trial ended at 1600 MST.1For the
day trial, we used a 30 minute writing interval, during which 10 minutes were spent
communicating with the GPS satellites and transferring data (aveatde)he other 20 minutes
were devoted to transferring data only (sleep). For the 2-day and 4-day trialsedva 1 hour

writing interval in which 10 minutes were spent awake and the other 50 minuteeetens
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the sleep cycle. While in awake mode, nodes made GPS fix attempts roughly oncéea anid
sent out communications beacons roughly once every two seconds.

During each trial, we set two devices to a (high) power level of 0 dBm, and thevather
were set to a (medium) power level of -5 dBm. Our choice of power level wed baprevious
testing, which showed that the -5 dBm power level was optimum for use in a wildtifg se
(Davis et al., unpublished data). Preliminary models of communications distance dryl@aost
under conditions of bodily obstruction found a maximum communications distance of roughly 30
m for the O dBm power level and 15 m for the -5 dBm power level, so these were the
communications distances we expected to see during all trials.

We did not enable multi-hop data transfer capabilities for this experiment, optoguto f
only on single-hop data transfer. This means that data were only transferreétidrom
communicating node to the recipient node (a single data transfer evikat)than across all
available nodes over the course of the experiment (multiple data transfes)eizach collar
recorded the communicating node ID, the recipient node ID, the contact “count,” ¢henam
date of the contact, the latitude, and the longitude of the individual wearing the devigsugbr
observations, we took roughly four hours of video footage per day during each trial. These
occurred either in the morning (roughly 800 MST to 1200 MST) or the afternoon (roughly 1200
MST to 1600 MST).

Statistical Analysis

We used GPS fix success rate and duplicated data points from unintentional, souslaR&
fixes as a measure of GPS functioning. We calculated the GPS fix suteessttee percentage
of GPS logs with successful satellite fixes out of the total number of data. Wmtsalculated

the percentage of duplicated data points as the number of duplicated GPS logsa(idatd;|
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time, and location) out of the total number of GPS logs. We calculated the meansdartsta
deviations averaged over the entire experiment. We also ran a logistgsregnaodel to test
whether there were differences in GPS functioning between trials or poxsks. le

To test the contact marking and data transfer capabilities, we medsigaetage
percentage of time in contact, the average percentage of reciprocatadrusta, the distance
of reciprocated versus non-reciprocated data transfer, and the cordactlee percentage of
time in contact was calculated as the number of contact logs with a vaigénéaode ID out of
the total number of contact logs. We defined an instance of reciprocated dsfier tag a contact
log for which the recipient node ID and communicating node ID were identidadth collars.
Reciprocal data transfer events were necessary to determine eatecomtact distance. For
each contact log, we calculated the distance between the communicdtiegiarent node

using the Haversine formula:

a = sin? (%) + cos(lat,) * cos(lat,) * sin? (Alo%) (1)
c =2 *arctan’*(Va,/(1 — a)) (2)
d=R=xc 3)

We used these distances to analyze the difference between reciprodated-aeciprocated
data transfer. We calculated the means and standard deviations of these \areéhbgsd over
the entire experiment, and ran a logistic regression model to test winetfeewere differences
in percent time in contact or percent reciprocated data transfer betweeartpawer levels. We
used a one-way ANOVA with Tukey’'s HSD post-hoc analysis to test whethancksof
reciprocated data transfer and non-reciprocated data transfer differestbérials or power

levels.
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Finally, we used these distance calculations to estimate contact erhar différence
between a GPS-logged distance and a visually-observed distance. After sortatscord
randomly selected 200 reciprocal contacts that occurred within the timespandbmnwehhad
video footage. We ran a paired Student’s t-test to determine whether the obsstevacedi
between individuals differed from GPS-recorded distances between individuatatitical
analyses were performed using R version 2.10.1 (R development core team, 2006).
RESULTS
The mean GPS fix success rate over all trials and power levels was 95.46 = 10xX2896CEsS
differed between trialsx¢= 1726.1, df=2P<0.001; Fig. 3.2), with 2 and 4-day trials having
greater fix success than the 1-day tria¢@.01). Fix success also differed between power levels
(X?=1365.9, df=1P<0.001; Fig. 3.2), with the 0 dBm power level having lower fix success than
the -5 dBm power level.

The mean percentage of unintentionally duplicated data was 98.03 + 2.03%. Duplicated
data differed between trial¥% 58.2, df=2P<0.001), with the 4-day trial having more
duplicates than the 1-day tri&<0.01). Duplicated data transfer also differed between power
levels X?=45.7, df=1,P<0.001). Nodes set to 0 dBm had slightly less data duplication than
nodes set to -5 dBm. These differences were biologically meaningless, sandeplecation
was unacceptably high in all trials and for all power levels.

Overall, the average percentage of time individuals were in contact Wedstibne other
individual was 98.05 + 2.46%. This contact rate differed between tX&ts24.5, df=2,

P<0.001, means + SE: 1-day, 98.7 + 2.3%; 2-day, 98.5 + 0.6%; 4-day, 97.1 + 3.8%), with the
sheep making less contact during the 4-day trial than the 1-day&i@lQl). Time in contact

also differed between communicating node power levéts 24.5, df=2P<0.001, means + SE:
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0 dBm, 97.5 £ 3.0% ; -5 dBm, 98.8 £ 1.7%). Recipient node power level had an effect on how
likely a node was to be contacted, but this effect differed between trialagDiie 1-day trial,

the higher power 0 dBm nodes were less likely to be contaxted07.2, df=1P<0.001; Fig.

3.3); however, during the 2-day and 4-day trials, the higher power 0 dBm nodes werdgehore |
to be contactedf= 714.2, df=1P<0.001;X*= 317.1, df=1P<0.001; Fig. 3.3).

The mean percentage of reciprocated communication was 9.20 + 9.07%. Reciprocated
communication differed between triad’€ 549.8, df=2P<0.001; Fig. 3.4), with reciprocal
contacts occurring less frequently during the 2-day t&aD(01), but power level did not have
an effect on the amount of reciprocal contacts. Reciprocated communication @edamne
average distance of 8.42 + 14.01 m, with higher power nodes generally having a grezatee dis
of reciprocated communications(f1653.573,P<0.001; means + SE: 0 dBm, 11.8 + 18.8 m; -5
dBm, 5.75 £7.43 m). The distance between reciprocal contacts did not differ from the distance
between non-reciprocal contacts.

On average, visual contact distances differed 5.10 + 13.74 m from GPS-recorded contact
distances, or 9.44 £ 11.16 m when absolute differences were taken into account (Fig. 3.5). While
this value is significantly different from O (t = 2.922, df = B15 0.005), our expected contact
error of £5 m was well within the calculated confidence intervals (95%.61;, 8.59).
DISCUSSION
The basic functioning of our GPS devices met or exceeded requirements for usesid.thaé
GPS fix success rate for our collars was over 95%, which is comparable t@roatin
available systems under conditions of minimal habitat complexity (Frair 2004, Hansen and
Riggs 2008). We found a slightly decreased fix success for the 1-daynttitiea0 dBm power

level, but this was due to an outlier node that had less than 60% communications success with

64



the satellites. We were able to remedy this with reprogramming, antbHadher issues with
this node during later trials.

Duplicated data was over 98%, but we were expecting data duplication levelstbétess
5%. Data duplication statistically differed between trials and powelslewat these differences
were not substantial enough to improve the functioning of the collars. Afterrfurttestigation,
we found that the GPS nodes had been programmed to make four communications attempts for
each GPS data point, so most GPS points were quadrupled. This programming erren has be
remedied for ongoing studies, and it will be necessary to reanalyze datatluphath further
testing.

The contact logging and data transfer capabilities of our collars atsbhersgandards we
set according to the functionality of proximity-logging devices that aeadyron the market.
For all trials, bighorn sheep were in contact with each other almost 100% of the itjmarnB
sheep exhibit herding behavior, especially among family groups (Geist 197Biasthet
1991), and the potential contact area of the nodes covered much of the 25m x 75m pen. The
furthest distance that -5 dBm nodes have been observed to communicate under conditions of
animal obstruction is roughly 15 m (Davis et al. unpublished data). This 30 m diametantacc
for almost half of the study area (707 aut of 1875 ), so even if our captive bighorn sheep
were moving randomly within the pen, we would expect nodes to be in contact with ankeas
other node for the majority of the time. Likewise, the broader communicationsaftige0
dBm nodes as compared to the -5 dBm nodes most likely explains why the higher paser nod
were contacted more frequently on the 2 and 4-day trials (Klingbeil and Wark 2008)

Because the bighorn sheep were in contact with at least one other individual for the

majority of the trial time, we had ample data to analyze the accurdal $flogged contact
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distances, but we could not effectively analyze contact perase due to lack of un-logged,
“true” contacts. In order to determine where, when, and how far apart contagtedagithin
the study area, we needed to evaluate reciprocal contacts, as these weseltiggedicontacts
for which the GPS data of both communicating nodes were available. Given that wede&ploy
nodes, node A had a 1/3 probability of contacting node B at any given time (P(A)a0d3@re
versa (P(B)=0.33). If we assume that each node was always in contact with omodé)e¢hen
the probability that both node A was contacting node B and node B was contactirdyisode
P(A and B) = P(A)*P(B), or 0.11. The expected 11% reciprocal communication ragd is w
within the confidence intervals of our 9.2% reciprocal communication rate.

Reciprocal contact distances averaged about 8.5 m apart, but differed between power
levels. Because the higher power levels have a broader communication@iarggeeil and
Wark 2008), reciprocal contacts between 0 dBm nodes averaged roughly 6 mdistatee
than reciprocal contacts between -5 dBm nodes (11.8 vs. 5.75 m). Reciprocal corsaceslist
did not differ from non-reciprocal contact distances, which suggests that contdetépce”
between nodes is regulated by who requests to transfer data first, not VasensrcEuclidian
distance. This is consistent with the use of a collision avoidance protocol in DTNB, whic
determines how nodes interact to avoid data collisions mid-transfer (Vele2@d1). When
two nodes first come into contact in an idle network, one node sends a Request To Send (RTS)
message, to which the receiving node will respond with a Clear To Send (CTS) redponse
nodes A and B both send an RTS to node C at the same time, a data collision may ocsur. In thi
situation, nodes A and B use a random countdown timer to determine how long until the next
RTS can be sent. If node A randomly selects a shorter countdown time, node A walledoe m

likely to receive the CTS from node C. Therefore, communication between nodesnsruede
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by who can send the fastest RTS (i.e., who comes into contact range firsty @mndomly
selects the shorter countdown timer.

After sorting and randomly selecting 200 reciprocal contacts, we wer¢aatmiatch GPS
date and time to compare GPS-logged contacts to visually observed contacts far Garps.
We calculated the difference between GPS and visually-observed contacts, and9ei4hcha
contact distance error. This is remarkably close to the baseline GRSriareor (at least £ 5 m)
that would be expected in an open environment (D’Eon et al. 2002, Cain et al. 2005). This
suggests that, even with a time lapse of 30 seconds-1 minute between two cBifadat@, our
contact distance error is contingent upon baseline GPS location error hathetter sources of
uncertainty.

Overall, the GPS component of our prototype is functioning at the same level as
commercial systems, as has been illustrated by our high fix successdr&evaontact distance
error. These positive results, along with our devices’ consistent contaatdagapabilities,
imply that WildSense will soon be ready to test in the field. Nevertheless,ateestill some
challenges that must be overcome before field deployment is feasibldet@simplify our
analysis of the contact error, we did not use the multihop data transfer (datayjefunction in
this study. We have yet to test these capabilities in a simulated fitthdy sand expect that the
data redundancy offered by the multihop data transfer will add further cotgpteitne
accuracy of the data and the data structure. Furthermore, in a field sett@g$® fix schedule
will be much more intermittent, which may introduce temporal error into oururezasnts of
contact distance. It still remains unclear how much data loss can actualgvbatpd when the
multihop DTN function is turned on. More field testing needs to be completed before we can

confidently claim that prototype devices such as ours represent a marked improgeene
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currently available technology, but the results of this study indicate thaevireaded in the
right direction.

Wildlife telemetry has made great strides in technological advamtemthe last few
decades. Our prototype WildSense collars have demonstrated that scientists/adie option
to incorporate spatially-accurate GPS data into preexisting contactpdegvices, and that this
technology may offer deeper insight into the spaindltemporal properties of wildlife contact
networks. Furthermore, we expect that by adding DTN capabilities, we vablbgo prevent
the loss of valuable contact data. Contact-logging telemetry devicesemprasmportant piece
of the puzzle in deciphering population and community dynamics, and by adding GPS and DTN
technology to currently-existing equipment, we surmise that scientistsevable to analyze
wildlife contact networks with greater breadth and clarity.

MANAGEMENT IMPLICATIONS

Contact-logging telemetry devices are gaining popularity becauseftfieeyleeper insight into
wildlife social networks. Although commercially-available devices catuca@ccurate
shapshots of who is contacting whom and when, they cannot precisely gauge wieere thes
contacts occurred and how far apart they occurred within the pre-set ¢breabbld.
Commercially available collars also seem to have a high rate of data lesome cases more
than 33%. We have developed a prototype contact-logging GPS collar with DTN itisabil
which we believe offers greater spatial resolution of contact data, andrenagnt data loss. The
results of our preliminary testing show that our devices have high GPS fix suoee& $
error, and the capacity to log accurate contacts with low contact distaoice/¢hnile there is
still room for improvement, these results suggest that such next generation tegihasliggeat

potential for improving upon currently available contact network data.
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Figure 3.3. A node’s likelihood of being contacted depended on its power level setting, with
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GLOSSARY

Activity Logger: A wildlife telemetry device uses an acceler@néd track the 2- or 3-
dimensional movements of individuals at a particular location.

Biologger: A wildlife telemetry device used to gather information about anadisihealth and
energy expenditure, and/or its environment.

Base Station: A wireless node installed at a fixed location to collecirdtte field.
Communicating Node: The node requesting to send data in a reciprocally commgrpeati

Contact Distance Error: The difference between the true contact distashtiee GPS-logged
contact distance of a communicating pair of nodes.

Contact Error:Includes erroneously-logged contacts, or true contacts that piekadtup by the
delay tolerant network. See alSontact Distance Error.

Delay Tolerant Network:A wireless network that uses “store-ansldia” architecture to
transfer data under conditions of interrupted connectivity.

Fix Success Rate:The likelihood of obtaining a GPS fix with 3 or more satellite

General Positioning System (GPS):A satellite-based navigation sysa¢provides location and
time information.

Maximum Distance of Data Transfer: The maximum distance that data ¢temsterred
between two nodes for a given power level. SeeRdsar Level.

Maximum Possible Data Transfer: The maximum amount of data that can bertexhbetween
two nodes, assuming some level of packet loss. Se@adket Loss.

Multihop Data Transfer:Data transfer across multiple nodes to enableedatalancy, or to
funnel data to a specific node or base station.

Optimum Distance of Data Transfer:The furthest distance apart two raesmmunicate at a
specific power level before more than 10% of packets are lost. Seeaaksb L 0ss,
Power Level.

Packet Loss: The amount of data (packets) lost during a data transfer event.
Power Level:Se@&ransmission Strength.

Proximity Logger: A wildlife telemetry device used to monitor the frequeamd duration of
contacts between two or more individuals.

77



Recipient Node: The node receiving data in a reciprocally communicating pai

Reciprocal Contact: A contact in which two nodes are transferring dateht@teer at the same
time.

Sensor Node: A piece of a wireless sensor network used to gather information and a@atemuni
with other nodes in the network.

State-Centric Telemetry: Wildlife telemetry that can be used to orgstitysiological condition,
to reveal social networks, and to observe fine-scale habitat choices. Inuloidggers,
activity loggers, animal-mounted cameras, and proximity loggers.

Telemetry:Technology that allows measurements to be made at a distance.
Transmission Strength: The magnitude of the electric field genera@aviygless antenna.

Wireless Sensor Network:A type of delay tolerant network that consisterohanicating
sensor nodes used to monitor physical or environmental conditions.
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