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ABSTRACT
GRASSLAND INFILTRATION PHENOMENA
The infiltration of precipitation into grassland sites,
especially rangelands, is a eritical factor in maintaining vigor
of the plant cover. Infiltratinn rates on grassland sites are
effected by numerous interacting phenomena of the soil, atmospheric,
and vegetational systems. A review of infiltration literature
including the processes involved, factors affecting it, and methods
of measurement is presented. Infiltration data collected on a wide
variety of grassland sites is summarized by geographic region, range
condition, and soil index and is represented in tabular form.
On the typical grassland areas range conditionm exhibits

a greater control over infiltration values than does soil influences.
However, the reverse situation occurs in semi-arid regions where
vegetation is characteristically sparse. The average (P = 0.5) one
hour duration storm is capable of being infiltrated on practically
all range sites studied. Good and excellent condition ranges can
generally accommodate the average (P = 0.5) ten minute duration storm
without producing too much runoff.
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INTRODUCTION

The process of infiltration is one of the most important
phases of the hydrologic cycle. On grassland areas infiltration holds
even greater significance because through it soil water, the major
physical resource limiting vegetation growth, is replenished. The
grasslands of the western United States are regions of extreme temper—
ature variations and relatively low annual precipitation. The vegeta-
tion growth necessary to provide forage and to protect the land from
the erosive forces of wind and intense rainstorms is in delicate
balance with the forces of nature. This is the case over vast portions
of the grassland ecosystem.

Ecology

For the purpose of describing the grasslands of the western
United States, the regional breakdown recognized by Borchert (1950)
will be used. This classification includes the True Prairie (tall
grass), Mixed Prairie (short grass), and the western highlands. The
prairies as we now recognize them owe their origin to the regional
climatic changes affected by the tectonie activity of the mid-Tertiary
period about 25 million years ago (Weaver, 1954).

The delineation between the True Prairie and the forested
region to the east is generally considered to be approximately along
the Mississippi River. The western edge of the True Prairie blends
into the Mixed Prairie approximately along the 100th meridian. Along
the eastern boundary the average annual precipitation varies from

approximately 40 inches in the south te about 23 inches in the north.



A similar south to north precipitation gradient is noted along the
True Prairie-Mixed Prairie ecotone where annual precipitation ranges
from about 30 inches in Oklahoma to 20 inches in North Dakota (Weaver,
1954).

The Mixed Prairie, as was the case with the True Prairie,
is falrly well confined within certain annual precipitation isohyets
which limit it to that region lying between the True Prairie and the
base of the Rocky Mountains. Mixed Prairie constitutes the largest
grassland association in North America spreading over nearly 640
million acres in the United States and Canada. It is characterized
by climatic extremes and a nearly continuous blanket of short grass
sod beneath the taller vegetation (Weaver and Albertson, 1956).
Average annual precipitation varies from 8 to 20 inches with the same
general south to north precipitation-ecotone phenomena present here as
was the case on the True Prairie,

The entire Great Plains region receives about 70 to B0 percent
of its annual precipitation during the growing season. Over the True
Frairie precipitation is distributed very well with about 3 to 4 inches
per month occurring during the spring and summer. On the Mixed Prairie,
however, it varies considerably. Weaver (1954) has pointed cut that
the chief difference between the Mixed and True Prairie is the greater
amount of precipitation received by the latter, which favors the
development of deeper, more moist soils and a decreased evaporation

rate.



That grassland region designated as western highland by
Borchert (19530) cannot be categorized climatically, floristically, or
areally as accurately as the short and tall grass prairies. The
western highlands encompass the great expanse of the Rocky Mountain
and intermountain regions where grasslands can occur as relatively
small acreages or vast tracts either in forest openings at the higher
elevations or along the shrub-forest tension zones.

Annual precipitation on mountain grasslands is essentially
that of the surrounding forest with about one-fourth of the approxi-
mately 30 inch annual average occurring during the growing season
(Paulsen, 1969). In the semi-arid areas grass cover is not continuous
and shrubs or trees are often the dominant vegetation. Average pre-
cipitation varies locally between 12 and 35 inches annually with
roughly one-half falling during the summer (Pace, 1966).

The semi-arid region, as referred to in this report, was not
separately described by Borchert (1950). Herein the semi-arid region
will include those areas of the southwestern United States which
receive only about ten inches annual precipitation but yet pro-
vide some grazing use. Rainfall in this region varies widely in
frequency of occurrence, volume, and precipitation rate. Storms
usually result, in the summer, from purely convective build up or from
a cluster of convective cells along weak, fast moving cold fronts
(Dsborn and Reynolds, 1963). The individual convective cells usually
cause precipitation over an area of only about two or three miles

radial extent (Osborn and Keppel, 19653).



The Problem

Since the intake of water into the soil is of paramount
significance in the management of grasslands, a better understanding
of the factors affecting infiltration is needed. Despite its relative
infanecy, the concept of infiltration as a branch of hydrologic pheno-
mena has already experienced the enigma which has beset so many other
scientific disciplines--that of conflicting terminology. Broadly
speaking infiltration is defined as the downward entry of water into
the soil. This basic definition is generally accepted in professional
circles but here the agreement ends. Horton (1940) defined infiltra-
tion capacity as the maximum rate at which a given soil, when in a
given condition, can absorb rain as it falls. He then distinguished
infiltration rate by declaring it to be the actual rate of water intake
by the soil. More recently Richards (1952) has suggested that the
term infiltration capacity be abandoned and that infiltration rate
be used to describe what Horton referred to as infiltration capacity.
Because Richards' definition is probably the most straight-forward
and descriptive way of defining the phenomena, the term infiltration
rate will be used in this paper. The term maximum infiltration rate
will be used to designate what Horton referred to as infiltration
capacity and what Richards preferred to call infiltration rate, i.e.,
the greatest rate at which water can be infiltrated into the soil at
a given time and under a given set of site conditions. The term

grasslands will refer to vegetation types which through an interaction



of edaphic and climatic factors support grasses as the major component
of the vegetation.

This paper will review the literature pertinent to an empirical
and theoretical understanding of the phenomena which affect infiltra-
tion and its measurements. The objective will be to deal with the
processes of infiltration as they occur on the Mixed and True Prairies
of the mid-continental grasslands, the "parks" of the Rocky Mountains,
and the grazing areas of the intermountain and southwest regions.

From infiltration data collected by various researchers, generaliza-
tions will be made relating soils, site condition, and grazing impact

to measured infiltration values.



REVIEW OF INFILTRATION LITERATURE

The necessity of at least a portion of the natural precipita-
tion being taken into the soil would be denied by no one--indeed the
basic processes of the hydrologic cycle were recognized by Leonardo
da Vinci nearly 500 years ago. Bouyoucos (1922) pald tribute to the
soll-water relationship when he suggested it to be

-++ one of the best indices of the physical
characteristics of soil. Texture, struc-
ture, colliodal and organic content, sur-
face activation, etc., tend to be revealed
by the behavior of the soil toward water.

Later Bouyoucos (1929) reaffirmed that position and continued:

The behavior of a soil toward water prob-
ably gives truer and more comprehensive
composite information concerning the soil
than the behavior of the same soil toward
any other agent. This is probably due to
two main factors: first, water, besides
being the most natural and universal rea-
gent, is also the chief natural agent by
which the soil has been formed; second,
most of the physical properties of the
s0il run parallel with its behavior toward
water... .

This general subject was brought into focus more clearly by Horton
(1933) who was first to point out the inseparable relationship between
the process which we now call infiltration and the complex interactions
of the hydrologie cycle.

Horton's initial description of the role of infiltration in
the hydrologic cycle triggered a tremendous amount of attention and

research from workers in several professional fields. The agronomists,



agriculturalists, and general land use managers were greatly con-
cerned because infiltration is the primary source of soil water and
determines the type of farming and management practices that can be
employed on a given site. Hydrologists and agricultural engineers,
designers of water control structures based on runoff, have con-
tributed empirical knowledge toward the understanding of factors
influencing infiltration. Soil physicists, more interested from a
physiecal point of view, have attempted to describe the process of
infiltration strictly from mathematical models.

Factors Affecting Infiltration

After over 35 years of intensive research, it remains virtu-
ally impossible to apply laws governing the behavior of water movement
into the soil to field situations. Experimental results show that
factors which dominate infiltration under one set of conditions may
act in the same manner elsewhere, but yet be overshadowed by some
other variable more important on that particular site. Infiltration
results are often found to vary both between and within sites and the
exceptions to nearly every statement of generality are many.

Haupt (1967) stated that infiltration rates for a given plot
can vary dynamically over time, whether from season to season, week
to week, day teo day, or hour to hour with a rainstorm. 4s will be
pointed out later in this section, the numerous researchers who have
studied the factors affecting infiltration have failed to agree on

any one or a combination of factors which may exert the controlling



influence on infiltration into a soil at a given point in time. From
this it follows that any attempt to devise a hierarchy of factors
influencing infiltration, based on relative importance, would be
futile. In an attempt to distinguish between maximum infiltration
rate at a point in time versus infiltration rate expanded over time
and area, Lewis and Powers (1938) suggested a very detailed list of
variables. However, practically all of the factors influencing infil-
tration in a very short run situation are also active, even though
often at different degrees of intensity, over larger areas and greater
time. For this reason it is impractical to attempt to separate rhem.
Also, the interdependency between edaphic, vegetational, climatic,

and animal (including man) influences are extremely complex,

Precipitation. Precipitation is the source of water available

for infiltration at the soll surface. Precipitation may arrive at
the earth's surface in one of several forms, the most common of which
are rain and snow. To enter the soill, water must be in the liquid
state and be at a point on the earth's surface which is capable of
absorbing it. Precipitation which falls as snow or some other solid
form may melt and become immediately available for infiltration or it
may be temporarlly stored.

Raindrops, the liquid phase of precipitation, arrive at the
earth's surface in a given storm in varying sizes, shapes, and
velocities. The median diameter of raindrops measured by Laws and

Parsons (1942) was a function of precipitation rate. Drop diameter



for precipitation rates of 0.01 inches per hour ranged from 0 to 2.75
millimeters, with the average being approximately one millimeter.
Size ranges and median raindrop diameter were found to increase with
precipitation rate. At a rainfall rate of six inches per hour, drop
diameters ranged from 0.25 to 7.00 millimeters with the average
diameter near 3.25 millimeters.

According to Laws (1941) the shape of falling water droplets
are altered during their fall and at terminal velocity are typically
mushroom shaped and flattened on the bottom. As the raindrop becomes
more flattened during fall, and hence subject to greater air resis-
tance, it tends to break up inte smaller drops. Kohnke and Bertrand
(1959) feel that this explains why drop sizes greater than seven
millimeters are not generally reported. Laws (1941) determined the
velocity of various dismeter drops in still air. His data showed
that when dropped from a height of 20 meters terminal velocity Iincreases
with drop diamter at a decreasing rate to a maximum velocity of nine
meters per second for a drop size of six millimeters in diameter.

The size, shape, and velocity of a raindrop as it strikes the
soil surface can play an important role in determining infiltration,
especially where bare soil is exposed. Horton (1940) recognized that
the amount of material detached by raindrop splash will influence the
degree of structural deterioration, clogging of macropores, puddling,
and surface packing and sealing of the soil. Hendrickson (1934) and

Musgrave and Free (1937) noted a very evident decrease in infiltration
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rate when slightly turbid water was used as opposed to using clear
water. Kohnke and Bertrand (1959) placed emphasis on the kinetic
energy of the raindrop as being the dominant rain characteristic in
soll erosion processes. Theoretically this force could be determined
for a single drop by the formula,

B w i (1)

where, E the kinetic energy

n

m mass of raindrop

v = velocity of the raindrop.

Shape of the drop is alsco an important factor in that it determines
the volume of the drop which will strike the surface at the initial
instant of impact.

Wischmeier and Smith (1958) vividly described the magnitude
of kinetic energy imposed upon the soil surface by raindrop impact
when they stated that

+++ the dead weight of the water falling
in thirty minutes of a common thunderstorm

.+. may well exceed 100 tons on each acre.
-+. The rainfall energy to be expended

during the thirty minutes may well exceed
two million foot-pounds per acre. 1If the
rain is driven by violent winds, the
energy of impact may be even greater.

Rogers et al. (1967) attempted to measure drop size distribu-
tion in a storm both over time and area and from this data to calculate
the storm's kinetic energy. Raindrop characteristics were measured
during a five year period by photographing falling drops. They found

total volume of rain and kinetic energy parameters to be very difficult

to determine correctly at low rainfall rates. Data from the first
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minute of storms was eliminated because thunderstorms typically have
4 greater proportion of large drops during that time. Bearing in mind
the work by Adams et al. (1957), who found splash erosion and its
resultant ramifications to be most severe on dry soils, question could
be raised as to the validity of ignoring this initial period of the
storm in calculating kinetic energy data and their consequent appli-
cation in erosion equations.

On a more general scale other characteristics of precipitation
also influence infiltration. Precipitation rate has been shown to
have a warked effect on infiltration. Craddock and Pearse (1938)
working on four rangeland cover types varying from 30 to 40 percent
slope found runoff on an average to increase by only one-third even
though precipitation rate was doubled. Since the experimental areas
were covered with vegetation, the supposed effect of steeper slope
causing more rapid runoff may have been nullified. Also, considering
that the plots were only 0.005 acre size, the increased slope may have
allowed a relatively greater amount of water to drain from detention
storage. Using the hydrograph analysis method of determining infiltra-
tion on sprinkled plots of 0.005 acre size, Sherman (1938) found his
data to indicate infiltration to be 60 percent greater at a rate of
2.5 Iinches per hour than at 1.2 inches per hour. Although this data
is representative of the limited area involved, such conclusions would
be of little value in predicting infiltration rates during a natural
storm over a natural watershed where rainfall rate and maximum infil-

tration rate vary.
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Expressions of rate, however, say nothing about another
important rainfall characteristic--duration. A particular soil is
commonly considered capable of infiltrating water at some given rate
which generally decreases with time (see Figure 1). Any increase in
precipitation rate up to the soil's maximum infiltration rate would
lead to the conclusion that more intense storms do iIncrease infiltra-
tion rates; however, once the soil's maximum infiltration rate has
been exceeded by the rainfall rate, any greater rates would not result

in increased infiltration rates.

4t
infiltration 3
rate (in/hr)
2
T~ = EFil C e
0 e 4

30 60 90

time (minutes)

Figure 1. Typical maximum infiltration rate curves.
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Antecedent Moisture. The effects of antecedent moisture on

infiltration have been discussed by several authors. Experimenting

in the laboratory with surface samples of Putnam silt loam soll, Neal
(1938) found that during the first 20 minutes of the tests antecedent
moisture had a greater influence on infiltration values than any other
single factor.

The recovery of infiltration rate, especially where storms
are separated by only a few hours or a day or so, is very important.
Reinhart and Taylor (1954) recognized this and noted that antecedent
moisture plays the dominant role in determining available storage.
Smith (1949), who approached the subject from a more theoretical
aspect, evaluated several factors influencing infiltration but con-
cluded antecedent moisture to be the most significant. 1In Australia,
on loam, clay loam, and clay soils supporting perennial grass Cover,
Tisdall (1951) also found antecedent moisture to play an important
role in infiltration, especially during the initial stages of water
application.

Contrary to these findings, however, are the results reported
by other workers. Lowdermilk (1930), Duley and Kelly (1941), and
Duley (1939) found that rapid reduction in infiltration rates were
accompanied by formation of a nearly impervious surface layer of soil
which was of much greater significance than antecedent moisture.

Philip (1957e) applied his mathematical analysis approach to
infiltration to the influence of antecedent soil molsture on infiltra-

tion rates and summarized his findings thusly.
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The results are in general agreement with
experiment and indicate that, at small
times after infiltration begins, in-
creasing the initial moisture content
reduces the infiltration rate but in-
creases the velocity of advance of the
wet front [proposed by Bodman and Colman,
1943]. As time increases the influence
of the initial soil moisture on the in-
filtration rate becomes less and is
ultimately negligible; on the other hand
the influence on wet front advance per-
sists and, in fact, becomes more marked.

As pointed out by Neuberger et al. (1964), the effect of
antecedent moisture is heavily dependent on the soil in question.
Based on studies of South Dakota rangeland, their conclusions were
that watersheds of medium textured soils showed no significant cor-
relation between the rainfall-runoff relationship and antecedent
moisture, but watersheds with fine textured soils did.

Adams et al. (1957) have shown that a higher initial soil
water content, i.e., near or at field capacity, reduces the effects of
splash erosion on bare soils by mearly one-half as compared to what
occurred on air-dry soils. The implications of this observation as

it would affect the clogging of surface pores could be important.

Ground Cover. The importance of adequate floristic ground

cover has long been stressed as an essential prerequisite in efforts
to control flooding and erosional problems. Vegetation itself does
not control runoff, the source of erosion and flooding difficulties,
but its presence does increase the hydraulic roughness. This in turn

slows overland flow allowing more time for infiltration to occur.
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The effects of a simple surface mulch cover on infiltration
rates has been demonstrated by Duley and Kelly (1941) and Alderfer
and Merkle (1944). In comparing infiltration rates on mulched and
bare soils, both studies indicated infiltration values to be initially
higher on the mulched plots. The significantly higher values were
maintained throughout the test runs. On four percent Austin clay
slopes treated with mulches of straw and of gravel, Adams (1966) noted
results essentially similar to those of the earlier works. Adams,
however, was also studying the effects on runoff, erosion, and evapora-
tion of dioctadecyl dimethyl ammonium chloride (DDAC). The DDAC was
effective in reducing evaporation but was found to materially increase
runoff and erosion. He suggested that such chemical treatment of
alternate soil surface strips might prove feasible if soil movement
could be prevented. The enhancement of infiltration and the decrease
of runoff and erosion attributable to surface stones and gravel were
studied in Maine by Epstein et al. (1966). They concluded these
effects to be due to the interception and dissipation of raindrop
energy which in turn reduces surface sealing. Also, soills containing
large amounts of coarse fragments tended to exhibit less compaction
and correspondingly greater noncaplllary pore space.

Studies of infiltration as related to volume of standing
vegetation and natural mulch by Rauzi (1960) indicated that 45 to 84
percent of the wvariation in infiltration was due to differences in

organic matter above the surface. As vegetation debris builds up at
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the surface, it serves as a sponge by absorbing the impact of the
raindrop and storing the water. This additional moisture ecreates a
humid micro-climate within the debris layer and hastens its decay.

As decomposition occurs it is incorporated into the A horizon, thus
adding organic material to the soil profile. Vegetation also creates
micro-depressions on the soil surface which act as small reservoirs
during a storm.

In comparing infiltration rates on slopes of Marshall silt
loam with close vegetation versus bare ground, Musgrave and Free
(1936) concluded that the major effect of close vegetation is in
reducing the overland flow veloecity, thus, allowing more time for
infiltration teo occur.

Other effects of vegetation which are beneficial to inecreased
infiltration include the creation of soil channels by decomposing
roots and the favorable environment for soil fauna activity. It was
noted by Pearse and Woolley {(1936) that any type of herbaceous cover
will increase infiltration rates, but the nature of the plant root
system will determine to what degree. They found that fibrous reooted
species took up 1.5 times more water than did tap rooted species.
Upon examination of the treated profile, they observed that water had
penetrated to a large extent along the roots; hence, the denser root
systems had presented a greater opportunity for water intake. Craddock

and Pearse (1938) arrived at similar conclusions.
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Kincaid et al. (1964) working in semi-arid areas of varying
cover density found that the percent of gravel content, both on the
surface and within the surface one-fourth inch of soil, to be directly
related to infiltration rates when vegetation cover was absent or
sparse. As the vegetation cover increased, the influence of gravel
appeared to decrease until it was entirely overshadowed by that of
vegetation cover. They also observed that grassland areas showed
prompter and more abrupt responses to rainfall at depths of up to 18
inches than did bare areas. The greater soil water depletion noticed
under grass was blamed on evapotranspiration losses, while the positive
water responses were due to greater infiltration. The effects of
vegetation as related to range soils and uses will be discussed in a
future section.

Season. The fact that generally our worst floods occcur
during the winter months leads one naturally to assess the effect of
scason and related phenomena on infiltration. Horton (1933) recognized
a marked seasonal variation in maximum infiltration rates and attri-
buted it to the effects of temperature, soil fauna activity, and
perforations which permitted freer entry of water and escape routes
for soil gases. After further study Horton (1937) suggested that when
analyzing infiltration from a basin approach, one should make deter-
minations at various times of the year. This procedure would allow

for the considerable range of values he often noted between maximum
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and minimum infiltration rates. Beutner et al. (1940) and Horner
and Lloyd (1940) also found infiltration rates to be greater during
the warm months, but added that actual maximum infiltration rates
vary on a given site from one year to the next.

At Badger Wash Schumm and Lusby (1963) found season of year,
as a result of winter frost action, to be the main source of vari-
ability in infiltration rates. During the winter the surface soil
was frost heaved and made porous, thus resulting in high infiltration
rates during the spring. As the heaved soil settled and became more
compact from the action of rains, infiltration rates dropped to a
minimum in late summer and fall.

Frost. In addition to the example just cited, frost can have
a more direct effect on infiltration. Infiltration rates can be
altered drastically by the presence of soil frost during precipitation.
The degree of this impact is controlled by the type of frost. In
describing soil frost the problem of sematics is again encountered
because there is no generally accepted set of criteria being used.
Stoeckeler and Weitzman (1960) described three frost structures: (1)
concrete frost, extremely dense soil freezing with many ice lenses
and small crystals which block all air and water movement, (2} porous
concrete frost, resembles concrete frost but air can be blown through
it readily, and (3) partly frozen frost, permeable to air and shows
individual ice crystals even though many parts appear unfrozen. This

classification resembles, and could probably be considered a
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condensation of the four types--concrete, granular, honeycomb, and
stalactite--recognized earlier by Storey (1955) and Trimble et al,
(1958). Stoeckeler and Weitzman and Storey have all noted that the
more solid the frost, the less permeable it is, and therefore, the
greater its inhibitive influence on infiltration. Generally, heavier
textured soils are affected to a much greater degree than lighter ones.
Too, they found less dense frost types apparently have little or no
influence on infiltration.

Haupt (1967) has reported that, in general, an increase in
infiltration rate is observed as impervious frosts melt, but that
infiltration rates decrease as less dense frosts melt. Also a factor
in the permeability of various frost types is the initial soil water
content. Linsley et al. (1949) stated that freezing of a soil with
low moisture content tends to increase its maximum infiltration rate
while the opposite is true of a soil frozen while moist. Mace (1968)
studied the influence of soil frest on soil water recharge by snow-
melt, He observed that recharge on grassland areas containing con-
crete frost occurred during the latter part of the snowmelt when the
soil was thawing. Thawing was primarily from the surface downward
and the thawed soil was saturated with free water on the surface.

Temperature. The effect of temperature and the resulting
change in viscosity of water on infiltration rates of a silt loam
s0il were studied by Lewis and Powers (1938). Using tap water at

temperatures of 0.56°, 18.9%, and 37.2° Centigrade, they observed that
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the hot water infiltrated faster but only until four inches of the
soil had been penetrated. Duley and Domingo (1942) showed that water
temperatures varying from 4.4° to 43.3° Centigrade had only a minor
effect on infiltration rates. From this they concluded that tempera-
ture variations encountered in matural precipitation would not
significantly affect infiltration rates. Moore (1940) attempted to
determine the effect of soll temperature on infiltration, but even
though his data indicated & rise in infiltration rate with increased
soil temperature up to 35° Centigrade, he felt other factors could
have affected the results.

Fertilizer. Data collected by Free et al. (1940), Rauzi and
Smika (1963), and Tanner and Mamaril (1959) indicate that infiltration
is not significantly altered by commercial fertilizers or changes in
soil pH. Huberty and Pillsbury (1941), working on Ramona loam soils
found ammonium sulfate to slightly lower infiltration and that it
required double commercial rates of calcium nitrate to significantly
increase infiltrarion. Mazurak and Comard (1959) could detect no
significant change in infiltration rates after six years of applying
commercial rates of ammonium nitrate to grasslands in the central
plains.

Entrapped Air. The effect of soll gases trapped below a
downward moving water front is a commonly recognized barrier to
infiltration; however, only a few workers have mentioned this in their

wotks., Free and Palmer (1940) showed entrapped air to have a very



21

marked effect on infiltration into columns of graded sand. Water
first entered the sand by gravity and capillarity, but once the air
became compressed the moisture front advanced more slowly until suf-
ficient pressure buillt up to cause an upward release of air. Earlier,
Powers (1934) had found that entrapped air was definitely a factor
in slow infiltration rates into a closed tube of sandy loam soll. The
rate of water intake into an open bottomed tube was about double that
into a closed tube.
In discussing infiltration over a large area under natural

conditions, Horton (1940) makes the following statement,

... 1t appears that: 1. the escape of

air from soil during infiltration takes

place chiefly through the large soil

pores and through macro-openings, such

as insect, root, and earthworm perfo-

rations and sun-checks. 2. the escape

of air takes place chiefly through the

summits of the soill surface irregular-

ities where the detention depth is

ﬁlight, e .
Horton then devised a laboratory experiment whereby he could study the
effects of entrapped air by actually controlling and measuring air
pressure within the soil. In a soil which was vented at various depths,
no build up of pressure occurred and maximum infiltration rates,
especially in the latter stages of the experiment, were greater than
in a similar but unvented soil.

Christiansen (1944) noted that as water enters the seoil, it

slowly dissolves trapped air, thus freeing the soil of air from the

surface downward. Smith et al. (1966) expanded on Christiamsen's

.
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idea and listed three main distributions of air within a partially
saturated soil. These included: bulk air pockets or confined air:

air bubbles within the water mass called entrapped air; and, air ino
solution or dissolved air. Working with columms of sand subjected to
successive flows of water and air, they found that most of the air
which moved downward through the sand column did so as entrapped air.
According to Adam and Corey (1968) the diffusion of entrapped gas occurs
more rapidly in fine textured materials, thus resulting in a higher
concentration of dissolved gas in the liquid present. Atmospheric
pressure at the time of initial water entry into the soil and changes
in barometric pressure during the test were also found to affect the
volume of gas entrapped. Here then we have another factor influencing
infiltration--the ability of infiltrating water to absorb air.

Slope. The work by various researchers on the effect of slope
on infiltration does not coincide even where essentially similar study
techniques were used. Working with disturbed scils, both in place on
slopes of two to ten percent, (Duley and Kelly, 1939) and under
laboratory conditions of zero to 16 percent slope (Neal, 1938), it was
fFound that the degree of slope apparently had only minor effect on
infiltrarion. There was, however, a tendency for infiltration to
increase as the slope became more gentle. This was probably due to
gentle slopes permitting more surface water retention in micro-
depressions., Krimgold and Beenhouwer (1954) have pointed out that

relief influences water movement within the soil and therefore
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Infiltration--both because of its profound effect on soil forming
processes and the lateral gradient it affords the soil mantle.

The results of studies of the influence of slope, especially
gentle slopes of up to approximately 20 percent, on infiltration rates
have been characteristically dominated, if not overshadowed, by the
effects of other factors such as seasonal variation, soil type, soil
surface, and cover conditions (Beutner et al., 1940). Results by
Duley and Hays (1932) working on bare cultivated areas indicated that
as they varied the slope of natural soils from zero to three percent,
a rapid increase in runoff occurred. Thereafter the increase in run-
off for each percent greater slope was only slight.

Reviewing literature from cropped lands throughout the United
States, Wischmeier (1966) found runoff to be influenced largely by
the effect of slope on surface detention. Increased slope length, in
most instances, resulted in decreased runoff during the growing season
and increased runoff during the dormant season. These were generalities
and individual storm exceptions were common. Efforts to consistently
relate the exceptions to factors such as storm size, maximum 15 or 30
minute rainfall rate, crop growth stage, or antecedent moisture were
not successful., Swanson and Dedrick (1966) were able to simulate fairly
long slopes by using 12 foot by 35 foot plots with the long axis per-
pendicular to the contour and introducing the volume of runoff from
one plot uniformily across the top of the next lower one. This system

which allowed measurement of overland flow velocity in addition to
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water application and runoff rates, could prove to be quite a valuable
technique in evaluating slope length effects on infiltration.

Soil Properties. The effect of the physical properties of the
s0il itself in conjunction with the surface cavering are probably the
two most important factors affecting infiltration. Such physical soil
characteristics as organic matter (Free et al., 1940, Wischmeier and
Mannering, 1965, and Johnson, 1957), porosity (Musgrave and Free, 1936
and 1937, Dortignac and Love, 1960, and Tanner and Mamaril, 1959),
depth of fractured soil (Osborn, 1952), and, soil structure and texture
(Rauzi et al., 1968) have all been cited as being the primary limiting
factor controlling infiltration into a given soil. For this reason no
generalizations can be made concerning specific soil characteristics
which will dominate infiltration at a specific point. Organic matter
within the soil acts as a binding agent in the formation of soil
aggregates. Total soil porosity, permeability, and hence infiltration
are heavily dependent upon organic content, degree of compaction,
degree of aggregation, texture, and structure of the soil. Soil
structure, which can be altered by land use, and depth of soil fracture
are determined to a large extent by morphology and geologic history of
the site.

Some of the physical factors affecting infiltration into
variously structured soils have been discussed by Smith (1949). 1In
structured soils the shape of the aggregates is of utmost importance

because this determines how tightly they can be packed and consequently
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how impervious a layer will be formed when the soil is thoroughly
wetted and swollen. When dealing with infiltration into zonally
structured soils, the uncertainties are compounded. Each zone has
unique pecularities as does the areas of transition between soil
layers.

Soil rain-crust permeability characteristics were studied by
Tackett and Pearson (1965) who placed soil from the A and B horizons
of the same profile in separate three by three inch cylinders and
applied two inches of simulated precipitation. General results were
that harder, more impenetrable crusts were formed by the B horizom due
to the finer textured material. Microscopic examination of the B
horizon crust revealed a very thin coating of closely packed clay
particles within the surface five millimeters.

Free et al. (1940) studied infiltration data from experiments
on 68 sites throughout the United States. The solls varied over six
of the great soil groups, 39 soil series, nine groups of parent
material, and textures ranging from gravelly silt loam to clay. Sum-
marizing the data from all sites and correlating it with infiltration
during the third hour of the wet run, the relationships in Table 1
were developed. It was found that the infiltration data for all pro-
files could be expressed by the formula

a

I = bt (2)
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where, cumulative infilcration (inches)
t = time of infiltration (minutes)
b = a coefficient varying for the initial runs from
1 to 0,0087
a = an exponent varying for the initial runs from
0.04 to 0.B82.

As referred to in Table 1, dispersion ratio and suspension
percentage are measures of the ease with which soil particles are
brought into suspension. The suspension percentage is the amount of
particulate matter in suspension after agitation of ten grams of soil
in enough water to make one liter of solution. Dispersion ratioc is
then obtained by dividing the suspension percentage by the percent of
silt and clay in the soil sample as determined by mechanical analysis.
Both of these factors are inversely related to aggregation which is
a measure of the stability of soil particles after wetting. Clay,
silt, and organic matter are referred to as percentages. Moisture
equivalent is the maximum percentage of water that a soil can retain
in opposition to a centrifugal force of 1000 times the force of gravity.
Non-capillary porosity, as recognized by Free et al. (1940), is the
difference between total porosity and the moisture equivalent. Volume
welght is the weight of a given volume of soil compared to the welght

of an equal volume of water. For all practical purposes it is syn-

onymous with bulk density.
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Table 1. Soil characteristics significantly correlated with infiltra-
tion during third hour of wet run. (After Free et al., 1940)
——— — e, —

Correlation
with Infiltration Surface Soil Subsurface Soil
Total porosity *Total porosity
Aggregation *Organic matter
Posicive *Organic matter *Non-capillary porosity
*Non-capillary
porosity
Volume weight Moisture equivalent
Negative Suspension 511t and clay
Dispersion *Clay

* indicates highly significant (at the one percent level); otherwise
significant at the five percent level.

S50il Wettability. Extremely dry soils have frequently been
observed to show an initial resistance to wetting. Krammes and DeBano
{1965) suggest that this phenomena is probably caused by the formation
of inpenetrable air film at the soil-water interface. They concede,
however, that hydrophobic (water repellent} characteristics also exist
in seils of fairly high moisture content or wherever the soll particles
are coated with organic substances.

The implications of water repellent scils on land management
activities first received significant attention in the chaparral
brushland areas of California. The exact geographic extent of water

repellent soils is still not known but they have been reported, at
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least locally, over most of the western United States (DeBano, 1968).
Although hydrophobic soils have been reported on both burned and
unburned areas, the condition appears to be intensified by burning.
Depending upon local conditions, soll hydrophobicity can be of either
a temporary or permanent nature,

Infiltration Processes

Infiltration can, by strict interpretation of definitions, be
separated from quantitative permeability, which according to Richards
(1952) is the quality or state of a porous medium relating to the
readiness with which such a medium conducts or transmits fluids. More
simply infiltration refers to the movement of water through the soil
mass. The two phenomena are by thelr very nature, however, mutually
limiting (Kohnke, 1968). No more water can be transmitted downward
through the soil than initially enters it, nor can water at the surface
be Infiltrated more rapidly than pore space becomes available beneath
the surface. Therefore, in discussing infiltration we are of neces-
sity also, at least indirectly, considering the characteristics of
s0il permeability.

Evans et al. (1951) stated that permeability and infiltration
can be identical but only if the following conditions are satisfied:
(1) the soll is homogenous throughout, (2) a zero head of water is
maintained at the soil surface, (3) no lateral movement of the water
occurs, (4) the surface soll is not a restriction to water movement,
and (5) there is always atmospheric pressure at the base of the down-

ward advancing water front. Considering the heterogenous composition
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of spils and the complicated physical processes by which water enters
and moves through the soil profile, it seems very improbable that these
requirements would ever be fulfilled in naturally developed soils.
Bodman and Colman (1943), while working with uniform samples
of Yolo silt and sandy loam soils, were able to divide the wetted
portion into four distinct parts: the saturation zone, transition zone,
transmission zone, and the wet front. The saturation zone penetrated
to only less than two centimeters below the surface--even after maximum
wetting depth had been attained. Below this, in the tramsition zone,
soil water content (by weight) decreased with increased depth to about
six centimeters. The location of this zone did not appear to change
with duration of water application. The average for these two soils
was 70 to BO percent pore space saturation. As more water entered
through the upper two zones, the downward extent of the transmission
zone lengthened. Soil water content in this zone decreased slowly
with depth and duration of application until the wet front was reached.
This wet front was the demarcation line between moist and dry soil.
It was characterized by a very steep soil water gradient and repre-
sented the visible extent of moisture penetration (see Figure 2),
These observations by Bodman and Colman were affirmed mathematically
and discussed by Philip (1957). Philip attributed the transition zone
to a thin surface soll region in which the capillary potential arises
from a combination of both molsture content and depth from the soil

surface.
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Bodman and Colman (1943) also noted

++» that unless the larger holes [non-
capillary pores] left by decayed roots
and by animals come to the soil surface,
water will not move into them from the
soll mass during infiltration. They
will, in faect, act as nonconducting
passages and, so long as they fail to
extend into a zone of positive molsture
potentials, may actually retard soil
water movement. ... This observation
demonstrates the lack of positive or
even zero pressure potentials in the
infiltration zone.

From this they concluded that
-+« the decrease in dnfiltration rate
with time is caused primarily by a de-
crease in moisture potential gradient
within the transmission zone of the
soil. The average gradient in moisture
potential within this zone is evidently
approaching, as a limit, that of the
gravitational potential.

Working with undisturbed soils of varying initial moisture
content, Taylor and Heuser (1953) subjected samples 120 centimeters
long and ten centimeters in diameter to water under a constant head
of 1.2 centimeters. Their results indicated that infiltration rates
are largely dependent on moisture potential gradient within the soil.
This gradient appeared to be significantly greater in the wetting zone
and across the wetting front than within the zone of transmission.
Capillary conductivity was of secondary importance in determining
infiltration rates.

Free and Palmer (1940) used graded sand to demonstrate that in

soil columns uninfluenced by entrapped air, infiltration rates reach
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essentially constant values which are a function of the diameter of

the soil particles. Arend and Horton (1943) proposed that under normal
circumstances the length of time required for maximum infiltration rate
to become reasonably constant varied inversely with precipitation rate.
Horton (1933) states that maximum infiltration rate for most natural
soils generally changes from maximum te minimum values relatively
quickly after water is applied--one to three hours.

Many workers, although not specifically studying it, have
reported that infiltration rates appear to stabilize or become
essentially constant after some period of water application. The
ranges of time reportedly required vary from two to three minutes
(Fearse and Woolley, 1936), to as much as eight hours or more (Duley
and Kelly, 1941), with an average figure being about 30 minutes.

Observations by Russel (1946) do not agree with the constant
infiltration rate concept. Working with six-foot columns of undisturbed
Marshall silt loam so0il, he found that infiltration rates cannot be
properly termed constant; that actually they are curvilinear. Con-
sidering the wvariability of natural soils and the multitude of poten—
tially influencial factors which can affect infiltration rates, it
would seem difficult to refute Russel's conclusions. However, in a
practical sense and for field determinations in which it is conceded
that data are more qualitative than quantitative, it is commonly

assumed that infiltration rates do approach a more or less stable value.
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Nearly all reported experimental data have been collected
during that portion of the infiltration run which included the constant
rate. Also many workers, especially those using sprinkling devises,
conducted what is referred to as dry runs prior to making the actual
or wet run infiltration test. The reasoning behind this is to assure
that in comparative studies the initial water content of all test soils
is as nearly equal as possible, and to lessen or eliminate experimental
error resulting from interception losses (where vegetation is present)
and detention of water at the soil surface. Rauzi and Hanson (1966)
reported that infiltration rates during wet runs were only about one-
half of that during dry runs.

Osborn (1952) discussed the possible fallacy involved in rely-
ing too heavily on such constant rate or wet run data. He pointed out
that the maximum infiltration rate of a site during the initial period
of rainfall should not be overlooked when attempting to determine what
actually occurs during natural rainstorms. This is because most of the
annual rangeland precipitation occurs during the summer months as a
result of short duration, high rainfall rate, convective type storms
which typically fall on dry soil and usually amount to less than two
inches.

The idea of defining the movement of water into and through
solls by the use of mathematical models and formulae is older than the
concept of infiltration itself. In the past 60 years numerous theo-

retical and empirical approaches have been used in attempts to define
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and explain the factors affecting infiltration and percolation. More
recent works have utilized information gained earlier, updated it, and
presented more refined prediction and explanation equations for experi-
mentally determined phenomena.

Lewis and Powers (1938) attributed the determination of rate
of water movement through the soil to three conditions--soil pores,
hydraulic gradient, and viscosity of the water. These physical pro=
cesses of infiltration are noted by Smith (1949) to be basically a
function of water flowing into either a saturated soil or an unsatu-
rated soil. In a saturated soil all the pores are completely filled
with water. The mechanics of flow in a saturated soil can be expressed
by Darcy's Law,

v = Ki (3)
where, V = rate of flow

K = hydraulic conductivity of the soil which is

dependent primarily upon size, number, and
continuity of pores

i = hydraulie-head gradient of driving force.

Flow through an unsaturated soll, one in which all or part of
the pores contain a gas or vapor, 1s more complex. Here water movement
is determined more by a combination of factors including capillarity,
air-water interfaces, and gravity. In summarizing his mathematical
analysis of the interaction between capillarity and gravity during

steady state infiltration, Philip (1968) proposes that, where the pore
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radius is small, capillarity dominates soil water movement. As the
radii become larger, gravitational forces play an increasing role until
they become the dominant factor.

An early investigation by Gardmer (1920) noted the existence
of a water front within an insoluble uniform textured soil. He stated
that such a soil possesses a characteristic capillarity constant, which
in addition to the water content and soill water gradient, determines
capillary flow. Gardner hastened to add that this is not walid for
stratified soils.

Miller and Gardner (1962) stated that no really satisfactory
empirical equation has been derived which explains infiltration into
non-uniform or stratified socils. They showed infiltratlon rates to be
dependent upon soil water content, potential gradient, and the nature
of transmitting pores, not only during the initial stages of infiltra-
tion but also during extended test rums.

A recent paper by Skaggs et al. (1968) reviewed four of the
more widely accepted theoretical and empirical infiltration equatioms
and compared thelr predictions with measured values obtained on
several soils. The equations studied were

Green and Ampt (1911)

]
f = A{1+u§—lﬂ} (4)
where, f = infiltration capacity

F = accumulative infiltration

H = head of water on the surface



36

P = capillary potential at the wetting front

A, B' = constants dependent on soil type and

conditions,
Philip (1957}
¢ = seH2 .0 (5)
where, f = dinfiltration capacity

t = time
5, C = constants dependent on soil and
initial moilsture content

Horton (1940)

=Kft
£ fc + (fD + fc}e (6)
where, f = infiltration capacity
t = time

f = infiltration capacity at steady
state
f = infiltration capacity at time, t = p
Kf = a constant depending on the soll and
its surface conditions
Holtan et al. (1967)

n
f = n{St - F) + fc (7

where, f = dnfiltration capacity
St = gtorage potential of the soil above
the impeding strata (total porosity

minus the antecedent soll moisture

in units of length)
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a, n = constants dependent on the soil type,
surface, and cropping conditions
f = constant rate of infiltration after
prolonged wetting
F = accumulated infiltratiom.

In comparing the results of these equations with dry runm
experimental data cbtained from runoff hydrographs for simulated
storms, Skaggs et al. (1968) noted that Equation (4) gave a very good
fit during cthe initial 15 minutes. Between about 15 and 45 minutes,
it gives slightly high infiltration rate readings but thereafter drops
below the measured rates and becomes increasingly lower with time.
Equation (5) indicated a too low rate until about 12 minutes have
elapsed and then a slightly high reading to about 42 minutes. Beyond
this time the rate predicted is once again low and continues to become
even lower with time. Equations (6) and (7) fit the measured results
very well throughout the range of time studied except beyond 50 minutes
where it predicts very slightly high rates.

It was observed from the prediction and experimental curves
presented by Skaggs et al. (1968) that the deviations noted for the
dry run situation were magnified during wet runs.

Another common empirical infiltrationm equation is that
developed by Kostiakov and discussed by Gray et al. (1969)

a

1 = Kt (8)
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where, 1 total infiltration

4, K = constants characterizing ability of soll to
absorb water
t = time.

They state that Equation (B) is successful for defining the time rate
of infiltration for water applications of short duration. Equations
(2} and (8) are essentially similar.

The infiltration equations all seem to revolve about hydraulic
or caplllary conductivity and the total water potential gradient with-
in the soil. Gray et al. (1969) listed in Table 2 a number of important
factors affecting these two quantities.

Gardner (1967) presented a brief but informative review of
the development of mathematical theory in the understanding of the
physical processes of infiltration. He pointed out that the most
noteworthy progress in this field has occurred since 1950. FPrior to
that time emphasis was placed on the mechanics of experimentally deter-
mining infiltration values. However, once the mathematical barrier to
the explanation of unsaturated flow was broken, numerous more theo—
retically inclined researchers became interested in infiltration
phenomena.

Only recently have partial differential equations been used in
formulating theoretical infiltration equations. In this regard Philip's
(1957a, 1957b, 1957c¢, and 1957d) series of papers was a major break-
through. Philip (1957a) started with an equation for the flow of water

in an unsaturated porous system developed by Klute (1952}
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)
?ﬁ(ﬂre):v(lﬂk?'§) (9)
where, o = bulk density of the medium

e

A = fluid density

molsture content on a dry weight basis

K = coefficient of aqueous conductivity
V¢ = gradient of the total moisture potential

and derived, through the use of differential equations, a complicated
equation describing the infiltration rate of water into a semi-infinite
column of homogenous soll. This infiltration equation, Philip showed,
was closely comparable to measured rates but only for a finite period
of slightly less than 12 days. Realizing this inadequacy, Philip
(1957b) then approached solution of Equation (9 ) from a different
angle and developed theorems leading to the formulation of an accurate
equation for determining cumulative infiltration at times beyond twelve
days.

In the fourth paper of the series Philip (1957d)} proposed a
new term, sorptivity, which is a measure of the ability of a substance
to take up or lose a liquid by capillary action. This term is expressed
in cm sec-lfz. By integrating Equation (5), which was found to give

very good approximations when tested against numerical infiltratien

data, Philip presented
1 = sel/? 4 ac (10)

where, 1 = cumulative infiltration

S5 = sorptivity
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A

a measure of permeability
t = time.
Equation (I0) was easier to work with than Equation (3) and appeared

to meet the practical needs of applied hydrology.

Infiltration Measurement Methods

The methods, techniques, and equipment used in measuring
infiltration rates are nearly as numerous as the factors affecting it.
Most early experimental work was designed primarily for measuring
erosion and surface runoff. These first experimenters had little or
no results for guidance and their equipment was designed almost
entirely from speculation and trial and error. Results were, at best,
often crude. These experiments did, however, serve to point out many
of the pitfalls encountered in both the equipment and procedures used
in measuring infiltration.

The general methods of determining infiltration rates listed
by Parr and Bertrand (1960) include sprinkling devices, cylinder
infiltrometers, plot method, watershed hydrograph analysis, and
undisturbed soil cores or columns of disturbed soll, More recent
workers have improved upon some of these methods and altered them to
fit particular situations. 5Slater (1957) observed that future improve-
ments in infiltremeters are likely to be confined to modification of
existing apparatus.

There are numerous variations of each method but all werk on

one of three basic principles. After water has been applied, either
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naturally or artificially, to an area of known size, infiltration is
measured by determining: (1) the time required for a given volume of
water to be infiltrated; (2) the volume of water infiltrated during a
specific period of time; or (3) the difference between volume of water
applied and surface runoff. Possible methods of water application
include sprinkling, flooding, and natural precipitation. The size of
experimental areas vary from a few square inches in the case of some
cylinder infiltrometers to entire natural watersheds.

Sprinkling Devices. The sprinkling approach was recognized
early as being the most satisfactory means of artificially wetting a
plot. First attempts were understandably crude; Duley and Hays (1932)
used an ordinary sprinkler can while others experimented with garden
hoses. The basie research of Laws (1941) and Laws and Parsons (1943},
as discussed earlier, was responsible for revealing much information
concerning the characteristics of raindrops, thus enabling more recent
workers to better simulate natural rainfall conditions.

Although numerous methods and modifications have been used to
artifically sprinkle plots in the past, the four types of infiltrometers
most commonly used were discussed and compared by Wilm (1943). (1)
The modified type-F infiltrometer used a 6.6 foot by 12 foot plot
sprinkled by 13 type-F nozzles. Rainfall was measured during the test
runs by two trough gages each one inch wide and twelve feet long. (2)
Rocky Mountain infiltrometer (discussed later). (3) Modified North

Fork Equipment--water was applied to the 2.5 square foot plot by two
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type-F nozzles. (4) Pearse Square Foot Apparatus--water was applied
at ground level uniformly along the upper edge of a one square foot
area surrounded by a metal frame. Wilm concluded from this study that
only relative estimates of true infiltration can be expected when
using these infiltrometers, but that any of the four should provide

a satisfactory estimate,

Ellison and Pomerene (1944) designed a water applicator measur-
ing six feet by seven feet with which drop size, drop veloeity, and
applicatien rate could be varied individually. The device consisted
primarily of a water tank, screen for developing drops of the desired
size, motor to agitate the screen so that the drops would be distri-
buted over the plot surface, and a curtain which could be drawn beneath
the screen to commence or terminate the simulated rainfall. The water
tank was a metal six foot by seven foot pan with 0.042 inch diameter
holes spaced on four inch centers in the bottom. Below the pan was a
screen made of chicken wire covered with cheese cloth, When wetted
the cloth sagged into the wire openings and the droplets formed on
short pieces of yarn hanging from the sagging cloth. Raindrop size
was controlled by the screen openings and yarn size. Raindrop velocity
was determined by the height of the screen above the plot surface.
Control of the rate of application was attained merely by altering the
depth of water in the tank. This apparatus was a bulky laboratory

method and required a large frame from which to suspend it.
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There are two methods of simulating natural rainfall currently
in common use. Basiecally, one 1s a serles of spray nozzles calibrated
to supply water at a known rate to the test plot, and the other
involves water dripping from an elevated raindrop forming screen. Both
can be operated on moderately steep terrain and are designed to simu-
late natural rainfall conditions as nearly as possible by regulating
precipitation rate, drop size, and drop velocity.

The Rocky Mountain infiltrometer used by Dortignac (1951) con-
sisted essentially of a metal frame holding three standard U.5.D.A.
type-F spray nozzles 30 inches above the plot. The type-F nozzle
consists of a series of alternating disks and sleeves enclosed in a
cylindrical shell. The exact design and arrangement of the various
parts strongly affect the resulting spray. The nozzles were pointed
upward and toward the plot at an angle of 4° from the vertical. Water
was applied to an area of about 40 square feet with the actual measure-
ment plot of 2.5 square feet lying in the center of this area. Runoff
from the plot was collected in a trough and measured. The infiltro-
meter apparatus, 500 gallon water tank, and necessary accessories
required a 1.5 ton truck for transportationm.

The mobile raindrop applicator used by Osborn (1952 and 1953)
and by Rauzi and his co-workers in their rangeland infiltration studies
was a modification of the simulated rainfall principle developed by
Ellison and Pomerene (1944). Sufficient mobility was incorporated

into this unit so that it could be transported onmn a 1.5 ton truck.
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The drip screen could be elevated to a height at which drops falling
at 80 percent of terminal velocity of natural precipitation could be
attained. Infiltration was measured on a four square fopot area (two
feet square) located at the center of the circular 13 square foot
sprinkled area. Rates of application could be varied from two to six
inches per hour.

The Intermountain type-F infiltrometer described by Packer
(1957) allowed simultaneocus infiltration measurements on three two
foot by six foot plots within a watertight nine foot by nine foot
sprinkled area. Two banks of seven each F-type nozzles were placed
on parallel sides of the plot and canted slightly inward., The nozzles
were located 1B inches outside the plot wall and 30 inches above the
plet surface. This apparatus required more time to assemble and was
bulkier than the Rocky Mountain infiltrometer. Transportation require-
ments included two 1.5 ton trucks; one for the mechanical apparatus
and one for the 1000 gallon water tank.

Sprinkling apparatus are designed to function properly onlvy
in still air; therefore, all field units are equipped with wind screens.
In most cases they are complicated and time consuming to operate and
require a large water supply.

Adams et al. (1957) developed an ingenious but complicated
field device for evaluating infiltration, splash erosion, and runoff.
It is a combination rainfall simulator and cylinder infiltrometer.

The raindrop applicators were glass capillary tubes with chrome wires
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suspended in the openings to regulate flow into a six inch long and
3.75 inch diameter cylinder. Even though it is basically a field
operation, determination of the effect on infiltration of the pre-
viously mentioned factors invelves time consuming laboratory analysis.

Cylinder Infiltrometers. Compared to the sprinkling apparatus,

the cylinder infiltrometer is a relatively uncomplicated device which
consists of a concentric metal ring driven into the soil to the de-
sired depth. Water is then applied to the ring and the rate and volume
of intake measured. The size of cylinder infiltrometers vary from a
few inches to several feet in dlameter. After water is applied,
infiltration is measured in one of two ways. One method is known as
the constant head--here water within the infiltrometer is maintained at
a constant level throughout the experiment. Intake rates are measured
by recording the amount of water applied during a given time period.
The second, perhaps less common technique, is to apply a measured
quantity of water to the infiltrometer and record the time required
for it to be totally infiltrated.

Some workers make use of a second ring which is approximately
twice the diameter of the first. The outer ring acts to provide a
buffer soil zone which receives the same treatment as the inner area.
Only infiltration values from the inner ring are considered in the
final analysis. Buffering is simply a method of subjecting both the
test plot and an area surrounding it to the same infiltration processes.
This eliminates, or at least reduces the infiltration increasing effects

of lateral flow of soil water and air from the test area.
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Cox (1952) described a recording double ring infiltrometer
which used the coﬁstant head approach and was capable of continuously
recording water intake. The two concentric rings were eight and
twenty inches in diameter and each was equipped with a float device
to maintain the water head at a constant level both within and between
the cylinders. Water was fed to the inner ring from a recording rain
gage which had a top area equal to the infiltrometer ring; this enabled
water Iintake to be read directly from the rain gage chart.

Schiff (1953) presented a strong case for a "balanced buffer".
He pointed out that a partial buffer, one in which the water level in
the cuter ring is less than the inner ring, will permit lateral flow
from the inner ring. Likewise, an excessive buffer with the water
level in the outer ring higher than that of the inner ring, will reduce
normal downward flow from the inner ring.

Marshall and Stirk (1950) used ring type infiltrometers with
an inner ring of one foot and outside rings varying in size up to
three feet in diameter to study the effects of buffering on infiltra-
tion rates. They found buffering to generally reduce infiltration
rates but they also noted that the results were too variable for the
exact extent of the buffering effect to be evaluated. Swartzendruber
and Olson (1961) observed that buffering in sand models reduced
measured infiltration rates and that buffering effectiveness is
strongly dependent on ring diameter. Arnoviei (1955) noted similar

buffering effects and also pointed out that the diameter of single
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ring apparatus affects infiltration rates. He found infilcration
values to decrease at a fairly constant rate as ring size increases
from one to four inches. Using rings larger than four inches in
diameter, the infiltration values continued to decrease but at a
slower rate.

Arnovici (1955) also demonstrated that, gemerally speaking,
the deeper the cylinder is forced into the soil the less the infiltra-
tion rate will be. He continued by noting ring-determined infiltration
rates to be strongly affected by the presence or absence of slowly
permeable soil layers at or below the bottom of the cylinder. Both
Schiff (1953) and Arnovici recognized that infiltration rates increased
as the surface water head increased,

After noting that considerable discrepancy between infiltration
values measured with cylinder devices often occurred within apparently
similar solls, Shull (1954) experimented with single ring infiltro-
meters to determine the effect of depth of cylinder on infiltration
values. He used one foot diameter cylinders placed at depths of 0.2,
0.4, 0.6, and 0.8 of a foot in a cultivatred silty loam soil and proved
that shallower cylinder depths did result in significantly greater
infiltration. This effect became apparent soon after water was applied
and remained for at least 16 hours.

In comparing sprinkled plot infiltration values with cylinder
measurements on cultivated soils, Slater (1957) found a good correlation
especially when median cylinder infiltration rates were used rather than

averages, even though the cylinder rates were higher. Studying
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infiltration on grazed ranges in the southern Great Plains, Rhoades
et al. (1964) obtained results similar to those of Slater. Comparing
cylinder infiltrometers with a mobile infiltrometer such as that used
in experiments by Rauzi et al. (1968), Rhoades et al. showed the
cylinder device to take in two to three times more water. This
difference they attributed to: (1) the two inch head maintained in the
cylinders; (2) greater lateral flow from the cylinders; and (3)
surface sealing caused by raindrop impact.

The problem of entrapped air (as discussed in a previous
section) and of the relatively small experimental area employed are
the most serious drawbacks of cylinder infiltrometers. These dis-
advantages are, however, a direct result of their attractive features,
which include complete portability, ease of operation, small water
supply needed, inexpensiveness, and rapld, reasonably accurate results.

Haise et al. (1956) and Johnson (1963) have recognized the
desirability of all investigators using a standard test for infiltra-
tion measurements. They felt that by incorporating some of the
advantages of other methods, and at the same time eliminating or
reducing their disadvantages, a ring infiltrometer of sufficient size
could provide entirely satisfactory results.

Johnson set forth specifications for a standard ring infiltro-
meter apparatus which was both economic and versatile in operation.
Cylinders 20 inches high and of different diameters-—-12, 1B, and 24

inches--would be used. Whether to use a single- or double-ring system
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would be decided by the experimenter, but 1f the single-ring setup
was chosen the largest ring feasible would be selected. The 12 inch
and 24 inch rings would be used for the double-ring experiment.
Johnson suggested that the rings be driven six to eight inches into
the soil and a constant head of one to six inches be maintained with
the aid of some type of depth gage. Water intake measurements should
be made at intervals not exceeding 15 minutes during the first hour,
30 minutes during the second hour, and 60 minutes during the remainder
of a period of at least six hours. Haise's recommendations were very
similar but were designed primarily for determining infiltration
characteristics of irrigared soils.

Plot Method. The underlying principle of the plot approach
to evaluating infiltration is similar to that of the cylinder infilrro-
meter. Infiltration rates are calculated in both methods by measuring
the time required for water to be infiltrated into a flooded plot.
The major difference is that the plot method uses a much larger area.
Plot slzes used have ranged from eight square feet (Duley and Domingo,
1943a) to 3600 square feet (Burgy and Luthin, 1956). Parker and Jenny
(1945) reported using 0.22 acre plots in studying infiltration into
orchard scils but only shallow furrows were flooded, not the entire
plot.

The superiority of the use of buffering areas in the plot
study approach to Infiltration rate determination has been con-

clusively demonstrated. Kohnke (1938) found infiltration rates to
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increase as unbuffered linear boundary of the plot increased, and
Duley and Domingo (1943a) recorded a 75 percent increase in infiltra-
tion rates of unbuffered plots when compared to buffered omes. In
comparing results between infiltration values obtained by the plot
versus cylinder methods, Burgy and Luthin (1956) found six inch
diameter single ring infiltrometers randomly spaced to give values
within 30 percent of the mean infiltration rate as determined on a
3600 square foot plot area with uniform soils.

The plot approach has not gained wide acceptance in infiltra-
tion measurements, especially field studies. It is susceptible to
many of the same errors involved in cylinder devices and requires
large amounts of water plus considerable time to prepare the area for
testing. Since size of the plot can be controlled, the effects of
either increased or retarded lateral flow should be minimal. The
method is considered to give good results but requires an essentially
level test area. The plot method is probably best suited for a
permanent laboratory setup.

Hydrograph Method. The determination of infiltration rates

from the analysis of runoff hydrographs has been studied primarily by
hydrologists and arises from the need to predict runcff from storms of
a given rainfall rate and duration on a watershed. Horton (1937)
divided surface runoff producing storms into two categories: those

in which the maximum infiltration rate of all soils within the water-
shed were exceeded at the same time for at least one hour by pre-

cipitation rate (rainfall excess peried); and, those storms in which
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these conditions were not fulfilled. Horton then described a method
by which average maximum infiltration rate for the drainage basin
could be determined using elther type of storm. His basic assumption
was that surface runoff approximated the difference between pre-
cipitation and infiltration during the period of rainfall-excess. To
tind the infiltration rate consisted of arriving at a value for in-
filtration that satisfied the following condition:
Surface Runoff = Total Precipitation -

(Infiltration Rate x Duration

of Excess). (11)

Sherman (1938) pointed out that due to the detention of water
on the surface, infiltration rate for even a small watershed cannot be
assumed as being the difference between rainfall and surface runoff.
However, Cook (1946) concluded that infiltration data can be used to
determine runoff but only if it is from a relatively small, physically
homogenous area. To compute runcff from a large watershed, he sug-
gested, one would have to sum the runoff volumes from all individual
homogenous sub-units within the watershed.

Holtan and Kirkpatrick (1950) devised a means of considering
separately the three interacting phenomena of rainfall, infiltration,
and hydraulics in an attempt to predict runoff where only short term
data are available. They presented a family of curves representing
runcff expectancy for a ten year return period from small watersheds

of five to ten percent slope under various farming practices and
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vegetation cover. It was noted, however, that a particular set of
runoff curves would be valid only for very physically similar water-
sheds.

Because soils, topography, vegetation, and other infiltration
related physical factors vary over a natural watershed, the infiltra-
tion rate arrived at by the hydrograph method would, at best, only be
an average. This figure would also vary with season and antecedent
meisture conditions thus being of limited value in specific land use
management activities or in a comparative approach to studying
infiltration responses.

Laboratory Studles with Soil Cores. Much effort and time has

been devoted to finding suitable ways of determining infiltration and
percolation rates of soils by using small samples evaluated in the
laboratory. Both undisturbed field samples and samples screened and
packed in the laboratory have been studied. The most formidable
problem arising with the undisturbed sample is cutting and extracting
it from the soll in its natural state. One of the earlier and more
intensive studies of this was done by S5later and Byers (1931). They
developed an auger-like device for cutting field samples four inches
in diameter and nine inches long. The sample was removed by 1lifting
it out by hand where the column was stable enough or by digging out
the entire sampler and coating the core with paraffin. In studying

undisturbed cores and laboratory samples screened and packed from the
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same solls, they could make no generalizing statement relating
measured percolation values to sampling method. These tests were
run on several soil types.

Coile (1936) and Lutz (1947) each described a method for taking
small undisturbed soil samples. Both of these methods involved jacking
a cylinder into the soil and then digging it out. Goode and
Christiansen (1945) developed a lucite cylinder encased by a steel
jacket which when driven into the soil was capable of successfully
extracting a sample 4.5 inches in dlameter and 36 inches long. With
this transparent coating the condition of the soil sample was apparent
immediately and could be retaken if necessary.

Swanson (1950) developed a portable wheel mounted rig to act
as a stabilizer for driving a small core sampler. With this apparatus
he was able to obtain an undistrubed soil sample from which relative
measures of infiltration could be made. This basic principle is now
rather widely used and involves heavier and more mechanized equipment.
Andrews and Broadfoot (1958) designed the first hand-operated sampler
which used a soil cutter rotating about a fixed sample collecting tube.
This device was compact, portable, and capable of removing undisturbed
soil cores from depths of up to 17 feet. The cores, however, were only

approximately 2.75 inches in diameter and five inches long.



GRASSLAND INFILTRATION STUDIES

It would be difficult to overestimate the importance of infil-
tration to the ecology of the grasslands. Since a healthy vegetation
cover 1s essential to prevent soil losses by both wind and water
erosion and to make the area suitable for grazing, a high infiltration
rate is desirable. Obviously a healthy plant cover and high infiltra-
tion values are complementary. The desirable effect of native prairie
vegetation on infiltration as compared to both cultivated and reseeded
areas has been reaffirmed emphatically in the work of Rice and Dragoun
(1965) on small watersheds in Nebraska. In managing grasslands the
problem arises of manipulating grazing intensity to obtain maximum
animal use consistent with ground cover conditions which will permit
satisfactory infiltration and prohibit excessive erosion. Achieving
such a balance is a most difficult task in a region of low average
annual precipitation.

Prior to the severe drought of the 1930's little effort had
been directed toward treatment of grazing lands to enhance infiltrationm
and soil moisture conditions. Since then increasing importance has
been placed upon finding ways of holding water where it falls and
making it availlable for forage production.

According to Humphrey (1959) the amount of water which can be
stored 1s dependent upon the amount and distribution of precipitation

as well as the water holding capacity of the soil layer. The role of
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specific vegetation factors as related to range infiltration will ke
discussed, but first it might be well to cite the principal ways in
which Humphrey feels vegetation cover influences water. These include
interception (water may eventually reach the ground or it may not},
helps in retention of water and reducing runoff and ercsion, and uses
water in the growth process.

Working with soil and vegetation conditions typical of the
Intermountain region, Woodward (1943) showed that a high cover demsity
had a three fold effect on infiltration. It resulted in: (1) higher
initial maximum infiltration rate, (2) higher final maximum infiltra-
tion rate, and (3) increased duration of rain during which maximum
infiltration rate exceeded the minimum value. These general results
were substantiated on several rangeland sites in Nebraska by Duley and
Domingo (1949). They concluded that total ground cover, including
live grasses and associated litter, was of greater significance than
either grass species or soil characteristics. Contrary to cthis are
the results of Dortignac and Love (1960) who, while studying infiltra-
tion in mountain meadows and plne-grass types, found infiltration
values to be closely related with vegetation type. This association
they attributed to the differences in organic matter and physical
properties between types; however, they also noted that infiltration
rates vary even within cover types having similar species composition.

Turner and Dortignac (1954) studied infiltration and erosion

rates on six common mountain grassland cover types in western Colorado
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and found both infiltration and erosion to be more closely related to
cover type than to percent of ground covered. For instance, the Blue-
grass type, with 86 percent of the ground covered, showed an infiltra-
tion rate of 1.5 inches per hour while the weed type, consisting of
forbs and sparse grass, infiltrated water at 2.9 inches per hour with
only 48 percent of the surface covered. Although total weight of
sediment eroded from the Bluegrass type was low, the heavy runoff posed
a serious threat to less densely vegetated downslope sites. It was
pointed out that even though some species show relatively high infiltra-
tion rates, they do not necessarily provide satisfactory protection
against soil erosion. Earlier Johmson and Niederhof (1941) had arrived
at essentially the same results while working in the pine-grassland
types along the eastern slope of the central Colorade Rocky Mountains.

In southwestern Tdaho Craddock and Pearse (1938) studied the
detrimental effects of trampling stands of cheatgrass and wheatgrass.
Using sites varying in degree of slope and percent of ground cover,
they found that at least 70 percent ground cover was needed for satis-
factory runoff and erosion protection.

Results obtained by Rauzi (1960) in Montana and North Dakota
indicated a strong relationship between water intake and the amount of
natural mulch and forage yield. Where the amount of standing vegeta-
tion was dense, it appeared to overshadow the effect of mulch.

Johnston (1952) working in Alberta, Canada, compared infiltration rates

on undisturbed range plots with values on plots from which fresh mulch,
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current vegetation, or all surface organic matter had been removed.
His results were similar to those reported by Rauzi.

As has just been pointed out, there is a combination of surface
cover factors which exert considerable control over the processes of
infiltration on grasslands. Any influence which alters this combina-
tion will in some way effect infiltration. Grazing is perhaps the most
common such impact and is of utmost concern to rangeland managers.

Duley and Domingo (1949) found that overgrazing of MNebraska
grasslands caused surficial compaction and removed the bulk of growing
plant material, thereby reducing the accumulation of natural mulch
cover. Dyksterhuis and Schmutz (1947) noted that when green forage
was scarce the coarse, undecayed, natural mulch was grazed. Working
with upland short grasses and Western wheatgrass in Kansas, Hopkins
(1954) found infiltration to occur considerably faster on ungrazed
land and the difference increased with time. After approximately 1.5
hours infileration rates for the ungrazed and grazed areas leveled off
at about eight and 1.5 inches per hour, respectively.

Rauzi et al. (1968) consolidated and summarized extensive
infiltration data which had been collected on rangelands in the
northern and central plains by his co-workers and himself over a period
of twelve years. In all, 670 infiltration tests were made on the 37
test locations specifically chosen to represent as wide a variety of
soll and cover conditions as possible. Analysis of the results proved

the amount of total weight of wvegetal cover to be more important than
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measures of texture, structure, or percent of bare ground exposed.
Generally the amount of vegetal material per acre necessary to increase
infiltration rates by one inch per hour varies widely both between and
within general soil types. The results did, however, show that it
requires less additional total cover to increase infiltration rates on
the lighter textured scils and alsec that soils of good structure
infiltrated water more rapidly than poorly structured ones.

Rauzi (1963) compared heavily grazed, moderately grazed, and
ungrazed ranges in North Dakota and found the ungrazed areas to have
three times the standard crop and to infiltrate water nearly four times
faster than heavily grazed areas. Osborn (1952), Texas and Oklahoma;
Dortignac and Love (1960) and Dunford (1954), central Colorado mountain
grasslands; Branson et al. (1962}, northeastern Montana; and, Rhoades
et al. (1964), northwestern Oklahoma have all reported infiltration
rates to be higher on less intensely grazed ranges.

Runoff from three small differentially grazed South Dakota
watersheds was studied during a series of three rainstorms by Sharp
et al. (1964). Runoff from the first storm was entirely as expected,
i.e., it increased with grazing intensity. The second storm, which
was the lightest of the three, caused only a small percentage of the
rainfall to become runoff from any area. During the third storm,
however, runoff from the lightly grazed watershed was actually more

than ten percent greater than from the heavily grazed one. Soil water

data collected from the surface one foot of soil during the dbservation
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period offers the best explanation. Prior to the initial storm soil

water content was least under the lightly grazed cover; but following
the second storm this situation had been reversed, thus allowing less
infiltration into the lightly grazed watershed during the third storm.

Rangelands which have been subjected to periodic burning
naturally have reduced amounts of mulch and therefore, more exposed
area between grass clumps. Osborn (1953) demonstrated under actual
grazing conditions on the southern plains that 4,000 to 6,000 pounds
per acre total ground cover was necessary to provide satisfactory
protection against splash erosion. While studying soll water condi-
tions as affected by burning of native eastern Kansas pastures, Hanks
and Anderson (1957) took advantage of the opportunity provided by a
heavy natural rainstorm to evaluate the effects on infiltration. Their
data indicated that about 56 percent of the precipitation became run-
off from the burned plots while approximately 16 percent of the pre-
cipitation became runoff on the unburned check area. Because at the
time of the storm all plots supported nearly a year's vegetation growth,
annual burning, regardless of the time of year performed, greatly
reduced infiltration values.

Scott (1956) compared relative infiltration values on burned
and unburmed sites of varying ground cover in northern California. His
results indicated significantly higher infiltration rates on the burned
plots up to one year after treatment. These results, however, ignore
the possible detrimental effects of reduced vegetation cover on the

overall hydrology of the site.
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On sparsely vegetated rangeland soils in Arizona, Lyford

(1968) studied the effect of single plants on infiltration rates.

Rates were found to be considerably higher under the plant canopy

than in the inter-plant area. Higher under-canopy infiltration rates
were attributed primarily to biotic activity, protection from rain-
drop impact, and protection from animal compaction. Physical dif-
ferences in the soils were observed to be due mainly to biotic activicy
and wind deposited soil material. Even though quantitative infiltra-
tion rates were affected somewhat by different plant species, general
trends remained simjlar.

Dunford (1954) removed all mulch from 0.0l acre plots in the
ponderosa pine type, which is frequently associated with mountain
grasslands, and found that heavy surface runoff and erosion occurred.
The untreated check plots showed no surface runoff or erosion. Effects
of the treatment decreased steadily and were lost completely in five
years. On areas where all mulch plus trees were removed, the surface
runoff and erosion effects were more pronounced,

The treatment and use of rangelands in a manner which leaves
them capable of infiltrating maximum amount of precipitation has long
been recognized by range managers as a prime prerequisite to the
production of forage and the control of runoff and erosion (Rauzi,
1960). The manipulation of vegetation cover has been generally regarded
as the major means of altering infiltration wvalues. Such practices

as contour furrowing, range pitting, and water spreading have proven
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useful in enhancing on site infiltration for at least several Years
when used in conjunction with seeding and/or controlled grazing.
Proper post treatment range utilization is a major factor in extending
the effective life of these practices,

Brehm and Malmsten (1954) reviewed earlier studies which
evaluated the comparative effects of pitting versus contour furrowing
on ranges throughout the northerm plains. They noted that in general
contour furrowing showed greater benefits than pitring, especially
where the furrows were kept small (six inches or less in width and
depth) and spaced at distances of about five feet. By using more and
smaller furrows, the disadvantage of relatively large areas of disturhbed
soil was avoided. Best results with both types of treatments were
noted on fairly uniform slopes of less than 20 percent.

Barnes (1952) made an evaluation of the effects of range
pitting on Wyoming plains ten years after the operation and found
carrying capacity of the range had been increased by approximately
one-third, The actual storage capacity of the pits was equal to 0.3
inches of precipitation. Data from a limited number of tests showed
the pitting had increased infiltration rate by as much as Eifty per-
cent. Rauzi and Lang (1956) studied three additional years' data
from the same area and expressed the beneficial effects in terms of
increased grazing capacity and animal weight gains. Thirteen years
after treatment both increases were still evident even though at a

declining rate, Working with approximately 20 years of data collected
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from extensive range experiments in Nebraska, Dragoun and Kuhlman
(1968) concluded that surface runoff was reduced and soil water ing-
creased by both contour furrowing and pitting, but that furrowing was
definitely better.

Where sufficient runoff occurs at least once per year, the
results of flood water spreading as a means of increasing infiltration
and consequently forage production have generally been favorable.
Monson and Quesenberry (1958) reported forage yields on treated ranges
in Montana to average 300 to 350 percent greater than on untreated
areas. Branson (1956) and Houston (1960), working on separate areas
in southeastern Montana, also reported significant forage production
gains from water spreading.

One of the major problems which can arise in an operation
of this type is that of sedimentation. Hubbell and Gardner {1950)
studied this condition extensively in New Mexico and noted that exces-
slve sediment deposits damaged to some degree all grasses studied
except western wheatgrass. They did not study the direct effect of
this sediment on infiltration; however, soil water data showed that
water had penetrated deeper into the flooded soils. This increased
soil water effect was more noticeable during the fall of the year
than in the spring.

In semi-arid areas of Arizona the effects of range improvement
treatments such as brush clearing, pitting, and seeding to grasses

were tested on surface characteristics and soil movement due to
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rainfall. Kincaid and Williams (1966) found the soil exposed by
pitting to be quickly washed away but that surface characteristics
stabilized after one summer's rain. In most instances the lower
portion of 12 foot long rectangular plots on gently sloping terrain
showed the most erosion. This they attributed to increased quantity
and velocity of overland flow on the lower one-half of the plot.

The adverse effect of rain induced surface crusts on erosion
and infiltration is obvious. Fletcher and Martin (1948) designed a
study to evaluate the effect of algae and mold crusts of desert soils
on these factors. Their conclusions were that organic carbon content
and nitrogen content in such crusts were as much as 300 and 400 per—
cent higher than in the underlying soil, respectively. Based on
observational evidence they also believed microfloral invasion of the
crust to improve infiltration and to aid larger plant species in

becoming established.



GRASSLAND INFILTRATION DATA

Infiltration rates and supplemental data were drawn from 41
grassland infiltration references. These references describe infiltra-
tion studies on numerous contrasting grassland areas. The studies
vary in geographical location, season of measurement and infiltration
measurement methodology used,

To facilitate comparison and interpretation of data from such
a large number of varied infiltration experiments, a composite summary
sheet was considered the most practical approach. To supplement the
summary sheet, several figures are used to emphasize certain aspects
of the data. Appendix A shows the location of experiments.

The composite summary sheet, Appendix B, lists measured in-
filtration rate data and the pertinent circumstances surrounding its
collection. Specific information in Appendix B includes: the reference
from which data was taken; location of the experiment; precipitation
regime of the area; time of the experiment:; soil conditions; plant
cover data; cultural use of the {mmediate site; slope percent;
description of the infiltration rate measuring apparatus; measured
infiltration rates; and, other comments clarifying experimental cir-
cumstances.

Explanation of Data Arrangement

To simplify the assembling of data for Figures 3 and 4,

symbols were used in certain categories of Appendix B. Under "Location"
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the following symbols (T), (M), (H), and (5) are used to indicate True
Frairie, Mixed Prairie, Highlands region, and Semi-arid areas, respec—
tively. Soil conditions are keyed by (L), (M), and (H) which refer to
light, medium, and heavy soil indices. Range conditions recognized
include: excellent, good, fair, or poor condition and are indicated

by (E), (G}, (F), or (P), respectively.

Where a range condition classification was not specifically
reported by the researcher, a subjective decision was made based on
available information concerning plant species, percent ground cover,
past use of the site, and precipitation regime. Infiltration rate
data for each of the range condition classes were further divided
into three general soil index classifications: light, medium, and
heavy. Where the information was avallable, consideration was given
to both surface and subsurface soill characteristies such as texture,
drainage properties, degree of erosion, parent material, and structure
in arriving at a relative index rating. In several instances this
information was not available and the decision as to which range
condition class or soil grouping a site should be placed in involved
subjective considerations. In some instances the infiltration data
in Appendix B represent an average value for a number of individual
infiltration tests on a given site.

Figures 5A, 5B, 5C, and 5D provide a means of schematically
indicating the relative frequency with which runoff and infiltration

can be expected to occur within the different grassland regions and
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range condition groupings. The following procedures were used to
categorize the data assembled in Appendix B, First, the individual
studies were separated by geographic regions as discussed in the
Ecology section, i.e., True Prairie, Mixed Prairie, Highlands, and
Semi-arid areas. Then, within each geographical region the guantita-
tive infiltration data were arranged into 0.2 inch per hour infiltra-
tion rate classes according to the soil index and range condition
described for each test location.

Infiltration values for a one hour period were used because
this was the time interval rate most frequently reported in the
literature. Where other time intervals were reported, the rate most
nearly coinciding with the initial one hour period was used. Also,
because a preponderance of the data was thus reported, dry run infiltra-
tion rates were used where given.

All of the Mixed Prairie data used in the analysis are from
dry run tests. For the True Prairie, 70 percent of the data are from
dry run experiments. Only 63 percent of the Semi-arid region data are
for dry runs and unfortunately, this 1s the region in which the inirial
infiltration rate is the most important. Thirty percent of the High-
land region data are for the dry run; however, in this region dry run
data are probably less important because of the most frequent showers
and generally higher soil moisture content.

Rainfall data in Figure 5 were derived from USWB Technical

Paper No. 40 (1961). Cumulative frequency curves were developed for
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extreme storms of ten minute and one hour durations using return
perieds of 2, 5, 10, 25, 50, and 100 years. The ten minute duration
storm was chosen because over vast areas of the regions studied, storms
of short duration and high rainfall rate occur relatively frequently
and account for a high percentage of the total annual precipitation.
The one hour duration storm was used because much of the infiltration
data presented in Figures 3 and 4, and consequently the conclusions
derived therefrom, were for infiltration rates calculated from one

hour tests. 1In Figure 5 infiltration data from Appendix B were grouped
into two classes. Excellent and good range conditions were grouped
together and fair and poor range conditions were likewise grouped.

In referring to the cumulative distribution of infiltration and
precipitation rates in Figure 5, it should be recognized that the two
rates are not strictly comparable. The precipitation curves represent
the probability of storm events not exceeding the indicated precipita-
tion rate. The cumulative distribution of infiltration rates are based
only on the reported data and do not include the extremely high or low
values which no doubt oeceur loecally over a region.

Interpretation of Results

Infiltration data groupings by geographical area, range con-
dition, and soil indices are illustrated in Figures 3 and 4. These
fipures represent consolidation of the data in Appendix B, and are
presented to facilitate visual analysis of soil, range condition, and

infiltration rate relationships, Slight discrepancies in the expected
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relationship between soil index or range condition and median infiltra-
tion rates in Figure 4 are, in many instances, due to lack of data in
a particular classification. Where data from all regions are combined
(see Figure 4E), the relationships are as anticipated.

Shortage of data is probably the cause for most inconsistencies
in Figures 3 and 4, Other reasons could include experimental mechods
used, very localized test site conditions such as soll cracking, or
perhaps other experimental details which were not reported.

Considering range condition data collectively from all sites
(see Figure 4E), a definite trend of higher average infiltration rates
with improved range condition is noted. Likewise, analyzing all 214
data and disregarding range condition, a trend toward higher infiltra-
tion rates with lighter index soils is found. Range condition presents
the stronger relationship, however. From Figure 3 it appears that,
all regions considered, median infiltration values for medium index soils
show the best relationship with range condition.

It should also be recognized that the quantitative aspects of
infiltration data are only relative and are not totally correct when
applied under circumstances alien to those under which the experiment
was conducted.

Mixed Prairie. A relatively wide variation in median infiltra-

tion values for different Mixed Prairie range conditions i{s indicated
by the data in Figure 4A. Neither range condition nor soil character-

isties can be definitely correlated to Mixed Prairie infiltration rates,.
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However, when the interaction of the two is analyzed (see Figure 34)
a good relationship between range condition and soils, especially the
medium indices, is found.

Infiltration rates were relatively high under excellent range
conditions but drop markedly for the other condition classes. Median
infiltration rates for good and fair condition ranges were very similar
and slightly in excess of two inches per hour with fair condition
areas actually having the higher rate. Ranges in poor condition gave
the expected low infiltration value.

Data for the Mixed Prairie (see Figure 5A) indicate that an
intense ten minute duration storm on fair and poor range conditions
will result in runoff at all times. For the one hour duration storm,
total infiltration would occcur at all times under all range conditions.

Because the Mixed Prairie is of such great importance to
grazing interests, it has received considerable range infiltration
research attention. However, results from much of the soil-plant-water
relationship research have been expressed in terms of differences in
range carrying capacity, herbage yield, or animal weight gains, rather
than infiltration characteristics. Too often when infiltration rates
were reported, it was done only as a matter of secondary importance
and therefore complete information was often not presented.

True Prairie. Included in the infiltration data for the True
Prairie region are data collected under various degrees of pasture
usage in the eastern United States. The eastern data were included

because data from the True Prairie were somewhat lacking.
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One possible explanation for the apparent lack of rangeland
related infiltration data from the True Prairie is that grazing is of
relatively minor importance there. Crop oriented agriculture is pre-
dominant in that region and as a result, most infiltration studies
have been conducted on cultivated sites.

Considering median infiltration values for the entire True
Prairie region for range and soil conditions separately (see Figure
4B), it can be seen that soil index shows a very marked effect on
measured infiltration rates. Excellent and good range conditions show
a positive trend, but between fair and poor range conditions there
appears to be no difference.

Examining the interactions of soil and range conditions (see
Figure 3B), it is found that on fair and poor condition ranges, soil
index is of minimal importance in determining infiltration rates. On
excellent and good condition ranges, however, soil index shows a very
definite and positive influence on infiltration.

The True Prairie is the only region to show runoff for a one
hour duration storm (see Figure 5B). Runoff for the ten minute
duration storm at the 0.5 probability level is greater for this region
than any other. Although this is contrary to what might be expected,
overland flow does not necessarily have to occur when the infiltration
rate of a soil is exceeded. Water could be standing on the surface
and its runoff inhibited by the very gentle slopes and heavy grass

cover characteristic of the region.
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Highlands region. In the Highlands various range conditions
(see Figure 4C) exhibit excellent infiltration rate relationships., 5Soil
index, however, does not show a definite relationship. In analyzing
the interactions of soil index and range condition (see Figure 3C),
it is found that medium and heavy index soils do glve the expected
infiltration relationships, but not light index soils. GCenerally,
the implication is that range condition affects infiltration rates
more than soil conditions in the Highlands region.

Infiltration rates for the excellent and good range conditions
always exceed the rainfall rate for the one hour duration (see Figure
5C). Also, fair and poor condition ranges appear to be capable of
infiltrating the entire one hour duration storm practically all of the
time. An intense ten minute duration storm will cause runoff at all
times from fair and poor condition ranges. The same storm on excellent
and good condition ranges will result in runoff about half of the
time.

Semi-arid. Data from the Semi-arid region (see Figure 4D)
indicate that range condition has practically no effect on median
infiltration rates. From Figures 3D and 4D infiltration rates do,
however, appear to be closely related to soil index, especially in the
fair and poor range condition areas. This observation cannot be
extended to the excellent and good condition ranges because of the

lack of data.
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In addition to the lack of data for some range conditions,
the Semi-arid data also include infiltration values for the Badger
Wash study (Thompson, 1968), and possibly others like 1t. At Badger
Wash it was found that the season of year was more closely related
to variations in infiltration rates than was range or soll conditions.

For the one hour duration storm (see Figure 5D), total
infiltration will occur under all range conditions with the possible
exception of extremely high rainfall rates. The ten minute duration
storm will produce runoff at all times from all range conditions.
These seemingly high infiltration probabilities in Semi-arid regions
could be due to the low percentage (less than eight percent) of heawvy
index soils studied.

Summary and Conclusions

As evidenced by the section on Infiltration Measurement Methods,
there is no widely accepted method of determining infiltration rates.
To a large degree, this non-standardization is due to modifications
of equipment and procedures necessitated by specific field problems.
An additional source of confusion encountered when attempting to analyze,
compare, and interpret different experimental results is the manner in
which the research effort is described.

Infiltration data analyzed herein include values determined
with a variety of infiltrometer apparatus types. Also, it was not
possible to be completely comsistent in reporting data from

either wet or dry run tests, or for similar time segments
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of the infiltration test run. The quantitative aspects of infiltra-
tion data are only relative and apply only to the specific conditions
under which it was collected.

Bearing in mind the obvious limitations of this interpretation
of the amassed infiltration data, it is felt that the 214 infiltration
values gathered from 41 references represent a broad spectrum of
rangeland sites and experimental circumstances., These data should be
sufficient to permit reliable generalizations concerning range and
soll conditions as they relate to infiltration rates.

Since field working conditions, economic factors, available
time, and accuracy desired will always affect the choice of instru-
ments, the use of different types of infiltrometers will be perpetuated.
However, some reasonable standard procedures should be followed when
reporting experimental infiltration results. As has been brought out
earlier in this report, a tremendous number of factors can materially
affect infiltration values., For this reason every effort should be
made by the experimenter to include in his report pertinent informa-
tion concerning at least the generally recognized influencial factors.

In future studies more emphasis should be placed on infiltra—
tion rates during the initial phase of the test. This time interval,
about the first 20 minutes, is especially critical where an effort is
being made to relate land use characteristics to actual infiltration
rates, The importance of infiltration data for the longer periods
(often reported as final infiltration rates) is not questioned; however

it should not be the only value recelving attention,
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The recent trend in infiltration research has been to
emphasize the explanation and prediction of infiltration through the
application of mathematical and physical theoretical concepts,

Future research effort will probably be directed at applying these
theoretically derived infiltraticn approximations, which are currently
valid under rather limited conditions, to areas the size of natural

watersheds,
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APPENDIX A

SKETCH MAP SHOWING APPROXIMATE LOCATIONS

OF INFILTRATION EXPERIMENTS
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APPENDIX B

TABLE 13

INFILTRATION DATA SUMMARY SHEET
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