

ii

THESIS

IMPACT OF RESEQUENCING BUFFER DISTRIBUTION ON PACKET

REORDERING

Submitted by

Raghunandan Mandyam Narasiodeyar

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2011

Master‟s Committee:

 Advisor: Anura. P. Jayasumana

 Yashwant. K. Malaiya

 Sudeep Pasricha

ii

ABSTRACT

IMPACT OF RESEQUENCING BUFFER DISTRIBUTION ON PACKET

REORDERING

 Packet reordering in Internet has become an unavoidable phenomenon wherein

packets get displaced during transmission resulting in out of order packets at the

destination. Resequencing buffers are used at the end nodes to recover from packet

reordering. This thesis presents analytical estimation methods for “Reorder Density”

(RD) and “Reorder Buffer occupancy Density” (RBD) that are metrics of packet

reordering, of packet sequences as they traverse through resequencing nodes with limited

buffers. During the analysis, a “Lowest First Resequencing Algorithm” is defined and

used in individual nodes to resequence packets back into order. The results are obtained

by studying the patterns of sequences as they traverse through resequencing nodes. The

estimations of RD and RBD are found to vary for sequences containing different types of

packet reordering patterns such as Independent Reordering, Embedded Reordering and

Overlapped Reordering. Therefore, multiple estimations in the form of theorems catering

to different reordering patterns are presented. The proposed estimation models assist in

iii

the allocation of resources across intermediate network elements to mitigate the effect of

packet reordering. Theorems to derive RBD from RD when only RD is available are also

presented. Just like the resequencing estimation models, effective RBD for a given RD

are also found to vary for different packet reordering patterns, therefore, multiple

theorems catering to different patterns are presented. Such RBD estimations would be

useful for allocating resources based on certain QoS criteria wherein one of the metrics is

RD. Simulations driven by Internet measurement traces and random sequences are used

to verify the analytical results. Since high degree of packet reordering is known to affect

the quality of applications using TCP and UDP on the Internet, this study has broad

applicability in the area of mobile communication and networks.

iv

TABLE OF CONTENTS

TABLE OF CONTENTS .. IV

LIST OF FIGURES .. VI

LIST OF TABLES .. IX

CHAPTER 1. INTRODUCTION... 1

1.1 CONTRIBUTION ... 4

1.2 THESIS OUTLINE .. 5

CHAPTER 2. BACKGROUND ... 6

2.1 CAUSES OF PACKET REORDERING .. 6

2.2 EFFECTS OF PACKET REORDERING ... 8

2.3 IMPORTANCE OF UNDERSTANDING PACKET REORDERING... 8

2.4 MEASURING PACKET REORDERING ... 10

2.4.1 REORDER DENSITY (RD) ... 10

2.4.2 REORDER BUFFER OCCUPANCY DENSITY (RBD) ... 11

2.4.3 TERMS USED TO DEFINE RD AND RBD .. 11

2.4.4 ILLUSTRATION TO EXPLAIN REORDER DENSITY .. 13

2.4.5 ILLUSTRATION TO EXPLAIN REORDER BUFFER OCCUPANCY DENSITY .. 14

2.5 PACKET REORDERING PATTERNS .. 15

CHAPTER 3. IMPACT OF DISTRIBUTION OF RESEQUENCING BUFFERS ON PACKET

REORDERING 19

v

3. 1 RESEQUENCING ALGORITHM ... 21

3. 2 IMPACT OF RESEQUENCING BUFFERS ON REORDER DENSITY... 24

3. 2. 1 CONCATENATION PROPERTY OF REORDER DENSITY ... 24

3.2.2 REORDER DENSITY OF INDEPENDENT REORDERING PATTERNS .. 27

3. 2. 3 REORDER DENSITY OF EMBEDDED REORDERING PATTERNS .. 33

3. 2. 4 REORDER DENSITY OF OVERLAPPED REORDERING PATTERNS ... 55

3. 3 IMPACT OF RESEQUENCING BUFFERS ON REORDER BUFFER OCCUPANCY DENSITY 68

3.4 VERIFICATION AND ANALYSIS ... 73

3.5 CONCLUSION ... 79

CHAPTER 4. REORDER BUFFER OCCUPANCY DENSITY FROM REORDER DENSITY................... 80

4.1 REORDER BUFFER OCCUPANCY DENSITY (RBD) FROM REORDER DENSITY (RD) .. 81

4.1.1 INDEPENDENT REORDERING PATTERNS ... 83

4.1.2 EMBEDDED REORDERING PATTERNS ... 86

4.1.3 OVERLAPPED REORDERING PATTERNS .. 91

4.2 VERIFICATION AND ANALYSIS ... 98

4.2.1 ILLUSTRATIONS... 100

4.3 CONCLUSION ... 124

CHAPTER 5. CONCLUSION .. 125

CHAPTER 6. FUTURE WORK ... 126

6.1 PACKET REORDERING IN MOBILE NETWORKS ... 127

6.2 REORDERING IN AREAS OUTSIDE COMPUTER NETWORKS .. 127

REFERENCES .. 129

APPENDIX .. 136

vi

LIST OF FIGURES

FIGURE 1-1. GRAPH SHOWING THE NUMBER OF INTERNET USERS IN 2010 [64] ... 1

FIGURE 1-2. GRAPH SHOWING THE INTERNET PENETRATION IN 2010 [64] .. 2

FIGURE 2-1. INDEPENDENT REORDERING EVENT .. 16

FIGURE 2-2.EMBEDDED REORDERING EVENT .. 17

FIGURE 2-3. OVERLAPPED REORDERING EVENT ... 17

FIGURE 3-1. HIGH-LEVEL DESCRIPTION OF THE PROBLEM .. 21

FIGURE 3-2. LOWEST FIRST RESEQUENCING ALGORITHM ... 23

FIGURE 3-3. RESEQUENCING ALGORITHM EXPLAINED WHEN TWO BUFFERS ARE AVAILABLE ... 23

FIGURE 3-4. A SEQUENCE CONTAINING MORE THAN ONE REORDERING PATTERN ... 26

FIGURE 3-5. CHANGE IN DISPLACEMENT VALUES OF A SEQUENCE CONTAINING AN INDEPENDENT REORDERING PATTERN 28

FIGURE 3-6. DISPLACEMENT OF THE LATE PACKET „P‟ AFTER RESEQUENCING ... 31

FIGURE 3-7. CHANGE IN DISPLACEMENT VALUES OF A SEQUENCE CONTAINING AN EMBEDDED REORDERING PATTERN 34

FIGURE 3-8. DISPLACEMENT OF THE LATE PACKETS AFTER RESEQUENCING... 37

FIGURE 3-9. CHANGE IN DISPLACEMENT VALUES OF A SEQUENCE CONTAINING AN OVERLAPPED REORDERING PATTERN 56

FIGURE 3-10. DIFFERENT MODULES USED FOR VERIFICATION AND ANALYSIS .. 74

FIGURE 3-11. INITIAL GRAPHS OF RD AND RBD OBTAINED FROM ONE OF THE TRACES. ... 76

FIGURE 3-12. GRAPH OF RD AFTER USING 5 RESEQUENCING BUFFERS .. 77

FIGURE 3-13. GRAPH OF RBD AFTER USING 5 RESEQUENCING BUFFERS ... 77

FIGURE 3-14. GRAPH OF RD AFTER USING 15 RESEQUENCING BUFFERS .. 78

FIGURE 3-15. GRAPH RBD AFTER USING 15 RESEQUENCING BUFFERS .. 78

FIGURE 4-1. HIGH LEVEL DESCRIPTION OF THE PROBLEM .. 82

vii

FIGURE 4-2. VERIFICATION PROCESS IN DERIVING RBD FROM RD ... 99

FIGURE 4-3. RD GRAPH FOR AN IR EVENT CAUSED BY A LATE PACKET ... 101

FIGURE 4-4. RBD GRAPH SHOWING THE ACTUAL AND COMPUTED VALUES FOR AN IR EVENT CAUSED BY A LATE PACKET . 102

FIGURE 4-5. RD GRAPH FOR AN IR EVENT CAUSED BY AN EARLY PACKET... 103

FIGURE 4-6. RBD GRAPH SHOWING THE ACTUAL AND COMPUTED VALUES FOR AN IR EVENT CAUSED BY AN EARLY PACKET

.. 105

FIGURE 4-7. RD GRAPH FOR AN ER EVENT CAUSED BY A LATE PACKET EVENT EMBEDDED WITHIN A LATE PACKET EVENT 106

FIGURE 4-8. RBD GRAPH SHOWING THE ACTUAL AND COMPUTED VALUES FOR AN ER EVENT CAUSED BY A LATE PACKET

EVENT EMBEDDED WITHIN ANOTHER LATE PACKET EVENT .. 107

FIGURE 4-9. RD GRAPH FOR AN ER EVENT CAUSED BY AN EARLY PACKET EVENT EMBEDDED WITHIN A LATE PACKET EVENT

.. 109

FIGURE 4-10. RBD GRAPH SHOWING THE ACTUAL AND COMPUTED VALUES FOR AN ER EVENT CAUSED BY AN EARLY PACKET

EVENT EMBEDDED WITHIN A LATE PACKET EVENT .. 110

FIGURE 4-11. RD GRAPH FOR AN ER EVENT CAUSED BY A LATE PACKET EVENT EMBEDDED WITHIN AN EARLY PACKET EVENT

.. 111

FIGURE 4-12. RBD GRAPH SHOWING THE ACTUAL AND COMPUTED VALUES FOR AN ER EVENT CAUSED BY A LATE PACKET

EVENT EMBEDDED WITHIN AN EARLY PACKET EVENT .. 112

FIGURE 4-13. RD GRAPH FOR AN ER EVENT CAUSED BY AN EARLY PACKET EVENT EMBEDDED WITHIN ANOTHER EARLY

PACKET EVENT .. 114

FIGURE 4-14. RBD GRAPH SHOWING THE ACTUAL AND COMPUTED VALUES FOR AN ER EVENT CAUSED BY AN EARLY PACKET

EVENT EMBEDDED WITHIN ANOTHER EARLY PACKET EVENT .. 115

FIGURE 4-15. RD GRAPH FOR AN OR EVENT CAUSED BY A LATE PACKET EVENT OVERLAPPING WITHIN ANOTHER LATE

PACKET EVENT .. 116

FIGURE 4-16. RBD GRAPH SHOWING THE ACTUAL AND COMPUTED VALUES FOR AN OR EVENT CAUSED BY A LATE PACKET

EVENT OVERLAPPING WITHIN ANOTHER LATE PACKET EVENT .. 118

FIGURE 4-17. RD GRAPH FOR AN OR EVENT CAUSED BY A LATE PACKET EVENT OVERLAPPING WITHIN AN EARLY PACKET

EVENT .. 119

viii

FIGURE 4-18. RBD GRAPH SHOWING THE ACTUAL AND COMPUTED VALUES FOR AN OR EVENT CAUSED BY A LATE PACKET

EVENT OVERLAPPING WITHIN AN EARLY PACKET EVENT .. 121

FIGURE 4-19. RD GRAPH FOR AN OR EVENT CAUSED BY AN EARLY PACKET EVENT OVERLAPPING WITHIN ANOTHER EARLY

PACKET EVENT .. 122

FIGURE 4-20. RBD GRAPH SHOWING THE ACTUAL AND COMPUTED VALUES FOR AN OR EVENT CAUSED BY AN EARLY

PACKET EVENT OVERLAPPING WITHIN ANOTHER EARLY PACKET EVENT .. 123

ix

LIST OF TABLES

TABLE 2.1. COMPUTATION OF DISPLACEMENT FREQUENCY FOR AN ARBITRARY SEQUENCE ... 14

TABLE 2.2. COMPUTATION OF REORDER DENSITY (RD) ... 14

TABLE 2.3. COMPUTATION OF BUFFER-OCCUPANCY FREQUENCY FOR AN ARBITRARY SEQUENCE 15

TABLE 2.4. COMPUTATION OF REORDER BUFFER OCCUPANCY DENSITY (RBD) ... 15

TABLE 2.5. DIFFERENT P-EVENTS IN BASIC OVERLAPPED AND EMBEDDED REORDERING [41] .. 18

TABLE 3.1. COMMON NOTATIONS USED IN THIS CHAPTER .. 24

TABLE 4.1. COMMON NOTATIONS USED IN THIS CHAPTER .. 82

TABLE 4.2. COMPUTATION OF FD, IR – LATE PACKET .. 100

TABLE 4.3. COMPUTATION OF RD, IR – LATE PACKET .. 100

TABLE 4.4. COMPUTATION OF FB, IR – LATE PACKET .. 102

TABLE 4.5. COMPUTATION OF RBD, IR – LATE PACKET ... 102

TABLE 4.6. COMPUTATION OF FD, IR – EARLY PACKET .. 103

TABLE 4.7. COMPUTATION OF RD, IR – EARLY PACKET ... 103

TABLE 4.8. COMPUTATION OF FB, IR – EARLY PACKET .. 104

TABLE 4.9. COMPUTATION OF RBD, IR – EARLY PACKET ... 104

TABLE 4.10. COMPUTATION OF FD, ER - LATENESS EMBEDS LATENESS .. 105

TABLE 4.11. COMPUTATION OF RD, ER - LATENESS EMBEDS LATENESS .. 106

TABLE 4.12. COMPUTATION OF FB, ER - LATENESS EMBEDS LATENESS... 107

TABLE 4.13. COMPUTATION OF RBD, ER - LATENESS EMBEDS LATENESS ... 107

TABLE 4.14. COMPUTATION OF FD, ER - LATENESS EMBEDS EARLINESS ... 108

TABLE 4.15. COMPUTATION OF RD, ER - LATENESS EMBEDS EARLINESS ... 108

TABLE 4.16. COMPUTATION OF FB, ER - LATENESS EMBEDS EARLINESS ... 109

x

TABLE 4.17. COMPUTATION OF RBD, ER - LATENESS EMBEDS EARLINESS .. 109

TABLE 4.18. COMPUTATION OF FD, ER - EARLINESS EMBEDS LATENESS ... 110

TABLE 4.19. COMPUTATION OF RD, ER - EARLINESS EMBEDS LATENESS ... 110

TABLE 4.20. COMPUTATION OF FB, ER - EARLINESS EMBEDS LATENESS ... 112

TABLE 4.21. COMPUTATION OF RBD, ER - EARLINESS EMBEDS LATENESS .. 112

TABLE 4.22. COMPUTATION OF FD, ER - EARLINESS EMBEDS EARLINESS .. 113

TABLE 4.23. COMPUTATION OF RD, ER - EARLINESS EMBEDS EARLINESS .. 113

TABLE 4.24. COMPUTATION OF FB, ER - EARLINESS EMBEDS EARLINESS .. 114

TABLE 4.25. COMPUTATION OF RBD, ER - EARLINESS EMBEDS EARLINESS ... 115

TABLE 4.26. COMPUTATION OF FD, OR - LATENESS OVERLAPS LATENESS ... 116

TABLE 4.27. COMPUTATION OF RD, OR - LATENESS OVERLAPS LATENESS .. 116

TABLE 4.28. COMPUTATION OF FB, OR - LATENESS OVERLAPS LATENESS ... 117

TABLE 4.29. COMPUTATION OF RBD, OR - LATENESS OVERLAPS LATENESS .. 117

TABLE 4.30. COMPUTATION OF FD, OR - LATENESS OVERLAPS EARLINESS.. 118

TABLE 4.31. COMPUTATION OF RD, OVERLAPPED REORDERING, LATE OVERLAPS EARLY ... 119

TABLE 4.32. COMPUTATION OF FB, OR - LATENESS OVERLAPS EARLINESS .. 120

TABLE 4.33. COMPUTATION OF RBD, OR - LATENESS OVERLAPS EARLINESS... 120

TABLE 4.34. COMPUTATION OF FD, OR - EARLINESS OVERLAPS EARLINESS .. 121

TABLE 4.35. COMPUTATION OF RD, OR - EARLINESS OVERLAPS EARLINESS .. 121

TABLE 4.36. COMPUTATION OF FB, OR - EARLINESS OVERLAPS EARLINESS ... 123

TABLE 4.37. COMPUTATION OF RBD, OR - EARLINESS OVERLAPS EARLINESS ... 123

1

CHAPTER 1. INTRODUCTION

 The Internet has witnessed tremendous growth during the past decade. More people tend

to use Internet today than ever before. The Internet has become ubiquitous due to vast

information that is easily available to the users at their fingertips. Some reasons for such a growth

have been increase in connectivity through different devices, high speeds and bandwidth

aggregation across networks. Figure 1-1 shows a graph displaying the number of Internet users

(in millions) across different regions in the world.

Figure 1-1. Graph showing the number of Internet users in 2010 [64]

2

From Figure 1-2, it can be seen that major continents such as North America, Austrlia

and Europe have high (>50%) Internet penetration levels. However, the Internet penetration

levels are still low in populous continents such as Asia, Africa and Middle East.

Figure 1-2. Graph showing the Internet penetration in 2010 [64]

With increase in the penetration levels across different regions, more businesses will tend

to invest in providing quality Internet service. The gap between offering just connectivity and

offering “good” connectivity would start gaining priority resulting in additional focus on Quality

of Service (QoS). One of the main issues that could affect the QoS in future could be the issue of

packet reordering.

Packet reordering is a common occurrence in the Internet wherein a sequence of packets

transmitted from a source arrives at the destination in a different order. Packet reordering is found

3

to have five major causes: packet-level multipath routing, route fluttering, inherent parallelism in

modern high-speed routers, link-layer retransmissions and route forwarding lulls [3][7][60].

Irrespective of its cause, packet reordering has a significant detrimental effect in many contexts.

Video traffic over UDP is found to perform poorly in situations of high packet reordering [1].

Wireless networks are more prone to problems due to high levels of packet reordering in link

layer retransmissions [1]. The output quality of broadband digital television system becomes

intolerable beyond a certain threshold of reordering [54][47]. Packet reordering combined with

packet error is found to severely degrade the transmission performance in Low Earth Orbit (LEO)

satellite networks [54]. Due to the increased parallelism in modern networks and the demands of

high performance applications, recovery from packet reordering will consume increasing

resources both at end nodes and routers [5]. New applications and protocol designs should be

robust to both packet reordering and packet loss by treating them equal [14][18].

While some applications are capable of operating with reordered packets, many of the

applications require packets to be put back in order, i.e., resequenced. While this happens in the

transport layer when TCP is used, many real-time multimedia type applications handle it at the

application level. Often, out-of-order packets significantly degrade the performance of

applications, even when TCP or application level re-sequencing is used [57][17]. As a result,

many modern router architectures involve extra hardware to minimize the induced reordering.

Examples of such hardware include input buffers to ensure that packets from the same flow are

forwarded to the same processing element [55] or output buffers to ensure that packets from a

flow are released from the router in more or less the same order in which they arrive at the router

[19]. These two approaches, involving tracking packet flows, can mitigate the packet reordering

introduced within the routers to a certain extent. However, they have no effect on packet

4

reordering due to other causes such as route fluttering. Furthermore, the two approaches are not

scalable as the number of flows increase and they also tend to add to the end-to-end latency [5].

Packet reordering phenomenon and its impact on applications has been evaluated in detail in

[31][47][54]. Measurement and quantification of packet reordering is addressed in [3][25], and

techniques and metrics for long-term monitoring of packet reordering is addressed are [60].

1.1 Contribution

 This thesis focuses on the resources required for recovery from packet reordering.

Whether recovery is done at end-nodes, such as with application level buffering or TCP level

resequencing, or if it is done at intermediate routers, such as with input or output buffering, the

recovery inevitably requires buffers. Thus adding input/output buffering to a router may be

viewed as transferring some of the recovery resources to intermediate nodes. From a buffer

allocation standpoint, this is the first research to provide formal results relating to the impact of

resequencing buffer distribution on packet reordering. Analytical results quantifying the impact

on packet reordering as they flow through resequencing nodes having a limited number of buffers

were derived. The results were verified using simulations. The approach and results are useful for

buffer allocation within individual router nodes to keep packet reordering within acceptable

levels. With present scaling trends in network link speeds and processor speeds, packet reordering

will become an increasingly difficult problem to deal with [5][14]. It may even be considered to

be an important Quality of Service (QoS) parameter for Internet service. This research lays the

theoretical foundation for allocating recovery buffer resources in a distributed network.

5

1.2 Thesis outline

In Chapter 2, background about Packet Reordering, its measurement and the concept of

reordering patterns are discussed. Chapter 3 focuses on the impact of distribution of resequencing

buffers on packet reordering and Chapter 4 offers derivation of Reorder Buffer-Occupancy

Density (RBD) from Reorder Density (RD). Chapter 5 concludes the research and Chapter 6

briefly discusses probable future work and applications of RBD.

6

CHAPTER 2. BACKGROUND

 Packet reordering is a phenomenon in the Internet wherein a sequence of packets

transmitted from a source, say (1, 2, 3, 4, 5, 6) arrives at the destination in a different order, say

(1, 3, 4, 2, 5, 6) where packet 2 arrives two packet arrival instances later. Here, packet 2 is

considered to be reordered with respect to the sequence at the source. The effects of packet

reordering are known to be severe and it is now considered to be naturally prevalent within the

Internet [21].

 This chapter gives an introduction to packet reordering by way of mentioning the causes

of packet reordering in Section 2.1, effects of packet reordering in Section 2.2, importance of

understanding packet reordering in Section 2.3, measuring packet reordering in Section 2.4

followed by Section 2.5 that mentions about common packet reordering patterns seen in the

Internet.

2.1 Causes of packet reordering

 Packet reordering was initially considered to be a pathological network behavior [24].

Later studies have proved that packet reordering occurs because of specific reasons in the

network. Some of them include

a) Heterogeneous network interfaces or bandwidth aggregation [26] [14]

When trying to achieve bandwidth and increased fault tolerance in wireless networks, the

heterogeneity of the paths and interfaces can cause packet ordering.

7

b) Handoff techniques [46]

Soft handoff techniques in 4G networks during downward vertical hand off can lead to

plenty of reordered packets.

c) Route fluttering [38]

It refers to the rapidly variable routing when packets are sent from source to the

destination.

d) Ad hoc routing [16]

It refers to the ad hoc manner in which packets are routed between computing devices in

a mobile ad hoc network.

e) Diffserv scheduling [22] [8][9]

The non-conformant packets in the case of excess flow due to negotiated constraints are

either dropped or given lower priority which could result in reordering.

f) Retransmissions on wireless links in TCP [6]

Wireless links are known to perform poorly when packets are considered to be lost which

invariably happens due to reordering.

g) Packet striping in layer 2 and layer 3 [7][2]

A packet can follow multiple paths within a device or logical link. An example could be

packets traveling between same source and destination taking different paths through the

switch.

 Apart from the aforementioned causes, some of the other reasons could include broken

equipment, route pauses or route forwarding lulls, inherent parallelism in modern high speed

routers [5], link layer retransmissions and packet level multipath routing [30].

8

2.2 Effects of packet reordering

 From the end user perspective, packet reordering is known to cause poor performance in

video traffic over UDP in situations of high packet reordering. Despite increased Internet load

and technology advancements, the UDP traffic reordering measurements are consistent with prior

studies conducted during 1990s [51]. UDP-based applications such as VoIP which use small

packet sizes are known to be affected by reordering [51]. Wireless networks are more prone to

problems due to high levels of packet reordering in link layer retransmissions [1]. Packet

Reordering is known to have many effects on reliable transport layer sequenced protocols such as

TCP which can falsely assume reordering to be packet loss [21]. This results in unnecessary

retransmissions and activation of the congestion control algorithms causing severe drop in TCP

throughput.

 Other reliable transmission protocols as SCTP also suffer resequencing delay due to

asynchronous packet arrivals at the receiver as a result of packet reordering [62] causing

deterioration of performance of some delay sensitive applications.

 The output quality of broadband digital television system becomes intolerable beyond a

certain threshold of reordering [47]. Packet reordering combined with packet error is found to

severely degrade the transmission performance in Low Earth Orbit (LEO) satellite networks [53].

Packet Reordering tends to induce fast retransmissions and unnecessary reduction of the

congestion window in the mobile Stream Control TCP (mSCTP) vertical handover [27].

2.3 Importance of understanding packet reordering

 Because of the detrimental effects of packet reordering on TCP and UDP, lots of effort is

aligned towards negating the effect of packet reordering. Considerable emphasis is placed on

9

maintaining packet order while designing new switch architectures [33]. Detailed reordering

models have been proposed to address the lack of evaluations using real protocol

implementations and good models of packet reordering [21]. New well-structured, area-efficient,

and high speed hardware architectures for packet re-sequencing have been proposed to combat

local parallelism within links or switches [52].

 Novel TCP variants have been proposed that adapt TCP to wireless networks by using

more reliable signals of packet loss and network overload for activating packet retransmission

and congestion response separately [29]. Concepts such as locality buffering have been proposed

to resequence packets by clustering packets with the same destination port [37]. New load

balancing algorithms with flow chopping have been proposed to avoid packet reordering [10].

Studies indicate that new applications and protocol designs should be robust to both packet

reordering and packet loss by treating them equal [8]. New flow based models have been

proposed to achieve efficient bandwidth utilization and packet order preservation [44]

 In the radio access technology for the next generation, standardization is happening for

Long Term Evolution (LTE) and Ultra Mobile Broadband (UMB). During this process, studies

are conducted keeping in mind the overhead for avoiding packet reordering [61]. Simple

modifications to the TCP protocol are done to improve its performance to mobile-induced packet

reordering [48]. Enhancements are made to TCP sender algorithm to combat packet reordering

that may occur due to vertical handoffs from a slow to fast access link [11].

 Novel Network Coding based retransmission methods considering packet reordering

delay have been proposed for wireless LANs [50]. QoS negotiation schemes have been proposed

for bandwidth aggregation schemes for real time video streaming in next generation networks

with focus on minimizing reordering delay and associated packet loss rate [14]. New algorithms

10

such as Uniform Fine-grain Frame Spreading algorithm have been proposed to avoid packet

reordering throughout the load balancing switches [12]

 All studies and research seem to indicate that packet reordering is a grave concern and

needs to be addressed at different levels or layers.

2.4 Measuring packet reordering

 To measure packet reordering, the following metrics are available – Type-P-Reordered-

Ratio-Stream, Type-P-Packet-Reordering-Extent-Stream, Type-P-Packet-Late-Time-Stream,

reordered packet ratio, reordering extent, reordering late time offset, reordering byte offset,

reordering free-runs [35], percentage of reordered packets, Reorder Density (RD), Reorder Buffer

Occupancy Density (RBD), reorder extent, n-reordering,

 Since Reorder Density (RD) and Reorder Buffer Occupancy Density (RBD) have

superior attributes compared to other metrics such as simplicity, low sensitivity to packet loss and

duplication, low evaluation complexity, robustness and broad range of applications [25], packet

reordering analysis in this research is done based on these metrics only.

2.4.1 Reorder Density (RD)

 RD is defined as the distribution of displacements of packets from their original

positions, normalized with respect to the number of packets [3]. Packets that are in order would

have zero displacement. Packets that are early would have negative displacement and late packets

would have positive displacements.

11

2.4.2 Reorder Buffer Occupancy Density (RBD)

 RBD is the normalized histogram of the occupancy of a hypothetical buffer that would

allow the recovery from out-of-order delivery of packets [25]. If the packet that just arrived is

early, it is buffered until it can be released in order. The occupancy of this hypothetical buffer,

after the arrival of every packet is used as a measure of reordering.

2.4.3 Terms used to define RD and RBD

 The following terms are used to formally define RD and RBD –

i) Receive Index (RI):

 Consider a packet sequence (1, 2, .. , N) transmitted over a network. The receive index,

RI is a value assigned to a packet as and when it arrives at its destination according to the order of

the arrival such as (1, 2, …). In the absence of reordering, the sequence number of the packet and

the receive index are the same for every packet. Earliness or lateness of packets can be computed

using RI and sequence number.

ii) Out-of-order packet:

 When the RI of a packet is not equal to the sequence number of the packet, such a packet

is considered to be an out-of-order packet.

iii) Displacement (D):

 It is defined as the difference between the RI of the packet and the sequence number of

the packet i.e., RI[i] – i. Therefore, an early packet would have a negative displacement and a late

packet would have a positive displacement.

iv) Displacement Threshold (DT):

12

 It is a threshold on the displacement of packets that allows the metric to classify a packet

as lost or duplicate.

v) Displacement Frequency (FD):

 The displacement frequency FD [k] is the number of arrived packets with a displacement

of k, where k‟s range lie between +DT and -DT

vi) Reorder Density (RD):

 In relative terms, RD is defined as the distribution of the displacement frequencies FD

[k], normalized with respect to N where N is the length of the received sequence

vii) Expected Packet (E):

 A packet with sequence number „p‟ is considered to be an expected packet if „p‟ is the

largest sequence number such that all packets with sequence numbers less than „p‟ have already

arrived

viii) Buffer Occupancy (B):

 An arrived packet with a sequence number greater than that of the expected packet is

considered to be stored in a hypothetical buffer sufficiently long to permit recovery from

reordering. At a given instant of packet arrival, buffer occupancy is equal to the number of out-of-

order packets in the buffer including the newly arrived one.

ix) Buffer-Occupancy Threshold (BT):

 It is a threshold on the maximum size of the hypothetical buffer that is used for recovery

from reordering.

x) Buffer-Occupancy Frequency (FB):

 The buffer occupancy frequency, FB [k] is the number of arrival instances after which the

buffer occupancy takes the value of k.

13

xi) Reorder Buffer-Occupancy Density (RBD):

 In relative terms, RBD is the buffer occupancy frequencies normalized by the total

number of non – duplicate packets.

2.4.4 Illustration to explain Reorder Density

 Consider a sequence (1, 2, 3, 4, 5, 6) sent from a source. If one of the packets in the

sequence gets reordered, then the resultant sequence could be (1, 3, 4, 5, 2, 6) at the destination.

The tables 2.1 and 2.2 illustrate the computation of RD for an arbitrary sequence that does not

have duplicates or losses.

14

Table 2.1. Computation of Displacement Frequency for an arbitrary sequence

Arrived Sequence 1 3 4 5 2 6

RI 1 2 3 4 5 6

D 0 -1 -1 -1 3 0

FD [D] 1 1 2 3 1 2

Table 2.2. Computation of Reorder Density (RD)

D -1 0 3

FD [D] 3 2 1

RD [D] 0.5 0.333 0.167

 From the aforementioned tables, it can be observed that the percentage of packets that are

early by 1 arrival instance is 50%, packets that are in order is 33.33% and 16.7% packets are late

by 3 arrival instances.

2.4.5 Illustration to explain Reorder Buffer Occupancy Density

 Consider the same example that was discussed in Section 2.4.4 wherein at the destination,

the packets arrive in the order (1, 3, 4, 5, 2, 6). The tables 2.3 and 2.4 illustrate the computation of

RBD for an arbitrary sequence that does not have duplicates or losses.

15

Table 2.3. Computation of Buffer-Occupancy Frequency for an arbitrary sequence

Arrived

Sequence
1 3 4 5 2 6

E 1 2 2 2 2 6

B 0 1 2 3 4 0

FB [B] 1 1 1 1 1 2

Table 2.4. Computation of Reorder Buffer Occupancy Density (RBD)

B 0 1 2 3 4

FB [B] 2 1 1 1 1

RBD [B] 0.333 0.167 0.167 0.167 0.167

 From the aforementioned tables it can be observed that the hypothetical buffer had 0

packets during 33.33% of instances; 1 packet, 2 packets and 3 packets during 16.7% of instances

respectively.

2.5 Packet reordering patterns

 To effectively understand the different reordering patterns that exist across the Internet, it

is essential to understand the idea of primary (or p-event) and secondary (or s-event) events [41].

 Consider a sequence (1, 3, 4, 2, 5, 8, 6, 7), where packet 2 is late by two positions and

packet 8 is early by two positions. Due to the lateness of packet 2, packets 3 and 4 are early by

one position each, and similarly because of the earliness of packet 8, packets 6 and 7 are late by

one position each. If dm is the displacement, then for dm > 0, the next dm packets are early and

for dm < 0, the previous dm packets would be late. In this case, the packet with sequence number

16

m is said to be associated with the primary event (p-event) while the affected dm packets have

undergone secondary events (s-events).

 Generally, the effects of reordering are localized. Packet sequences can be partitioned

into reordered segments (RS) such that the reordering is localized within RS. The reordering

events due to packets within RS are not propagated beyond it i.e., if a p-event is part of the RS,

then the corresponding s-events will also have to be part of the same RS.

 In the sequence (1, 3, 4, 2, 5, 8, 6, 7), the possible RS‟ are (1, 3, 4, 2) and (5, 8, 6, 7). A

RS that cannot be partitioned further is defined as minimal reordered segment (MRS) [41].

Based on the number of p-events within a MRS, reordering events may be classified into

i) Independent Reordering (IR)

A MRS containing a single p-event is called an Independent Reordering event. Refer

Figure 2-1.

Figure 2-1. Independent Reordering Event

ii) Embedded Reordering (ER)

A MRS containing 2 p-events wherein one p-event is embedded within the other p-event

is called Embedded Reordering event. Refer Figure 2-2

17

Figure 2-2.Embedded Reordering Event

iii) Overlapped Reordering (OR)

A MRS containing 2 p-events wherein one p-event overlaps with the other p-event is

called an Overlapped Reordering event. Refer Figure 2-3

Figure 2-3. Overlapped Reordering Event

 Since every p-event can either be late or early, 8 different combinations within

overlapped and embedded patterns are possible as shown in Table 2.5.

18

Table 2.5. Different p-events in basic overlapped and embedded reordering [41]

19

CHAPTER 3. IMPACT OF DISTRIBUTION OF RESEQUENCING

BUFFERS ON PACKET REORDERING

Packet reordering and the motivation to study the problem have already been explained in

Chapters 1 and 2. This chapter focuses on one of the effective ways of mitigating packet

reordering. The analysis presented in this chapter uses RBD and RD to measure packet

reordering.

While some applications are capable of operating with reordered packets, many other

applications require packets to be put back in order, i.e., resequenced. When TCP is used as the

communication protocol, the resequencing happens in the transport layer, but many real-time

multimedia type applications handle it at the application level. Out-of-order packets often

significantly degrade the performance of applications even when TCP or application level

resequencing is used [16][57]. As a result, many modern router architectures include extra

hardware to minimize the induced reordering. Examples of such hardware include input buffers to

ensure that packets from the same flow are forwarded to the same processing element [55] or

output buffers to ensure that packets from a flow are released from the router in more or less the

same order in which they arrive at the router [19]. These two approaches that involve tracking

packet flows can mitigate the packet reordering introduced within the routers to a certain extent.

However, they have no effect on packet reordering due to other causes such as route fluttering

[38]. Furthermore, the two approaches are not scalable as the number of flows increase, and also

add to the end-to-end latency [5]. The phenomenon of packet reordering and its impact on

20

applications have been evaluated in detail in [54]. Measurement and quantification of packet

reordering is addressed in [25] and the techniques and metrics for long-term monitoring of packet

reordering are addressed in [60].

 This chapter focuses on the resources required for recovery from packet reordering. Due

to the increased parallelism in modern networks and the demands of high performance

applications, recovery from packet reordering is known to consume increasing resources both at

end nodes and routers [3]. Regardless of whether the recovery is done at end - nodes (application

level buffering and TCP level resequencing), or at intermediate routers (with input or output

buffering), the recovery inevitably requires buffers. Thus adding input/output buffering to a router

may be viewed as transferring some of the recovery resources to intermediate nodes. From a

buffer allocation standpoint, this is one of the first few researches ([28] also proposes in-network

buffers) to provide formal results analyzing the impact of resequencing buffer distribution on

packet reordering. Analytical results are derived quantifying the impact on packet reordering as

they flow through resequencing nodes containing a limited number of buffers. The results are

verified using simulations. The approach and results are useful for buffer allocation at individual

router nodes to keep packet reordering within acceptable levels.

With the current scaling trends in network link speeds and processor speeds, packet

reordering will become an increasingly difficult problem to deal with [14][41]. It may even be

considered as an important Quality of Service (QoS) parameter for network related services. This

chapter lays the theoretical foundation for allocating recovery buffer resources in a distributed

network (refer Figure 3-1).

An integral part of such a buffer distribution mechanism with resequencing capability is

the idea of resequencing algorithm and its design. The resequencing algorithm used for the

21

research is discussed initially followed by the impact of such a distribution mechanism on packet

reordering measured using Reorder Density (RD) and Reorder Buffer Occupancy Density (RBD).

In this chapter, Section 3.1 deals with the resequencing algorithm, Section 3.2 deals with

the impact of resequencing buffers on Reorder Density and Section 3.3 with the impact of

resequencing buffers on Reorder Buffer Occupancy Density. Verification results are presented in

Section 3.4 followed by Conclusion in Section 3.5.

Figure 3-1. High-level description of the problem

3. 1 Resequencing algorithm

 A “resequencing node” can be referred to as “a node that attempts to put the out of order

packets back in order, i.e., resequence them.” If there is sufficient number of buffers available, it

is possible to put the entire sequence of packets back in order. However, if the number of buffers

available in a single node is insufficient, packets can still be resequenced thereby reducing the

22

amount and degree of reordering. The most efficient approach for resequencing is based on the

concept of releasing lowest numbered packet first as shown in Figure 3-2.

 Without loss of generality, assume that the packets are numbered 1, 2, and 3 and so on in

a sequential manner. The parameter expected_num keeps track of next expected in-sequence

packet. As and when a packet arrives, its packet number is compared with the expected_num. On

receipt of a packet with the same packet number, expected_num is incremented by 1 and the

packet is released. Furthermore, any packets in the buffer corresponding to the new value of

expected_num are released while updating expected_num. If the sequence number of the packet

that arrived does not correspond to expected_num, it is inserted into the buffer. If there is no room

in the buffer, the packet with lowest sequence number (amongst those in the buffer and the packet

that just arrived) is released while updating expected_num. Figure 3-3 explains the working of the

lowest first algorithm when two resequencing buffers are used.

START

Initialize expected_num to 1

While (packets arrive at the node)

{

 If (expected_num equals current_packet_num)

 {

 Release packet into output queue

 Increment expected_num by 1

 While (expected_num in resequencing buffer)

 {

 Release that packet into output queue

 Increment expected_num by 1

 }

 }

 Else if (resequencing buffer is not full)

 {

 Store packet in resequencing buffer

 }

23

 Else // resequencing buffer is full

 {

 Select packet with lowest sequence number amongst all

 packets in resequencing buffer

 If(selected_packet_num less than current_packet_num)

 {

 Release selected packet into the output queue

 Store current packet in the buffer

 }

 Else

 {

 Release current packet into the output queue

 }

 }

}

END

Figure 3-2. Lowest First Resequencing Algorithm

Figure 3-3. Resequencing algorithm explained when two buffers are available

24

3. 2 Impact of Resequencing Buffers on Reorder Density

 In this and the following sections, the impact of resequencing buffers on packet

reordering as a stream of packets flow through resequencing nodes is analyzed. As already

mentioned in Chapter 2, the degree and nature of packet reordering can be characterized by RD

and RBD. Therefore, the objective is to derive the variation of RD and RBD as packets flow

through resequencing nodes as illustrated in Figure 3-1. Some commonly used notations in this

chapter are summarized in Table 3.1.

 In this section, the study and analysis of the impact of resequencing buffers on Reorder

Density is provided.

3. 2. 1 Concatenation property of Reorder Density

 Based on the definition of reorder density, the following can be inferred:

The non – zero value of RD [X] when X < 0 represents packets that are early by X position(s).

Similarly, non – zero values of RD [X] when X > 0 represents packets that are late by X

position(s). RD [X] = 0 corresponds to packets that are in order (neither late nor early).

Table 3.1. Common notations used in this chapter

Symbol Description

b Capacity of resequencing buffers expressed in terms of

number of packets

N Total number of packets in the sequence

(Refer Figure 3-4)

dxn For Independent Reordering

Represents the displacement of the late packet in the nth

reordering pattern in a given sequence

For Embedded Reordering

Represents the displacement of the

25

 inner late packet when lateness embeds lateness

 outer early packet when earliness embeds lateness

 inner early packet when lateness embeds earliness

 inner early packet when earliness embeds earliness

in the nth reordering pattern

For Overlapped Reordering

Represents the displacement of one of the late packets when

lateness overlaps lateness

dyn For Embedded Reordering

Represents the displacement of the

 outer late packet when lateness embeds lateness

 inner late packet when earliness embeds lateness

 outer late packet when lateness embeds earliness

 outer early packet when earliness embeds earliness

in the nth reordering pattern

For Overlapped Reordering

Represents the displacement of one of the late packets when

lateness overlaps lateness

RD‟ [i] The output value of reorder density of a sequence at a

resequencing node

N Numbers of instances of a given reordering pattern

Vxyn Length of overlap between two overlapping packets in the

nth Overlapped Reordering pattern

(Refer Figure 3-4)

RD [i, Ni] Reorder Density of a IR, ER or OR sub-sequence

Ni Number of packets in the ith sub-sequence

SRD The set of indices of reorder density of the sequence whose

values are non – zero

SRBD The set of indices of reorder buffer occupancy density of the

sequence whose values are non – zero

i Input displacement of the packets in a given sequence

p p → f (i, b)

p is the correction factor that is applied to the displacement, i,

26

in the sequence by a system of b resequencing buffers

j, k, m Addition, Subtraction or Multiplicative factors used in the

theorems

 Consider a sequence of packets containing multiple reordering patterns. We partition the

sequence into multiple sub-sequences of length Ni (i = 1, 2…), where each sub-sequence contains

no more than one reordering pattern. The reordering pattern in the ith segment is characterized by

i, where represents {dxi} for an independent reordering pattern, {dxi, dyi} for an embedded

reordering pattern and {dxi, dyi, Vxyi} for an overlapped reordering pattern. Ni is the number of

packets in a single sub-sequence. When a number of such patterns form a large sequence

and when every pattern (and its surrounding packets) is considered as a sub-sequence, their

Reorder Density is represented as RD [I, Ni]

Figure 3-4. A sequence containing more than one reordering pattern

Theorem 1

The reorder density of a sequence containing n reorder patterns is given by

 RDN = ([, Ni] * Ni) / N

(1)

27

Proof

 RD of a given subsequence is the normalized histogram of the displacement values of the

packets in a given sequence. As shown in Figure 3-4, when a number of such independent

sequences combine to form a larger sequence, the packets with same displacement values cause

RD to add up. Hence every RD value in a given sub-sequence is de-normalized with the number

of packets in that sub-sequence (Ni), their total sum computed and normalized with N where N

can also be represented as Ni).

Q. E. D

3.2.2 Reorder Density of Independent Reordering Patterns

 An Independent Reordering occurs when a single packet is either late or early. Consider

the sequence (i-1, i, i+1, i+2, i+3, i+4, i+5). If packet i is late by 4 positions, then the resulting

sequence would be (i-1, i+1, i+2, i+3, i+4, i, i+5) as shown in Figure 3-5. On using the lowest

first resequencing algorithm with a single resequencing buffer, the resultant new sequence would

be (i-1, i+1, i+2, i+3, i, i+4, i+5).

28

Figure 3-5. Change in displacement values of a sequence containing an independent reordering pattern

 After the usage of the resequencing algorithm with a single buffer, there is an

improvement in orderliness of sequence resulting in change of the displacement values. The task

on hand is to understand the displacement pattern and hence estimate reorder density (RD) when

an arbitrary number of such resequencing buffers „b‟ are used. RD of a pattern before using the

lowest first resequencing algorithm is denoted by RD [i]. The RD of the resultant sequence after

applying the resequencing algorithm with „b‟ buffers is denoted by RD’ [i].

 Without loss of generality, let us assume that if the set Sdx represents the set of all packets

that are displaced by dx positions, then by definition of RD,

29

RD [dx] = |Sdx| / N

(2)

Theorem 2

In the absence of duplicates and losses, the reorder density of a sequence with a single instance of

late independent reordering pattern that has traversed through a resequencing node with b buffers

is given by

RD‟ [i] = j for b ≥ dx

∀ i ϵ SRD

 where j = 1 when i = 0

 j = 0 when i ≠ 0

 (3)

RD‟ [i – p] = RD [i] + j (b / N) for b < dx

 ∀ i ϵ SRD,

 where j = +1 and p = 0 when i = 0

 j = -1 and p = 0 when i = -1

 j = 0 and p = b when i = dx

 (4)

Proof

 It is known that, in a sequence, if a packet p is late by dx positions, then dx packets would

be early by 1 position as part of secondary events of the late packet.

Case 1: b ≥ dx

30

 When the available buffer is at least equal to the displacement of the late packet, the

entire sequence is back in order.

Therefore, the number of packets with 0-displacement would be

 |S0‟| = N

By definition,

 RD‟ [0] = |S0‟| / N

 = N / N

=> RD’ [0] = 1

Case 2: b < dx

On expanding the equation (4),

a) RD‟ [0] = RD [0] + (b / N)

b) RD‟ [-1] = RD [-1] - (b / N)

c) RD‟ [dx – b] = RD [dx]

 When a reordered sequence is traversed by a resequencing node containing b buffers, the

resultant displacement of the late packet p will be no greater than dx - b. As a consequence, dx - b

packets will be early by 1 position and b packets will be back in order.

31

Figure 3-6. Displacement of the late packet ‘p’ after resequencing

Therefore,

 |S0‟| = |S0| + b (i)

 |S-1‟| = |S-1| - b (ii)

By definition,

 RD‟ [0] = |S0‟| / N

 = (|S0| + b) / N from (i)

 = (|S0| / N) + (b/N)

=> RD’ [0] = RD [0] + (b/N)

Similarly,

 RD‟ [-1] = |S-1‟| / N

32

 = (|S-1| - b) / N from (ii)

 = (|S-1| / N) - (b/N)

=> RD’ [-1] = RD [-1] - (b/N)

Also, the displacement of the late packet would now be dx – b, therefore

 dx‟ = dx – b

Since the displacement of the late packet has changed,

|Sdx‟| = |Sdx – b|

Dividing by N

 |Sdx‟| / N = |Sdx – b| / N

By definition of RD and from (2),

 RD [dx’] = RD [dx – b]

Q. E. D

Theorem 3

In the absence of duplicates and losses, the reorder density of a sequence with a single instance of

an early independent reordering pattern that has traversed through a resequencing node with b

buffers is given by

 RD‟ [i] = j for b ≥ 1

∀ i ϵ SRD

 where j = 1 when i = 0

 j = 0 when i ≠ 0

 (5)

Proof

33

 The lowest first resequencing algorithm is such that the packet whose sequence number

doesn‟t match the expected sequence number is buffered. While traversing through a sequence

containing a single early packet, the algorithm, on encountering an early packet buffers it until its

actual position is reached when the packet gets released. This means that a single buffer is enough

to put sequences with a single early packet back into order.

Therefore,

 |S0‟| = N

By definition,

 RD‟ [0] = |S0‟| / N

 = N / N

=> RD’ [0] = 1

Q. E. D

3. 2. 3 Reorder Density of Embedded Reordering Patterns

 Embedded Reordering occurs when a single early or late packet event gets embedded

within another late or early packet event. Consider the sequence (i-3, i-2, i-1, i, i+1, i+2, i+3,

i+4, i+5) as shown in the Figure 3-7. If packets i and i-2 are late by 2 and 6 positions respectively

in an embedded fashion, then the resulting sequence would be (i-3, i-1, i+1, i+2, i, i+3, i+4, i-2,

i+5). If the lowest first resequencing algorithm with a single buffer is used, the resultant sequence

would be (i-3, i-1, i+1, i, i+2, i+3, i-2, i+4, i+5) as shown in Figure 3-7.

34

Figure 3-7. Change in displacement values of a sequence containing an embedded reordering pattern

Theorem 4

In the absence of duplicates and losses, the reorder density of a sequence with a single instance of

embedded reordering pattern formed by a late event whose displacement is dx embedded within

another late event whose displacement is dy after it has traversed through a resequencing node

with b resequencing buffers is given by

RD‟ [i] = j for b ≥ dy

∀ i ϵ SRD

 where j = 1 when i = 0

 j = 0 when i ≠ 0

35

 (6)

RD‟ [i – p] = RD [i] + j (b / N) for b < dx

 ∀ i ϵ SRD

 where j = +1 and p = 0 when i = 0

 j = 0 and p = 0 when i = -1

 j = -1 and p = 0 when i = -2

 j = 0 and p = b when i > 1

(7)

RD‟ [i – p] = RD [i] + j (b / N) + (k / N) for b = dx

 ∀ i ϵ SRD,

 where j = +1, k = +1 and p = 0 when i = 0

 j = 0, k = 0 and p = 0 when i = -1

 j = -1, k = 0 and p = 0 when i = -2

 j = 0, k =0 and p = b when i > b

(8)

RD‟ [i – p] = RD [i] + j (b / N) + (k / N) for b = dx + 1

 ∀ i ϵ SRD,

 where j = +1, k = 0 and p = 0 when i = 0

 j = 0, k = 1and p = 0 when i = -1

 j = 0, k =0 and p = b when i > b

(9)

RD‟ [i – p] = RD [i] + j (b / N) + k / N for b > (dx + 1) and b < dy

 ∀ i ϵ SRD,

36

 where j = +1, k = 0 and p = 0 when i = 0

 j = -1, k = 1and p = 0 when i = -1

 j = 0, k =0 and p = b when i > b

 (10)

Proof

Case 1: b ≥ dy

When the available buffer is equal to the greater displacement amongst the late packets, the entire

sequence is back in order.

Therefore,

 |S0‟| = N (i)

By definition,

 RD‟ [0] = |S0‟| / N

 = N / N

=> RD’ [0] = 1

Case 2: b < dx

On expanding the equation (7),

a) RD‟ [0] = RD [0] + (b / N)

b) RD‟ [-1] = RD [-1]

c) RD‟ [-2] = RD [-2] - (b / N)

d) RD‟ [dx] = RD [dx - b]

e) RD‟ [dy] = RD [dy - b]

37

Figure 3-8. Displacement of the late packets after resequencing

 When a reordered sequence is traversed by a resequencing node containing b buffers, the

resultant displacement of the late packet p will be no greater than dx - b. As a consequence, dx - b

packets will be early by 1 position and b packets will be late by 1 position.

 From [41] and Chapter 2, it is known that the dx – b packets prior to the embedded

packet are early by 2 positions. Therefore, when dx – b packets are late by 1 position, it results in

the reduction in the number of packets that are early by 2 positions

i.e.,

 |S-2‟| = |S-2| - b (ii)

38

Dividing by N

 |S-2‟| / N = (|S-2| / N) – (b / N)

By definition of RD and from (2),

 RD’ [-2] = RD [-2] - (b / N)

But, the resequenced packets would now be part of the secondary event of the outer late packet.

Therefore, they would now be early by 1 position

i.e.,

 |S-1‟| = |S-1| + b (iii)

However, the outer late packet also gets resequenced resulting in dy – b packets coming late by 1

position and b packets coming late by 1 position. Therefore, the number of packets that are early

by 1 position would now be

 |S-1‟| = |S-1| + b – b

 |S-1‟| = |S-1| (iv)

This also means that these packets would now be back in order resulting in

 |S0‟| = |S0| + b (v)

Dividing (iv) and (v) by N

 |S-1‟| / N = |S-1| / N

 |S0‟| / N = (|S0| / N) + (b / N)

By definition of RD and from (2),

 RD’ [-1] = RD [-1]

 RD’ [0] = RD [0] + (b / N)

Since the displacement of both late packets would be no greater than dx – b and dy – b, we have

|Sdx‟| = |Sdx – b| (vi)

39

|Sdy‟| = |Sdy – b| (vii)

Dividing (vi) and (vii) by N

 |Sdx‟| / N = |Sdx – b| / N

 |Sdy‟| / N = |Sdy – b| / N

By definition of RD and from (2),

 RD [dx’] = RD [dx – b]

 RD [dy’] = RD [dy – b]

Case 3: b = dx

On expanding the equation (8), we get

a) RD‟ [0] = RD [0] + (b / N) + (1/N)

b) RD‟ [-1] = RD [-1]

c) RD‟ [-2] = RD [-2] - (b / N)

d) RD‟ [dy] = RD [dy - b]

The proofs for (b), (c) and (d) are similar to the ones in Case 2, please refer to Case 2: (b), (c) and

(e) respectively for their proofs.

When the number of buffers available is exactly equal to dx, the embedded late packet gets

resequenced completely. Therefore, there is an addition to the number of packets that are back in

order

i.e.,

 |S0‟| = |S0| + b + 1 (viii)

Dividing (viii) by N,

 |S0‟| / N = |S0| / N + b / N + 1/ N

40

By definition of RD and from (2),

 RD’ [0] = RD [0] + (b / N) + (1/N)

Case 4: b = dx + 1

On expanding the equation (9), we get

a) RD‟ [0] = RD [0] + (b / N)

b) RD‟ [-1] = RD [-1] + (1/N)

c) RD‟ [dy] = RD [dy - b]

When the number of buffers available is one more than the displacement of the embedded late

packet, the embedded late packet, that is completely resequenced, becomes part of the secondary

event of the outer late packet. Therefore an addition to the number of packets that is early by 1

position

i.e.,

 |S-1‟| = |S-1| + 1 (ix)

Dividing (ix) by N,

 |S-1‟| / N = |S-1| / N + 1/ N

By definition of RD and from (2),

 RD’ [-1] = RD [-1] + (1/N)

Also, we know that, when a reordered sequence is traversed by a resequencing node containing b

buffers, the resultant displacement of the late packet p will be no greater than dy - b. As a

consequence, dy - b packets will be early by 1 position and b packets will be late by 1 position.

When the packets that are early by 1 position become late by 1 position, it results in net

displacement of 0, therefore

41

 |S0‟| = |S0| + b (x)

Dividing (ix) by N,

 |S0‟| / N = |S0| / N + b/ N

By definition of RD and from (2),

 RD’ [0] = RD [0] + (b / N)

Refer to Case 2: (e) for the proof for (c).

Case 5: b > (dx + 1) and b < dy

On expanding the equation (10), we get

a) RD‟ [0] = RD [0] + (b / N)

b) RD‟ [-1] = RD [-1] – (b / N) + (1/N)

c) RD‟ [dy] = RD [dy - b]

When the available number of buffers is greater than dx + 1, the sequence behaves like an

independent reordering pattern.

From Theorem 2, Case 2, we have

 RD‟ [-1] = RD [-1] – (b / N)

By definition of RD and (2), we have

 |S-1‟| / N = |S-1| / N - (b / N)

Multiplying by N,

 |S-1‟| = |S-1| - b (xi)

The embedded late packet is completely resequenced and it contributes as secondary event

packets that are early by 1 position to the outer late packet event.

Therefore, (xi) is now

 |S-1‟| = |S-1| - b + 1

42

Dividing by N,

 |S-1‟| / N = |S-1| / N – b / N + 1 / N

By definition of RD and (2), we have

 RD’ [-1] = RD [-1] – (b / N) + (1/N)

Q. E. D

43

Theorem 5

In the absence of duplicates and losses, the reorder density of a sequence with a single instance of

embedded reordering pattern formed by an early event whose displacement is dx embedded

within a late event whose displacement is dy after it has traversed through a resequencing node

with b resequencing buffers is given by

RD‟ [i] = j for b ≥ dy

∀ i ϵ SRD

 where j = 1 when i = 0

 j = 0 when i ≠ 0

(11)

RD‟ [i - p] = RD [i] + {j (abs(dx) - 1) + k }/ N for b = 1

 ∀ i ϵ SRD,

 where j = -1, k = +1 and p = 0 when i = 0

 j = +1, k = 0 and p = 0 when i = -1

 j = 0, k = 0 and p = b when i > 1

(12)

RD‟ [i - p] = RD [i] + {j (abs(dx) - 1) + k - j (b – 1)}/ N

 for b > 1 and b < dy

 ∀ i ϵ SRD,

 where j = -1, k = +1 and p = 0 when i = 0

 j = +1, k = 0 and p = 0 when i = -1

 j = 0, k = 0 and p = b when i > 1

44

(13)

Proof

Case 1: b ≥ dy

When the available buffer is equal to the displacement of the late packet, dy, the entire sequence

is back in order.

Therefore,

 |S0‟| = N (i)

By definition,

 RD‟ [0] = |S0‟| / N

 = N / N

=> RD’ [0] = 1

Case 2: b = 1

By expanding the equation (12), we get

a) RD‟ [0] = RD [0] – abs(dx) / N + 2 / N

b) RD‟ [-1] = RD [-1] + (abs(dx) – 1/ N)

c) RD‟ [dy - b] = RD [dy]

 We already know that a single buffer is enough to resequence an early packet completely

back in order. Since we have an early event being embedded within a late event, the combination

of the secondary events of the embedded early packet and the outer late packet would result in net

displacement of zero. This is because one secondary event causes packets to come in early by 1

position and the other would cause it to come in late by 1 position.

 Therefore, when the embedded early event is completely resequenced, the number of

packets with zero displacement would reduce by a factor of the absolute displacement of the early

45

packet minus one (because of the embedded nature of the reordering) also causing a

corresponding increase in the number of packets that would now be early by 1 position

This implies

 |S0‟| = |S0| - (abs (dx) – 1) (ii)

 |S-1‟| = |S-1| + (abs (dx) – 1) (iii)

But, outer late packet also gets resequenced by 1 position resulting in an addition of one packet to

zero displacement set

Therefore, by adding 1 to (ii), we get

 |S0‟| = |S0| - (abs (dx) – 1) + 1 (iv)

On simplifying it further we get

 |S0‟| = |S0| - abs (dx) + 2 (v)

Dividing (v) by N,

|S0‟| / N = |S0| / N - abs (dx) / N + 2 / N

By definition of RD and (2), we therefore have

RD’ [0] = RD [0] – abs (dx) / N + 2 / N

Similarly, dividing (iii) by N,

|S-1‟| / N = |S-1| / N + (abs (dx) – 1) / N

By definition of RD and (2), we therefore have

RD’ [-1] = RD [-1] + (abs (dx) – 1/ N)

For (c), refer to Theorem 2, Case 2: (c)

Case 3: b > 1 and b < dy

By expanding the equation (13), we get

46

a) RD‟ [0] = RD [0] – abs (dx) / N + 1 / N + b / N

b) RD‟ [-1] = RD [-1] + (abs (dx) – b / N)

c) RD‟ [dy - b] = RD [dy]

 When the number of resequencing buffers available is greater than 1 and less than dy, the

behavior is similar to that of an independent reordering pattern.

From (iv), we have

 |S0‟| = |S0| - (abs (dx) – 1) + 1

Since (- (abs (dx) – 1) + 1) is constant after a single buffer usage, let us assume C1 = - (abs (dx) –

1)

 |S0‟| = |S0| + C1 (vi)

Using the concepts proved in Theorem 2, Case 2: (a), we therefore get

 |S0‟| = |S0| + C + (b‟)

Since we have already used a single buffer and are dealing with that using the constant C1,

 b‟ = (b – 1)

Therefore,

 |S0‟| = |S0| + C1 + (b – 1) (vii)

On substituting the constant C1 and simplifying (vii) further, we get

 |S0‟| = |S0| + 1 + b (viii)

Dividing (viii) by N

|S0‟| / N = |S0| / N + 1 / N + b / N

By definition of RD and (2), we therefore have

RD’ [0] = RD [0] – abs (dx) / N + 1 / N + b / N

From (iii), we have

47

 |S-1‟| = |S-1| + (abs (dx) – 1)

Since (abs (dx) – 1) is constant after a single buffer usage, let us assume C2 = (abs (dx) – 1).

Therefore, we get

 |S-1‟| = |S-1| + C2

Using the concepts proved in Theorem 2, Case 2: (b), we therefore get

 |S-1‟| = |S-1| + C2 – b‟ (ix)

Since we have already used a single buffer and are dealing with that using the constant C2,

 b‟ = (b – 1) (x)

Combining (xi) and (x), we get

 |S-1‟| = |S-1| + C2 – (b – 1) (xi)

On substituting the constant C2 and simplifying (xi) further, we get

 |S-1‟| = |S-1| + abs (dx) – b (xii)

Dividing (xii) by N

|S-1‟| / N = |S-1| / N + (abs(dx) – b) / N

By definition of RD and (2), we therefore have

RD’ [-1] = RD [-1] + (abs (dx) – b / N)

For (c), refer to Theorem 2, Case 2: (c)

Q. E. D

Theorem 6

In the absence of duplicates and losses, the reorder density of a sequence with a single instance of

embedded reordering pattern formed by a late event whose displacement is dy embedded within

48

an early event whose displacement is dx after it has traversed through a resequencing node with b

resequencing buffers is given by

RD‟ [i] = j for b ≥ dy

∀ i ϵ SRD

 where j = 1 when i = 0

 j = 0 when i ≠ 0

(14)

RD‟ [i - p] = k (RD [i]) + {j (dy - 1) + k (abs(dx) – dy + 1) }/ N for b = 1

 ∀ i ϵ SRD,

 where j = -1, k = +1 and p = 0 when i = 0

 j = +1, k = 0 and p = 0 when i = -1

 j = 0, k = 0 and p = b when i > 1

(15)

RD‟ [i - p] = k (RD [i]) + {j (dy - 1) + k (abs(dx) – dy + 1) – j (b – 1)}/ N

 for b > 1 and b < dy

 ∀ i ϵ SRD,

 where j = -1, k = +1 and p = 0 when i = 0

 j = +1, k = 0 and p = 0 when i = -1

 j = 0, k = 0 and p = b when i > 1

(16)

Proof

Case 1: b ≥ dy

49

 When the available buffer is equal to the displacement of the late packet, dy, the entire

sequence is back in order.

Therefore,

 |S0‟| = N (i)

By the definition of RD and (2), we therefore have

 RD‟ [0] = |S0‟| / N

 = N / N

=> RD’ [0] = 1

Case 2: b = 1

By expanding the equation (15), we get

a) RD‟ [0] = RD [0] + (2 – 2dl + abs (dx)) / N

b) RD‟ [-1] = (dy – 1) / N

c) RD‟ [dy - b] = RD [dy]

 As discussed in the proof for Theorem 5, packets that are embedded within the outer

packet event tend to be affected by the secondary events of both the embedded packet and the

outer packet. Therefore, there will be a few packets with zero displacement. When the early

packet completely gets resequenced, there would be a decrease in the number of packets whose

displacement would be zero by a factor of (dy – 1). The negative one corresponds to embedded-

ness of the late packet.

Therefore,

 |S0‟| = |S0| - (dy – 1) (ii)

50

 But, we also know that there might be some packets that are solely affected by the outer

early event only. When the early packet gets resequenced, the associated secondary event packets

would also get resequenced causing an increase in the number of packets whose displacement in

zero.

Therefore (ii) now becomes

 |S0‟| = |S0| - (dy – 1) + abs (dx) (iii)

 But, the embedded late packet and the packets corresponding to its secondary event still

exist causing resulting in a decrease in the number of zero displacement packets, therefore

 |S0‟| = |S0| - (dy – 1) + abs (dx) – (dy – 1) (iv)

On simplifying (iv), we get

 |S0‟| = |S0| + 2 - 2dl + abs (dx) (v)

Dividing (v) by N

|S0‟| / N = |S0| / N + (2 - 2dl + abs (dx)) / N

By the definition of RD and (2), we therefore have

RD’ [0] = RD [0] + (2 – 2dl + abs (dx)) / N

Also, we know that a late packet with a displacement dy would have dy packet prior to it that are

early by 1 position. Therefore

 |S-1‟| = (dy – 1) (vi)

The negative one corresponds to the embedded-ness of the late packet.

Dividing (vi) by N

|S-1‟| / N = (dy – 1) / N

By the definition of RD and (2), we therefore have

RD’ [-1] = (dy – 1) / N

51

For (c), refer to Theorem 2, Case 2: (c)

Case 3: b > 1 and b < dy

By expanding the equation (16), we get

a) RD‟ [0] = RD [0] + (b – 2dl + abs(dx))/ N

b) RD‟ [-1] = (dy – b) / N

c) RD‟ [dy - b] = RD [dy]

 Once the early packet is completely resequenced, the resequencing pattern tends to be

similar to the case of independent reordering. From Theorem 5, Case 3, we know that the number

of packets in the zero displacement set (S0) and 1 position early displacement set (S-1) can be

considered to be a constant post single buffer usage.

Equations (v) and (vi) are

 |S0‟| = |S0| + 2 - 2dl + abs (dx) (v)

 |S-1‟| = (dy – 1) (vi)

By combining the proofs from Theorem 2, Case 2 with (v) and (vi), we get

 |S0‟| = |S0| + 2 - 2dl + abs (dx) + b‟ (vii)

 |S-1‟| = (dy – 1) - b‟ (viii)

Since we have already used a single buffer

 b‟ = b – 1 (ix)

By using (ix) in (vii) and (viii) and by simplifying, we get

 |S0‟| = |S0| + b – 2dl + abs (dx) (x)

 |S-1‟| = (dy – b) (xi)

Dividing (x) and (xi) by N,

52

 |S0‟| / N = |S0| / N + (b – 2dl + abs (dx)) / N

 |S-1‟| / N = (dy – b) / N

By the definition of RD and (2), we therefore have

 RD’ [0] = RD [0] + (b – 2dl + abs (dx))/ N

 RD’ [-1] = (dy – b) / N

For (c), refer to Theorem 2, Case 2: (c)

Q. E. D

Theorem 7

In the absence of duplicates and losses, the reorder density of a sequence with a single instance of

embedded reordering pattern formed by an early event with displacement dx embedded within

another early event with displacement dy after it has traversed through a resequencing node with

b resequencing buffers is given by

RD‟ [i] = j for b ≥ 2

∀ i ϵ SRD

 where j = 1 when i = 0

 j = 0 when i ≠ 0

(17)

RD‟ [i - p] = {j (N) + k (abs (dx) + 1) - j}/ N for b = 1

 ∀ i ϵ SRD,

 where j = +1, k = -1 and p = 0 when i = 0

 j = 0, k = +1 and p = 0 when i = 1

53

 j = 0, k = 0 and p = -1 when i = dx

(18)

Proof

Case 1: b ≥ 2

 The lowest first algorithm is such that early packets can be resequenced with a single

buffer. Therefore, when a sequence containing 2 early packets are sent through a resequencing

node with 2 buffers, the entire sequence is back in order

Refer to the proof for Theorem 2: Case 1.

Case 2: b = 1

By expanding the equation (18), we get

a) RD‟ [0] = (N – abs(dx) – 2) / N

b) RD‟ [1] = (abs(dx) + 1) / N

c) RD‟ [dx – 1] = RD [dx]

 When a single buffer is used, the outer early packet gets resequenced completely

resulting in the existence of inner embedded early packet and its corresponding secondary events

only.

 We also know that when a packet p is early by dx positions, there will at most be dx

packets that are late by 1 position because of secondary events

Therefore

 |S1‟| = abs (dx) (ii)

 But since the embedded early packet is affected by the secondary events of the outer

early packet, the actual displacement would be 1 less.

54

Adding 1 to (ii)

|S1‟| = abs (dx) + 1 (iii)

Dividing (iii) by N,

|S1‟| / N = (abs (dx) + 1) / N

By the definition of RD and (2), we therefore have

 RD’ [1] = (abs (dx) + 1) / N

 Since the remaining packets would be back on order, the number of packets with zero

displacement is

 |S0‟| = N – (abs (dx) + 1) – 1 (iv)

 Here, (abs (dx) + 1) represents the secondary events of the embedded early packet and 1

represents the early packet.

On simplifying (iv), we get

 |S0‟| = N – abs (dx) – 2 (iv)

Dividing (iv) by N,

 |S0‟| / N = (N – abs (dx) – 2) / N (v)

By the definition of RD and (2), we therefore have

 RD’ [0] = (N – abs (dx) – 2) / N

 Also, the embedded early packet which was affected by the secondary events of the outer

early packet is now unaffected resulting in its true displacement which is 1 less

i.e.,

 dx‟ = dx – 1

 |Sdx‟| = |Sdx - 1| (vi)

Dividing (vi) by N, we get

55

 |Sdx‟| / N = |Sdx - 1| / N

By definition of RD and (2), we therefore have

 RD’ [dx – 1] = RD [dx]

Q. E. D

3. 2. 4 Reorder Density of Overlapped Reordering Patterns

 Overlapped Reordering occurs when a late or early packet event overlaps with another

late or early packet event. Consider the sequence (i-3, i-2, i-1, i, i+1, i+2, i+3, i+4, i+5) as

shown in the Figure 3-9.

 If packets i and i-2 are late by 3 and 4 positions respectively, then the resulting sequence

would be (i-3, i-1, i+1, i-2, i+2, i+3, i+4, i, i+5). If the lowest first resequencing algorithm with a

single buffer is used, the resultant sequence would be (i-3, i-1, i-2, i+1, i+2, i+3, i, i+4, i+5) as

shown in Figure 3-9.

56

Figure 3-9. Change in displacement values of a sequence containing an overlapped reordering pattern

Theorem 8

In the absence of duplicates and losses, the reorder density of a sequence with a single instance of

overlapped reordering pattern formed by a late event overlapping with another late event that has

traversed through b resequencing buffers is given by

RD‟ [i] = j for b ≥ max (dx, dy)

∀ i ϵ SRD

 where j = 1 when i = 0

57

 j = 0 when i ≠ 0

(19)

RD‟ [i – p] = RD [i] + j (b / N) for b ≤ Vxy

 ∀ i ϵ SRD,

 where j = +1 and p = 0 when i = 0

 j = 0 and p = 0 when i = -1

 j = -1 and p = 0 when i = -2

 j = 0 and p = b when i > 1

(20)

RD‟ [i – p] = RD [i] + {j (Vxy) + k (b – Vxy)} / N

 for b > Vxy and b < min (dx, dy)

 ∀ i ϵ SRD,

 where j = +1, k = +2 and p = 0 when i = 0

 j = 0, k = -2 and p = 0 when i = -1

 j = 0, k = 0 and p = b when i > b

(21)

RD‟ [i – p] = RD [i] + {j (Vxy + 1) + k (b – Vxy)} / N for b = min (dx, dy)

 ∀ i ϵ SRD,

 where j = +1, k = +2 and p = 0 when i = 0

 j = 0, k = -2 and p = 0 when i = -1

 j = 0, k = 0 and p = 0 when i > b

(22)

58

RD‟ [i – p] = RD [i] + {j (Vxy + 1) + k((min(dx,dy) – Vxy) + (k/2)(b – min (dx,dy)) } / N

 for b > min (dx, dy) and b < max (dx, dy)

 ∀ i ϵ SRD,

 where j = +1, k = +2 and p = 0 when i = 0

 j = 0, k = -2 and p = 0 when i = -1

 j = 0, k = 0 and p = 0 when i > b

(23)

Proof

Case 1: b ≥ max (dx, dy)

When the number of buffer available is equal to or greater than the highest displacement of one of

the late packets, the entire sequence is back in order.

Refer to the proof for Theorem 2: Case 1.

Case 2: b ≤ Vxy

By expanding equation (20), we get

a) RD‟ [0] = RD [0] + (b / N)

b) RD‟ [-1] = RD [-1]

c) RD‟ [-2] = RD [-2] – (b / N)

d) RD‟ [dx] = RD [dx – b]

e) RD‟ [dy] = RD [dy – b]

 From [43], we know that the length of overlap is the number of packets with a

displacement of -2 (2 positions early) since packets in the region of overlap are affected by both

the late packet events

59

Therefore,

Vxy = |S-2|

 We also know that, when a reordered sequence is traversed by a resequencing node

containing b buffers, the resultant displacement of the late packet p will be no greater than dx - b.

As a consequence, dx - b packets will be early by 1 position and b packets will be back in order.

 Until the region of overlap diminishes, there exists at least one packet that would be early

by 2 positions. Therefore, we have

 |S0‟| = |S0| + b (i)

 |S-2‟| = |S-2| - b (ii)

Dividing (i) and (ii) by N,

 |S0‟| / N = |S0| / N + b / N (iii)

 |S-2‟| / N = |S-2| / N - b / N

By definition of RD and [41], we therefore have

 RD’ [0] = RD [0] + (b / N)

 RD’ [-2] = RD [-2] – (b / N)

For proofs for (d) and (e), refer to Theorem 2, Case 2: (c)

Case 3: b > Vxy and b < min (dx, dy)

By expanding equation (21), we get

a) RD‟ [0] = RD [0] + Vxy / N + 2 (b – Vxy) / N

b) RD‟ [-1] = RD [-1] - 2 (b – Vxy) / N

c) RD‟ [dx] = RD [dx – b]

d) RD‟ [dy] = RD [dy – b]

60

 When the available buffer is greater than Vxy, the region of overlap would have

completely diminished resulting in 2 independent late reordering patterns. Therefore, the number

of zero displacement packets increases by twice the buffer size and the number of packets that

would be early by 1 position decreases by twice the buffer size.

Substituting for b = Vxy in equation (iii), we get

 |S0‟| / N = |S0| / N + Vxy / N (iv)

Since b ≤ Vxy has already been accounted for in (iv), we have

 |S0‟| / N = |S0| / N + Vxy / N + 2b‟ / N (v)

But,

 b‟ = b – Vxy (vi)

Using (vi) in (v)

 |S0‟| / N = |S0| / N + Vxy / N + 2 (b – Vxy) / N (vii)

By definition of RD and [41], we therefore have

 RD’ [0] = RD [0] + Vxy / N + 2 (b – Vxy) / N

 Similarly, after the region of overlap diminishes, there only exist packets that are early by

1 position or late packets. Therefore,

 |S-1‟| = |S-1| - 2b‟ (viii)

Using (vi) in (viii) and dividing by N,

 |S-1‟| / N = |S-1| / N – 2(b – Vxy) / N

By definition of RD and [41], we therefore have

 RD’ [-1] = RD [-1] - 2 (b – Vxy) / N

For proofs for (c) and (d), refer to Theorem 2, Case 2: (c)

61

Case 4: b = min (dx, dy)

By expanding equation (22), we get

a) RD‟ [0] = RD [0] + (Vxy + 1) / N + 2 (b – Vxy) / N

b) RD‟ [-1] = RD [-1] - 2 (b – Vxy) / N

c) RD‟ [dx] = RD [dx – b]

d) RD‟ [dy] = RD [dy – b]

 The value of RD remains the same as Case 3 for all indices except 0 since one of the late

packets would now be resequenced completely.

Therefore, by adding 1 to (vii), we get

 |S0‟| / N = |S0| / N + (Vxy + 1) / N + 2 (b – Vxy) / N (ix)

By definition of RD and [41], we therefore have

 RD’ [0] = RD [0] + (Vxy + 1) / N + 2 (b – Vxy) / N

Case 5: b > min (dx, dy) and b < max (dx, dy)

By expanding equation (23), we get

a) RD‟ [0] = RD [0] + (Vxy + 1) / N + 2 (min (dx,dy) – Vxy) / N + (b – min (dx,dy)) / N

b) RD‟ [-1] = RD [-1] - 2 (min (dx,dy) – Vxy) / N - (b – min (dx,dy)) / N

c) RD‟ [dy] = RD [dy – b]

From Cases 2 – 4, we have the following

 |S0‟| / N = |S0| / N + (Vxy + 1) / N + 2(min (dx, dy) – Vxy) / N (x)

 |S-1‟| / N = |S-1| / N - 2(min (dx, dy) – Vxy) / N (xi)

 In the aforementioned equations, (min (dx, dy) – Vxy) represents the buffer range

presented in Case 4. One of the late packets is completely resequenced on using min (dx, dy)

62

buffers, only a single late packet event and its associated secondary event packet exist. Since

effect of buffers ≤ min (dx, dy) has already been computed in (x) and (xi), the remaining buffer

can be computed as

 b‟ = b – min (dx, dy) (xii)

By combining the proofs from Theorem 2, Case 2 and (x) and (xi), we get

|S0‟| / N = |S0| / N + (Vxy + 1) / N + 2(min (dx, dy) – Vxy) / N + b‟ / N (xiii)

|S-1‟| / N = |S-1| / N - 2(min (dx, dy) – Vxy) / N + b‟ / N (xiv)

Using (xii) in (xiii) and (xiv),

|S0‟| / N = |S0| / N + (Vxy + 1) / N + 2(min (dx, dy) – Vxy) / N + (b – min (dx, dy) / N

|S-1‟| / N = |S-1| / N - 2(min (dx, dy) – Vxy) / N + (b – min (dx, dy) / N

By definition of RD and [41], we therefore have

RD’ [0] = RD [0] + (Vxy + 1) / N + 2 (min (dx,dy) – Vxy) / N + (b – min (dx,dy)) / N

RD’ [-1] = RD [-1] - 2 (min (dx,dy) – Vxy) / N - (b – min (dx,dy)) / N

For the proof for (c), refer to Theorem 2, Case 2: (c)

Q. E. D

Theorem 9

In the absence of duplicates and losses, the reorder density of a sequence with a single instance of

overlapped reordering pattern formed by a late event overlapping with an early event (or an early

event overlapping with a late event) that has traversed through b resequencing buffers is given by

RD‟ [i] = j for b ≥ max (SRD)

∀ i ϵ SRD

 where j = 1 when i = 0

63

 j = 0 when i ≠ 0

(24)

RD‟ [i – p] = RD [i] + {j [abs (min (SRD)) - Vxy] + k (Vxy)} / N for b = 1

 ∀ i ϵ SRD,

 where j = +1, k = -1 and p = 0 when i = 0

 j = 0, k = +1and p = 0 when i = -1

 j = 0, k = 0 and p = b when i > 1

(25)

RD‟ [i – p] = RD [i] + {j [abs (min (SRD)) - Vxy] + k (Vxy) – k (b – 1)} / N

 for b > 1 and b < max(SRD)

 ∀ i ϵ SRD,

 where j = +1, k = -1 and p = 0 when i = 0

 j = 0, k = +1and p = 0 when i = -1

 j = 0, k = 0 and p = b when i > 1

(26)

Proof

Case 1: b ≥ max (SRD)

When the number of buffers available is equal to or greater than the maximum value of

displacement of the late packet, the entire sequence is back in order.

Refer to the proof for Theorem 2: Case 1.

Case 2: b = 1

By expanding the equation (25), we get

64

a) RD‟ [0] = RD [0] + (abs (min(SRD)) – Vxy) / N – Vxy / N

b) RD‟ [-1] = RD [-1] + Vxy / N

c) RD‟ [dx] = RD [dx – b]

 We know that a single buffer is sufficient to completely resequence an early packet back

in order resulting in the diminishing of the region of overlap. When a late packet event overlaps

with an early packet event or vice versa, the region of overlap contains packets that would have

zero displacement because of the secondary event effects of both the late and the early packets.

Therefore, the number of packets with zero displacement would now be

 |S0‟| = |S0| - Vxy (i)

 The secondary events of the early packet outside the region of overlap would also get

negated resulting in more number of packets with zero displacement. Therefore, (i) is now

 |S0‟| = |S0| - Vxy + (abs (min (SRD) – Vxy) (ii)

Dividing (i) by N

 |S0‟| / N = |S0| / N - Vxy / N + (abs (min(SRD) – Vxy) / N

By definition of RD and [41], we therefore have

 RD’ [0] = RD [0] + (abs (min(SRD)) – Vxy) / N – Vxy / N

 When the early packet gets resequenced, the packets in the region of overlap would now

be affected by the late packet event only resulting in those packets being early by 1 position.

Therefore,

 |S-1‟| = |S-1| + Vxy (iii)

Dividing (iii) by N

 |S-1‟| / N = |S-1| / N + Vxy / N

By definition of RD and [41], we therefore have

65

 RD’ [-1] = RD [-1] + Vxy / N

For the proof for (c), refer to Theorem 2, Case 2: (c)

Case 3: b > 1 and b < max (SRD)

By expanding the equation (26), we get

a) RD‟ [0] = RD [0] + (abs (min (SRD))) – Vxy) / N – Vxy / N + (b – 1) / N

b) RD‟ [-1] = RD [-1] + Vxy / N + (b – 1) / N

c) RD‟ [dx] = RD [dx – b]

Similar to proofs for earlier Theorems, we have already accounted for the change in packets with

zero displacement and -1 displacement when a single buffer is used.

Therefore, (ii) would be

 |S0‟| = |S0| - Vxy + (abs (min (SRD) – Vxy) + (b – 1) (iv)

Also, (iii) would be

 |S-1‟| = |S-1| + Vxy – (b – 1) (v)

Dividing (iv) and (v) by N

|S0‟| / N = |S0| / N - Vxy / N + (abs (min (SRD) – Vxy) / N + (b – 1) / N

|S-1‟| / N = |S-1| / N + Vxy / N – (b – 1) / N

By definition of RD and [41], we therefore have

RD’ [0] = RD [0] + (abs (min (SRD))) – Vxy) / N – Vxy / N + (b – 1) / N

RD’ [-1] = RD [-1] + Vxy / N + (b – 1) / N

For the proof for (c), refer to Theorem 2, Case 2: (c)

Q. E. D

66

Theorem 10

In the absence of duplicates and losses, the reorder density of a sequence with a single instance of

overlapped reordering pattern formed by an early event overlapping with another early event that

has traversed through b resequencing buffers is given by

RD‟ [i] = j for b ≥ 2

∀ i ϵ SRD

 where j = 1 when i = 0

 j = 0 when i ≠ 0

(27)

RD‟ [i – p] = {j (N) + k (Vxy) + m (1)}/ N for b = 1

 ∀ i ϵ SRD,

 where j = +1, k = -1 and m = 1 when i = 0

 j = 0, k = +1 and m = 0 when i = 1

 j = 0, k = 0 and m = 1 when i = -Vxy

(28)

Proof

Case 1: b ≥ 2

Refer to the proof for Theorem 7, Case 1.

Case 2: b = 1

By expanding (28), we get

a) RD‟ [0] = (N – Vxy – 1) / N

b) RD‟ [1] = Vxy / N

67

c) RD‟ [-Vxy] = 1

 When the lowest first algorithm is parsing the sequence with a single buffer, at the

beginning of the region of overlap, both the early packets are compared, the packet with the lower

sequence number of the two packets is released and the other is completely resequenced. This

causes one of the packets to get resequenced partially resulting in the net displacement the early

packet to be equal to the length of the overlap.

Therefore,

 |S1‟| = Vxy (i)

 |S-Vxy‟| = 1 (ii)

Dividing (i) and (ii) by N

 |S1‟| / N = Vxy / N

 |S-Vxy‟| / N = 1 / N

By definition of RD and [41], we therefore have

 RD’ [1] = Vxy / N

 RD’ [-Vxy] = 1

It is also known that the sequence would now contain packets with 0 – displacement, 1-

displacement and -Vxy displacement.

We have

 N = |S1‟| + |S0‟| + |S-Vxy‟|

=> |S0‟| = N - |S1‟| - |S-Vxy‟|

Using (i) and (ii) in the aforementioned equation,

 |S0‟| = N - Vxy - 1 (iii)

Dividing (iii) by N

68

 |S0‟| / N = (N - Vxy - 1) / N

By definition of RD and [41], we therefore have

 RD’ [0] = (N – Vxy – 1) / N

Q. E. D

3. 3 Impact of Resequencing Buffers on Reorder Buffer Occupancy Density

 In this section, we study and analyze the impact of resequencing buffers on Reorder

Buffer Occupancy Density.

Property 1

At a given instance, the resequencing buffer holds at most max (Bm, b) packets whose sequence

numbers are the largest amongst the sequence numbers of the packets encountered while

traversing the sequence thus far. Bm is the highest value of i when RBD [i] is non-zero, and b is

the capacity of the resequencing buffer.

Proof

 Based on the definition of reorder buffer occupancy density [43], it is known that the

highest value of i when RBD [i] is non-zero is the total buffer requirement for placing the packet

back into order. The lowest first algorithm releases the packet with the lowest sequence number

after having compared with the current packet number resulting in all higher numbered packets

getting accumulated in the buffer. Therefore, the buffer can at max hold max (Bm, b) number of

packets.

Q. E. D

69

Lemma

Consider a sequence with RBD such that

 RBD [i] = 0 for i > Bm

In such a sequence, a packet with sequence number i cannot be preceded by more than Bm

number of packets whose sequence numbers are greater than i.

Proof

 Buffer occupancy is the occupancy of the hypothetical buffer in anticipation of the

expected packet [25]. Bm is the highest value of buffer occupancy obtained from the reorder

buffer occupancy density graph of the sequence. This implies that there would be at max Bm

number of packets in the buffer in the anticipation of the expected packet that is displaced the

most in the sequence.

RBD [i] = 0 for i > Bm

 i > displacement of the late packet

OR

 Sequence number of i > Sequence numbers of the preceding packets prior to i

Q. E. D

Theorem 11

If the highest value of i for which RBD[i] = 0 for the sequences at the input and output of

resequencing node with b buffers be Bm and Bm‟, then

 Bm‟ = 0 for b ≥ Bm

(28)

 Bm‟ = Bm – b for b < Bm

70

 (29)

Proof

 Consider a sequence (i-3, i-2, i-1, i, i+1, i+2, i+3, i+4, i+5). If packet i in this sequence

arrives late resulting in a reorder event, the buffer occupancy of the sequence would be non – zero

and the maximum value of buffer occupancy would be Bm. From the Lemma, we know that this

is the same as displacement of the packet from the initial position.

Case 1: b ≥ Bm

 When the number of resequencing buffers available is equal to or greater than the total

number of buffers required to put the entire sequence back into order, the late packet gets

resequenced completely resulting in an in order sequence. Since Bm is the highest value of i when

RBD [i] is non – zero, we therefore have

 Bm = 0

Case 2: b < Bm

 From Case 1, we know that when the Bm resequencing buffers are available, the entire

sequence is back in order. But, when b (where b < Bm) buffers are available, the sequence gets

partially resequenced.

We know that,

 If Bm buffers are required to reduce the displacement by Bm positions, we can say

 that b buffers are sufficient to reduce the displacement by b positions.

Therefore,

the new displacement of the late packet would be (Bm – b)

71

 Bm’ = Bm – b

Q.E.D

Theorem 12

In the absence of duplicates and losses, the reorder buffer occupancy density of a sequence that

has traversed through a resequencing node with b buffers is given by

 RBD‟ [0] = 1 for b ≥ Bm

(30)

 RBD‟ [i - p] = j (RBD [i]) + k ([i]) for b < Bm

 ∀ i ϵ SRBD where,

 j = 0, k = +1 and p = 0 when i = 0

 j = +1, k = 0 and p = b when i > b

 (31)

Proof

Case 1: b ≥ Bm

 When the number of resequencing buffers available is equal to or greater than the

maximum number of buffers required to put the entire sequence back in order, the sequence is

back in order. From the definition of RBD [43], for an in-order sequence, we know that

 RBD’ [0] = 1

Case 2: b < Bm

By expanding equation (31), we get

a) RBD‟ [0] = [i]

72

b) RBD‟ [b‟ - b] = RBD [b] where b‟ ϵ {x : RBD [x] > 0 and x > b}

 From Chapter 2 and [41], we know that every packet that is reordered has a secondary

event associated with it. RBD is the normalized value of buffer occupancy of the hypothetical

buffer used to store packets that are affected by secondary events [25]. Therefore, when packets

get resequenced back into order, the packets affected by the secondary events are also back in

order thereby reducing the buffer occupancy and correspondingly increasing the 0 – buffer

occupancy or RBD [0].

 Since the buffer available is less than the total requirement, the displacement of the

primary event packet would reduce by b causing reduction in buffer occupancy by b. Therefore,

 RBD‟ [0] = RBD [0] + RBD [1] + … + RBD [b]

 RBD’ [0] = [i]

 Also, the displacement(s) of the primary event packet(s) reduces by b. This means that

the hypothetical buffer required to resequence these packets would be reduced by b. Therefore,

 RBD’ [b’ - b] = RBD [b] where b’ ϵ {x : RBD [x] > 0 and x > b}

Q. E. D

Inference

A sequence emerging from a resequencing node with (b1 + b2) buffers is same as the same

sequence emerging from a cascade of two nodes, one with b1 resequencing buffers and the other

with b2 resequencing buffers.

Explanation

 The eventual sum of resequencing buffers used for a sequence assumes much more

importance rather than the distribution pattern of the resequencing buffers across nodes (referred

73

to as resequencing nodes). If a sequence requires Bm resequencing buffers to get back into order,

the Bm buffers can be distributed across Bm number nodes each with a single resequencing buffer.

The eventual resultant sequence after it passes through the Bm nodes would be an in-order

sequence with RBD [0] and RD [0] having unity values just like it is mentioned in Figure 3-1.

3.4 Verification and Analysis

 The theorems presented in this chapter were verified using two sets of data:

a) Internet traces available in the CNRL repository [63]

b) Sequences generated using random probability distribution

 The entire verification and analysis process can be better understood with the help of the

Figure 3-10. The verification is broken into smaller modules namely

i) Data interpreter

 The Internet traces are served as an input to this module. The Internet traces available in

the CNRL repository [63] are tcpdump files which are based on relative sequence numbers. Every

packet has a beginning byte number and an ending byte number. Since this data cannot be

directly used as sequence numbers, they had to be interpreted in a different manner. This module

parses the data and re-interprets them into sequence numbers of the form (1, 2, 3....N). Also,

special filtering is done to make sure traces with lost or duplicate packets are discarded since the

theorems are based on such assumptions.

74

Figure 3-10. Different modules used for verification and analysis

ii) Sequence generator

 When the formulae for predicting RD (and RBD) were initially designed, they had to be

verified using a simpler approach and hence the creation of such a module. Based on the kind of

pattern, the sequence generator takes random values as input to generate a sequence of packets

which serves as input to the Resequencing module.

iii) Resequencing module with ‘b’ buffers

 This module consists of the lowest first resequencing algorithm. It accepts a sequence of

packets as input and outputs a new sequence of packets as output after resequencing them using

„b‟ buffers where „b‟ would vary based on the maximum number of buffers required for

resequencing.

75

iv) Oracle or predictor module

 This forms the crux of the verification process. RD (or RBD) of a sequence (could be an

Internet trace or a sequence that was generated) is served as input to this module. All the

theorems are mathematically represented in the form of modules. Based on the kind of pattern, an

appropriate module would be selected and this output is sent to the verification module.

v) Verification module

 This module compares the values of RD (or RBD) generated by the Oracle and the

resequencing module and outputs the result based on the consistency in comparison. Most

modules have been developed using C as the programming language and the gcc compiler. The

Internet traces had to be processed before sending as input to the Data interpreter and this

processing was done using Perl since it can be made to understand a number of different patterns.

 The CNRL repository [63] contains a number of traces with every trace consisting of one

or more different patterns. To illustrate one of the verification results for this chapter, the one

with the maximum number of reordering patterns with displacement greater than 1 was selected

namely “0.14.30.4.106.www.olympus.co.jp.dmp” [63]. The displacements and their probability

distribution in the sequence were analyzed. The initial RD and RBD graphs shown in Figure 3-11

were obtained using scripts for RFC 5236 [25] at [63]. Note that the vertical axes of all the RD

and RBD graphs are based on log scale. The measured RD value was obtained using Perl scripts

available at [63] for RFC 5236 [25].

76

Figure 3-11. Initial graphs of RD and RBD obtained from one of the traces.

 A single trace contains 1000 packets obtained over different time intervals from a number

of sites. The selected sequence of 1000 packets was passed through Data interpreter module, then

through the resequencing module containing first 5 resequencing buffers and then 15

resequencing buffers to obtain 2 new sequences. The RD and RBD of these sequences were

measured. The “Measured: columns in Figure 3-12 represent the RD and RBD graphs after using

77

5 resequencing buffers. Similarly, the “Measured” columns in Figure 3-13 represent the graphs

after using 15 resequencing buffers. The “Theoretical” columns for RD and RBD for 5 and 15

resequencing buffers in Figure 3-12 and Figure 3-13 respectively were obtained using the RD and

RBD obtained initially and the theoretical results presented in this chapter.

Figure 3-12. Graph of RD after using 5 resequencing buffers

Figure 3-13. Graph of RBD after using 5 resequencing buffers

78

Figure 3-14. Graph of RD after using 15 resequencing buffers

Figure 3-15. Graph RBD after using 15 resequencing buffers

 As can be seen, the theoretical and measured values of RD and RBD for a given number

of resequencing buffers are equal thereby verifying the theorems. Note the improvement in the

orderliness of the sequences.

79

3.5 Conclusion

 In this chapter, analytical results that can be used to estimate the impact of resequencing

buffers on packet reordering were presented. This is one of the first researches to analyze the

impact of resequencing nodes on degree and extent of packet reordering. With the presented

results, the variation of reorder density and reorder buffer occupancy density as a packet stream

goes through a resequencing node can be characterized. The proposed theorems were verified

using simulation study based on the traces available at [63] and random probability distribution

and were found to be accurate. Such estimations give valuable insight about the quantity of

resources (mostly buffers) required to resequence packets in reordered sequences. With increase

in network speeds and parallelism across network components and bandwidth aggregation, packet

reordering is bound to play a much more important role in the future.

 Internet service providers might even have to include packet reordering metric as one of

their QoS parameters which means that across the Internet, a number of Internet Service

Providers (ISPs) will have to estimate and sync their QoS parameters. Router manufacturers

already include extra hardware for mitigating packet reordering [55]. This chapter presented the

theoretical basis for estimation of buffer resources to meet target goals and to evaluate the impact

of size and placement of buffers on reordering in packet flows.

80

CHAPTER 4. REORDER BUFFER OCCUPANCY DENSITY FROM

REORDER DENSITY

 This chapter focuses on derivation of Reorder Buffer Occupancy Density given the

Reorder Density of a sequence. The motivation to work on such a problem arose out of multiple

reasons: when network designers model computer networks, considerable emphasis is placed on

resource constraints since hardware in network components isn‟t cheap and one of the more

important resource considerations could be the buffer required to store and forward packets as

and when they arrive, resequence reordered packets, etc.

 Reorder Density (RD) provides an estimate about the degree of displacement of early or

late packets in a sequence. While designing the hardware required to mitigate the effects of

packet reordering, Reorder Buffer Occupancy Density (RBD) provides better understanding

about the resources required and related constraints. By definition [25], RBD is the histogram of

the occupancy, normalized with respect to the number of packets, of the hypothetical buffer that

is used to resequence the packets.

 In the future, Reorder Density (RD) could be considered as one of the Quality of Service

(QoS) parameters since that seems more appropriate compared to RBD. Under such design

considerations, it would make sense to derive RBD since RBD provides an estimate of the

hypothetical buffer required to resequence packets that are out of order. This would enable

network designers to maintain particular reorder levels in commercial networks.

81

 In this chapter, Section 4.1 explains the theorems and associated proofs for deriving RBD

from RD, Section 4.2 provides the Verification and Analysis of the theorems and Section 4.3

concludes the chapter.

4.1 Reorder Buffer Occupancy Density (RBD) from Reorder Density (RD)

 The problem of deriving RBD from RD can be explained using Figure 4-1. As can be

seen from the figure, design of computer networks for a particular RD becomes a simple problem

when we have the theoretical model to derive RBD from RD.

 From the earlier chapters, we know that every sequence that has some degree of

reordering can have one or more of the following patterns:

a) Independent Reordering

b) Embedded Reordering

c) Overlapped Reordering

 These patterns have already been explained with great detail in Chapter 2. The high level

description of the problem is represented in Figure 4-1. From the figure, it can be seen that to

model computer networks, RBD is essential and to obtain RBD, either a sequence can be parsed

to estimate RBD or the RD of the sequence can be used to obtain the RBD.

82

Figure 4-1. High level description of the problem

Table 4.1. Common notations used in this chapter

Symbol Description

Vxy Length of the region of overlap between two reordered

packets

dx, dy Displacement values of the reordered packets in the

sequence

i, j Additive, Subtractive or Multiplicative factors used in

the theorems

RBD [i] Reorder Buffer occupancy Density of a sequence

RD [i] Reorder Density of a sequence

N Number of packets in the sequence

S(RD,L) The set of indices of reorder density of the sequence

whose values are greater than zero corresponding to late

packets in the sequence. It may be represented as

{x | x > 0, RD [x] > 0}

83

S(RD,E) The set of indices of reorder density of the sequence

whose values are lesser than zero corresponding to early

packets in the sequence. It may be represented as

{x | x < 0, RD [x] > 0}

4.1.1 Independent Reordering Patterns

 An Independent Reordering pattern occurs when a single packet is either late or early.

Consider the sequence (i-1, i, i+1, i+2, i+3, i+4, i+5). If packet i is late by 4 positions, then the

resulting sequence would be (i-1, i+1, i+2, i+3, i+4, i, i+5). Similarly, if packet i+4 is early by 3

positions, then the resulting sequence would be (i-1, , i+4, i+1, i+2, i+3, i+5).

Theorem 1

In the absence of losses and duplicates, the reorder buffer occupancy density of a sequence

consisting of an independent reordering pattern caused by a late packet event can be represented

as

RBD [i] = j / N

 where

 j = 1 when i ≥ 1 and i ≤ dx

 j = (N – dx) when i = 0

 ∀ dx ϵ S(RD,L)

 (1)

Proof

On expanding the equation (1), we get

a) RBD [0] = (N – dx) / N

84

b) RBD [1 .. dx] = 1 / N

 Since the only element in the set S(RD,L) is the displacement value of the late packet, dx is

equal to the value of the sole element in that set. Reorder Buffer Occupancy Density (RBD)

provides an estimate of a hypothetical buffer that is used to buffer packets until the expected

packet is encountered [43]. The calculation of RBD is done as follows: While traversing the

sequence, if the sequence number of the encountered packet doesn‟t match the sequence

number of the expected packet, then it is assumed to be stored in the hypothetical buffer. The

buffer occupancy of this hypothetical buffer after traversing the entire sequence determines the

RBD of the sequence.

 Thus, if a packet arrives late by dx positions, the displacement of the packet would be dx

and the buffer occupancy of the hypothetical buffer would keep increasing from 1 till dx at every

arrival instance of the new packet until the sequence number of the expected packet corresponds

with the sequence number of the late packet.

 Since the indices of RBD correspond to the buffer occupancy, we therefore have

 RBD [1 .. dx] = 1 / N

Also, since RBD is normalized, the remaining values correspond to the instances when the buffer

occupancy was zero and therefore

 RBD [0] = (N – dx) / N

 Q. E. D

Theorem 2

85

In the absence of losses and duplicates, the reorder buffer occupancy density of a sequence

consisting of an independent reordering pattern caused by an early packet event can be

represented as

 RBD [i] = j / N

 where

 j = dy when i = 1

 j = (N – dy) when i = 0

 ∀ dy ϵ {abs(y) | y ϵ S(RD,E)}

 (2)

Proof

On expanding the equation (2), we get

a) RBD [1] = dy / N

b) RBD [0] = (N – dy) / N

 Since the only element in the S(RD,E) is the negative displacement of the early packet, dy

will be equal to the absolute value of the sole element in that set.

 From the definition of RBD [25], we know that the packet whose sequence number

doesn‟t correspond with the expected sequence number is assumed to be buffered in the

hypothetical buffer and the buffer occupancy of this hypothetical buffer determines the values of

RBD.

 While traversing a sequence consisting of a packet that is early by dy positions, the early

packet would be buffered since the sequence number of the early packet doesn‟t correspond with

the sequence number of the expected packet resulting in the buffer occupancy being 1. This

packet would remain buffered until the expected sequence number corresponds to the sequence

86

number of the buffered packet and upon the arrival of such an instance; the buffered packet is

released into the sequence.

 Thus the number of instances when buffer occupancy would have a value of 1 would be

dy which is the displacement of the early packet. Therefore,

RBD [1] = dy / N

 During the remaining packet arrival instances, the buffer occupancy would be zero.

Therefore,

 RBD [0] = (N – dy) / N

Q. E. D

4.1.2 Embedded Reordering Patterns

 An embedded reordering pattern occurs when an early or late packet event is embedded

within another early or late packet event. Consider the sequence (i-1, i, i+1, i+2, i+3, i+4, i+5).

If packet i is late by 4 positions and packet i + 1 is late by 2 positions, then the resulting sequence

would be (i-1, i+2, i+3, i+1, i+4, i, i+5) resulting in a sequence with embedded reordering

pattern.

Theorem 3

In the absence of losses and duplicates, the reorder buffer occupancy density of a sequence

consisting of an embedded reordering pattern caused by a late packet event embedded within

another late packet event can be represented as

 RBD [i] = j / N

 where

87

 j = 1 when i ≥ 1 and i ≤ dx

 j = (N – dx) when i = 0

 ∀ dx ϵ max(S(RD,L))

 (3)

Proof

By expanding the equation (3), we get

a) RBD [1... dx] = 1 / N

b) RBD [0] = (N - dx) / N

 In the case of an embedded reordering pattern formed by a late packet event embedded

within another late packet event, the set S(RD,L) would contain the displacement value of the late

packets. The value of dx would be the maximum value of the 2 elements in the set since the outer

late packet tends to be the packet with the expected sequence.

 While traversing such a sequence, the sequence number of the expected packet would

increment to the sequence number of the outer late packet thus causing the buffer occupancy to

would keep increasing from 1 to dx. During this process, the late packet that is embedded within

the outer late packet event will also be buffered and released just like the other packets and

therefore,

 RBD [1… dx] = 1 / N

Since the remaining values correspond with zero buffer occupancy, we have

RBD [0] = (N - dx) / N

Q. E. D

Theorem 4

88

In the absence of losses and duplicates, the reorder buffer occupancy density of a sequence

consisting of an embedded reordering pattern caused by an early packet event embedded within a

late packet event can be represented as

 RBD [i] = j / N

 where

 j = 1 when i ≥ 1 and i ≤ dx

 j = (N – dx) when i = 0

 ∀ dx ϵ S(RD,L)

 (4)

Proof

Please refer to the proof for Theorem 3.

Q. E. D

Theorem 5

In the absence of losses and duplicates, the reorder buffer occupancy density of a sequence

consisting of an embedded reordering pattern caused by a late packet event embedded within an

early packet event can be represented as

 RBD [i] = j / N

 where

 j = 1 when i = 2 to dx

 j = (1 + dy – dx) when i = 1

 j = (N – dy) when i = 0

 ∀ dx = max(S(RD,L)) and dy = abs(min(S(RD,E)))

89

 (5)

Proof

By expanding the equation (5), we get

a) RBD [2 ... dx] = 1 / N

b) RBD [1] = (1 + dy – dx) / N

c) RBD [0] = (N - dy) / N

 The values of dx and dy, given the RD of the sequence, can be computed by calculating

the absolute displacements of the late and early packets respectively which happens to be the

highest and lowest values of the indices of RD.

 While traversing a sequence consisting of an embedded reordering pattern caused by a

late packet event embedded within an early packet event, the early packet is first encountered and

stored in the hypothetical buffer causing buffer occupancy of 1. The minimum buffer occupancy

would be 1 until the expected sequence number corresponds with the sequence number of the

stored early packet {proved in Theorem 2}.

 During the sequence traversal, if a packet is late, packets get buffered resulting in an

increase in the buffer occupancy {proved in Theorem 1}. In this case, since the buffer already

contains the early packet, once the expected sequence number is equal to the sequence number of

the late packet; more packets are buffered until the actual late packet is encountered in the

sequence. Therefore,

 RBD [2 ... dx] = 1 / N

 This is similar to the RBD values of an independent reordering pattern consisting of a

single late packet. Since one extra packet is buffered, the index of RBD is offset by 1. Once the

late packet is encountered all the packets except for the early packet are released causing the

90

buffer occupancy of the hypothetical buffer to have a value of 1 for a few more instances. Since

the displacement of the early packet is dy and the late packet would now be part of secondary

events caused by the early packet, we therefore have

 RBD [1] = (1 + dy – dx) / N

Since the hypothetical buffer during the remaining instances would have no occupancy, we have

RBD [0] = (N - dy) / N

Q. E. D

Theorem 6

In the absence of losses and duplicates, the reorder buffer occupancy density of a sequence

consisting of an embedded reordering pattern caused by an early packet event embedded within

another early packet event can be represented as

 RBD [i] = j / N

 where

 j = (dx – dy – 1) when i = 1

 j = (dy + 1) when i = 2

 j = (N – dx) when i = 0

 ∀ dx = abs(min1(S(RD,E))) and dy = abs(min2(S(RD,E)))

(6)

Proof

By expanding the equation (6), we get

a) RBD [1] = (dx – dy – 1) / N

b) RBD [2] = (dy + 1) / N

91

c) RBD [0] = (N - dx) / N

 Given the RD of a sequence, the values of dx and dy can be computed from all the

indices of RD that are non-zero. dx is the lowest index amongst all the indices and dy is the

second lowest index.

 We already know that the hypothetical buffer would have a single packet occupancy

(buffer occupancy of 1) until the sequence number of the expected packet corresponds with the

sequence number of the early packet {proved in Theorem 2}.

 When an additional early packet is encountered during the traversal, the hypothetical

buffer would contain one additional packet resulting in buffer occupancy of 2 packets. Since the

early packet is embedded within, the displacement is actually offset by 1 and therefore we have

RBD [2] = (dy + 1) / N

 Once the sequence number of the expected packet corresponds with the sequence number

of the embedded early packet, it is released resulting in single packet buffer occupancy again.

Therefore,

 RBD [1] = (dx – dy – 1) / N

 Since the hypothetical buffer during the remaining instances would have no occupancy,

 RBD [0] = (N - dx) / N

Q. E. D

4.1.3 Overlapped Reordering Patterns

 An overlapped reordering pattern occurs when an early or late packet event overlaps with

another early or late packet event. Consider the sequence (i-3, i-2, i-1, i, i+1, i+2, i+3, i+4, i+5).

If packets i and i-2 are late by 3 and 4 positions respectively, then the resulting sequence would

92

be (i-3, i-1, i+1, i-2, i+2, i+3, i+4, i, i+5) resulting in a sequence with an overlapped reordering

event.

Lemma 1

In the absence of losses and duplicates, the length of the region of overlap between two

overlapping late events in a sequence containing N packets can be can be represented as

 Vxy = RD [-2] * N

(7)

Proof

 From the definition of RD [25], it is known that the secondary events of late packets

result in a negative displacement of 1 for the packets that get displaced. When 2 such late events

overlap, the packets in the region of overlap are part of the secondary events of both the events.

This causes a negative displacement of 2. Since the sequences under consideration are assumed to

have single reordering patterns, the sum of the instances of the displacement that correspond with

-2 would be equal to the length of the overlap. Since RD is a normalized value, it is multiplied by

N to de-normalize to obtain the overlap length

Q. E. D

Lemma 2

In the absence of losses and duplicates, the length of the region of overlap between a late event

and an early event (or an early event and a late event) in a sequence containing N packets can be

represented as

 Vxy = dx + dy – 2 – ([k] * Ni)

93

 ∀ dx = max{S(RD,L)} and dy = abs{min{S(RD,E)}}

 ∀ k ϵ {x | x > 0, RD [x] > 0}

(8)

Proof

 From the definition of RD [25], it is known that the secondary events of early packets

result in a positive displacement of 1 for the packets that get displaced. It is also known that the

secondary events of late packets result in a negative displacement of 1 for the packets that get

displaced. When a late event overlaps with an early event (or an early event overlaps with a late

event), the packets in the region of overlap would be part of both the events. In the region of

overlap, the positive and negative displacements caused by the secondary events of both the

packets cancel each other out resulting in zero displacement.

Lemma 3

In the absence of losses and duplicates, the length of the region of overlap between two

overlapping early events in a sequence containing N packets can be can be represented as

 Vxy = RD [2] * N

(9)

Proof

 From the definition of RD [25], it is known that the secondary events of early packets

result in a positive displacement of 1 for the packets that get displaced. When 2 such early events

overlap, the packets in the region of overlap are part of the secondary events of both the events.

This causes a positive displacement of 2. Since the sequences under consideration are assumed to

have single reordering patterns, the sum of the instances of the displacement 2 would be equal to

94

the length of the overlap. Since RD is a normalized value, it is multiplied by N to de-normalize to

obtain the overlap length

Q. E. D

Theorem 7

In the absence of losses and duplicates, the reorder buffer occupancy density of a sequence

consisting of an overlapped reordering pattern caused by a late packet event overlapping with

another late packet event can be represented as

 RBD [i] = j / N

 where

 j = (N – dx – dy + Vxy – 1) when i = 0

 j = 1 when i ≥ 1 and i < Vxy

 j = 1 when i > dx and i ≤ dy

 j = 2 when i ≥ Vxy and i ≤ dx

 ∀ dx = max1(S(RD,L)) and dy = max2(S(RD,L))

 (10)

Proof

By expanding equation (10), we get

a) RBD [1 … (Vxy – 1)] = 1 / N

b) RBD [(dx+1) … dy] = 1 / N

c) RBD [Vxy … dx] = 2 / N

d) RBD [0] = (N –dx –dy + Vxy – 1) / N

95

 Given the value of RD, the values of dx and dy can be computed as the highest and the

second highest displacement amongst the set of indices of RD.

From Lemma 1, we have

 Vxy = RD [-2] * N

 While traversing a sequence consisting of a late packet event overlapping with another

late packet event, the hypothetical buffer gets filled until the sequence number of the expected

packet corresponds with the sequence number of the first late packet. At this point, all the packets

preceding the secondary events of the overlapping late event are released and ones corresponding

with the overlapping late event are still buffered resulting in the hypothetical buffer containing

the same number of packets during 2 instances.

Therefore, the number packets corresponding with the secondary events of the overlapping late

event is equal to the length of overlap or

 RBD [Vxy] = 2/N

 On continuing the traversal, we find that the hypothetical buffer continues to store

packets until the second late packet is encountered. Since there would be more instances when the

buffer occupancy would be 2,

 RBD [Vxy … dx] = 2/N

 Beyond this point the buffer would have single buffer occupancy just like earlier, therefore

 RBD [1 … (Vxy – 1)] = 1 / N

 RBD [Vxy … dx] = 2 / N

 Since the hypothetical buffer during the remaining instances would have no occupancy,

 RBD [0] = (N –dx –dy + Vxy – 1) / N

Q. E. D

96

Theorem 8

In the absence of losses and duplicates, the reorder buffer occupancy density of a sequence

consisting of an overlapped reordering pattern caused by a late packet event overlapping with an

early packet event (or an early packet event overlapping with a late packet event) can be

represented as

 RBD [i] = j / N

 where

 j = (N – dx – dy + Vxy) when i = 0

 j = (dy – Vxy + 1) when i = 1

 j = 1 when i ≥ 2and i ≤ dx

 ∀ dx = max{S(RD,L)} and dy = abs(min{S(RD,E)})

 (11)

Proof

 A late event causes the occupancy of the buffer to gradually increase until the sequence

number of the expected packet matches with the sequence number of the current packet. Also, it

is known that an early packet gets buffered until the sequence number of the expected packet

corresponds with sequence number of the early packet. The length of overlap can be estimated

using Lemma 2.

 When an early event overlaps with a late event, the early packet gets buffered causing

single buffer occupancy. This remains constant until the traversal reaches the secondary events of

the late packet i.e., when we encounter the region of overlap. At this point, the other packets start

getting buffered causing a gradual increase in the buffer occupancy until the late packet is

97

encountered. Therefore, the number of instances when the hypothetical buffer would have single

buffer occupancy would be {dy – Vxy + 1} resulting in RBD [2] to have a value of {dy – Vxy +

1} / N.

 Since we have an early event overlapping with this late event, the early packet would be

buffered resulting in an increase of RBD [1]. Hence, the value of RBD [1] can be obtained by

subtracting the length of overlap by the absolute value of the displacement of the early packet.

The remaining instances would correspond to zero buffer occupancy and hence {N – dx – dy +

Vxy}/N.

 When a late event overlaps with an early event, the gradual increase in the occupancy of

the hypothetical buffer happens initially followed by the single buffer occupancy owing to the

late packet. Therefore, the same equations hold good.

Q. E. D

Theorem 9

In the absence of losses and duplicates, the reorder buffer occupancy density of a sequence

consisting of an overlapped reordering pattern caused by an early packet event overlapping with

another early packet event can be represented as

 RBD [i] = j / N

 where

 j = (N – dy – dx + 1) when i = 0

 j = (dy + dx - Vxy – 1) when i = 1

 j = Vxy when i = 2

 ∀ dx = abs(min1(S(RD,E))) and dy = abs(min2(S(RD,E)))

98

 (12)

Proof

 Since a single buffer is sufficient to resequence an early packet, for two early packets two

buffers would be sufficient to do the same. Therefore, the possible indices of RBD would be 0, 1

and 2. Also, the length of overlap can be estimated using Lemma 3 which is equal to RD [2] * N.

 While traversing the sequence, the first early packet gets buffered causing single buffer

occupancy for dx number of instances. However, since another early packet event overlaps with

this event, on encountering the second early packet, the buffer occupancy increases causing two

packets to be stored in the hypothetical buffer. The buffer occupancy would remain constant with

two packets until the first early packet gets released. The number of instances during the traversal

of overlapped region corresponds to Vxy and therefore RBD [2] has a value of Vxy / N.

 The number of instances when we have single buffer occupancy would be equal to the

sum of the absolute displacement of the two early packets subtracted by the length of the overlap

reduced by 1. The reduction by 1 is to factor out the overlapping early packet event.

 Since the hypothetical buffer during the remaining instances would have no occupancy,

RBDn [0] has a value of {N – dy – dx + 1} / N.

Q. E. D

4.2 Verification and Analysis

 The theorems presented in this chapter were verified using two sets of data - Internet

traces available in the CNRL repository [63] and sequences generated using random probability

distribution.

99

Figure 4-2. Verification process in deriving RBD from RD

 The verification process can be better understood with the help of Figure 4-2. The

verification can be broken into smaller modules namely

a) Data interpreter

 The details about this module have already been presented in Chapter 3.

b) Sequence Generator

 The details about this module have already been presented in Chapter 3.

c) RD to RBD Converter

 This forms the crux of the verification process. RD of a sequence (could be an Internet

trace or a sequence that was generated) is served as input to this module. All the theorems are

mathematically represented in the form of modules. Based on the kind of pattern, an appropriate

module would be selected and this output is sent to the verification module

d) Verification module

100

 This module is slightly different from the one mentioned in Chapter 3 though the purpose

of both the modules seem the same. It compares the theoretical RBD and the actual RBD to

output the result of the verification process.

4.2.1 Illustrations

 In this section, illustrations are provided to explain the derivation of RBD from RD in a

clear manner. Since there are separate theorems and derivations for different reordering patters,

this section is similar to the earlier ones.

a) Independent Reordering – Late event

 Consider a reordered sequence (1, 2, 4, 5, 6, 7, 8, 9, 3, 10) where packet 3 is displaced by

+6 positions (late). The computation of RD for this sequence is done in Table 4.2 and Table 4.3.

Table 4.2. Computation of FD, IR – Late packet

Arrived

Sequence
1 2 4 5 6 7 8 9 3 10

RI 1 2 3 4 5 6 7 8 9 10

D 0 0 -1 -1 -1 -1 -1 -1 6 0

FD [D] 1 2 1 2 3 4 5 6 1 3

Table 4.3. Computation of RD, IR – Late packet

D -1 0 6

FD [D] 6 3 1

RD [D] 0.6 0.1 0.1

101

Figure 4-3. RD graph for an IR event caused by a late packet

From the Table 4.3, we have the following

 RD [-1] = 0.6

 RD [0] = 0.1

 RD [6] = 0.1

From Theorem 1, we have

i. RBD [0] = (N – dx) / N

ii. RBD [1 .. dx] = 1 / N

Here, N = 10 and dx = 6. Therefore, the computed values of RBD using the theorem would be

 RBD [0] = 0.4

 RBD [1 … 6] = 0.1

The computation of RBD using actual procedures is shown in Table 4.4 and Table 4.5.

102

Table 4.4. Computation of FB, IR – Late packet

Arrived

Sequence
1 2 4 5 6 7 8 9 3 10

E 1 2 3 3 3 3 3 3 3 10

B 0 0 1 2 3 4 5 6 0 0

FB [B] 1 2 1 1 1 1 1 1 3 4

Table 4.5. Computation of RBD, IR – Late packet

B 0 1 2 3 4 5 6

FB [B] 4 1 1 1 1 1 1

RBD [B] 0.4 0.1 0.1 0.1 0.1 0.1 0.1

Figure 4-4. RBD graph showing the actual and computed values for an IR event caused by a late packet

From the Figure 4-4, we see that the computed and actual values of RBD are same for an IR event

caused by a late packet.

b) Independent Reordering – Early event

103

 Consider a reordered sequence (1, 2, 9, 3, 4, 5, 6, 7, 8, 10) where packet 9 is displaced by

-6 positions (early). The computation of RD for this sequence is done in Table 4.6 and Table 4.7.

Table 4.6. Computation of FD, IR – Early packet

Arrived

Sequence
1 2 9 3 4 5 6 7 8 10

RI 1 2 3 4 5 6 7 8 9 10

D 0 0 -6 1 1 1 1 1 1 0

FD [D] 1 2 1 1 2 3 4 5 6 3

Table 4.7. Computation of RD, IR – Early packet

D -6 0 1

FD [D] 1 3 6

RD [D] 0.1 0.3 0.6

Figure 4-5. RD graph for an IR event caused by an early packet

From the Table 4.7, we have the following

 RD [-6] = 0.1

 RD [0] = 0.3

104

 RD [1] = 0.6

From Theorem 2, we have

i. RBD [1] = dy / N

ii. RBD [0] = (N – dy) / N

Here, N = 10 and dy = 6. Therefore, the computed values of RBD using the theorem would be

 RBD [1] = 0.6

 RBD [0] = 0.4

The computation of RBD using actual procedures is shown in Table 4.8 and Table 4.9

Table 4.8. Computation of FB, IR – Early packet

Arrived

Sequence
1 2 9 3 4 5 6 7 8 10

E 1 2 3 3 3 3 3 3 3 10

B 0 0 1 1 1 1 1 1 0 0

FB [B] 1 2 1 2 3 4 5 6 3 4

Table 4.9. Computation of RBD, IR – Early packet

B 0 1

FB [B] 4 6

RBD [B] 0.4 0.6

105

Figure 4-6. RBD graph showing the actual and computed values for an IR event caused by an early packet

From the Figure 4-6, we see that the computed and actual values of RBD are same for an IR event

caused by an early packet.

c) Embedded Reordering – Lateness embeds Lateness

 Consider a reordered sequence (1, 3, 4, 6, 7, 5, 8, 9, 2, 10) where packets 2 and 5are

displaced by +7 (late) and +1 positions (late) respectively. The computation of RD for such a

sequence is done in Table 4.10 and

Table 4.11.

Table 4.10. Computation of FD, ER - Lateness embeds Lateness

Arrived

Sequence
1 3 4 6 7 5 8 9 2 10

RI 1 2 3 4 5 6 7 8 9 10

D 0 -1 -1 -2 -2 1 -1 -1 7 0

FD [D] 1 1 2 1 2 1 3 4 1 2

106

Table 4.11. Computation of RD, ER - Lateness embeds Lateness

D -2 -1 0 1 7

FD [D] 2 4 2 1 1

RD [D] 0.2 0.4 0.2 0.1 0.1

Figure 4-7. RD graph for an ER event caused by a late packet event embedded within a late packet event

From the

Table 4.11, we have the following

RD [-2] = 0.2; RD [-1] = 0.4; RD [0] = 0.2; RD [1] = 0.1; RD [7] = 0.1

From Theorem 3, we have

i. RBD [1 … dx] = 1 / N

ii. RBD [0] = (N – dx) / N

Here, N = 10 and dx = 7. Therefore, the computed values of RBD using the theorem would be

 RBD [1… 7] = 0.1

107

 RBD [0] = 0.3

The computation of RBD using actual procedures is shown in

Table 4.12and Table 4.13.

Table 4.12. Computation of FB, ER - Lateness embeds Lateness

Arrived

Sequence
1 3 4 6 7 5 8 9 2 10

E 1 2 2 2 2 2 2 2 2 10

B 0 1 2 3 4 5 6 7 0 0

FB [B] 1 1 1 1 1 1 1 1 2 3

Table 4.13. Computation of RBD, ER - Lateness embeds Lateness

B 0 1 2 3 4 5 6 7

FB [B] 3 1 1 1 1 1 1 1

RBD [B] 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Figure 4-8. RBD graph showing the actual and computed values for an ER event caused by a late packet event

embedded within another late packet event

108

From Figure 4-8, we see that the computed and actual values of RBD for an embedded sequence

formed by a late event embedded within another late event are the same.

d) Embedded Reordering – Lateness embeds Earliness

 Consider a reordered sequence (1, 3, 4, 8, 5, 6, 7, 9, 2, 10) where packets 2 and 8 are

displaced by +7 (late) and -4 positions (early) respectively. The computation of RD for this

sequence is done in Table 4.14 and Table 4.15.

Table 4.14. Computation of FD, ER - Lateness embeds Earliness

Arrived

Sequence
1 3 4 8 5 6 7 9 2 10

RI 1 2 3 4 5 6 7 8 9 10

D 0 -1 -1 -4 0 0 0 -1 7 0

FD [D] 1 1 2 1 2 3 4 3 1 5

Table 4.15. Computation of RD, ER - Lateness embeds Earliness

D -4 -1 0 7

FD [D] 1 3 5 1

RD [D] 0.1 0.3 0.5 0.1

109

Figure 4-9. RD graph for an ER event caused by an early packet event embedded within a late packet event

From the Table 4.15, we have the following

RD [-4] = 0.1; RD [-1] = 0.3; RD [0] = 0.5; RD [7] = 0.1

From Theorem 4, we have

i. RBD [1 … dx] = 1 / N

ii. RBD [0] = (N – dx) / N

Here, N = 10 and dx = 7. Therefore, the computed values of RBD using the theorem would be

 RBD [1 … 7] = 0.1

 RBD [0] = 0.3

The computation of RBD using actual procedures is shown in Table 4.16 and Table 4.17

Table 4.16. Computation of FB, ER - Lateness embeds Earliness

Arrived

Sequence
1 3 4 8 5 6 7 9 2 10

E 1 2 2 2 2 2 2 2 2 10

B 0 1 2 3 4 5 6 7 0 0

FB [B] 1 1 1 1 1 1 1 1 2 3

Table 4.17. Computation of RBD, ER - Lateness embeds Earliness

B 0 1 2 3 4 5 6 7

FB [B] 3 1 1 1 1 1 1 1

RBD [B] 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1

110

Figure 4-10. RBD graph showing the actual and computed values for an ER event caused by an early packet

event embedded within a late packet event

 From Figure 4-10, we see that the computed and actual values of RD for an embedded

reordering sequence formed by an early event embedded within a late event are the same.

e) Embedded Reordering – Earliness embeds Lateness

 Consider a reordered sequence (1, 9, 2, 4, 5, 6, 3, 7, 8, 10) where packets 3 and 9 are

displaced by +4 (late) and -7 positions (early) respectively. The computation of RD for this

sequence is done in Table 4.18 and Table 4.19.

Table 4.18. Computation of FD, ER - Earliness embeds Lateness

Arrived

Sequence
1 9 2 4 5 6 3 7 8 10

RI 1 2 3 4 5 6 7 8 9 10

D 0 -7 1 0 0 0 4 -1 1 0

FD [D] 1 1 1 2 3 4 1 1 2 5

Table 4.19. Computation of RD, ER - Earliness embeds Lateness

D -7 -1 0 1 4

111

FD [D] 1 1 5 2 1

RD [D] 0.1 0.1 0.5 0.2 0.1

Figure 4-11. RD graph for an ER event caused by a late packet event embedded within an early packet event

From the Table 4.19, we have the following

RD [-7] = 0.1; RD [-1] = 0.1; RD [0] = 0.5; RD [1] = 0.2; RD [4] = 0.1

From Theorem 5, we have

i. RBD [2 ... dx] = 1 / N

ii. RBD [1] = (1 + dy – dx) / N

iii. RBD [0] = (N - dy) / N

Here, N = 10, dx = 4 and dy = 7. Therefore, the computed values of RBD using the theorem

would be

 RBD [2 … 4] = 0.1

 RBD [1] = 0.4

 RBD [0] = 0.3

The computation of RBD using actual procedures is shown in

112

Table 4.20 and Table 4.21

Table 4.20. Computation of FB, ER - Earliness embeds Lateness

Arrived

Sequence
1 9 2 4 5 6 3 7 8 10

E 1 2 2 3 3 3 3 7 8 10

B 0 1 0 2 3 4 1 1 1 0

FB [B] 1 1 2 1 1 1 2 3 4 3

Table 4.21. Computation of RBD, ER - Earliness embeds Lateness

B 0 1 2 3 4

FB [B] 3 4 1 1 1

RBD [B] 0.3 0.4 0.1 0.1 0.1

Figure 4-12. RBD graph showing the actual and computed values for an ER event caused by a late packet event

embedded within an early packet event

 From Figure 4-12, we see that the actual and computed values for an embedded

reordering event formed by a late event embedded within an early event are the same.

113

f) Embedded Reordering – Earliness embeds Earliness

 Consider a reordered sequence (1, 9, 2, 6, 3, 4, 5, 7, 8, 10) where packets 6 and 9

displaced by -2 (early) and -7 (early) positions respectively. The computation of RD for this

sequence is done in Table 4.22 and Table 4.23.

Table 4.22. Computation of FD, ER - Earliness embeds Earliness

Arrived

Sequence
1 9 2 6 3 4 5 7 8 10

RI 1 2 3 4 5 6 7 8 9 10

D 0 -7 1 -2 2 2 2 1 1 0

FD [D] 1 1 1 1 1 2 3 2 3 2

Table 4.23. Computation of RD, ER - Earliness embeds Earliness

D -7 -2 0 1 2

FD [D] 1 1 2 3 3

RD [D] 0.1 0.1 0.2 0.3 0.3

114

Figure 4-13. RD graph for an ER event caused by an early packet event embedded within another early packet

event

From the Table 4.23, we have the following

RD [-7] = 0.1; RD [-2] = 0.1; RD [0] = 0.2; RD [1] = 0.3; RD [2] = 0.3

From Theorem 6, we have

i. RBD [1] = (dx – dy – 1) / N

ii. RBD [2] = (dy + 1) / N

iii. RBD [0] = (N - dx) / N

Here, N = 10, dx = 7 and dy = 2. Therefore, the computed values of RBD using the theorem

would be

 RBD [1] = 0.4

 RBD [2] = 0.3

 RBD [0] = 0.3

The computation of RBD using actual procedures is shown in Table 4.24 and Table 4.25

Table 4.24. Computation of FB, ER - Earliness embeds Earliness

115

Arrived

Sequence
1 9 2 6 3 4 5 7 8 10

E 1 2 2 3 3 4 5 7 8 10

B 0 1 1 2 2 2 1 1 0 0

FB [B] 1 1 2 1 2 3 3 4 2 3

Table 4.25. Computation of RBD, ER - Earliness embeds Earliness

B 0 1 2

FB [B] 3 4 3

RBD [B] 0.3 0.4 0.3

Figure 4-14. RBD graph showing the actual and computed values for an ER event caused by an early packet

event embedded within another early packet event

 From Figure 4-14 we see that the actual and computed values of an embedded reordering

event formed by an early event embedded within another early event are the same.

g) Overlapped Reordering – Lateness overlaps Lateness

116

 Consider a reordered sequence (1, 3, 5, 6, 7, 2, 8, 9, 4, 10) where packets 2 and 4 are

displaced by +4 and +5 positions respectively. The computation of RD for this sequence is done

in Table 4.26 and Table 4.27.

Table 4.26. Computation of FD, OR - Lateness overlaps Lateness

Arrived

Sequence
1 3 5 6 7 2 8 9 4 10

RI 1 2 3 4 5 6 7 8 9 10

D 0 -1 -2 -2 -2 4 -1 -1 5 0

FD [D] 1 1 1 2 3 1 2 3 1 2

Table 4.27. Computation of RD, OR - Lateness overlaps Lateness

D -2 -1 0 4 5

FD [D] 3 3 2 1 1

RD [D] 0.3 0.3 0.2 0.1 0.1

Figure 4-15. RD graph for an OR event caused by a late packet event overlapping within another late packet

event

From the Table 4.27, we have the following

117

RD [-2] = 0.3; RD [-1] = 0.3; RD [0] = 0.2; RD [4] = 0.1; RD [5] = 0.1

From Theorem 7, we have

i. RBD [1 … (Vxy – 1)] = 1 / N

ii. RBD [(dx+1) … dy] = 1 / N

iii. RBD [Vxy … dx] = 2 / N

iv. RBD [0] = (N –dx –dy + Vxy – 1) / N

Here,

 N = 10, dx = 4, dy = 5

From Lemma 1, we have

 Vxy = 3

Therefore, the computed values of RBD using the theorem would be

 RBD [1 ... 2] = 0.1

 RBD [3… 4] = 0.2

 RBD [5] = 0.1

 RBD [0] = 0.3

The computation of RBD using actual procedures is shown in Table 4.28 and Table 4.29.

Table 4.28. Computation of FB, OR - Lateness overlaps Lateness

Arrived

Sequence
1 3 5 6 7 2 8 9 4 10

E 1 2 2 2 2 4 4 4 4 10

B 0 1 2 3 4 3 4 5 0 0

FB [B] 1 1 1 1 1 2 2 1 2 3

Table 4.29. Computation of RBD, OR - Lateness overlaps Lateness

B 0 1 2 3 4 5

FB [B] 3 1 1 2 2 1

118

RBD [B] 0.3 0.1 0.1 0.2 0.2 0.1

Figure 4-16. RBD graph showing the actual and computed values for an OR event caused by a late packet event

overlapping within another late packet event

 From Figure 4-16, we see that the actual and computed values of an overlapped

reordering event formed by a late event overlapping with another late event are the same.

h) Overlapped Reordering – Lateness overlaps Earliness

 Consider a reordered sequence (1, 3, 8, 4, 5, 2, 6, 7, 9, 10) where packets 2 and 8 get

displaced. The computation of RD for this sequence is done in Table 4.30 and Table 4.31.

Table 4.30. Computation of FD, OR - Lateness overlaps Earliness

Arrived

Sequence
1 3 8 4 5 2 6 7 9 10

RI 1 2 3 4 5 6 7 8 9 10

D 0 -1 -5 0 0 4 1 1 0 0

119

FD [D] 1 1 1 2 3 1 1 2 4 5

Table 4.31. Computation of RD, Overlapped Reordering, Late overlaps Early

D -5 -1 0 1 4

FD [D] 1 1 5 2 1

RD [D] 0.1 0.1 0.5 0.2 0.1

Figure 4-17. RD graph for an OR event caused by a late packet event overlapping within an early packet event

From the Table 4.31, we have the following

RD [-5] = 0.1; RD [-1] = 0.1; RD [0] = 0.5; RD [1] = 0.2; RD [4] = 0.1

From Theorem 8, we have

i. RBD [1] = (dy – Vxy + 1) / N

ii. RBD [2 … dx] = 1 / N

iii. RBD [0] = (N – dx – dy + Vxy) / N

Here, N = 10, dx = 4 and dy = 5.

From Lemma 2, we have

120

 Vxy = 2

Therefore, the computed values of RBD using the theorem would be

 RBD [1] = 0.4

 RBD [2 … 4] = 0.1

 RBD [0] = 0.3

The computation of RBD using actual procedures is shown in Table 4.32 and Table 4.33

Table 4.32. Computation of FB, OR - Lateness overlaps Earliness

Arrived

Sequence
1 3 8 4 5 2 6 7 9 10

E 1 2 2 2 2 2 6 7 9 10

B 0 1 2 3 4 1 1 1 0 0

FB [B] 1 1 1 1 1 2 3 4 2 3

Table 4.33. Computation of RBD, OR - Lateness overlaps Earliness

B 0 1 2 3 4

FB [B] 3 4 1 1 1

RBD [B] 0.3 0.4 0.1 0.1 0.1

121

Figure 4-18. RBD graph showing the actual and computed values for an OR event caused by a late packet event

overlapping within an early packet event

 From Figure 4-18, we see that the actual and computed values of an overlapped

reordering event formed by a late event overlapping with an early event are the same.

i) Overlapped Reordering – Earliness overlaps Earliness

 Consider a reordered sequence (1, 2, 4, 5, 6, 7, 8, 9, 3, 10) where packet 3 is displaced by

+6 positions (late). The computation of RD for this sequence is done in Table 4.34 and Table

4.35.

Table 4.34. Computation of FD, OR - Earliness overlaps Earliness

Arrived

Sequence
1 6 2 3 9 4 5 7 8 10

RI 1 2 3 4 5 6 7 8 9 10

D 0 -4 1 1 -4 2 2 1 1 0

FD [D] 1 1 1 2 2 1 2 3 4 2

Table 4.35. Computation of RD, OR - Earliness overlaps Earliness

D -4 0 1 2

FD [D] 2 2 4 2

RD [D] 0.2 0.2 0.4 0.2

122

Figure 4-19. RD graph for an OR event caused by an early packet event overlapping within another early packet

event

From the Table 4.35, we have the following

RD [-4] = 0.2; RD [0] = 0.2; RD [1] = 0.4; RD [2] = 0.2

From Theorem 9, we have

i. RBD [2] = Vxy / N

ii. RBD [1] = (dy + dx - Vxy – 1) / N

iii. RBD [0] = (N – dy – dx + 1) / N

Here, N = 10, dx = 4 and dy = 4.

From Lemma 3, we have

 Vxy = 2

Therefore, the computed values of RBD using the theorem would be

 RBD [2] = 0.2

 RBD [1] = 0.5

123

 RBD [0] = 0.3

The computation of RBD using actual procedures is shown in Table 4.36 and Table 4.37

Table 4.36. Computation of FB, OR - Earliness overlaps Earliness

Arrived

Sequence
1 6 2 3 9 4 5 7 8 10

E 1 2 2 3 4 4 5 7 8 10

B 0 1 1 1 2 2 1 1 0 0

FB [B] 1 1 2 3 1 2 4 5 2 3

Table 4.37. Computation of RBD, OR - Earliness overlaps Earliness

B 0 1 2

FB [B] 3 5 2

RBD [B] 0.3 0.5 0.2

Figure 4-20. RBD graph showing the actual and computed values for an OR event caused by an early packet

event overlapping within another early packet event

 From Figure 4-20, we see that the actual and computed values of an overlapped

reordering event formed by an early event overlapping with another early event are the same.

124

4.3 Conclusion

 Based on the theorems presented in this chapter, it can be seen that the Reorder Buffer-

Occupancy Density can be calculated using the Reorder Density of a sequence. The theorems

were verified using Internet traces available at the CNRL repository [63] and random sequences.

The results of the verification process showed that given the kind of reordering pattern, the RD of

the sequence and the number of packets in the sequence, one can easily obtain the RBD of the

sequence using these theorems.

While designing network architectures and components, RBD serves as a more useful

metric to allocate resources required for negating packet reordering. But, it is more likely that RD

will be used as a metric in QoS given the probability of displacement frequency that RD provides.

Therefore, the research provided in this chapter would serve as a useful tool to measure RBD

from RD, thereby enabling the usage of at least RD if not RBD.

125

CHAPTER 5. CONCLUSION

 In this research, analytical results to estimate the impact of re-sequencing buffers on

packet reordering have been presented. This is one of the first such researches to analyze the

impact of re-sequencing nodes on degree and extent of packet reordering. With the presented

results, the variation of reorder density and reorder buffer occupancy density as a packet stream

goes through a resequencing node can be characterized. The proposed theorems were verified

using simulation study based on the traces available at [63] and were found to be accurate. Such

estimation gives valuable insight about the quantity of resources required to resequence packets

in reordered sequences. With increase in network speeds and parallelism across network

components, packet reordering is bound to play a much more important role in the future. Internet

service providers might even have to include packet reordering metric as one of their QoS

parameters which means across the Internet a number of such ISPs will have to estimate and sync

their QoS parameters. Router manufacturers already include extra hardware for mitigating packet

reordering. This research presents the theoretical basis for estimation of buffer resources to meet

target goals and to evaluate the impact of size and placement of buffers on reordering in packet

flows.

126

CHAPTER 6. FUTURE WORK

The research holds good for sequences with a single type of reordering pattern whose

reordering pattern in known in advance. In future, the theorems can be extended to accommodate

multiple instances of specific reordering patterns. Theorems can be devised to obtain the Reorder

Density (RD) of a single instance of reordering pattern, given the overall RD of a sequence

containing multiple instances of different reordering patterns. The impact of distribution of

resequencing buffers on such sequences containing multiple instances of reordering patterns can

be studied in great detail to emulate real-life implementations.

The theorems assume the existence of resequencing mechanism when all packets from a

single flow (or sequence) converge onto a single network node and continue to do so thus

enabling resequencing. But, in reality, this could be an interesting problem since the packets from

a single flow (or sequence) may or may not converge much before reaching the destination. The

effect of latency on getting the packets back into order is also an interesting problem.

The primary purpose of Reorder Density (RD) and Reorder Buffer-Occupancy Density

(RBD) is to measure packet reordering in computer networks. When one considers the larger

perspective of these metrics which basically measure reordering and quantify the effect in terms

of buffers, we find that they have more applications than one could have ever thought. Reordering

is a common phenomenon across the world. Any pattern that follows a sequence can undergo

reordering thereby affecting the status quo.

127

6.1 Packet Reordering in Mobile Networks

 One of the reasons for the tremendous growth of Internet has been the availability of

Internet connectivity on mobile devices. The Internet has become ubiquitous due to vast

information that is easily available to the users at their fingertips. All this is happening despite the

fact that mobile connectivity suffers when compared to broadband service, in terms of quality of

service. When more and more users start using mobile devices for connecting to Internet, the

focus would shift from just connectivity to quality of connectivity and when that happens,

Internet Service Providers would start to focus on QoS and packet reordering happens to one of

the critical things affecting the performance as already seen.

 As mentioned earlier, in radio access technology for the next generation, Long Term

Evolution and Ultra Mobile Broadband are getting standardized. Studies conducted in these areas

are focusing on the overhead involved in avoiding packet reordering. Such studies indicate the

importance of tackling the problem of packet reordering and its solutions in the mobile and

broadband industry.

6.2 Reordering in areas outside computer networks

The concepts of RD and RBD may be applied to other streams where reordering is a

common phenomenon. Medical science is one such area where recent achievements have been

accomplished in the study of patterns in the human body such as DNA / RNA sequencing.

Manufacturing is another such area where machines are used to carry out systematic and

monotonous work. Machines are basically instruction based systems which lack the idea of

cognition that a human being does. When multiple machines communicate or depend on each

other, sequencing is important and the so-called machines need to adhere to a strict code or

128

pattern. Almost all manufacturing units are sequence based and lack of order in such sequences

can result in insurmountable losses.

129

REFERENCES

[1] C. M. Arthur, D. Girma, D. Harle and A. Lehane, “The Effects of Packet Reordering in a Wireless

Multimedia Environment,” Wireless Comm. Systems, pp. 453 – 457, Sep 2004.

[2] C. M. Arthur, A. Lehane and D. Harle, “Keeping Order: Determining the Effect of TCP Packet

Reordering,” Networking and Services, 2007 (ICNS‟07) pp. 116 – 116, June 2007.

[3] T. Banka, A. A. Bare and A. P. Jayasumana, “Metrics for Degree of Reordering in Packet

Sequences,” Local Computer Networks (LCN 2002), pp. 333 – 342, 6-8 Nov. 2002.

[4] A. A. Bare, “Measurement and Analysis of Packet Reordering,” M.S Thesis, Colorado State

University, Nov. 2004.

[5] A. A. Bare, A. P. Jayasumana and N. M. Piratla, “On growth Of Parallelism within Routers and Its

Impact on Packet Reordering,” Proc. 15th IEEE Workshop on Local and Metropolitan Area

Networks, Princeton NJ, pp. 145-150, June 2007.

[6] J. Bellardo and S. Savage, “Measuring Packet Reordering,” Proceedings of the 2nd ACM

SIGCOMM Workshop on Internet measurement (IMW '02), pp. 97-105, 2002.

[7] J. C. R. Bennett, C. Partridge and N. Shectman, “Packet Reordering is Not Pathological Network

Behavior,“ IEEE/ACM Trans Networking, pp. 789-798, Dec. 1999.

[8] S. Bohacek, J. P. Hespanha, J. Lee, C. Lim and K. Obraczka, “A New TCP for Persistent Packet

Reordering,” IEEE/ACM Trans. Networks, vol. 14(2),pp. 369-382, Apr. 2006.

[9] S. Bohacek, J. P. Hespanha, J. Lee, C. Lim and K. Obraczka, “TCP-PR: TCP for Persistent Packet

Reordering,” Distributed Comp. Systems, 2003, pp. 222-231, May 2003.

130

[10] W. Chao, Z. Xingming, C. Wenping and N. Xiaona, “Load Balancing Algorithm Using Flow

Chopping to Avoid Packet Reordering,” Information Tech. and Applications, 2009 (IFITA‟09),

pp. 193-197, May 2009.

[11] L. Daniel, I. Jarvinen and M. Kojo, “Combating Packet Reordering in Vertical Handoff using

Cross-layer Notifications to TCP,” Wireless Mobile Computing, Networking & Communication

(WIMOB '08), pp. 297-303, Oct. 2008.

[12] Y. Dong, D. Wang, N. Pissinou and J. Wang, “Multi-path Load Balancing In Transport Layer,”

Next Generation Internet Networks, pp. 135-142, May 2007.

[13] K. Evensen, D. Kasper, P. Engelstad, A. Hansen, C. Griwodz and P. Halvorsen, “A Network-

Layer Proxy for Bandwidth Aggregation and Reduction of IP Packet Reordering,” Local

Computer Networks, 2009 (LCN‟09), pp. 585-592, Oct. 2009.

[14] J. Feng, Z. Ouyang, L. Xu and B. Ramamurthy, “Packet reordering in high-speed networks and its

impact on high-speed TCP variants,” Computer Comm, vol. 32(1), Jan 2009.

[15] J. C. Fernandez, T. Taleb, M. Guizani and N. Kato, “Bandwidth Aggregation-Aware Dynamic

QoS Negotiation for Real-Time Video Streaming in Next-Generation Wireless Networks,” IEEE

Trans. On Multimedia, pp. 1082-1093, Oct. 2009.

[16] Z. Fu, B. Greenstein, X. Meng and S. Lu, “Design and Implementation of a TCP-friendly

Transport Protocol for Ad Hoc Wireless Networks,” Network Protocols, 2002, pp. 216-225, Nov.

2002.

[17] X. Fu, W. Yu, S. Jiang, S. Graham and Y. Guan, “TCP performance in a flow-based mix

networks: Modeling and analysis,” IEEE Trans. On Parallel and Distributed Systems, vol. 20(5),

pp. 695 – 709, May 2009.

[18] L. Gharai, C. Perkins and T. Lehman, “Packet Reordering, High Speed Networks and Transport

Protocol Performance,” Computer Comm. and Networks (ICCCN 2004), pp. 73 – 78, 11-13 Oct.

2004.

131

[19] S. Govind, R. Govindarajan and J. Kuri, “Packet Reordering in Network Processors,” Parallel and

Dist. Proc. Sym. (IPDPS 2007), pp. 1 – 10, 26-30 Mar. 2007.

[20] S. Gunreben and G. Hu, “A Multi-layer Analysis Of Reordering in Optical Burst Switched

Networks,” IEEE Communication Letters, pp. 1013-1015, Dec. 2007.

[21] P. Hurtig and A. Brunstrom, “Emulation Support for Advanced Packet Reordering Models,”

Communications (ICC‟10), pp. 1-6, May 2010.

[22] G. Iannaccone, S. Jaiswaland C. Diot, “Packet reordering inside the Sprint backbone,” Tech.

Report, TR01-ATL-062917, Sprint ATL, June 2001.

[23] G. Istrate, A. Hansson and G. Yan, “Packet Reordering Metrics: Some Methodological

Considerations,” Networking and Services, 2006 (ICNS‟06), pp. 4-4, July 2006.

[24] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose and D. Towsley, “Measurement and Classification of

Out-of-Sequence Packets in a Tier-1 IP Backbone,” IEEE/ACM Trans. On Networking, pp. 54-66,

Feb 2007.

[25] A. Jayasumana, N. Piratla, T. Banka, A. Bare and R. Whitner, “Improved Packet Reordering

Metrics,” IETF RFC 5236.

[26] D. Kaspar, K. Evensen, A. F. Hansen, P. Engelstad, P. Halvorsen and C. Griwodz, “An Analysis

of the Heterogeneity and IP Packet Reordering over Multiple Wireless Networks,” Computers and

Communications, 2009 (ISCC‟09), pp. 637-642, July 2009.

[27] D. P. Kim, S. J. Koh and V. Leung, “On the Packet Reordering of mSCTP for Vertical Handover

in Heterogonous Wireless Networks,” Vehicular Tech. Conf, 2008 (VTC‟08), pp. 1-5, Sep 2008.

[28] W. C. Kwon, S. Yoo, J. Um, S. W. Jeong, “In-Network Reorder Buffer To Improve Overall NoC

Performance While Resolving the In-Order Requirement Problem,” Design, Automation & Test in

Europe Conference & Exhibition, 2009, pp. 1058-1063, Apr. 2009.

[29] C. Lai, K. C. Leung and V. O. K. Li, “Enhancing Wireless TCP: A Serialized-Timer Approach,”

INFOCOM, 2010, pp. 1-5, Mar. 2010.

132

[30] J. R. Lane and A. Nakao, “Best-Effort Network Layer Packet Reordering in Support of Multipath

Overlay Packet Dispersion,” Global Telecom. Conf, 2008 (GLOBECOM‟08), pp. 1-6, Dec 2008.

[31] M. Laor and L. Gendel, “The Effect Of Packet Reordering in a Backbone Link on Application

Throughput,” IEEE Network, pp. 28 – 36, Sep/Oct 2002.

[32] K. -C Leung, V. O. K. Li and D. Yang, “An Overview of Packet Reordering in Transmission

Control Protocol (TCP): Problems, Solutions, and Challenges,” IEEE Trans. On Parallel and

Distributed Systems, vol. 18(4), pp. 552 – 535, Apr. 2007.

[33] B. Lin and I. Keslassy, “The Concurrent Matching Switch Architecture,” IEEE/ACM Trans. On

Networking, pp. 1330-1343, Aug. 2010.

[34] C. Ma and K. -C. Leung, “Improving TCP Reordering Robustness in Multipath Networks,” Local

Computer Networks, 2004, pp. 409-410, Nov. 2004.

[35] A. Morton, L. Ciavattone, G. Ramachandran, S. Shalunov, J. Perser, “Packet Reordering Metrics,”

IETF RFC 4737

[36] A. Nehme, W. Phillips and W. Robertson, “The Effect of Re-Ordering and Dropping Packets on

TCP over A Slow Wireless Link,” Canadian Conf. On. Elect. and Comp. Engr, 2003 (IEEE

CCECE‟03), vol. 3, pp. 1555-1558, May 2003.

[37] A. Papadogiannakis, D. Antoniades, M. Polychronakis and E. P. Markatos, “Improving the

Performance of Passive Network Monitoring Applications using Locality Buffering,” Modeling,

Analysis and Simulation of Comp. and Telecom. Systems, 2007 (MASCOTS‟07), pp. 151-157,

Oct. 2007.

[38] V. Paxson, “Measurements and Analysis of End-to-End Internet Dynamics,” Ph.D. Dissertation,

University of California, Berkeley, Apr. 1997.

[39] N. M. Piratla, “A Theoretical foundation, Metrics and Modeling of Packet Reordering and

Methodology of Delay Modeling using inter-packet gaps,” PhD thesis.

133

[40] N. M. Piratla and A. P. Jayasumana, “Reordering of Packets due to Multipath Forwarding - An

Analysis,” Communications, 2006 (ICC‟06), pp. 829-834, June 2006.

[41] N. M. Piratla and A. P. Jayasumana, "Metrics for packet reordering - A comparative analysis," Int.

Journal of Communication Systems, vol 21(1), pp. 99-113, Jan 2007.

[42] N. M. Piratla, A. P. Jayasumana and T. Banka, “On Reorder Density and its Application to

Characterization of Packet Reordering,” Local Computer Networks (LCN 2005), pp. 156 – 165,

17-17 Nov. 2005.

[43] N. M. Piratla, A. P. Jayasumana, A. A. Bare and T. Banka, “Reorder buffer-occupancy density and

its application for measurement and evaluation of packet reordering,” Computer Communications,

vol. 30(9), pp. 1980-1993, June 2007.

[44] S. Prabhavat, H. Nishiyama, N. Ansari and N. Kato, “On The Performance Analysis Of Traffic

Splitting On Load Imbalancing and Packet Reordering Of Bursty Traffic,” Network Infrastructure

and Digital Content, 2009 (IC-NIDC‟09), pp. 236-240, Nov. 2009.

[45] M. L. Sanni, G. A. Aderounmu, S. A. Bello, A. O. Ajayi, “An Improved Packet Resequencing

Model for Selective Repeat Request Protocol In Data Communication Networks,” Computer and

Comm., 2007 (ISCC‟07), pp. 375-280, July 2007.

[46] T. Shu, M. Liu, Z. Li and K. Zheng, “Network-layer Soft Vertical Handoff Schemes without

Packet Reordering,” Local Computer Networks, 2009 (LCN‟09), pp. 285-288, Oct. 2009.

[47] S. Spirou, “Packet Reordering Effects on the Subjective Quality of Broadband Digital Television,”

Consumer Electronics, 2006. ISCE '06, 2006.

[48] W. Sun, T. Wen and Q. Guo, “A Novel Protocol for Mobile-induced Packet Reordering in Mobile

Ad Hoc Networks,” Information Science and Engr., 2008 (ISISE‟08), pp. 626-631, Dec. 2008.

[49] T. Taleb, D. Mashima, K. Hashimoto, N. Kato and Y. Nemoto, “On How To Mitigate the Packet

Reordering Issue in the Explicit Load Balancing Scheme,” Global Information Infrastructure

Symp., 2007 (GIIS‟07), pp. 14-19, July 2007.

134

[50] Y. Tanigawa, J. Kim and H. Tode, “Retransmission Method with Network Coding based on

Reordering Delay in Wireless LAN,” Industrial Informatics (INDIN), 2010, pp. 1011-1015, July

2010.

[51] S. P. Tinta, A. E. Mohr, J. L. Wong, “Characterizing End-to-End Packet Reordering with UDP

Traffic,” Computers and Comm., 2009 (ISCC‟09), pp. 321-324, July 2009.

[52] S. Traboulsi, M. Meitinger, R. Ohlendorf and A. Herkersdorf, “An Efficient Hardware

Architecture for Packet Re-sequencing in Network Processors MPSoCs,” Digital System Design,

Architectures, Methods and Tools, 2009 (DSD‟09), pp. 11-18, Aug. 2009.

[53] G. Wang, J. Wang and L. Liu, “The Solution of Packet Reordering in LEO Satellite Networks,”

Communication Software and Networks, 2009 (ICCSN‟09), pp. 438-442, Feb. 2009.

[54] G. Wang, J. Wang, L. Liu and G. Chen, “Packet Reordering Analysis for LEO Satellite

Networks,” Proc. Int. Conf. on Embedded Software and Systems (ICESS2008), pp. 308 – 313, 29-

31 July 2008.

[55] B. Wu, Y. Xu, B. Liu, H. Lu and B. Liu, “A Practical Packet Reordering Mechanism with Flow

Granularity for Parallelism Exploiting in Network Processors,” Proc. of the 19th IEEE Int. Parallel

and Distributed Proc. Sym. (IPDPS'05), pp. 133.1, 2005.

[56] B. Wu, Y. Xu, B. Liu, H. Lu and X. Wang, “An Efficient Scheduling Mechanism with Flow-

Based Packet Reordering in a High-Speed Network Processor,” Proc. IEEE Workshop High

Performance Switching and Routing (HPSR), 2005

[57] Y. Xia and D. Tse, “Analysis on packet re-sequencing for reliable network protocols,

“Performance Evaluation, vol. 61(4), pp. 299 – 328, Aug 2005.

[58] D. Yang, K. -C. Leung and V. O. K. Li, “Simulation-Based Comparisons of Solutions for TCP

Packet Reordering in Wireless Networks,” Wireless Comm. and Networks, 2007 (WCNC‟07), pp.

3238-3243, Mar. 2007.

135

[59] X. Yang, Z. Qing-li, F. Fang-fa, Y. Ming-yan and L. Cheng, “NISAR: An AXI Compliant On-

chip NI Architecture Offering Transaction Reordering Processing,” ASIC, 2007 (ASICON‟07),

pp. 890-893, Oct. 2007.

[60] B. Ye, A. P. Jayasumana and N. M. Piratla, “On Monitoring of End-to-End Packet Reordering

over the Internet,” Networking and Services, 2006 (ICNS '06), pp. 3 – 3, 16-18 July 2006.

[61] J. -H. Yun, M. Lee, S. Choi and H. Cha, “Comparison of Handover Schemes for 3GPP Long Term

Evolution and 3GPP2 Ultra Mobile Broadband,” Personal Indoor and Mobile Radio Comm., 2008

(PIMRC‟08), pp. 1-5, Sep. 2008.

[62] K. Zheng, X. Jiao, M. Liu and Z. Li, “An Analysis of Resequencing delay of Reliable

Transmission Protocols over Multipath,” Communications, 2010 (ICC‟10), pp. 1-5, May 2010.

[63] Computer Networking Research Laboratory, http://www.cnrl.colostate.edu/.

[64] Internet World Stats, http://www.internetworldstats.com/.

136

APPENDIX

Map.c
#include <stdio.h>

#define SIZE 1005

void get_latest_index(int byte_num[],int *end_num,int *end_index);
int chk_for_all(int byte_num[]);
int get_new_index(int byte_num[], int x);

int main(int argc, const char* argv[]) {

 FILE *in;
 in = fopen(argv[1],"r");

 if(NULL == in)
 {

 printf("\n Error");
 }
 else
 {
 int byte_num[SIZE];
 int astart[SIZE],aend[SIZE],asize[SIZE];
 int start,end,size;
 int it = 1;

 int i;
 int quit = 1;
 int prev_quit = 0;

 for(i = 0;i<SIZE;i++)
 byte_num[i] = -1;

 //printf("\n Done with init");
 i = 0;

 while(EOF != fscanf(in,"%d %d %d",&start,&end,&size)){
 astart[i] = start;
 aend[i] = end;
 asize[i] = size;

 i++;
 }

 int MAX = SIZE;

 //printf("\n Done with reading");
 while(quit && (prev_quit < MAX)){
 int end_num = -1,end_index = -1;

137

 start = astart[it-1];
 end = aend[it-1];

 if(it == 1){

 byte_num[it] = start;
 byte_num[it+1] = end;
 }
 else
 get_latest_index(byte_num,&end_num,&end_index);

 if(start == end_num){

 byte_num[end_index+1] = end;
 //printf("\n bye_num[%d] = %d",end_index+1,end);
 //it = 1;
 }

 if(it == MAX) {
 prev_quit++;
 quit = chk_for_all(byte_num);

 ///printf("\n Recursing ..");
 it = 1;
 }
 else
 it++;

 }

 //printf("\n Done with reading");

 /*
 for(i=0;i<1000;i++)
 printf("\n [%d]\t%d",i+1,byte_num[i]);
 */

 fclose(in);

 int num_of_late = 0;
 int num_of_early = 0;
 int was_it_only_ir = 1;
 int late_by_one=0;

 if(prev_quit < MAX) {
 in = fopen(argv[1],"r");

 printf("\n");
 int ri = 1;
 while(EOF != fscanf(in,"%d %d %d",&start,&end,&size)){
 int nstart = get_new_index(byte_num,start);
 int nend = get_new_index(byte_num,end);

 if((ri-nstart) > 0)
 num_of_late++;

 else if((ri-nstart) < 0)
 num_of_early++;

138

 if((ri-nstart)< -1)
 was_it_only_ir = 0;

 if((ri-nstart) == 1)

 late_by_one++;

 if((ri-nstart) != 0)
 printf("\n%d\t%d\t\t%d",nstart,ri,(ri-nstart));
 else
 printf("\n%d\t%d\t%d",nstart,ri,(ri-nstart));
 ri++;
 }

 printf("\n<%d:%d",was_it_only_ir,num_of_late);
 printf(":%d:%d>",num_of_early,late_by_one);
 }
 else
 printf("\n Packets lost ...");
 fclose(in);
 }
}

int get_new_index(int byte_num[], int x) {
 for(int i = 1;i<=SIZE;i++)
 if(x == byte_num[i])
 return i;

 return -1;
}

void get_latest_index(int byte_num[],int *end_num,int *end_index) {
 int i;

 for(i=1;i<=SIZE;i++){
 if(byte_num[i] == -1) {

 *end_num = byte_num[i-1];
 *end_index = i-1;

 break;
 }
 }

 //printf ("\n end_num %d\tend_index %d",*end_num,*end_index);
}

int chk_for_all(int byte_num[]){

 int i;

 for(i=1;i<=999;i++)
 if(byte_num[i] == -1)
 return 1;

 //printf("\n Returns 0");
 return 0;

}

139

find_displacements.pl
#!/usr/local/bin/perl -w

$fol = "./indexed/";

opendir(IMD, $fol) || die("Cannot open directory");
@thefiles = readdir(IMD);
closedir(IMD);
foreach $thing (@thefiles) {
 unless (($thing eq ".") || ($thing eq ".."))
 {
 $redir = $fol.$thing;
 @filedata = `cat $redir`;

 $num_of_lines = 0;
 foreach $line (@filedata) {
 #print "$line";
 if($num_of_lines > 999)
 {
 #print "here";

 if($line =~ m/\<(\d+):(\d+):(\d+):(\d+)\>/) {
 $ir = $1;
 $late = $2;
 $early = $3;
 $one_late = $4;

 #print "hmmm...";
 if($ir == 1 && $late ne 0) {
 print "\n Filename : $thing ------ \t";

 print "\tLate : $late\tEarly : $early";
 }
 else {
 #print "Doing ..";
 }

 if(($late+$early) > 100 && $ir == 1) {
 $do = `cp ./indexed/$thing ./copied`;

 print $do;
 }

 }
 }
 $num_of_lines++;
 }

 }
}
Allt.pl
#!/usr/local/bin/perl -w

$fol1 = "./selected/";
$fol2 = "./toindex/";

$fol3 = "./indexed/";
opendir(IMD, $fol1) || die("Cannot open directory");

140

@thefiles = readdir(IMD);
closedir(IMD);
foreach $thing (@thefiles) {
 unless (($thing eq ".") || ($thing eq ".."))
 {

 $redir = $fol1.$thing;
 $toindex = $fol2.$thing;
 $indexed = $fol3.$thing;

 @fileoutput = `t.pl $redir > $toindex`;
 @fileoutput1 = `./doit $toindex > $indexed`;
 print "\tD";
 }

}
print "\nDONE !!";

extract_data.pl
#!/usr/local/bin/perl -w

$fol = "./Japan_txt/";
opendir(IMD, $fol) || die("Cannot open directory");

@thefiles = readdir(IMD);
closedir(IMD);
foreach $thing (@thefiles) {
 unless (($thing eq ".") || ($thing eq ".."))
 {
 print "$thing";
 $redir = $fol.$thing;
 print "$redir";
 @filedata = `cat $redir`;

 foreach $line(@filedata) {

 #print "$filedata[$line]";

 @myLines = `cat $line`;

 $prev_start = 0;
 $prev_end = 0;

 $displacement = 0;
 $number_lines = 0;
 $start_count = 0;
 $reorder_start = 0;

 my %reorder_hash = ();

 foreach (@myLines) {
 $line = $_;
 #print $line;

 $number_lines++;

 if($line =~ m/(S|.|P) (\d+):(\d+)/) {
 $start = $2;

 $end = $3;
 #print "\n$2\t\t$3";

141

 if($prev_end ne $start && $prev_end ne $prev_start) {
 print "\nReorder $prev_end : $start";
 $start_count = 1;
 $reorder_hash{$prev_end} = 1;

 }

 if($start_count eq 1) {
 #print "happening";
 $displacement++;
 }

 if(defined $reorder_hash{$start}) {

 delete $reorder_hash{$start};
 print "\t $start late by $displacement";
 $start_count = 0;
 $displacement = 0;
 }

 $prev_start = $start;
 $prev_end = $end;

 }
 }

 }

 }
}
print "\nDONE !!";

Makefile
CC= cc

INC=-Iinclude
LIB=-Llib
CFLAGS=

FLAGS= $(INC) $(LIB) $(CFLAGS)

OBJS = debug.o reorder.o resequence.o seqgen.o comparator.o util.o main.o

all: main

main: $(OBJS)
 $(CC) -o m $(OBJS) $(FLAGS)

main.o: main.c
 $(CC) -c main.c $(FLAGS)

util.o: util.c
 $(CC) -c util.c $(FLAGS)

comparator.o : comparator.c

 $(CC) -c comparator.c $(FLAGS)

142

reorder.o : reorder.c
 $(CC) -c reorder.c $(FLAGS)

resequence.o : resequence.c
 $(CC) -c resequence.c $(FLAGS)

seqgen.o: seqgen.c
 $(CC) -c seqgen.c $(FLAGS)

debug.o: debug.c
 $(CC) -c debug.c $(FLAGS)

clean :

 rm m
 rm *.o

Comparator.c

/*
Filename:
comparator.c

Funtionality:
This file contains methods to compute the displacement, predict RD, etc

Author:
Raghunandan Mandyam Narasiodeyar
Computer Network Research Lab
Dept. of Electrical and Computer Engineering
Colorado State University

Fort Collins, CO - 80523
*/

#include <main.h>

/*
Method to compute the displacement
Input arguments:

actual - Pointer to the first NODE element
num_of_packets - Number of packets in the sequence
*/
NODE* compute_disp(NODE *actual,int num_of_packets)
{
 int i=1;
 NODE *temp,*current,*first;
 NODE *tactual = actual;

 temp = (NODE *)malloc(sizeof(NODE));
 first = current = temp;

 while(i != num_of_packets)
 {
 current->info = i-(tactual->info);
 temp = (NODE *)malloc(sizeof(NODE));

 current->ptr = temp;
 current = temp;

143

 i++;
 tactual = tactual->ptr;
 }
 current->info = i-(tactual->info);
 current->ptr = NULL;

 return(first);
}

/*
A sub-method used to compute RD
Input arguments:
first - Pointer to the first NODE element

x - element to be inserted
*/

RD_NODE* increment_rd(int x,RD_NODE *first)
{
 RD_NODE *temp;
 RD_NODE *prev;

 int status = FAIL;

 temp = first;

 if(temp == NULL && x != 0)
 {
 RD_NODE* n;
 n = (RD_NODE*)malloc(sizeof(RD_NODE));
 n->d = 0;

 n->disp = 0;
 n->ptr = NULL;

 temp = first = n;
 }

 if(temp == NULL)
 {

 RD_NODE* n;
 n = (RD_NODE*)malloc(sizeof(RD_NODE));
 n->d = x;
 n->disp = 1;
 n->ptr = NULL;

 return n;
 }

 while(temp != NULL)
 {
 if(temp->d == x)
 {
 (temp->disp)++;
 status = SUCCESS;
 break;

 }
 prev = temp;

144

 temp = temp->ptr;
 }

 if(status != SUCCESS)
 {

 RD_NODE* n;
 n = (RD_NODE*)malloc(sizeof(RD_NODE));
 n->d = x;
 n->disp = 1;
 n->ptr = NULL;
 prev->ptr = n;
 }

 return first;
}

/*
Method used to compute RD
Input arguments:
disp - Pointer to the displacement NODE element
num_of_packets - Number of packets in the sequence

*/

RD_NODE* compute_rd(NODE *disp,int num_of_packets)
{
 RD_NODE *first=NULL;
 RD_NODE *trd;
 NODE *temp;

 temp = disp;

 while(temp != NULL)
 {
 printf("\n iterating through main link list ..");
 first = increment_rd(temp->info,first);
 temp = temp->ptr;
 }

 return first;
}

/*
Method used to predict RD in an embedded reordering pattern formed by
late packet event embedded within another late packet event
Input arguments:
rdfirst - Pointer to the first element of the RD node

num_of_packets - Number of packets in the sequence
num_of_buffers - Number of resequencing buffers to be used
*/

RD_NODE* predict_erlel_rd(RD_NODE *rdfirst,int num_of_packets,int num_of_buffers)
{
 RD_NODE *temp;
 RD_NODE *newtemp;

 RD_NODE *newFirst;

145

 signed int dx=-1,dy=-1;
 temp = rdfirst;

 while(temp != NULL)
 {

 if(temp->d > 0 && dx == -1)
 dx = temp->d;
 if(temp->d > 0 && dx != -1)
 dy = temp->d;

 temp = temp->ptr;
 }

 temp = rdfirst;
 newFirst = (RD_NODE *)malloc(sizeof(RD_NODE));
 newtemp = newFirst;

 //printf("\n DX : %d\tDY : %d",dx,dy);

 while(temp != NULL)
 {

 int minimum = min(dx,dy);
 //printf("\n Minimum : %d Num_of_buffers : %d",minimum,num_of_buffers);
 if(num_of_buffers < minimum)
 {
 //printf("\n num_of_buffers < minimum");
 if(temp->d == 0)
 {
 newtemp->d = temp->d;
 newtemp->disp = temp->disp + num_of_buffers;

 }
 else if(temp->d == -1)
 {
 newtemp->d = temp->d;
 newtemp->disp = temp->disp;
 }
 else if(temp->d == -2)
 {

 newtemp->d = temp->d;
 newtemp->disp = temp->disp - num_of_buffers;
 }
 else if(temp->d > 1)
 {
 newtemp->d = (temp->d) - num_of_buffers;
 newtemp->disp = temp->disp;
 }

 }
 else if(num_of_buffers == minimum)
 {
 //printf("\n num_of_buffers == minimum");
 if(temp->d == 0)
 {
 newtemp->d = temp->d;
 newtemp->disp = temp->disp + num_of_buffers + 1;

 }
 else if(temp->d == -1)

146

 {
 newtemp->d = temp->d;
 newtemp->disp = temp->disp;
 }
 else if(temp->d == -2)

 {
 newtemp->d = temp->d;
 newtemp->disp = temp->disp - num_of_buffers;
 }
 else if(temp->d > num_of_buffers)
 {
 newtemp->d = (temp->d) - num_of_buffers;
 newtemp->disp = temp->disp;

 }
 }
 else if(num_of_buffers == minimum + 1)
 {
 //printf("\n num_of_buffers + 1 == minimum");
 if(temp->d == 0)
 {
 newtemp->d = temp->d;

 newtemp->disp = temp->disp + num_of_buffers;
 }
 else if(temp->d == -1)
 {
 newtemp->d = temp->d;
 newtemp->disp = temp->disp + 1;
 }
 else if(temp->d > num_of_buffers)
 {

 newtemp->d = (temp->d) - num_of_buffers;
 newtemp->disp = temp->disp;
 }
 }
 else if(num_of_buffers > (minimum + 1) && num_of_buffers < max(dx,dy))
 {
 //printf("\n num_of_buffers > minimum && num_of_buffers < max(dx,dy)");
 if(temp->d == 0)

 {
 newtemp->d = temp->d;
 newtemp->disp = temp->disp + num_of_buffers;
 }
 else if(temp->d == -1)
 {
 newtemp->d = temp->d;
 newtemp->disp = temp->disp - num_of_buffers + minimum + 2;

 }
 else if(temp->d > minimum)
 {
 newtemp->d = (temp->d) - num_of_buffers;
 newtemp->disp = temp->disp;
 }
 }
 else

 {
 newtemp->d = 0;

147

 newtemp->disp = num_of_packets;
 newtemp->ptr = NULL;
 break;
 }

 if(temp->ptr != NULL && newtemp->disp != 0/*&& newtemp->disp != num_of_packets*/)
 {
 RD_NODE *again = (RD_NODE *)malloc(sizeof(RD_NODE));
 newtemp->ptr = again;
 newtemp = again;
 }
 else
 newtemp->ptr = NULL;

 temp = temp->ptr;
 }

 return (newFirst);
}

/*

Method used to predict RD in an overlapped reordering pattern formed by
late packet event overlapping another late packet event
Input arguments:
rdfirst - Pointer to the first element of the RD node
num_of_packets - Number of packets in the sequence
num_of_buffers - Number of resequencing buffers to be used
*/

RD_NODE* predict_orlol_rd(RD_NODE *rdfirst,int num_of_packets,int num_of_buffers)

{
 RD_NODE *temp;
 RD_NODE *newtemp;
 RD_NODE *newFirst;

 signed int dx=-1,dy=-1;
 temp = rdfirst;
 int vxy = 0;

 while(temp != NULL)
 {
 if(temp->d > 0 && dx == -1)
 dx = temp->d;
 if(temp->d > 0 && dx != -1)
 dy = temp->d;

 if(temp->d == -2)
 vxy = temp->disp;

 temp = temp->ptr;
 }

 temp = rdfirst;
 newFirst = (RD_NODE *)malloc(sizeof(RD_NODE));

 newtemp = newFirst;
 int minimum = min(dx,dy);

148

 printf("\n VXY : %d",vxy);

 while(temp != NULL)
 {

 //printf("\n Minimum : %d Num_of_buffers : %d",minimum,num_of_buffers);
 if(num_of_buffers <= vxy)
 {
 //printf("\n num_of_buffers < minimum");
 if(temp->d == 0)
 {
 newtemp->d = temp->d;
 newtemp->disp = temp->disp + num_of_buffers;

 }
 else if(temp->d == -1)
 {
 newtemp->d = temp->d;
 newtemp->disp = temp->disp;
 }
 else if(temp->d == -2)
 {

 newtemp->d = temp->d;
 newtemp->disp = temp->disp - num_of_buffers;
 }
 else if(temp->d > 1)
 {
 newtemp->d = (temp->d) - num_of_buffers;
 newtemp->disp = temp->disp;
 }
 }

 else if(num_of_buffers > vxy && num_of_buffers < minimum)
 {
 int j = vxy;
 int k = (num_of_buffers - vxy);

 //printf("\n num_of_buffers < minimum");
 if(temp->d == 0)
 {

 newtemp->d = temp->d;
 newtemp->disp = temp->disp + j + 2*k;
 }
 else if(temp->d == -1)
 {
 newtemp->d = temp->d;
 newtemp->disp = temp->disp - 2*k;
 }

 else if(temp->d > num_of_buffers)
 {
 newtemp->d = (temp->d) - num_of_buffers;
 newtemp->disp = temp->disp;
 }
 }
 else if(num_of_buffers == minimum)
 {

 int j = vxy;
 int k = (num_of_buffers - vxy);

149

 //printf("\n num_of_buffers < minimum");
 if(temp->d == 0)
 {
 newtemp->d = temp->d;

 newtemp->disp = temp->disp + j + 2*k + 1;
 }
 else if(temp->d == -1)
 {
 newtemp->d = temp->d;
 newtemp->disp = temp->disp - 2*k;
 }
 else if(temp->d > num_of_buffers)

 {
 newtemp->d = (temp->d) - num_of_buffers;
 newtemp->disp = temp->disp;
 }
 }
 else if(num_of_buffers > (minimum) && num_of_buffers < max(dx,dy))
 {
 int j = vxy;

 int k = minimum - vxy;
 int l = num_of_buffers - minimum;

 if(temp->d == 0)
 {
 newtemp->d = temp->d;
 newtemp->disp = temp->disp + j + 2*k + l + 1;
 }
 else if(temp->d == -1)

 {
 newtemp->d = temp->d;
 newtemp->disp = temp->disp - (2*k) - l;
 }
 else if(temp->d > num_of_buffers)
 {
 newtemp->d = (temp->d) - num_of_buffers;
 newtemp->disp = temp->disp;

 }
 }
 else
 {
 newtemp->d = 0;
 newtemp->disp = num_of_packets;
 newtemp->ptr = NULL;
 break;

 }

 if(temp->ptr != NULL && newtemp->disp != 0/*&& newtemp->disp != num_of_packets*/)
 {
 RD_NODE *again = (RD_NODE *)malloc(sizeof(RD_NODE));
 newtemp->ptr = again;
 newtemp = again;
 }

 else
 newtemp->ptr = NULL;

150

 temp = temp->ptr;
 }

 return (newFirst);

}

/*
Method used to predict RD in an embedded reordering pattern formed by
late packet event embedded within a early packet event
Input arguments:
rdfirst - Pointer to the first element of the RD node
num_of_packets - Number of packets in the sequence

num_of_buffers - Number of resequencing buffers to be used
*/

RD_NODE* predict_erlee_rd(RD_NODE *rdfirst,int num_of_packets,int num_of_buffers)
{
 RD_NODE *temp;
 RD_NODE *newtemp;
 RD_NODE *newFirst;

 signed int dearly, dlate;
 temp = rdfirst;
 int vxy = 0;

 while(temp != NULL)
 {
 if(temp->d < -1)
 dearly = temp->d;

 if(temp->d > 0)
 dlate = temp->d;

 temp = temp->ptr;
 }

 temp = rdfirst;

 newFirst = (RD_NODE *)malloc(sizeof(RD_NODE));
 newtemp = newFirst;

 printf("\n de : %d\tdl : %d",dearly,dlate);

 while(temp != NULL)
 {
 if(num_of_buffers == 1)

 {
 int j = dearly + 1;
 int k = num_of_buffers;
 //printf("\n num_of_buffers < minimum");
 if(temp->d == 0)
 {
 newtemp->d = temp->d;
 newtemp->disp = temp->disp + j + k;

 }
 else if(temp->d == -1)

151

 {
 newtemp->d = temp->d;
 newtemp->disp = temp->disp - j;
 }
 else if(temp->d > 1)

 {
 newtemp->d = (temp->d) - num_of_buffers;
 newtemp->disp = temp->disp;
 }
 }
 else if(num_of_buffers > 1 && num_of_buffers < dlate)
 {
 int j = dearly + 1;

 int k = 1;
 int m = num_of_buffers-1;

 //printf("\n num_of_buffers < minimum");
 if(temp->d == 0)
 {
 newtemp->d = temp->d;
 newtemp->disp = temp->disp + j + k + m;

 }
 else if(temp->d == -1)
 {
 newtemp->d = temp->d;
 newtemp->disp = temp->disp - j - m;
 }
 else if(temp->d > 1)
 {
 newtemp->d = (temp->d) - num_of_buffers;

 newtemp->disp = temp->disp;
 }
 }
 else
 {
 newtemp->d = 0;
 newtemp->disp = num_of_packets;
 newtemp->ptr = NULL;

 break;
 }

 if(temp->ptr != NULL && newtemp->disp != 0/*&& newtemp->disp != num_of_packets*/)
 {
 RD_NODE *again = (RD_NODE *)malloc(sizeof(RD_NODE));
 newtemp->ptr = again;
 newtemp = again;

 }
 else
 newtemp->ptr = NULL;

 temp = temp->ptr;
 }

 return (newFirst);

}

152

/*
Method used to predict RD in an independent reordering pattern
Input arguments:
rdfirst - Pointer to the first element of the RD node
num_of_packets - Number of packets in the sequence

num_of_buffers - Number of resequencing buffers to be used
*/

RD_NODE* predict_rd(RD_NODE *rdfirst,int num_of_packets,int num_of_buffers)
{
 RD_NODE *temp;
 RD_NODE *newRD=copy_rd_node(rdfirst);
 RD_NODE *newtemp = newRD;

 int max_req=0;
 temp = rdfirst;

 while(temp != NULL)
 {
 if(temp->d > max_req)
 max_req = temp->d;

 temp = temp->ptr;
 }

 temp = rdfirst;

 if(num_of_buffers < max_req)
 {
 while(temp != NULL)
 {

 if(0 == temp->d)
 {
 newtemp->disp = (temp->disp)+num_of_buffers;
 }
 else if(-1 == temp->d)
 {
 newtemp->disp = (temp->disp)-num_of_buffers;
 }

 else
 {
 newtemp->d = (temp->d)-num_of_buffers;
 }

 temp = temp->ptr;
 newtemp = newtemp->ptr;
 }

 }
 else
 {
 while(temp != NULL)
 {
 if(0 == temp->d)
 {
 newtemp->disp = num_of_packets;

 newtemp->ptr = NULL;
 }

153

 temp = temp->ptr;

 }
 }
 return (newRD);

}

int get_num_mrs(NODE *disp)
{
 NODE *temp;
 int mrs = 0;
 temp = disp;

 while(temp != NULL)
 {
 if(temp->info > 0)
 mrs++;

 temp = temp->ptr;
 }

 return mrs;
}

Debug.c

/*
Filename:

debug.c

Funtionality:
This file contains methods required to debug or print the values of RD

Author:
Raghunandan Mandyam Narasiodeyar
Computer Network Research Lab

Dept. of Electrical and Computer Engineering
Colorado State University
Fort Collins, CO - 80523
*/

#include <main.h>

/*

Method used to display the contents of the list
Input:
first - Pointer to the first element of the NODE
*/
void display_list(NODE *first)
{
 NODE *temp;
 temp = first;

 while(temp != NULL)

154

 {
 printf("%4d ",temp->info);
 temp = temp->ptr;
 }
 printf("\n");

}

/*
Method used to display the contents of the RD list
Input:
rdfirst - Pointer to the first element of the NODE
num_of_packets - Number of packets in the sequence
*/

void display_rd_node(RD_NODE *rdfirst,int num_of_packets)
{
 RD_NODE *temp;
 temp = rdfirst;

 while(temp != NULL)
 {

 printf("\n RD[%d]\t%d/%d",temp->d,temp->disp,num_of_packets);
 temp = temp->ptr;
 }

}

/*
Method used to display the contents of the RD list

Input:
first - Pointer to the first element of the NODE
num_of_packets - Number of packets in the sequence
*/
void display_rd(RD_NODE *first,int num_of_packets)
{
 RD_NODE *trd = first;

 printf("\n|----------------------------|");
 printf("\n|\tReorder Density");
 printf("\n|----------------------------|");

 while(trd != NULL)
 {
 printf("\n\tRD[%d]\t%d/%d ",trd->d,trd->disp,num_of_packets);
 trd = trd->ptr;

 }
 printf("\n|----------------------------|");
}

Reorder.c

/*

Filename:
reorder.c

155

Funtionality:
This file contains the method(s) to reorder based on a particular set of input

Author:

Raghunandan Mandyam Narasiodeyar
Computer Network Research Lab
Dept. of Electrical and Computer Engineering
Colorado State University
Fort Collins, CO - 80523
*/

#include <main.h>

NODE* reorder(NODE *first,int info,int displacement)
{
 NODE *temp;
 NODE *prev;
 NODE *store;

 int d = 0;
 int swap = 0;

 prev = temp = first;

 if(displacement > 0)
 {
 while(temp != NULL)
 {

 if(temp->info == info)
 {
 store = temp;

 if(prev != temp)
 {
 prev->ptr = temp->ptr;
 temp = temp->ptr;

 }
 else
 {
 first = temp->ptr;
 temp = temp->ptr;
 }

 swap = 1;

 }

 if(swap)
 {
 d++;
 if(d == displacement+1)
 {
 prev->ptr = store;

 store->ptr = temp;
 break;

156

 }
 if(temp->ptr == NULL)
 swap = 0;
 }

 prev = temp;
 temp = temp->ptr;
 }

 if(!swap)
 {
 prev->ptr = store;
 store->ptr=NULL;

 }
 }
 else if(displacement < 0)
 {
 int ptr = 0;

 while(temp != NULL)
 {

 ptr++;
 if(temp->info == info)
 {
 store = temp;

 if(prev != temp)
 {
 prev->ptr = temp->ptr;
 temp = temp->ptr;

 }
 else
 {
 first = temp->ptr;
 temp = temp->ptr;
 }
 break;
 }

 prev = temp;
 temp = temp->ptr;
 }

 prev = temp = first;
 int ptr1 = 0;

 while(temp != NULL)

 {
 //printf("\n ptr1 %d\tptr %d\tdis %d",ptr1,ptr,displacement);
 // since displacement is -ve .. it is added here
 if((ptr + displacement) == ptr1)
 {
 if(prev != temp)
 {
 prev->ptr = store;

 store->ptr = temp;
 }

157

 else
 {
 store->ptr = first;
 first = store;
 }

 break;
 }
 ptr1++;
 prev = temp;
 temp = temp->ptr;
 }
 }

 return first;
}

Resequence.c

/*
Filename:
resequence.c

Funtionality:
This file contains the method(s) to resequence packets based on
the lowest sequence number first algorithm

Author:
Raghunandan Mandyam Narasiodeyar
Computer Network Research Lab
Dept. of Electrical and Computer Engineering

Colorado State University
Fort Collins, CO - 80523
*/

#include <main.h>

#define MAX_NUM 99999

int next_expected(NODE *vfirst,int x)
{
 NODE *temp;
 int max = -1;
 temp = vfirst;

 while(temp->info != x && temp != NULL)
 {

 //printf("%d\t",temp->info);
 if(temp->info > max)
 max = temp->info;

 temp = temp->ptr;
 }

 return max+1;

}

158

void mark_flag(int x,NODE *first)
{
 NODE *temp;

 temp = first;

 while(temp != NULL)
 {
 if(temp->info == x)
 {
 temp->parsed = 1;
 break;

 }
 temp = temp->ptr;
 }
}

int get_expected(NODE *first)
{
 NODE *temp = first;

 while(temp != NULL)
 {
 if(temp->parsed == -1)
 return temp->info;

 temp = temp->ptr;
 }

 return -1;
}

NODE* resequence(NODE* first,int num_of_packets)
{
 int expected = 1;
 int store = MAX_NUM;
 NODE *temp = first;

 NODE *vtemp = first;

 NODE *bfirst = create_orig_seq(num_of_packets);

 while(temp != NULL)
 {
 //printf("\n expected : %d\ttemp->info : %d\tstore : %d",expected,temp->info,store);
 if(expected == temp->info)

 {
 vtemp->info = temp->info;
 mark_flag(vtemp->info,bfirst);
 vtemp = vtemp->ptr;

 if(store != MAX_NUM && store < temp->info)
 {
 vtemp->info = store;

 mark_flag(vtemp->info,bfirst);
 store = MAX_NUM;

159

 vtemp = vtemp->ptr;
 expected = get_expected(bfirst);

 }
 else

 expected++;
 }
 else
 {
 if(store < temp->info)
 {
 vtemp->info = store;
 mark_flag(vtemp->info,bfirst);

 vtemp = vtemp->ptr;
 store = MAX_NUM;

 }
 if(store > temp->info && store != MAX_NUM)
 {
 vtemp->info = temp->info;
 vtemp = vtemp->ptr;

 }
 else
 store = temp->info;

 }

 temp = temp->ptr;
 }

 return first;
}

/*
NODE* resequence(NODE* first)
{
 NODE *temp,*prev;

 NODE *vtemp,*vfirst;
 int store=EMPTY;
 int expected=1;

 int alreadyParsed[MAX_PACKETS];

 for(int i = 1;i<=MAX_PACKETS;i++)
 alreadyParsed[i] = FALSE;

 vfirst = vtemp = temp = first;

 while(temp != NULL)
 {
 if(expected != temp->info)
 {
 if(store == EMPTY && expected < temp->info)

 {
 store = temp->info;

160

 printf("\n Stored %d",store);
 }
 else if(expected > temp->info)
 {
 vtemp->info = temp->info;

 vtemp = vtemp->ptr;
 }
 else
 {
 if(store < temp->info)
 {
 vtemp->info = store;
 vtemp = vtemp->ptr;

 store = temp->info;
 printf("\n Stored %d",store);
 }

 }
 }
 else
 {

 int x;
 vtemp->info = temp->info;
 x = vtemp->info;
 vtemp = vtemp->ptr;
 expected = next_expected(vfirst,x);
 printf("\n\t\t\t\t\t\t EXPECTED = %d",expected);
 if(expected == store)
 {
 vtemp->info = store;

 vtemp = vtemp->ptr;
 store = EMPTY;
 expected = next_expected(vfirst,x);
 //if(EMPTY == store)
 expected+=2;
 printf("\n\t\t\t\t\t\t EXPECTED = %d",expected);
 }

 }

 if(temp->ptr == NULL && -1 != store)
 vtemp->info = store;

 temp = temp->ptr;
 }

 return vfirst;

}

*/

Seqgen.c

/*

161

Filename:
seqgen.c

Funtionality:
This file contains the method(s) to create a sequence of packets

based on the number of packets required

Author:
Raghunandan Mandyam Narasiodeyar
Computer Network Research Lab
Dept. of Electrical and Computer Engineering
Colorado State University
Fort Collins, CO - 80523

*/

#include <main.h>

NODE* create_orig_seq(int num_of_packets)
{
 int i=1;

 NODE *temp,*current,*first;

 temp = (NODE *)malloc(sizeof(NODE));
 first = current = temp;

 while(i != num_of_packets)
 {
 current->info = i;
 current->parsed = -1;

 temp = (NODE *)malloc(sizeof(NODE));
 current->ptr = temp;
 current = temp;
 i++;
 }
 current->info = i;
 current->ptr = NULL;

 return(first);
}

Util.c

/*
Filename:

util.c

Funtionality:
This file contains the method(s) that act as utilities
for the entire verification and simulation process

Author:
Raghunandan Mandyam Narasiodeyar

Computer Network Research Lab
Dept. of Electrical and Computer Engineering

162

Colorado State University
Fort Collins, CO - 80523
*/

#include <main.h>

int max(int x,int y)
{
 return (x > y ? x : y);
}

int min(int x,int y)
{

 return (x < y ? x : y);
}

RD_NODE* copy_rd_node(RD_NODE *first)
{
 RD_NODE *temp;
 //RD_NODE *ntemp=NULL;
 RD_NODE *nrdfirst=NULL;

 RD_NODE *prev;

 temp = first;

 while(temp != NULL)
 {
 if(nrdfirst == NULL)
 {
 RD_NODE *t;

 t = (RD_NODE*)malloc(sizeof(RD_NODE));
 t->d = temp->d;
 t->disp = temp->disp;
 t->ptr=NULL;
 nrdfirst = t;
 prev = t;
 }
 else

 {
 RD_NODE *next;
 next = (RD_NODE*)malloc(sizeof(RD_NODE));
 next->d = temp->d;
 next->disp = temp->disp;
 next->ptr = NULL;
 prev->ptr = next;
 prev = next;

 }

 temp = temp->ptr;

 }
 return nrdfirst;
}

NODE* copy_node(NODE *first)
{

163

 NODE *temp;
 //RD_NODE *ntemp=NULL;
 NODE *nrdfirst=NULL;
 NODE *prev;

 temp = first;

 while(temp != NULL)
 {
 if(nrdfirst == NULL)
 {
 NODE *t;
 t = (NODE*)malloc(sizeof(NODE));

 t->info = temp->info;
 t->ptr=NULL;
 nrdfirst = t;
 prev = t;
 }
 else
 {
 NODE *next;

 next = (NODE*)malloc(sizeof(NODE));
 next->info = temp->info;
 next->ptr = NULL;
 prev->ptr = next;
 prev = next;
 }

 temp = temp->ptr;

 }
 return nrdfirst;
}

