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ABSTRACT 

 

 

IMPACT OF RESEQUENCING BUFFER DISTRIBUTION ON PACKET 

REORDERING 

 

 Packet reordering in Internet has become an unavoidable phenomenon wherein 

packets get displaced during transmission resulting in out of order packets at the 

destination. Resequencing buffers are used at the end nodes to recover from packet 

reordering. This thesis presents analytical estimation methods for “Reorder Density” 

(RD) and “Reorder Buffer occupancy Density” (RBD) that are metrics of packet 

reordering, of packet sequences as they traverse through resequencing nodes with limited 

buffers. During the analysis, a “Lowest First Resequencing Algorithm” is defined and 

used in individual nodes to resequence packets back into order. The results are obtained 

by studying the patterns of sequences as they traverse through resequencing nodes. The 

estimations of RD and RBD are found to vary for sequences containing different types of 

packet reordering patterns such as Independent Reordering, Embedded Reordering and 

Overlapped Reordering. Therefore, multiple estimations in the form of theorems catering 

to different reordering patterns are presented. The proposed estimation models assist in 



 

 

 

iii 

 

the allocation of resources across intermediate network elements to mitigate the effect of 

packet reordering. Theorems to derive RBD from RD when only RD is available are also 

presented. Just like the resequencing estimation models, effective RBD for a given RD 

are also found to vary for different packet reordering patterns, therefore, multiple 

theorems catering to different patterns are presented. Such RBD estimations would be 

useful for allocating resources based on certain QoS criteria wherein one of the metrics is 

RD. Simulations driven by Internet measurement traces and random sequences are used 

to verify the analytical results. Since high degree of packet reordering is known to affect 

the quality of applications using TCP and UDP on the Internet, this study has broad 

applicability in the area of mobile communication and networks. 
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CHAPTER 1. INTRODUCTION 

 

 The Internet has witnessed tremendous growth during the past decade. More people tend 

to use Internet today than ever before. The Internet has become ubiquitous due to vast 

information that is easily available to the users at their fingertips. Some reasons for such a growth 

have been increase in connectivity through different devices, high speeds and bandwidth 

aggregation across networks. Figure 1-1 shows a graph displaying the number of Internet users 

(in millions) across different regions in the world.  

 

 

 

Figure 1-1. Graph showing the number of Internet users in 2010 [64] 
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From Figure 1-2, it can be seen that major continents such as North America, Austrlia 

and Europe have high (>50%) Internet penetration levels. However, the Internet penetration 

levels are still low in populous continents such as Asia, Africa and Middle East.  

 

 

Figure 1-2. Graph showing the Internet penetration in 2010 [64] 

 

With increase in the penetration levels across different regions, more businesses will tend 

to invest in providing quality Internet service. The gap between offering just connectivity and 

offering “good” connectivity would start gaining priority resulting in additional focus on Quality 

of Service (QoS). One of the main issues that could affect the QoS in future could be the issue of 

packet reordering. 

Packet reordering is a common occurrence in the Internet wherein a sequence of packets 

transmitted from a source arrives at the destination in a different order. Packet reordering is found 
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to have five major causes: packet-level multipath routing, route fluttering, inherent parallelism in 

modern high-speed routers, link-layer retransmissions and route forwarding lulls [3][7][60]. 

Irrespective of its cause, packet reordering has a significant detrimental effect in many contexts. 

Video traffic over UDP is found to perform poorly in situations of high packet reordering [1]. 

Wireless networks are more prone to problems due to high levels of packet reordering in link 

layer retransmissions [1]. The output quality of broadband digital television system becomes 

intolerable beyond a certain threshold of reordering [54][47]. Packet reordering combined with 

packet error is found to severely degrade the transmission performance in Low Earth Orbit (LEO) 

satellite networks [54]. Due to the increased parallelism in modern networks and the demands of 

high performance applications, recovery from packet reordering will consume increasing 

resources both at end nodes and routers [5]. New applications and protocol designs should be 

robust to both packet reordering and packet loss by treating them equal [14][18].  

While some applications are capable of operating with reordered packets, many of the 

applications require packets to be put back in order, i.e., resequenced. While this happens in the 

transport layer when TCP is used, many real-time multimedia type applications handle it at the 

application level. Often, out-of-order packets significantly degrade the performance of 

applications, even when TCP or application level re-sequencing is used [57][17]. As a result, 

many modern router architectures involve extra hardware to minimize the induced reordering. 

Examples of such hardware include input buffers to ensure that packets from the same flow are 

forwarded to the same processing element [55] or output buffers to ensure that packets from a 

flow are released from the router in more or less the same order in which they arrive at the router 

[19]. These two approaches, involving tracking packet flows, can mitigate the packet reordering 

introduced within the routers to a certain extent. However, they have no effect on packet 
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reordering due to other causes such as route fluttering.  Furthermore, the two approaches are not 

scalable as the number of flows increase and they also tend to add to the end-to-end latency [5]. 

Packet reordering phenomenon and its impact on applications has been evaluated in detail in 

[31][47][54]. Measurement and quantification of packet reordering is addressed in [3][25], and 

techniques and metrics for long-term monitoring of packet reordering is addressed are [60].  

 

1.1 Contribution 

    This thesis focuses on the resources required for recovery from packet reordering. 

Whether recovery is done at end-nodes, such as with application level buffering or TCP level 

resequencing, or if it is done at intermediate routers, such as with input or output buffering, the 

recovery inevitably requires buffers. Thus adding input/output buffering to a router may be 

viewed as transferring some of the recovery resources to intermediate nodes. From a buffer 

allocation standpoint, this is the first research to provide formal results relating to the impact of 

resequencing buffer distribution on packet reordering. Analytical results quantifying the impact 

on packet reordering as they flow through resequencing nodes having a limited number of buffers 

were derived. The results were verified using simulations. The approach and results are useful for 

buffer allocation within individual router nodes to keep packet reordering within acceptable 

levels. With present scaling trends in network link speeds and processor speeds, packet reordering 

will become an increasingly difficult problem to deal with [5][14]. It may even be considered to 

be an important Quality of Service (QoS) parameter for Internet service.  This research lays the 

theoretical foundation for allocating recovery buffer resources in a distributed network. 
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1.2 Thesis outline 

In Chapter 2, background about Packet Reordering, its measurement and the concept of 

reordering patterns are discussed. Chapter 3 focuses on the impact of distribution of resequencing 

buffers on packet reordering and Chapter 4 offers derivation of Reorder Buffer-Occupancy 

Density (RBD) from Reorder Density (RD). Chapter 5 concludes the research and Chapter 6 

briefly discusses probable future work and applications of RBD. 
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CHAPTER 2. BACKGROUND 

 

 Packet reordering is a phenomenon in the Internet wherein a sequence of packets 

transmitted from a source, say (1, 2, 3, 4, 5, 6) arrives at the destination in a different order, say 

(1, 3, 4, 2, 5, 6) where packet 2 arrives two packet arrival instances later. Here, packet 2 is 

considered to be reordered with respect to the sequence at the source. The effects of packet 

reordering are known to be severe and it is now considered to be naturally prevalent within the 

Internet [21].  

 This chapter gives an introduction to packet reordering by way of mentioning the causes 

of packet reordering in Section 2.1, effects of packet reordering in Section 2.2, importance of 

understanding packet reordering in Section 2.3, measuring packet reordering in Section 2.4 

followed by Section 2.5 that mentions about common packet reordering patterns seen in the 

Internet. 

 

2.1 Causes of packet reordering 

 Packet reordering was initially considered to be a pathological network behavior [24]. 

Later studies have proved that packet reordering occurs because of specific reasons in the 

network. Some of them include 

a) Heterogeneous network interfaces or bandwidth aggregation [26] [14] 

When trying to achieve bandwidth and increased fault tolerance in wireless networks, the 

heterogeneity of the paths and interfaces can cause packet ordering. 
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b) Handoff techniques [46] 

Soft handoff techniques in 4G networks during downward vertical hand off can lead to 

plenty of reordered packets. 

c) Route fluttering [38] 

It refers to the rapidly variable routing when packets are sent from source to the 

destination. 

d) Ad hoc routing [16] 

It refers to the ad hoc manner in which packets are routed between computing devices in 

a mobile ad hoc network. 

e) Diffserv scheduling [22] [8][9] 

The non-conformant packets in the case of excess flow due to negotiated constraints are 

either dropped or given lower priority which could result in reordering. 

f) Retransmissions on wireless links in TCP [6] 

Wireless links are known to perform poorly when packets are considered to be lost which 

invariably happens due to reordering. 

g) Packet striping in layer 2 and layer 3 [7][2] 

A packet can follow multiple paths within a device or logical link. An example could be 

packets traveling between same source and destination taking different paths through the 

switch. 

 Apart from the aforementioned causes, some of the other reasons could include broken 

equipment, route pauses or route forwarding lulls, inherent parallelism in modern high speed 

routers [5], link layer retransmissions and packet level multipath routing [30]. 
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2.2 Effects of packet reordering 

 From the end user perspective, packet reordering is known to cause poor performance in 

video traffic over UDP in situations of high packet reordering. Despite increased Internet load 

and technology advancements, the UDP traffic reordering measurements are consistent with prior 

studies conducted during 1990s [51]. UDP-based applications such as VoIP which use small 

packet sizes are known to be affected by reordering [51]. Wireless networks are more prone to 

problems due to high levels of packet reordering in link layer retransmissions [1]. Packet 

Reordering is known to have many effects on reliable transport layer sequenced protocols such as 

TCP which can falsely assume reordering to be packet loss [21]. This results in unnecessary 

retransmissions and activation of the congestion control algorithms causing severe drop in TCP 

throughput. 

 Other reliable transmission protocols as SCTP also suffer resequencing delay due to 

asynchronous packet arrivals at the receiver as a result of packet reordering [62] causing 

deterioration of performance of some delay sensitive applications. 

 The output quality of broadband digital television system becomes intolerable beyond a 

certain threshold of reordering [47]. Packet reordering combined with packet error is found to 

severely degrade the transmission performance in Low Earth Orbit (LEO) satellite networks [53]. 

Packet Reordering tends to induce fast retransmissions and unnecessary reduction of the 

congestion window in the mobile Stream Control TCP (mSCTP) vertical handover [27]. 

 

2.3 Importance of understanding packet reordering 

 Because of the detrimental effects of packet reordering on TCP and UDP, lots of effort is 

aligned towards negating the effect of packet reordering. Considerable emphasis is placed on 
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maintaining packet order while designing new switch architectures [33]. Detailed reordering 

models have been proposed to address the lack of evaluations using real protocol 

implementations and good models of packet reordering [21]. New well-structured, area-efficient, 

and high speed hardware architectures for packet re-sequencing have been proposed to combat 

local parallelism within links or switches [52].  

 Novel TCP variants have been proposed that adapt TCP to wireless networks by using 

more reliable signals of packet loss and network overload for activating packet retransmission 

and congestion response separately [29]. Concepts such as locality buffering have been proposed 

to resequence packets by clustering packets with the same destination port [37]. New load 

balancing algorithms with flow chopping have been proposed to avoid packet reordering [10]. 

Studies indicate that new applications and protocol designs should be robust to both packet 

reordering and packet loss by treating them equal [8]. New flow based models have been 

proposed to achieve efficient bandwidth utilization and packet order preservation [44] 

 In the radio access technology for the next generation, standardization is happening for 

Long Term Evolution (LTE) and Ultra Mobile Broadband (UMB). During this process, studies 

are conducted keeping in mind the overhead for avoiding packet reordering [61]. Simple 

modifications to the TCP protocol are done to improve its performance to mobile-induced packet 

reordering [48]. Enhancements are made to TCP sender algorithm to combat packet reordering 

that may occur due to vertical handoffs from a slow to fast access link [11]. 

 Novel Network Coding based retransmission methods considering packet reordering 

delay have been proposed for wireless LANs [50]. QoS negotiation schemes have been proposed 

for bandwidth aggregation schemes for real time video streaming in next generation networks 

with focus on minimizing reordering delay and associated packet loss rate [14]. New algorithms 
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such as Uniform Fine-grain Frame Spreading algorithm have been proposed to avoid packet 

reordering throughout the load balancing switches [12] 

 All studies and research seem to indicate that packet reordering is a grave concern and 

needs to be addressed at different levels or layers. 

 

2.4 Measuring packet reordering 

 To measure packet reordering, the following metrics are available – Type-P-Reordered-

Ratio-Stream, Type-P-Packet-Reordering-Extent-Stream, Type-P-Packet-Late-Time-Stream, 

reordered packet ratio, reordering extent, reordering late time offset, reordering byte offset, 

reordering free-runs [35], percentage of reordered packets, Reorder Density (RD), Reorder Buffer 

Occupancy Density (RBD), reorder extent, n-reordering,  

 Since Reorder Density (RD) and Reorder Buffer Occupancy Density (RBD) have 

superior attributes compared to other metrics such as simplicity, low sensitivity to packet loss and 

duplication, low evaluation complexity, robustness and broad range of applications [25], packet 

reordering analysis in this research is done based on these metrics only. 

 

2.4.1 Reorder Density (RD) 

 RD is defined as the distribution of displacements of packets from their original 

positions, normalized with respect to the number of packets [3]. Packets that are in order would 

have zero displacement. Packets that are early would have negative displacement and late packets 

would have positive displacements.  
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2.4.2 Reorder Buffer Occupancy Density (RBD) 

 RBD is the normalized histogram of the occupancy of a hypothetical buffer that would 

allow the recovery from out-of-order delivery of packets [25]. If the packet that just arrived is 

early, it is buffered until it can be released in order. The occupancy of this hypothetical buffer, 

after the arrival of every packet is used as a measure of reordering.  

 

2.4.3 Terms used to define RD and RBD 

 The following terms are used to formally define RD and RBD – 

i) Receive Index (RI): 

 Consider a packet sequence (1, 2, .. , N) transmitted over a network. The receive index, 

RI is a value assigned to a packet as and when it arrives at its destination according to the order of 

the arrival such as (1, 2, …). In the absence of reordering, the sequence number of the packet and 

the receive index are the same for every packet. Earliness or lateness of packets can be computed 

using RI and sequence number. 

ii) Out-of-order packet: 

 When the RI of a packet is not equal to the sequence number of the packet, such a packet 

is considered to be an out-of-order packet. 

iii) Displacement (D): 

 It is defined as the difference between the RI of the packet and the sequence number of 

the packet i.e., RI[i] – i. Therefore, an early packet would have a negative displacement and a late 

packet would have a positive displacement. 

iv) Displacement Threshold (DT): 
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 It is a threshold on the displacement of packets that allows the metric to classify a packet 

as lost or duplicate. 

v) Displacement Frequency (FD): 

 The displacement frequency FD [k] is the number of arrived packets with a displacement 

of k, where k‟s range lie between +DT and -DT 

vi) Reorder Density (RD): 

 In  relative terms, RD is defined as the distribution of the displacement frequencies FD 

[k], normalized with respect to N where N is the length of the received sequence 

vii) Expected Packet (E): 

 A packet with sequence number „p‟ is considered to be an expected packet if „p‟ is the 

largest sequence number such that all packets with sequence numbers less than „p‟ have already 

arrived 

viii) Buffer Occupancy (B): 

 An arrived packet with a sequence number greater than that of the expected packet is 

considered to be stored in a hypothetical buffer sufficiently long to permit recovery from 

reordering. At a given instant of packet arrival, buffer occupancy is equal to the number of out-of-

order packets in the buffer including the newly arrived one. 

ix) Buffer-Occupancy Threshold (BT): 

 It is a threshold on the maximum size of the hypothetical buffer that is used for recovery 

from reordering. 

x) Buffer-Occupancy Frequency (FB): 

 The buffer occupancy frequency, FB [k] is the number of arrival instances after which the 

buffer occupancy takes the value of k. 
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xi) Reorder Buffer-Occupancy Density (RBD): 

 In relative terms, RBD is the buffer occupancy frequencies normalized by the total 

number of non – duplicate packets. 

 

2.4.4 Illustration to explain Reorder Density 

 Consider a sequence (1, 2, 3, 4, 5, 6) sent from a source. If one of the packets in the 

sequence gets reordered, then the resultant sequence could be (1, 3, 4, 5, 2, 6) at the destination. 

The tables 2.1 and 2.2 illustrate the computation of RD for an arbitrary sequence that does not 

have duplicates or losses. 
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Table 2.1. Computation of Displacement Frequency for an arbitrary sequence 

Arrived Sequence 1 3 4 5 2 6 

RI 1 2 3 4 5 6 

D 0 -1 -1 -1 3 0 

FD [D] 1 1 2 3 1 2 

 

Table 2.2. Computation of Reorder Density (RD) 

D -1 0 3 

FD [D] 3 2 1 

RD [D] 0.5 0.333 0.167 

 

 From the aforementioned tables, it can be observed that the percentage of packets that are 

early by 1 arrival instance is 50%, packets that are in order is 33.33% and 16.7% packets are late 

by 3 arrival instances. 

2.4.5 Illustration to explain Reorder Buffer Occupancy Density 

 Consider the same example that was discussed in Section 2.4.4 wherein at the destination, 

the packets arrive in the order (1, 3, 4, 5, 2, 6). The tables 2.3 and 2.4 illustrate the computation of 

RBD for an arbitrary sequence that does not have duplicates or losses.  
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Table 2.3. Computation of Buffer-Occupancy Frequency for an arbitrary sequence 

Arrived 

Sequence 
1 3 4 5 2 6 

E 1 2 2 2 2 6 

B 0 1 2 3 4 0 

FB [B] 1 1 1 1 1 2 

 

Table 2.4. Computation of Reorder Buffer Occupancy Density (RBD) 

B 0 1 2 3 4 

FB [B] 2 1 1 1 1 

RBD [B] 0.333 0.167 0.167 0.167 0.167 

 

 From the aforementioned tables it can be observed that the hypothetical buffer had 0 

packets during 33.33% of instances; 1 packet, 2 packets and 3 packets during 16.7% of instances 

respectively. 

 

2.5 Packet reordering patterns 

 To effectively understand the different reordering patterns that exist across the Internet, it 

is essential to understand the idea of primary (or p-event) and secondary (or s-event) events [41]. 

 Consider a sequence (1, 3, 4, 2, 5, 8, 6, 7), where packet 2 is late by two positions and 

packet 8 is early by two positions. Due to the lateness of packet 2, packets 3 and 4 are early by 

one position each, and similarly because of the earliness of packet 8, packets 6 and 7 are late by 

one position each. If dm is the displacement, then for dm > 0, the next dm packets are early and 

for dm < 0, the previous dm packets would be late. In this case, the packet with sequence number 
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m is said to be associated with the primary event (p-event) while the affected dm packets have 

undergone secondary events (s-events). 

 Generally, the effects of reordering are localized. Packet sequences can be partitioned 

into reordered segments (RS) such that the reordering is localized within RS. The reordering 

events due to packets within RS are not propagated beyond it i.e., if a p-event is part of the RS, 

then the corresponding s-events will also have to be part of the same RS.  

 In the sequence (1, 3, 4, 2, 5, 8, 6, 7), the possible RS‟ are (1, 3, 4, 2) and (5, 8, 6, 7). A 

RS that cannot be partitioned further is defined as minimal reordered segment (MRS) [41].  

 

Based on the number of p-events within a MRS, reordering events may be classified into  

i) Independent Reordering (IR) 

A MRS containing a single p-event is called an Independent Reordering event. Refer 

Figure 2-1. 

 

Figure 2-1. Independent Reordering Event 

 

 

ii) Embedded Reordering (ER)  

A MRS containing 2 p-events wherein one p-event is embedded within the other p-event 

is called Embedded Reordering event. Refer Figure 2-2 
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Figure 2-2.Embedded Reordering Event 

 

iii) Overlapped Reordering (OR) 

A MRS containing 2 p-events wherein one p-event overlaps with the other p-event is 

called an Overlapped Reordering event. Refer Figure 2-3 

 

Figure 2-3. Overlapped Reordering Event 

 

 Since every p-event can either be late or early, 8 different combinations within 

overlapped and embedded patterns are possible as shown in Table 2.5. 
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Table 2.5. Different p-events in basic overlapped and embedded reordering [41] 
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CHAPTER 3. IMPACT OF DISTRIBUTION OF RESEQUENCING 

BUFFERS ON PACKET REORDERING 

 

Packet reordering and the motivation to study the problem have already been explained in 

Chapters 1 and 2. This chapter focuses on one of the effective ways of mitigating packet 

reordering. The analysis presented in this chapter uses RBD and RD to measure packet 

reordering. 

While some applications are capable of operating with reordered packets, many other 

applications require packets to be put back in order, i.e., resequenced. When TCP is used as the 

communication protocol, the resequencing happens in the transport layer, but many real-time 

multimedia type applications handle it at the application level. Out-of-order packets often 

significantly degrade the performance of applications even when TCP or application level 

resequencing is used [16][57]. As a result, many modern router architectures include extra 

hardware to minimize the induced reordering. Examples of such hardware include input buffers to 

ensure that packets from the same flow are forwarded to the same processing element [55] or 

output buffers to ensure that packets from a flow are released from the router in more or less the 

same order in which they arrive at the router [19]. These two approaches that involve tracking 

packet flows can mitigate the packet reordering introduced within the routers to a certain extent. 

However, they have no effect on packet reordering due to other causes such as route fluttering 

[38]. Furthermore, the two approaches are not scalable as the number of flows increase, and also 

add to the end-to-end latency [5]. The phenomenon of packet reordering and its impact on 
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applications have been evaluated in detail in [54]. Measurement and quantification of packet 

reordering is addressed in [25] and the techniques and metrics for long-term monitoring of packet 

reordering are addressed in [60].  

 This chapter focuses on the resources required for recovery from packet reordering. Due 

to the increased parallelism in modern networks and the demands of high performance 

applications, recovery from packet reordering is known to consume increasing resources both at 

end nodes and routers [3]. Regardless of whether the recovery is done at end - nodes (application 

level buffering and TCP level resequencing), or at intermediate routers (with input or output 

buffering), the recovery inevitably requires buffers. Thus adding input/output buffering to a router 

may be viewed as transferring some of the recovery resources to intermediate nodes. From a 

buffer allocation standpoint, this is one of the first few researches ([28] also proposes in-network 

buffers) to provide formal results analyzing the impact of resequencing buffer distribution on 

packet reordering. Analytical results are derived quantifying the impact on packet reordering as 

they flow through resequencing nodes containing a limited number of buffers. The results are 

verified using simulations. The approach and results are useful for buffer allocation at individual 

router nodes to keep packet reordering within acceptable levels.  

With the current scaling trends in network link speeds and processor speeds, packet 

reordering will become an increasingly difficult problem to deal with [14][41]. It may even be 

considered as an important Quality of Service (QoS) parameter for network related services. This 

chapter lays the theoretical foundation for allocating recovery buffer resources in a distributed 

network (refer Figure 3-1).  

An integral part of such a buffer distribution mechanism with resequencing capability is 

the idea of resequencing algorithm and its design. The resequencing algorithm used for the 
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research is discussed initially followed by the impact of such a distribution mechanism on packet 

reordering measured using Reorder Density (RD) and Reorder Buffer Occupancy Density (RBD). 

In this chapter, Section 3.1 deals with the resequencing algorithm, Section 3.2 deals with 

the impact of resequencing buffers on Reorder Density and Section 3.3 with the impact of 

resequencing buffers on Reorder Buffer Occupancy Density. Verification results are presented in 

Section 3.4 followed by Conclusion in Section 3.5. 

 

Figure 3-1. High-level description of the problem 

 

3. 1 Resequencing algorithm 

 A “resequencing node” can be referred to as “a node that attempts to put the out of order 

packets back in order, i.e., resequence them.” If there is sufficient number of buffers available, it 

is possible to put the entire sequence of packets back in order. However, if the number of buffers 

available in a single node is insufficient, packets can still be resequenced thereby reducing the 
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amount and degree of reordering. The most efficient approach for resequencing is based on the 

concept of releasing lowest numbered packet first as shown in Figure 3-2. 

 Without loss of generality, assume that the packets are numbered 1, 2, and 3 and so on in 

a sequential manner. The parameter expected_num keeps track of next expected in-sequence 

packet. As and when a packet arrives, its packet number is compared with the expected_num. On 

receipt of a packet with the same packet number, expected_num is incremented by 1 and the 

packet is released. Furthermore, any packets in the buffer corresponding to the new value of 

expected_num are released while updating expected_num.  If the sequence number of the packet 

that arrived does not correspond to expected_num, it is inserted into the buffer. If there is no room 

in the buffer, the packet with lowest sequence number (amongst those in the buffer and the packet 

that just arrived) is released while updating expected_num. Figure 3-3 explains the working of the 

lowest first algorithm when two resequencing buffers are used. 

START 

Initialize expected_num  to 1 

While (packets arrive at the node) 

{ 

        If (expected_num equals current_packet_num) 

        { 

                Release packet into output queue 

                Increment expected_num by 1 

                While (expected_num in resequencing buffer) 

                { 

                        Release that packet into output queue 

                        Increment expected_num by 1 

                } 

        } 

        Else if (resequencing buffer is not full) 

        { 

                Store packet in resequencing buffer 

        } 



 

 

 

23 

 

        Else // resequencing buffer is full 

        {                

                Select packet with lowest sequence number amongst all                       

                packets in resequencing buffer 

 

                If(selected_packet_num less than current_packet_num) 

                { 

                        Release selected packet into the output queue 

                        Store current packet in the buffer 

                } 

                Else 

                { 

                        Release current packet into the output queue 

                } 

        } 

} 

END 

Figure 3-2. Lowest First Resequencing Algorithm 

 

 

Figure 3-3. Resequencing algorithm explained when two buffers are available 
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3. 2 Impact of Resequencing Buffers on Reorder Density 

  In this and the following sections, the impact of resequencing buffers on packet 

reordering as a stream of packets flow through resequencing nodes is analyzed. As already 

mentioned in Chapter 2, the degree and nature of packet reordering can be characterized by RD 

and RBD. Therefore, the objective is to derive the variation of RD and RBD as packets flow 

through resequencing nodes as illustrated in Figure 3-1. Some commonly used notations in this 

chapter are summarized in Table 3.1.  

 In this section, the study and analysis of the impact of resequencing buffers on Reorder 

Density is provided. 

 

3. 2. 1 Concatenation property of Reorder Density 

 Based on the definition of reorder density, the following can be inferred: 

The non – zero value of RD [X] when X < 0 represents packets that are early by X position(s). 

Similarly, non – zero values of RD [X] when X > 0 represents packets that are late by X 

position(s). RD [X] = 0 corresponds to packets that are in order (neither late nor early).  

Table 3.1. Common notations used in this chapter 

Symbol Description 

b Capacity of resequencing buffers expressed in terms of 

number of packets 

N Total number of packets in the sequence  

(Refer Figure 3-4) 

dxn For Independent Reordering 

Represents the displacement of the late packet in the nth 

reordering pattern in a given sequence 

For Embedded Reordering 

Represents the displacement of the 



 

 

 

25 

 

 inner late packet when lateness embeds lateness 

 outer early packet when earliness embeds lateness 

 inner early packet when lateness embeds earliness 

 inner early packet when earliness embeds earliness 

in the nth reordering pattern 

For Overlapped Reordering 

Represents the displacement of one of the late packets when 

lateness overlaps lateness 

dyn For Embedded Reordering 

Represents the displacement of the 

 outer late packet when lateness embeds lateness 

 inner late packet when earliness embeds lateness 

 outer late packet when lateness embeds earliness 

 outer early packet when earliness embeds earliness 

in the nth reordering pattern 

For Overlapped Reordering 

Represents the displacement of one of the late packets when 

lateness overlaps lateness 

RD‟ [i] The output value of reorder density of a sequence at a 

resequencing node 

N Numbers of instances of a given reordering pattern 

Vxyn Length of overlap between two overlapping packets in the 

nth Overlapped Reordering pattern 

(Refer Figure 3-4) 

RD [ i, Ni] Reorder Density of a IR, ER or OR sub-sequence  

Ni Number of packets in the ith sub-sequence 

SRD The set of indices of reorder density of the sequence whose 

values are non – zero 

SRBD The set of indices of reorder buffer occupancy density of the 

sequence whose values are non – zero 

i Input displacement of the packets in a given sequence 

p p → f (i, b) 

p is the correction factor that is applied to the displacement, i, 
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in the sequence by a system of b resequencing buffers 

j, k, m Addition, Subtraction or Multiplicative factors used in the 

theorems 

  

 Consider a sequence of packets containing multiple reordering patterns. We partition the 

sequence into multiple sub-sequences of length Ni (i = 1, 2…), where each sub-sequence contains 

no more than one reordering pattern. The reordering pattern in the ith segment is characterized by 

i, where  represents {dxi} for an independent reordering pattern, {dxi, dyi} for an embedded 

reordering pattern and {dxi, dyi, Vxyi} for an overlapped reordering pattern. Ni is the number of 

packets in a single sub-sequence.  When a number of such patterns form a large sequence 

and when every pattern (and its surrounding packets) is considered as a sub-sequence, their 

Reorder Density is represented as RD [ I, Ni]  

 

Figure 3-4. A sequence containing more than one reordering pattern 

 

 

Theorem 1 

The reorder density of a sequence containing n reorder patterns is given by 

 RDN = (  [ , Ni] * Ni ) / N 

(1) 
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Proof 

 RD of a given subsequence is the normalized histogram of the displacement values of the 

packets in a given sequence. As shown in Figure 3-4, when a number of such independent 

sequences combine to form a larger sequence, the packets with same displacement values cause 

RD to add up. Hence every RD value in a given sub-sequence is de-normalized with the number 

of packets in that sub-sequence (Ni), their total sum computed and normalized with N where N 

can also be represented as Ni). 

Q. E. D 

 

3.2.2  Reorder Density of Independent Reordering Patterns 

 An Independent Reordering occurs when a single packet is either late or early. Consider 

the sequence (i-1, i, i+1, i+2, i+3, i+4, i+5). If packet i is late by 4 positions, then the resulting 

sequence would be (i-1, i+1, i+2, i+3, i+4, i, i+5) as shown in Figure 3-5. On using the lowest 

first resequencing algorithm with a single resequencing buffer, the resultant new sequence would 

be (i-1, i+1, i+2, i+3, i, i+4, i+5).  



 

 

 

28 

 

 

Figure 3-5. Change in displacement values of a sequence containing an independent reordering pattern 

 

 After the usage of the resequencing algorithm with a single buffer, there is an 

improvement in orderliness of sequence resulting in change of the displacement values. The task 

on hand is to understand the displacement pattern and hence estimate reorder density (RD) when 

an arbitrary number of such resequencing buffers „b‟ are used. RD of a pattern before using the 

lowest first resequencing algorithm is denoted by RD [i]. The RD of the resultant sequence after 

applying the resequencing algorithm with „b‟ buffers is denoted by RD’ [i].  

 Without loss of generality, let us assume that if the set Sdx represents the set of all packets 

that are displaced by dx positions, then by definition of RD,  
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RD [dx] = |Sdx| / N        

(2) 

Theorem 2 

In the absence of duplicates and losses, the reorder density of a sequence with a single instance of 

late independent reordering pattern that has traversed through a resequencing node with b buffers 

is given by 

RD‟ [i]  =  j       for b ≥ dx 

∀ i ϵ SRD 

 where   j = 1 when i = 0 

   j = 0 when i ≠ 0 

           (3) 

RD‟ [i – p]  =  RD [i] + j (b / N)    for b < dx 

 ∀ i ϵ SRD, 

 where   j = +1 and p = 0 when i = 0 

   j = -1 and p = 0 when i = -1 

   j = 0 and p = b when i = dx 

           (4) 

 

Proof 

 It is known that, in a sequence, if a packet p is late by dx positions, then dx packets would 

be early by 1 position as part of secondary events of the late packet. 

Case 1: b ≥ dx 
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 When the available buffer is at least equal to the displacement of the late packet, the 

entire sequence is back in order. 

Therefore, the number of packets with 0-displacement would be  

 |S0‟| = N 

By definition, 

 RD‟ [0]  = |S0‟| / N 

   = N / N 

=> RD’ [0] = 1 

 

Case 2: b < dx 

On expanding the equation (4),  

a) RD‟ [0]   =  RD [0] + (b / N) 

b) RD‟ [-1]  =  RD [-1] - (b / N) 

c) RD‟ [dx – b]  =  RD [dx] 

 When a reordered sequence is traversed by a resequencing node containing b buffers, the 

resultant displacement of the late packet p will be no greater than dx - b. As a consequence, dx - b 

packets will be early by 1 position and b packets will be back in order.  
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Figure 3-6. Displacement of the late packet ‘p’ after resequencing 

Therefore, 

  |S0‟|  = |S0| + b      (i) 

  |S-1‟|  = |S-1| - b      (ii) 

By definition, 

 RD‟ [0]  = |S0‟| / N 

   = (|S0| + b) / N   from (i) 

   = (|S0| / N) + (b/N) 

=> RD’ [0] = RD [0] + (b/N) 

Similarly, 

 RD‟ [-1]  = |S-1‟| / N 
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   = (|S-1| - b) / N   from (ii) 

   = (|S-1| / N) - (b/N) 

=>  RD’ [-1] = RD [-1] - (b/N) 

Also, the displacement of the late packet would now be dx – b, therefore 

 dx‟  = dx – b 

Since the displacement of the late packet has changed, 

|Sdx‟|   = |Sdx – b| 

Dividing by N 

 |Sdx‟| / N = |Sdx – b| / N 

By definition of RD and from (2),  

 RD [dx’] = RD [dx – b] 

Q. E. D 

 

Theorem 3 

In the absence of duplicates and losses, the reorder density of a sequence with a single instance of 

an early independent reordering pattern that has traversed through a resequencing node with b 

buffers is given by  

 RD‟ [i]  =  j    for b ≥ 1 

∀ i ϵ SRD 

 where   j = 1 when i = 0 

   j = 0 when i ≠ 0 

           (5) 

Proof 
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 The lowest first resequencing algorithm is such that the packet whose sequence number 

doesn‟t match the expected sequence number is buffered. While traversing through a sequence 

containing a single early packet, the algorithm, on encountering an early packet buffers it until its 

actual position is reached when the packet gets released. This means that a single buffer is enough 

to put sequences with a single early packet back into order. 

Therefore, 

 |S0‟| = N 

By definition, 

 RD‟ [0]  = |S0‟| / N 

   = N / N 

=> RD’ [0] = 1 

Q. E. D 

 

3. 2. 3 Reorder Density of Embedded Reordering Patterns 

 Embedded Reordering occurs when a single early or late packet event gets embedded 

within another late or early packet event. Consider the sequence (i-3, i-2, i-1, i, i+1, i+2, i+3, 

i+4, i+5) as shown in the Figure 3-7. If packets i and i-2 are late by 2 and 6 positions respectively 

in an embedded fashion, then the resulting sequence would be (i-3, i-1, i+1, i+2, i, i+3, i+4, i-2, 

i+5). If the lowest first resequencing algorithm with a single buffer is used, the resultant sequence 

would be (i-3, i-1, i+1, i, i+2, i+3, i-2, i+4, i+5) as shown in Figure 3-7. 
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Figure 3-7. Change in displacement values of a sequence containing an embedded reordering pattern 

 

Theorem 4 

In the absence of duplicates and losses, the reorder density of a sequence with a single instance of 

embedded reordering pattern formed by a late event whose displacement is dx embedded within 

another late event whose displacement is dy after it has traversed through a resequencing node 

with b resequencing buffers is given by 

RD‟ [i]  =  j     for b ≥ dy 

∀ i ϵ SRD 

 where   j = 1 when i = 0 

   j = 0 when i ≠ 0 
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 (6) 

RD‟ [i – p]  =  RD [i] + j (b / N)   for b < dx 

 ∀ i ϵ SRD 

 where   j = +1 and p = 0 when i = 0 

   j = 0 and p = 0 when i = -1 

   j = -1 and p = 0 when i = -2 

   j = 0 and p = b when i > 1 

(7) 

RD‟ [i – p]  =  RD [i] + j (b / N) + (k / N)  for b = dx 

 ∀ i ϵ SRD, 

 where   j = +1, k = +1 and p = 0 when i = 0 

   j = 0, k = 0 and p = 0 when i = -1 

   j = -1, k = 0 and p = 0 when i = -2 

   j = 0, k =0 and p = b when i > b 

(8) 

RD‟ [i – p]  =  RD [i] + j (b / N) + (k / N)  for b = dx + 1 

 ∀ i ϵ SRD, 

 where   j = +1, k = 0 and p = 0 when i = 0 

   j = 0, k = 1and p = 0 when i = -1 

   j = 0, k =0 and p = b when i > b 

(9) 

RD‟ [i – p]  =  RD [i] + j (b / N) + k / N  for b > (dx + 1) and b < dy 

 ∀ i ϵ SRD, 
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 where   j = +1, k = 0 and p = 0 when i = 0 

   j = -1, k = 1and p = 0 when i = -1 

   j = 0, k =0 and p = b when i > b 

 (10) 

 

Proof 

Case 1: b ≥ dy 

When the available buffer is equal to the greater displacement amongst the late packets, the entire 

sequence is back in order. 

Therefore, 

 |S0‟| = N        (i) 

By definition, 

 RD‟ [0]  = |S0‟| / N 

   = N / N 

=> RD’ [0] = 1 

Case 2: b < dx 

On expanding the equation (7), 

a) RD‟ [0] =  RD [0] + (b / N) 

b) RD‟ [-1] =  RD [-1] 

c) RD‟ [-2] =  RD [-2] - (b / N) 

d) RD‟ [dx] =  RD [dx - b] 

e) RD‟ [dy] =  RD [dy - b] 



 

 

 

37 

 

 

Figure 3-8. Displacement of the late packets after resequencing 

 

 When a reordered sequence is traversed by a resequencing node containing b buffers, the 

resultant displacement of the late packet p will be no greater than dx - b. As a consequence, dx - b 

packets will be early by 1 position and b packets will be late by 1 position.  

 From [41] and Chapter 2, it is known that the dx – b packets prior to the embedded 

packet are early by 2 positions. Therefore, when dx – b packets are late by 1 position, it results in 

the reduction in the number of packets that are early by 2 positions 

i.e., 

  |S-2‟|  = |S-2| - b      (ii) 
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Dividing by N 

 |S-2‟| / N = (|S-2| / N) – (b / N) 

By definition of RD and from (2),  

 RD’ [-2] = RD [-2] - (b / N) 

But, the resequenced packets would now be part of the secondary event of the outer late packet. 

Therefore, they would now be early by 1 position 

i.e., 

  |S-1‟|  = |S-1| + b      (iii) 

However, the outer late packet also gets resequenced resulting in dy – b packets coming late by 1 

position and b packets coming late by 1 position. Therefore, the number of packets that are early 

by 1 position would now be 

  |S-1‟|  = |S-1| + b – b    

  |S-1‟| = |S-1|       (iv) 

This also means that these packets would now be back in order resulting in 

  |S0‟|  = |S0| + b      (v) 

Dividing (iv) and (v) by N 

 |S-1‟| / N = |S-1| / N 

 |S0‟| / N  = (|S0| / N) + (b / N) 

By definition of RD and from (2), 

 RD’ [-1] = RD [-1] 

 RD’ [0] = RD [0] + (b / N) 

Since the displacement of both late packets would be no greater than dx – b and dy – b, we have 

|Sdx‟|   = |Sdx – b|      (vi) 
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|Sdy‟|   = |Sdy – b|      (vii) 

Dividing (vi) and (vii) by N 

 |Sdx‟| / N = |Sdx – b| / N 

 |Sdy‟| / N = |Sdy – b| / N 

By definition of RD and from (2),  

 RD [dx’] = RD [dx – b] 

 RD [dy’] = RD [dy – b] 

 

Case 3: b = dx 

On expanding the equation (8), we get 

a) RD‟ [0] =  RD [0] + (b / N) + (1/N) 

b) RD‟ [-1] =  RD [-1] 

c) RD‟ [-2] =  RD [-2] - (b / N) 

d) RD‟ [dy] =  RD [dy - b] 

The proofs for (b), (c) and (d) are similar to the ones in Case 2, please refer to Case 2: (b), (c) and 

(e) respectively for their proofs.  

When the number of buffers available is exactly equal to dx, the embedded late packet gets 

resequenced completely. Therefore, there is an addition to the number of packets that are back in 

order 

i.e., 

  |S0‟|  = |S0| + b + 1      (viii) 

Dividing (viii) by N, 

 |S0‟| / N  = |S0| / N + b / N + 1/ N 
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By definition of RD and from (2), 

 RD’ [0] = RD [0] + (b / N) + (1/N) 

 

Case 4: b = dx + 1 

On expanding the equation (9), we get 

a) RD‟ [0] =  RD [0] + (b / N) 

b) RD‟ [-1] =  RD [-1] + (1/N) 

c) RD‟ [dy] =  RD [dy - b] 

When the number of buffers available is one more than the displacement of the embedded late 

packet, the embedded late packet, that is completely resequenced, becomes part of the secondary 

event of the outer late packet. Therefore an addition to the number of packets that is early by 1 

position 

i.e., 

  |S-1‟|  = |S-1| + 1      (ix) 

Dividing (ix) by N, 

 |S-1‟| / N  = |S-1| / N + 1/ N 

By definition of RD and from (2), 

 RD’ [-1] = RD [-1] + (1/N) 

Also, we know that, when a reordered sequence is traversed by a resequencing node containing b 

buffers, the resultant displacement of the late packet p will be no greater than dy - b. As a 

consequence, dy - b packets will be early by 1 position and b packets will be late by 1 position.  

When the packets that are early by 1 position become late by 1 position, it results in net 

displacement of 0, therefore 
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  |S0‟|  = |S0| + b      (x) 

Dividing (ix) by N, 

 |S0‟| / N  = |S0| / N + b/ N 

By definition of RD and from (2), 

 RD’ [0] = RD [0] + (b / N) 

Refer to Case 2: (e) for the proof for (c). 

Case 5: b > (dx + 1) and b < dy 

On expanding the equation (10), we get 

a) RD‟ [0] =  RD [0] + (b / N) 

b) RD‟ [-1] =  RD [-1] – (b / N) + (1/N) 

c) RD‟ [dy] =  RD [dy - b] 

When the available number of buffers is greater than dx + 1, the sequence behaves like an 

independent reordering pattern. 

From Theorem 2, Case 2, we have  

 RD‟ [-1] = RD [-1] – (b / N) 

By definition of RD and (2), we have 

 |S-1‟| / N = |S-1| / N - (b / N) 

Multiplying by N, 

 |S-1‟|  = |S-1| - b      (xi) 

The embedded late packet is completely resequenced and it contributes as secondary event 

packets that are early by 1 position to the outer late packet event.  

Therefore, (xi) is now 

 |S-1‟|  = |S-1| - b + 1 
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Dividing by N, 

 |S-1‟| / N = |S-1| / N – b / N + 1 / N 

By definition of RD and (2), we have 

 RD’ [-1] = RD [-1] – (b / N) + (1/N) 

Q. E. D 
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Theorem 5 

In the absence of duplicates and losses, the reorder density of a sequence with a single instance of 

embedded reordering pattern formed by an early event whose displacement is dx embedded 

within a late event whose displacement is dy after it has traversed through a resequencing node 

with b resequencing buffers is given by 

RD‟ [i]  =  j      for b ≥ dy 

∀ i ϵ SRD 

 where   j = 1 when i = 0 

   j = 0 when i ≠ 0 

(11) 

RD‟ [ i - p ]  =  RD [i] + {j (abs(dx) - 1 ) + k }/ N  for b = 1 

 ∀ i ϵ SRD, 

 where   j = -1, k = +1 and p = 0 when i = 0 

   j = +1, k = 0 and p = 0 when i = -1 

   j = 0, k = 0 and p = b when i > 1 

(12) 

RD‟ [ i - p ]  =  RD [i] + {j (abs(dx) - 1 ) + k - j (b – 1)}/ N  

         for b > 1 and b < dy 

 ∀ i ϵ SRD, 

 where   j = -1, k = +1 and p = 0  when i = 0 

   j = +1, k = 0 and p = 0 when i = -1 

   j = 0, k = 0 and p = b when i > 1 
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(13) 

Proof 

Case 1: b ≥ dy 

When the available buffer is equal to the displacement of the late packet, dy, the entire sequence 

is back in order. 

Therefore, 

 |S0‟| = N       (i) 

By definition, 

 RD‟ [0]  = |S0‟| / N 

   = N / N 

=> RD’ [0] = 1 

Case 2: b = 1 

By expanding the equation (12), we get 

a) RD‟ [0] = RD [0] – abs(dx) / N + 2 / N 

b) RD‟ [-1] = RD [-1] + (abs(dx) – 1/ N) 

c) RD‟ [dy - b] = RD [dy] 

 We already know that a single buffer is enough to resequence an early packet completely 

back in order. Since we have an early event being embedded within a late event, the combination 

of the secondary events of the embedded early packet and the outer late packet would result in net 

displacement of zero. This is because one secondary event causes packets to come in early by 1 

position and the other would cause it to come in late by 1 position. 

 Therefore, when the embedded early event is completely resequenced, the number of 

packets with zero displacement would reduce by a factor of the absolute displacement of the early 
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packet minus one (because of the embedded nature of the reordering) also causing a 

corresponding increase in the number of packets that would now be early by 1 position 

This implies 

 |S0‟|   = |S0| - (abs (dx) – 1)    (ii) 

 |S-1‟|   = |S-1| + (abs (dx) – 1)    (iii) 

But, outer late packet also gets resequenced by 1 position resulting in an addition of one packet to 

zero displacement set 

Therefore, by adding 1 to (ii), we get 

 |S0‟|   = |S0| - (abs (dx) – 1) + 1   (iv) 

On simplifying it further we get 

 |S0‟|   = |S0| - abs (dx) + 2     (v) 

Dividing (v) by N, 

|S0‟| / N = |S0|  / N - abs (dx) / N + 2 / N 

By definition of RD and (2), we therefore have 

RD’ [0] = RD [0] – abs (dx) / N + 2 / N 

Similarly, dividing (iii) by N, 

|S-1‟| / N = |S-1| / N + (abs (dx) – 1) / N 

By definition of RD and (2), we therefore have 

RD’ [-1] = RD [-1] + (abs (dx) – 1/ N) 

For (c), refer to Theorem 2, Case 2: (c) 

 

Case 3: b > 1 and b < dy 

By expanding the equation (13), we get 
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a) RD‟ [0] = RD [0] – abs (dx) / N +  1 / N + b / N 

b) RD‟ [-1] = RD [-1] + (abs (dx) – b / N) 

c) RD‟ [dy - b] = RD [dy] 

 When the number of resequencing buffers available is greater than 1 and less than dy, the 

behavior is similar to that of an independent reordering pattern.  

From (iv), we have 

 |S0‟|   = |S0| - (abs (dx) – 1) + 1 

Since (- (abs (dx) – 1) + 1) is constant after a single buffer usage, let us assume C1 = - (abs (dx) – 

1) 

 |S0‟|   = |S0| + C1      (vi) 

Using the concepts proved in Theorem 2, Case 2: (a), we therefore get 

 |S0‟|  = |S0| + C + (b‟) 

Since we have already used a single buffer and are dealing with that using the constant C1,  

 b‟ = (b – 1) 

Therefore,  

 |S0‟|  = |S0| + C1 + (b – 1)    (vii) 

On substituting the constant C1 and simplifying (vii) further, we get 

 |S0‟|  = |S0| + 1 + b     (viii) 

Dividing (viii) by N 

|S0‟| / N = |S0| / N + 1 / N + b / N 

By definition of RD and (2), we therefore have 

RD’ [0] = RD [0] – abs (dx) / N + 1 / N + b / N 

From (iii), we have 
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 |S-1‟|   = |S-1| + (abs (dx) – 1) 

Since (abs (dx) – 1) is constant after a single buffer usage, let us assume C2 = (abs (dx) – 1). 

Therefore, we get 

 |S-1‟|   = |S-1| + C2 

Using the concepts proved in Theorem 2, Case 2: (b), we therefore get 

 |S-1‟|   = |S-1| + C2 – b‟     (ix) 

Since we have already used a single buffer and are dealing with that using the constant C2,  

 b‟ = (b – 1)        (x) 

Combining (xi) and (x), we get 

 |S-1‟|   = |S-1| + C2 – (b – 1)    (xi) 

On substituting the constant C2 and simplifying (xi) further, we get 

 |S-1‟|   = |S-1| + abs (dx) – b    (xii) 

Dividing (xii) by N 

|S-1‟| / N = |S-1| / N + (abs(dx) – b) / N 

By definition of RD and (2), we therefore have 

RD’ [-1] = RD [-1] + (abs (dx) – b / N) 

For (c), refer to Theorem 2, Case 2: (c) 

Q. E. D 

 

Theorem 6 

In the absence of duplicates and losses, the reorder density of a sequence with a single instance of 

embedded reordering pattern formed by a late event whose displacement is dy embedded within 
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an early event whose displacement is dx after it has traversed through a resequencing node with b 

resequencing buffers is given by 

RD‟ [i]  =  j       for b ≥ dy 

∀ i ϵ SRD 

 where   j = 1 when i = 0 

   j = 0 when i ≠ 0 

(14) 

RD‟ [ i - p ]  =  k (RD [i]) + {j (dy - 1) + k (abs(dx) – dy + 1) }/ N for b = 1 

 ∀ i ϵ SRD, 

 where   j = -1, k = +1 and p = 0 when i = 0 

   j = +1, k = 0 and p = 0 when i = -1 

   j = 0, k = 0 and p = b when i > 1 

(15) 

RD‟ [ i - p ]  =  k (RD [i]) + {j (dy - 1) + k (abs(dx) – dy + 1) – j (b – 1)}/ N 

         for b > 1 and b < dy 

 ∀ i ϵ SRD, 

 where   j = -1, k = +1 and p = 0 when i = 0 

   j = +1, k = 0 and p = 0 when i = -1 

   j = 0, k = 0 and p = b when i > 1 

(16) 

Proof 

Case 1: b ≥ dy 
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 When the available buffer is equal to the displacement of the late packet, dy, the entire 

sequence is back in order. 

Therefore, 

 |S0‟| = N        (i) 

By the definition of RD and (2), we therefore have 

 RD‟ [0]  = |S0‟| / N 

   = N / N 

=> RD’ [0] = 1 

 

Case 2: b = 1 

By expanding the equation (15), we get 

a) RD‟ [0] = RD [0] + (2 – 2dl + abs (dx)) / N 

b) RD‟ [-1] = (dy – 1) / N 

c) RD‟ [dy - b] = RD [dy] 

 As discussed in the proof for Theorem 5, packets that are embedded within the outer 

packet event tend to be affected by the secondary events of both the embedded packet and the 

outer packet. Therefore, there will be a few packets with zero displacement. When the early 

packet completely gets resequenced, there would be a decrease in the number of packets whose 

displacement would be zero by a factor of (dy – 1). The negative one corresponds to embedded-

ness of the late packet. 

Therefore,  

 |S0‟|   = |S0| - (dy – 1)     (ii) 



 

 

 

50 

 

 But, we also know that there might be some packets that are solely affected by the outer 

early event only. When the early packet gets resequenced, the associated secondary event packets 

would also get resequenced causing an increase in the number of packets whose displacement in 

zero. 

Therefore (ii) now becomes 

 |S0‟|   = |S0| - (dy – 1) + abs (dx)   (iii) 

 But, the embedded late packet and the packets corresponding to its secondary event still 

exist causing resulting in a decrease in the number of zero displacement packets, therefore 

 |S0‟|   = |S0| - (dy – 1) + abs (dx) – (dy – 1)  (iv) 

On simplifying (iv), we get 

 |S0‟|   = |S0| + 2 - 2dl + abs (dx)   (v) 

Dividing (v) by N 

|S0‟| / N  = |S0| / N + (2 - 2dl + abs (dx)) / N 

By the definition of RD and (2), we therefore have 

RD’ [0] = RD [0] + (2 – 2dl + abs (dx)) / N 

Also, we know that a late packet with a displacement dy would have dy packet prior to it that are 

early by 1 position. Therefore 

 |S-1‟|  = (dy – 1)      (vi) 

The negative one corresponds to the embedded-ness of the late packet. 

Dividing (vi) by N 

|S-1‟| / N = (dy – 1) / N 

By the definition of RD and (2), we therefore have 

RD’ [-1] = (dy – 1) / N 



 

 

 

51 

 

For (c), refer to Theorem 2, Case 2: (c) 

 

Case 3: b > 1 and b < dy 

By expanding the equation (16), we get 

a) RD‟ [0] = RD [0] + (b – 2dl + abs(dx))/ N 

b) RD‟ [-1] = (dy – b) / N 

c) RD‟ [dy - b] = RD [dy] 

 Once the early packet is completely resequenced, the resequencing pattern tends to be 

similar to the case of independent reordering. From Theorem 5, Case 3, we know that the number 

of packets in the zero displacement set (S0) and 1 position early displacement set (S-1) can be 

considered to be a constant post single buffer usage. 

Equations (v) and (vi) are 

 |S0‟|   = |S0| + 2 - 2dl + abs (dx)   (v) 

 |S-1‟|  = (dy – 1)      (vi) 

By combining the proofs from Theorem 2, Case 2 with (v) and (vi), we get 

 |S0‟|   = |S0| + 2 - 2dl + abs (dx) + b‟   (vii) 

 |S-1‟|  = (dy – 1)  - b‟     (viii) 

Since we have already used a single buffer 

 b‟  =  b – 1       (ix) 

By using (ix) in (vii) and (viii) and by simplifying, we get 

 |S0‟|   = |S0| + b – 2dl + abs (dx)   (x) 

 |S-1‟|  = (dy – b)      (xi) 

Dividing (x) and (xi) by N, 
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 |S0‟| / N = |S0| / N + (b – 2dl + abs (dx)) / N 

 |S-1‟| / N = (dy – b)  / N 

By the definition of RD and (2), we therefore have 

 RD’ [0] = RD [0] + (b – 2dl + abs (dx))/ N 

 RD’ [-1] = (dy – b) / N 

For (c), refer to Theorem 2, Case 2: (c) 

Q. E. D 

 

 

Theorem 7 

In the absence of duplicates and losses, the reorder density of a sequence with a single instance of 

embedded reordering pattern formed by an early event with displacement dx embedded within 

another early event with displacement dy after it has traversed through a resequencing node with 

b resequencing buffers is given by 

RD‟ [i]  =  j      for b ≥ 2 

∀ i ϵ SRD 

 where   j = 1 when i = 0 

   j = 0 when i ≠ 0 

(17) 

RD‟ [ i - p ]  =  {j (N) + k (abs (dx) + 1 ) - j}/ N  for b = 1 

 ∀ i ϵ SRD, 

 where   j = +1, k = -1 and p = 0 when i = 0 

   j = 0, k = +1 and p = 0 when i = 1 
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   j = 0, k = 0 and p = -1 when i = dx 

(18) 

Proof 

Case 1: b ≥ 2 

 The lowest first algorithm is such that early packets can be resequenced with a single 

buffer. Therefore, when a sequence containing 2 early packets are sent through a resequencing 

node with 2 buffers, the entire sequence is back in order 

Refer to the proof for Theorem 2: Case 1. 

 

Case 2: b = 1 

By expanding the equation (18), we get 

a) RD‟ [0]  =  (N – abs(dx) – 2) / N 

b) RD‟ [1]  =  (abs(dx) + 1) / N 

c) RD‟ [dx – 1]   =  RD [dx] 

 When a single buffer is used, the outer early packet gets resequenced completely 

resulting in the existence of inner embedded early packet and its corresponding secondary events 

only.  

 We also know that when a packet p is early by dx positions, there will at most be dx 

packets that are late by 1 position because of secondary events 

Therefore 

 |S1‟|  =  abs (dx)     (ii) 

 But since the embedded early packet is affected by the secondary events of the outer 

early packet, the actual displacement would be 1 less. 
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Adding 1 to (ii) 

|S1‟|  =  abs (dx) + 1     (iii) 

Dividing (iii) by N, 

|S1‟| / N =  (abs (dx) + 1) / N 

By the definition of RD and (2), we therefore have 

 RD’ [1] =  (abs (dx) + 1) / N 

 Since the remaining packets would be back on order, the number of packets with zero 

displacement is 

 |S0‟|  =  N – (abs (dx) + 1) – 1    (iv) 

 Here, (abs (dx) + 1) represents the secondary events of the embedded early packet and 1 

represents the early packet. 

On simplifying (iv), we get 

 |S0‟|  =  N – abs (dx) – 2    (iv) 

Dividing (iv) by N, 

 |S0‟| / N =  (N – abs (dx) – 2) / N    (v) 

By the definition of RD and (2), we therefore have 

 RD’ [0] =  (N – abs (dx) – 2) / N 

 Also, the embedded early packet which was affected by the secondary events of the outer 

early packet is now unaffected resulting in its true displacement which is 1 less 

i.e., 

 dx‟ = dx – 1 

 |Sdx‟| = |Sdx - 1|       (vi) 

Dividing (vi) by N, we get 
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 |Sdx‟| / N =  |Sdx - 1| / N 

By definition of RD and (2), we therefore have 

 RD’ [dx – 1] =  RD [dx] 

Q. E. D 

 

3. 2. 4 Reorder Density of Overlapped Reordering Patterns 

 Overlapped Reordering occurs when a late or early packet event overlaps with another 

late or early packet event. Consider the sequence (i-3, i-2, i-1, i, i+1, i+2, i+3, i+4, i+5) as 

shown in the Figure 3-9.  

 If packets i and i-2 are late by 3 and 4 positions respectively, then the resulting sequence 

would be (i-3, i-1, i+1, i-2, i+2, i+3, i+4, i, i+5). If the lowest first resequencing algorithm with a 

single buffer is used, the resultant sequence would be (i-3, i-1, i-2, i+1, i+2, i+3, i, i+4, i+5) as 

shown in Figure 3-9.  
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Figure 3-9. Change in displacement values of a sequence containing an overlapped reordering pattern 

 

Theorem 8 

In the absence of duplicates and losses, the reorder density of a sequence with a single instance of 

overlapped reordering pattern formed by a late event overlapping with another late event that has 

traversed through b resequencing buffers is given by 

RD‟ [i]  =  j      for b ≥ max (dx, dy) 

∀ i ϵ SRD 

 where   j = 1 when i = 0 
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   j = 0 when i ≠ 0 

(19) 

RD‟ [i – p]  =  RD [i] + j (b / N)    for b ≤ Vxy 

 ∀ i ϵ SRD, 

 where   j = +1 and p = 0 when i = 0 

   j = 0 and p = 0 when i = -1 

   j = -1 and p = 0 when i = -2 

   j = 0 and p = b when i > 1 

(20) 

RD‟ [i – p]  =  RD [i] + {j (Vxy) + k (b – Vxy)} / N 

       for b > Vxy and b < min (dx, dy) 

 ∀ i ϵ SRD, 

 where   j = +1, k = +2 and p = 0 when i = 0 

   j = 0, k = -2 and p = 0 when i = -1 

   j = 0, k = 0 and p = b when i > b 

(21) 

RD‟ [i – p]  =  RD [i] + {j (Vxy + 1) + k (b – Vxy)} / N for b = min (dx, dy) 

 ∀ i ϵ SRD, 

 where   j = +1, k = +2 and p = 0 when i = 0 

   j = 0, k = -2 and p = 0 when i = -1 

   j = 0, k = 0 and p = 0 when i > b 

(22) 
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RD‟ [i – p] = RD [i] + {j (Vxy + 1) + k((min(dx,dy) – Vxy) + (k/2)(b – min (dx,dy)) } / N  

     for b > min (dx, dy) and b < max (dx, dy) 

 ∀ i ϵ SRD, 

 where   j = +1, k = +2 and p = 0 when i = 0 

   j = 0, k = -2 and p = 0 when i = -1 

   j = 0, k = 0 and p = 0 when i > b 

(23) 

Proof 

Case 1: b ≥ max (dx, dy) 

When the number of buffer available is equal to or greater than the highest displacement of one of 

the late packets, the entire sequence is back in order. 

Refer to the proof for Theorem 2: Case 1. 

 

Case 2: b ≤ Vxy 

By expanding equation (20), we get 

a) RD‟ [0]  = RD [0] + (b / N) 

b) RD‟ [-1] = RD [-1] 

c) RD‟ [-2] = RD [-2] – (b / N) 

d) RD‟ [dx] = RD [dx – b] 

e) RD‟ [dy] = RD [dy – b] 

 From [43], we know that the length of overlap is the number of packets with a 

displacement of -2 (2 positions early) since packets in the region of overlap are affected by both 

the late packet events 
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Therefore, 

Vxy =  |S-2| 

 We also know that, when a reordered sequence is traversed by a resequencing node 

containing b buffers, the resultant displacement of the late packet p will be no greater than dx - b. 

As a consequence, dx - b packets will be early by 1 position and b packets will be back in order. 

 Until the region of overlap diminishes, there exists at least one packet that would be early 

by 2 positions. Therefore, we have 

 |S0‟|  = |S0| + b      (i) 

 |S-2‟|  = |S-2| - b      (ii) 

Dividing (i) and (ii) by N, 

 |S0‟| / N = |S0| / N + b / N     (iii)  

 |S-2‟| / N = |S-2| / N - b / N     

By definition of RD and [41], we therefore have 

 RD’ [0]  = RD [0] + (b / N) 

 RD’ [-2] = RD [-2] – (b / N) 

For proofs for (d) and (e), refer to Theorem 2, Case 2: (c) 

 

Case 3: b > Vxy and b < min (dx, dy) 

By expanding equation (21), we get 

a) RD‟ [0]  = RD [0] + Vxy / N + 2 (b – Vxy) / N 

b) RD‟ [-1] = RD [-1] - 2 (b – Vxy) / N 

c) RD‟ [dx] = RD [dx – b] 

d) RD‟ [dy] = RD [dy – b] 
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 When the available buffer is greater than Vxy, the region of overlap would have 

completely diminished resulting in 2 independent late reordering patterns. Therefore, the number 

of zero displacement packets increases by twice the buffer size and the number of packets that 

would be early by 1 position decreases by twice the buffer size. 

Substituting for b = Vxy in equation (iii), we get 

 |S0‟| / N = |S0| / N + Vxy / N    (iv) 

Since b ≤ Vxy has already been accounted for in (iv), we have 

 |S0‟| / N = |S0| / N + Vxy / N + 2b‟ / N (v) 

But, 

 b‟ = b – Vxy       (vi) 

Using (vi) in (v) 

 |S0‟| / N = |S0| / N + Vxy / N + 2 (b – Vxy) / N  (vii) 

By definition of RD and [41], we therefore have 

 RD’ [0]  = RD [0] + Vxy / N + 2 (b – Vxy) / N 

 Similarly, after the region of overlap diminishes, there only exist packets that are early by 

1 position or late packets. Therefore,  

 |S-1‟|  = |S-1| - 2b‟     (viii) 

Using (vi) in (viii) and dividing by N, 

 |S-1‟| / N = |S-1| / N – 2(b – Vxy) / N 

By definition of RD and [41], we therefore have 

 RD’ [-1] = RD [-1] - 2 (b – Vxy) / N 

For proofs for (c) and (d), refer to Theorem 2, Case 2: (c) 
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Case 4: b = min (dx, dy) 

By expanding equation (22), we get 

a) RD‟ [0]  = RD [0] + (Vxy + 1) / N + 2 (b – Vxy) / N 

b) RD‟ [-1] = RD [-1] - 2 (b – Vxy) / N 

c) RD‟ [dx] = RD [dx – b] 

d) RD‟ [dy] = RD [dy – b] 

 The value of RD remains the same as Case 3 for all indices except 0 since one of the late 

packets would now be resequenced completely.  

Therefore, by adding 1 to (vii), we get 

 |S0‟| / N = |S0| / N + (Vxy + 1) / N + 2 (b – Vxy) / N  (ix) 

By definition of RD and [41], we therefore have 

 RD’ [0]  = RD [0] + (Vxy + 1) / N + 2 (b – Vxy) / N 

 

Case 5: b > min (dx, dy) and b < max (dx, dy) 

By expanding equation (23), we get 

a) RD‟ [0] = RD [0] + (Vxy + 1) / N + 2 (min (dx,dy) – Vxy) / N + (b – min (dx,dy)) / N 

b) RD‟ [-1] = RD [-1] - 2 (min (dx,dy) – Vxy) / N - (b – min (dx,dy)) / N 

c) RD‟ [dy] = RD [dy – b] 

From Cases 2 – 4, we have the following 

 |S0‟| / N = |S0| / N + (Vxy + 1) / N + 2(min (dx, dy) – Vxy) / N (x) 

 |S-1‟| / N = |S-1| / N - 2(min (dx, dy) – Vxy) / N   (xi) 

 In the aforementioned equations, (min (dx, dy) – Vxy) represents the buffer range 

presented in Case 4. One of the late packets is completely resequenced on using min (dx, dy) 
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buffers, only a single late packet event and its associated secondary event packet exist. Since 

effect of buffers ≤ min (dx, dy) has already been computed in (x) and (xi), the remaining buffer 

can be computed as 

 b‟ = b – min (dx, dy)      (xii) 

By combining the proofs from Theorem 2, Case 2 and (x) and (xi), we get 

|S0‟| / N = |S0| / N + (Vxy + 1) / N + 2(min (dx, dy) – Vxy) / N + b‟ / N (xiii) 

|S-1‟| / N = |S-1| / N - 2(min (dx, dy) – Vxy) / N + b‟ / N   (xiv) 

Using (xii) in (xiii) and (xiv),  

|S0‟| / N = |S0| / N + (Vxy + 1) / N + 2(min (dx, dy) – Vxy) / N + (b – min (dx, dy) / N 

|S-1‟| / N = |S-1| / N - 2(min (dx, dy) – Vxy) / N + (b – min (dx, dy) / N 

By definition of RD and [41], we therefore have 

RD’ [0] = RD [0] + (Vxy + 1) / N + 2 (min (dx,dy) – Vxy) / N + (b – min (dx,dy)) / N 

RD’ [-1] = RD [-1] - 2 (min (dx,dy) – Vxy) / N - (b – min (dx,dy)) / N 

For the proof for (c), refer to Theorem 2, Case 2: (c) 

Q. E. D 

 

Theorem 9 

In the absence of duplicates and losses, the reorder density of a sequence with a single instance of 

overlapped reordering pattern formed by a late event overlapping with an early event (or an early 

event overlapping with a late event) that has traversed through b resequencing buffers is given by 

RD‟ [i]  = j       for b ≥ max (SRD) 

∀ i ϵ SRD 

 where   j = 1 when i = 0 
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   j = 0 when i ≠ 0 

(24) 

RD‟ [i – p]  = RD [i] + {j [abs (min (SRD)) - Vxy] + k (Vxy)} / N for b = 1 

 ∀ i ϵ SRD, 

 where   j = +1, k = -1 and p = 0 when i = 0 

   j = 0, k = +1and p = 0 when i = -1 

   j = 0, k = 0 and p = b when i > 1 

(25) 

RD‟ [i – p]  = RD [i] + {j [abs (min (SRD)) - Vxy] + k (Vxy) – k (b – 1)} / N 

        for b >  1 and b < max(SRD) 

 ∀ i ϵ SRD, 

 where   j = +1, k = -1 and p = 0 when i = 0 

   j = 0, k = +1and p = 0 when i = -1 

   j = 0, k = 0 and p = b when i > 1 

(26) 

Proof 

Case 1: b ≥ max (SRD) 

When the number of buffers available is equal to or greater than the maximum value of 

displacement of the late packet, the entire sequence is back in order. 

Refer to the proof for Theorem 2: Case 1. 

 

Case 2: b = 1 

By expanding the equation (25), we get 
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a) RD‟ [0]  = RD [0] + (abs (min(SRD)) – Vxy) / N – Vxy / N 

b) RD‟ [-1]  = RD [-1] + Vxy / N 

c) RD‟ [dx]  = RD [dx – b] 

 We know that a single buffer is sufficient to completely resequence an early packet back 

in order resulting in the diminishing of the region of overlap. When a late packet event overlaps 

with an early packet event or vice versa, the region of overlap contains packets that would have 

zero displacement because of the secondary event effects of both the late and the early packets. 

Therefore, the number of packets with zero displacement would now be 

 |S0‟| =  |S0| - Vxy      (i) 

 The secondary events of the early packet outside the region of overlap would also get 

negated resulting in more number of packets with zero displacement. Therefore, (i) is now 

 |S0‟| =  |S0| - Vxy + (abs (min (SRD) – Vxy)   (ii) 

Dividing (i) by N 

 |S0‟| / N =  |S0| / N - Vxy / N + (abs (min(SRD) – Vxy) / N  

By definition of RD and [41], we therefore have 

 RD’ [0]  = RD [0] + (abs (min(SRD)) – Vxy) / N – Vxy / N 

 When the early packet gets resequenced, the packets in the region of overlap would now 

be affected by the late packet event only resulting in those packets being early by 1 position. 

Therefore, 

 |S-1‟| = |S-1| + Vxy      (iii) 

Dividing (iii) by N 

 |S-1‟| / N = |S-1| / N + Vxy / N 

By definition of RD and [41], we therefore have 
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 RD’ [-1]  = RD [-1] + Vxy / N 

For the proof for (c), refer to Theorem 2, Case 2: (c) 

 

Case 3: b > 1 and b < max (SRD) 

By expanding the equation (26), we get 

a) RD‟ [0]  = RD [0] + (abs (min (SRD))) – Vxy) / N – Vxy / N + (b – 1) / N 

b) RD‟ [-1]  = RD [-1] + Vxy / N + (b – 1) / N 

c) RD‟ [dx]  = RD [dx – b] 

Similar to proofs for earlier Theorems, we have already accounted for the change in packets with 

zero displacement and -1 displacement when a single buffer is used. 

Therefore, (ii) would be 

 |S0‟| =  |S0| - Vxy + (abs (min (SRD) – Vxy) + (b – 1)  (iv) 

Also, (iii) would be 

 |S-1‟| = |S-1| + Vxy – (b – 1)     (v) 

Dividing (iv) and (v) by N 

|S0‟| / N =  |S0| / N - Vxy / N + (abs (min (SRD) – Vxy) / N + (b – 1) / N 

|S-1‟| / N = |S-1| / N + Vxy / N – (b – 1) / N 

By definition of RD and [41], we therefore have 

RD’ [0]  = RD [0] + (abs (min (SRD))) – Vxy) / N – Vxy / N + (b – 1) / N 

RD’ [-1]  = RD [-1] + Vxy / N + (b – 1) / N 

For the proof for (c), refer to Theorem 2, Case 2: (c) 

Q. E. D 
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Theorem 10 

In the absence of duplicates and losses, the reorder density of a sequence with a single instance of 

overlapped reordering pattern formed by an early event overlapping with another early event that 

has traversed through b resequencing buffers is given by 

RD‟ [i]  = j       for b ≥ 2 

∀ i ϵ SRD 

 where   j = 1 when i = 0 

   j = 0 when i ≠ 0 

 

(27) 

RD‟ [i – p]  = {j (N) + k (Vxy) + m (1)}/ N   for b = 1 

 ∀ i ϵ SRD, 

 where   j = +1, k = -1 and m = 1 when i = 0 

   j = 0, k = +1 and m = 0 when i = 1 

   j = 0, k = 0 and m = 1 when i = -Vxy 

(28) 

Proof 

Case 1: b ≥ 2 

Refer to the proof for Theorem 7, Case 1. 

Case 2: b = 1 

By expanding (28), we get 

a) RD‟ [0]  = (N – Vxy – 1) / N 

b) RD‟ [1] = Vxy / N 
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c) RD‟ [-Vxy]  = 1 

 When the lowest first algorithm is parsing the sequence with a single buffer, at the 

beginning of the region of overlap, both the early packets are compared, the packet with the lower 

sequence number of the two packets is released and the other is completely resequenced. This 

causes one of the packets to get resequenced partially resulting in the net displacement the early 

packet to be equal to the length of the overlap. 

Therefore,  

 |S1‟| = Vxy       (i) 

 |S-Vxy‟| = 1       (ii) 

Dividing (i) and (ii) by N 

 |S1‟| / N = Vxy / N 

 |S-Vxy‟|  / N  = 1 / N 

By definition of RD and [41], we therefore have 

 RD’ [1] =  Vxy / N 

 RD’ [-Vxy]  =  1 

It is also known that the sequence would now contain packets with 0 – displacement, 1-

displacement and -Vxy displacement. 

We have 

 N = |S1‟| + |S0‟| + |S-Vxy‟| 

=>  |S0‟| = N - |S1‟| - |S-Vxy‟| 

Using (i) and (ii) in the aforementioned equation, 

 |S0‟| = N - Vxy - 1      (iii) 

Dividing (iii) by N 
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 |S0‟| / N  = (N - Vxy - 1) / N 

By definition of RD and [41], we therefore have 

 RD’ [0]  =  (N – Vxy – 1) / N 

Q. E. D 

 

3. 3 Impact of Resequencing Buffers on Reorder Buffer Occupancy Density 

 In this section, we study and analyze the impact of resequencing buffers on Reorder 

Buffer Occupancy Density. 

 

Property 1 

At a given instance, the resequencing buffer holds at most max (Bm, b) packets whose sequence 

numbers are the largest amongst the sequence numbers of the packets encountered while 

traversing the sequence thus far. Bm is the highest value of i when RBD [i] is non-zero, and b is 

the capacity of the resequencing buffer. 

Proof 

 Based on the definition of reorder buffer occupancy density [43], it is known that the 

highest value of i when RBD [i] is non-zero is the total buffer requirement for placing the packet 

back into order. The lowest first algorithm releases the packet with the lowest sequence number 

after having compared with the current packet number resulting in all higher numbered packets 

getting accumulated in the buffer. Therefore, the buffer can at max hold max (Bm, b) number of 

packets. 

Q. E. D 
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Lemma 

Consider a sequence with RBD such that  

 RBD [i] = 0 for i > Bm 

In such a sequence, a packet with sequence number i cannot be preceded by more than Bm 

number of packets whose sequence numbers are greater than i.  

Proof 

 Buffer occupancy is the occupancy of the hypothetical buffer in anticipation of the 

expected packet [25]. Bm is the highest value of buffer occupancy obtained from the reorder 

buffer occupancy density graph of the sequence. This implies that there would be at max Bm 

number of packets in the buffer in the anticipation of the expected packet that is displaced the 

most in the sequence.  

RBD [i] = 0 for i > Bm  

 i > displacement of the late packet  

OR 

 Sequence number of i > Sequence numbers of the preceding packets prior to i  

Q. E. D 

 

Theorem 11 

If the highest value of i for which RBD[i] = 0 for the sequences at the input and output of 

resequencing node with b buffers be Bm and Bm‟, then 

 Bm‟ = 0   for b ≥ Bm 

(28) 

 Bm‟ = Bm – b  for b < Bm 
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 (29) 

Proof 

 Consider a sequence (i-3, i-2, i-1, i, i+1, i+2, i+3, i+4, i+5). If packet i in this sequence 

arrives late resulting in a reorder event, the buffer occupancy of the sequence would be non – zero 

and the maximum value of buffer occupancy would be Bm.  From the Lemma, we know that this 

is the same as displacement of the packet from the initial position.  

 

Case 1: b ≥ Bm 

 When the number of resequencing buffers available is equal to or greater than the total 

number of buffers required to put the entire sequence back into order, the late packet gets 

resequenced completely resulting in an in order sequence. Since Bm is the highest value of i when 

RBD [i] is non – zero, we therefore have 

 Bm = 0 

 

Case 2: b < Bm 

 From Case 1, we know that when the Bm resequencing buffers are available, the entire 

sequence is back in order. But, when b (where b < Bm) buffers are available, the sequence gets 

partially resequenced. 

We know that, 

 If Bm buffers are required to reduce the displacement by Bm positions, we can say 

 that b buffers are sufficient to reduce the displacement by b positions.  

Therefore,  

the new displacement of the late packet would be (Bm – b)  



 

 

 

71 

 

 Bm’ = Bm – b  

Q.E.D 

 

Theorem 12 

In the absence of duplicates and losses, the reorder buffer occupancy density of a sequence that 

has traversed through a resequencing node with b buffers is given by 

 RBD‟ [0]  =  1      for b ≥ Bm 

(30) 

 RBD‟ [i - p] = j (RBD [i]) + k (  [i])    for b < Bm 

 ∀ i ϵ SRBD where, 

   j = 0, k = +1 and p = 0 when i = 0 

   j = +1, k = 0 and p = b when i > b 

 (31) 

Proof 

Case 1: b ≥ Bm 

 When the number of resequencing buffers available is equal to or greater than the 

maximum number of buffers required to put the entire sequence back in order, the sequence is 

back in order. From the definition of RBD [43], for an in-order sequence, we know that  

 RBD’ [0] = 1 

 

Case 2: b < Bm 

By expanding equation (31), we get 

a) RBD‟ [0] =  [i] 
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b) RBD‟ [b‟ - b] = RBD [b] where b‟ ϵ {x : RBD [x] > 0 and x > b} 

 From Chapter 2 and [41], we know that every packet that is reordered has a secondary 

event associated with it. RBD is the normalized value of buffer occupancy of the hypothetical 

buffer used to store packets that are affected by secondary events [25]. Therefore, when packets 

get resequenced back into order, the packets affected by the secondary events are also back in 

order thereby reducing the buffer occupancy and correspondingly increasing the 0 – buffer 

occupancy or RBD [0]. 

 Since the buffer available is less than the total requirement, the displacement of the 

primary event packet would reduce by b causing reduction in buffer occupancy by b. Therefore,  

 RBD‟ [0] =  RBD [0] + RBD [1] + … + RBD [b]  

 RBD’ [0] =   [i] 

 Also, the displacement(s) of the primary event packet(s) reduces by b. This means that 

the hypothetical buffer required to resequence these packets would be reduced by b. Therefore, 

 RBD’ [b’ - b] = RBD [b] where b’ ϵ {x : RBD [x] > 0 and x > b} 

Q. E. D 

 

Inference 

A sequence emerging from a resequencing node with (b1 + b2) buffers is same as the same 

sequence emerging from a cascade of two nodes, one with b1 resequencing buffers and the other 

with b2 resequencing buffers. 

Explanation 

 The eventual sum of resequencing buffers used for a sequence assumes much more 

importance rather than the distribution pattern of the resequencing buffers across nodes (referred 



 

 

 

73 

 

to as resequencing nodes). If a sequence requires Bm resequencing buffers to get back into order, 

the Bm buffers can be distributed across Bm number nodes each with a single resequencing buffer. 

The eventual resultant sequence after it passes through the Bm nodes would be an in-order 

sequence with RBD [0] and RD [0] having unity values just like it is mentioned in Figure 3-1. 

 

3.4 Verification and Analysis 

 The theorems presented in this chapter were verified using two sets of data:  

a) Internet traces available in the CNRL repository [63] 

b) Sequences generated using random probability distribution 

 

 The entire verification and analysis process can be better understood with the help of the 

Figure 3-10. The verification is broken into smaller modules namely 

i) Data interpreter 

 The Internet traces are served as an input to this module. The Internet traces available in 

the CNRL repository [63] are tcpdump files which are based on relative sequence numbers. Every 

packet has a beginning byte number and an ending byte number. Since this data cannot be 

directly used as sequence numbers, they had to be interpreted in a different manner. This module 

parses the data and re-interprets them into sequence numbers of the form (1, 2, 3....N). Also, 

special filtering is done to make sure traces with lost or duplicate packets are discarded since the 

theorems are based on such assumptions. 

 



 

 

 

74 

 

 

Figure 3-10. Different modules used for verification and analysis 

 

ii) Sequence generator 

 When the formulae for predicting RD (and RBD) were initially designed, they had to be 

verified using a simpler approach and hence the creation of such a module. Based on the kind of 

pattern, the sequence generator takes random values as input to generate a sequence of packets 

which serves as input to the Resequencing module. 

 

iii) Resequencing module with ‘b’ buffers 

 This module consists of the lowest first resequencing algorithm. It accepts a sequence of 

packets as input and outputs a new sequence of packets as output after resequencing them using 

„b‟ buffers where „b‟ would vary based on the maximum number of buffers required for 

resequencing.  
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iv) Oracle or predictor module 

 This forms the crux of the verification process. RD (or RBD) of a sequence (could be an 

Internet trace or a sequence that was generated) is served as input to this module. All the 

theorems are mathematically represented in the form of modules. Based on the kind of pattern, an 

appropriate module would be selected and this output is sent to the verification module. 

 

v) Verification module 

 This module compares the values of RD (or RBD) generated by the Oracle and the 

resequencing module and outputs the result based on the consistency in comparison. Most 

modules have been developed using C as the programming language and the gcc compiler. The 

Internet traces had to be processed before sending as input to the Data interpreter and this 

processing was done using Perl since it can be made to understand a number of different patterns. 

 The CNRL repository [63] contains a number of traces with every trace consisting of one 

or more different patterns. To illustrate one of the verification results for this chapter, the one 

with the maximum number of reordering patterns with displacement greater than 1 was selected 

namely “0.14.30.4.106.www.olympus.co.jp.dmp” [63]. The displacements and their probability 

distribution in the sequence were analyzed. The initial RD and RBD graphs shown in Figure 3-11 

were obtained using scripts for RFC 5236 [25] at [63]. Note that the vertical axes of all the RD 

and RBD graphs are based on log scale. The measured RD value was obtained using Perl scripts 

available at [63] for RFC 5236 [25]. 
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Figure 3-11. Initial graphs of RD and RBD obtained from one of the traces. 

 

 A single trace contains 1000 packets obtained over different time intervals from a number 

of sites. The selected sequence of 1000 packets was passed through Data interpreter module, then 

through the resequencing module containing first 5 resequencing buffers and then 15 

resequencing buffers to obtain 2 new sequences. The RD and RBD of these sequences were 

measured. The “Measured: columns in Figure 3-12 represent the RD and RBD graphs after using 
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5 resequencing buffers. Similarly, the “Measured” columns in Figure 3-13 represent the graphs 

after using 15 resequencing buffers. The “Theoretical” columns for RD and RBD for 5 and 15 

resequencing buffers in Figure 3-12 and Figure 3-13 respectively were obtained using the RD and 

RBD obtained initially and the theoretical results presented in this chapter. 

 

Figure 3-12. Graph of RD after using 5 resequencing buffers 

 

Figure 3-13. Graph of RBD after using 5 resequencing buffers 
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Figure 3-14. Graph of RD after using 15 resequencing buffers 

 

 

Figure 3-15. Graph RBD after using 15 resequencing buffers 

 

 As can be seen, the theoretical and measured values of RD and RBD for a given number 

of resequencing buffers are equal thereby verifying the theorems. Note the improvement in the 

orderliness of the sequences.  
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3.5 Conclusion 

 In this chapter, analytical results that can be used to estimate the impact of resequencing 

buffers on packet reordering were presented. This is one of the first researches to analyze the 

impact of resequencing nodes on degree and extent of packet reordering. With the presented 

results, the variation of reorder density and reorder buffer occupancy density as a packet stream 

goes through a resequencing node can be characterized. The proposed theorems were verified 

using simulation study based on the traces available at [63] and random probability distribution 

and were found to be accurate. Such estimations give valuable insight about the quantity of 

resources (mostly buffers) required to resequence packets in reordered sequences. With increase 

in network speeds and parallelism across network components and bandwidth aggregation, packet 

reordering is bound to play a much more important role in the future.  

 Internet service providers might even have to include packet reordering metric as one of 

their QoS parameters which means that across the Internet, a number of Internet Service 

Providers (ISPs) will have to estimate and sync their QoS parameters. Router manufacturers 

already include extra hardware for mitigating packet reordering [55]. This chapter presented the 

theoretical basis for estimation of buffer resources to meet target goals and to evaluate the impact 

of size and placement of buffers on reordering in packet flows.  
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CHAPTER 4. REORDER BUFFER OCCUPANCY DENSITY FROM 

REORDER DENSITY 

 

 This chapter focuses on derivation of Reorder Buffer Occupancy Density given the 

Reorder Density of a sequence. The motivation to work on such a problem arose out of multiple 

reasons: when network designers model computer networks, considerable emphasis is placed on 

resource constraints since hardware in network components isn‟t cheap and one of the more 

important resource considerations could be the buffer required to store and forward packets as 

and when they arrive, resequence reordered packets, etc.  

 Reorder Density (RD) provides an estimate about the degree of displacement of early or 

late packets in a sequence. While designing the hardware required to mitigate the effects of 

packet reordering, Reorder Buffer Occupancy Density (RBD) provides better understanding 

about the resources required and related constraints. By definition [25], RBD is the histogram of 

the occupancy, normalized with respect to the number of packets, of the hypothetical buffer that 

is used to resequence the packets.  

 In the future, Reorder Density (RD) could be considered as one of the Quality of Service 

(QoS) parameters since that seems more appropriate compared to RBD. Under such design 

considerations, it would make sense to derive RBD since RBD provides an estimate of the 

hypothetical buffer required to resequence packets that are out of order. This would enable 

network designers to maintain particular reorder levels in commercial networks.  
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 In this chapter, Section 4.1 explains the theorems and associated proofs for deriving RBD 

from RD, Section 4.2 provides the Verification and Analysis of the theorems and Section 4.3 

concludes the chapter. 

 

4.1 Reorder Buffer Occupancy Density (RBD) from Reorder Density (RD) 

 The problem of deriving RBD from RD can be explained using Figure 4-1. As can be 

seen from the figure, design of computer networks for a particular RD becomes a simple problem 

when we have the theoretical model to derive RBD from RD.  

 From the earlier chapters, we know that every sequence that has some degree of 

reordering can have one or more of the following patterns: 

a) Independent Reordering 

b) Embedded Reordering 

c) Overlapped Reordering 

 These patterns have already been explained with great detail in Chapter 2. The high level 

description of the problem is represented in Figure 4-1. From the figure, it can be seen that to 

model computer networks, RBD is essential and to obtain RBD, either a sequence can be parsed 

to estimate RBD or the RD of the sequence can be used to obtain the RBD. 
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Figure 4-1. High level description of the problem 

 

Table 4.1. Common notations used in this chapter 

Symbol Description 

Vxy Length of the region of overlap between two reordered 

packets 

dx, dy Displacement values of the reordered packets in the 

sequence 

i, j Additive, Subtractive or Multiplicative factors used in 

the theorems 

RBD [i] Reorder Buffer occupancy Density of a sequence 

RD [i] Reorder Density of a sequence 

N Number of packets in the sequence 

S(RD,L) The set of indices of reorder density of the sequence 

whose values are greater than zero corresponding to late 

packets in the sequence. It may be represented as  

{x | x > 0, RD [x] > 0} 
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S(RD,E) The set of indices of reorder density of the sequence 

whose values are lesser than zero corresponding to early 

packets in the sequence. It may be represented as  

{x | x < 0, RD [x] > 0} 

 

 

4.1.1 Independent Reordering Patterns 

 An Independent Reordering pattern occurs when a single packet is either late or early. 

Consider the sequence (i-1, i, i+1, i+2, i+3, i+4, i+5). If packet i is late by 4 positions, then the 

resulting sequence would be (i-1, i+1, i+2, i+3, i+4, i, i+5). Similarly, if packet i+4 is early by 3 

positions, then the resulting sequence would be (i-1, , i+4, i+1, i+2, i+3,  i+5). 

 

Theorem 1 

In the absence of losses and duplicates, the reorder buffer occupancy density of a sequence 

consisting of an independent reordering pattern caused by a late packet event can be represented 

as 

RBD [i]  =  j / N 

 where 

  j = 1   when i ≥ 1 and i ≤ dx 

  j = (N – dx) when i = 0 

     ∀ dx ϵ S(RD,L) 

 (1) 

Proof 

On expanding the equation (1), we get 

a) RBD [0] = (N – dx) / N 
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b) RBD [1 .. dx] = 1 / N 

 Since the only element in the set S(RD,L) is the displacement value of the late packet, dx is 

equal to the value of the sole element in that set. Reorder Buffer Occupancy Density (RBD) 

provides an estimate of a hypothetical buffer that is used to buffer packets until the expected 

packet is encountered [43]. The calculation of RBD is done as follows: While traversing the 

sequence, if the sequence number of the encountered packet  doesn‟t match the sequence 

number of the expected packet, then it is assumed to  be stored in the hypothetical buffer. The 

buffer occupancy of this hypothetical  buffer after traversing the entire sequence determines the 

RBD of the sequence.   

 Thus, if a packet arrives late by dx positions, the displacement of the packet would be dx 

and the buffer occupancy of the hypothetical buffer would keep increasing from 1 till dx at every 

arrival instance of the new packet until the sequence number of the expected packet corresponds 

with the sequence number of the late packet.  

 Since the indices of RBD correspond to the buffer occupancy, we therefore have 

 RBD [1 .. dx]  = 1 / N 

Also, since RBD is normalized, the remaining values correspond to the instances when the buffer 

occupancy was zero and therefore  

 RBD [0]   =  (N – dx) / N 

 Q. E. D 

 

Theorem 2 
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In the absence of losses and duplicates, the reorder buffer occupancy density of a sequence 

consisting of an independent reordering pattern caused by an early packet event can be 

represented as 

 RBD [i]  =  j / N 

 where 

  j = dy   when i = 1 

  j = (N – dy)  when i = 0  

    ∀ dy ϵ {abs(y) | y ϵ S(RD,E)} 

 (2) 

Proof 

On expanding the equation (2), we get 

a) RBD [1] = dy / N 

b) RBD [0] = (N – dy) / N 

 Since the only element in the S(RD,E) is the negative displacement of the early packet, dy 

will be equal to the absolute value of the sole element in that set. 

 From the definition of RBD [25], we know that the packet whose sequence number 

doesn‟t correspond with the expected sequence number is assumed to be buffered in the 

hypothetical buffer and the buffer occupancy of this hypothetical buffer determines the values of 

RBD.  

 While traversing a sequence consisting of a packet that is early by dy positions, the early 

packet would be buffered since the sequence number of the early packet doesn‟t correspond with 

the sequence number of the expected packet resulting in the buffer occupancy being 1. This 

packet would remain buffered until the expected sequence number corresponds to the sequence 
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number of the buffered packet and upon the arrival of such an instance; the buffered packet is 

released into the sequence.  

 Thus the number of instances when buffer occupancy would have a value of 1 would be 

dy which is the displacement of the early packet. Therefore, 

RBD [1] = dy / N 

 During the remaining packet arrival instances, the buffer occupancy would be zero. 

Therefore,  

 RBD [0] = (N – dy) / N 

Q. E. D 

 

4.1.2 Embedded Reordering Patterns 

 An embedded reordering pattern occurs when an early or late packet event is embedded 

within another early or late packet event. Consider the sequence (i-1, i, i+1, i+2, i+3, i+4, i+5). 

If packet i is late by 4 positions and packet i + 1 is late by 2 positions, then the resulting sequence 

would be (i-1, i+2, i+3, i+1, i+4, i, i+5) resulting in a sequence with embedded reordering 

pattern. 

 

Theorem 3 

In the absence of losses and duplicates, the reorder buffer occupancy density of a sequence 

consisting of an embedded reordering pattern caused by a late packet event embedded within 

another late packet event can be represented as 

 RBD [i]  =  j / N 

 where 
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  j = 1   when i ≥ 1 and i ≤ dx 

  j = (N – dx)  when i = 0 

    ∀ dx ϵ max(S(RD,L)) 

 (3) 

Proof 

By expanding the equation (3), we get 

a) RBD [1... dx] = 1 / N 

b) RBD [0] = (N - dx) / N 

 In the case of an embedded reordering pattern formed by a late packet event embedded 

within another late packet event, the set S(RD,L) would contain the displacement value of the late 

packets. The value of dx would be the maximum value of the 2 elements in the set since the outer 

late packet tends to be the packet with the expected sequence. 

 While traversing such a sequence, the sequence number of the expected packet would 

increment to the sequence number of the outer late packet thus causing the buffer occupancy to 

would keep increasing from 1 to dx. During this process, the late packet that is embedded within 

the outer late packet event will also be buffered and released just like the other packets and 

therefore, 

 RBD [1… dx] = 1 / N 

Since the remaining values correspond with zero buffer occupancy, we have 

RBD [0] = (N - dx) / N 

Q. E. D 

 

Theorem 4 
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In the absence of losses and duplicates, the reorder buffer occupancy density of a sequence 

consisting of an embedded reordering pattern caused by an early packet event embedded within a 

late packet event can be represented as 

 RBD [i]  =  j / N 

 where 

  j = 1   when i ≥ 1 and i ≤ dx 

  j = (N – dx)  when i = 0 

     ∀ dx ϵ S(RD,L) 

 (4) 

Proof 

Please refer to the proof for Theorem 3. 

Q. E. D 

 

Theorem 5 

In the absence of losses and duplicates, the reorder buffer occupancy density of a sequence 

consisting of an embedded reordering pattern caused by a late packet event embedded within an 

early packet event can be represented as 

 RBD [i]  =  j / N 

 where  

  j = 1    when i = 2 to dx 

  j = (1 + dy – dx)  when i = 1 

  j = (N – dy)  when i = 0 

    ∀ dx = max(S(RD,L)) and dy = abs(min(S(RD,E))) 
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 (5) 

Proof 

By expanding the equation (5), we get 

a) RBD [2 ... dx] = 1 / N 

b) RBD [1] = (1 + dy – dx) / N 

c) RBD [0] = (N - dy) / N 

 The values of dx and dy, given the RD of the sequence, can be computed by calculating 

the absolute displacements of the late and early packets respectively which happens to be the 

highest and lowest values of the indices of RD. 

 While traversing a sequence consisting of an embedded reordering pattern caused by a 

late packet event embedded within an early packet event, the early packet is first encountered and 

stored in the hypothetical buffer causing buffer occupancy of 1. The minimum buffer occupancy 

would be 1 until the expected sequence number corresponds with the sequence number of the 

stored early packet {proved in Theorem 2}. 

 During the sequence traversal, if a packet is late, packets get buffered resulting in an 

increase in the buffer occupancy {proved in Theorem 1}. In this case, since the buffer already 

contains the early packet, once the expected sequence number is equal to the sequence number of 

the late packet; more packets are buffered until the actual late packet is encountered in the 

sequence. Therefore,  

 RBD [2 ... dx] = 1 / N 

 This is similar to the RBD values of an independent reordering pattern consisting of a 

single late packet. Since one extra packet is buffered, the index of RBD is offset by 1. Once the 

late packet is encountered all the packets except for the early packet are released causing the 
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buffer occupancy of the hypothetical buffer to have a value of 1 for a few more instances. Since 

the displacement of the early packet is dy and the late packet would now be part of secondary 

events caused by the early packet, we therefore have 

 RBD [1] = (1 + dy – dx) / N 

Since the hypothetical buffer during the remaining instances would have no occupancy, we have 

RBD [0] = (N - dy) / N 

Q. E. D 

 

Theorem 6 

In the absence of losses and duplicates, the reorder buffer occupancy density of a sequence 

consisting of an embedded reordering pattern caused by an early packet event embedded within 

another early packet event can be represented as 

 RBD [i]  =  j / N 

 where 

  j = (dx – dy – 1) when i = 1  

  j = (dy + 1)  when i = 2 

  j = (N – dx)   when i = 0  

   ∀ dx = abs(min1(S(RD,E))) and dy = abs(min2(S(RD,E))) 

(6) 

Proof 

By expanding the equation (6), we get 

a) RBD [1] = (dx – dy – 1) / N 

b) RBD [2] = (dy + 1)  / N 
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c) RBD [0] = (N - dx) / N 

 Given the RD of a sequence, the values of dx and dy can be computed from all the 

indices of RD that are non-zero. dx is the lowest index amongst all the indices and dy is the 

second lowest index. 

 We already know that the hypothetical buffer would have a single packet occupancy 

(buffer occupancy of 1) until the sequence number of the expected packet corresponds with the 

sequence number of the early packet {proved in Theorem 2}. 

 When an additional early packet is encountered during the traversal, the hypothetical 

buffer would contain one additional packet resulting in buffer occupancy of 2 packets. Since the 

early packet is embedded within, the displacement is actually offset by 1 and therefore we have 

RBD [2] = (dy + 1) / N 

 Once the sequence number of the expected packet corresponds with the sequence number 

of the embedded early packet, it is released resulting in single packet buffer occupancy again. 

Therefore,  

 RBD [1] = (dx – dy – 1) / N 

 Since the hypothetical buffer during the remaining instances would have no occupancy,  

 RBD [0] = (N - dx) / N 

Q. E. D 

 

4.1.3 Overlapped Reordering Patterns 

 An overlapped reordering pattern occurs when an early or late packet event overlaps with 

another early or late packet event. Consider the sequence (i-3, i-2, i-1, i, i+1, i+2, i+3, i+4, i+5).  

If packets i and i-2 are late by 3 and 4 positions respectively, then the resulting sequence would 
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be (i-3, i-1, i+1, i-2, i+2, i+3, i+4, i, i+5) resulting in a sequence with an overlapped reordering 

event. 

 

Lemma 1 

In the absence of losses and duplicates, the length of the region of overlap between two 

overlapping late events in a sequence containing N packets can be can be represented as 

  Vxy  =  RD [-2] * N 

(7) 

Proof 

 From the definition of RD [25], it is known that the secondary events of late packets 

result in a negative displacement of 1 for the packets that get displaced. When 2 such late events 

overlap, the packets in the region of overlap are part of the secondary events of both the events. 

This causes a negative displacement of 2. Since the sequences under consideration are assumed to 

have single reordering patterns, the sum of the instances of the displacement that correspond with 

-2 would be equal to the length of the overlap. Since RD is a normalized value, it is multiplied by 

N to de-normalize to obtain the overlap length 

Q. E. D 

 

Lemma 2 

In the absence of losses and duplicates, the length of the region of overlap between a late event 

and an early event (or an early event and a late event) in a sequence containing N packets can be 

represented as 

  Vxy  =  dx + dy – 2 – (  [k] * Ni ) 
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     ∀ dx = max{S(RD,L)} and dy = abs{min{S(RD,E)}} 

     ∀ k ϵ {x | x > 0, RD [x] > 0} 

(8) 

Proof 

 From the definition of RD [25], it is known that the secondary events of early packets 

result in a positive displacement of 1 for the packets that get displaced. It is also known that the 

secondary events of late packets result in a negative displacement of 1 for the packets that get 

displaced. When a late event overlaps with an early event (or an early event overlaps with a late 

event), the packets in the region of overlap would be part of both the events. In the region of 

overlap, the positive and negative displacements caused by the secondary events of both the 

packets cancel each other out resulting in zero displacement. 

 

Lemma 3 

In the absence of losses and duplicates, the length of the region of overlap between two 

overlapping early events in a sequence containing N packets can be can be represented as 

  Vxy  =  RD [2] * N 

(9) 

Proof 

 From the definition of RD [25], it is known that the secondary events of early packets 

result in a positive displacement of 1 for the packets that get displaced. When 2 such early events 

overlap, the packets in the region of overlap are part of the secondary events of both the events. 

This causes a positive displacement of 2. Since the sequences under consideration are assumed to 

have single reordering patterns, the sum of the instances of the displacement 2 would be equal to 
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the length of the overlap. Since RD is a normalized value, it is multiplied by N to de-normalize to 

obtain the overlap length 

Q. E. D 

 

Theorem 7 

In the absence of losses and duplicates, the reorder buffer occupancy density of a sequence 

consisting of an overlapped reordering pattern caused by a late packet event overlapping with 

another late packet event can be represented as 

 RBD [i]  =  j / N 

 where 

  j = (N – dx – dy + Vxy – 1)  when i = 0 

  j = 1     when i ≥ 1 and i < Vxy  

  j = 1    when i > dx and i ≤ dy 

  j = 2    when i ≥ Vxy and i ≤ dx 

    ∀ dx = max1(S(RD,L)) and dy = max2(S(RD,L)) 

 (10) 

Proof 

By expanding equation (10), we get 

a) RBD [1 … (Vxy – 1)]  = 1 / N 

b) RBD [(dx+1) … dy]  = 1 / N 

c) RBD [Vxy … dx]  = 2 / N 

d) RBD [0]   = (N –dx –dy + Vxy – 1) / N 
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 Given the value of RD, the values of dx and dy can be computed as the highest and the 

second highest displacement amongst the set of indices of RD.  

From Lemma 1, we have 

 Vxy = RD [-2] * N 

 While traversing a sequence consisting of a late packet event overlapping with another 

late packet event, the hypothetical buffer gets filled until the sequence number of the expected 

packet corresponds with the sequence number of the first late packet. At this point, all the packets 

preceding the secondary events of the overlapping late event are released and ones corresponding 

with the overlapping late event are still buffered resulting in the hypothetical buffer containing 

the same number of packets during 2 instances.  

Therefore, the number packets corresponding with the secondary events of the overlapping late 

event is equal to the length of overlap or 

 RBD [Vxy]   =  2/N 

 On continuing the traversal, we find that the hypothetical buffer continues to store 

packets until the second late packet is encountered. Since there would be more instances when the 

buffer occupancy would be 2,  

 RBD [Vxy … dx]  = 2/N 

 Beyond this point the buffer would have single buffer occupancy just like earlier, therefore  

 RBD [1 … (Vxy – 1)]  = 1 / N 

 RBD [Vxy … dx]  = 2 / N 

 Since the hypothetical buffer during the remaining instances would have no occupancy,  

 RBD [0]   = (N –dx –dy + Vxy – 1) / N 

Q. E. D 
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Theorem 8 

In the absence of losses and duplicates, the reorder buffer occupancy density of a sequence 

consisting of an overlapped reordering pattern caused by a late packet event overlapping with an 

early packet event (or an early packet event overlapping with a late packet event) can be 

represented as 

 RBD [i]  =  j / N 

 where 

  j = (N – dx – dy + Vxy)  when i = 0 

  j = (dy – Vxy + 1)  when i = 1 

  j = 1    when i ≥ 2and i ≤ dx 

    ∀ dx = max{S(RD,L)} and dy = abs(min{S(RD,E)}) 

 (11) 

Proof 

 A late event causes the occupancy of the buffer to gradually increase until the sequence 

number of the expected packet matches with the sequence number of the current packet. Also, it 

is known that an early packet gets buffered until the sequence number of the expected packet 

corresponds with sequence number of the early packet. The length of overlap can be estimated 

using Lemma 2. 

 When an early event overlaps with a late event, the early packet gets buffered causing 

single buffer occupancy. This remains constant until the traversal reaches the secondary events of 

the late packet i.e., when we encounter the region of overlap. At this point, the other packets start 

getting buffered causing a gradual increase in the buffer occupancy until the late packet is 
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encountered. Therefore, the number of instances when the hypothetical buffer would have single 

buffer occupancy would be {dy – Vxy + 1} resulting in RBD [2] to have a value of {dy – Vxy + 

1} / N. 

 Since we have an early event overlapping with this late event, the early packet would be 

buffered resulting in an increase of RBD [1]. Hence, the value of RBD [1] can be obtained by 

subtracting the length of overlap by the absolute value of the displacement of the early packet. 

The remaining instances would correspond to zero buffer occupancy and hence {N – dx – dy + 

Vxy}/N. 

 When a late event overlaps with an early event, the gradual increase in the occupancy of 

the hypothetical buffer happens initially followed by the single buffer occupancy owing to the 

late packet. Therefore, the same equations hold good. 

Q. E. D 

 

Theorem 9 

In the absence of losses and duplicates, the reorder buffer occupancy density of a sequence 

consisting of an overlapped reordering pattern caused by an early packet event overlapping with 

another early packet event can be represented as 

 RBD [i]  =  j / N 

 where 

  j = (N – dy – dx + 1)   when i = 0 

  j = (dy + dx - Vxy – 1)  when i = 1 

  j = Vxy   when i = 2 

   ∀ dx = abs(min1(S(RD,E))) and dy = abs(min2(S(RD,E))) 
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 (12) 

Proof 

 Since a single buffer is sufficient to resequence an early packet, for two early packets two 

buffers would be sufficient to do the same. Therefore, the possible indices of RBD would be 0, 1 

and 2. Also, the length of overlap can be estimated using Lemma 3 which is equal to RD [2] * N. 

 While traversing the sequence, the first early packet gets buffered causing single buffer 

occupancy for dx number of instances. However, since another early packet event overlaps with 

this event, on encountering the second early packet, the buffer occupancy increases causing two 

packets to be stored in the hypothetical buffer. The buffer occupancy would remain constant with 

two packets until the first early packet gets released. The number of instances during the traversal 

of overlapped region corresponds to Vxy and therefore RBD [2] has a value of Vxy / N.  

 The number of instances when we have single buffer occupancy would be equal to the 

sum of the absolute displacement of the two early packets subtracted by the length of the overlap 

reduced by 1. The reduction by 1 is to factor out the overlapping early packet event.  

 Since the hypothetical buffer during the remaining instances would have no occupancy, 

RBDn [0] has a value of {N – dy – dx + 1} / N.  

Q. E. D 

4.2 Verification and Analysis 

 The theorems presented in this chapter were verified using two sets of data - Internet 

traces available in the CNRL repository [63] and sequences generated using random probability 

distribution.  



 

 

 

99 

 

 

Figure 4-2. Verification process in deriving RBD from RD 

 The verification process can be better understood with the help of Figure 4-2. The 

verification can be broken into smaller modules namely 

a) Data interpreter 

 The details about this module have already been presented in Chapter 3. 

b) Sequence Generator 

 The details about this module have already been presented in Chapter 3. 

c) RD to RBD Converter 

 This forms the crux of the verification process. RD of a sequence (could be an Internet 

trace or a sequence that was generated) is served as input to this module. All the theorems are 

mathematically represented in the form of modules. Based on the kind of pattern, an appropriate 

module would be selected and this output is sent to the verification module 

d) Verification module 
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 This module is slightly different from the one mentioned in Chapter 3 though the purpose 

of both the modules seem the same. It compares the theoretical RBD and the actual RBD to 

output the result of the verification process. 

 

4.2.1 Illustrations 

 In this section, illustrations are provided to explain the derivation of RBD from RD in a 

clear manner. Since there are separate theorems and derivations for different reordering patters, 

this section is similar to the earlier ones. 

 

a) Independent Reordering – Late event 

 Consider a reordered sequence (1, 2, 4, 5, 6, 7, 8, 9, 3, 10) where packet 3 is displaced by 

+6 positions (late). The computation of RD for this sequence is done in Table 4.2 and Table 4.3. 

Table 4.2. Computation of FD, IR – Late packet 

Arrived 

Sequence 
1 2 4 5 6 7 8 9 3 10 

RI 1 2 3 4 5 6 7 8 9 10 

D 0 0 -1 -1 -1 -1 -1 -1 6 0 

FD [D] 1 2 1 2 3 4 5 6 1 3 

 

Table 4.3. Computation of RD, IR – Late packet 

D -1 0 6 

FD [D] 6 3 1 

RD [D] 0.6 0.1 0.1 
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Figure 4-3. RD graph for an IR event caused by a late packet 

 

From the Table 4.3, we have the following  

 RD [-1] = 0.6 

 RD [0]  = 0.1 

 RD [6]  = 0.1 

From Theorem 1, we have 

i. RBD [0] = (N – dx) / N 

ii. RBD [1 .. dx] = 1 / N 

Here, N = 10 and dx = 6. Therefore, the computed values of RBD using the theorem would be 

 RBD [0] = 0.4 

 RBD [1 … 6] = 0.1 

The computation of RBD using actual procedures is shown in Table 4.4 and Table 4.5.  
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Table 4.4. Computation of FB, IR – Late packet 

Arrived 

Sequence 
1 2 4 5 6 7 8 9 3 10 

E 1 2 3 3 3 3 3 3 3 10 

B 0 0 1 2 3 4 5 6 0 0 

FB [B] 1 2 1 1 1 1 1 1 3 4 

 

Table 4.5. Computation of RBD, IR – Late packet 

B 0 1 2 3 4 5 6 

FB [B] 4 1 1 1 1 1 1 

RBD [B] 0.4 0.1 0.1 0.1 0.1 0.1 0.1 

 

 

Figure 4-4. RBD graph showing the actual and computed values for an IR event caused by a late packet 

From the Figure 4-4, we see that the computed and actual values of RBD are same for an IR event 

caused by a late packet. 

 

b) Independent Reordering – Early event 
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 Consider a reordered sequence (1, 2, 9, 3, 4, 5, 6, 7, 8, 10) where packet 9 is displaced by 

-6 positions (early). The computation of RD for this sequence is done in Table 4.6 and Table 4.7. 

Table 4.6. Computation of FD, IR – Early packet 

Arrived 

Sequence 
1 2 9 3 4 5 6 7 8 10 

RI 1 2 3 4 5 6 7 8 9 10 

D 0 0 -6 1 1 1 1 1 1 0 

FD [D] 1 2 1 1 2 3 4 5 6 3 

 

Table 4.7. Computation of RD, IR – Early packet 

D -6 0 1 

FD [D] 1 3 6 

RD [D] 0.1 0.3 0.6 

 

 

Figure 4-5. RD graph for an IR event caused by an early packet 

 

From the Table 4.7, we have the following  

 RD [-6]  = 0.1 

 RD [0]  = 0.3 
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 RD [1]  = 0.6 

From Theorem 2, we have 

i. RBD [1] = dy / N 

ii. RBD [0] = (N – dy) / N 

Here, N = 10 and dy = 6. Therefore, the computed values of RBD using the theorem would be 

 RBD [1] = 0.6 

 RBD [0] = 0.4 

The computation of RBD using actual procedures is shown in Table 4.8 and Table 4.9 

Table 4.8. Computation of FB, IR – Early packet 

Arrived 

Sequence 
1 2 9 3 4 5 6 7 8 10 

E 1 2 3 3 3 3 3 3 3 10 

B 0 0 1 1 1 1 1 1 0 0 

FB [B] 1 2 1 2 3 4 5 6 3 4 

 

Table 4.9. Computation of RBD, IR – Early packet 

B 0 1 

FB [B] 4 6 

RBD [B] 0.4 0.6 
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Figure 4-6. RBD graph showing the actual and computed values for an IR event caused by an early packet 

 

From the Figure 4-6, we see that the computed and actual values of RBD are same for an IR event 

caused by an early packet. 

 

c) Embedded Reordering – Lateness embeds Lateness 

 Consider a reordered sequence (1, 3, 4, 6, 7, 5, 8, 9, 2, 10) where packets 2 and 5are 

displaced by +7 (late) and +1 positions (late) respectively. The computation of RD for such a 

sequence is done in Table 4.10 and  

Table 4.11. 

Table 4.10. Computation of FD, ER - Lateness embeds Lateness 

Arrived 

Sequence 
1 3 4 6 7 5 8 9 2 10 

RI 1 2 3 4 5 6 7 8 9 10 

D 0 -1 -1 -2 -2 1 -1 -1 7 0 

FD [D] 1 1 2 1 2 1 3 4 1 2 
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Table 4.11. Computation of RD, ER - Lateness embeds Lateness 

D -2 -1 0 1 7 

FD [D] 2 4 2 1 1 

RD [D] 0.2 0.4 0.2 0.1 0.1 

      

 

Figure 4-7. RD graph for an ER event caused by a late packet event embedded within a late packet event 

 

From the  

Table 4.11, we have the following  

RD [-2] = 0.2; RD [-1] = 0.4; RD [0] = 0.2; RD [1] = 0.1; RD [7] = 0.1 

From Theorem 3, we have 

i. RBD [1 … dx]  = 1 / N 

ii. RBD [0] = (N – dx) / N 

Here, N = 10 and dx = 7. Therefore, the computed values of RBD using the theorem would be 

 RBD [1… 7] = 0.1 
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 RBD [0] = 0.3 

The computation of RBD using actual procedures is shown in  

Table 4.12and Table 4.13. 

 

Table 4.12. Computation of FB, ER - Lateness embeds Lateness 

Arrived 

Sequence 
1 3 4 6 7 5 8 9 2 10 

E 1 2 2 2 2 2 2 2 2 10 

B 0 1 2 3 4 5 6 7 0 0 

FB [B] 1 1 1 1 1 1 1 1 2 3 

 

Table 4.13. Computation of RBD, ER - Lateness embeds Lateness 

B 0 1 2 3 4 5 6 7 

FB [B] 3 1 1 1 1 1 1 1 

RBD [B] 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 

 

Figure 4-8. RBD graph showing the actual and computed values for an ER event caused by a late packet event 

embedded within another late packet event 
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From Figure 4-8, we see that the computed and actual values of RBD for an embedded sequence 

formed by a late event embedded within another late event are the same. 

 

d) Embedded Reordering – Lateness embeds Earliness 

 Consider a reordered sequence (1, 3, 4, 8, 5, 6, 7, 9, 2, 10) where packets 2 and 8 are 

displaced by +7 (late) and -4 positions (early) respectively. The computation of RD for this 

sequence is done in Table 4.14 and Table 4.15. 

Table 4.14. Computation of FD, ER - Lateness embeds Earliness 

Arrived 

Sequence 
1 3 4 8 5 6 7 9 2 10 

RI 1 2 3 4 5 6 7 8 9 10 

D 0 -1 -1 -4 0 0 0 -1 7 0 

FD [D] 1 1 2 1 2 3 4 3 1 5 

 

Table 4.15. Computation of RD, ER - Lateness embeds Earliness 

D -4 -1 0 7 

FD [D] 1 3 5 1 

RD [D] 0.1 0.3 0.5 0.1 
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Figure 4-9. RD graph for an ER event caused by an early packet event embedded within a late packet event 

From the Table 4.15, we have the following  

RD [-4] = 0.1; RD [-1] = 0.3; RD [0] = 0.5; RD [7] = 0.1 

From Theorem 4, we have 

i. RBD [1 … dx]  = 1 / N 

ii. RBD [0]  = (N – dx) / N 

Here, N = 10 and dx = 7. Therefore, the computed values of RBD using the theorem would be 

 RBD [1 … 7] = 0.1 

 RBD [0] = 0.3 

The computation of RBD using actual procedures is shown in Table 4.16 and Table 4.17 

Table 4.16. Computation of FB, ER - Lateness embeds Earliness 

Arrived 

Sequence 
1 3 4 8 5 6 7 9 2 10 

E 1 2 2 2 2 2 2 2 2 10 

B 0 1 2 3 4 5 6 7 0 0 

FB [B] 1 1 1 1 1 1 1 1 2 3 

 

Table 4.17. Computation of RBD, ER - Lateness embeds Earliness 

B 0 1 2 3 4 5 6 7 

FB [B] 3 1 1 1 1 1 1 1 

RBD [B] 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
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Figure 4-10. RBD graph showing the actual and computed values for an ER event caused by an early packet 

event embedded within a late packet event 

 From Figure 4-10, we see that the computed and actual values of RD for an embedded 

reordering sequence formed by an early event embedded within a late event are the same. 

 

e) Embedded Reordering – Earliness embeds Lateness 

 Consider a reordered sequence (1, 9, 2, 4, 5, 6, 3, 7, 8, 10) where packets 3 and 9 are 

displaced by +4 (late) and -7 positions (early) respectively. The computation of RD for this 

sequence is done in Table 4.18 and Table 4.19. 

Table 4.18. Computation of FD, ER - Earliness embeds Lateness 

Arrived 

Sequence 
1 9 2 4 5 6 3 7 8 10 

RI 1 2 3 4 5 6 7 8 9 10 

D 0 -7 1 0 0 0 4 -1 1 0 

FD [D] 1 1 1 2 3 4 1 1 2 5 

 

Table 4.19. Computation of RD, ER - Earliness embeds Lateness 

D -7 -1 0 1 4 
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FD [D] 1 1 5 2 1 

RD [D] 0.1 0.1 0.5 0.2 0.1 

 

 

Figure 4-11. RD graph for an ER event caused by a late packet event embedded within an early packet event 

From the Table 4.19, we have the following  

RD [-7] = 0.1; RD [-1] = 0.1; RD [0] = 0.5; RD [1] = 0.2; RD [4] = 0.1 

From Theorem 5, we have 

i. RBD [2 ... dx] = 1 / N 

ii. RBD [1] = (1 + dy – dx) / N 

iii. RBD [0] = (N - dy) / N 

Here, N = 10, dx = 4 and dy = 7. Therefore, the computed values of RBD using the theorem 

would be 

 RBD [2 … 4] = 0.1 

 RBD [1] = 0.4 

 RBD [0] =  0.3 

The computation of RBD using actual procedures is shown in  
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Table 4.20 and Table 4.21 

 

 

Table 4.20. Computation of FB, ER - Earliness embeds Lateness 

Arrived 

Sequence 
1 9 2 4 5 6 3 7 8 10 

E 1 2 2 3 3 3 3 7 8 10 

B 0 1 0 2 3 4 1 1 1 0 

FB [B] 1 1 2 1 1 1 2 3 4 3 

 

Table 4.21. Computation of RBD, ER - Earliness embeds Lateness 

B 0 1 2 3 4 

FB [B] 3 4 1 1 1 

RBD [B] 0.3 0.4 0.1 0.1 0.1 

 

 

Figure 4-12. RBD graph showing the actual and computed values for an ER event caused by a late packet event 

embedded within an early packet event 

 From Figure 4-12, we see that the actual and computed values for an embedded 

reordering event formed by a late event embedded within an early event are the same.  
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f) Embedded Reordering – Earliness embeds Earliness 

 Consider a reordered sequence (1, 9, 2, 6, 3, 4, 5, 7, 8, 10) where packets 6 and 9 

displaced by -2 (early) and -7 (early) positions respectively. The computation of RD for this 

sequence is done in Table 4.22 and Table 4.23. 

Table 4.22. Computation of FD, ER - Earliness embeds Earliness 

Arrived 

Sequence 
1 9 2 6 3 4 5 7 8 10 

RI 1 2 3 4 5 6 7 8 9 10 

D 0 -7 1 -2 2 2 2 1 1 0 

FD [D] 1 1 1 1 1 2 3 2 3 2 

 

Table 4.23. Computation of RD, ER - Earliness embeds Earliness 

D -7 -2 0 1 2 

FD [D] 1 1 2 3 3 

RD [D] 0.1 0.1 0.2 0.3 0.3 
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Figure 4-13. RD graph for an ER event caused by an early packet event embedded within another early packet 

event 

From the Table 4.23, we have the following  

RD [-7] = 0.1; RD [-2] = 0.1; RD [0] = 0.2; RD [1] = 0.3; RD [2] = 0.3 

From Theorem 6, we have 

i. RBD [1] = (dx – dy – 1) / N 

ii. RBD [2] = (dy + 1)  / N 

iii. RBD [0] = (N - dx) / N 

Here, N = 10, dx = 7 and dy = 2. Therefore, the computed values of RBD using the theorem 

would be 

 RBD [1] = 0.4 

 RBD [2] = 0.3 

 RBD [0] = 0.3 

The computation of RBD using actual procedures is shown in Table 4.24 and Table 4.25 

Table 4.24. Computation of FB, ER - Earliness embeds Earliness 
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Arrived 

Sequence 
1 9 2 6 3 4 5 7 8 10 

E 1 2 2 3 3 4 5 7 8 10 

B 0 1 1 2 2 2 1 1 0 0 

FB [B] 1 1 2 1 2 3 3 4 2 3 

 

Table 4.25. Computation of RBD, ER - Earliness embeds Earliness 

B 0 1 2 

FB [B] 3 4 3 

RBD [B] 0.3 0.4 0.3 

 

 

 

Figure 4-14. RBD graph showing the actual and computed values for an ER event caused by an early packet 

event embedded within another early packet event 

 From Figure 4-14 we see that the actual and computed values of an embedded reordering 

event formed by an early event embedded within another early event are the same. 

 

g) Overlapped Reordering – Lateness overlaps Lateness 



 

 

 

116 

 

 Consider a reordered sequence (1, 3, 5, 6, 7, 2, 8, 9, 4, 10) where packets 2 and 4 are 

displaced by +4 and +5 positions respectively. The computation of RD for this sequence is done 

in Table 4.26 and Table 4.27. 

 

Table 4.26. Computation of FD, OR - Lateness overlaps Lateness 

Arrived 

Sequence 
1 3 5 6 7 2 8 9 4 10 

RI 1 2 3 4 5 6 7 8 9 10 

D 0 -1 -2 -2 -2 4 -1 -1 5 0 

FD [D] 1 1 1 2 3 1 2 3 1 2 

 

Table 4.27. Computation of RD, OR - Lateness overlaps Lateness 

D -2 -1 0 4 5 

FD [D] 3 3 2 1 1 

RD [D] 0.3 0.3 0.2 0.1 0.1 

 

 

Figure 4-15. RD graph for an OR event caused by a late packet event overlapping within another late packet 

event 

From the Table 4.27, we have the following  
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RD [-2] = 0.3; RD [-1] = 0.3; RD [0] = 0.2; RD [4] = 0.1; RD [5] = 0.1 

From Theorem 7, we have 

i. RBD [1 … (Vxy – 1)] = 1 / N 

ii. RBD [(dx+1) … dy] = 1 / N 

iii. RBD [Vxy … dx]  = 2 / N 

iv. RBD [0]   = (N –dx –dy + Vxy – 1) / N 

Here,  

 N = 10, dx = 4, dy = 5 

From Lemma 1, we have  

 Vxy = 3 

Therefore, the computed values of RBD using the theorem would be 

 RBD [1 ... 2] = 0.1 

 RBD [3… 4] = 0.2 

 RBD [5] = 0.1 

 RBD [0] = 0.3 

The computation of RBD using actual procedures is shown in Table 4.28 and Table 4.29. 

Table 4.28. Computation of FB, OR - Lateness overlaps Lateness 

Arrived 

Sequence 
1 3 5 6 7 2 8 9 4 10 

E 1 2 2 2 2 4 4 4 4 10 

B 0 1 2 3 4 3 4 5 0 0 

FB [B] 1 1 1 1 1 2 2 1 2 3 

 

Table 4.29. Computation of RBD, OR - Lateness overlaps Lateness 

B 0 1 2 3 4 5 

FB [B] 3 1 1 2 2 1 
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RBD [B] 0.3 0.1 0.1 0.2 0.2 0.1 

 

 

Figure 4-16. RBD graph showing the actual and computed values for an OR event caused by a late packet event 

overlapping within another late packet event 

 

 From Figure 4-16, we see that the actual and computed values of an overlapped 

reordering event formed by a late event overlapping with another late event are the same. 

 

h) Overlapped Reordering – Lateness overlaps Earliness 

 Consider a reordered sequence (1, 3, 8, 4, 5, 2, 6, 7, 9, 10) where packets 2 and 8 get 

displaced. The computation of RD for this sequence is done in Table 4.30 and Table 4.31. 

 

Table 4.30. Computation of FD, OR - Lateness overlaps Earliness 

Arrived 

Sequence 
1 3 8 4 5 2 6 7 9 10 

RI 1 2 3 4 5 6 7 8 9 10 

D 0 -1 -5 0 0 4 1 1 0 0 
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FD [D] 1 1 1 2 3 1 1 2 4 5 

 

Table 4.31. Computation of RD, Overlapped Reordering, Late overlaps Early 

D -5 -1 0 1 4 

FD [D] 1 1 5 2 1 

RD [D] 0.1 0.1 0.5 0.2 0.1 

 

 

 

Figure 4-17. RD graph for an OR event caused by a late packet event overlapping within an early packet event 

 

From the Table 4.31, we have the following  

RD [-5] = 0.1;  RD [-1] = 0.1; RD [0] = 0.5; RD [1] = 0.2; RD [4] = 0.1 

From Theorem 8, we have 

i. RBD [1]  = (dy – Vxy + 1) / N 

ii. RBD [2 … dx]   = 1 / N 

iii. RBD [0]  = (N – dx – dy + Vxy) / N 

Here, N = 10, dx = 4 and dy = 5.  

From Lemma 2, we have 
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 Vxy = 2 

Therefore, the computed values of RBD using the theorem would be 

 RBD [1] = 0.4 

 RBD [2 … 4] = 0.1 

 RBD [0] = 0.3 

The computation of RBD using actual procedures is shown in Table 4.32 and Table 4.33 

Table 4.32. Computation of FB, OR - Lateness overlaps Earliness 

Arrived 

Sequence 
1 3 8 4 5 2 6 7 9 10 

E 1 2 2 2 2 2 6 7 9 10 

B 0 1 2 3 4 1 1 1 0 0 

FB [B] 1 1 1 1 1 2 3 4 2 3 

 

Table 4.33. Computation of RBD, OR - Lateness overlaps Earliness 

B 0 1 2 3 4 

FB [B] 3 4 1 1 1 

RBD [B] 0.3 0.4 0.1 0.1 0.1 
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Figure 4-18. RBD graph showing the actual and computed values for an OR event caused by a late packet event 

overlapping within an early packet event 

 From Figure 4-18, we see that the actual and computed values of an overlapped 

reordering event formed by a late event overlapping with an early event are the same. 

 

i) Overlapped Reordering – Earliness overlaps Earliness 

 Consider a reordered sequence (1, 2, 4, 5, 6, 7, 8, 9, 3, 10) where packet 3 is displaced by 

+6 positions (late). The computation of RD for this sequence is done in Table 4.34 and Table 

4.35. 

Table 4.34. Computation of FD, OR - Earliness overlaps Earliness 

Arrived 

Sequence 
1 6 2 3 9 4 5 7 8 10 

RI 1 2 3 4 5 6 7 8 9 10 

D 0 -4 1 1 -4 2 2 1 1 0 

FD [D] 1 1 1 2 2 1 2 3 4 2 

 

Table 4.35. Computation of RD, OR - Earliness overlaps Earliness 

D -4 0 1 2 

FD [D] 2 2 4 2 

RD [D] 0.2 0.2 0.4 0.2 
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Figure 4-19. RD graph for an OR event caused by an early packet event overlapping within another early packet 

event 

 

From the Table 4.35, we have the following  

RD [-4] = 0.2; RD [0] = 0.2; RD [1] = 0.4; RD [2] = 0.2  

From Theorem 9, we have 

i. RBD [2] = Vxy / N 

ii. RBD [1] = (dy + dx - Vxy – 1) / N 

iii. RBD [0] = (N – dy – dx + 1) / N 

Here, N = 10, dx = 4 and dy = 4.  

From Lemma 3, we have 

 Vxy = 2 

Therefore, the computed values of RBD using the theorem would be 

 RBD [2] = 0.2 

 RBD [1] = 0.5 
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 RBD [0]  = 0.3 

The computation of RBD using actual procedures is shown in Table 4.36 and Table 4.37 

Table 4.36. Computation of FB, OR - Earliness overlaps Earliness 

Arrived 

Sequence 
1 6 2 3 9 4 5 7 8 10 

E 1 2 2 3 4 4 5 7 8 10 

B 0 1 1 1 2 2 1 1 0 0 

FB [B] 1 1 2 3 1 2 4 5 2 3 

 

Table 4.37. Computation of RBD, OR - Earliness overlaps Earliness 

B 0 1 2 

FB [B] 3 5 2 

RBD [B] 0.3 0.5 0.2 

 

 

Figure 4-20. RBD graph showing the actual and computed values for an OR event caused by an early packet 

event overlapping within another early packet event 

 

 From Figure 4-20, we see that the actual and computed values of an overlapped 

reordering event formed by an early event overlapping with another early event are the same. 
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4.3 Conclusion 

 Based on the theorems presented in this chapter, it can be seen that the Reorder Buffer-

Occupancy Density can be calculated using the Reorder Density of a sequence. The theorems 

were verified using Internet traces available at the CNRL repository [63] and random sequences. 

The results of the verification process showed that given the kind of reordering pattern, the RD of 

the sequence and the number of packets in the sequence, one can easily obtain the RBD of the 

sequence using these theorems.  

While designing network architectures and components, RBD serves as a more useful 

metric to allocate resources required for negating packet reordering. But, it is more likely that RD 

will be used as a metric in QoS given the probability of displacement frequency that RD provides. 

Therefore, the research provided in this chapter would serve as a useful tool to measure RBD 

from RD, thereby enabling the usage of at least RD if not RBD. 
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CHAPTER 5. CONCLUSION 

 

 In this research, analytical results to estimate the impact of re-sequencing buffers on 

packet reordering have been presented. This is one of the first such researches to analyze the 

impact of re-sequencing nodes on degree and extent of packet reordering.  With the presented 

results, the variation of reorder density and reorder buffer occupancy density as a packet stream 

goes through a resequencing node can be characterized. The proposed theorems were verified 

using simulation study based on the traces available at [63] and were found to be accurate. Such 

estimation gives valuable insight about the quantity of resources required to resequence packets 

in reordered sequences. With increase in network speeds and parallelism across network 

components, packet reordering is bound to play a much more important role in the future. Internet 

service providers might even have to include packet reordering metric as one of their QoS 

parameters which means across the Internet a number of such ISPs will have to estimate and sync 

their QoS parameters. Router manufacturers already include extra hardware for mitigating packet 

reordering. This research presents the theoretical basis for estimation of buffer resources to meet 

target goals and to evaluate the impact of size and placement of buffers on reordering in packet 

flows.  
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CHAPTER 6. FUTURE WORK 

 

The research holds good for sequences with a single type of reordering pattern whose 

reordering pattern in known in advance. In future, the theorems can be extended to accommodate 

multiple instances of specific reordering patterns. Theorems can be devised to obtain the Reorder 

Density (RD) of a single instance of reordering pattern, given the overall RD of a sequence 

containing multiple instances of different reordering patterns. The impact of distribution of 

resequencing buffers on such sequences containing multiple instances of reordering patterns can 

be studied in great detail to emulate real-life implementations.  

The theorems assume the existence of resequencing mechanism when all packets from a 

single flow (or sequence) converge onto a single network node and continue to do so thus 

enabling resequencing. But, in reality, this could be an interesting problem since the packets from 

a single flow (or sequence) may or may not converge much before reaching the destination. The 

effect of latency on getting the packets back into order is also an interesting problem. 

The primary purpose of Reorder Density (RD) and Reorder Buffer-Occupancy Density 

(RBD) is to measure packet reordering in computer networks. When one considers the larger 

perspective of these metrics which basically measure reordering and quantify the effect in terms 

of buffers, we find that they have more applications than one could have ever thought. Reordering 

is a common phenomenon across the world. Any pattern that follows a sequence can undergo 

reordering thereby affecting the status quo.  
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6.1 Packet Reordering in Mobile Networks 

 One of the reasons for the tremendous growth of Internet has been the availability of 

Internet connectivity on mobile devices. The Internet has become ubiquitous due to vast 

information that is easily available to the users at their fingertips. All this is happening despite the 

fact that mobile connectivity suffers when compared to broadband service, in terms of quality of 

service. When more and more users start using mobile devices for connecting to Internet, the 

focus would shift from just connectivity to quality of connectivity and when that happens, 

Internet Service Providers would start to focus on QoS and packet reordering happens to one of 

the critical things affecting the performance as already seen. 

 As mentioned earlier, in radio access technology for the next generation, Long Term 

Evolution and Ultra Mobile Broadband are getting standardized. Studies conducted in these areas 

are focusing on the overhead involved in avoiding packet reordering. Such studies indicate the 

importance of tackling the problem of packet reordering and its solutions in the mobile and 

broadband industry. 

 

6.2 Reordering in areas outside computer networks 

The concepts of RD and RBD may be applied to other streams where reordering is a 

common phenomenon. Medical science is one such area where recent achievements have been 

accomplished in the study of patterns in the human body such as DNA / RNA sequencing. 

Manufacturing is another such area where machines are used to carry out systematic and 

monotonous work. Machines are basically instruction based systems which lack the idea of 

cognition that a human being does. When multiple machines communicate or depend on each 

other, sequencing is important and the so-called machines need to adhere to a strict code or 
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pattern. Almost all manufacturing units are sequence based and lack of order in such sequences 

can result in insurmountable losses.
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APPENDIX 

 

 

Map.c 
#include <stdio.h> 
 
#define SIZE 1005 
 
void get_latest_index(int byte_num[],int *end_num,int *end_index); 
int chk_for_all(int byte_num[]); 
int get_new_index(int byte_num[], int x); 

 
int main(int argc, const char* argv[] ) { 
 
 FILE *in; 
 in = fopen(argv[1],"r"); 
 
 if(NULL == in) 
 { 

  printf("\n Error"); 
 } 
 else 
 { 
  int byte_num[SIZE]; 
  int astart[SIZE],aend[SIZE],asize[SIZE]; 
  int start,end,size; 
  int it = 1; 

  int i; 
  int quit = 1; 
  int prev_quit = 0; 
 
  for(i = 0;i<SIZE;i++) 
   byte_num[i] = -1; 
 
  //printf("\n Done with init"); 
  i = 0; 

  while(EOF != fscanf(in,"%d %d %d",&start,&end,&size)){ 
   astart[i] = start; 
   aend[i] = end; 
   asize[i] = size; 
 
   i++; 
  } 
 

  int MAX = SIZE; 
 
  //printf("\n Done with reading"); 
  while(quit && (prev_quit < MAX)){ 
   int end_num = -1,end_index = -1; 
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   start = astart[it-1]; 
   end = aend[it-1]; 
 
   if(it == 1){ 

    byte_num[it] = start; 
    byte_num[it+1] = end; 
   } 
   else 
    get_latest_index(byte_num,&end_num,&end_index); 
 
 
   if(start == end_num){ 

    byte_num[end_index+1] = end; 
    //printf("\n bye_num[%d] = %d",end_index+1,end); 
    //it = 1; 
   } 
 
   if(it == MAX) { 
    prev_quit++; 
    quit = chk_for_all(byte_num); 

    ///printf("\n Recursing .."); 
    it = 1; 
   } 
   else 
    it++; 
 
  } 
 
  //printf("\n Done with reading"); 

 
  /* 
  for(i=0;i<1000;i++) 
   printf("\n [%d]\t%d",i+1,byte_num[i]); 
  */ 
 
  fclose(in); 
 

  int num_of_late = 0; 
  int num_of_early = 0; 
  int was_it_only_ir = 1; 
  int late_by_one=0; 
 
  if(prev_quit < MAX) { 
  in = fopen(argv[1],"r"); 
 

   printf("\n"); 
   int ri = 1; 
   while(EOF != fscanf(in,"%d %d %d",&start,&end,&size)){ 
    int nstart = get_new_index(byte_num,start); 
    int nend = get_new_index(byte_num,end); 
 
    if((ri-nstart) > 0) 
     num_of_late++; 

    else if((ri-nstart) < 0) 
     num_of_early++; 
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    if((ri-nstart)< -1) 
     was_it_only_ir = 0; 
 
    if((ri-nstart) == 1) 

     late_by_one++; 
 
    if((ri-nstart) != 0) 
     printf("\n%d\t%d\t\t%d",nstart,ri,(ri-nstart)); 
    else 
     printf("\n%d\t%d\t%d",nstart,ri,(ri-nstart)); 
    ri++; 
   } 

   printf("\n<%d:%d",was_it_only_ir,num_of_late); 
   printf(":%d:%d>",num_of_early,late_by_one); 
  } 
  else 
   printf("\n Packets lost ..."); 
  fclose(in); 
 } 
} 

 
 
int get_new_index(int byte_num[], int x) { 
 for(int i = 1;i<=SIZE;i++) 
  if(x == byte_num[i]) 
   return i; 
 
 return -1; 
} 

void get_latest_index(int byte_num[],int *end_num,int *end_index) { 
 int i; 
 
 for(i=1;i<=SIZE;i++){ 
  if(byte_num[i] == -1) { 
 
   *end_num = byte_num[i-1]; 
   *end_index = i-1; 

   break; 
  } 
 } 
 
 //printf ("\n end_num %d\tend_index %d",*end_num,*end_index); 
} 
 
int chk_for_all(int byte_num[]){ 

 int i; 
 
 for(i=1;i<=999;i++) 
  if(byte_num[i] == -1) 
   return 1; 
 
 //printf("\n Returns 0"); 
 return 0; 

} 
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find_displacements.pl 
#!/usr/local/bin/perl -w 
 
 
$fol = "./indexed/"; 

opendir(IMD, $fol) || die("Cannot open directory"); 
@thefiles = readdir(IMD); 
closedir(IMD); 
foreach $thing (@thefiles) { 
       unless ( ($thing eq ".") || ($thing eq "..")) 
        { 
                $redir = $fol.$thing; 
                @filedata = `cat $redir`; 

 
  $num_of_lines = 0; 
                foreach $line (@filedata) { 
   #print "$line"; 
   if($num_of_lines > 999) 
   { 
    #print "here"; 
     

    if($line =~ m/\<(\d+):(\d+):(\d+):(\d+)\>/) { 
     $ir = $1; 
     $late = $2; 
     $early = $3; 
     $one_late = $4; 
      
     #print "hmmm..."; 
     if($ir == 1 && $late ne 0) { 
      print "\n Filename : $thing ------ \t"; 

      print "\tLate : $late\tEarly : $early"; 
     } 
     else { 
      #print "Doing .."; 
     } 
      
     if(($late+$early) > 100 && $ir == 1) { 
      $do = `cp ./indexed/$thing ./copied`; 

      print $do; 
     } 
      
      
    } 
   } 
   $num_of_lines++; 
  } 

 
        } 
} 
Allt.pl 
#!/usr/local/bin/perl -w 
 
$fol1 = "./selected/"; 
$fol2 = "./toindex/"; 

$fol3 = "./indexed/"; 
opendir(IMD, $fol1) || die("Cannot open directory"); 
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@thefiles = readdir(IMD); 
closedir(IMD); 
foreach $thing (@thefiles) { 
       unless ( ($thing eq ".") || ($thing eq "..")) 
        { 

         $redir = $fol1.$thing; 
         $toindex = $fol2.$thing; 
         $indexed = $fol3.$thing; 
          
                @fileoutput = `t.pl $redir > $toindex`; 
                @fileoutput1 = `./doit $toindex > $indexed`; 
                print "\tD"; 
        } 

} 
print "\nDONE !!"; 
 
extract_data.pl 
#!/usr/local/bin/perl -w 
 
$fol = "./Japan_txt/"; 
opendir(IMD, $fol) || die("Cannot open directory"); 

@thefiles = readdir(IMD); 
closedir(IMD); 
foreach $thing (@thefiles) { 
       unless ( ($thing eq ".") || ($thing eq "..")) 
        { 
  print "$thing"; 
                $redir = $fol.$thing; 
                print "$redir"; 
                @filedata = `cat $redir`;                 

                foreach $line(@filedata) { 
                 
                 #print "$filedata[$line]"; 
                  
   @myLines = `cat $line`; 
 
   $prev_start = 0; 
   $prev_end = 0; 

   $displacement = 0; 
   $number_lines = 0; 
   $start_count = 0; 
   $reorder_start = 0; 
 
   my %reorder_hash = (); 
 
 

   foreach (@myLines) { 
    $line = $_; 
    #print $line; 
 
    $number_lines++; 
 
    if($line =~ m/(S|.|P) (\d+):(\d+)/) { 
     $start = $2; 

     $end = $3; 
     #print "\n$2\t\t$3"; 
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     if($prev_end ne $start && $prev_end ne $prev_start) { 
      print "\nReorder $prev_end : $start"; 
      $start_count = 1; 
      $reorder_hash{$prev_end} = 1;    

     } 
 
     if($start_count eq 1) { 
      #print "happening"; 
      $displacement++; 
     } 
 
     if(defined $reorder_hash{$start}) { 

      delete $reorder_hash{$start}; 
      print "\t $start late by $displacement"; 
      $start_count = 0; 
      $displacement = 0; 
     }   
 
     $prev_start = $start; 
     $prev_end = $end; 

    } 
   } 
                 
                  
                } 
                              
        } 
} 
print "\nDONE !!"; 

 
Makefile 
CC= cc 
 
INC=-Iinclude 
LIB=-Llib 
CFLAGS=  
 

FLAGS= $(INC) $(LIB) $(CFLAGS) 
 
OBJS = debug.o reorder.o resequence.o seqgen.o comparator.o util.o main.o 
 
all: main 
 
main: $(OBJS) 
 $(CC) -o m $(OBJS) $(FLAGS) 

 
main.o: main.c 
 $(CC) -c main.c $(FLAGS) 
 
util.o: util.c 
 $(CC) -c util.c $(FLAGS) 
  
comparator.o : comparator.c  

 $(CC) -c comparator.c $(FLAGS) 
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reorder.o : reorder.c  
 $(CC) -c reorder.c $(FLAGS) 
 
resequence.o : resequence.c  
 $(CC) -c resequence.c $(FLAGS) 

 
seqgen.o: seqgen.c 
 $(CC) -c seqgen.c $(FLAGS) 
 
debug.o: debug.c 
 $(CC) -c debug.c $(FLAGS) 
 
clean : 

 rm m 
 rm *.o 
 
Comparator.c 
 
/* 
Filename: 
comparator.c 

 
Funtionality: 
This file contains methods to compute the displacement, predict RD, etc 
 
Author: 
Raghunandan Mandyam Narasiodeyar 
Computer Network Research Lab 
Dept. of Electrical and Computer Engineering 
Colorado State University 

Fort Collins, CO - 80523 
*/ 
 
#include <main.h> 
 
/* 
Method to compute the displacement 
Input arguments: 

actual - Pointer to the first NODE element 
num_of_packets - Number of packets in the sequence 
*/ 
NODE* compute_disp(NODE *actual,int num_of_packets) 
{ 
 int i=1; 
 NODE *temp,*current,*first; 
 NODE *tactual = actual; 

 
 temp = (NODE *)malloc(sizeof(NODE)); 
 first = current = temp; 
 
 while(i != num_of_packets) 
 { 
  current->info = i-(tactual->info); 
  temp = (NODE *)malloc(sizeof(NODE)); 

  current->ptr = temp; 
  current = temp; 
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  i++; 
  tactual = tactual->ptr; 
 } 
 current->info = i-(tactual->info); 
 current->ptr = NULL; 

 
 return(first); 
} 
 
/* 
A sub-method used to compute RD 
Input arguments: 
first - Pointer to the first NODE element 

x - element to be inserted 
*/ 
 
RD_NODE* increment_rd(int x,RD_NODE *first) 
{ 
 RD_NODE *temp; 
 RD_NODE *prev; 
 

 int status = FAIL; 
 
 temp = first; 
 
 if(temp == NULL && x != 0) 
 { 
  RD_NODE* n; 
  n = (RD_NODE*)malloc(sizeof(RD_NODE)); 
  n->d = 0; 

  n->disp = 0; 
  n->ptr = NULL; 
 
  temp = first = n; 
 } 
 
 if(temp == NULL) 
 { 

  RD_NODE* n; 
  n = (RD_NODE*)malloc(sizeof(RD_NODE)); 
  n->d = x; 
  n->disp = 1; 
  n->ptr = NULL; 
 
  return n; 
 } 

 
 while(temp != NULL) 
 { 
  if(temp->d == x) 
  { 
   (temp->disp)++; 
   status = SUCCESS; 
   break; 

  } 
  prev = temp; 
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  temp = temp->ptr; 
 } 
 
 if(status != SUCCESS) 
 { 

  RD_NODE* n; 
  n = (RD_NODE*)malloc(sizeof(RD_NODE)); 
  n->d = x; 
  n->disp = 1; 
  n->ptr = NULL; 
  prev->ptr = n; 
 } 
 

 return first; 
} 
 
/* 
Method used to compute RD 
Input arguments: 
disp - Pointer to the displacement NODE element 
num_of_packets - Number of packets in the sequence 

*/ 
 
RD_NODE* compute_rd(NODE *disp,int num_of_packets) 
{ 
 RD_NODE *first=NULL; 
 RD_NODE *trd; 
 NODE *temp; 
 
 temp = disp; 

 
 while(temp != NULL) 
 { 
  printf("\n iterating through main link list .."); 
  first = increment_rd(temp->info,first); 
  temp = temp->ptr; 
 } 
 

 return first; 
} 
 
/* 
Method used to predict RD in an embedded reordering pattern formed by 
late packet event embedded within another late packet event 
Input arguments: 
rdfirst - Pointer to the first element of the RD node 

num_of_packets - Number of packets in the sequence 
num_of_buffers - Number of resequencing buffers to be used 
*/ 
 
RD_NODE* predict_erlel_rd(RD_NODE *rdfirst,int num_of_packets,int num_of_buffers) 
{ 
 RD_NODE *temp; 
 RD_NODE *newtemp; 

 RD_NODE *newFirst; 
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 signed int dx=-1,dy=-1; 
 temp = rdfirst; 
 
 while(temp != NULL) 
 { 

  if(temp->d > 0 && dx == -1) 
   dx = temp->d; 
  if(temp->d > 0 && dx != -1) 
   dy = temp->d; 
 
  temp = temp->ptr; 
 } 
 

 temp = rdfirst; 
 newFirst = (RD_NODE *)malloc(sizeof(RD_NODE)); 
 newtemp = newFirst; 
 
 //printf("\n DX : %d\tDY : %d",dx,dy); 
 
 while(temp != NULL) 
 { 

  int minimum = min(dx,dy); 
  //printf("\n Minimum : %d Num_of_buffers : %d",minimum,num_of_buffers); 
  if(num_of_buffers < minimum) 
  { 
   //printf("\n num_of_buffers < minimum"); 
   if(temp->d == 0) 
   { 
    newtemp->d = temp->d; 
    newtemp->disp = temp->disp + num_of_buffers; 

   } 
   else if(temp->d == -1) 
   { 
    newtemp->d = temp->d; 
    newtemp->disp = temp->disp; 
   } 
   else if(temp->d == -2) 
   { 

    newtemp->d = temp->d; 
    newtemp->disp = temp->disp - num_of_buffers; 
   } 
   else if(temp->d > 1) 
   { 
    newtemp->d = (temp->d) - num_of_buffers; 
    newtemp->disp = temp->disp; 
   } 

  } 
  else if(num_of_buffers == minimum) 
  { 
   //printf("\n num_of_buffers == minimum"); 
   if(temp->d == 0) 
   { 
    newtemp->d = temp->d; 
    newtemp->disp = temp->disp + num_of_buffers + 1; 

   } 
   else if(temp->d == -1) 
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   { 
    newtemp->d = temp->d; 
    newtemp->disp = temp->disp; 
   } 
   else if(temp->d == -2) 

   { 
    newtemp->d = temp->d; 
    newtemp->disp = temp->disp - num_of_buffers; 
   } 
   else if(temp->d > num_of_buffers) 
   { 
    newtemp->d = (temp->d) - num_of_buffers; 
    newtemp->disp = temp->disp; 

   } 
  } 
  else if(num_of_buffers == minimum + 1) 
  { 
   //printf("\n num_of_buffers + 1 == minimum"); 
   if(temp->d == 0) 
   { 
    newtemp->d = temp->d; 

    newtemp->disp = temp->disp + num_of_buffers; 
   } 
   else if(temp->d == -1) 
   { 
    newtemp->d = temp->d; 
    newtemp->disp = temp->disp + 1; 
   } 
   else if(temp->d > num_of_buffers) 
   { 

    newtemp->d = (temp->d) - num_of_buffers; 
    newtemp->disp = temp->disp; 
   } 
  } 
  else if(num_of_buffers > (minimum + 1) && num_of_buffers < max(dx,dy)) 
  { 
   //printf("\n num_of_buffers > minimum && num_of_buffers < max(dx,dy)"); 
   if(temp->d == 0) 

   { 
    newtemp->d = temp->d; 
    newtemp->disp = temp->disp + num_of_buffers; 
   } 
   else if(temp->d == -1) 
   { 
    newtemp->d = temp->d; 
    newtemp->disp = temp->disp - num_of_buffers + minimum + 2; 

   } 
   else if(temp->d > minimum) 
   { 
    newtemp->d = (temp->d) - num_of_buffers; 
    newtemp->disp = temp->disp; 
   } 
  } 
  else 

  { 
   newtemp->d = 0; 
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   newtemp->disp = num_of_packets; 
   newtemp->ptr = NULL; 
   break; 
  } 
 

  if(temp->ptr != NULL && newtemp->disp != 0/*&& newtemp->disp != num_of_packets*/) 
  { 
   RD_NODE *again = (RD_NODE *)malloc(sizeof(RD_NODE)); 
   newtemp->ptr = again; 
   newtemp = again; 
  } 
  else 
   newtemp->ptr = NULL; 

 
  temp = temp->ptr; 
 } 
 
 return (newFirst); 
} 
 
/* 

Method used to predict RD in an overlapped reordering pattern formed by 
late packet event overlapping another late packet event 
Input arguments: 
rdfirst - Pointer to the first element of the RD node 
num_of_packets - Number of packets in the sequence 
num_of_buffers - Number of resequencing buffers to be used 
*/ 
 
RD_NODE* predict_orlol_rd(RD_NODE *rdfirst,int num_of_packets,int num_of_buffers) 

{ 
 RD_NODE *temp; 
 RD_NODE *newtemp; 
 RD_NODE *newFirst; 
 
 signed int dx=-1,dy=-1; 
 temp = rdfirst; 
 int vxy = 0; 

 
 while(temp != NULL) 
 { 
  if(temp->d > 0 && dx == -1) 
   dx = temp->d; 
  if(temp->d > 0 && dx != -1) 
   dy = temp->d; 
 

  if(temp->d == -2) 
   vxy = temp->disp; 
 
  temp = temp->ptr; 
 } 
 
 temp = rdfirst; 
 newFirst = (RD_NODE *)malloc(sizeof(RD_NODE)); 

 newtemp = newFirst; 
 int minimum = min(dx,dy); 
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 printf("\n VXY : %d",vxy); 
 
 while(temp != NULL) 
 { 

  //printf("\n Minimum : %d Num_of_buffers : %d",minimum,num_of_buffers); 
  if(num_of_buffers <= vxy) 
  { 
   //printf("\n num_of_buffers < minimum"); 
   if(temp->d == 0) 
   { 
    newtemp->d = temp->d; 
    newtemp->disp = temp->disp + num_of_buffers; 

   } 
   else if(temp->d == -1) 
   { 
    newtemp->d = temp->d; 
    newtemp->disp = temp->disp; 
   } 
   else if(temp->d == -2) 
   { 

    newtemp->d = temp->d; 
    newtemp->disp = temp->disp - num_of_buffers; 
   } 
   else if(temp->d > 1) 
   { 
    newtemp->d = (temp->d) - num_of_buffers; 
    newtemp->disp = temp->disp; 
   } 
  } 

  else if(num_of_buffers > vxy && num_of_buffers < minimum) 
  { 
   int j = vxy; 
   int k = (num_of_buffers - vxy); 
 
   //printf("\n num_of_buffers < minimum"); 
   if(temp->d == 0) 
   { 

    newtemp->d = temp->d; 
    newtemp->disp = temp->disp + j + 2*k; 
   } 
   else if(temp->d == -1) 
   { 
    newtemp->d = temp->d; 
    newtemp->disp = temp->disp - 2*k; 
   } 

   else if(temp->d > num_of_buffers) 
   { 
    newtemp->d = (temp->d) - num_of_buffers; 
    newtemp->disp = temp->disp; 
   } 
  } 
  else if(num_of_buffers == minimum) 
  { 

   int j = vxy; 
   int k = (num_of_buffers - vxy); 
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   //printf("\n num_of_buffers < minimum"); 
   if(temp->d == 0) 
   { 
    newtemp->d = temp->d; 

    newtemp->disp = temp->disp + j + 2*k + 1; 
   } 
   else if(temp->d == -1) 
   { 
    newtemp->d = temp->d; 
    newtemp->disp = temp->disp - 2*k; 
   } 
   else if(temp->d > num_of_buffers) 

   { 
    newtemp->d = (temp->d) - num_of_buffers; 
    newtemp->disp = temp->disp; 
   } 
  } 
  else if(num_of_buffers > (minimum) && num_of_buffers < max(dx,dy)) 
  { 
   int j = vxy; 

   int k = minimum - vxy; 
   int l = num_of_buffers - minimum; 
 
   if(temp->d == 0) 
   { 
    newtemp->d = temp->d; 
    newtemp->disp = temp->disp + j + 2*k + l + 1; 
   } 
   else if(temp->d == -1) 

   { 
    newtemp->d = temp->d; 
    newtemp->disp = temp->disp - (2*k) - l; 
   } 
   else if(temp->d > num_of_buffers) 
   { 
    newtemp->d = (temp->d) - num_of_buffers; 
    newtemp->disp = temp->disp; 

   } 
  } 
  else 
  { 
   newtemp->d = 0; 
   newtemp->disp = num_of_packets; 
   newtemp->ptr = NULL; 
   break; 

  } 
 
  if(temp->ptr != NULL && newtemp->disp != 0/*&& newtemp->disp != num_of_packets*/) 
  { 
   RD_NODE *again = (RD_NODE *)malloc(sizeof(RD_NODE)); 
   newtemp->ptr = again; 
   newtemp = again; 
  } 

  else 
   newtemp->ptr = NULL; 
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  temp = temp->ptr; 
 } 
 
 return (newFirst); 

} 
 
/* 
Method used to predict RD in an embedded reordering pattern formed by 
late packet event embedded within a early packet event 
Input arguments: 
rdfirst - Pointer to the first element of the RD node 
num_of_packets - Number of packets in the sequence 

num_of_buffers - Number of resequencing buffers to be used 
*/ 
 
RD_NODE* predict_erlee_rd(RD_NODE *rdfirst,int num_of_packets,int num_of_buffers) 
{ 
 RD_NODE *temp; 
 RD_NODE *newtemp; 
 RD_NODE *newFirst; 

 
 signed int dearly, dlate; 
 temp = rdfirst; 
 int vxy = 0; 
 
 while(temp != NULL) 
 { 
  if(temp->d < -1) 
   dearly = temp->d; 

 
  if(temp->d > 0) 
   dlate = temp->d; 
 
  temp = temp->ptr; 
 } 
 
 temp = rdfirst; 

 newFirst = (RD_NODE *)malloc(sizeof(RD_NODE)); 
 newtemp = newFirst; 
 
 printf("\n de : %d\tdl : %d",dearly,dlate); 
 
 while(temp != NULL) 
 { 
  if(num_of_buffers == 1) 

  { 
   int j = dearly + 1; 
   int k = num_of_buffers; 
   //printf("\n num_of_buffers < minimum"); 
   if(temp->d == 0) 
   { 
    newtemp->d = temp->d; 
    newtemp->disp = temp->disp + j + k; 

   } 
   else if(temp->d == -1) 
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   { 
    newtemp->d = temp->d; 
    newtemp->disp = temp->disp - j; 
   } 
   else if(temp->d > 1) 

   { 
    newtemp->d = (temp->d) - num_of_buffers; 
    newtemp->disp = temp->disp; 
   } 
  } 
  else if(num_of_buffers > 1 && num_of_buffers < dlate) 
  { 
   int j = dearly + 1; 

   int k = 1; 
   int m = num_of_buffers-1; 
 
   //printf("\n num_of_buffers < minimum"); 
   if(temp->d == 0) 
   { 
    newtemp->d = temp->d; 
    newtemp->disp = temp->disp + j + k + m; 

   } 
   else if(temp->d == -1) 
   { 
    newtemp->d = temp->d; 
    newtemp->disp = temp->disp - j - m; 
   } 
   else if(temp->d > 1) 
   { 
    newtemp->d = (temp->d) - num_of_buffers; 

    newtemp->disp = temp->disp; 
   } 
  } 
  else 
  { 
   newtemp->d = 0; 
   newtemp->disp = num_of_packets; 
   newtemp->ptr = NULL; 

   break; 
  } 
 
  if(temp->ptr != NULL && newtemp->disp != 0/*&& newtemp->disp != num_of_packets*/) 
  { 
   RD_NODE *again = (RD_NODE *)malloc(sizeof(RD_NODE)); 
   newtemp->ptr = again; 
   newtemp = again; 

  } 
  else 
   newtemp->ptr = NULL; 
 
  temp = temp->ptr; 
 } 
 
 return (newFirst); 

} 
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/* 
Method used to predict RD in an independent reordering pattern 
Input arguments: 
rdfirst - Pointer to the first element of the RD node 
num_of_packets - Number of packets in the sequence 

num_of_buffers - Number of resequencing buffers to be used 
*/ 
 
RD_NODE* predict_rd(RD_NODE *rdfirst,int num_of_packets,int num_of_buffers) 
{ 
 RD_NODE *temp; 
 RD_NODE *newRD=copy_rd_node(rdfirst); 
 RD_NODE *newtemp = newRD; 

 int max_req=0; 
 temp = rdfirst; 
 
 while(temp != NULL) 
 { 
  if(temp->d > max_req) 
   max_req = temp->d; 
 

  temp = temp->ptr; 
 } 
 
 temp = rdfirst; 
 
 if(num_of_buffers < max_req) 
 { 
  while(temp != NULL) 
  { 

   if(0 == temp->d) 
   { 
    newtemp->disp = (temp->disp)+num_of_buffers; 
   } 
   else if(-1 == temp->d) 
   { 
    newtemp->disp = (temp->disp)-num_of_buffers; 
   } 

   else 
   { 
    newtemp->d = (temp->d)-num_of_buffers; 
   } 
 
   temp = temp->ptr; 
   newtemp = newtemp->ptr; 
  } 

 } 
 else 
 { 
  while(temp != NULL) 
  { 
   if(0 == temp->d) 
   { 
    newtemp->disp = num_of_packets; 

    newtemp->ptr = NULL; 
   } 
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   temp = temp->ptr; 
 
  } 
 } 
 return (newRD); 

} 
 
int get_num_mrs(NODE *disp) 
{ 
 NODE *temp; 
 int mrs = 0; 
 temp = disp; 
 

 while(temp != NULL) 
 { 
  if(temp->info > 0) 
   mrs++; 
 
  temp = temp->ptr; 
 } 
 

 return mrs; 
} 
 
 
 
Debug.c 
 
/* 
Filename: 

debug.c 
 
Funtionality: 
This file contains methods required to debug or print the values of RD 
 
Author: 
Raghunandan Mandyam Narasiodeyar 
Computer Network Research Lab 

Dept. of Electrical and Computer Engineering 
Colorado State University 
Fort Collins, CO - 80523 
*/ 
 
#include <main.h> 
 
/* 

Method used to display the contents of the list 
Input: 
first - Pointer to the first element of the NODE 
*/ 
void display_list(NODE *first) 
{ 
 NODE *temp; 
 temp = first; 

 
 while(temp != NULL) 
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 { 
  printf("%4d ",temp->info); 
  temp = temp->ptr; 
 } 
 printf("\n"); 

} 
 
/* 
Method used to display the contents of the RD list 
Input: 
rdfirst - Pointer to the first element of the NODE 
num_of_packets - Number of packets in the sequence 
*/ 

 
void display_rd_node(RD_NODE *rdfirst,int num_of_packets) 
{ 
 RD_NODE *temp; 
 temp = rdfirst; 
 
 while(temp != NULL) 
 { 

  printf("\n RD[%d]\t%d/%d",temp->d,temp->disp,num_of_packets); 
  temp = temp->ptr; 
 } 
 
} 
 
 
/* 
Method used to display the contents of the RD list 

Input: 
first - Pointer to the first element of the NODE 
num_of_packets - Number of packets in the sequence 
*/ 
void display_rd(RD_NODE *first,int num_of_packets) 
{ 
 RD_NODE *trd = first; 
 

 printf("\n|----------------------------|"); 
 printf("\n|\tReorder Density"); 
 printf("\n|----------------------------|"); 
 
 while(trd != NULL) 
 { 
  printf("\n\tRD[%d]\t%d/%d ",trd->d,trd->disp,num_of_packets); 
  trd = trd->ptr; 

 } 
 printf("\n|----------------------------|"); 
} 
 
 
Reorder.c 
 
/* 

Filename: 
reorder.c 
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Funtionality: 
This file contains the method(s) to reorder based on a particular set of input 
 
Author: 

Raghunandan Mandyam Narasiodeyar 
Computer Network Research Lab 
Dept. of Electrical and Computer Engineering 
Colorado State University 
Fort Collins, CO - 80523 
*/ 
 
#include <main.h> 

 
 
NODE* reorder(NODE *first,int info,int displacement) 
{ 
 NODE *temp; 
 NODE *prev; 
 NODE *store; 
 

 int d = 0; 
 int swap = 0; 
 
 prev = temp = first; 
 
 if(displacement > 0) 
 { 
  while(temp != NULL) 
  { 

   if(temp->info == info) 
   { 
    store = temp; 
 
    if(prev != temp) 
    { 
     prev->ptr = temp->ptr; 
     temp = temp->ptr; 

    } 
    else 
    { 
     first = temp->ptr; 
     temp = temp->ptr; 
    } 
 
    swap = 1; 

   } 
 
   if(swap) 
   { 
    d++; 
    if(d == displacement+1) 
    { 
     prev->ptr = store; 

     store->ptr = temp; 
     break; 
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    } 
    if(temp->ptr == NULL) 
     swap = 0; 
   } 
 

   prev = temp; 
   temp = temp->ptr; 
  } 
 
  if(!swap) 
  { 
   prev->ptr = store; 
   store->ptr=NULL; 

  } 
 } 
 else if(displacement < 0) 
 { 
  int ptr = 0; 
 
  while(temp != NULL) 
  { 

   ptr++; 
   if(temp->info == info) 
   { 
    store = temp; 
 
    if(prev != temp) 
    { 
     prev->ptr = temp->ptr; 
     temp = temp->ptr; 

    } 
    else 
    { 
     first = temp->ptr; 
     temp = temp->ptr; 
    } 
    break; 
   } 

   prev = temp; 
   temp = temp->ptr; 
  } 
 
  prev = temp = first; 
  int ptr1 = 0; 
 
  while(temp != NULL) 

  { 
   //printf("\n ptr1 %d\tptr %d\tdis %d",ptr1,ptr,displacement); 
   // since displacement is -ve .. it is added here 
   if((ptr + displacement) == ptr1) 
   { 
    if(prev != temp) 
    { 
     prev->ptr = store; 

     store->ptr = temp; 
    } 
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    else 
    { 
     store->ptr = first; 
     first = store; 
    } 

    break; 
   } 
   ptr1++; 
   prev = temp; 
   temp = temp->ptr; 
  } 
 } 
 

 return first; 
} 
 
Resequence.c 
 
/* 
Filename: 
resequence.c 

 
Funtionality: 
This file contains the method(s) to resequence packets based on 
the lowest sequence number first algorithm 
 
Author: 
Raghunandan Mandyam Narasiodeyar 
Computer Network Research Lab 
Dept. of Electrical and Computer Engineering 

Colorado State University 
Fort Collins, CO - 80523 
*/ 
 
#include <main.h> 
 
#define MAX_NUM 99999 
 

int next_expected(NODE *vfirst,int x) 
{ 
 NODE *temp; 
 int max = -1; 
 temp = vfirst; 
 
 while(temp->info != x && temp != NULL) 
 { 

  //printf("%d\t",temp->info); 
  if(temp->info > max) 
   max = temp->info; 
 
  temp = temp->ptr; 
 } 
 
 return max+1; 

} 
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void mark_flag(int x,NODE *first) 
{ 
 NODE *temp; 

 temp = first; 
 
 while(temp != NULL) 
 { 
  if(temp->info == x) 
  { 
   temp->parsed = 1; 
   break; 

  } 
  temp = temp->ptr; 
 } 
} 
 
int get_expected(NODE *first) 
{ 
 NODE *temp = first; 

 
 while(temp != NULL) 
 { 
  if(temp->parsed == -1) 
   return temp->info; 
 
  temp = temp->ptr; 
 } 
 

 return -1; 
} 
 
NODE* resequence(NODE* first,int num_of_packets) 
{ 
 int expected = 1; 
 int store = MAX_NUM; 
 NODE *temp = first; 

 NODE *vtemp = first; 
 
 NODE *bfirst = create_orig_seq(num_of_packets); 
 
 while(temp != NULL) 
 { 
  //printf("\n expected : %d\ttemp->info : %d\tstore : %d",expected,temp->info,store); 
  if(expected == temp->info) 

  { 
   vtemp->info = temp->info; 
   mark_flag(vtemp->info,bfirst); 
   vtemp = vtemp->ptr; 
 
   if(store != MAX_NUM && store < temp->info) 
   { 
    vtemp->info = store; 

    mark_flag(vtemp->info,bfirst); 
    store = MAX_NUM; 
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    vtemp = vtemp->ptr; 
    expected = get_expected(bfirst); 
 
   } 
   else 

    expected++; 
  } 
  else 
  { 
   if(store < temp->info) 
   { 
    vtemp->info = store; 
    mark_flag(vtemp->info,bfirst); 

    vtemp = vtemp->ptr; 
    store = MAX_NUM; 
 
   } 
   if(store > temp->info && store != MAX_NUM) 
   { 
    vtemp->info = temp->info; 
    vtemp = vtemp->ptr; 

   } 
   else 
    store = temp->info; 
 
  } 
 
  temp = temp->ptr; 
 } 
 

 return first; 
} 
 
 
/* 
NODE* resequence(NODE* first) 
{ 
 NODE *temp,*prev; 

 NODE *vtemp,*vfirst; 
 int store=EMPTY; 
 int expected=1; 
 
 int alreadyParsed[MAX_PACKETS]; 
 
 for(int i = 1;i<=MAX_PACKETS;i++) 
  alreadyParsed[i] = FALSE; 

 
 vfirst = vtemp = temp = first; 
 
 while(temp != NULL) 
 { 
  if(expected != temp->info) 
  { 
   if(store == EMPTY && expected < temp->info) 

   { 
    store = temp->info; 
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    printf("\n Stored %d",store); 
   } 
   else if(expected > temp->info) 
   { 
    vtemp->info = temp->info; 

    vtemp = vtemp->ptr; 
   } 
   else 
   { 
    if(store < temp->info) 
    { 
     vtemp->info = store; 
     vtemp = vtemp->ptr; 

     store = temp->info; 
     printf("\n Stored %d",store); 
    } 
 
   } 
  } 
  else 
  { 

   int x; 
   vtemp->info = temp->info; 
   x = vtemp->info; 
   vtemp = vtemp->ptr; 
   expected = next_expected(vfirst,x); 
   printf("\n\t\t\t\t\t\t EXPECTED = %d",expected); 
   if(expected == store) 
   { 
    vtemp->info = store; 

    vtemp = vtemp->ptr; 
    store = EMPTY; 
    expected = next_expected(vfirst,x); 
    //if(EMPTY == store) 
     expected+=2; 
    printf("\n\t\t\t\t\t\t EXPECTED = %d",expected); 
   } 
 

  } 
 
  if(temp->ptr == NULL && -1 != store) 
   vtemp->info = store; 
 
 
  temp = temp->ptr; 
 } 

 
 return vfirst; 
 
} 
 
*/ 
 
Seqgen.c 

 
/* 
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Filename: 
seqgen.c 
 
Funtionality: 
This file contains the method(s) to create a sequence of packets 

based on the number of packets required 
 
Author: 
Raghunandan Mandyam Narasiodeyar 
Computer Network Research Lab 
Dept. of Electrical and Computer Engineering 
Colorado State University 
Fort Collins, CO - 80523 

*/ 
 
#include <main.h> 
 
 
NODE* create_orig_seq(int num_of_packets) 
{ 
 int i=1; 

 NODE *temp,*current,*first; 
 
 temp = (NODE *)malloc(sizeof(NODE)); 
 first = current = temp; 
 
 while(i != num_of_packets) 
 { 
  current->info = i; 
  current->parsed = -1; 

  temp = (NODE *)malloc(sizeof(NODE)); 
  current->ptr = temp; 
  current = temp; 
  i++; 
 } 
 current->info = i; 
 current->ptr = NULL; 
 

 return(first); 
} 
 
 
Util.c 
 
/* 
Filename: 

util.c 
 
Funtionality: 
This file contains the method(s) that act as utilities 
for the entire verification and simulation process 
 
Author: 
Raghunandan Mandyam Narasiodeyar 

Computer Network Research Lab 
Dept. of Electrical and Computer Engineering 
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Colorado State University 
Fort Collins, CO - 80523 
*/ 
 
#include <main.h> 

 
int max(int x,int y) 
{ 
 return (x > y ? x : y); 
} 
 
int min(int x,int y) 
{ 

 return (x < y ? x : y); 
} 
 
RD_NODE* copy_rd_node(RD_NODE *first) 
{ 
 RD_NODE *temp; 
 //RD_NODE *ntemp=NULL; 
 RD_NODE *nrdfirst=NULL; 

 RD_NODE *prev; 
 
 temp = first; 
 
 while(temp != NULL) 
 { 
  if(nrdfirst == NULL) 
  { 
   RD_NODE *t; 

   t = (RD_NODE*)malloc(sizeof(RD_NODE)); 
   t->d = temp->d; 
   t->disp = temp->disp; 
   t->ptr=NULL; 
   nrdfirst = t; 
   prev = t; 
  } 
  else 

  { 
   RD_NODE *next; 
   next = (RD_NODE*)malloc(sizeof(RD_NODE)); 
   next->d = temp->d; 
   next->disp = temp->disp; 
   next->ptr = NULL; 
   prev->ptr = next; 
   prev = next; 

  } 
 
  temp = temp->ptr; 
 
 } 
 return nrdfirst; 
} 
 

NODE* copy_node(NODE *first) 
{ 
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 NODE *temp; 
 //RD_NODE *ntemp=NULL; 
 NODE *nrdfirst=NULL; 
 NODE *prev; 
 

 temp = first; 
 
 while(temp != NULL) 
 { 
  if(nrdfirst == NULL) 
  { 
   NODE *t; 
   t = (NODE*)malloc(sizeof(NODE)); 

   t->info = temp->info; 
   t->ptr=NULL; 
   nrdfirst = t; 
   prev = t; 
  } 
  else 
  { 
   NODE *next; 

   next = (NODE*)malloc(sizeof(NODE)); 
   next->info = temp->info; 
   next->ptr = NULL; 
   prev->ptr = next; 
   prev = next; 
  } 
 
  temp = temp->ptr; 
 

 } 
 return nrdfirst; 
} 
 
 


